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Abstra
t

This paper presents the Timed Input/Output Automaton (TIOA) modeling frame-

work, a basi
 mathemati
al framework to support des
ription and analysis of timed

systems. An important feature of this model is its support for de
omposing timed

system des
riptions. In parti
ular, the framework in
ludes a notion of external be-

havior for a timed I/O automaton, whi
h 
aptures its dis
rete intera
tions with its

environment. The framework also de�nes what it means for one TIOA to implement

another, based on an in
lusion relationship between their external behavior sets, and

de�nes notions of simulations , whi
h provide suÆ
ient 
onditions for demonstrating

implementation relationships. The framework in
ludes a 
omposition operation for

TIOAs, whi
h respe
ts external behavior, and a notion of re
eptiveness , whi
h implies

that a TIOA does not blo
k the passage of time.
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1 Introdu
tion

1.1 Overview

Timed 
omputing systems are systems in whi
h desirable 
orre
tness or performan
e prop-

erties of the system depend on the timing of events, not just on the order of their o

ur-

ren
e. A typi
al timed system 
onsists of 
omputer 
omponents, whi
h operate in dis
rete

steps, and timing-related 
omponents su
h as physi
al or logi
al 
lo
ks, whose behavior in-

volve 
ontinuous transformation over time. Timed systems are employed in a wide range

of domains in
luding 
ommuni
ations, embedded systems, real-time operating systems,

and automated 
ontrol. Many appli
ations involving timed systems have strong safety,

reliability and predi
tability requirements, whi
h makes it important to have methods for

systemati
 design of systems and rigorous analysis of timing-dependent behavior.

In this paper, we introdu
e a basi
 mathemati
al framework { the Timed Input/Output

Automaton modeling framework { to support des
ription and analysis of timed systems.

A Timed I/O Automaton (TIOA) is a kind of nondeterministi
, possibly in�nite-state,

state ma
hine. The state of a TIOA is des
ribed by a valuation of state variables that are

internal to the automaton. The state of a TIOA 
an 
hange in two ways: instantaneously

by the o

urren
e of a dis
rete transition, whi
h is labeled by a dis
rete a
tion, or a

ording

a traje
tory, whi
h is a fun
tion that des
ribes the evolution of the state variables over

intervals of time. Traje
tories may be 
ontinuous or dis
ontinuous fun
tions.

The TIOA framework supports de
omposition of system des
ription and analysis. A

key to this de
omposition is the rigorously-de�ned notion of external behavior for timed

I/O automata. The external behavior of ea
h TIOA is de�ned by a simple mathemati
al

obje
t 
alled a tra
e{essentially, a sequen
e of a
tions interspersed with time-passage steps.

Abstra
tion and parallel 
omposition are other important notions for de
omposition of

system des
ription and analysis.

For abstra
tion, the framework in
ludes notions of implementation and simulation,

whi
h 
an be used to view timed systems at multiple levels of abstra
tion, starting from a

high-level version that des
ribes required properties, and ending with a low-level version

that des
ribes a detailed design or implementation. In parti
ular, the TIOA framework

de�nes what it means for one TIOA, A, to implement another TIOA, B, namely, any

tra
e that 
an be exhibited by A is also allowed by B. In this 
ase, A might be more

deterministi
 than B, in terms of either dis
rete transitions or traje
tories. For instan
e,

B might be allowed to perform an output a
tion at an arbitrary time before noon, whereas

A produ
es the same output sometime between 10 and 11AM. The notion of a simulation

relation from A to B provides a suÆ
ient 
ondition for demonstrating that A implements

B. A simulation relation is de�ned to satisfy three 
onditions, one relating start states,

one relating dis
rete transitions, and one relating traje
tories of A and B.

For parallel 
omposition, the framework provides a 
omposition operation, by whi
h

TIOAs modeling individual timed system 
omponents 
an be 
ombined to produ
e a model
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for a larger timed system. The model for the 
omposed system 
an des
ribe intera
tions

among the 
omponents, whi
h involves joint parti
ipation in dis
rete transitions. Com-

position requires 
ertain \
ompatibility" 
onditions, namely, that ea
h output a
tion be


ontrolled by at most one automaton, and that internal a
tions of one automaton 
annot

be shared by any other automaton. The 
omposition operation respe
ts tra
es, for exam-

ple, if A

1

implements A

2

then the 
omposition of A

1

and B implements the 
omposition

of A

2

and B. Composition also satis�es proje
tion and pasting results, whi
h are funda-

mental for 
ompositional design and veri�
ation of systems: a tra
e of a 
omposition of

TIOAs \proje
ts" to give tra
es of the individual TIOAs, and tra
es of 
omponents are

\pastable" to give behaviors of the 
omposition.

A formal modeling framework needs to support the statement and veri�
ation of both

safety and liveness properties if it is to be of general pra
ti
al use. A safety property

spe
i�es the absen
e of 
ertain undesirable events, while a liveness property spe
i�es that


ertain desirable events eventually o

ur. The TIOA modeling framework de�nes the

notions of safety and liveness properties for a TIOA, and what it means for a pair of safety

and liveness properties to be ma
hine-
losed. Ma
hine-
losure refers to the 
ondition that

a liveness property does not impose safety 
onstraints beyond those already imposed by

the safety property, and is usually 
onsidered to be a reasonable 
ondition to satisfy in

de�ning safety and liveness properties for a system.

The proof of many interesting liveness properties for 
on
urrent systems requires some

assumption about ea
h a
tivity in the system getting \enough" 
han
es to make progress.

Fairness properties are spe
ial kinds of liveness properties that express this informal idea.

The TIOA framework in
ludes notions of weak and strong fairness, and results that state

under whi
h 
onditions the fair tra
es of a TIOA 
an be shown to be in
luded in the fair

tra
es of another.

An interesting 
ompli
ation that arises in the timed setting is the possibility that a

state ma
hine 
ould exhibit the so 
alled Zeno behavior, by allowing time to approa
h

a �nite point in time without quite rea
hing it, or by s
heduling in�nitely many dis
rete

a
tions to happen in a �nite amount of time. The TIOA framework in
ludes a notion

of re
eptiveness, whi
h is used to 
lassify automata that do not 
ontribute to produ
ing

Zeno behavior, and whi
h is preserved by 
omposition. Re
eptiveness of a TIOA, A, in

the TIOA framework is de�ned in terms of the existen
e of a strategy, whi
h is de�ned as a

subautomaton of A that 
hooses some of the evolutions from ea
h state of A. This simple

notion of a strategy is used also in the statement of results that identify the 
onditions

under whi
h the out
ome of a system's intera
tions with its environment satis�es a liveness

property.

The TIOA modeling framework presented in this paper has evolved from the re
ently

introdu
ed Hybrid Input/Output Automaton (HIOA) modeling framework for hybrid sys-

tems [22℄ by Lyn
h, Segala and Vaandrager. Our approa
h is based on the assumption

that a timed system 
an be viewed as a spe
ial kind of a hybrid system where the 
ontin-

uous transformation is limited to internal system 
omponents that determine the timing

6



of events. Therefore, we de�ne a TIOA as a restri
ted HIOA where the only essential

di�eren
e between an HIOA and a TIOA is that an HIOA may have external variables

to model the 
ontinuous information 
owing into and out of the system, in addition to

state variables. A major 
onsequen
e of this de�nition is that the 
ommuni
ation between

TIOAs is restri
ted to shared-a
tion 
ommuni
ation only. The TIOA model does not

impose any further restri
tions on the expressive power of the HIOA model.

We have undertaken the proje
t of developing this new modeling framework even

though there are several timed automaton models that extend the basi
 I/O automaton

model [29, 36, 27, 25℄, be
ause we have observed that the new HIOA modeling framework

of Lyn
h, Segala and Vaandrager o�ered a way of improving and simplifying previous

work on timed I/O automaton models [36, 27, 25℄. For example, the use of traje
tories as

�rst-
lass obje
ts to represent the external behavior of a timed automaton, the de�nition

of a strategy as an automaton rather than a two-player game, and the variable stru
ture

on states are all new features that were motivated by what we learned in developing the

HIOA framework and that gave rise to more elegant de�nitions and simpler proofs for

timed automata.

We intend the TIOA model to serve as a general semanti
 framework in whi
h previous

results for timed I/O automata [27, 29, 36, 25℄ and other related models [6, 28, 32, 11℄


an be re-
ast in a style that is upwardly 
ompatible with the new HIOA model. Limiting

the 
ommuni
ation to dis
rete intera
tions is an apt 
hoi
e sin
e the previous timed I/O

automaton models also adopt this type of 
ommuni
ation. On the other hand, by avoid-

ing any further restri
tions on the general hybrid model, we obtain an expressive model

suitable for spe
ifying 
omplex timing behavior. For example, our model does not require

variables to be either dis
rete or to evolve at the same rate as real-time as in some other

models [6, 32℄. Consequently, algorithms su
h as 
lo
k syn
hronization algorithms that

use lo
al 
lo
ks evolving at di�erent and varying rates 
an be formalized naturally in our

framework.

The fa
t that HIOAs subsume TIOAs as a spe
ial 
lass does not eliminate the need

for having a separate modeling framework for timed systems. First, having no external

variables in the TIOA model gives rise to 
onsiderable simpli�
ations in the theory. For

example, proving that the 
omposition of two timed automata is a well-de�ned automaton

be
omes simpler in the absen
e of external variables; no extra 
ompatibility 
onditions as

in the general HIOA framework are needed to obtain the desirable 
omposition theorems

for TIOAs.

Se
ond, we believe that fo
using on the TIOA model presented in this paper is 
om-

patible with our longer-term goal of developing a uni�ed I/O automaton model that 
an

address timing-dependent, probabilisti
 and general hybrid behavior in a 
ommon frame-

work. We are planning to start out with a probabilisti
 model with dis
rete intera
tions

only, and then extend the model to handle timing-dependent behavior, and only at later

stages 
onsider 
ontinuous intera
tions. It would be harder to integrate probabilisti
 me
h-

anisms into the full hybrid model than it would be to integrate them into the TIOA model

7



presented here.

1.2 Related work

One of the widely-used formal frameworks for timed systems is that of Alur-Dill timed

automata [6, 4℄. An Alur-Dill automaton is a �nite dire
ted multigraph augmented with

a �nite set of 
lo
k variables. The semanti
s of su
h a timed automaton are de�ned as a

state transition system in whi
h ea
h state 
onsists of a lo
ation and a 
lo
k valuation.

Clo
ks are assumed to 
hange at the same time as real-time. The aim of fa
ilitating

automated veri�
ation based on rea
hability analysis seems to be the main motivation

for the restri
tions on the expressive power of the model. The timed automaton model

presented in this paper is more expressive than the model of Alur-Dill automata. In our

model, there are no �niteness assumptions and no restri
tions imposed on the dynami
 type

of variables. We give a semanti
s for Alur-Dill automata by using a restri
ted 
lass of our

timed automata. Alur-Dill timed automata have been extensively studied with a formal

language theoreti
-view. Our fo
us, on the other hand, has been to develop a general

formal framework with a well-de�ned notion of external behavior, parallel 
omposition

and abstra
tion that supports reasoning with simulation relations.

Uppaal [32, 21℄ is a widely-used modeling and veri�
ation tool for timed systems. It

supports the des
ription of systems as a network of Alur-Dill timed automata and enhan
es

that model with CCS-style 
ommuni
ation [30℄ along with other notions su
h as 
ommitted

and urgent lo
ations. Uppaal also supports 
ommuni
ation via shared variables. Uppaal

has a sophisti
ated model-
he
ker that explores the whole state spa
e of the modeled

system to verify timing properties. Therefore, �niteness assumptions are built into the

model to make su
h veri�
ation possible and the operations on 
lo
ks are restri
ted. For

example, it is not possible to add the 
urrent value of a 
lo
k to a message as a timestamp

when it is pla
ed in a bu�er. One of our plans for the near future is to work on a formal

semanti
s for Uppaal based on some variation of our restri
ted hybrid I/O automaton

model. There are several small mismat
hes due to the style of 
ommuni
ation and notions

su
h as 
ommitted lo
ations but we intend to investigate to what extent we 
an use

the 
ommuni
ation me
hanisms of our automata to model these formally. We 
ould, for

example, allow a non-empty set of external variables with restri
ted dynami
 types and

seek restri
tions on the use of shared variables in Uppaal whi
h would allow us to view

these variables as external variables in the HIOA sense.

A slight generalization of Alur-Dill timed automata are the linear hybrid automata

of [5℄. In this model, apart from 
lo
ks that progress with rate 1, one 
an also use


ontinuous variables whose derivatives are 
ontained in some arbitrary interval. A well-

known model 
he
king tool for linear hybrid automata is HyTe
h [17℄. The input language

of HyTe
h 
an easily be translated into our TIOA model.

The timed I/O automaton modeling framework presented in this paper 
an be used

to express models that use lower and upper time bounds on tasks or a
tions [29, 28℄.
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Our framework in
ludes an operation for adding time bounds on a subset of the a
tions

of a timed automaton. As a result of this operation, lower bounds are transformed to

appropriate pre
onditions for transitions and upper bounds are transformed to stopping


onditions for traje
tories.

An interesting timed automaton model 
alled \Clo
k GTA " has been introdu
ed

in [11℄. The model was used for des
ribing algorithms that behave in a

ordan
e with

their timing 
onstraints in 
ertain intervals but may exhibit timing failures for some other

intervals. The possibility of expressing su
h an ability turns out to be 
ru
ial for perfor-

man
e and fault-toleran
e analysis for pra
ti
al algorithms [11, 26℄. We are interested in

�nding a systemati
 way of des
ribing su
h behavior with our new timed I/O automaton

model.

1.3 Paper Organization

The rest of this paper is organized as follows. Se
tion 2 
ontains mathemati
al preliminar-

ies. Se
tion 3 de�nes notions that are useful for des
ribing the behavior of timed systems,

most importantly, traje
tories and timed sequen
es. Se
tion 4 de�nes timed automata

(TAs), whi
h 
ontain all of the stru
ture of TIOAs ex
ept for the 
lassi�
ation of external

a
tions as inputs or outputs. It also de�nes external behavior for TAs and implementation

and simulation relationships between TAs. Se
tion 5 presents 
omposition and hiding op-

erations for TAs, along with operations for untiming and adding bounds that relate TIOAs

to other timed automaton models. Se
tion 6 presents de�nitions and results on the 
las-

si�
ation of properties of TAs as safety and liveness properties. Se
tion 7 de�nes timed

I/O automata (TIOAs) by adding an input/output 
lassi�
ation to TAs, and extends the

theory of TAs to TIOAs. It also de�nes spe
ial kinds of TIOAs su
h as progressive and

re
eptive TIOAs. Se
tion 8 presents 
ompositionality results for TIOAs in general, and

for the spe
ial 
lasses of progressive and re
eptive TIOAs. Se
tion 9 presents a theory

for properties for TIOAs fo
using on re
eptiveness for properties. Examples are in
luded

throughout.

2 Mathemati
al Preliminaries

In this se
tion, we give basi
 mathemati
al de�nitions and notation that will be used

as a foundation for our de�nitions of timed automata and timed I/O automata. These

de�nitions involve fun
tions, sequen
es, partial orders, and untimed automata.

2.1 Fun
tions and Relations

If f is a fun
tion, then we denote the domain and range of f by dom(f) and range(f ),

respe
tively. If also S is a set, then we write f dS for the restri
tion of f to S, that is, the

fun
tion g with dom(g) = dom(f) \ S su
h that g(
) = f(
) for ea
h 
 2 dom(g).

9



We say that two fun
tions f and g are 
ompatible if f d dom(g) = g d dom(f). If

f and g are 
ompatible fun
tions then we write f [ g for the unique fun
tion h with

dom(h) = dom(f) [ dom(g) satisfying the 
ondition: for ea
h 
 2 dom(h), if 
 2 dom(f)

then h(
) = f(
) and if 
 2 dom(g) then h(
) = g(
). More generally, if F is a set of

pairwise 
ompatible fun
tions then we write

S

F for the unique fun
tion h with dom(h) =

S

fdom(f) j f 2 Fg satisfying the 
ondition: for ea
h f 2 F and 
 2 dom(f), h(
) = f(
).

If f is a fun
tion whose range is a set of fun
tions and S is a set, then we write f # S

for the fun
tion g with dom(g) = dom(f) su
h that g(
) = f(
) dS for ea
h 
 2 dom(g).

The restri
tion operation # is extended to sets of fun
tions by pointwise extension. Also,

if f is a fun
tion whose range is a set of fun
tions, all of whi
h have a parti
ular element d

in their domain, then we write f # d for the fun
tion g with dom(g) = dom(f) su
h that

g(
) = f(
)(d) for ea
h 
 2 dom(g).

We say that two fun
tions f and g whose ranges are sets of fun
tions are pointwise


ompatible if for ea
h 
 2 dom(f)\ dom(g), f(
) and g(
) are 
ompatible. If f and g have

the same domain and are pointwise 
ompatible, then we denote by f

_

[ g the fun
tion h

with dom(h) = dom(f) su
h that h(
) = f(
) [ g(
) for ea
h 
.

A relation over sets X and Y is de�ned to be any subset of X � Y . If R is a relation,

then we denote the domain and range of R by dom(R) and range(R), respe
tively. A

relation over X and Y is total over X if dom(R) = X. We say that a relation R over X

and Y is image-�nite if for ea
h x 2 X, R(x) is �nite.

2.2 Sequen
es

Let S be any set. A sequen
e over S is a fun
tion from a downward-
losed subset of

Z

>

to S. Thus, the domain of a sequen
e is either the set of all positive integers, or is

of the form f1; : : : ; kg for some k. In the �rst 
ase we say that the sequen
e is in�nite,

and in the se
ond 
ase �nite. We use j�j to denote the 
ardinality of dom(�). number

of elements in �. The sets of �nite and in�nite sequen
es over S are denoted by S

�

and

S

!

, respe
tively. Con
atenation of a �nite sequen
e with a �nite or in�nite sequen
e is

denoted by juxtaposition. We use � to denote the empty sequen
e, that is, the sequen
e

with the empty domain. The sequen
e 
ontaining one element 
 2 S is abbreviated as 
.

We say that a sequen
e � is a pre�x of a sequen
e �, denoted by � � �, if � = � d dom(�).

Thus, � � � if either � = �, or � is �nite and � = ��

0

for some sequen
e �

0

. If � is a

nonempty sequen
e then head (�) denotes the �rst element of � and tail(�) denotes � with

its �rst element removed. Moreover, if � is �nite, then last(�) denotes the last element of

� and init(�) denotes � with its last element removed. Let � and �

0

be sequen
es over S.

Then �

0

is a subsequen
e of � provided that there exists a monotone in
reasing fun
tion

f : dom(�

0

)! dom(�) su
h that �

0

(i) = �(f(i)) for all i 2 dom(�

0

). If 1 � j

1

� j

2

� j�j,

then we de�ne �(j

1

: : : j

2

) to be the subsequen
e of � obtained by extra
ting the elements

in positions j

1

; : : : ; j

2

; that is, �

0

is the subsequen
e obtained from fun
tion f of length

j

2

� j

1

+ 1, where f(i) = i+ j

1

� 1 for all i.
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2.3 Partial Orders

We re
all some basi
 de�nitions and results regarding partial orders, and in parti
ular,


omplete partial orders (
pos) from [15, 16℄. A partial order is a set S together with a

binary relation v that is re
exive, antisymmetri
, and transitive. In the sequel, we usually

denote posets by the set S without expli
it mention to the binary relation v.

A subset P � S is bounded (above) if there is a 
 2 S su
h that d v 
 for ea
h d 2 P ;

in this 
ase, 
 is an upper bound for P . A least upper bound (lub) for a subset P � S is an

upper bound 
 for P su
h that 
 � d for every upper bound d for P . If P has a lub, then

it is ne
essarily unique, and we denote it by

F

P . A subset P � S is dire
ted if every �nite

subset Q of P has an upper bound in P . A poset S is 
omplete, and hen
e is a 
omplete

partial order (
po) if every dire
ted subset P of S has a lub in S.

We say that P

0

� S dominates P � S, denoted by P v P

0

, if for every 
 2 P there

is some 


0

2 P

0

su
h that 
 v 


0

. We use the following two simple lemmas, adapted from

[16℄ [Lemmas 3.1.1 and 3.1.2℄.

Lemma 2.1 If P; P

0

are dire
ted subsets of a 
po S and P v P

0

then

F

P v

F

P

0

.

Lemma 2.2 Let P = f


ij

j i 2 I; j 2 Jg be a doubly indexed subset of a 
po S. Let P

i

denote the set f


ij

j j 2 Jg for ea
h i 2 I. Suppose

1. P is dire
ted,

2. ea
h P

i

is dire
ted with lub 


i

, and

3. the set f


i

j i 2 Ig is dire
ted.

Then tP = tf


i

j i 2 Ig.

A �nite or in�nite sequen
e of elements, 


0




1




2

: : :, of a partially ordered set (S;v)

is 
alled a 
hain if 


i

v 


i+1

for ea
h non-�nal index i. We de�ne the limit of the 
hain,

lim

i!1




i

, to be the lub of the set f


0

; 


1

; 


2

; : : :g if S 
ontains su
h a bound; otherwise,

the limit is unde�ned. Sin
e a 
hain is a spe
ial 
ase of a dire
ted set, ea
h 
hain of a 
po

has a limit.

A fun
tion f : S ! S

0

between posets S and S

0

is monotone if f(
) v f(d) whenever


 v d. If f is monotone and P is a dire
ted set, then the set f(P ) = ff(
) j 
 2 Pg is

dire
ted as well. If f is monotone and f(

F

P ) =

F

f(P ) for every dire
ted P , then f is

said to be 
ontinuous.

An element 
 of a 
po S is 
ompa
t if, for every dire
ted set P su
h that 
 v

F

P ,

there is some d 2 P su
h that 
 v d. We de�ne K(S) to be the set of 
ompa
t elements

of S. A 
po S is algebrai
 if every 
 2 S is the lub of the set fd 2 K(S) j d v 
g.

A simple example of an algebrai
 
po is the set of �nite or in�nite sequen
es over some

given domain, equipped with the pre�x ordering. Here the 
ompa
t elements are the �nite

sequen
es.
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2.4 A Basi
 Graph Lemma

Lemma 2.3 Let G be an in�nite dire
ted graph that satis�es the following properties.

1. G has �nitely many roots.

2. Ea
h node of G has �nite outdegree.

3. Ea
h node of G is rea
hable from some root of G.

Then, there is an in�nite path in G starting from some root.

Proof: The proof is an extension of K�onig's Lemma [20℄.

2.5 Untimed Automata

An untimed automaton (UA) A is de�ned as a tuple (Q;�; E;H;D) whi
h 
onsists of:

� A set Q of states.

� A non-empty set � � Q of start states.

� A set E of external a
tions and a set H of internal a
tions, disjoint from ea
h other.

We write A

�

= E [H.

� A set D � Q�A�Q of dis
rete transitions.

An exe
ution fragment of an untimed automaton A is either a �nite sequen
e

s

0

a

1

s

1

a

2

� � � a

n

s

n

or an in�nite sequen
e s

0

a

1

s

1

a

2

� � �, of alternating states and a
tions of

A su
h that (s

k

; a

k+1

; s

k+1

) is in D for every non-�nal index k where k � 0. An exe
ution

fragment beginning with a start state is 
alled an exe
ution. If � is an exe
ution fragment

of A, then the tra
e of � is de�ned as the subsequen
e of � 
onsisting of all the external

a
tions.

If � is a �nite exe
ution fragment of an automaton A and �

0

is any exe
ution fragment

of A that begins with the last state of �, then we write �

_

�

0

to represent the sequen
e

obtained by 
on
atenating � and �

0

, eliminating the dupli
ate o

urren
e of the last state

of �. It is easy to see that, �

_

�

0

is also an exe
ution fragment of A.

3 Des
ribing Timed System Behavior

In this se
tion, we give basi
 de�nitions that are useful for des
ribing dis
rete and 
on-

tinuous 
hanges to the system's state. The key notions are stati
 and dynami
 types for

variables, traje
tories, and hybrid sequen
es. Most of the material in this se
tion 
omes

from the paper on the HIOA modeling framework [22℄. The reader is referred to [22℄ for

the proofs that are not in
luded here.
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3.1 Time

Throughout this paper, we �x a time axis T, whi
h is a subgroup of (R;+), the real

numbers with addition. We assume that every in�nite, monotone, bounded sequen
e of

elements of T has a limit in T. The reader may �nd it 
onvenient to think of T as the set

R of real numbers, but the set Z of integers and the singleton set f0g are also examples of

allowed time axes. We de�ne T

�0

�

= ft 2 T j t � 0g.

An interval J is a nonempty, 
onvex subset of T. We denote intervals as usual: [t

1

; t

2

℄ =

ft 2 T j t

1

� t � t

2

g, [t

1

; t

2

) = ft 2 T j t

1

� t < t

2

g et
. An interval J is left-
losed

(right-
losed) if it has a minimum (resp., maximum) element, and left-open (right-open)

otherwise. It is 
losed if it is both left-
losed and right-
losed. We write min(J) and max(J)

for the minimum and maximum elements, respe
tively, of an interval J (if they exist), and

inf(J) and sup(J) for the in�mum and supremum, respe
tively, of J in R [ f�1;1g.

For K � T and t 2 T, we de�ne K + t

�

= ft

0

+ t j t

0

2 Kg. Similarly, for a fun
tion f

with domain K, we de�ne f + t to be the fun
tion with domain K + t satisfying, for ea
h

t

0

2 K + t, (f + t) (t

0

) = f(t

0

� t).

In some de�nitions and theorems in the paper where we use R as the time domain we

assume that the relation � on R extends to a relation on R [ f1g su
h that 1 �1 and

for all t 2 R, t <1.

3.2 Stati
 and Dynami
 Types

We assume a universal set V of variables. A variable represents a lo
ation within the state

of a system. For ea
h variable v, we assume both a (stati
) type, whi
h gives the set of

values it may take on, and a dynami
 type, whi
h gives the set of traje
tories it may follow.

Formally, for ea
h variable v we assume the following:

� type(v), the (stati
) type of v. This is a nonempty set of values.

� dtype(v), the dynami
 type of v. This is a set of fun
tions from left-
losed intervals

of T to type(v) that satis�es the following properties:

1. (Closure under time shift)

For ea
h f 2 dtype(v) and t 2 T, f + t 2 dtype(v).

2. (Closure under subinterval)

For ea
h f 2 dtype(v) and ea
h left-
losed interval J � dom(f), f d J 2

dtype(v).

3. (Closure under pasting)

Let f

0

f

1

f

2

; : : : be a sequen
e of fun
tions in dtype(v) su
h that, for ea
h index i

su
h that f

i

is not the �nal fun
tion in the sequen
e, dom(f

i

) is right-
losed and

max(dom(f

i

)) = min(dom(f

i+1

)). Then the fun
tion f de�ned by f(t)

�

= f

i

(t),

where i is the smallest index su
h that t 2 dom(f

i

), is in dtype(v).
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Example 3.1 (Dis
rete variables) Let v be any variable and let Constant be the set

of 
onstant fun
tions from a left-
losed interval of T to type(v). Then Constant is 
losed

under time shift and subinterval. If the dynami
 type of v is obtained by 
losing Constant

under the pasting operation, then v is 
alled a dis
rete variable. This is essentially the

same as the de�nition of a dis
rete variable in [28℄.

Example 3.2 (Analog variables) Assume that T = R. Let v be any variable whose

stati
 type is an interval of R and Continuous be the set of 
ontinuous fun
tions from

a left-
losed interval of T to type(v). Then Continuous is 
losed under time shift and

subinterval. If the dynami
 type of v is obtained by 
losing Continous under the pasting

operation, then v is 
alled an analog variable.

Example 3.3 (Standard real-valued fun
tion 
lasses) If we take T = R and type(v) =

R, then other examples of dynami
 types 
an be obtained by taking the pasting 
losure of

standard fun
tion 
lasses from real analysis, the set of di�erentiable fun
tions, the set of

fun
tions that are di�erentiable k times (for any k), the set of smooth fun
tions, the set

of integrable fun
tions, the set of L

p

fun
tions (for any p), the set of measurable lo
ally

essentially bounded fun
tions [37℄, or the set of all fun
tions.

Standard fun
tion 
lasses are 
losed under time shift and subinterval, but not under

pasting. A natural way of de�ning a dynami
 type is as the pasting 
losure of a 
lass of

fun
tions that is 
losed under time shift and subinterval. In su
h a 
ase, it follows that

the new 
lass is 
losed under all three operations.

3.3 Traje
tories

In this subse
tion, we de�ne the notion of a traje
tory, de�ne operations on traje
tories,

and prove simple properties of traje
tories and their operations. A traje
tory is used to

model the evolution of a 
olle
tion of variables over an interval of time.

3.3.1 Basi
 De�nitions

Let V be a set of variables, that is, a subset of V. A valuation v for V is a fun
tion that

asso
iates with ea
h variable v 2 V a value in type(v). We write val(V ) for the set of

valuations for V . Let J be a left-
losed interval of T with left endpoint equal to 0. Then a

J-traje
tory for V is a fun
tion � : J ! val(V ), su
h that for ea
h v 2 V , � # v 2 dtype(v).

A traje
tory for V is a J -traje
tory for V , for any J . We write trajs(V ) for the set of all

traje
tories for V .

A traje
tory for V with domain [0; 0℄ is 
alled a point traje
tory for V . If v is a

valuation for V then }(v) denotes the point traje
tory for V that maps 0 to v. We say

14



that a J -traje
tory is �nite if J is a �nite interval, 
losed if J is a (�nite) 
losed interval,

open if J is a right-open interval, and full if J = T

�0

. If T is a set of traje
tories, then

�nite(T ), 
losed(T ), open(T ), and full(T ) denote the subsets of T 
onsisting of all the

�nite, 
losed, open, and full traje
tories in T , respe
tively.

If � is a traje
tory then �:ltime, the limit time of � , is the supremum of dom(�). We

de�ne �:fval , the �rst valuation of � , to be �(0), and if � is 
losed, we de�ne �:lval , the

last valuation of � , to be �(�:ltime). For � a traje
tory and t 2 T

�0

, we de�ne

� E t

�

= � d[0; t℄;

� C t

�

= � d[0; t);

� D t

�

= (� d[t;1))� t:

Note that, sin
e dynami
 types are 
losed under time shift and subintervals, the result of

applying the above operations is always a traje
tory, ex
ept when the result is a fun
tion

with an empty domain. By 
onvention, we also write � E1

�

= � and � C1

�

= � .

3.3.2 Pre�x Ordering

Traje
tory � is a pre�x of traje
tory �, denoted by � � �, if � 
an be obtained by restri
ting

� to a subset of its domain. Formally, if � and � are traje
tories for V , then � � � i�

� = � d dom(�). Alternatively, � � � i� there exists a t 2 T

�0

[ f1g su
h that � = � E t

or � = � C t. If � � � then 
learly dom(�) � dom(�). If T is a set of traje
tories for V ,

then pref (T ) denotes the pre�x 
losure of T , de�ned by:

pref (T )

�

= f� 2 trajs(V ) j 9� 2 T : � � �g:

We say that T is pre�x 
losed if T = pref (T ).

The following lemma gives a simple domain-theoreti
 
hara
terization of the set of

traje
tories over a given set V of variables:

Lemma 3.4 Let V be a set of variables. The set trajs(V ) of traje
tories for V , together

with the pre�x ordering �, is an algebrai
 
po. Its 
ompa
t elements are the 
losed traje
-

tories.

3.3.3 Con
atenation

The 
on
atenation of two traje
tories is obtained by taking the union of the �rst traje
tory

and the fun
tion obtained by shifting the domain of the se
ond traje
tory until the start

time agrees with the limit time of the �rst traje
tory; the last valuation of the �rst

traje
tory, whi
h may not be the same as the �rst valuation of the se
ond traje
tory, is
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the one that appears in the 
on
atenation. Formally, suppose � and �

0

are traje
tories for

V , with � 
losed. Then the 
on
atenation �

_

�

0

is the fun
tion given by

�

_

�

0

�

= � [ (�

0

d(0;1) + �:ltime):

Be
ause dynami
 types are 
losed under time shift and pasting, it follows that �

_

�

0

is a

traje
tory for V . Observe that �

_

�

0

is �nite (resp., 
losed, full) if and only if �

0

is �nite

(resp., 
losed, full). Observe also that 
on
atenation is asso
iative.

The following lemma, whi
h is easy to prove, shows the 
lose 
onne
tion between


on
atenation and the pre�x ordering.

Lemma 3.5 Let � and � be traje
tories for V with � 
losed. Then

� � � , 9�

0

: � = �

_

�

0

:

Note that if � � �, then the traje
tory �

0

su
h that � = �

_

�

0

is unique ex
ept that it has

an arbitrary value for �

0

:fval . Note also that the \(" impli
ation in Lemma 3.5 would

not hold if the �rst valuation of the se
ond argument, rather than the last valuation of

the �rst argument, were used in the 
on
atenation.

We extend the de�nition of 
on
atenation to any (�nite or 
ountably in�nite) number

of arguments. Let �

0

�

1

�

2

: : : be a (�nite or in�nite) sequen
e of traje
tories su
h that �

i

is 
losed for ea
h non�nal index i. De�ne traje
tories �

0

0

; �

0

1

; �

0

2

; : : : indu
tively by

�

0

0

�

= �

0

;

�

0

i+1

�

= �

0

i

_

�

i+1

for non�nal i:

Lemma 3.5 implies that for ea
h non�nal i, �

0

i

� �

0

i+1

. We de�ne the 
on
atenation

�

0

_

�

1

_

�

2

� � � to be the limit of the 
hain �

0

0

�

0

1

�

0

2

: : :; existen
e of this limit follows from

Lemma 3.4.

3.4 Hybrid Sequen
es

In this subse
tion, we introdu
e the notion of a hybrid sequen
e, whi
h is used to model a


ombination of 
hanges that o

ur instantaneously and 
hanges that o

ur over intervals

of time. Our de�nition is parameterized by a set A of a
tions, whi
h are used to model

instantaneous 
hanges and instantaneous syn
hronizations with the environment, and a

set V of variables, whi
h are used to model 
hanges over intervals of time. We also de�ne

some spe
ial kinds of hybrid sequen
es and some operations on hybrid sequen
es, and give

basi
 properties.
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3.4.1 Basi
 De�nitions

Fix a set A of a
tions and a set V of variables. An (A; V )-sequen
e is a �nite or in�nite

alternating sequen
e � = �

0

a

1

�

1

a

2

�

2

: : :, where

1. ea
h �

i

is a traje
tory in trajs(V ),

2. ea
h a

i

is an a
tion in A,

3. if � is a �nite sequen
e then it ends with a traje
tory, and

4. if �

i

is not the last traje
tory in � then dom(�

i

) is 
losed.

A hybrid sequen
e is an (A; V )-sequen
e for some A and V .

Sin
e the traje
tories in a hybrid sequen
e 
an be point traje
tories our notion of

hybrid sequen
e allows a sequen
e of dis
rete a
tions to o

ur at the same real time, with


orresponding 
hanges of variable values. An alternative approa
h is des
ribed in [34℄,

where state 
hanges at a single real time are modeled using a notion of \superdense time".

Spe
i�
ally, hybrid behavior is modeled in [34℄ using fun
tions from an extended time

domain, whi
h in
ludes 
ountably many elements for ea
h real time, to states.

If � is a hybrid sequen
e, with notation as above, then we de�ne the limit time of �,

�:ltime , to be

P

i

�

i

:ltime. A hybrid sequen
e � is de�ned to be:

� time-bounded if �:ltime is �nite.

� admissible if �:ltime =1.

� 
losed if � is a �nite sequen
e and the domain of its �nal traje
tory is a 
losed

interval.

� Zeno if � is neither 
losed nor admissible, that is, if � is time-bounded and is either

an in�nite sequen
e, or else a �nite sequen
e ending with a traje
tory whose domain

is right-open.

� non-Zeno if � is not Zeno.

For any hybrid sequen
e �, we de�ne the �rst valuation of �, �:fval , to be head (�):fval .

Also, if � is 
losed, we de�ne the last valuation of �, �:lval , to be last(�):lval , that is, the

last valuation in the �nal traje
tory of �.

If � is a hybrid sequen
e of the form �

0

a

1

�

1

a

2

�

2

: : :, we use a
tions(�) to denote the

sequen
e a

1

a

2

a

3

: : :, whi
h is obtained by dis
arding the traje
tories in �.

If � is a 
losed (A; V )-sequen
e, where V = ; and � 2 trajs(;), we 
all �

_

� a

time-extension of �.
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3.4.2 Pre�x Ordering

We say that (A; V )-sequen
e � = �

0

a

1

�

1

: : : is a pre�x of (A; V )-sequen
e � = �

0

b

1

�

1

: : :,

denoted by � � �, provided that (at least) one of the following holds:

1. � = �.

2. � is a �nite sequen
e ending in some �

k

; �

i

= �

i

and a

i+1

= b

i+1

for every i, 0 � i < k;

and �

k

� �

k

.

Like the set of traje
tories over V , the set of (A; V )-sequen
es is an algebrai
 
po:

Lemma 3.6 Let V be a set of variables and A a set of a
tions. The set of (A; V )-

sequen
es, together with the pre�x ordering �, is an algebrai
 
po. Its 
ompa
t elements

are the 
losed (A; V )-sequen
es.

3.4.3 Con
atenation

Suppose � and �

0

are (A; V )-sequen
es with � 
losed. Then the 
on
atenation �

_

�

0

is

the (A; V )-sequen
e given by

�

_

�

0

�

= init(�) (last(�)

_

head (�

0

)) tail(�

0

):

(Here, init, last, head and tail are ordinary sequen
e operations.)

Lemma 3.7 Let � and � be (A; V )-sequen
es with � 
losed. Then

� � � , 9�

0

: � = �

_

�

0

:

Note that if � � �, then the (A; V )-sequen
e �

0

su
h that � = �

_

�

0

is unique ex
ept

that it has an arbitrary value in val(V ) for �

0

:fval .

As we did for traje
tories, we extend the 
on
atenation de�nition for (A; V )-sequen
es

to any �nite or in�nite number of arguments. Let �

0

�

1

: : : be a �nite or in�nite sequen
e

of (A; V )-sequen
es su
h that �

i

is 
losed for ea
h non�nal index i. De�ne (A; V )-sequen
es

�

0

0

; �

0

1

; : : : indu
tively by

�

0

0

�

= �

0

;

�

0

i+1

�

= �

0

i

_

�

i+1

for non�nal i:

Lemma 3.7 implies that for ea
h non�nal i, �

0

i

� �

0

i+1

. We de�ne the 
on
atenation

�

0

_

�

1

� � � to be the limit of the 
hain �

0

0

�

0

1

: : :; existen
e of this limit is ensured by

Lemma 3.6.
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3.4.4 Restri
tion

Let A and A

0

be sets of a
tions and let V and V

0

be sets of variables. The (A

0

; V

0

)-

restri
tion of an (A; V )-sequen
e �, denoted by � d(A

0

; V

0

), is obtained by �rst proje
ting

all traje
tories of � on the variables in V

0

, then removing the a
tions not in A

0

, and �nally


on
atenating all adja
ent traje
tories. Formally, we de�ne the (A

0

; V

0

)-restri
tion �rst

for 
losed (A; V )-sequen
es and then extend the de�nition to arbitrary (A; V )-sequen
es

using a limit 
onstru
tion. The de�nition for 
losed (A; V )-sequen
es is by indu
tion on

the length of those sequen
es:

� d(A

0

; V

0

) = � # V

0

if � is a single traje
tory,

� a � d(A

0

; V

0

) =

�

(� d(A

0

; V

0

)) a (� # V

0

) if a 2 A

0

;

(� d(A

0

; V

0

))

_

(� # V

0

) otherwise.

It is easy to see that the restri
tion operator is monotone on the set of 
losed (A; V )-

sequen
es. Hen
e, if we apply this operation to a dire
ted set, the result is again a dire
ted

set. Together with Lemma 3.6, this allows us to extend the de�nition of restri
tion to

arbitrary (A; V )-sequen
es by:

� d(A

0

; V

0

) = tf� d(A

0

; V

0

) j � is a 
losed pre�x of �g:

Lemma 3.8 (A

0

; V

0

)-restri
tion is a 
ontinuous operation.

Lemma 3.9 (�

0

_

�

1

_

� � �) d(A; V ) = �

0

d(A; V )

_

�

1

d(A; V )

_

: : :.

Lemma 3.10 (� d(A; V )) d(A

0

; V

0

) = � d(A \A

0

; V \ V

0

).

Lemma 3.11 Let � be a hybrid sequen
e A a set of a
tions and V a set of variables.

1. � is time-bounded if and only if � d(A; V ) is time-bounded.

2. � is admissible if and only if � d(A; V ) is admissible.

3. If � is 
losed then � d(A; V ) is 
losed.

4. If � is non-Zeno then � d(A; V ) is non-Zeno.

Example 3.12 (A Zeno exe
ution with a 
losed (A; V )-restri
tion) In order to

understand why we have an impli
ation in only one dire
tion in items 3 and 4, 
onsider the

Zeno sequen
e � of the form }(v)a}(v)a}(v) : : :. Let A be a set su
h that a =2 A and let

V 
onsist of the variables in dom(v). Obviously, � d(A; V ), whi
h is }(v), is 
losed, and

hen
e also non-Zeno. This shows that the fa
t that � d(A; V ) is 
losed (resp., non-Zeno)

does not imply that � is 
losed (resp., non-Zeno).
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4 Timed Automata

In this se
tion, as a preliminary step toward de�ning timed I/O automata, we de�ne a

slightly more general timed automaton model. In timed automata, a
tions are 
lassi�ed as

external or internal, but external a
tions are not further 
lassi�ed as input or output; the

input/output distin
tion is added in Se
tion 7. We de�ne how timed automata exe
ute

and de�ne implementation and simulation relations between timed automata.

4.1 De�nition of Timed Automata

A timed automaton is a state ma
hine whose states are divided into variables, and that

has a set of dis
rete a
tions, some of whi
h may be internal and some external. The state

of a timed automaton may 
hange in two ways: by dis
rete transitions, whi
h 
hange

the state atomi
ally, and by traje
tories, whi
h des
ribe the evolution of the state over

intervals of time. The dis
rete transitions are labeled with a
tions; this will allow us to

syn
hronize the transitions of di�erent timed automata when we 
ompose them in parallel.

The evolution des
ribed by a traje
tory may be des
ribed by 
ontinuous or dis
ontinuous

fun
tions.

Formally, a timed automaton (TA) A = (X;Q;�; E;H;D;T ) 
onsists of:

� A set X of internal variables.

� A set Q � val(X) of states.

� A nonempty set � � Q of start states.

� A set E of external a
tions and a set H of internal a
tions, disjoint from ea
h other.

We write A

�

= E [H.

� A set D � Q�A�Q of dis
rete transitions.

We use x

a

!

A

x

0

as shorthand for (x; a;x

0

) 2 D. Here and elsewhere, we sometimes

drop the subs
ript and write x

a

! x

0

, when we think A should be 
lear from the


ontext. We say that a is enabled in x if x

a

! x

0

for some x

0

. We say that a set C

of a
tions is enabled in a state x if some a
tion in C is enabled in x.

� A set T of traje
tories for X su
h that �(t) 2 Q for every � 2 T and t 2 dom(�).

Given a traje
tory � 2 T we denote �:fval by �:fstate and, if � is 
losed, we denote

�:lval by �:lstate . When �:fstate = x and �:lstate = x

0

, we sometimes write x

�

!

A

x

0

.

We require that the following axioms hold:

T0 (Existen
e of point traje
tories)

If x 2 Q then }(x) 2 T .
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T1 (Pre�x 
losure)

For every � 2 T and every �

0

� � , �

0

2 T .

T2 (SuÆx 
losure)

For every � 2 T and every t 2 dom(�), � D t 2 T .

T3 (Con
atenation 
losure)

Let �

0

�

1

�

2

: : : be a sequen
e of traje
tories in T su
h that, for ea
h non�nal

index i, �

i

is 
losed and �

i

:lstate = �

i+1

:fstate . Then �

0

_

�

1

_

�

2

� � � 2 T .

Thus, a timed automaton is essentially a hybrid automaton in the sense of [22℄ in

whi
h W , the set of external variables, is empty. (The only di�eren
e is the addition of

the axiom T0, whi
h does not a�e
t any of the results of [22℄.) This de�nition di�ers from

previous de�nitions of timed automata [25, 36℄ in two major respe
ts. First, the states are

stru
tured using variables, whi
h have dynami
 types with spe
i�
 
losure properties. The

variable stru
ture is 
onvenient for writing spe
i�
ations and the dynami
 types are useful

in analyzing 
ontinuous evolution of the state. Se
ond, the set of traje
tories is de�ned

as an expli
it 
omponent of an automaton. In the previous de�nitions, time-passage was

represented by spe
ial time-passage a
tions and traje
tories were de�ned impli
itly, as

auxiliary fun
tions des
ribing the e�e
ts of time-passage a
tions on states.

Notation: We often denote the 
omponents of a TA A by X

A

, Q

A

, �

A

, E

A

, et
., and

the 
omponents of a TA A

i

by X

i

, Q

i

, �

i

, E

i

, et
. We sometimes omit these subs
ripts,

where no 
onfusion seems likely. In examples we typi
ally spe
ify sets of traje
tories using

di�erential and algebrai
 equations and in
lusions. Below we explain a few notational


onventions that help us in doing this. Suppose the time domain T is R, � is a (�xed)

traje
tory over some set of variables V , and v 2 V . With some abuse of notation, we use

the variable name v to denote the fun
tion � # v in dom(�) ! type(v), whi
h gives the

value of v at all times during traje
tory � . Similarly, we view any expression e 
ontaining

variables from V as a fun
tion with domain dom(�). Suppose that v is a variable and e is

a real-valued expression 
ontaining variables from V . Using these 
onventions we 
an say,

for example, that � satis�es the algebrai
 equation

v = e

whi
h means that, for every t 2 dom(�), v(t) = e(t), that is, the 
onstraint on the variables

expressed by the equation v = e holds for ea
h state on traje
tory � . Now suppose also

that e, when viewed as a fun
tion, is integrable. Then we say that � satis�es

d(v) = e

if, for every t 2 dom(�), v(t) = v(0) +

R

t

0

e(t

0

)dt

0

. Equivalently, for every t

1

; t

2

2 dom(�)

su
h that t

1

� t

2

, v(t

2

) = v(t

1

)+

R

t

2

t

1

e(t

0

)dt

0

. Note that this interpretation of the di�erential
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equation makes sense even at points where v is not di�erentiable. A similar interpretation

of di�erential equations is used by Polderman and Willems [35℄, who 
all fun
tions de�ned

in this way \weak solutions".

We generalize this notation to handle inequalities as well as equalities. Suppose that v

is a variable and e is a real-valued expression 
ontaining variables from V . The inequality

e � v

means that, for every t 2 dom(�), e(t) � v(t). That is, the 
onstraint expressed by the

inequality e � v holds for ea
h state of traje
tory � . Similarly, the inequality

v � e

means that, for every t 2 dom(�), v(t) � e(t). Now suppose that e is integrable when

viewed as a fun
tion. Then we say that � satis�es

e � d(v)

if, for every t

1

; t

2

2 dom(�) su
h that t

1

� t

2

, v(t

1

) +

R

t

2

t

1

e(t

0

)dt

0

� v(t), and � satis�es

d(v) � e

if, for every t

1

; t

2

2 dom(�) su
h that t

1

� t

2

, v(t

2

) � v(t

1

) +

R

t

2

t

1

e(t

0

)dt

0

.

Conventions for automata spe
i�
ations: In all the examples of this paper we as-

sume that T = R. The stati
 type of a variable v is always written expli
itly. Dis
rete and

analog variables are designated using the keywords dis
rete and analog respe
tively. The

de�nition of what it means for a variable to be dis
rete or analog is given in Examples 3.1

and 3.2. Although timed automata may 
ontain variables that are neither dis
rete nor

analog, none of our examples use su
h variables.

The transitions are spe
i�ed in pre
ondition-e�e
t style. A pre
ondition 
lause spe
-

i�es the enabling 
ondition for an a
tion. The e�e
t 
lause 
ontains a list of statements

that spe
ify the e�e
t of performing that a
tion on the state. All the statements in an

e�e
t 
lause are assumed to be exe
uted sequentially in a single indivisible step. The

absen
e of a spe
i�ed pre
ondition for an a
tion means that the a
tion is always enabled

and the absen
e of a spe
i�ed e�e
t means that performing the a
tion does not 
hange

the state.

The traje
tories are spe
i�ed by using a variation of the language presented in [31℄. A

satis�es 
lause 
ontains a list of predi
ates that must be satis�ed by all the traje
tories.

This 
lause is followed by a stops when 
lause. If the predi
ate in this 
lause be
omes
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Automaton T imedChannel(b;M) where b 2 R

+

Variables X : dis
rete queue, a �nite sequen
e of elements of M � R initially empty

analog now 2 R initially 0

States Q : val(X)

A
tions A : external send(m); re
eive(m) where m 2M

Transitions D : external send(m)

e�e
t

add (m;now + b) to queue

external re
eive(m)

pre
ondition

9u: (m;u) is �rst element of queue

e�e
t

remove �rst element of queue

Traje
tories T : satis�es


onstant(queue)

d(now) = 1

stops when

9(m;u) 2 queue: (now = u)

Figure 1: Time-bounded 
hannel

true at a point t in time, then t must be the limit time of the traje
tory. When there is

no stopping 
ondition for traje
tories we omit the stops when 
lause. We write d(v) = e

for d(v) = e, d(v) � e for d(v) � e and e � d(v) for e � d(v). If the value of a variable is


onstant throughout a traje
tory then we write 
onstant(v). If the evolution of a variable

follows a 
ontinuous fun
tion throughout a traje
tory then we write 
ontinuous(v).

Example 4.1 (Time-bounded 
hannel) The automaton in Figure 2 is the spe
i�
a-

tion of a reliable FIFO 
hannel that delivers its messages within a 
ertain time bound,

represented by the automaton parameter b of type R

+

. The other automaton parameter

M is an arbitrary type parameter that represents the type of messages 
ommuni
ated by

the 
hannel.

The dis
rete variable queue is used to hold pairs 
onsisting of a message that has been

sent and its delivery deadline. The analog variable now is used to des
ribe real time.

Every send(m) transition adds to the queue a new pair whose �rst 
omponent is m

and whose se
ond 
omponent is the deadline now + b. A re
eive(m) transition 
an o

ur

only when m is the �rst message in the queue and it results in the removal of the �rst

message from the queue.
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automaton TimedChannel(b: Real, M)

signature

external send(m), re
eive(m) where m 2 M

states

queue: Queue[M℄ := {}

now: Real := 0

i n i t i a l l y b > 0

trans i t ions

external send(m)

e f f

queue:= append((m,now+b),queue)

external re
eive(m)

pre

\exists u (m,u) = head(queue)

e f f

queue := tail(queue)

t ra j e
 tor i e s

stop when \exists (m,u) 2 queue (now = u)

evolve

d(now)=1

Figure 2: Time-bounded 
hannel

The traje
tory spe
i�
ation shows that the dis
rete variable queue is kept 
onstant

by traje
tories and that the variable now in
reases with rate 1, that is, at the same rate

as real time. The stopping 
ondition implies that, within a traje
tory, time 
annot pass

beyond the point where now be
omes equal to the delivery deadline of some message in

the queue.

Example 4.2 (Periodi
 sending pro
ess) The automaton in Figure 3 is the spe
i-

�
ation of a pro
ess that sends messages periodi
ally, every u time units, where u is an

automaton parameter of type R

�0

. The type parameter M represents the type of the

messages sent by the pro
ess.

The analog variable 
lo
k is a timer whose value re
ords the amount of time that has

elapsed sin
e it was last reset to 0. A send(m) transition 
an o

ur only when 
lo
k = u,

and it 
auses 
lo
k to be reset. The traje
tory spe
i�
ation says that 
lo
k in
reases at

the same rate as real time and time 
annot pass beyond the point where 
lo
k = u.

Example 4.3 (Periodi
 sending pro
ess with failures) The spe
i�
ation of the

Periodi
Send(u;M ) pro
ess from Example 4.2 does not model failures. We now 
onsider
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Automaton Periodi
Send(u;M) where u 2 R

�0

Variables X : analog 
lo
k 2 R initially 0

States Q : val(X)

A
tions A : external send(m) where m 2M

Transitions D : external send(m)

pre
ondition


lo
k = u

e�e
t


lo
k := 0

Traje
tories T : satis�es

d(
lo
k) = 1

stops when


lo
k = u

Figure 3: Periodi
 sending pro
ess

a variant of Periodi
Send(u;M ) where the pro
ess may fail and stop doing any dis
rete

a
tions. The spe
i�
ation of this new automaton is given in Figure 4.

The dis
rete variable failed in automaton Periodi
Send2 is a boolean 
ag that re
ords

whether the pro
ess is failed. It is initialized to false and is set to true when a fail

a
tion o

urs. The traje
tory spe
i�
ation of Periodi
Send2 shows that time 
an advan
e

without any bound when the pro
ess is failed.

Example 4.4 (Timeout pro
ess) The automaton Timeout(u;M ) in Figure 5 is the

spe
i�
ation of a pro
ess that awaits the re
eipt of a message from another pro
ess. If

u time units elapse without su
h a message arriving, Timeout(u;M ) performs a timeout

a
tion, thereby \suspe
ting" the other pro
ess. When a message arrives it \unsuspe
ts"

the other pro
ess. Timeout(u;M ) may suspe
t and unsuspe
t repeatedly.

The dis
rete variable suspe
ted is a 
ag that shows whether Timeout(u;M ) suspe
ts

that the other pro
ess is failed. The variable 
lo
k is a timer that re
ords the amount of

time that has elapsed sin
e the re
eipt of the last message.

A re
eive(m) transition 
an o

ur at any time; this 
auses the variable 
lo
k to be

reset and the 
ag suspe
ted to be set to false. If 
lo
k rea
hes u before the arrival of a

message then the timeout a
tion be
omes enabled. The pro
ess sets suspe
ted to true as

a result of a timeout .

The dis
rete variable suspe
ted remains 
onstant throughout ea
h traje
tory. The

traje
tory spe
i�
ation also shows that 
lo
k in
reases at the same rate as real time and,
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Automaton Periodi
Send2(u;M) where u 2 R

+

Variables X : dis
rete failed 2 Bool initially false

analog 
lo
k 2 R initially 0

States Q : val(X)

A
tions A : external send(m) where m 2M

external fail

Transitions D : external send(m)

pre
ondition

:failed


lo
k = u

e�e
t


lo
k := 0

external fail

e�e
t

failed := true

Traje
tories T : satis�es


onstant(failed)

d(
lo
k) = 1

stops when

: failed and 
lo
k = u

Figure 4: Periodi
 sending pro
ess with failures

if suspe
ted = false, then time 
annot go beyond the point where 
lo
k = u. Note that if

suspe
ted = true, there is no restri
tion on the amount of time that 
an elapse.

Example 4.5 (Fis
her's mutual ex
lusion algorithm) The automaton presented in

Figures 6 and 7 is the spe
i�
ation of a shared memory mutual ex
lusion algorithm whi
h

uses a single shared variable that 
an be read and written by all the parti
ipants. The

automaton parameters u

set

and l


he
k

represent upper and lower time bounds for the set

i

and 
he
k

i

a
tions respe
tively. We assume that u

set

< l


he
k

. The parameter I represents

the set of indi
es of pro
esses that parti
ipate in the algorithm and is required to be �nite.

The shared variable x 
an be assigned any value in I or the spe
ial value ?. If a

pro
ess is in the 
riti
al region, then the variable x 
ontains the index of that pro
ess. If

all users are in the remainder region, then the variable x 
ontains the value ?. The array

variable p
 re
ords the program 
ounters of all pro
esses. The array variable lastset keeps

tra
k of the deadlines by whi
h the pro
esses' set a
tions must o

ur. Similarly, the array

variable �rst
he
k keeps tra
k of the earliest time the pro
esses' 
he
k a
tions may o

ur.
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Automaton T imeout(u;M) where u 2 R

+

Variables X : dis
rete suspe
ted 2 Bool initially false

analog 
lo
k 2 R initially 0

States Q : val(X)

A
tions A : external re
eive(m) where m 2M

external timeout

Transitions D : external re
eive(m)

e�e
t


lo
k := 0

suspe
ted := false

external timeout

pre
ondition

: suspe
ted


lo
k = u

e�e
t

suspe
ted := true

Traje
tories T : satis�es


onstant(suspe
ted)

d(
lo
k) = 1

stops when


lo
k = u and : suspe
ted

Figure 5: Timeout

The analog variable now models real time.

The transition de�nitions for external a
tions try

i

; test

i

; 
rit

i

; exit

i

are straightforward.

When a pro
ess performs one of these a
tions, its program 
ounter is updated to re
ord

the region entered by the pro
ess. The most interesting transition de�nitions are test

i

; set

i

and 
he
k

i

sin
e they are the ones that involve timing 
onstraints of the algorithm. When

a pro
ess i performs a test a
tion and observes x to be ?, it sets lastset [i ℄ to now + u

set

.

This sets the deadline for the performan
e of the set

i

a
tion. Note that this deadline is

enfor
ed through the stopping 
ondition in the traje
tory spe
i�
ation. The transition

set

i

sets �rst
he
k [i ℄ to now + l


he
k

. The value of �rst
he
k [i ℄ determines the earliest

time 
he
k

i

may o

ur. The 
he
k

i

a
tion is enabled only when the 
urrent time has at

least this value.

The traje
tory spe
i�
ation says that the values of dis
rete variables are kept 
onstant

by traje
tories. The stopping 
ondition implies that if the value of now rea
hes the value

of lastset [i ℄ for some pro
ess i at some point in time, then that point must be the limit

time of the traje
tory.
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Type P
V alue = enumeration of rem; test; set; 
he
k; leavetry; 
rit; leaveexit

Automaton Fis
herME(u

set

; l


he
k

; I) where u

set

2 R

�0

, l


he
k

2 R

�0

, u

set

< l


he
k

Variables X : dis
rete x 2 I [ f?g initially ?

dis
rete p
, an array of elements of P
V alue indexed by I

initially 8i 2 I: p
[i℄ = rem

dis
rete lastset, an array of elements of R [ f1g indexed by I

initially 8i 2 I: lastset[i℄ =1

dis
rete first
he
k, an array of elements of type R

initially 8i 2 I:first
he
k[i℄ = 0

analog now 2 R initially 0

States Q : val(X)

A
tions A : external try

i

; 
rit

i

; exit

i

; rem

i

internal test

i

; set

i

; 
he
k

i

; reset

i

where i 2 I

Figure 6: Fis
her's mutual ex
lusion algorithm: Variables, states, and a
tions

Example 4.6 (Clo
k syn
hronization) The automaton in Figure 8 is the spe
i�
ation

of a single pro
ess in a 
lo
k syn
hronization algorithm. Ea
h pro
ess has a physi
al 
lo
k

and generates a logi
al 
lo
k. The goal of the algorithm is to a
hieve \agreement" and

\validity" among the logi
al 
lo
k values. Agreement means that the logi
al 
lo
ks are


lose to one another. Validity means that the logi
al 
lo
ks are within the range of the

physi
al 
lo
ks.

The algorithm is based on the ex
hange of physi
al 
lo
k values between di�erent

pro
esses in the system. The parameter u determines the frequen
y of sending messages.

Pro
esses in the system are indexed by the elements of a �nite set I. Clo
kSyn
(u; �)

i

has

a physi
al 
lo
k phys
lo
k , whi
h may drift from the real time with a drift rate bounded

by �. It uses the variable maxother to keep tra
k of the largest physi
al 
lo
k value of the

other pro
esses in the system. The variable nextsend re
ords when it is supposed to send

its physi
al 
lo
k to the other pro
esses. The logi
al 
lo
k, log
lo
k , is de�ned to be the

maximum of maxother and phys
lo
k . Formally log
lo
k is a derived variable, whi
h is a

fun
tion whose value is de�ned in terms of the state variables.

A send(m)

i

transition is enabled when m = phys
lo
k and nextsend = phys
lo
k . It


auses the value of nextsend to be updated so that the next send 
an o

ur when phys
lo
k

has advan
ed by u time units. The transition de�nition for re
eive(m)

j ;i

spe
i�es the e�e
t

of re
eiving a message from another pro
ess j in the system. Upon the re
eipt of a message

m from j , i setsmaxother to the maximum ofm and the 
urrent value ofmaxother , thereby

updating its knowledge of the largest physi
al 
lo
k value of other pro
esses in the system.

The traje
tory spe
i�
ation is slightly di�erent from that in the previous examples. In

this example, the analog variable phys
lo
k does not 
hange at the same rate as real time
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Transitions D : external try

i

external 
rit

i

pre
ondition pre
ondition

p
[i℄ = rem p
[i℄ = leavetry

e�e
t e�e
t

p
[i℄ := test p
[i℄ := 
rit

internal test

i

external exit

i

pre
ondition pre
ondition

p
[i℄ = test p
[i℄ = 
rit

e�e
t e�e
t

if x =? then p
[i℄ := reset

p
[i℄ := set

lastset[i℄ := now + u

set

internal set

i

internal reset

i

pre
ondition pre
ondition

p
[i℄ = set p
[i℄ = reset

e�e
t e�e
t

x := i x :=?

p
[i℄ := 
he
k p
[i℄ := leaveexit

lastset[i℄ :=1

first
he
k[i℄ := now + l


he
k

internal 
he
k

i

external rem

i

pre
ondition pre
ondition

p
[i℄ = 
he
k p
[i℄ = leaveexit

now � first
he
k[i℄ e�e
t

e�e
t p
[i℄ := rem

if x = i then

p
[i℄ := leavetry

else

p
[i℄ := test

Traje
tories T : satis�es


onstant(x)


onstant(p
)


onstant(lastset)


onstant(first
he
k)

d(now) = 1

stops when

9i 2 I: now = lastset[i℄

Figure 7: Fis
her's mutual ex
lusion algorithm: Transitions and traje
tories
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Automaton Clo
kSyn
(u; �)

i

where u 2 R

+

, 0 � � < 1, i 2 I

Variables X : analog phys
lo
k 2 R initially 0

dis
rete nextsend 2 R initially 0

dis
rete maxother 2 R initially 0

Derived variables: log
lo
k = max(maxother;phys
lo
k)

States Q : val(X)

A
tions A : external send(m)

i

; re
eive(m)

j;i

where m 2 R, j 2 I, j 6= i

Transitions D : external send(m)

i

pre
ondition

m = phys
lo
k

phys
lo
k = nextsend

e�e
t

nextsend := nextsend+ u

external re
eive(m)

j;i

e�e
t

maxother := max(maxother;m)

Traje
tories T : satis�es


onstant(nextsend)


onstant(maxother)


ontinuous(phys
lo
k)

1� � � d(phys
lo
k) � 1 + �

stops when

phys
lo
k = nextsend

Figure 8: Clo
k syn
hronization
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but it drifts with a rate that is bounded by �. The periodi
 sending of physi
al 
lo
ks to

other pro
esses is enfor
ed through the stopping 
ondition in the traje
tory spe
i�
ation.

Time is not allowed to pass beyond the point where phys
lo
k = nextsend .

4.2 Exe
utions and Tra
es

We now de�ne exe
ution fragments, exe
utions, tra
e fragments, and tra
es, whi
h are

used to des
ribe automaton behavior. An exe
ution fragment of a timed automaton A is

an (A; V )-sequen
e � = �

0

a

1

�

1

a

2

�

2

: : :, where (1) ea
h �

i

is a traje
tory in T , and (2)

if �

i

is not the last traje
tory in � then �

i

:lstate

a

i+1

! �

i+1

:fstate . An exe
ution fragment

re
ords what happens during a parti
ular run of a system, in
luding all the instantaneous,

dis
rete state 
hanges and all the 
hanges to the state that o

ur while time advan
es. We

write frags

A

for the set of all exe
ution fragments of A.

If � is an exe
ution fragment, with notation as above, then we de�ne the �rst state of

�, �:fstate , to be �:fval . An exe
ution fragment of a timed automaton A from a state x

of A is an exe
ution fragment of A whose �rst state is x. We write frags

A

(x) for the set of

exe
ution fragments of A from x. An exe
ution fragment � is de�ned to be an exe
ution if

�:fstate is a start state, that is, �:fstate 2 �. We write exe
s

A

for the set of all exe
utions

of A. If � is a 
losed (A; V )-sequen
e then we de�ne the last state of �, �:lstate , to be

�:lval .

If � is an exe
ution fragment, then � is a suÆx of � provided that there exists �

0

su
h

that �

0 _

� = � and �

0

:lstate = �:fstate .

A state of A is rea
hable if it is the last state of some 
losed exe
ution of A. A property

that is true for all rea
hable states of an automaton is 
alled an invariant assertion, or

invariant, for short.

Lemma 4.7 Let �

0

�

1

: : : be a �nite or in�nite sequen
e of exe
ution fragments of A su
h

that, for ea
h non�nal index i, �

i

is 
losed and �

i

:lstate = �

i+1

:fstate. Then �

0

_

�

1

_

� � �

is an exe
ution fragment of A.

Proof: Follows easily from the de�nitions, using axiom T3.

Lemma 4.8 Let � and � be exe
ution fragments of A with � 
losed. Then

� � � , 9�

0

2 frags

A

: � = �

_

�

0

:
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Proof: Impli
ation \(" follows dire
tly from the 
orresponding impli
ation in Lemma 3.7.

Impli
ation \)" follows from the de�nitions and T2.

The external behavior of a timed automaton is 
aptured by the set of \tra
es" of

its exe
ution fragments, whi
h re
ord external a
tions and the traje
tories that des
ribe

the intervening passage of time. A tra
e 
onsists of alternating external a
tions and

traje
tories over the empty set of variables, ;; the only interesting information 
ontained

in these traje
tories is the amount of time that elapses.

Formally, if � is an exe
ution fragment, then the tra
e of �, denoted by tra
e(�), is

the (E; ;)-restri
tion of �, � d(E; ;). A tra
e fragment of a timed automaton A from a

state x of A is the tra
e of an exe
ution fragment of A whose �rst state is x. We write

tra
efrags

A

(x) for the set of tra
e fragments of A from x. Also, we de�ne a tra
e of A to

be a tra
e fragment from a start state, that is, the tra
e of an exe
ution of A, and write

tra
es

A

for the set of tra
es of A.

In the earlier timed automaton models [25, 36℄, exe
ution fragments were de�ned in a

similar style to the one presented here, that is, as an alternating sequen
e of traje
tories

and a
tions. However, the tra
es were not derived from exe
ution fragments by a simple

restri
tion to external a
tions and the empty set of variables. Rather, a tra
e was de�ned

as a sequen
e 
onsisting of a
tions paired with their time of o

urren
e together with

a limit time. The new de�nition in
reases uniformity; the de�nitions, results and proof

te
hniques for hybrid sequen
es apply to both exe
ution fragments and tra
es.

We now revisit some of the automata presented earlier in this se
tion and give sample

exe
utions and tra
es for these automata.

Example 4.9 (Periodi
 sending pro
ess) Consider the automaton Periodi
Send(u;M )

from Example 4.2 where u is instantiated to the real number 3 and the message type pa-

rameter M is instantiated to the set fm

1

;m

2

: : :g. The following sequen
e is an exe
ution

of the automaton:

� = �

0

send(m

1

) �

1

send(m

2

) �

2

send(m

3

) �

3

: : :

where �

i

: [0; 3℄! val(f
lo
kg) are de�ned su
h that �

i

(t)(
lo
k) = t for all t 2 [0; 3℄.

The fun
tions �

i

are de�ned for 
losed intervals of length 3, starting at time 0. They

des
ribe the evolution of the variable 
lo
k , whi
h is 0 at the start of ea
h �

i

and in
reases

with rate 1 for 3 time units. The dis
rete send events o

ur periodi
ally, every 3 time

units and reset the 
lo
k variable to 0.

The tra
e of the above exe
ution fragment, tra
e(�), is the sequen
e

�

0

0

send(m

1

) �

0

1

send(m

2

) �

0

2

send(m

3

) �

0

3

: : :
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where �

0

i

: [0; 3℄! val(;).

Sin
e the range of ea
h fun
tion �

0

i


ontains only the fun
tion with the empty domain,

tra
e(�) does not 
ontain any information about what happens to the value of 
lo
k as

time progresses. Sin
e the domains of ea
h �

i

and �

0

i

are identi
al, � and tra
e(�

0

) express

the same information about the amount of time that elapses between dis
rete steps.

Example 4.10 (Timeout pro
ess) We now present an exe
ution of the automaton

Timeout(u;M ) from Example 4.4 where the the maximum waiting time u for a message

is 5 and the message alphabet M is the set fm

1

;m

2

g. The following �nite sequen
e is an

exe
ution of Timeout(u;M ):

� = �

0

re
eive(m

1

) �

1

timeout �

2

re
eive(m

2

) �

3

timeout �

4

where Val = val(fsuspe
ted ; 
lo
k g) and the fun
tions �

0

; �

1

; �

2

; �

3

; �

4

are de�ned as follows:

�

0

: [0; 2℄! Val where �

0

(t)(suspe
ted) = false and �

0

(t)(
lo
k ) = t for all t 2 [0; 2℄.

�

1

: [0; 5℄! Val where �

1

(t)(suspe
ted) = false and �

1

(t)(
lo
k) = t for all t 2 [0; 5℄.

�

2

: [0; 1℄! Val where �

2

(t)(suspe
ted) = true and �

2

(t)(
lo
k) = 5 + t for all t 2 [0; 1℄.

�

3

: [0; 5℄! V al where �

3

(t)(suspe
ted ) = false and �

3

(t)(
lo
k) = t for all t 2 [0; 5℄.

�

4

: [0;1)! Val where �

4

(t)(suspe
ted) = true and �

4

(t)(
lo
k) = 5 + t for all t 2 [0;1).

In this sample exe
ution, the �rst awaited message arrives at time 2. Sin
e no other

message arrives within the next 5 time units, the pro
ess performs a timeout. A new

message arrives 1 time unit after the timeout and the variable 
lo
k is reset to 0. Sin
e no

new message arrives in the next 5 time units the pro
ess performs another timeout. The

time elapses forever after this timeout sin
e no further message arrives.

This example illustrates that the automaton Timeout(u;M ) 
an perform multiple

timeout transitions. Another point to note is that the sample exe
ution 
onsists of a

�nite (A; V )-sequen
e ending with a traje
tory, as opposed to an in�nite sequen
e as in

Example 4.9 . The �nal traje
tory here is a traje
tory whose domain is right open and the

exe
ution is admissible and non-Zeno. Repla
ing �

4

with a fun
tion on a 
losed interval

would yield a non-Zeno exe
ution that is not admissible.

The tra
e of the exe
ution � 
an be obtained by letting the range of �

i

be the set


onsisting of the fun
tion with the empty domain, as we did in the previous example. That

is, by hiding the values of the internal variables 
lo
k and suspe
ted during traje
tories.

Example 4.11 (Time-bounded 
hannel) Consider the time-bounded 
hannel automa-

ton from Example 4.1. It is easy to observe that time 
annot pass beyond any delivery
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deadline re
orded in the message queue and that ea
h deadline in the queue is less than

or equal to the sum of the 
urrent time and the bound b. This property 
an be stated as

an invariant assertion as follows.

Invariant 1 : In any rea
hable state x of automaton T imedChannel(b;M), for all

(m;u) in x(queue), x(now) � u � x(now) + b.

Su
h an invariant 
an be proved by indu
tion. Re
all that rea
hable states are the

�nal states of 
losed exe
utions. Axioms T1 and T2 allow us to view any 
losed exe
ution

as a 
on
atenation of 
losed exe
ution fragments, �

0

_

�

1

_

: : : �

k

, where every �

i

is

either a 
losed traje
tory or a dis
rete a
tion surrounded by point traje
tories, and where

�

i

:lstate = �

i+1

:fstate for 0 � i � k�1. The invariant 
an then be proved using indu
tion

on the length k of the sequen
e of exe
ution fragments �

i

.

Example 4.12 (Fis
her's mutual ex
lusion) The main safety property that needs to

be satis�ed by the automaton Fis
herME from Example 4.5 is mutual ex
lusion. This

safety property 
an be expressed as an invariant assertion:

Invariant 1 : In any rea
hable state x of Fis
herME(u

set

; l


he
k

; I), there do not

exist i 2 I and j 2 I su
h that x(p
)[i℄ = 
rit and x(p
)[j℄ = 
rit.

Even though the invariant does not refer to time, its proof depends on the timing


onstraints of the automaton. For example, the following auxiliary invariant 
an be used

in proving Invariant 4.12:

Invariant 2 : In any rea
hable state x of Fis
herME(u

set

; l


he
k

; I), if p
[i℄ = 
he
k,

x = i, and p
[j℄ = set, then first
he
k[i℄ > lastset[j℄.

This invariant states that if the program 
ounter of pro
ess i has the value 
he
k, the

program 
ounter of pro
ess j has the value set, and the variable x has the value i, then

i will allow enough time for j to set x to j, before performing the 
he
k. If this timing


onstraint were not satis�ed, it would be possible for i to 
he
k that x = i before j sets

x to j. Both of the pro
esses would then observe x to 
ontain their own index and enter

the 
riti
al region.

Lemma 4.13 If � is an exe
ution of A then

1. � is time-bounded if and only if tra
e(�) is time-bounded.

2. � is admissible if and only if tra
e(�) is admissible.

3. If � is 
losed then tra
e(�) is 
losed.

4. If � is non-Zeno then tra
e(�) is non-Zeno.
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Proof: It follows dire
tly from the restri
tion of (A,V)-sequen
es.

Lemma 4.14 If � is a tra
e of A then

1. If � is 
losed then there exists an exe
ution � of A su
h that tra
e(�) = � and � is


losed.

2. If � is non-Zeno then there exists an exe
ution � of A su
h that tra
e(�) = � and

� is non-Zeno.

Proof: For the �rst part of the theorem, let � = tra
e(�) be a 
losed tra
e of A. By

de�nition of a tra
e, we know that �:ltime = �:ltime . We also know that � is either 
losed

or has a suÆx whi
h is an in�nite sequen
e of alternating point traje
tories and a
tions.

Now, let �

0

be the least 
losed pre�x of � su
h that �

0

:ltime = �:ltime . Clearly, �

0

is a


losed exe
ution of A.

For the se
ond part of the theorem, observe that a non-Zeno tra
e is either 
losed or

admissible. Let � = tra
e(�). For the 
ase where � is 
losed, we have already shown how

we 
an �nd a 
losed exe
ution. For the 
ase where � = tra
e(�) is admissible, we know

that �:ltime =1. Hen
e, � is admissible, as needed.

Example 4.15 (Constru
ting a 
losed exe
ution from a 
losed tra
e) Consider

the Zeno hybrid sequen
e � = }(v) a }(v) a }(v) : : : given in Example 3.12. Suppose that

� is an exe
ution of A and that a is an internal a
tion of A. Then, tra
e(�) = }(v

0

) where

}(v

0

) is a traje
tory over the empty set of variables. However, the fa
t that tra
e(�) is


losed does not imply that � is 
losed. Thus, we see why we have a one way impli
ation

in item 3 of Lemma 4.13. On the other hand, we 
an 
onstru
t a 
losed exe
ution of A

with tra
e }(v

0

) as explained in the proof of Lemma 4.14. The exe
ution 
onsisting of the

point traje
tory }(v

0

) is a 
losed exe
ution of A with tra
e }(v

0

).

4.3 Spe
ial Kinds of Timed Automata

This se
tion des
ribes several restri
ted forms of timed automata. In Se
tion 4.3.1 we give

de�nitions that are needed for theorems later in the paper. In Se
tion 4.3.2 we formulate

the timed automata of Alur and Dill [4, 6℄ as a spe
ial 
ase of our timed automata.

4.3.1 Basi
 
onstraints

Timed Automata with Finite Internal Nondeterminism: We are sometimes in-

terested in bounding the amount of internal nondeterminism in a timed automaton. Thus,

we say that a timed automaton A has �nite internal nondeterminism (FIN) provided that:
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1. The set � of start states is �nite, and

2. For every state x of A and every tra
e fragment � of A from x, the set f�:lstate j

� 2 frags

A

(x) ^ tra
e(�) = �g is �nite.

Example 4.16 (Automata with FIN) The automata T imedChannel(u;M),

Periodi
Send(u;M), Periodi
Send2(u;M) and T imeout(u;M) given in Se
tion 4.1 all

have FIN. The �rst property of the de�nition of FIN is satis�ed sin
e ea
h of these au-

tomata has a unique start state. The se
ond property follows from the fa
t that in ea
h

automaton, for every state x and every tra
e fragment � from x, there is a unique exe
ution

fragment � su
h that tra
e(�) = �.

Example 4.17 (Automata without FIN)We now show that Fis
herME(u

set

; l


he
k

; I)

and Clo
kSyn
(a; �)

i

do not have FIN. For ea
h automaton, we spe
ify a tra
e, des
ribe

the set of all exe
utions that have the spe
i�ed tra
e, and argue that the se
ond property

in the de�nition of FIN fails for the 
hosen tra
e.

Let x be the start state of Fis
herME(u

set

; l


he
k

; I) and � = �

0

try

1

�

1

be a tra
e of

the same automaton where the domains of the fun
tions �

0

and �

1

are, respe
tively, the

single point interval [0; 0℄ and the interval [0; u℄, and the range of both fun
tions is the set


onsisting of the fun
tion with the empty domain. For any exe
ution �, tra
e(�) = �, if

and only if �:ltime = u, try

1

o

urs at time 0, and all the a
tions in � that o

ur after try

1

are internal a
tions. There are in�nitely many di�erent times that the internal a
tions

may o

ur, and in�nitely many values last
he
k and first
he
k 
ould have, by the time

u. Therefore, the set f�:lstate j � 2 frags

A

(x) ^ tra
e(�) = �

0

try

1

�

1

g is not �nite and

Fis
herME(u

set

; l


he
k

; I) does not have FIN.

Now, let x be the start state of Clo
kSyn
(a; �)

i

where x(phys
lo
k) = x(nextsend) =

x(maxother) = 0 and � = �

0

send(0) �

1

be a tra
e of Clo
kSyn
(a; �)

i

where the domains

of fun
tions �

0

and �

1

are, respe
tively, the interval [0; 0℄ and the interval [0; u℄, and the

range of both fun
tions is the set 
onsisting of the fun
tion with the empty domain. For any

� in whi
h send(0) o

urs at time 0 and is followed by a traje
tory � su
h that �:ltime = u,

we have tra
e(�) = �. For any su
h �, �:lstate(phys
lo
k) 
an be any value in the interval

[u(1��); u(1+�)℄. Therefore, the set f�:lstate j � 2 frags

A

(x)^ tra
e(�) = �

0

send(0) �

1

g

is not �nite and Clo
kSyn
(a; �)

i

does not have FIN.

The following lemma states that if a timed automaton has FIN, then its set of tra
es

is limit-
losed.

Lemma 4.18 Suppose that timed automaton A has FIN and x 2 Q. Suppose that

�

1

�

2

: : : is a 
hain of tra
e fragments of A from x. Then the hybrid sequen
e lim

i

�

i

is a tra
e fragment of A from x.
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Proof: This is analogous to the proof of Lemma 4.3 of [25℄. Suppose that A is a timed

automaton that has FIN, x is a state of A, and �

1

�

2

: : : is a 
hain of tra
e fragments of

A from x. We de�ne a relation after between tra
e fragments from x and states of A:

after = f(�;y) j 9� 2 frags

A

(x): tra
e(�) = � ^ �:lstate = yg.

We 
onstru
t a dire
ted graph G whose nodes are pairs (�

i

;y) 2 after where �

i

is

an element of the given 
hain. In G, there is an edge from (�

i

;y) to (�

i+1

;y

0

) exa
tly if

�

i+1

= �

i

_


 su
h that 
 = tra
e(�) for some � 2 frags

A

(y), and �:lstate = y

0

. By the

de�nition of property FIN, there are �nitely many roots of G. By the de�nition of FIN

and the 
onstru
tion of G, ea
h node of G has �nite outdegree.

We 
laim that ea
h node (�

i

;y) of G is rea
hable from some root (�

1

; z) for some z.

By de�nition of the node set, there exists � 2 frags

A

(x) su
h that tra
e(�) = �

i

and

�:lstate = y. Choose �

0

2 frags

A

(x) to be a pre�x of � su
h that tra
e(�

0

) = �

1

and let

z = �

0

:lstate . By de�nition of the edge set of G, (�

i

;y) is rea
hable from (�

1

; z).

Hen
e, G satis�es the hypotheses of Lemma 2.3, whi
h implies that there is an in�nite

exe
ution fragment starting from x whose tra
e is lim

i

�

i

. Lemma 2.3 is an extension of

Konig's lemma.

There are two referen
es to automata with FIN later in the paper. The �rst one is in

Theorem 4.20, whi
h lists some suÆ
ient 
onditions for establishing an implementation

relationship between two automata. The se
ond referen
e appears in the dis
ussion about

the kinds of automata that satisfy the assumptions of Theorem 8.7.

Feasible Timed Automata: A timed automaton A is feasible provided that, for every

state x of A, there exists an admissible exe
ution fragment of A from x.

Feasibility is a basi
 requirement that any \reasonable" timed automaton should sat-

isfy. Theorems 4.20, 6.11 and 7.2 establish some results about feasible automata.

Timing-Independent Timed Automata: A timed automaton A is said to be timing-

independent provided that all its state variables are dis
rete variables, and its set of tra-

je
tories is exa
tly the set of 
onstant-valued fun
tions over left-
losed time intervals with

left endpoint 0.

We refer to timing-independent automata later in Example 6.5 and in our dis
ussion

about Corollary 8.8.

4.3.2 Alur-Dill Automata

The timed automaton framework of Alur and Dill [4, 6℄ is widely used in the formal

modeling and veri�
ation of timed systems. An Alur-Dill timed automaton is a �nite

dire
ted multigraph augmented with a �nite set of 
lo
k variables. The nodes and edges
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of this multigraph are 
alled lo
ations and swit
hes, respe
tively. Lo
ations are generally

used to represent di�erent modes of operation of the automaton, whereas the 
lo
ks are

used in expressing timing 
onstraints. Ea
h swit
h has an asso
iated 
lo
k 
onstraint,

whi
h is a predi
ate on 
lo
k valuations that 
onstrains when the swit
h may be taken.

The semanti
s of su
h a timed automaton are de�ned as a state transition system in whi
h

ea
h state 
onsists of a lo
ation and a 
lo
k valuation. A transition between states o

urs

as a result of a swit
h or time passage.

Alur and Dill restri
t the form of 
lo
k 
onstraints in order to make the rea
hability

problem (the problem of determining whether some target lo
ation is rea
hable) de
idable:

a 
lo
k 
onstraint 
an be either a simple 
onstraint 
omparing a 
lo
k variable to a rational


onstant, or a 
onjun
tion of simple 
onstraints.

In this se
tion, we de�ne a version of the Alur-Dill timed automaton model as a

spe
ial 
ase of our TA model. Our formulation relaxes the restri
tions on the form of


lo
k 
onstraints.

We assume that T = R and de�ne an Alur-Dill (AD) timed automaton as a TA

A = (X;Q;�; E;H;D;T ) that satis�es the following 
onditions:

1. X is partitioned into two sets X

d

and X




where X

d

is a set of dis
rete variables and

X




is a set of analog variables. We 
all the variables in X





lo
k variables.

2. If x 2 �, then for every x 2 X




, x(x) = 0.

3. If (x; a;x

0

) 2 D, then for every x 2 X




, either x

0

(x) = 0 or x

0

(x) = x(x).

4. Ea
h traje
tory � 2 T satis�es the following 
onditions:

(a) For every x 2 X

d

, x is 
onstant in � .

(b) For every x 2 X




; d(x) = 1.

Thus, in an AD timed automaton, the set of internal variables 
onsists of dis
rete

variables, whi
h together represent the lo
ations, and analog variables, whi
h 
orrespond

to the 
lo
ks. In the initial states, all the 
lo
ks have value 0. A dis
rete transition either

resets a 
lo
k or leaves it un
hanged. The evolution of variables during a time interval

is des
ribed by traje
tories. In an AD automaton, the dis
rete variables are 
onstant

throughout a traje
tory and 
lo
ks in
rease at the same rate as real time.

Example 4.19 (An AD automaton) We revisit a timed automaton example from [4℄.

We �rst present the timed automaton using the original graphi
al notation of Alur and

Dill, as in [4℄, and then rede�ne it as an AD timed automaton, using the notational


onventions we have been using in our other examples.

In the following multigraph, ea
h swit
h is annotated with a symbol from a spe
i�ed

alphabet of labels, a 
onstraint involving 
lo
k variables, and a statement that shows whi
h

38




lo
ks are reset to 0 as a result of a lo
ation swit
h. Note that some swit
hes have no

reset statements, meaning that the swit
h has no e�e
t on the 
lo
k variables.

The multigraph has four lo
ations, s

0

; s

1

; s

2

, and s

3

, and two 
lo
ks, x and y. A

lo
ation swit
h, represented by an arrow annotated with a label a, b, 
, or d, 
an be

performed only when the 
onstraint on the same arrow is satis�ed. For example, the

automaton 
an 
hange its lo
ation from s

3

to s

1

, following the swit
h labeled with a,

when the 
lo
k variable y has a value smaller than 1. The 
lo
k variable y is reset as an

e�e
t of this lo
ation swit
h.

s

0

s

1

s

3

s

2

y := 0

b; y = 1


; x < 1

d; x > 1

a; y < 1; y := 0


; x < 1

a; x > 0

Figure 9 in
ludes the expression of this multigraph as an AD automaton using our no-

tational 
onventions. In the automaton AD, the dis
rete variable lo
 keeps tra
k of the


urrent lo
ation in the multigraph and the analog variables x and y represent the 
lo
ks.

The a
tions of AD 
orrespond to the labels in the original multigraph. Pre
onditions in

transition de�nitions are used to express 
lo
k 
onstraints asso
iated with swit
hes. Ef-

fe
ts 
lauses in transition de�nitions are used to des
ribe lo
ation 
hanges and resetting

of 
lo
ks. The traje
tory spe
i�
ation des
ribes the e�e
t of time passage on the lo
ation

and the 
lo
ks.

It is easy to 
he
k that the automaton AD, given in Figure 9, is an AD automaton.

It satis�es the four 
onditions required to be 
lassi�ed as an AD automaton: (1) the set

of internal variables X 
an be partitioned into two sets X

d

and X




where X

d

= flo
g

and X




= fx; yg. (2) The 
lo
k variables x and y are initially 0. (3) The transition

de�nitions either reset a 
lo
k or leave it un
hanged. (4) The dis
rete variable lo
 is


onstant throughout traje
tories while x and y in
rease at rate 1.

4.4 Implementation Relationships

Timed automata A

1

and A

2

are 
omparable if they have the same external interfa
e,

that is, if E

1

= E

2

. If A

1

and A

2

are 
omparable then we say that A

1

implements A

2

,
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Automaton AD

Variables X : dis
rete lo
 2 fs

0

; s

1

; s

2

; s

3

g initially s

0

analog x 2 R initially 0

analog y 2 R initially 0

States Q : val(X)

A
tions A : external a; b; 
; d

Transitions D : external a

pre
ondition

(lo
 = s

0

and x > 0) or (lo
 = s

3

and y < 1)

e�e
t

lo
 := s

1

y := 0

external b

pre
ondition

lo
 = s

1

and y = 1

e�e
t

lo
 := s

2

external 


pre
ondition

(lo
 = s

1

and x < 1) or (lo
 = s

2

and x < 1)

e�e
t

lo
 := s

3

external d

pre
ondition

lo
 = s

3

and x > 1

Traje
tories T : satis�es


onstant(lo
)

d(x) = 1

d(y) = 1

Figure 9: An AD automaton
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denoted by A

1

� A

2

, if the tra
es of A

1

are in
luded among those of A

2

, that is, if

tra
es

A

1

� tra
es

A

2

.

1

Other preorders between timed automata 
ould also be used as implementation rela-

tionships, for example, if A

1

and A

2

are 
omparable timed automata, we 
ould 
onsider:

� Every 
losed tra
e of A

1

is a tra
e of A

2

.

� Every admissible tra
e of A

1

is a tra
e of A

2

.

� Every non-Zeno tra
e of A

1

is a tra
e of A

2

.

Theorem 4.20 Let A

1

and A

2

be 
omparable TAs.

1. If every 
losed tra
e of A

1

is a tra
e of A

2

and A

2

has FIN, then A

1

� A

2

.

2. If every admissible tra
e of A

1

is a tra
e of A

2

and A

1

is feasible, then every 
losed

tra
e of A

1

is a tra
e of A

2

.

3. If every admissible tra
e of A

1

is a tra
e of A

2

, A

1

is feasible, and A

2

has FIN, then

A

1

� A

2

.

Proof: Part 1 follows from Lemma 4.18.

For Part 2, 
onsider a 
losed tra
e � of A

1

. By feasibility of A

1

, we may extend �

to an admissible tra
e �

0

of A

1

. Then by assumption, �

0

is also a tra
e of A

2

. By pre�x


losure of the set of tra
es, � is a tra
e of A

2

.

Part 3 follows from Parts 1 and 2.

4.5 Simulation Relations

In this se
tion, we de�ne simulation relations between timed automata. Simulation rela-

tions may be used to show that one TA implements another, in the sense of in
lusion of sets

of tra
es. We de�ne two types of simulation relations: forward and ba
kward simulations.

Forward simulations are more 
ommonly used than ba
kward simulations be
ause they

are easier to think about and are general enough to 
over most interesting situations that

arise in pra
ti
e. Ba
kward simulations are sometimes ne
essary, in parti
ular, when non-

deterministi
 
hoi
es are resolved earlier in the spe
i�
ation than in the implementation.

In proving implementation relations, we prefer to use forward simulation relations when-

ever they exist, sin
e ba
kward simulations are harder to think about.

1

In [25, 14, 23, 24℄, de�nitions of the set of tra
es of an automaton and of one automaton implementing

another are based on 
losed and admissible exe
utions only. The results we obtain in this paper using

the newer, more in
lusive de�nition imply 
orresponding results for the earlier de�nition. For example,

we have the following property: If A

1

� A

2

then the set of tra
es that arise from 
losed or admissible

exe
utions of A

1

is a subset of the set of tra
es that arise from 
losed or admissible exe
utions of A

2

. This

follows from Lemmas 4.13 and 4.14.
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4.5.1 Forward Simulations

Let A and B be 
omparable TAs. A forward simulation from A to B is a relation R

� Q

A

� Q

B

satisfying the following 
onditions, for all states x

A

and x

B

of A and B,

respe
tively:

1. If x

A

2 �

A

then there exists a state x

B

2 �

B

su
h that x

A

R x

B

.

2. If x

A

R x

B

and � is an exe
ution fragment of A 
onsisting of one a
tion surrounded

by two point traje
tories, with �:fstate = x

A

, then B has a 
losed exe
ution fragment

� with �:fstate = x

B

, tra
e(�) = tra
e(�), and �:lstate R �:lstate .

3. If x

A

R x

B

and � is an exe
ution fragment of A 
onsisting of a single 
losed

traje
tory, with �:fstate = x

A

, then B has a 
losed exe
ution fragment � with

�:fstate = x

B

, tra
e(�) = tra
e(�), and �:lstate R �:lstate .

Forward simulation relations indu
e a preorder between timed automata.

Theorem 4.21 Let A;B and C be 
omparable TAs. If R

1

is a forward simulation from

A to B and R

2

is a forward simulation from B to C, then R

2

ÆR

1

is a forward simulation

from A to C.

The de�nition of a forward simulation from A to B yields a 
orresponden
e for open

traje
tories of A:

Lemma 4.22 Let A and B be 
omparable TAs and let R be a forward simulation from A

to B. Let x

A

and x

B

be states of A and B, respe
tively, su
h that x

A

R x

B

. Let � be an

exe
ution fragment of A from state x

A


onsisting of a single open traje
tory. Then B has

an exe
ution fragment � with �:fstate = x

B

and tra
e(�) = tra
e(�).

Proof: Let � be the single open traje
tory in �. Using axioms T1 and T2, we 
onstru
t

an in�nite sequen
e �

0

�

1

: : : of 
losed traje
tories of A su
h that � = �

0

_

�

1

_

� � �. Then,

working re
ursively, we 
onstru
t a sequen
e �

0

�

1

: : : of 
losed exe
ution fragments of

B su
h that �

0

:fstate = x

B

and, for ea
h i, �

i

:lstate R �

i

:lstate , �

i

:lstate = �

i+1

:fstate ,

and tra
e(�

i

) = tra
e(�

i

). This 
onstru
tion uses indu
tion on i, using Property 3 of the

de�nition of a forward simulation in the indu
tion step. Now let � = �

0

_

�

1

_

� � �. By

Lemma 4.7, � is an exe
ution fragment of B. Clearly, �:fstate = x

B

. By Lemma 3.9

applied to both � and �, tra
e(�) = tra
e(�). Thus � has the required properties.

Theorem 4.23 Let A and B be 
omparable TAs and let R be a forward simulation from

A to B. Let x

A

and x

B

be states of A and B, respe
tively, su
h that x

A

R x

B

. Then

tra
efrags

A

(x

A

) � tra
efrags

B

(x

B

).
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Proof: Suppose that Æ is the tra
e of an exe
ution fragment of A that starts from

x

A

; we prove that Æ is also a tra
e of an exe
ution fragment of B that starts from x

B

.

Let � = �

0

a

1

�

1

a

2

�

2

: : : be an exe
ution fragment of A su
h that �:fstate = x

A

and

Æ = tra
e(�). We 
onsider 
ases:

1. � is an in�nite sequen
e.

Using axioms T1 andT2, we 
an write � as an in�nite 
on
atenation �

0

_

�

1

_

�

2

� � �,

in whi
h the exe
ution fragments �

i

with i even 
onsist of a traje
tory only, and the

exe
ution fragments �

i

with i odd 
onsist of a single dis
rete step surrounded by

two point traje
tories.

We de�ne indu
tively a sequen
e �

0

�

1

: : : of 
losed exe
ution fragments of B, su
h

that �

0

:fstate = x

B

and, for all i, �

i

:lstate = �

i+1

:fstate , �

i

:lstate R �

i

:lstate , and

tra
e(�

i

) = tra
e(�

i

). We use Property 3 of the de�nition of a simulation for the


onstru
tion of the �

i

's with i even, and Property 2 for the 
onstru
tion of the �

i

's

with i odd. Let � = �

0

_

�

1

_

�

2

� � �. By Lemma 4.7, � is an exe
ution fragment

of B. Clearly, �:fstate = x

B

. By Lemma 3.9, tra
e(�) = tra
e(�). Thus � has the

required properties.

2. � is a �nite sequen
e ending with a 
losed traje
tory.

Similar to the �rst 
ase.

3. � is a �nite sequen
e ending with an open traje
tory.

Similar to the �rst 
ase, using Lemma 4.22.

Corollary 4.24 Let A and B be 
omparable TAs and let R be a forward simulation from

A to B. Then tra
es

A

� tra
es

B

.

Proof: Suppose � 2 tra
es

A

. Then � 2 tra
efrags

A

(x

A

) for some start state x

A

of A.

Property 1 of the de�nition of simulation implies the existen
e of a start state x

B

of B

su
h that x

A

R x

B

. Then Theorem 4.23 implies that � 2 tra
efrags

B

(x

B

). Sin
e x

B

is a

start state of B, this implies that � 2 tra
es

B

, as needed.

Example 4.25 (Time-bounded 
hannels) Consider two instan
es of the spe
i�
ation

in Figure 2, T imedChannel(b

1

;M) and T imedChannel(b

2

;M) where b

1

� b

2

. We de�ne

a forward simulation R from T imedChannel(b

1

;M) to T imedChannel(b

2

;M) below. If x

is a state of T imedChannel(b

1

;M) and y is a state of T imedChannel(b

2

;M), then x R y

provided that the following 
onditions are satis�ed:

1. x(now ) = y(now ).

2. jx(queue)j = jy(queue)j.
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3. 8i: 1 � i � jx(queue)j, if x(queue)(i) = (m;u

1

) then y(queue)(i) = (m;u

2

) and

u

1

� u

2

.

We 
an prove that R is a forward simulation from the automaton T imedChannel(b

1

;M)

to the automaton T imedChannel(b

2

;M) by showing that R satis�es ea
h of the three

properties in the de�nition of a forward simulation relation. In ea
h automaton there is

a unique initial state that maps the variable now to 0 and queue to the empty sequen
e.

It is obvious that the initial states, whi
h are identi
al, are related by R and so the �rst

property is satis�ed.

For the rest of the proof, we let x and y be, respe
tively, states of T imedChannel(b

1

;M)

and T imedChannel(b

2

;M) su
h that x R y. In order to show that the se
ond property is

satis�ed, we need to 
onsider two 
ases, one for ea
h dis
rete a
tion that may be performed

by T imedChannel(b

1

;M).

If T imedChannel(b

1

;M) performs a send(m) a
tion, and the state 
hanges from x to

x

0

then we need to �nd an exe
ution fragment � of T imedChannel(b

2

;M) from y ending

in y

0

, su
h that x

0

R y

0

and tra
e(�) is the same as the tra
e of }(x) send(m) }(y). The

exe
ution fragment � = }(y) send(m) }(y

0

) satis�es the required 
onditions. This follows

from the hypothesis that x R y and the de�nition of R, using the fa
t that the e�e
t

of a send(m) a
tion of T imedChannel(b

1

;M), T imedChannel(b

2

;M) are, respe
tively,

adding the entry (m;now + b

1

) to x(queue), and (m;now + b

2

) to y(queue) where b

1

� b

2

.

If T imedChannel(b

1

;M) performs a re
eive(m) a
tion, and the state 
hanges from

x to x

0

then we need to show that re
eive(m) is also enabled in y and that there is an

exe
ution fragment with the required properties that ends in a state y

0

su
h that x

0

R y

0

.

In order to show that re
eive(m) is enabled in y, we use the hypothesis that x R y, whi
h

implies that the �rst element of y(queue) is of the form (m;u) for some u. The exe
ution

fragment }(y) re
eive(m) }(y

0

) of T imedChannel(b

1

;M) 
an be shown to satisfy the

required 
onditions.

For the third property, we 
onsider a 
losed traje
tory � of T imedChannel(b

1

;M) with

�:fstate = x and show that there exists a 
losed exe
ution fragment � of the automaton

T imedChannel(b

2

;M) with �:fstate = y, tra
e(�) = tra
e(�), and �:lstate = �:lstate . It

is easy to 
he
k that the traje
tory �

0

of T imedChannel(b

2

;M) with �

0

:fstate = y and

�

0

:ltime = �:ltime satis�es the required 
onditions.

Example 4.26 (Time-bounded 
hannel that keeps all messages) In this example we

de�ne a variant of T imedChannel(b;M) from Example 4.1 
alled T imedChannel2(b;M).

The main di�eren
e between T imedChannel(b;M) and T imedChannel2(b;M) is that

the message queue in T imedChannel2(b;M) is implemented using a �nite sequen
e of

(message, delivery deadline) pairs queue and a pointer ptr that points to the next element

that is to be delivered. Hen
e, the internal variables of T imedChannel2(b;M) 
onsist

of queue, now and ptr. The variable ptr initially has value 1, whi
h indi
ates that it
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Automaton SendV al(u; �)

i

where u 2 R

+

, 0 � � < 1, i 2 I

Variables X : dis
rete 
ounter 2 R initially 0

analog now 2 R initially 0

States Q : val(X)

A
tions A : external send(m)

i

; re
eive(m)

j;i

where m 2 R, j 2 I, j 6= i

Transitions D : external send(m)

i

pre
ondition

m = 
ounter � u


ounter � u=(1 + �) � now

e�e
t


ounter := 
ounter + 1

external re
eive(m)

j;i

Traje
tories T : satis�es


onstant(
ounter)

d(now) = 1

stops when

now = 
ounter � u=(1� �)

Figure 10: Clo
k syn
hronization

is pointing to the �rst element in the sequen
e. A send(m) a
tion 
auses messages and

deadlines to be added to the sequen
e as in T imedChannel(b;M). A re
eive(m) 
auses

ptr to be in
remented to make it point to the next element in the sequen
e instead of

removing the �rst element. The automaton T imedChannel(b;M) 
an be viewed as an

optimized implementation of T imedChannel2(b;M).

We de�ne below a forward simulation R from T imedChannel(b;M) to

T imedChannel2(b;M). If x is a state of T imedChannel(b;M) and y is a state of

T imedChannel2(b;M), then x R y provided that the following 
onditions are satis�ed:

1. x(now ) = y(now ).

2. x(queue) = y(queue)(y(ptr) : : : jy(queue)j).

Example 4.27 (Clo
k syn
hronization) In this example, we de�ne a forward simula-

tion from Clo
kSyn
(u; �)

i

of Figure 8 to an automaton that sends multiples of u. The

spe
i�
ation of this automaton, whi
h is 
alled SendV al(u; �), is given in Figure 10. We
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assume that the subs
ripts representing pro
ess indi
es in both automata are drawn from

the same �nite set I.

The variable 
ounter keeps tra
k of whi
h multiple of u is to be sent next, and variable

now 
ontains the 
urrent time. The automaton parameter � is used in the pre
ondition

of the send and the stopping 
ondition of the traje
tory de�nition, to enfor
e bounds on

the times of o

urren
e of send.

We now de�ne a forward simulation R from the automaton Clo
kSyn
(u; �)

i

to the

automaton SendV al(u; �) where u and � are a
tual parameters. If x is a state of the

automaton Clo
kSyn
(u; �)

i

and y is a state of SendV al(u; �), then x R y provided that

the following 
onditions are satis�ed:

1. y(now )(1� �) � x(phys
lo
k) � y(now )(1 + �).

2. y(
ounter) = x(nextsend)=u.

4.5.2 Re�nements

Let A and B be 
omparable TAs. A re�nement from A to B is a fun
tion F � Q

A

�Q

B

,

satisfying the following 
onditions, for all states x

A

and x

B

of A and B, respe
tively:

1. If x

A

2 �

A

then F (x

A

) 2 �

B

.

2. If � is an exe
ution fragment of A 
onsisting of one a
tion surrounded by two point

traje
tories, with �:fstate = x

A

, then B has a 
losed exe
ution fragment � with

�:fstate = F (x

A

), tra
e(�) = tra
e(�), and �:lstate = F (�:lstate).

3. If � is an exe
ution fragment of A 
onsisting of a single 
losed traje
tory, with

�:fstate = x

A

, then B has a 
losed exe
ution fragment � with �:fstate = F (x

A

),

tra
e(�) = tra
e(�), and �:lstate = F (�:lstate).

Theorem 4.28 Let A and B be two TAs and suppose R � Q

A

� Q

B

. Then R is a

re�nement from A to B if and only if R is a forward simulation from A to B and R is a

fun
tion.

Theorem 4.29 Let A;B and C be 
omparable TAs. If R

1

is a re�nement from A to B

and R

2

is a re�nement from B to C, then R

2

Æ R

1

is a re�nement from A to C.

An isomorphism from A to B is a re�nement F from A to B su
h that F

�1

is a

re�nement from B to A. We say that two automata A and B are isomorphi
, if there

exists an isomorphism from A to B (or, equivalently from B to A).

46



4.5.3 Ba
kward Simulations

Let A and B be 
omparable TAs. A ba
kward simulation from A to B is a total relation

R� Q

A

� Q

B

satisfying the following 
onditions, for all states x

A

and x

B

of A and B,

respe
tively:

1. If x

A

2 �

A

and x

A

R x

B

then x

B

2 �

B

.

2. If x

A

R x

B

and � is an exe
ution fragment of A with �:lstate = x

A

, 
onsisting of one

dis
rete a
tion surrounded by two point traje
tories, then B has a 
losed exe
ution

fragment � with �:lstate = x

B

, tra
e(�) = tra
e(�), and �:fstate R �:fstate .

3. If x

A

R x

B

and � is an exe
ution fragment of A with �:lstate = x

A

, 
onsisting

of one traje
tory, then B has a 
losed exe
ution fragment � with �:lstate = x

B

,

tra
e(�) = tra
e(�), and �:fstate R �:fstate .

Ba
kward simulations indu
e a preorder between timed automata.

Theorem 4.30 Let A;B and C be 
omparable TAs. If R

1

is a ba
kward simulation from

A to B and R

2

is a ba
kward simulation B to C, then R

2

Æ R

1

is a ba
kward simulation

from A to C.

Theorem 4.31 Let A and B be 
omparable TAs and let R be a ba
kward simulation from

A to B. Let x

A

and x

B

be states of A and B, respe
tively, su
h that x

A

R x

B

. Let �

be the tra
e of a 
losed exe
ution fragment of A from y

A

with last state x

A

. Then there

exists y

B

su
h that � is also the tra
e of a 
losed exe
ution fragment of B from y

B

with

last state x

B

and y

A

R y

B

.

Proof: Fix some R, x

A

, x

B

and � satisfying the 
onditions in the statement of the

theorem. Let � 2 frags

A

(y

A

) for some state y

A

of A with tra
e(�) = �. By using the

axioms T1 and T2, we 
an write � as the 
on
atenation of a sequen
e of 
losed exe
ution

fragments, � = �

0

_

�

1

_

: : : �

n

, where ea
h �

i

is either a 
losed traje
tory or an a
tion

surrounded by two point traje
tories, and �

i

:lstate = �

i+1

:fstate for 0 � i � n.

By using the de�nition of a ba
kward simulation, working ba
kwards from �

n

, we 
an


onstru
t an exe
ution fragment �

0

= �

0

0

_

�

0

1

_

: : : �

0

n

from a state y

B

of B su
h that (a)

�

0

:lstate = x

B

, (b) for all i, 0 � i � n, �

i

:fstate R �

0

i

:fstate and tra
e(�

0

i

) = tra
e(�

i

), (
)

for all i, 0 � i � n� 1, �

0

i

:lstate = �

0

i+1

:fstate . Using Lemma 4.7, we 
an see that �

0

is an

exe
ution fragment of B. By Lemma 3.9, tra
e(�) = tra
e(�

0

) as needed.

Corollary 4.32 Let A and B be 
omparable TAs and let R be a ba
kward simulation from

A to B. Then every 
losed tra
e of A is a tra
e of B.
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Proof: Suppose R is a ba
kward simulation from A to B and � is a 
losed tra
e of A.

Then � = tra
e(�) for some 
losed exe
ution � of A. Let x

A

and y

A

be the �rst and

last states of � respe
tively. By the totality of relation R, there exists some state y

B

of

B su
h that y

A

R y

B

. By Theorem 4.31, there exists x

B

of B su
h that � is the tra
e of

a 
losed exe
ution fragment of B from x

B

with last state y

B

and x

A

R x

B

. Property 1 of

the de�nition of a ba
kward simulation relation implies that x

B

is a start state of B. It

follows that � 2 tra
es

B

, as needed.

Theorem 4.33 Let A and B be 
omparable TAs and let R be an image-�nite ba
kward

simulation from A to B. Then tra
es

A

� tra
es

B

.

Proof: Let � 2 tra
es

A

. If � is 
losed then Corollary 4.32 implies that � is a tra
e of B.

From now on we assume � is not 
losed.

Let � 2 exe
s

A

with tra
e(�) = �. Note that any su
h � is either an in�nite sequen
e

�

0

a

1

�

1

: : : or a �nite sequen
e �

0

a

1

�

1

: : : �

n

where the �nal traje
tory �

n

is right open. In

either 
ase, using the axioms T1 and T2, we 
an 
onstru
t an in�nite sequen
e �

0

�

1

: : :

of 
losed exe
ution fragments su
h that � = �

0

_

�

1

_

: : : where �

0

is a point traje
tory,

ea
h �

i

is either a 
losed traje
tory or an a
tion surrounded by two point traje
tories, and

�

i

:lstate = �

i+1

:fstate for ea
h i, 0 � i.

We 
onstru
t a dire
ted graph G whose nodes are pairs (x; i) 
onsisting of a state of

B and an index su
h that (�

i

:lstate ;x) 2R. In G, there is an edge from (x; i) to (x

0

; j)

exa
tly if j = i + 1 and there is an �

0

2 frags

B

(x) with tra
e(�

0

) = tra
e(�

i+1

) su
h

that �

0

:lstate = x

0

. Sin
e R is image-�nite there are �nitely many roots of G. By image-

�niteness of R and the de�nition of the edge set, ea
h node has �nite outdegree. By using

the de�nition of a ba
kward simulation and the edge set of G, we 
an show that ea
h node

(x; i) is rea
hable from some root node (z; 0) for some start state z of B.

The dire
ted graph G satis�es the hypotheses of Lemma 2.3, whi
h implies that there

is an in�nite path in G starting from a root. An edge from a node (x; i) to (x

0

; i + 1)

along this in�nite path 
orresponds to a 
losed exe
ution fragment 


i+1

of B for i, 0 � i

su
h that 


i+1

:fstate = x, 


i+1

:lstate = x

0

and tra
e(


i+1

) = tra
e(�

i+1

). By Lemma 4.7,


 = 


1

_




2

_

: : : is an exe
ution of B and by Lemma 3.9, tra
e(
) = tra
e(


1

)

_

tra
e(


2

) : : :.

Sin
e tra
e(


i+1

) = tra
e(�

i+1

) for all i, 0 � i, and �

0

is a point traje
tory, by Lemma 3.9,

we get tra
e(
) = tra
e(�) = �.

Example 4.34 (A ba
kward simulation relation) This example illustrates the

di�eren
e between forward and ba
kward simulations. We 
onsider two automata A and
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B and show that a forward simulation from A to B does not exist while we exhibit a

ba
kward simulation from A to B.

Let A and B be two 
omparable automata spe
i�ed below. The traje
tories 
onsist of

a set of point traje
tories. This implies that the automaton does not allow time to pass

| everything happens at time 0.

� V

A

= fstateAg and V

B

= fstateBg where:

stateA is a dis
rete variable with type(stateA) = fx

A

; y

A

; q

A

; s

A

g, and

stateB is a dis
rete variable with type(stateB ) = fx

B

; y

B

; y

0

B

; q

B

; s

B

g.

� Q

A

= val(V

A

) and Q

B

= val(V

B

). We write x

A

for the valuation that maps stateA

to x

A

, y

A

for the valuation that maps stateA to x

A

, et
. Similarly, we write x

B

for

the valuation that maps stateB to x

B

, y

B

for the valuation that maps stateB to x

B

,

et
.

� �

A

= fx

A

g and �

B

= fx

B

g.

� E

A

= E

B

= fa; b; 
g and H

A

= H

B

= ;.

� D

A

= f(x

A

; a;y

A

); (y

A

; b;q

A

); (y

A

; 
; s

A

)g, and

D

B

= f(x

B

; a;y

B

); (x

B

; a;y

0

B

); (y

B

; b;q

B

); (y

0

B

; 
; s

B

)g.

� T

A

= f}(v) j v 2 Q

A

g, and T

B

= f}(v) j v 2 Q

B

g

The following are representations of automata A and B as dire
ted multigraphs. The

nodes in the graph represent states and the edges represent dis
rete transitions where a

label on an edge stands for the a
tion involved in the transition.

x

B

A B

x

A

a




b

s

A

y

A

q

A

a

a

y

B

b




y

0

B

q

B

s

B

An obvious 
andidate for a forward simulation from A to B is the relation

R = f(x

A

;x

B

); (y

A

;y

B

); (y

A

;y

0

B

); (q

A

;q

B

); (s

A

; s

B

)g. However, observe that even though

y

A

and y

B

are related by R, the exe
ution fragment }(y

A

) 
 }(s

A

) of A 
annot be

mat
hed by any exe
ution fragment of B starting with state y

B

. Similarly, even though

y

A

and y

0

B

are related by R, the exe
ution fragment }(y

A

) b }(q

A

) of A 
annot be

mat
hed by any exe
ution fragment of B starting with y

0

B

. Therefore, R is not a forward

simulation. In fa
t, there is no forward simulation relation from A to B: there are �nitely

many possibilities for forward simulations from A to B and we see that none of them is

a forward simulation by examining all the possibilities. The main reason for this is that
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while A makes the nondeterministi
 
hoi
e between performing b or 
 after performing a,

B makes its 
hoi
e earlier at the same time it performs a.

There is, however, a ba
kward simulation from A to B: the relation R de�ned above

is a ba
kward simulation.

4.5.4 History Relations

A relation R � Q

A

� Q

B

is a history relation from A to B if R is a forward simulation

from A to B and R

�1

is a re�nement from B to A. History relations indu
e a preorder

between timed automata.

An automaton B is obtained from an automaton A by adding history variables if there

exists a set of variables V su
h that

1. V

B

= V

A

[ V and V

A

\ V = ;,

2. Q

B

� val(V

B

) su
h that Q

B

dV

A

� Q

A

, and

3. The relation f(x;y) j y 2 Q

B

and y dV

A

= xg is a history relation from A to B.

The method of adding history variables is typi
ally used to make it possible to establish

an implementation relationship using a re�nement. If a re�nement does not exist from a

low-level automaton to a higher-level one, it 
an often be made to exist by adding history

variables to the low-level automaton.

Example 4.35 (Adding history variables to obtain a re�nement)We 
annot show

that T imedChannel(b;M) is an implementation of T imedChannel2(b;M) from Exam-

ple 4.26 by using a re�nement. This is be
ause we have no way of spe
ifying what the

subsequen
e before the pointer should be in T imedChannel2(b;M) when relating the

states of the two automata. This example shows how we 
an add history variables to

T imedChannel(b;M) (a
tually, we add just one variable) to obtain a new automaton

that is related to T imedChannel2(b;M) by a re�nement.

Let log be a dis
rete variable whose stati
 type is the same as the stati
 type of

queue in T imedChannel(b;M) and let the initial value of log be the empty sequen
e.

We de�ne a new automaton T imedChannelH(b;M) whose set of variables 
onsists of

the variables of T imedChannel(b;M) and the variable log. The rest of the de�nition

of T imedChannelH(b;M) is the same as T imedChannel(b;M) ex
ept for the transition

de�nition for re
eive(m). A re
eive(m) event in T imedChannelH(b;M) not only removes

the �rst message from the message queue but also appends this message to the sequen
e


ontained in log.

Let V

1

, V

2

be the set of variables andQ

1

, Q

2

be the set of states of T imedChannel(b;M)

and T imedChannelH(b;M) respe
tively. It is easy to verify that the relation f(x;y) j y 2
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Q

2

and y d V

1

= xg is a history relation from T imedChannel(b;M) to T imedChannelH(b;M).

This means that T imedChannelH(b;M) is obtained from T imedChannel(b;M) by adding

a history variable.

We now de�ne a re�nement F from T imedChannelH(b;M) to T imedChannel2(b;M)

as follows. In our de�nition we assume the following 
onventions. Con
atenation on the

left 
orresponds to putting an element on the front of a queue. Re
all also that we use

juxtaposition for 
on
atenation of sequen
es. If x is a state of T imedChannelH(b;M)

and y is a state of T imedChannel2(b;M), then F (x) = y where:

1. y(now ) = x(now ).

2. y(queue) = x(log)x(queue) su
h that jx(log)j = y(ptr)� 1.

Whenever an automaton B is obtained from A by adding history variables, then there

exists a history relation from A to B by de�nition. Theorem 4.36 states that the 
onverse

also holds, if isomorphi
 automata are 
onsidered.

Theorem 4.36 Let A and B be two 
omparable TAs su
h that V

A

and V

B

are disjoint.

Suppose that there is a history relation from A to B. Then, there exists an automaton C

that is isomorphi
 to B and is obtained from A by adding history variables.

Proof: Let R be a history relation from A to B. De�ne automaton C as follows:

� V

C

= V

A

[ V

B

.

� Q

C

= fx 2 val(V

C

) j (x d V

A

;x d V

B

) 2 Rg.

� �

C

= fx 2 Q

C

j x d V

B

2 �

B

g.

� E

C

= E

B

and H

C

= H

B

.

� x

a

!

C

y if and only if x d V

B

a

!

B

y d V

B

.

� x

�

!

C

y if and only if x d V

B

�

1

!

B

y d V

B

where �

1

= � # V

B

.

Let F : Q

C

! Q

B

be de�ned su
h that F (x) = x d V

B

for all x 2 Q

C

. The fun
tion F

is an isomorphism from C to B: It is easy to 
he
k that F is a re�nement from C to B.

We 
an also easily verify that F

�1

is a re�nement from B to C, by de�nition of C and the

fa
t that R

�1

is a fun
tion from the states of B to the states of A.

Now, we verify that C is obtained from A by adding history variables. Let V

B

be the

variable set V required in the de�nition of a history variable and let R

0

= f(x;y) j y 2

Q

C

^ y dV

A

= xg. We need to show that R

0

is a history relation from A to C.
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1. R

0

is a forward simulation from A to C.

By de�nitions of the relations F , R

0

and the automaton C, R

0

= F

�1

ÆR. Sin
e F

�1

is a re�nement from B to C, by Theorem 4.28, we know that it is a forward simulation

from B to C. Sin
e R is a forward simulation from A to B, by Theorem 4.21 we have

R

0

is a forward simulation from A to C, as needed.

2. R

0

�1

is a re�nement from C to A.

By de�nitions of the relations F , R

0

and the automaton C, R

0

�1

= R

�1

ÆF . Sin
e F

is a re�nement from C to B and R

�1

is a re�nement from B to A, by Theorem 4.29,

we have R

0

�1

is a re�nement from C to A, as needed.

The following theorem shows that forward simulations are essentially the same as

history relations 
ombined with re�nements.

Theorem 4.37 Let A and B be two 
omparable TAs su
h that V

A

and V

B

are disjoint.

There is a forward simulation from A to B if and only if there exists a TA C su
h that

there is a history relation from A to C and a re�nement from C to B.

Proof: To prove the impli
ation), suppose R is a forward simulation from A to B. Let

C be an automaton de�ned as follows:

� V

C

= V

A

[ V

B

.

� Q

C

= fx 2 val(V

C

) j (x d V

A

;x d V

B

) 2Rg.

� �

C

= fx 2 Q

C

j x d V

A

2 �

A

^ x d V

B

2 �

B

g.

� E

C

= E

A

and H

C

= H

A

.

� x

a

!

C

y if and only if both of the following 
onditions hold:

1. x d V

A

a

!

A

y dV

A

.

2. There exists an exe
ution fragment � of B su
h that �:fstate = x d V

B

, �:lstate =

y d V

B

, and tra
e(�) = tra
e(}(x) a }(y)).

� x

�

!

C

y if and only if both of the following 
onditions hold:

1. �

1

= � # V

A

2 T

A

and x dV

A

�

!

A

y dV

A

.

2. �

2

= � # V

B

2 T

B

and x dV

B

a

!

B

y dV

B

.
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Let �

A

and �

B

be the fun
tions that restri
t states of C to, respe
tively, V

A

and V

B

.

It follows from the de�nitions that �

�1

A

is a history relation from A to C and �

B

is a

re�nement from C to B.

For the impli
ation (, suppose that there is a history relation from A to C and that

there is a re�nement from C to B. Then, by de�nition of a history relation, we know that

there is a forward simulation from A to C. We also know that there is a forward simulation

from C to B by Theorem 4.28. It follows that there is a forward simulation from A to B,

as needed.

Example 4.38 (Theorem 4.37 applied to time-bounded 
hannels) In Exam-

ple 4.26, we demonstrated a forward simulation from the automaton T imedChannel(b;M)

to the automaton T imedChannel2(b;M) . Theorem 4.37 implies that there exists an au-

tomaton A su
h that there is a history relation from T imedChannel(b;M) to A and a

re�nement from A to T imedChannel2(b;M). The automaton T imedChannelH(b;M)

from Example 4.35 is a witness for A.

4.5.5 Prophe
y Relations

A relation R � Q

A

�Q

B

is a prophe
y relation from A to B if R is a ba
kward simulation

from A to B and R

�1

is a re�nement from B to A. Prophe
y relations indu
e a preorder

between timed automata.

An automaton B is obtained from an automaton A by adding prophe
y variables if

there exists a set of variables V su
h that

1. V

B

= V

A

[ V and V

A

\ V = ;,

2. Q

B

� val(V

B

) su
h that Q

B

dV

A

� Q

A

, and

3. The relation f(x;y) j y 2 Q

B

and y dV

A

= xg is a prophe
y relation from A to B.

Example 4.39 (Adding prophe
y variables to obtain a re�nement) In this example

we 
onsider adding a prophe
y variable to the automaton A from Example 4.34. Let C be

an automaton de�ned as follows:

� V

C

= V

A

[ fvg where v is a dis
rete variable with type(v) = fb; 
g.
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� Q

C

= fx

C

;x

0

C

;y

C

;y

0

C

;q

C

; s

C

g su
h that

x

C

dV

A

= x

A

and x

C

dfvg = b

x

0

C

dV

A

= x

A

and x

0

C

dfvg = 


y

C

dV

A

= y

A

and y

C

dfvg = b

y

0

C

dV

A

= y

A

and y

0

C

dfvg = 


q

C

dV

A

= q

A

and q

C

dfvg = b

s

C

dV

A

= s

A

and s

C

dfvg = 


� �

C

= fx

C

;x

0

C

g.

� E

C

= fa; b; 
g.

� D

C

= f(x

C

; a;y

C

); (x

0

C

; a;y

0

C

); (y

C

; b;q

C

); (y

0

C

; 
; s

C

)g.

� T

C

= f}(v) j v 2 Q

C

g.

x

C

x

0

C

a

a

y

C

y

0

C

b




C

s

C

q

C




b

a

A

x

A

y

A

q

A

s

A

The relation R= f(x

A

;x

C

); (x

A

;x

0

C

); (y

A

;y

C

); (y

A

;y

0

C

); (q

A

;q

C

); (s

A

; s

C

)g is a ba
k-

ward simulation from A to C and R

�1

is a re�nement. Therefore, C is obtained by adding

a prophe
y variable to A. Note that there is no re�nement from A to B de�ned in Exam-

ple 4.34. However, the relation F = f(x

C

;x

B

); (x

0

C

;x

B

); (y

C

;y

B

); (y

0

C

;y

0

B

); (q

C

;q

B

); (s

C

; s

B

)g

is a re�nement from C to B.

Theorem 4.40 Let A and B be two 
omparable TAs su
h that V

A

and V

B

are disjoint.

Suppose that there is a prophe
y relation from A to B. Then, there exists an automaton

C that is isomorphi
 to B and is obtained from A by adding prophe
y variables.

Proof: The proof is analogous to the proof of Theorem 4.36. We assume a ba
kward

simulation relationR instead of a forward simulation relation. We 
onstru
t the automaton

C as in Theorem 4.36 and verify that it is obtained from A by adding a prophe
y variable.
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Theorem 4.41 Let A and B be two 
omparable TAs su
h that V

A

and V

B

are disjoint.

There is a ba
kward simulation from A to B if and only if there exists a TA C su
h that

there is a prophe
y relation from A to C and a re�nement from C to B.

Proof: The proof is analogous to the proof of Theorem 4.37. We assume a ba
kward

simulation relation R instead of a forward simulation. The 
onstru
tion of the automaton

C and the reasoning that follows are similar.

Example 4.42 (Theorem 4.41 applied to Examples 4.34 and 4.39) In Exam-

ple 4.34, we demonstrated a ba
kward simulation from A to B. Theorem 4.41 implies that

there exists an automaton C su
h that there is a prophe
y relation from A to C and a

re�nement from C to B. The automaton C de�ned in Example 4.39 
onstitutes a witness

for C.

5 Operations on Timed Automata

In this se
tion, we introdu
e four kinds of operations on timed automata: parallel 
ompo-

sition, hiding, adding lower and upper bounds for tasks, and untiming.

5.1 Composition

5.1.1 De�nitions and Basi
 Results

The 
omposition operation for timed automata allows an automaton representing a 
om-

plex system to be 
onstru
ted by 
omposing automata representing individual system


omponents. Our 
omposition operation identi�es external a
tions with the same name

in di�erent 
omponent automata. When any 
omponent automaton performs a dis
rete

step involving an a
tion a, so do all 
omponent automata that have a as an external a
-

tion. The 
omposition operator for timed automata is simpler than it is for general hybrid

automata sin
e all the variables in a timed automaton are internal.

2

Formally, we say that timed automata A

1

andA

2

are 
ompatible ifH

1

\A

2

= H

2

\A

1

=

; and X

1

\X

2

= ;. If A

1

and A

2

are 
ompatible then their 
omposition A

1

kA

2

is de�ned

to be the stru
ture A = (X;Q;�; E;H;D;T ) where

� X = X

1

[X

2

.

� Q = fx 2 val(X) j x dX

i

2 Q

i

, i 2 f1; 2gg.

2

The 
omposition operation for general hybrid automata requires external variables to be identi�ed as

well as external a
tions. When any 
omponent automaton follows a parti
ular traje
tory for an external

variable v, then so do all 
omponent automata of whi
h v is an external variable.

55



� � = fx 2 Q j x dX

i

2 �

i

, i 2 f1; 2gg.

� E = E

1

[E

2

and H = H

1

[H

2

.

� For ea
h x;x

0

2 Q and ea
h a 2 A, x

a

!

A

x

0

i� for i 2 f1; 2g, either (1) a 2 A

i

and

x dX

i

a

!

i

x

0

dX

i

, or (2) a 62 A

i

and x dX

i

= x

0

dX

i

.

� T � trajs(X ) is given by � 2 T , � # X

i

2 T

i

, i 2 f1; 2g.

Theorem 5.1 If A

1

and A

2

are timed automata then A

1

kA

2

is a timed automaton.

Lemma 5.2 Let A = A

1

kA

2

and let � be an exe
ution fragment of A. Then � d(A

1

;X

1

)

and � d(A

2

;X

2

) are exe
ution fragments of A

1

and A

2

, respe
tively. Furthermore,

1. � is time-bounded i� both � d(A

1

;X

1

) and � d(A

2

;X

2

) are time-bounded.

2. � is admissible i� both � d(A

1

;X

1

) and � d(A

2

;X

2

) are admissible.

3. � is 
losed i� both � d(A

1

;X

1

) and � d(A

2

;X

2

) are 
losed.

4. � is non-Zeno i� both � d(A

1

;X

1

) and � d(A

2

;X

2

) are non-Zeno.

5. � is an exe
ution i� both � d(A

1

;X

1

) and � d(A

2

;X

2

) are exe
utions.

Lemma 5.3 Let A = A

1

kA

2

, and let � be an exe
ution fragment of A. Then, for i = 1; 2,

tra
e(�) d(E

i

; ;) = tra
e(� d(A

i

;X

i

)).

The following theorem is a fundamental theorem that relates the set of tra
es of a 
om-

posed automaton to the sets of tra
es of its 
omponents. Set in
lusion in one dire
tion

expresses the idea that a tra
e of a 
omposition \proje
ts" to yield tra
es of the 
ompo-

nents. Set in
lusion in the other dire
tion expresses the idea that tra
es of 
omponents


an be \pasted" to yield a tra
e of the 
omposition.

Theorem 5.4 Let A = A

1

kA

2

. Then tra
es

A

is exa
tly the set of (E; ;)-sequen
es whose

restri
tions to A

1

and A

2

are tra
es of A

1

and A

2

, respe
tively.

That is, tra
es

A

= f� j � is an (E; ;)-sequen
e and � d(E

i

; ;) 2 tra
es

A

i

; i 2 f1; 2gg.

Notation: The 
ompatibility 
onditions for 
omposition require the set of internal vari-

ables of ea
h automaton to be disjoint from the set of internal variables of all the other

automata in the 
omposition. We use a general s
heme to disambiguate the internal

variables of 
omponents in order to avoid possible name 
lashes that 
an violate the 
om-

patibility 
onditions. If A is the name of an automaton and v is an internal variable of A,

then we refer to this variable as A:v in the 
omposite automaton.

Example 5.5 (Periodi
 sending pro
ess with timeouts) Let C be the 
omposition

of three automata from Examples 4.1, 4.2 and 4.4:
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C = Periodi
Send(u

1

;M) k T imedChannel(b;M) k T imeout(u

2

;M)

where M = fm

1

; : : : ;m

n

g and b+ u

1

< u

2

. The following sequen
e is a tra
e of C.

� = �

0

send(m

1

) �

1

re
eive(m

1

) �

2

send(m

2

) �

3

re
eive(m

2

) �

4

: : :

where e is the set 
onsisting of the fun
tion with the empty domain and

�

0

: [0; u

1

℄! e �

1

: [0; b℄! e �

2

: [0; u

1

� b℄! e �

3

: [0; b℄! e �

4

: [0; u

1

� b℄! e

The following invariant states that C never performs a timeout a
tion.

Invariant 1 : In any rea
hable state x of C, x(T imeout:suspe
ted) = false.

In order to prove this invariant we 
an use an auxiliary invariant su
h as the one below,

whi
h establishes the fa
t that every message is delivered before the variable now , whi
h

keeps tra
k of real-time, rea
hes the point at whi
h a timeout a
tion o

urs.

Invariant 2 :

1. if x(T imedChannel:queue) is not empty then

x(T imedChannel:queue)(1) < x(T imedChannel:now) + u

2

� x(T imeout:
lo
k).

2. if x(T imedChannel:queue) is empty then

u

1

� x(Periodi
Send:
lo
k) + b < u

2

� x(T imeout:
lo
k).

Example 5.6 (Periodi
 sending pro
ess with failures and timeouts) In this ex-

ample, we 
onsider a 
omposite automaton de�ned exa
tly like the one in Example 5.5

ex
ept that the automaton Periodi
Send(u

1

;M) is repla
ed with Periodi
Send2(u

1

;M).

Let C = Periodi
Send2(u

1

;M) k T imedChannel(b;M) k T imeout(u

2

;M). The follow-

ing sequen
e is a tra
e of C.

�

0

send(m

1

) �

1

re
eive(m

1

) �

2

fail �

3

timeout �

4

where e is the set 
onsisting of the fun
tion with the empty domain and

�

0

: [0; u

1

℄! e �

1

: [0; b℄! e �

2

: [0; b℄! e �

3

: [0; u

2

� b℄! e �

4

: [0;1)! e
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A

ording to this sample tra
e, the �rst message sent by the periodi
 sending pro
ess

is re
eived exa
tly b time units after it is sent. The periodi
 sending pro
ess fails 2b time

units after sending its �rst message. The timeout pro
ess performs a timeout sin
e no

se
ond message arrives within the next u

2

time units after the re
eipt of the �rst message.

The following invariant states that a timeout performed by C 
an be used to 
on
lude

that the sender pro
ess has failed.

Invariant 1 : Let C = Periodi
Send2(u

1

;M) k T imedChannel(b;M) k T imeout(u

2

;M)

and assume that b + u

1

< u

2

. In any rea
hable state x of C, if x(T imeout:suspe
ted) =

true then x(Periodi
Send2:failed) = true.

The automaton C is guaranteed to perform a timeout to signal the failure of a pro
ess,

within a spe
i�ed amount of time after the o

urren
e of a fail event. The following is a

formal statement of this property.

Let � be an exe
ution of C and let t be the point in time at whi
h a fail event o

urs

in �. Then � in
ludes a timeout event that o

urs in the interval (t+ b; t+ b+ u

2

℄.

Example 5.7 (Clo
k syn
hronization) In this example we 
onsider the 
omposition

of three 
lo
k syn
hronization automata with six time-bounded 
hannel automata. A

graphi
al representation of the 
omposite automaton is given below. The abbreviation

CS

i

represents the automaton Clo
kSyn
(u; �)

i

. The abbreviation TC

i;j

represents the

timed 
hannel that 
ommuni
ates messages from Clo
kSyn
(u; �)

i

toClo
kSyn
(u; �)

j

.

We assume that the time-bounded 
hannel automata used in this 
omposition are de�ned

as in Example 4.1 where re
eive and send a
tions in ea
h instan
e are renamed su
h that

they 
an be shared with 
lo
k syn
hronization automata. Let C be

Clo
kSyn
(u; �)

1

kClo
kSyn
(u; �)

2

kClo
kSyn
(u; �)

3

k

T imedChannel(b;M)

1

k : : : kT imedChannel(b;M)

6

where M = R

+

.
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CS

2

send(m)

2

send(m)

3

send(m)

3

re
eive(m)

3;2

re
eive(m)

3;1

re
eive(m)

2;1

send(m)

1

send(m)

1

re
eive(m)

1;2

send(m)

2

re
eive(m)

1;3

re
eive(m)

2;3

TC

1;3

TC

3;1

TC

2;3

CS

3

TC

3;2

CS

1

TC

1;2

TC

2;1

A physi
al 
lo
k diverges from real time at the largest rate when it evolves with rate

1 + � or 1� �. For example, if a physi
al 
lo
k evolves with rate 1 + �, then at time t, its

value is t(1 + �). Hen
e, the largest possible di�eren
e between a physi
al 
lo
k and the

real time is t�. This property is stated by the invariant below.

Invariant 1 : In any rea
hable state x of C, at any time t 2 T, for any i 2 f1; 2; 3g,

jx(Clo
kSyn
(u; �)

i

:phys
lo
k)� tj � t�.

Two physi
al 
lo
ks in C diverge at the largest rate when one evolves with rate 1+� and

the other with 1 � �. It follows from Invariant 1 that, at any time t the largest possible

di�eren
e between the physi
al 
lo
k values for two pro
esses is 2t�. This property is

formalized by the following invariant.

Invariant 2 : In any rea
hable state x of C, at any time t 2 T, for any i; j 2

f1; 2; 3g, jx(Clo
kSyn
(u; �)

i

:phys
lo
k) � x(Clo
kSyn
(u; �)

j

:phys
lo
k)j � 2t� where

i; j 2 f1; 2; 3g.

The following invariant states that in any rea
hable state there exists a pro
ess j su
h

that the logi
al 
lo
k of ea
h other pro
ess in the system is smaller than or equal to the

physi
al 
lo
k of j. This follows from the de�nition of a logi
al 
lo
k and the fa
t that

physi
al 
lo
ks always in
rease.

Invariant 3 : In any rea
hable state x of C, there exists j 2 f1; 2; 3g su
h that for all

i 2 f1; 2; 3g, x(Clo
kSyn
(u; �)

i

:log
lo
k) � x(Clo
kSyn
(u; �)

j

:phys
lo
k).

The following invariant states that in any rea
hable state there exists a pro
ess j su
h

that the logi
al 
lo
k of ea
h other pro
ess in the system is larger than or equal to the

physi
al 
lo
k of j. This follows from the de�nition of a logi
al 
lo
k.
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Invariant 4 : In any rea
hable state x of C, there exists j 2 f1; 2; 3g su
h that for all

i 2 f1; 2; 3g, x(Clo
kSyn
(u; �)

i

:log
lo
k) � x(Clo
kSyn
(u; �)

j

:phys
lo
k).

Invariants 3 and 4 together are 
alled validity properties. They express the 
ondition

that all the logi
al 
lo
ks remain in an envelope bounded by the maximum and minimum

physi
al 
lo
k values in the system.

The following invariant formalizes the property that all the logi
al 
lo
ks at a given

time lie within the envelope formed by the largest and the smallest physi
al 
lo
k values

in the system. It follows from Invariants 1, 3 and 4 that any point in this envelope 
an

diverge from real time t by at most t� time units.

Invariant 5 : In any rea
hable state x of C, at any time t 2 T, for any i 2 f1; 2; 3g

jx(Clo
kSyn
(u; �)

i

:log
lo
k) � tj � t�.

Finally, we state a property about the agreement of logi
al 
lo
ks in C.

Invariant 6 : In any rea
hable state x of C, for i; j 2 f1; 2; 3g, jx(Clo
kSyn
(u; �)

i

:log
lo
k)�

x(Clo
kSyn
(u; �)

j

:log
lo
k)j � u+ b(1 + �).

To see why Invariant 6 holds, �x j to be a pro
ess with the largest physi
al 
lo
k

in x, and �x i to be any other pro
ess. Let v

j

; v

i

be the logi
al 
lo
k values of j and i

respe
tively in state x. Note that v

j

is also the physi
al 
lo
k value of j in x. By Invariant

3, we know that v

i

� v

j

. To show Invariant 6, it suÆ
es to show that v

j

�v

i

� u+b(1+�).

Let � be a �nite exe
ution that leads to state x. There are two 
ases to 
onsider.

1. Some message sent by j arrives at i in �.

Consider the last su
h message and let v

1

be the value that it 
ontains. Let v

2

be

the newly adjusted logi
al 
lo
k value of i immediately after the message arrives.

We know that v

i

� v

2

� v

1

.

If j sends a later message to i in �, then it sends the next later message when its

physi
al 
lo
k has value v

1

+ u. By assumption, this message does not arrive at i.

Therefore, the real time that elapses after sending it must be at most b. It follows

that the physi
al 
lo
k in
rease of j sin
e sending this message is at most b(1 + �)

and so v

j

� v

1

+ u+ b(1 + �). On the other hand, if j does not send a later message

to i in �, then v

j

� v

1

+ u. In either 
ase, we have v

j

� v

1

+ u + b(1 + �). Sin
e

v

i

� v

1

, we have v

j

� v

i

� u+ b(1 + �), as needed for Invariant 6.

2. No message sent by j arrives at i in �.

Sin
e the �rst send o

urs at time 0 and b is the largest possible 
ommuni
ation

delay, the fa
t that i has not re
eived the �rst message sent by j at time 0 implies

that t � b. Sin
e both 
lo
ks start at 0, we have v

j

� b(1+�) and v

i

� 0. Therefore,

v

j

� v

i

� u+ b(1 + �), whi
h suÆ
es for Invariant 6.
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5.1.2 Substitutivity Results

Theorem 5.4, whi
h relates the set of tra
es of a 
omposed automaton to the set of tra
es

of 
omponent automata, is fundamental for 
ompositional reasoning. We now introdu
e

another important 
lass of results, substitutivity results, that are useful for de
omposing

veri�
ation of 
omposite automata. These results are best understood by viewing one of

the 
omponents of a 
omposition as the system and the other as the environment with

whi
h the system intera
ts.

The following result states that if a TA A

1


an be shown to implement another one

A

2

, with no assumptions about their environments, then A

1


an be shown to implement

A

2

in a given environment B.

Theorem 5.8 Suppose A

1

, A

2

and B are TAs, A

1

and A

2

have the same external a
tions,

and ea
h of A

1

and A

2

is 
ompatible with B. If A

1

� A

2

then A

1

kB � A

2

kB.

Corollary 5.9 Suppose A

1

, A

2

, B

1

, and B

2

are TAs, A

1

and A

2

have the same external

a
tions, B

1

and B

2

have the same external a
tions, and ea
h of A

1

and A

2

is 
ompatible

with ea
h of B

1

and B

2

. If A

1

� A

2

and B

1

� B

2

then A

1

kB

1

� A

2

kB

2

.

We 
an strengthen Corollary 5.9 slightly by the following 
orollary: if A

1

implements

A

2

in an environment B

2

, then A

1


omposed with an environment that is more restri
tive

than B

2

(whose set of external behaviors is smaller than that of B

2

), implements A

2


omposed with B

2

.

Corollary 5.10 Suppose A

1

, A

2

, B

1

, and B

2

are TAs, A

1

and A

2

have the same external

a
tions, B

1

and B

2

have the same external a
tions, and ea
h of A

1

and A

2

is 
ompatible

with ea
h of B

1

and B

2

. If A

1

kB

2

� A

2

kB

2

and B

1

� B

2

then A

1

kB

1

� A

2

kB

2

.

Proof: Let � 2 tra
es

A

1

kB

1

. By Theorem 5.4, � d(E

A

1

; ;) 2 tra
es

A

1

and � d(E

B

1

; ;) 2

tra
es

B

1

. Sin
e B

1

� B

2

, � d(E

B

1

; ;) 2 tra
es

B

2

. Sin
e B

1

and B

2

have the same exter-

nal a
tions, it follows that � d(E

B

2

; ;) 2 tra
es

B

2

. We have � d(E

A

1

; ;) 2 tra
es

A

1

and

� d(E

B

2

; ;) 2 tra
es

B

2

. By Theorem 5.4, � 2 tra
es

A

1

kB

2

. Sin
e A

1

kB

2

� A

2

kB

2

by

assumption, � 2 tra
es

A

2

kB

2

, as needed.

For other preorders, we also get substitutivity results, for example:

Theorem 5.11 Suppose A

1

, A

2

and B are TAs, A

1

and A

2

have the same external

a
tions, and ea
h of A

1

and A

2

is 
ompatible with B.

61



1. If every 
losed tra
e of A

1

is a tra
e of A

2

then every 
losed tra
e of A

1

kB is a tra
e

of A

2

kB.

2. If every admissible tra
e of A

1

is a tra
e of A

2

then every admissible tra
e of A

1

kB

is a tra
e of A

2

kB.

3. If every non-Zeno tra
e of A

1

is a tra
e of A

2

then every non-Zeno tra
e of A

1

kB

is a tra
e of A

2

kB.

Example 5.12 (A 
ounterexample for a desirable substitutivity theorem) Sup-

pose A

1

and A

2

have the same external a
tions, B

1

and B

2

have the same external a
tions,

and that ea
h of A

1

and A

2

is 
ompatible with ea
h of B

1

and B

2

. If we view A

2

and

B

2

as spe
i�
ations and want to prove that A

1

kB

1

� A

2

kB

2

, it would be useful to have

a theorem that says if A

1

kB

2

� A

2

kB

2

and A

2

kB

1

� A

2

kB

2

then A

1

kB

1

� A

2

kB

2

. That

is, if A

1

implements A

2

in the 
ontext of B

2

and B

1

implements B

2

in the 
ontext of

A

2

, we would like to 
on
lude that A

1

kB

1

implements A

2

kB

2

. We show by means of a


ounterexample that it is impossible to prove su
h a theorem.

Consider the de�nitions of automata A

1

;A

2

;B

1

;B

2

in Figures 11 and 12. All automata

have the same set of a
tions, 
onsisting of the external a
tions a and b. A

1


an perform

an arbitrary number of bs, and 
an perform an a provided that the 
ount of as and the


ount of bs are equal. A

1

allows the 
ount of as to in
rease to one more than the 
ount of

bs.

B

1


an perform an arbitrary number of as, and 
an perform a b provided that the


ount of as is one more than the 
ount of bs. B

1

allows the 
ount of bs to rea
h the 
ount

of as.

A

2

has an in�nite number of start states, ea
h giving a di�erent �nite bound on the

number of a a
tions it 
an perform. Similarly, B

2

has an in�nite number of start states,

ea
h giving a di�erent �nite bound on the number of b a
tions it 
an perform.

Clearly, A

1

kB

2

� A

2

kB

2

, and A

2

kB

1

� A

2

kB

2

. On the other hand, A

1

kB

1


an per-

form an in�nite sequen
e of alternating as and bs, whi
h is not allowed allowed by the

spe
i�
ation A

2

kB

2

This implies that A

1

kB

1

does not implement A

2

kB

2

.

In Se
tion 8, we revisit the substitutivity issue and prove Theorem 8.8, a variant of

the desirable theorem 
onsidered in the above example, by assuming 
ertain 
onditions on

the environments A

2

and B

2

.

5.2 Hiding

We de�ne one hiding operation for timed automata, whi
h hides external a
tions: if

E � E

A

, then A
tHide(E;A) is the TA B that is equal to A ex
ept that E

B

= E

A

� E

and H

B

= H

A

[E.
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Automaton A

1

Variables X : dis
rete 
ounta 2 Z initially 0

dis
rete 
ountb 2 Z initially 0

States Q : val(X)

A
tions A : external a; b

Transitions D : external a

pre
ondition


ountb = 
ounta

e�e
t


ounta := 
ounta+ 1

external b

e�e
t


ountb := 
ountb+ 1

Traje
tories T : f}(x) j x 2 Qg

Automaton B

1

Variables X : dis
rete 
ounta 2 Z initially 0

dis
rete 
ountb 2 Z initially 0

States Q : val(X)

A
tions A : external a; b

Transitions D : external b

pre
ondition


ounta = 
ountb + 1

e�e
t


ountb := 
ountb+ 1

external a

e�e
t


ounta := 
ounta+ 1

Traje
tories T : f}(x) j x 2 Qg

Figure 11: Automata A

1

and B

1
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Automaton A

2

Variables X : dis
rete max
ount 2 Z

�0

initially arbitrary

dis
rete 
ounta 2 Z

�0

initially 0

States Q : val(X)

A
tions A : external a; b

Transitions D : external a

pre
ondition


ounta < max
ount

e�e
t


ounta := 
ounta+ 1

external b

Traje
tories T : f}(x) j x 2 Qg

Automaton B

2

Variables X : dis
rete max
ount 2 Z

�0

initially arbitrary

dis
rete 
ountb 2 Z

�0

initially 0

States Q : val(X)

A
tions A : external a; b

Transitions D : external b


ountb < max
ount

e�e
t


ountb := 
ountb + 1

external a

Traje
tories T : f}(x) j x 2 Qg

Figure 12: Automata A

2

and B

2
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Lemma 5.13 If E � E

A

then A
tHide(E;A) is a TA.

Lemma 5.14 If A is a TA and E � E

A

then tra
es

A
tHide(E;A)

= f� d(E

A

� E; ;) j � 2

tra
es

A

g.

The following theorem states that the hiding operation respe
ts the implementation

relation.

Theorem 5.15 Suppose A and B are TAs with A � B, and suppose E � E

A

. Then

A
tHide(E;A) � A
tHide(E;B).

5.3 Extending Timed Automata with Bounds

In this se
tion, we de�ne a new 
lass of automata, \TA with bounds" where the basi


de�nition of a timed automaton is extended with the notion of a task and a pair of bounds

(a lower and an upper bound) for ea
h task. We then de�ne an operation that transforms

a given TA with bounds to another TA. This operation supports spe
ifying a system by

thinking in terms of tasks and bounds as in the timed automata of Merritt, Modugno, and

Tuttle [29℄ and the phase transition systems of Maler, Manna and Pnueli [28℄.

In de�ning the operation for extending timed automata with bounds, we restri
t atten-

tion to a 
lass of automata where the enabling and disabling of a
tions during traje
tories

follow 
ertain rules. Spe
i�
ally, our operation is de�ned on automata in whi
h ea
h a
tion

is enabled or disabled throughout an entire traje
tory, or be
omes enabled on
e during a

traje
tory and remains so until the end of that traje
tory. The given restri
tions ensure

that the result of applying the operation to a TA is another TA and that the resulting TA

satis�es the restri
tions.

Let A be a TA, C a set of a
tions of A, and T the set of traje
tories of A. We say that

T is well-formed with respe
t to C if ea
h � 2 T satis�es one of the following 
onditions:

1. For all t 2 dom(�), C is enabled in �(t).

2. For all t 2 dom(�), C is disabled in �(t).

3. There exists t 2 dom(�) su
h that for all t

0

2 [0; t), C is disabled in �(t

0

) and for all

t

0

2 dom(�)� [0; t), C is enabled in �(t

0

).

A TA with bounds, A = (B; C; l; u) 
onsists of:

� A timed automaton B = (X;Q;�; E;H;D;T ).

� A set C � E [ H of a
tions 
alled a task ; we assume that T is well-formed with

respe
t to C.
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� A lower time bound l and an upper time bound u for C. We require that the

following axioms are satis�ed for l and u:

B1 l 2 R

�0

and u 2 R

�0

[ f1g.

B2 l � u.

Lower and upper bounds are used to spe
ify how mu
h time is allowed to pass between

the enabling and the performan
e of an a
tion. If l is the lower bound for a task C, then

an a
tion in C must remain enabled at least for l time units before being performed. If u

is the upper bound for a task C, then an a
tion in C 
an remain enabled at most u time

units without being performed: it must either be performed or be
ome disabled within u

time units.

We now de�ne an operation Extend, whi
h transforms a TA A with bounds to another

TA A

0

that in
orporates the new bounds, in addition to the timing 
onstraints already

present in A. Let A = (B; C; l; u) be a TA with bounds where B = (X;Q;�; E;H;D;T ).

Then Extend(A) is the TA A

0

= (X

0

; Q

0

;�

0

; E

0

;H

0

;D

0

;T

0

) su
h that the 
omponents of A

0


onsist of:

� X

0

= X [ fnow ;�rst ; lastg where:

1. now ;�rst , and last are new variables that do not appear in X.

2. now is an analog variable su
h that type(now ) = R.

3. �rst and last are dis
rete variables where type(�rst) = R and type(last ) =

R [ f1g.

� Q

0

= fx 2 val(X

0

) j x dX 2 Qg.

� �

0


onsists of all the states x 2 Q

0

that satisfy the following 
onditions:

1. x dX 2 �.

2. x(now ) = 0.

3. x(�rst) =

�

l if C is enabled in x dX;

0 otherwise:

x(last) =

�

u if C is enabled in x dX;

1 otherwise:

� E

0

= E and H

0

= H. We write A

0

�

= E

0

[H

0

.

� If a 2 (E [H) then (x; a;x

0

) 2 D

0

exa
tly if all of the following 
onditions hold:

1. (x dX)

a

!

A

(x

0

dX).

2. x

0

(now ) = x(now ).
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3. (a) If a 2 C, then x(�rst) � x(now ).

(b) If C is enabled both in x dX and x

0

dX and a =2 C, then x(�rst) = x

0

(�rst)

and x(last) = x

0

(last).

(
) If C is enabled in x

0

dX and either C is not enabled in x dX or a 2 C,

then x

0

(�rst) = x(now ) + l and x

0

(last) = x(now ) + u.

(d) If C is not enabled in x

0

dX, then x

0

(�rst) = 0 and x

0

(last ) =1.

� T

0

is a set that 
onsists of all � 2 trajs(X

0

) that satisfy the following 
onditions:

1. (� # X) 2 T .

2. d(now ) = 1.

3. (a) If for all t 2 dom(�), C is enabled in � # X(t) then �rst and last are


onstant throughout � .

(b) If for all t 2 dom(�), C is disabled in � # X(t) then �rst and last are


onstant throughout � .

(
) If for all t

0

2 [0; t), C is disabled in �(t

0

) and for all t

0

2 dom(�) � [0; t), C

is enabled in �(t

0

) then

i. �rst and last are 
onstant in [0; t).

ii. �(t)(�rst) = �(t)(now ) + l and �(t)(last) = �(t)(now ) + u.

iii. �rst and last are 
onstant in dom(�)� [0; t).

(d) now � last .

The transformation is based on the idea of augmenting the state of the original au-

tomaton with a variable to represent 
urrent time (now ) and the earliest time (�rst) and

the latest time (last) a task 
an be performed. All these variables represent time in ab-

solute terms. Item 3(a) in the de�nition of D

0

expresses the new lower bound 
onstraint

and Item 3(d) in the de�nition of T

0

the new upper bound 
onstraint.

Let A be a TA with bounds (B; C; l; u). In a start state x of Extend(A), the variables

�rst and last are initialized to l and u respe
tively, if C is enabled in x. If C is not enabled

in x, then �rst is set to 0 and last is set to1. Items 3(
) in the de�nition of D

0

and 3(
) in

the de�nition of T

0

show how the variables �rst and last are updated. When C be
omes

newly enabled by a dis
rete transition or when a C a
tion leads to a state in whi
h C is

enabled, �rst is set to now + l and last is set to now +u. The variables first and last are

updated similarly when C be
omes newly enabled in the 
ourse of a traje
tory.

Theorem 5.16 Suppose that A = (B; C; l; u) is a TA with bounds. Then Extend(A) is a

TA with a set of traje
tories that is well-formed with respe
t to C.

Proof: The proof follows from the de�nitions of TA and the operation Extend. Step

3(a) in the de�nition of D

0

adds a new lower bound 
onstraint, whi
h makes enabling
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start at some parti
ular time. Step 3(b) in the de�nition of T

0

, adds a new upper bound


onstraint, whi
h stops traje
tories at a parti
ular time and whi
h does not add any

enabling or disabling to traje
tories.

In the rest of this se
tion, we sometimes speak of variables, states and tra
es of a TA

with bounds. If A = (B; C; l; u) is a TA with bounds, variables, states and tra
es of A

refer to, respe
tively, the states and the tra
es of the underlying automaton B.

Theorem 5.17 Suppose A = (B; C; l; u) is a TA with bounds. Then tra
es

Extend(A)

�

tra
es

A

.

Proof: Let F : Q

0

! Q be de�ned as follows: F (x) = x dX where X is the set of

internal variables of A. It is easy to 
he
k that F is a re�nement from Extend(A) to A.

By Theorem 4.28 and Corollary 4.24, we 
on
lude that tra
es

Extend(A)

� tra
es

A

.

Lemma 5.18 Suppose that A is a TA with bounds. For any rea
hable state x of Extend(A),

if C is enabled in x dX in A, then x(last ) � x(now ) + u.

Proof: Consider a 
losed exe
ution � of Extend(A). Using the axioms T1 and T2 for

traje
tories, we 
an write � as a 
on
atenation of 
losed exe
ution fragments �

0

_

�

1

_

: : : �

k

where �

0

is a point traje
tory, and ea
h �

i

for i � 1 is either a traje
tory or a dis
rete a
tion

surrounded by two point traje
tories su
h that for all 0 � i � k�1, �

i

:lstate = �

i+1

:fstate .

We prove the invariant by indu
tion on the length k of the sequen
e of exe
ution fragments.

For the base 
ase, suppose that C is enabled in �

0

:fstate dX. Sin
e � is an exe
u-

tion, we know that �

0

:fstate is a start state of Extend(A). By de�nition of Extend(A),

�

0

:fstate(last) = u. Sin
e �

0

:fstate(now ) = 0, �

0

:fstate(last) � �

0

:fstate(now ) + u, as

required.

For the indu
tive step, we assume that the property is true for the sequen
e �

0

_

�

1

_

: : : �

k

and show that it is true in the sequen
e �

k+1

in �

0

_

�

1

_

: : : �

k

_

�

k+1

. There are

two 
ases to 
onsider depending on whether �

k+1

is a dis
rete a
tion surrounded by two

point traje
tories or a traje
tory.

1. �

k+1

is an a
tion a surrounded by two point traje
tories. Suppose that C is enabled

in �

k+1

:lstate . There are two sub
ases to 
onsider:

(a) C is enabled in �

k

:lstate dX and a =2 C.

Then, �

k+1

:fstate(last) = �

k

:fstate(last) and �

k+1

:fstate(now ) = �

k

:fstate(now ).

By indu
tive hypothesis, �

k

:lstate(last) � �

k

:lstate(now ) + u. Therefore,

�

k+1

:lstate(last) � �

k+1

:lstate(now ) + u, as needed.
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(b) C is disabled in �

k

:lstate dX or a 2 C.

Then, by de�nition of Extend(A), �

k+1

:lstate(last) = �

k+1

:lstate(now ) + u,

whi
h suÆ
es.

2. �

k+1

is a traje
tory.

Suppose that C is enabled in �

k+1

:lstate dX in A. There are two sub
ases to 
on-

sider:

(a) C is enabled in �

k+1

:fstate dX in A.

By indu
tive hypothesis �

k+1

:fstate(last) � �

k+1

:fstate(now )+u. By the well-

formedness assumption, we know that C must be enabled throughout �

k+1

and

by de�nition of Extend(A) last is 
onstant throughout �

k+1

. Sin
e the value of

now in
reases, it is easy to see that �

k+1

:lstate(last) � �

k+1

:lstate(now ) + u.

(b) C is disabled in �

k+1

:fstate dX in A.

Then, sin
e it is enabled in �

k+1

:lstate dX by the well-formedness assumption,

it be
omes enabled at some point t in the domain of �

k+1

and remains en-

abled thereafter. Therefore, �

k+1

(t)(last) = �

k+1

(t)(now ) + u, by de�nition

of Extend(A). Sin
e last remains 
onstant after it is set and the value of now

in
reases, �

k+1

:lstate(last) � �

k+1

:lstate(now ) + u holds.

The theorem below shows that the exe
utions of an automaton obtained by applying

the transformation Extend to a TA with bounds respe
t the time bounds spe
i�ed by the

lower bound l and the upper bound u.

Theorem 5.19 Let A = (B; C; l; u) be a TA with bounds. Then,

1. There does not exist a 
losed exe
ution fragment � of Extend(A) from a rea
hable

state, where �:ltime > u, C is enabled in A in all the states of � d(A;X) and no

a
tion in C o

urs in �.

2. There does not exist a 
losed exe
ution fragment � of Extend(A) from a rea
hable

state, where �:ltime < l, su
h that C is not enabled in A in the �rst state of � d(A;X)

and an a
tion in C o

urs in �.

Proof:

1. Suppose, for the sake of 
ontradi
tion, that there exists a 
losed exe
ution fragment

� = �

0

a

1

�

1

a

2

: : : �

n

of Extend(A) from a rea
hable state, where �:ltime > u, C is

enabled inA in all the states of � d(A;X) and none of the a

i

in � is inC. By de�nition

of traje
tories for Extend(A) it must be the 
ase that �:lstate(now) � �:lstate(last).
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Sin
e C is enabled in A in all states in �, by Lemma 5.18 we have �:fstate(last) �

�:fstate(now ) + u. By de�nition of Extend(A), last remains 
onstant throughout �;

therefore, �:lstate(last) = �:fstate(last). Sin
e �:fstate(last) � �:fstate(now ) + u,

it follows that �:lstate(last) � �:fstate(now ) + u. By de�nition of �, we have

�:lstate(now ) = �:fstate(now ) + �:ltime . It follows that �:fstate(now ) + �:ltime �

�:fstate(now ) + u. This implies �:ltime � u. But this gives us the needed 
ontra-

di
tion sin
e �:ltime > u.

2. We assume that � is a 
losed exe
ution fragment of Extend(A) from a rea
hable state

where �:ltime < l, su
h that C is not enabled in A in the �rst state of � and an

a
tion in C o

urs in �. Let (x; a;x

0

) be the �rst dis
rete transition of Extend(A) in

� su
h that a 2 C. We show that the 
ondition x(�rst) � x(now ), whi
h has to hold

for the dis
rete transition to o

ur, 
annot be true, hen
e arrive at a 
ontradi
tion.

By Theorem 5.16, the set of traje
tories of Extend(A) is well-formed with respe
t

to C. Therefore, C 
an be
ome enabled by either a dis
rete transition or during a

traje
tory, and remains enabled until the o

urren
e of (x; a;x

0

).

(a) C be
omes enabled by a dis
rete transition and remains enabled in A until the

o

urren
e of (x; a;x

0

).

Let (y; b;y

0

) be the dis
rete transition of A that enables C. By item 3(
) in

the de�nition of D

0

we know that �rst is set to y(now ) + l when C be
omes

enabled. By item 3(b) in the de�nition of D

0

and 3(a) in the de�nition of T

0

, we

know that it remains 
onstant so that x(�rst) = y(now ) + l. Sin
e (x; a;x

0

) is

a dis
rete transition of Extend(A), it must be the 
ase that x(�rst) � x(now ).

Sin
e x(now ) � y(now ) + �:ltime and x(�rst) = y(now ) + l it follows that

y(now ) + l � y(now ) + �:ltime . But we know by assumption that �:ltime < l

whi
h gives the needed 
ontradi
tion.

(b) C be
omes enabled at some point in the 
ourse of a traje
tory � and remains

enabled in A until the o

urren
e of (x; a;x

0

).

Let y be a state in the range of � where C be
omes enabled. By item 3(
) in

the de�nition of T

0

we know that �rst is set to y(now ) + l when C be
omes

enabled and it remains 
onstant in � so that x(�rst) = y(now ) + l. By item

3(b) in the de�nition of D

0

and 3(a) in the de�nition of T

0

, we know that

�rst remains 
onstant until the o

uren
e of (x; a;x

0

). Sin
e (x; a;x

0

) is a

dis
rete transition of Extend(A), it must be the 
ase that x(�rst) � x(now ).

Sin
e x(now ) � y(now ) + �:ltime and x(�rst) = y(now ) + l it follows that

y(now ) + l � y(now ) + �:ltime . But we know by assumption that �:ltime < l

whi
h gives the needed 
ontradi
tion.
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Example 5.20 (Fis
her's mutual ex
lusion algorithm spe
i�ed using tasks and

bounds)

In Example 4.5 we presented the spe
i�
ation of Fis
her's mutual ex
lusion algorithm

as a TA. This example illustrates an alternative way of spe
ifying the same algorithm by

using a TA with bounds.

Re
all that, formally, we de�ne a TA with bounds as a TA augmented with a single

task along with lower and upper bounds for that task. The automaton in Figure 13 is,

however, augmented with a set of tasks and bounds. This is for notational 
onvenien
e

and the automaton in Figure 13 should be viewed as the automaton representing the


umulative result of adding in su

essive steps two tasks for ea
h i 2 I. We assume that

Extend is applied on
e for ea
h task. That is, we start with the timing-independent version

of Fis
herME, apply Extend to the automaton augmented with the task fset

i

g to add the

lower bound 0 and the upper bound u

set

, then apply Extend to the resulting automaton

augmented with f
he
k

i

g to add the lower bound l


he
k

and the upper bound 1. Su
h

two su

essive appli
ations are allowed sin
e the result of the �rst appli
ation of Extend

satis�es the the well-formedness 
onditions for the set of traje
tories.

The result of these su

essive appli
ations yields an automaton similar to the one in

Example 4.5. The only di�eren
e is that the me
hani
al appli
ation of the transformation

would reset the value of first
he
k[i℄ to 0 as an e�e
t of 
he
k

i

while we do not reset

first
he
k[i℄ expli
itly in 4.5, when it be
omes disabled. This is be
ause we make use

of the fa
ts that the value of first
he
k[i℄ is used only in determining whether 
he
k

i

is

enabled and that 
he
k

i

be
omes enabled only in the poststate of set

i

whi
h also sets the

value of first
he
k[i℄. Note that this dis
repen
y does not give rise to any di�eren
e in

the behaviors of the two automata.

5.4 Untiming

We de�ne an \untiming" operation that transforms a timed automaton to an untimed

automaton of the kind de�ned in Se
tion 2.5. The idea behind this operation is to redu
e

the state spa
e of a timed automaton by identifying those states that are equivalent in

the sense that they give rise to similar dis
rete behavior. The exe
utions of the untimed

automaton obtained as a result of applying the untiming operation to a TA, A, preserve

the order of dis
rete a
tions of A but forget the possible time passage between them. This

operation has its roots in a similar operation de�ned in [6, 4℄ but we do not deal with the

�niteness of the resulting state spa
e and ease of rea
hability analysis, as those papers do.

Instead, we aim to understand the main ideas of the untiming operation of [6, 4℄ using our

more general framework.

The untiming operation uses the notion of 
ongruen
e de�ned below to determine

equivalen
e 
lasses of states.
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Type P
V alue = enumeration rem; test; set; 
he
k; leavetry; 
rit; leaveexit

Automaton Fis
herME2(u

set

; l


he
k

; I) where u

set

2 R

�0

, l


he
k

2 R

�0

, u

set

� l


he
k

Variables X : dis
rete p
, an array of elements of P
V alue indexed by I

initially 8i 2 I: p
[i℄ = rem

dis
rete x 2 I [ f?g initially x =?

States Q : val(X)

A
tions A : external try

i

; 
rit

i

; exit

i

; rem

i

internal test

i

; set

i

; 
he
k

i

; reset

i

where i 2 I

Transitions D : external try

i

external 
rit

i

pre
ondition pre
ondition

p
[i℄ = rem p
[i℄ = leavetry

e�e
t e�e
t

p
[i℄ := test p
[i℄ := 
rit

internal test

i

external exit

i

pre
ondition pre
ondition

p
[i℄ = test p
[i℄ = 
rit

e�e
t e�e
t

if x =? then p
[i℄ := reset

p
[i℄ := set

internal set

i

internal reset

i

pre
ondition pre
ondition

p
[i℄ = set p
[i℄ = reset

e�e
t e�e
t

x := i x :=?

p
[i℄ := 
he
k p
[i℄ := leaveexit

internal 
he
k

i

external rem

i

pre
ondition pre
ondition

p
[i℄ = 
he
k p
[i℄ = leaveexit

e�e
t e�e
t

if x = i then p
[i℄ := rem

p
[i℄ := leavetry

else

p
[i℄ := test

Traje
tories T : f� 2 trajs(X ) j p
 andx 
onstant in �g

Tasks C : 8i 2 I: fset

i

g; f
he
k

i

g

Bounds B : 8i 2 I: lower(fset

i

g) = 0; upper(fset

i

g) = u

set

8i 2 I: lower(f
he
k

i

g) = l


he
k

; ; upper(f
he
k

i

g) =1

Figure 13: Fis
herME with bounds
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5.4.1 State Congruen
e

Let A = (X;Q;�; E;H;D;T ) be a TA. An equivalen
e relation R � Q�Q is a 
ongruen
e

for A if, for all a
tions a 2 (E [H) and traje
tories � 2 T the following hold:

1. If x R y and x 2 � then y 2 �.

2. If x R y and x

a

! x

0

then there exists a state y

0

su
h that y

a

! y

0

and x

0

R y

0

.

3. If x R y, and x

�

! x

0

then there exists a state y

0

and a traje
tory �

0

su
h that

y

�

0

! y

0

and x

0

R y

0

.

The relation R partitions Q into equivalen
e 
lasses. In the rest of this se
tion, we use [x℄

to denote the equivalen
e 
lass of x 2 Q, that is [x℄ = fy j x R yg.

5.4.2 De�nition of the Untiming Operation

Given a TA A = (X;Q;�; E;H;D;T ) and a 
ongruen
e R � Q�Q for A, the untiming

operation yields an untimed automaton Untime(A; R) = (Q

0

;�

0

; E

0

;H

0

;D

0

) where

� Q

0

= f[x℄ j x 2 Qg.

� �

0

= f[x℄ j x 2 �g.

� E

0

= E.

� H

0

= H [ f�g where � is a spe
ial a
tion representing time passage.

� D

0

� Q

0

�A

0

�Q

0

where A

0

�

= E

0

[H

0

su
h that

1. s

a

! s

0

2 D

0

if and only if there exists (x; a;x

0

) 2 D where [x℄ = s and [x

0

℄ = s

0

.

2. s

�

! s

0

2 D

0

if and only if there exists � 2 T where � is 
losed, [�:fstate ℄ = s

and [�:lstate ℄ = s

0

.

Example 5.21 (Untime(AD;R)) In this example we de�ne a 
ongruen
e for the automa-

ton AD from Example 4.19 and give the result of applying the untiming operation to

AD by using this 
ongruen
e. Let I be the set of intervals f(0; 1); (1;1)g. Let R be an

equivalen
e relation de�ned as follows. x R y if the following 
onditions hold:

1. x dX

d

= y dX

d

.

2. For every x 2 X




, either x(x);y(x) 2 J for some J 2 I or x(x) = y(x) = i for some

integer i.

73



a a

a

a a

b

d d




1 < y < x

s

2

s

0

x = y = 0

s

0

s

0

s

1

s

1

s

1

s

1

s

3

s

3

s

3

s

3

x = y � 1

0 � y < 1 � x

y = 1 < x

1 � y < x

0 � y < x < 1

0 � y < x < 1

0 � y < x = 1

0 � y < 1 < x

1 � y < x

0 < x = y < 1

� �

�

��

� �

�

�

��

�

�

�

� �

�

�

�

�

Figure 14: Untime(AD;R)

3. For every z; w 2 X




, x(z) > x(w) if and only if y(z) > y(w).

R is a 
ongruen
e for the automaton AD from Example 4.19. Figure 14 
ontains a

graphi
al representation of Untime(AD;R). Ea
h node in the graph represents a state

of Untime(AD;R), that is, an equivalen
e 
lass of states of AD with respe
t to R. The

annotations within the nodes are used to de�ne the equivalen
e 
lass. For example, a node

that is annotated with s

0

and x = y = 0 denotes the set of states fx 2 Q

AD

j x(lo
) =

s

0

;x(x) = 0; and x(y) = 0g.

5.4.3 Basi
 Results

In this se
tion we present some results that establish a 
orresponden
e between the exe-


utions of a TA and those of the 
orresponding untimed automaton.

The lemma below states that the tra
e of dis
rete events in an exe
ution fragment

of a timed automaton is also exhibited by some exe
ution fragment of the 
orresponding

untimed automaton.
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Lemma 5.22 Suppose A is a TA and R is a 
ongruen
e for A. If � is an exe
ution

fragment of A, then Untime(A; R) has an exe
ution fragment �

0

su
h that �

0

:fstate =

[�:fstate ℄ and tra
e(�

0

) = a
tions(tra
e(�)).

Proof: We 
onsider the following 
ases:

1. � is an in�nite sequen
e.

Using axioms T1 and T2 we 
an write � as an in�nite 
on
atenation �

0

_

�

1

_

� � �,

in whi
h ea
h exe
ution fragment �

i

is either a traje
tory with �

i

:ltime > 0 or a

single dis
rete a
tion surrounded by two point traje
tories, and for every i � 0,

�

i

:lstate = �

i+1

:fstate .

We de�ne a sequen
e �

0

0

�

0

1

� � � of exe
ution fragments of Untime(A; R) su
h that

(a) If �

i

is a traje
tory, then �

0

i

= (s; �; s

0

) where s = [�

i

:fstate ℄ and s

0

= [�

i

:lstate ℄

(re
all that we use [x℄ to denote the equivalen
e 
lass of x with respe
t to R).

(b) If �

i

is a single dis
rete a
tion a surrounded by two point traje
tories, then

�

0

i

= (s; a; s

0

) where s = [�

i

:fstate ℄; s

0

= [�

i

:lstate ℄.

It is immediate from the de�nition of Untime(A; R) in Se
tion 5.4.2 that ea
h �

0

i


onstru
ted above is an exe
ution fragment of Untime(A; R) and that �

0

:fstate =

[�:fstate ℄ . By de�nitions of 
on
atenation and exe
ution fragments for untimed

automata from Se
tion 2.5 we have that �

0

0

_

�

0

1

_

� � � is an exe
ution fragment

of Untime(A; R). By de�nitions of the operators tra
e for untimed automata from

Se
tion 2.5, and for timed automata from Se
tion 4, and dis
rete from Se
tion 3 we

have tra
e(�

0

) = a
tions(tra
e(�)), as needed.

2. � is a �nite sequen
e ending with a 
losed traje
tory.

Similar to the �rst 
ase.

3. � is a �nite sequen
e ending with an open traje
tory.

The sequen
e �

0


an be 
onstru
ted similarly to the �rst 
ase ex
ept for the last

traje
tory �

n

in �. Taking �

0

n

to be the empty sequen
e gives the required result.

Corollary 5.23 Suppose A is a TA and R is a 
ongruen
e for A. If � is an exe
ution of

A, then Untime(A; R) has an exe
ution �

0

su
h that tra
e(�

0

) = a
tions(tra
e(�)).

Proof: Let � be an exe
ution of A. We know by Lemma 5.22 that Untime(A; R) has an

exe
ution �

0

su
h that tra
e(�

0

) = a
tions(tra
e(�)) and �

0

:fstate = [�:fstate ℄. Sin
e � is

an exe
ution of A, �:fstate 2 Q

A

. Then by the de�nition in Se
tion 5.4.2, �

0

:fstate 2 �

0

and therefore �

0

is an exe
ution of Untime(A; R), as needed.
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The following lemma states that, for every exe
ution fragment � of Untime(A; R) and

for every state x that is in the equivalen
e 
lass respresented by the �rst state of �, it is

possible to derive an exe
ution fragment of A from x that exhibits the same dis
rete tra
e

as Untime(A; R).

Lemma 5.24 Suppose A is a TA and R is a 
ongruen
e for A. If � is an exe
ution

fragment of Untime(A; R) and x is a state of A su
h that [x℄ = �:fstate, then A has an

exe
ution fragment �

0

from x su
h that tra
e(�) = a
tions(tra
e(�

0

)).

Proof:

1. � is an in�nite sequen
e of the form s

0

a

1

s

1

a

2

s

2

: : :

The sequen
e � 
an be written as the 
on
atenation �

0

_

�

1

_

�

2

: : : of exe
u-

tion fragments (s

i

; a

i+1

; s

i+1

) for i � 0. We de�ne �

0

indu
tively as the 
on-


atenation �

0

0

_

�

0

1

_

�

0

2

: : : where [�

0

0

:fstate ℄ = �:fstate and for every i � 0,

�

0

i

:lstate = �

0

i+1

:fstate and [�

0

i

:lstate ℄ = s

i

as follows:

(a) �

0

0

= }(x). By axiom T0, �

0

0

is an exe
ution fragment of A. Sin
e �

0

0

:fstate = x

by 
onstru
tion of �

0

0

and [x℄ = �:fstate by de�nition of x, we have [�

0

0

:fstate ℄ =

�:fstate . Sin
e �

0

0

:lstate = x by 
onstru
tion of �

0

0

and [x℄ = �:fstate by

de�nition of x and �:fstate = s

0

by the assumed stru
ture of � we have

[�

0

0

:lstate ℄ = s

0

.

(b) For i � 1, if �

i�1

is (s

i�1

; a

i

; s

i

) where a

i

2 (A

0

n f�g), then de�ne �

0

i

to

be }(�

0

i�1

:lstate) a

i

}(y) where (�

0

i�1

:lstate ; a

i

;y) 2 D and [y℄ = s

i

. We

need to show that A has su
h an exe
ution fragment �

0

i

. For i � 1, 
on-

sider �

i�1

= (s

i�1

; a

i

; s

i

). By de�nition of Untime(A; R) in Se
tion 5.4.2,

there must be some (z; a

i

; z

0

) 2 D su
h that [z℄ = s

i�1

and [z

0

℄ = s

i

. By

indu
tive hypothesis [�

0

i�1

:lstate ℄ = s

i�1

. Sin
e [�

0

i�1

:lstate ℄ = s

i�1

= [z℄

we know by the de�nition of state 
ongruen
e in Se
tion 5.4.1 that there

exists y su
h that (�

0

i�1

:lstate ; a

i

;y) 2 D and [y℄ = [z

0

℄ = s

i

. Therefore,

�

0

i

= }(�

0

i�1

:lstate) a

i

}(y) is an exe
ution fragment of A where �

0

i

:fstate =

�

0

i�1

:lstate and [�

0

i

:lstate ℄ = s

i

.

(
) For i � 1, if �

i�1

is (s

i�1

; a

i

; s

i

) where a

i

is the � a
tion, then de�ne �

0

i

to be

� where � 2 T , �:fstate = �

0

i�1

:lstate and [�:lstate ℄ = s

i

. We need to show that

A has su
h an exe
ution fragment �

0

i

. For i � 1, 
onsider �

i�1

= (s

i�1

; a

i

; s

i

).

By de�nition of Untime(A; R) in Se
tion 5.4.2, there must be some traje
tory

�

0

su
h that �

0

is 
losed, [�

0

:fstate ℄ = s

i�1

and [�

0

:lstate ℄ = s

i

. By indu
tive

hypothesis [�

0

i�1

:lstate ℄ = s

i�1

. Sin
e [�

0

i�1

:lstate ℄ = s

i�1

= [�

0

:fstate ℄ we know

by the de�nition of state 
ongruen
e in Se
tion 5.4.1 that there exists � where

�:fstate = �

0

i�1

:lstate and [�:lstate ℄ = s

i

= [�

0

:lstate ℄. Therefore, �

0

i

= � is an

exe
ution fragment of A where �

0

i

:fstate = �

0

i�1

:lstate and [�

0

i

:lstate ℄ = s

i

.
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By 
onstru
tion of �

0

, we have �:fstate = [�

0

:fstate ℄. Sin
e �

0

i

:lstate = �

0

i+1

:fstate

for all i � 0, we know by Lemma 4.7 that �

0

= �

0

0

_

�

0

1

_

�

0

2

: : : is an exe
ution

fragment of A. It is easy to 
he
k that tra
e(�) = a
tions(tra
e(�

0

)).

2. � is a �nite sequen
e of the form s

0

a

1

s

1

a

2

s

2

: : : s

n

.

The proof is similar to the previous 
ase.

Corollary 5.25 Suppose A is a TA and R is a 
ongruen
e for A. If � is an exe
ution of

Untime(A; R), and x is a state of A su
h that [x℄ = �:fstate, then A has an exe
ution �

0

from x su
h that tra
e(�) = a
tions(tra
e(�

0

)).

Proof: Let � be an exe
ution of Untime(A; R) and x be a state of A su
h that [x℄ =

�:fstate . By Lemma 5.24, we know that A has an exe
ution fragment �

0

from x su
h that

tra
e(�) = a
tions(tra
e(�

0

)). Sin
e � is an exe
ution, �:fstate 2 �

0

. By the de�nition of

Untime(A; R) in Se
tion 5.4.2, we know that x 2 �, and therefore �

0

is an exe
ution of A,

as needed.

5.4.4 An Equivalen
e Relation for Alur-Dill Automata

In [6, 4℄ Alur and Dill present a region 
onstru
tion te
hnique that allows an in�nite state

spa
e to be redu
ed to a �nite state spa
e by using an equivalen
e relation on states.

Our untiming operation is based on a similar idea. It aims to redu
e the state spa
e by

identifying those states that exhibit \equivalent" behavior. Our operation, however, does

not use a �xed equivalen
e relation. Rather, it is parameterized by equivalen
e relations

that meet our 
ongruen
e 
riteria.

In this se
tion we formulate the equivalen
e relation of Alur and Dill presented in [6℄

in our framework and show that it is a 
ongruen
e for an AD automaton under a 
ertain

set of assumptions. Re
all that our de�nition of AD automata (see Se
tion 4.3.2) does

not impose any restri
tions on the form of 
lo
k 
onstraints. Adopting su
h a general

de�nition and seeking a minimal set of assumptions required for the proof allows us to

identify whi
h restri
tions were in
orporated into the model of Alur and Dill mainly to

ensure that the resulting region automata have a �nite state spa
e.

Let A = (X;Q;�; E;H;D;T ) be an AD timed automaton where X is partitioned into

two sets: X

d

of dis
rete variables and X




of 
lo
k variables. Let I be the set of intervals

and P be the set of points in the time domain T = R de�ned as follows:

I = f(t

1

; t

1

+ 1) j t

1

2 Ng.
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P = N.

Now, we de�ne an equivalen
e relation � over Q. In our de�nition we use the notation

fr(v) for the fra
tional part of a value v. Two states x;y 2 Q are related, written x � y,

if the following 
onditions hold:

1. x dX

d

= y dX

d

.

2. For every x 2 X




, either fx(x);y(x)g � J for some J 2 I or x(x) = y(x) = i for

some i 2 P .

3. For every z; w 2 X




, fr(x(z)) > fr(x(w)) if and only if fr(y(z)) > fr(y(w)).

The �rst property in the de�nition of � requires that a dis
rete variable have the

same value in two related states. The se
ond property involves 
lo
k variables. If a 
lo
k

variable has a value that falls between a pair of 
onse
utive integers, then its value must

be between the same integers in a related state. Likewise, if a 
lo
k variable has an integer

value, it must have the same value in a related state. The third property states that the

ordering of the fra
tional parts of di�erent 
lo
k variables must be the same a
ross related

states.

The following theorem states that the relation � de�ned above is a 
ongruen
e for an

AD automaton A if the same dis
rete a
tions 
anbe performed from two equivalent states

with the same e�e
t.

Theorem 5.26 Assume for an AD automaton A that whenever x � y for two states

x;y 2 Q, and x

a

! x

0

2 D, then there exists y

a

! y

0

2 D su
h that

� x

0

dX

d

= y

0

dX

d

.

� For every x 2 X




, x

0

(x) = 0 if and only if y

0

(x) = 0.

Then relation � is a 
ongruen
e for A.

Proof: We establish the three properties of 
ongruen
e de�ned in Se
tion 5.4.1 for the

relation �.

1. Suppose x � y and x 2 �. By de�nition of AD automata from Se
tion 4.3.2, if

x 2 � then for all x 2 X




, x(x) = 0. Sin
e x � y, for all x 2 C, we have y(x) = 0,

and x dX

d

= y dX

d

. It follows that x = y, and therefore y 2 � as needed.

2. Suppose x � y and x

a

! x

0

where a is a dis
rete a
tion. By assumption there exists

y

0

su
h that y

a

! y

0

. It remains to show that x

0

� y

0

. We do this by establishing

the three properties in the de�nition of �.
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(a) The �rst property is immediate from the assumptions.

(b) For the se
ond property, we are required to show that for all x 2 X




, either

x

0

(x) and y

0

(x) are in the same interval or have the same integer value. We �x

x and 
onsider two 
ases:

i. x

0

(x) = 0.

By assumption x

0

(x) = 0 if and only if y

0

(x) = 0. Clearly, x

0

(x) and y

0

(x)

have the same integer value 0.

ii. x

0

(x) 6= 0.

By de�nition of AD automata from Se
tion 4.3.2, x

0

(x) = x(x). Sin
e

x

0

(x) = 0 if and only if y

0

(x) = 0 by assumption, we have y

0

(x) 6= 0,

and by de�nition of AD automata we have y

0

(x) = y(x). Sin
e x � y by

hypothesis, y(x) and x(x) are in the same interval. Sin
e y

0

(x) = y(x) and

x(x) = x(x

0

), x

0

(x) and y

0

(x) are in the same interval, as needed.

(
) For the third property, we are required to show that for any z; w 2 C, the

ordering between the fra
tional parts of z and w in x

0

is preserved in y

0

. For a

�xed z and a �xed w 
onsider the following 
ases:

i. Neither z nor w is reset by a
tion a.

Then, x

0

(z) = x(z) and x

0

(w) = x(w). Sin
e x � y, we know that

fr(x(z)) > fr(x(w)) if and only if fr(y(z)) > fr(y(w)). It follows that

fr(x

0

(z)) > fr(x

0

(w)) if and only if fr(y

0

(z)) > fr(y

0

(w)), as needed.

ii. Both z and w are reset by a
tion a.

By assumption we have x

0

(z) = 0 if and only if y

0

(z) = 0 and x

0

(w) = 0

if and only if y

0

(w) = 0. Sin
e fr(x

0

(z)) = fr(x

0

(w)) = fr(y

0

(z)) =

fr(y

0

(w)) = 0, it is obvious that the ordering between the fra
tional parts

of the 
lo
ks in x

0

is preserved in y

0

.

iii. One of the 
lo
ks is reset by a
tion a.

Without loss of generality, let the 
lo
k that is reset be z. That is, x

0

(z) = 0

and x

0

(w) = x(w). Then, either fr(x

0

(w)) = 0 or fr(x

0

(w)) 6= 0. First,

suppose fr(x

0

(w)) = 0. Then, fr(x

0

(z)) = fr(x

0

(w)). Sin
e fr(x

0

(w)) = 0,

x

0

(w) = v for an integer v. By 
ase (b), we have y

0

(w) = v and hen
e

fr(y

0

(w)) = 0. It follows that fr(y

0

(x)) = fr(y

0

(w)). Now, suppose that

fr(x

0

(w)) 6= 0. Then fr(x

0

(z)) < fr(x

0

(w)). By assumption whi
h says

for all x 2 X




, x

0

(x) = 0 if and only if y

0

(x) = 0, we have y

0

(z) = 0. Sin
e

fr(x

0

(w)) 6= 0, by the same assumption we get y

0

(w) 6= 0. It follows that

fr(y

0

(z)) < fr(y

0

(w)). Hen
e, we have shown that the ordering between

the fra
tional parts of the 
lo
ks in x

0

is preserved in y

0

.

3. Suppose x � y and x

�

! x

0

where � is a traje
tory. We need to show that we 
an

�nd traje
tory �

0

su
h that x

0

� y

0

where y

0

(x) = y(x)+ �

0

:ltime for all x 2 X




. We

do this by establishing the three properties in the de�nition of �.

(a) The �rst property is immediate from the assumption.
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(b) For the se
ond property, we are required to show that for all x 2 X




, either

x

0

(x) and y

0

(x) are in the same interval or have the same integer value. We


onsider the following 
ases:

i. Zero time passage (�:ltime = 0).

Clearly, �

0

with �

0

:ltime = 0 results in y

0

= y. Sin
e x � y by hypothesis,

we have x

0

� y

0

, as needed.

ii. �:ltime > 0 and � does not make any 
lo
k rea
h an integer boundary.

A. Some 
lo
ks remain in the same interval.

Let Cross be the set of 
lo
ks that 
rossed to a new interval and let

NotCross be the set of 
lo
ks that did not 
ross to a new interval. We

need to make sure that �

0

that we 
hoose makes all elements of Cross


ross to a new interval in y

0

and all elements of NotCross remain in the

same interval, while preserving the ordering of fra
tional parts of 
lo
k

values a
ross two equivalent states. Consider the set ft � y(z) j z 2

Cross ;x

0

(z) 2 (t; t+1)g and de�ne m to the maximum element of this

set if it is non-empty and to be 0 if it is empty. Now, 
onsider the set

f(t+ 1) � y(w) j w 2 NotCross ;x(w);x

0

(w) 2 (t; t + 1)g and de�ne n

to be minimum element of this set. It is easy to 
he
k that for any �

0

su
h that m < �

0

:ltime < n, property 2 holds for x

0

and y

0

.

B. All 
lo
ks 
ross to a new interval.

Let m;n 2 T be respe
tively, the maximum and minimum elements

of the set ft � y(x) j x

0

(x) 2 (t; t + 1)g. Taking �

0

su
h that m <

�

0

:ltime < n+ 1 gives the required result.

iii. �:ltime > 0 and � makes some 
lo
ks rea
h an integer boundary.

Let Rea
h be the set of 
lo
ks that rea
hed an integer boundary. Observe

that for any two elements z and w of Rea
h it must be the 
ase that

fr(x(z)) = fr(x(w)). Now, take some x 2 Rea
h and let m = (t � y(x))

where t = x

0

(x). Any �

0

su
h that �

0

:ltime = m gives us the required

result. It is 
lear that su
h a �

0

makes all the 
lo
ks in Rea
h rea
h an

integer boundary. For any z 2 Rea
h and any 
lo
k w that has not rea
hed

an integer boundary in x

0

, it must be the 
ase that fr(x(z)) > fr(x(w)).

By hypothesis and the third property of �, we also know that fr(y(z)) >

fr(y(w)). It follows that w does not rea
h an integer boundary in y

0

,

as required. In the 
ase where w is a 
lo
k that has 
rossed an integer

boundary in x

0

, we observe that fr(x(z)) < fr(x(w)) holds and 
on
lude

that the �

0

we have 
hosen makes w 
ross the same integer boundary in y

0

.

(
) For the third property, we need to show that the �

0

we de�ned for ea
h 
ase

above, ensures that the ordering between the fra
tional parts of the 
lo
ks in

x

0

is preserved in y

0

.

By property 2, whi
h we have established for x

0

and y

0

, we know that, for any

x 2 X




if � leads to x

0

(x) 2 J then �

0

has the same e�e
t on y su
h that
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y

0

(x) 2 J . Similarly, if � makes a 
lo
k 
ross rea
h an integer boundary in the

evolution from x to x

0

, that is x

0

(x) = t then �

0

yields y

0

(x) = t. Sin
e x � y,

by property 3, we also know that the ordering between the fra
tional parts of


lo
ks in x and y are the same. We know that in �

0

all the 
lo
ks in
rease by

the same amount. It follows that the ordering between the fra
tional parts of


lo
ks is the same in x

0

and y

0

are the same.

6 Properties for Timed Automata

In this se
tion, we de�ne what we mean by a property for a timed automaton, des
ribe

some types of properties that are typi
ally spe
i�ed and proved for systems, and state

some results about 
omposition of automata with properties.

6.1 De�nitions and Basi
 Results

A property P for a timed automaton A is de�ned to be any subset of the exe
ution

fragments of A. We write exe
s

(A;P )

for the set of exe
utions of A in P , tra
es

(A;P )

for the

set of tra
es of exe
utions of A in P , and tra
efrags

(A;P )

for the set of tra
es of exe
ution

fragments of A in P .

6.1.1 Safety and Liveness Properties

[[Nan
y: We should ask Frits and Roberto to 
onsider/approve the 
hanged

dis
ussion of safety and liveness properties, and other signi�
ant 
hanges we

are making near the end of the paper.℄℄

A property P for a TA A is said to be a safety property if it is 
losed under pre�x and

limits of exe
ution fragments. In other words, if an exe
ution fragment satis�es a safety

property P , then so do all its pre�xes, and if all the exe
utions in a \
hain" of su

essive

extensions satisfy P , then so does the \limit" of the 
hain. Safety properties represent

requirements that should be maintained by the system throughout its exe
ution.

We say that an automaton A satis�es a safety property S if every exe
ution of A is in

S. Typi
ally, the satisfa
tion of a safety property by an automaton is proved by indu
tion.

One shows that the property holds in any trivial exe
ution fragment 
onsisting of a point

traje
tory and that it is preserved by dis
rete steps and traje
tories of the automaton.

A property P for A is de�ned to be a liveness property provided that for any 
losed

exe
ution fragment � of A, there exists an exe
ution fragment � su
h that �

_

� 2 P . In
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other words, no matter how A behaves for a �nite period of time, it is still possible for it

to 
ontinue in some way and satisfy P .

We say that an automaton A satis�es a liveness property L if every \maximal" exe
u-

tion of A (an exe
ution � su
h that there exists no exe
ution of whi
h � is a proper pre�x)

is in L. Typi
ally, the proof of the satisfa
tion of a liveness property by an automaton

involves the use of proof rules of a temporal logi
, or progress fun
tions from states to a

well-founded set that measure the distan
e from the desired goal.

These de�nitions of safety and liveness are analogous to those 
onsidered for untimed

systems in [3, 8, 10℄, and have also been adopted in the few models for timed systems that

have addressed the 
lassi�
ation of properties as safety and liveness properties [36, 1℄. In

order to support the de�nitions for our model we establish the following results, stated

formally in Theorems 6.1 and 6.4: (1) The 
lasses of safety and liveness properties are

disjoint, (2) Every property 
an be expressed as the interse
tion of a safety and a liveness

property.

The following theorem states that no property of a timed automaton 
an be both a

safety and a liveness property, ex
ept for the spe
ial 
ase where the property 
onsists of

all the exe
ution fragments of the automaton.

Theorem 6.1 Let A be a TA. If P is both a safety property and a liveness property for

A, then P = frags

A

.

Proof: Suppose that P is both a safety and a liveness property for A and let � be any

exe
ution fragment of A. We show � 2 P . Now 
onsider the following 
ases:

1. � is a 
losed exe
ution fragment.

Then, sin
e P is a liveness property, there exists � su
h that �

_

� 2 P . Sin
e P is

also a safety property and is pre�x-
losed by de�nition, it must be that � 2 P .

2. � is an in�nite sequen
e or a �nite sequen
e ending with a right-open traje
tory.

Then, � 
an be expressed as the limit of a 
hain of 
losed exe
ution fragments

�

0

�

1

�

2

: : :. In 
ase (1) we have established that for all i � 0, �

i

2 P . Sin
e P is a

safety property, the limit of this 
hain, whi
h is �, must be in P .

Cases (1) and (2) together imply that P = frags

A

.

Let A be a TA and P be a property for A. We de�ne safe(P) to be the pre�x- and

limit-
losure of the property P .

Lemma 6.2 Let A be a TA. For any property P for A, safe(P) is a safety property for

A.
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Proof: Immediate from the de�nitions of safe(P) and of a safety property.

Lemma 6.3 Let A be a TA and P be a property for A. If � is a 
losed exe
ution fragment

and � 2 safe(P) then � is a pre�x of some element in P .

The following theorem states that any property for an automaton 
an be expressed as

the interse
tion of a safety and a liveness property for that automaton.

Theorem 6.4 Let A be a TA. If P is a property for A, then there exists a safety property

S and a liveness property L for A su
h that P = S \ L.

Proof: Let S = safe(P ). By Lemma 6.2, we know that S is a safety property for A.

Let L = P [ f� j � 2 frags

A

; � is 
losed and no exe
ution fragment of the form�

_

� is inPg. We now show that L is a liveness property. Let � be a 
losed exe
ution

fragment of A. If there exists some exe
ution fragment � of A su
h that �

_

� 2 P , then

�

_

� 2 L be
ause P � L. On the other hand, if there is no exe
ution fragment � su
h

that �

_

� 2 P , then � is expli
itly de�ned to be in L. Hen
e, we have shown that any


losed exe
ution fragment of A has an extension in L as needed.

In order to 
on
lude P = S \L, we need to show that P � S \L and that S \L � P .

P � S \ L is immediate from the de�nitions of S and L. We now show that S \ L � P .

Let � be an exe
ution fragment in S \ L and suppose for the sake of 
ontradi
tion that

� =2 P . Sin
e � 2 L � P , by de�nition of L, � is 
losed and there exists no exe
ution

fragment � su
h that �

_

� 2 P . Sin
e � 2 S and � is 
losed, by Lemma 6.3, � must be

a pre�x of an exe
ution fragment in P . This gives the needed 
ontradi
tion.

6.1.2 Ma
hine-
losure

Consider a safety property S and a liveness property L for an automaton A. It is in

general desirable that L does not itself impose safety 
onstraints, beyond those already

imposed by S. To a
hieve this, L should be de�ned so that every 
losed exe
ution in S


an be extended to some exe
ution that is in both S and L. The notion of ma
hine-
losure

is used to formalize this 
ondition. The pair of properties (S,L) is de�ned to be ma
hine-


losed provided that, for every 
losed exe
ution fragment � 2 S, there exists � su
h that

�

_

� 2 S \ L.

Example 6.5 (A non-ma
hine-
losed pair of properties) Consider the timing-

independent TA A, given in Figure 15, whose set of state variables 
onsists of a single

dis
rete variable 
ountb, and whose set of traje
tories is exa
tly the set of 
onstant-valued

fun
tions over left-
losed time intervals with left endpoint 0. The automaton A 
an per-
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Automaton A

Variables X : dis
rete 
ountb 2 Z initially 0

States Q : val(X)

A
tions A : external a; b

Transitions D : external a

pre
ondition


ountb = 0

external b

e�e
t


ountb := 
ountb + 1

Traje
tories T : satis�es


onstant(
ountb)

Figure 15: Ma
hine 
losure

form b any time and it 
an perform a provided that it has not performed b. Now, 
onsider

the liveness property L for A that 
onsists of all the exe
utions with in�nitely many dis-


rete a
tions and the safety property S for A that 
onsists of all the exe
utions 
ontaining

at most one b event. Then, sin
e b disables all future as, the interse
tion of L and S


ontains all the exe
utions of A with in�nitely many a events and no b events.

Now, 
onsider a 
losed exe
ution � in S whose last a
tion is b. This implies that �

has no extension that 
ontains an a, sin
e by assumption the o

urren
e of b disables a.

The only way of extending � to an exe
ution �

_

�

0

that 
ontains in�nitely many dis
rete

a
tions is to perform in�nitely many bs, but this would yield an exe
ution �

_

�

0

in L�S.

Hen
e, the pair (S;L) is not ma
hine-
losed.

The above example illustrates that if a pair of safety and liveness properties for an

automaton is not ma
hine-
losed, then the automaton may exhibit an anomaly. Namely,

after some pre�xes, the automaton may not be able to meet its liveness requirement

without violating its safety requirement. This phenomenon has been observed in several

studies on the 
lassi�
ation of properties for untimed systems, in
luding those by Dederi
hs

and Weber [10℄, and Abadi and Lamport [1℄. These studies suggest that the problem lies

in de�ning the intended safety and liveness properties independently from one another.

If the above-mentioned anomaly is to be avoided, a pair of safety and liveness properties

need to be de�ned so that the pair is ma
hine-
losed.

The following theorem states that a pair of a safety and a liveness property for an

automaton is ma
hine-
losed if the liveness property is de�ned as a subset of the safety

property.

84



Theorem 6.6 Let A be a TA, S be a safety property and L be a liveness property for A

su
h that L � S. Then the pair (S;L) is ma
hine-
losed.

Proof: Let � be a 
losed exe
ution fragment in S. Sin
e L is a liveness property for A,

there exists � su
h that �

_

� 2 L. Sin
e L � S, we have that �

_

� 2 S \ L. Thus,

(S;L) is ma
hine-
losed.

The fa
t that two properties are ma
hine-
losed 
an be formalized by using other


onditions equivalent to those we used in our formal de�nition above. The �rst property

in the following theorem states that a pair (S;L) is ma
hine 
losed if S is the same as

the pre�x and limit 
losure of the interse
tion of S and L. The se
ond property states

that if the interse
tion of S and L is 
ontained in a safety property, it must be the 
ase

that S itself is 
ontained in the same safety property. That is, L does not add new safety


onstraints to those already de�ned by S.

Theorem 6.7 Let S be a safety property and L be a liveness property for an automaton

A. The pair (S;L) is ma
hine 
losed i� either of the following holds:

1. S = safe(S \ L).

2. If S

0

is a safety property and S \ L � S

0

then S � S

0

.

Proof: We show the following three impli
ations: (1) if (S;L) is ma
hine-
losed then

S = safe(S \ L), (2) if S = safe(S \ L), then for any safety property S

0

, S\L � S

0

implies

S � S

0

, and (3) if for every safety property S

0

, S \ L � S

0

implies S � S

0

, then (S;L) is

ma
hine-
losed.

1. Suppose (S;L) is ma
hine-
losed. In order to show that S = safe(S \ L), we need

to establish S � safe(S \ L) and safe(S \ L) � S. To establish S � safe(S \ L) we

take some � 2 S and 
onsider the following two 
ases:

(a) � is a 
losed exe
ution fragment.

By the ma
hine-
losure assumption there exists � su
h that �

_

� 2 S \ L.

Sin
e safe(S \ L) 
ontains all the pre�xes of elements of S\L, � 2 safe(S \ L),

as needed.

(b) � is an in�nite sequen
e or a �nite sequen
e ending with a right-open traje
tory.

Then � must be the limit of a 
hain of 
losed exe
ution fragments �

0

�

1

� � � in

S. Sin
e S is a safety property, every pre�x of � is in S. Therefore for ea
h i,

we have �

i

2 S. By 
ase (a), for ea
h ea
h i, �

i

2 safe(S \ L). By de�nition of

safe(S \ L) the limit � is also in safe(S \ L), as needed.

To show safe(S \ L) � S, take some � 2 safe(S \ L). We 
onsider two 
ases:
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(a) � is a 
losed exe
ution fragment.

Then, by Lemma 6.3, � is a pre�x of some element in S \ L. That is to say,

�

_

� 2 (S \ L) for some � and it follows that �

_

� 2 S. Sin
e S is a safety

property we have � 2 S, as needed.

(b) � is an in�nite sequen
e or a �nite sequen
e ending with a right-open traje
tory.

Then � must be the limit of a 
hain of 
losed exe
ution fragments �

0

�

1

� � � in

safe(S\L). We have established in 
ase (a) that ea
h 
losed exe
ution fragment

�

i

is in S. Sin
e S is a safety property, the limit � must also be in S, as needed.

2. Suppose S = safe(S \ L). Let S

0

be a safety property su
h that S \ L � S

0

. Let

� 2 S and show that � 2 S

0

.

(a) � is a 
losed exe
ution fragment.

Sin
e S = safe(S \ L) by assumption, � 2 safe(S \ L), and sin
e � is 
losed,

by Lemma 6.3, � is a pre�x of some element in S \ L. Sin
e (S \ L) � S

0

we

have that � is a pre�x of some element of S

0

. Sin
e S

0

is a safety property,

� 2 S

0

.

(b) � is an in�nite sequen
e or a �nite sequen
e ending with a right-open traje
tory.

Then � must be the limit of a 
hain of 
losed exe
ution fragments �

0

�

1

� � �

in safe(S \ L). We have established in 
ase (a) that ea
h 
losed exe
ution

fragment �

i

is in S

0

. Sin
e S

0

is a safety property, the limit � must also be in

S

0

, as needed.

3. Suppose that for every safety property S

0

, S\L � S

0

implies S � S

0

. We must show

that for every 
losed exe
ution fragment � 2 S, there exists � su
h that �

_

� 2 S\L.

Let � be a 
losed exe
ution fragment in S. By Lemma 6.2 we have that safe(S \ L)

is a safety property. Sin
e S \ L � safe(S \ L), by assumption S � safe(S \ L).

Sin
e � 2 S, we have that � 2 safe(S \ L). Sin
e � is 
losed, by Lemma 6.3, � is a

pre�x of some element of S\L. That is to say, there exists � su
h that �

_

� 2 S\L,

as needed.

6.1.3 Spe
ial kinds of properties

Fairness properties: Proving interesting liveness properties requires some assump-

tions saying that 
ertain a
tivities in a 
on
urrent system get \enough" 
han
es to make

progress. Fairness properties are spe
ial kinds of liveness properties that express su
h

assumptions. We de�ne two types of fairness: weak fairness and strong fairness.

Let A be a TA and let C be a subset of the a
tions of A. Let � be an exe
ution

fragment of A. Then:
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1. � is weakly fair for C if (at least) one of the following 
onditions holds:

(a) � 
ontains in�nitely many events from C.

(b) There is no suÆx � of � su
h that C is enabled in all states of �.

2. � is strongly fair for C if (at least) one of the following 
onditions holds:

(a) � 
ontains in�nitely many events from C.

(b) There is some suÆx � of � su
h that C is disabled in all states of �.

Consider a �nite exe
ution fragment �. If � ends with a 
losed traje
tory, the de�nition

above says that for � to be weakly fair or strongly fair for C, C must be disabled in �:lstate .

On the other hand, if � ends with a right-open traje
tory, � is weakly fair provided that

there are state o

urren
es with C disabled, at times arbitrarily 
lose to �:ltime and � is

strongly fair provided that C is 
ontinuously disabled from some point on in �.

Theorem 6.8 Let A be a TA, C a subset of a
tions of A and � be an exe
ution fragment

of A. If � is strongly fair for C then � is weakly fair for C.

Proof: Follows from the de�nitions of strong and weak fairness.

Theorem 6.9 For any timed automaton A and any subset C of its a
tions, the set of

strongly fair exe
ution fragments for C is a liveness property for A.

Proof: Fix A a TA, C a subset of the a
tions of A and let � be a 
losed exe
ution

fragment of A. We are required to show that for some �, �

_

� is strongly fair for C.

Constru
t an exe
ution fragment � = �

0

_

�

1

_

� � � as follows:

� �

0

= }(�:lstate),

� For ea
h i � 1, if there exists (�

i�1

:lstate ; b;y) 2 D

A

for some b 2 C and some

y 2 Q

A

, then 
hoose some su
h b and y and de�ne �

i

= }(�

i�1

:lstate) b }(y);

otherwise, i� 1 is the �nal index in the sequen
e.

It follows that, if � is a �nite sequen
e then C is disabled in its last state. Therefore,

for some suÆx of �, C is disabled in all states and �

_

� is strongly fair with respe
t to

C. On the other hand, if � is an in�nite sequen
e then �

_

� has in�nitely many events

from C, as needed.

Corollary 6.10 For any timed automaton A and any subset C of its a
tions, the set of

weakly fair exe
ution fragments for C is a liveness property for A.

Proof: Follows from Theorem 6.8 and Theorem 6.9.
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Admissibility: Admissibility is another notion that is fundamental to any useful formal

model for timed systems. It is hard to think about exe
utions su
h as those that arise from

Zeno behavior, yet they make formal sense. Admissibility 
onditions help one to avoid


onsidering su
h exe
utions in reasoning about properties. The formal de�nition of admis-

sibility is given in 3.4.1. Formally, an exe
ution fragment � is admissible if �:ltime =1.

Theorem 6.11 A timed automaton A is feasible if and only if its set of admissible exe-


ution fragments is a liveness property for A.

Proof: Immediate from the de�nitions of feasibility and liveness property.

History-independen
e: History-independen
e is an important 
hara
teristi
 of prop-

erties that simpli�es the analysis of the behavior of an automaton. A property P of a

timed automaton A is said to be history-independent provided that the following holds:

For every exe
ution fragment �, if �

0

is a suÆx of �, then � 2 P if and only if �

0

2 P .

In other words, whether or not � satis�es P is determined only by what happens in its

suÆxes|it is not a�e
ted by what happens in any initial portion of �. If a property P

is known to be history-independent, then one 
an prove that an exe
ution fragment �

satis�es P by 
onsidering the portion of � from some point onward.

The liveness properties that are typi
ally used are history-independent. Fairness

and admissibility properties de�ned earlier in the se
tion 
onstitute examples of history-

independent properties, as shown in the following theorems.

Theorem 6.12 For any timed automaton A, and any subset C of its a
tions, the set of

weakly fair exe
ution fragments for C is history-independent.

Proof: Fix A a TA, C a subset of a
tions of A and let � = �

0 _

�

00

with �

0

:lstate =

�

00

:fstate be an exe
ution fragment of A.

First, suppose that � is weakly fair for C. We are required to show that �

00

is also

weakly fair with respe
t to C. By de�nition of weak fairness, either � 
ontains in�nitely

many events from C, or it has no suÆx in whi
h C is enabled in all states. Sin
e �

00

is a

suÆx of �, in either 
ase we 
on
lude that �

00

is weakly fair with respe
t to C by using

the de�nition of weak fairness.

Now, suppose that �

00

is weakly fair for C. We are required to show that � is also

weakly fair with respe
t to C. Similar to the 
ase above, this is easy to show by using the

de�nition of weak fairness and the fa
t that �

00

is a suÆx of �.

Theorem 6.13 For any timed automaton A, and a subset C of its a
tions, the set of

strongly fair exe
ution fragments for C is history-independent.

88



Theorem 6.14 For any timed automaton A, the set of admissible exe
ution fragments is

history-independent.

6.2 Implementation Relationships

We de�ne another preorder for automata with properties:

� (A

1

; P

1

) � (A

2

; P

2

) provided that tra
es

(A

1

;P

1

)

� tra
es

(A

2

;P

2

)

.

If P

1

is a liveness property for a TA A

1

and P

2

is any property for a TA A

2

, and

(A

1

; P

1

) and (A

2

; P

2

) are related by the preorder de�ned above, then every 
losed tra
e

of A

1

is also a tra
e of A

2

. This is shown in the following theorem.

Theorem 6.15 Suppose that P

1

is a liveness property for A

1

and P

2

is any property for

A

2

. If (A

1

; P

1

) � (A

2

; P

2

) then every 
losed tra
e of A

1

is a tra
e of A

2

.

Proof: Assume (A

1

; P

1

) � (A

2

; P

2

) and let � be a 
losed tra
e of A

1

. Let � be a 
losed

exe
ution of A

1

with tra
e(�) = �. Sin
e P

1

is a liveness property of A

1

, there exists an

exe
ution fragment �

0

of A

1

su
h that �

_

�

0

2 P

1

.

Let �

0

= tra
e(�

_

�

0

); then 
learly �

0

2 tra
es

(A

1

;P

1

)

. Then be
ause (A

1

; P

1

) �

(A

2

; P

2

), we have that �

0

2 tra
es

(A

2

;P

2

)

. Sin
e � is a pre�x of �

0

and the set of tra
es of

A

2

is pre�x-
losed, it follows that � is a tra
e of A

2

, as needed.

6.3 Simulation Relations

As we have seen in Se
tion 4.5, simulation relations provide a useful tool for reasoning

about implementation relationships between automata at multiple levels of abstra
tion.

The existen
e of a forward or a ba
kward simulation relation, or a history or a prophe
y

relation, from one timed automaton A to another, B, is suÆ
ient to establish that ea
h

tra
e of A is also a tra
e of B.

For any TA A the set of all exe
ution fragments of A, frags

A

, 
onstitutes a safety

property. This follows from the de�nition of a safety property in Se
tion 6.1.1 by using

the fa
t that frags

A

is pre�x and limit 
losed. Suppose we de�ne a safety property S

1

for an automaton A to be frags

A

and a safety property S

2

for an automaton B to be

frags

B

. The existen
e of a forward simulation relation from A to B would imply that

for any exe
ution � 2 S

1

, there is an exe
ution � 2 S

2

su
h that tra
e(�) = tra
e(�).

However, the same impli
ation does not in general hold, if we repla
e safety properties S

1

and S

2

with arbitrary liveness properties L

1

� S

1

and L

2

� S

2

for A and B, respe
tively.

In [9℄ Attie adresses this issue in an untimed setting and proposes several notions of

\liveness-preserving" simulation relations. The liveness properties that he 
onsiders are
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of a spe
ial form that are analogous to the a

eptan
e 
ondition of a 
omplemented-pairs

automaton [7℄.

In the two theorems below, we 
onsider the spe
ial 
lasses of weak and strong fairness

properties and state some extra 
onstraints on forward simulation relations. The existen
e

of a forward simulation relation from an automaton A to another B that satis�es these

additional 
onstraints allows us to 
on
lude that the tra
e of ea
h fair exe
ution of A

is also a tra
e of a fair exe
ution of B. The 
onstraints that we impose on the forward

simulation relation for dis
rete steps turn out to be spe
ial 
ases of Attie's 
onstraints[9℄.

Let A and B be 
omparable TAs. Let C

A

be a set of a
tions of A and C

B

be a set

of a
tions of B. A fair forward simulation from A to B with respe
t to C

A

and C

B

is a

relation R � Q

A

�Q

B

satisfying the following 
onditions, for all states x

A

and x

B

of A

and B, respe
tively:

1. If x

A

2 �

A

then there exists a state x

B

2 �

B

su
h that x

A

R x

B

. Moreover, if C

A

is disabled in x

A

, then C

B

is disabled in x

B

.

2. If x

A

R x

B

and � is an exe
ution fragment of A 
onsisting of an a
tion a surrounded

by two point traje
tories, with �:fstate = x

A

, then B has a 
losed exe
ution fragment

� su
h that �:fstate = x

B

, tra
e(�) = tra
e(�), and �:lstate R �:lstate . Moreover,

(a) If a 2 C

A

then � 
ontains some event in C

B

.

(b) If C

A

is disabled in �:lstate then

i. If � = }(x

B

) then C

B

is disabled in x

B

.

ii. If � 6= }(x

B

) then C

B

is disabled in all states in � ex
ept possibly in x

B

.

3. If x

A

R x

B

and � is an exe
ution fragment of A 
onsisting of a single 
losed tra-

je
tory, with �:fstate = x

A

, then B has a 
losed exe
ution fragment � su
h that

�:fstate = x

B

, tra
e(�) = tra
e(�), and �:lstate R �:lstate . Moreover,

(a) If �:ltime = 0 and C

A

is disabled in x

A

then C

B

is disabled in all states in �.

(b) If �:ltime > 0 then for all t su
h that 0 < t � �:ltime , if C

A

is disabled in

�(t) then for ea
h 
losed pre�x �

0

of � su
h that �

0

:ltime = t, C

B

is disabled in

�

0

:lstate .

We say that R is a fair forward simulation from A to B, without mentioning C

A

and

C

B

expli
itly, when those sets are 
lear from the 
ontext.

Now, we de�ne a 
onstru
tion that, given two automata A and B, two sets of a
tions

C

A

and C

B

, a fair forward simulation R from A to B, and an exe
ution � of A, generates

an exe
ution � of B by using the de�nition of a fair forward simulation.

Let A and B be two TAs, C

A

and C

B

be sets of a
tions for A and B, respe
tively,

and R be a fair forward simulation from A to B with respe
t to C

A

and C

B

. Let � be an

exe
ution of A. The 
onstru
tion 
onsists of the following steps:
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1. Using axiomsT1 andT2, write � as a 
on
atenation �

0

_

�

1

_

�

2

� � � (�

0

_

�

1

_

� � �

_

�

n

if � is a �nite sequen
e ending with a 
losed traje
tory), in whi
h ea
h exe
ution

fragment �

i


onsists of either a single 
losed traje
tory or one a
tion surrounded by

two point traje
tories. Without loss of generality, we 
an assume that for ea
h i � 0,

�

i

:lstate = �

i+1

:fstate :

2. De�ne indu
tively a sequen
e �

0

�

1

: : : of 
losed exe
ution fragments of B, su
h that

�

0

:fstate = x

B

for some x

B

2 �

B

and, for ea
h i, �

i

:lstate R �

i

:lstate , �

i

:lstate =

�

i+1

:fstate , and tra
e(�

i

) = tra
e(�

i

). We use Properties 1 and 3 of a fair forward

simulation in the 
onstru
tion of �

0

, Property 2 in the 
onstru
tion of �

i


onsisting of

one a
tion surrounded by two point traje
tories, and Property 3 in the 
onstru
tion

of �

i


onsisting of a single 
losed traje
tory.

3. Let � be the 
on
atenation �

0

_

�

1

_

� � �.

For su
h �, we say that � 
orresponds to � with respe
t to R;C

A

and C

B

. When

R;C

A

and C

B

are 
lear from the 
ontext, we do not state their names expli
itly.

Lemma 6.16 Let A and B be two TAs, C

A

and C

B

be sets of a
tions for A and B,

respe
tively, and R be a fair forward simulation from A to B with respe
t to C

A

and C

B

.

Let � be an exe
ution of A and � be an exe
ution of B that 
orresponds to �. Suppose

that � is expressed as �

0

_

�

1

_

� � � and � is expressed as �

0

_

�

1

_

� � � in the 
onstru
tion

of �. Then, � satis�es the following properties:

1. If C

A

is disabled in �

0

:fstate, then C

B

is disabled in �

0

:fstate.

2. For ea
h �

i

of the form }(x

A

) a }(x

0

A

) let x

B

= �

i

:fstate. Then,

� If a 2 C

A

then �

i


ontains some event in C

B

.

� If C

A

is disabled in x

0

A

then

� If �

i

= }(x

B

) then C

B

is disabled in x

B

.

� If �

i

6= }(x

B

) then C

B

is disabled in all states in �

i

ex
ept possibly in x

B

.

3. For ea
h �

i


onsisting of a single 
losed traje
tory:

� If �

i

:ltime = 0 and C

A

is disabled in �

i

:fstate then C

B

is disabled in all states

in �

i

.

� If �

i

:ltime > 0 then for all t su
h that 0 < t � �

i

:ltime, if C

A

is disabled in

�

i

(t) then for ea
h 
losed pre�x �

0

i

of �

i

su
h that �

0

i

:ltime = t, C

B

is disabled

in �

0

i

:lstate.

4. � is an exe
ution of B su
h that tra
e(�) = tra
e(�).
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Proof: Properties 1, 2 and 3 follow from the 
onstru
tion of � and the de�nition of a

fair forward simulation relation. We show property 4 as follows. By Lemma 4.7, � is an

exe
ution fragment of B. By the 
onstru
tion of �, �

0

:fstate = x

B

for some x

B

2 �

B

.

Therefore, that � is an exe
ution of B. By Lemma 3.9 applied to both � and �, tra
e(�) =

tra
e(�).

Lemma 6.17 Let A and B be two TAs, C

A

and C

B

be sets of a
tions for A and B,

respe
tively, and R be a fair forward simulation from A to B with respe
t to C

A

and C

B

.

Let � be an exe
ution of A, and let � be an exe
ution of B that 
orresponds to A. Then,

if � 
ontains in�nitely many events from C

A

it must be the 
ase that � 
ontains in�nitely

many events from C

B

.

Proof: We know that, in the 
onstru
tion of �, � is expressed as �

0

_

�

1

_

� � � in

whi
h ea
h exe
ution fragment �

i


onsists of either a single 
losed traje
tory or one a
tion

surrounded by two point traje
tories, and � is expressed as �

0

_

�

1

_

� � �. Suppose that �


ontains in�nitely many events from C

A

. By property 2 of Lemma 6.16 in the 
onstru
tion

of �, we have that for ea
h �

i


onsisting of one a
tion surrounded by two point traje
tories,

if �

i


ontains a C

A

event, then �

i


ontains a C

B

event. Sin
e there are in�nitely many C

A

events in �, there must be in�nitely many C

B

events in �, as needed.

Lemma 6.18 Let A and B be two TAs, C

A

and C

B

be sets of a
tions for A and B,

respe
tively, and R be a fair forward simulation from A to B with respe
t to C

A

and C

B

.

Let � be an exe
ution of A that is a �nite sequen
e ending with a 
losed traje
tory, and let

� be an exe
ution of A that 
orresponds to �. Then, if C

A

is disabled in �:lstate it must

be the 
ase that C

B

is disabled in �:lstate.

Proof: We know that, in the 
onstru
tion of �, � is expressed as �

0

_

�

1

_

� � �

_

�

n

in

whi
h ea
h exe
ution fragment �

i


onsists of either a single 
losed traje
tory or one a
tion

surrounded by two point traje
tories and � is expressed as �

0

_

�

1

_

� � �

_

�

n

. Suppose

that C

A

is disabled in �:lstate . Sin
e �:lstate = �

n

:lstate , we have that C

A

is disabled in

�

n

:lstate . Now, 
onsider the following 
ases:

1. �

n

is a single 
losed traje
tory.

Sin
e C

A

is disabled in �

n

:lstate , by using property 3 in Lemma 6.16, we have that

C

B

is disabled in �

n

:lstate . Sin
e �:lstate = �

n

:lstate , we have that C

B

is disabled

in �:lstate , as needed.

2. �

n

is one a
tion surrounded by point traje
tories.

Sin
e C

A

is disabled in �

n

:lstate , by using property 2 in Lemma 6.16, we have that

C

B

is disabled in �

n

:lstate . Sin
e �:lstate = �

n

:lstate , we have that C

B

is disabled

in �:lstate , as needed.
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Lemma 6.19 Let A and B be two TAs, C

A

and C

B

be sets of a
tions for A and B,

respe
tively, and R be a fair forward simulation from A to B with respe
t to C

A

and C

B

.

Let � be an exe
ution of A su
h that � is an in�nite sequen
e or a �nite sequen
e ending

with an open traje
tory, and let � be an exe
ution of B that 
orresponds to �. Then, if for

some suÆx �

0

of �, C

A

is disabled in all states in �

0

, it must be the 
ase that for some

suÆx �

0

of �, C

B

is disabled in all states in �

0

.

Proof: We know that, in the 
onstru
tion of �, � is expressed as �

0

_

�

1

_

� � � in

whi
h ea
h exe
ution fragment �

i


onsists of either a single 
losed traje
tory or one a
tion

surrounded by two point traje
tories, and � is expressed as �

0

_

�

1

_

� � �. Suppose that

for some suÆx �

0

of �, C

A

is disabled in all states in �

0

. Consider the following 
ases:

1. For in�nitely many i � 0, �

i

is an exe
ution fragment 
onsisting of an a
tion sur-

rounded by point traje
tories.

Without loss of generality we 
an assume that �

0

= �

i

_

�

i+1

_

� � � for some i � 0

and �

0

is an in�nite sequen
e starting with a dis
rete a
tion surrounded by two point

traje
tories. Now, 
onsider the 
orresponding exe
ution fragment �

0

= �

i

_

�

i+1

_

� � �

of B. Let �

00

be the suÆx �

i+1

_

�

i+2

_

� � � of �

0

. Sin
e C

A

is disabled in all states

in �

0

, C

A

is disabled in �

i

:lstate . By property 2 of Lemma 6.16 we know that C

B

is disabled in �

i

:lstate . Then for ea
h j > i, by properties 2 and 3 of Lemma 6.16,

we know that C

B

is disabled in all states in �

j

, ex
ept possibly in �

j

:fstate . Sin
e

for ea
h j > i, �

0

j

:fstate = �

0

j�1

:lstate by the 
onstru
tion of �, we know that C

B

is

disabled in all states of �

00

, whi
h is a suÆx of �.

2. For only �nitely many i � 0, �

i


onsists of an a
tion surrounded by point traje
tories.

Then for all suÆ
iently large i � 0, �

i


onsists of a single 
losed traje
tory. Without

loss of generality we 
an assume that �

0

= �

i

_

�

i+1

_

� � � for some suÆ
iently

large i � 0 and for ea
h j � i, �

j

is a single 
losed traje
tory. Now 
onsider

the 
orresponding exe
ution fragment �

0

= �

i

_

�

i+1

_

� � �. Let �

00

be the suÆx

�

i+1

_

�

i+2

_

� � � of �

0

. Sin
e C

A

is disabled in all states in �

0

, C

A

is disabled

in �

i

:lstate . Then, by property 3 of Lemma 6.16, we know that C

B

is disabled in

�

i

:lstate and for ea
h j > i, C

B

is disabled in all states in �

j

, ex
ept possibly in

�

j

:fstate . Sin
e for ea
h j > i, �

0

j

:fstate = �

0

j�1

:lstate by the 
onstru
tion of �, we

know that C

B

is disabled in all states of �

00

, whi
h is a suÆx of �.

Lemma 6.20 Let A and B be two TAs, C

A

and C

B

be sets of a
tions for A and B,

respe
tively, and R be a fair forward simulation from A to B with respe
t to C

A

and C

B

.
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Let � be an exe
ution of A su
h that � is an in�nite sequen
e or a �nite sequen
e ending

with an open traje
tory, and let � be an exe
ution of A that 
orresponds to �. Then, if

there is no suÆx �

0

of � su
h that C

A

is enabled in all states in �

0

it must be the 
ase

that there is no suÆx �

0

of � su
h that C

B

is enabled in all states in �

0

.

Proof: We know that, in the 
onstru
tion of �, � is expressed as �

0

_

�

1

_

� � � in

whi
h ea
h exe
ution fragment �

i


onsists of either a single 
losed traje
tory or one a
tion

surrounded by two point traje
tories, and � is expressed as �

0

_

�

1

_

� � �. Suppose that

there is no suÆx �

0

of � su
h that C

A

is enabled in all states in �

0

. This means that for

in�nitely many i � 0, C

A

is disabled in some state of �

i

. Then, by properties 2 and 3 in

Lemma 6.16, we know that for in�nitely many i � 0, C

B

is disabled in some state of �

i

.

This implies that � has no suÆx in whi
h C

B

is enabled in all states.

The following lemma states that a fair forward simulation from A to B yields a 
orre-

sponden
e for open traje
tories.

Lemma 6.21 Let A and B be 
omparable TAs, C

A

and C

B

be sets of a
tions of A and

B respe
tively, and R be a fair forward simulation from A to B with respe
t to C

A

and

C

B

. Let x

A

and x

B

be states of A and B, respe
tively, su
h that x

A

R x

B

. Let � be an

exe
ution fragment of A from state x

A


onsisting of a single open traje
tory � . Then B

has an exe
ution fragment � with �:fstate = x

B

and tra
e(�) = tra
e(�). Moreover, �

satis�es the following 
ondition: for all t su
h that 0 < t � �:ltime, if C

A

is disabled in

�(t) then for ea
h pre�x �

0

of � su
h that �

0

:ltime = t, C

B

is disabled in �

0

:lstate.

Proof: Let � be the single open traje
tory in �. Using axioms T1 and T2, we 
onstru
t

an in�nite sequen
e �

0

�

1

: : : of 
losed traje
tories of A su
h that � = �

0

_

�

1

_

� � �. Then,

working re
ursively, we 
onstru
t a sequen
e �

0

�

1

: : : of 
losed exe
ution fragments of

B su
h that �

0

:fstate = x

B

and, for ea
h i, �

i

:lstate R �

i

:lstate , �

i

:lstate = �

i+1

:fstate ,

tra
e(�

i

) = tra
e(�

i

), and the following fairness 
ondition holds: for all t su
h that 0 <

t � �

i

:ltime , if C

A

is disabled in �

i

(t) then for ea
h pre�x �

0

i

of �

i

su
h that �

0

i

:ltime = t,

C

B

is disabled in �

0

i

:lstate . This 
onstru
tion uses indu
tion on i, using Property 3 of the

de�nition of a fair forward simulation in the indu
tion step. Now let � = �

0

_

�

1

_

� � �. By

Lemma 4.7, � is an exe
ution fragment of B. Clearly, �:fstate = x

B

. By Lemma 3.9 applied

to both � and �, tra
e(�) = tra
e(�). Using Property 3 for ea
h �

i

, and the indu
tive

hypothesis �

i

:lstate = �

i+1

:fstate, we have that for all t su
h that 0 < t � �:ltime , if C

A

is disabled in �(t) then for ea
h pre�x �

0

of � su
h that �

0

:ltime = t, C

B

is disabled in

�

0

:lstate . Thus � has the required properties.

Theorem 6.22 Suppose that R is a fair forward simulation relation from A to B with

respe
t to a set C

A

of a
tions of A and a set C

B

of a
tions of B. Let L

A

be the set of

strongly fair exe
utions of A for C

A

and let L

B

be the set of strongly fair exe
utions of B

for C

B

. Then (A; L

A

) � (B; L

B

).
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Proof: Let � be an exe
ution of A su
h that � 2 L

A

and let � be an exe
ution fragment

of B that 
orresponds to � with respe
t to R;C

A

and C

B

. By property 4 in Lemma 6.16

we know that � is an exe
ution of B su
h that tra
e(�) = tra
e(�). We show that � 2 L

B

by 
onsidering the following 
ases:

1. � 
ontains in�nitely many events from C

A

.

By Lemma 6.17, we know that � has in�nitely many events from C

B

. Then, by

de�nition of strong fairness � 2 L

B

, as needed.

2. For some suÆx �

0

of �, C

A

is disabled in all states in �

0

.

(a) � is either an in�nite sequen
e or a �nite sequen
e ending with an open traje
-

tory.

Then, by Lemma 6.19, we have that C

B

is disabled in all states in some suÆx

of �. Then, by de�nition of strong fairness � 2 L

B

, as needed.

(b) � is a �nite sequen
e ending with a 
losed traje
tory.

By Lemma 6.18, we have that C

B

is disabled in �:lstate . Sin
e �:lstate is a

suÆx of �, by de�nition of strong fairness � 2 L

B

, as needed.

Theorem 6.23 Suppose that R is a fair forward simulation relation from A to B with

respe
t to a set C

A

of a
tions of A and a set C

B

of a
tions of B. Let L

A

be the set of

weakly fair exe
utions of A for C

A

and let L

B

be the set of weakly fair exe
utions of B for

C

B

. Then (A; L

A

) � (B; L

B

).

Proof: Let � be an exe
ution of A su
h that � 2 L

A

and let � be an exe
ution fragment

of B that 
orresponds to � with respe
t to R;C

A

and C

B

. By property 4 in Lemma 6.16

we know that � is an exe
ution of B su
h that tra
e(�) = tra
e(�). We show that � 2 L

B

by 
onsidering the following 
ases:

1. � 
ontains in�nitely many events from C

A

.

By Lemma 6.17, we know that � has in�nitely many events from C

B

. Then, by

de�nition of weak fairness � 2 L

B

, as needed.

2. There is no suÆx �

0

of � su
h that C

A

is enabled in all states in �

0

.

(a) � is either an in�nite sequen
e or a �nite sequen
e ending with an open traje
-

tory.

Then, by Lemma 6.20, we have that there is no suÆx �

0

of � su
h that C

B

is

enabled in all states in �

0

. By de�nition of weak fairness � 2 L

B

, as needed.
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(b) � is a �nite sequen
e ending with a 
losed traje
tory.

By Lemma 6.18, we have that C

B

is disabled in �:lstate . Therefore, � 
annot

have any suÆx in whi
h C

B

is enabled in all states. Then, by de�nition of weak

fairness � 2 L

B

, as needed.

It would have been possible to prove Theorem 6.23 for a slightly di�erent notion of

fair forward simulation obtained by weakening Property 3 of the 
urrent de�nition. The


urrent de�nition requires that the disabling is 
arried over from the low-level automaton

to the high-level one for all states in a traje
tory, ex
ept for the �rst state of traje
tories

with limit time greater than zero. For proving Theorem 6.23, it would have been suÆ
ient

to require that the disabling be 
arried over for some states only.

6.4 Composition

This se
tion in
ludes results that are essential for 
ompositional reasoning about timed

automata with properties. They are spe
ializations of the similar results in Se
tion 5.1.

6.4.1 De�nitions and Basi
 Results

If A

1

and A

2

are two 
ompatible timed automata and P

1

and P

2

are properties for A

1

and A

2

, respe
tively, then we de�ne P

1

kP

2

to be f� 2 frags

A

1

kA

2

j � d(A

i

;X

i

) 2 P

i

; i 2

f1; 2gg. Using this, we de�ne 
omposition of automata with properties (A

1

; P

1

)k(A

2

; P

2

)

as (A

1

kA

2

; P

1

kP

2

).

Theorem 6.24 Let A

1

and A

2

be two 
ompatible TAs and P

1

and P

2

be properties for A

1

and A

2

, respe
tively. Then tra
es

(A

1

kA

2

;P

1

kP

2

)

is exa
tly the set of (E; ;)-sequen
es whose

restri
tions to A

1

and A

2

are tra
es

(A

1

;P

1

)

and tra
es

(A

2

;P

2

)

, respe
tively. That is,

tra
es

(A

1

kA

2

;P

1

kP

2

)

= f� j � is an (E; ;)-sequen
e and � d(E

i

; ;) 2 tra
es

(A

i

;P

i

)

; i 2 f1; 2gg.

Proof: Follows from de�nition of 
omposition of automata with properties and Theo-

rem 5.4.

6.4.2 Substitutivity Results

Theorem 6.25 Suppose that A

1

, A

2

, and B are TAs, A

1

and A

2

have the same external

a
tions, and ea
h of A

1

and A

2

is 
ompatible with B. Suppose that P

1

, P

2

, and Q are

properties for A

1

, A

2

, and B, respe
tively. If (A

1

; P

1

) � (A

2

; P

2

) then (A

1

; P

1

)k(B; Q) �

(A

2

; P

2

)k(B; Q).
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This theorem 
an be strengthened with two 
orollaries.

Corollary 6.26 Suppose A

1

, A

2

, B

1

, and B

2

are TAs, A

1

and A

2

have the same external

a
tions, B

1

and B

2

have the same external a
tions, and ea
h of A

1

and A

2

is 
ompatible

with ea
h of B

1

and B

2

. Suppose that P

i

and Q

i

are properties for A

i

and B

i

, respe
tively

for i 2 f1; 2g. If (A

1

; P

1

) � (A

2

; P

2

) and (B

1

; Q

1

) � (B

2

; Q

2

) then (A

1

; P

1

)k(B

1

; Q

1

) �

(A

2

; P

2

)k(B

2

; Q

2

).

Corollary 6.27 Suppose A

1

, A

2

, B

1

, and B

2

are TAs, A

1

and A

2

have the same external

a
tions, B

1

and B

2

have the same external a
tions, and ea
h of A

1

and A

2

is 
ompatible

with ea
h of B

1

and B

2

. Suppose that P

i

and Q

i

are properties for A

i

and B

i

, respe
tively

for i 2 f1; 2g. If (A

1

; P

1

)k(B

2

; Q

2

) � (A

2

; P

2

)k(B

2

; Q

2

) and (B

1

; Q

1

) � (B

2

; Q

2

) then

(A

1

; P

1

)k(B

1

; Q

1

) � (A

2

; P

2

)k(B

2

; Q

2

).

7 Timed I/O Automata

In this se
tion we re�ne the timed automaton model of Se
tion 4 by distinguishing between

input and output a
tions. Typi
ally, an intera
tion between a system and its environment

is modeled by using output and input a
tions to represent, respe
tively, the external events

under the 
ontrol of the system and the environment. We extend the results on simulation

relations and 
omposition from Se
tions 4 and 5 to this new setting. We also introdu
e

spe
ial kinds of timed I/O automata: I/O feasible, progressive, and re
eptive TIOAs.

7.1 De�nition of Timed I/O Automata

A timed I/O automaton (TIOA) A is a tuple (B; I; O) where

� B = (X;Q;�; E;H;D;T ) is a timed automaton.

� I and O partition E into input and output a
tions, respe
tively. A
tions in L

�

=

H [O are 
alled lo
ally 
ontrolled ; as before we write A

�

= E [H.

� The following additional axioms are satis�ed:

E1 (Input a
tion enabling)

For every x 2 Q and every a 2 I, there exists x

0

2 Q su
h that x

a

! x

0

.

E2 (Time-passage enabling)

For every x 2 Q, there exists � 2 T su
h that �:fstate = x and either

1. �:ltime =1, or

2. � is 
losed and some l 2 L is enabled in �:lstate .
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Input a
tion enabling is the input enabling 
ondition of ordinary I/O automata; it says

that a TIOA is able to perform an input a
tion at any time. The time-passage enabling


ondition says that says that a TIOA either allows time to advan
e forever, or it allows

time to advan
e for a while, up to a point where it is prepared to rea
t with some lo
ally


ontrolled a
tion. Be
ause TIOAs have no external variables, E1 and E2 are slightly

simpler than the 
orresponding axioms for HIOAs.

Notation: As we did for TAs, we often denote the 
omponents of a TIOA A by

B

A

; I

A

; O

A

;X

A

; Q

A

;�

A

, et
., and those of a TIOA A

i

by H

i

; I

i

; O

i

; : : : ;X

i

, Q

i

;�

i

, et
.

We sometimes omit these subs
ripts, where no 
onfusion is likely. We abuse notation

slightly by referring to a TIOA A as a TA when we intend to refer to B

A

.

Example 7.1 (TAs viewed as TIOAs) The automaton T imedChannel(b;M) des
ribed

in Example 4.1 
an be turned into a TIOA by 
lassifying the send a
tions as inputs, and

the re
eive a
tions as outputs. Sin
e there is no pre
ondition for send a
tions, they are

enabled in ea
h state, so 
learly the input enabling 
ondition E1 holds. It is also easy to

see that axiom E2 holds: in ea
h state either queue is nonempty, in whi
h 
ase a re
eive

output a
tion is enabled after a point traje
tory, or queue is empty, in whi
h 
ase time


an advan
e forever.

The automaton Clo
kSyn
(u; �)

i

of Example 4.6 
an be turned into a TIOA by 
lassi-

fying the send a
tions as outputs, and the re
eive a
tions as inputs. Axiom E1 then holds

trivially. Axiom E2 holds sin
e from ea
h state either time 
an advan
e forever, or we have

an outgoing traje
tory (possibly of length 0) to a state in whi
h phys
lo
k = nextsend,

and from there a send output a
tion is enabled.

7.2 Exe
utions and Tra
es

An exe
ution fragment , exe
ution, tra
e fragment , or tra
e of a TIOA A is de�ned to

be an exe
ution fragment, exe
ution, tra
e fragment, or tra
e of the underlying TA B

A

,

respe
tively.

We say that an exe
ution fragment of a TIOA is lo
ally-Zeno if it is Zeno and 
ontains

in�nitely many lo
ally 
ontrolled a
tions, or equivalently, if it has �nite limit time and


ontains in�nitely many lo
ally 
ontrolled a
tions.

7.3 Spe
ial Kinds of Timed I/O Automata

7.3.1 Feasible and I/O Feasible TIOAs

A TIOA A = (B; I; O) is de�ned to be feasible provided that its underlying TA B is feasible

a

ording to the de�nition given in Se
tion 4.3.1. As noted in Se
tion 4.3.1, feasibility is a
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basi
 requirement that any TA (or TIOA) should satisfy. I/O feasibility is a strengthened

version of feasibility that take inputs into a

ount. It says that the automaton is 
apable of

providing some response from any state, for any sequen
e of input a
tions and any amount

of intervening time-passage. In parti
ular, it should allow time to pass to in�nity if the

environment does not submit any input a
tions. Formally, we de�ne a TIOA to be I/O

feasible provided that, for ea
h state x and ea
h (I; ;)-sequen
e �, there is some exe
ution

fragment � from x su
h that � d(I; ;) = �. That is, an I/O feasible TIOA a

ommodates

arbitrary input a
tions o

urring at arbitrary times. The given (I; ;)-sequen
e � des
ribes

the inputs and the amounts of intervening times.

7.3.2 Progressive TIOAs

A progressive TIOA never generates in�nitely many lo
ally 
ontrolled a
tions in �nite

time. Formally, a TIOA A is progressive if it has no lo
ally-Zeno exe
ution fragments.

The following lemma says that any progressive TIOA is 
apable of advan
ing time

forever.

Lemma 7.2 Every progressive TIOA is feasible.

Proof: Let A be a progressive TIOA and let x be a state of A. Sin
e A is a TIOA it

satis�es axiom E2. We 
onstru
t an admissible exe
ution fragment � = �

0

_

�

1

_

�

2

� � �

from x as follows.

1. �

0

= }(x).

2. For ea
h i > 0,

(a) If there exists a traje
tory � from �

i�1

:lstate su
h that �:ltime =1 then �

i

is

the �nal exe
ution fragment in the sequen
e and �

i

= � .

(b) Otherwise, let �

i

be a 
losed exe
ution fragment from �

i�1

:lstate su
h that l 2 L

is enabled in �

i

:lstate . De�ne �

i

= �

i

l�

i+1

where �

i+1

= }(y) and �

i

:lstate

l

! y.

The above 
onstru
tion either ends after �nitely many stages su
h that the last tra-

je
tory of � is admissible, or goes through in�nitely many stages su
h that � 
ontains

in�nitely many lo
al a
tions. In the former 
ase, we know that � is admissible sin
e it

ends with an admissible tra
je
tory. In the latter 
ase, sin
e A is progressive, the fa
t

that � has in�nitely many lo
al a
tions implies that � is admissible, as needed.

The following lemma says that a progressive TIOA is 
apable of allowing any amount

of time to pass from any state.
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Lemma 7.3 Let A be a progressive TIOA, let x be a state of A, and let � 2 trajs(;).

Then there exists an exe
ution fragment � of A su
h that �:fstate = x and � d(I; ;) = � .

Proof: The result follows from the 
onstru
tion used in the proof of Lemma 7.2. Let

� be an admissible exe
ution fragment from x 
onstru
ted as in the proof of Lemma 7.2.

Let �

0

be a pre�x of � su
h that �

0

d(;; ;) = � . Sin
e our 
onstru
tion uses no a
tions

from I, we have �

0

d(I; ;) = �

0

d(;; ;) = � , as needed.

The following theorem says that a progressive TIOA is 
apable not just of allowing

arbitrary amounts of time to pass, but of allowing arbitrary input a
tions at arbitrary

times.

Theorem 7.4 Every progressive TIOA is I/O feasible.

Proof: Let A be a progressive TIOA, let x be a state of A, and let � = �

0

a

1

�

1

a

2

�

2

: : :

be an (I; ;)-sequen
e. We 
onstru
t a �nite or in�nite sequen
e �

0

�

1

: : : of exe
ution

fragments su
h that:

1. �

0

:fstate = x.

2. For ea
h non�nal index i, �

i

:lstate = �

i+1

:fstate .

3. For ea
h i, (�

0

_

�

1

_

� � �

_

�

i

) d(I; ;) = �

0

a

1

�

1

: : : �

i

.

The 
onstru
tion is 
arried out re
ursively. To de�ne �

0

, we start with x and use

Lemma 7.3 to span �

0

. For i > 0, we de�ne �

i

by starting with �

i�1

:lstate , using axiom

E1 to perform the input a
tion a

i

and move to a new state and then using Lemma 7.3 to

span �

i

.

Let � = �

0

_

�

1

_

� � �. By Lemma 3.8, � is an exe
ution fragment of A from x su
h

that � d(I; ;) = �, as needed.

7.3.3 Re
eptive Timed I/O Automata

In this se
tion, we de�ne the notion of re
eptiveness for TIOAs. A TIOA will be de�ned

to be re
eptive provided that it admits a strategy for resolving its nondeterministi
 
hoi
es

that never generates in�nitely many lo
ally 
ontrolled a
tions in �nite time. This notion

has an important 
onsequen
e: A re
eptive TIOA provides some response from any state,

for any sequen
e of dis
rete input a
tions at any times. This implies that the automa-

ton has a nontrivial set of exe
ution fragments, in fa
t, it has exe
ution fragments that

a

ommodate any inputs from the environment. The automaton 
annot simply stop at
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some point and refuse to allow time to elapse; it must allow time to pass to in�nity if the

environment does so. Previous studies of re
eptiveness properties in
lude [12, 1, 36, 24℄.

The notion of re
eptiveness for TIOAs as dis
ussed here is a spe
ial 
ase of the same notion

for HIOAs [22℄.

We build our de�nition of re
eptiveness on our earlier de�nition of progressive TIOAs.

Namely, we de�ne a strategy for resolving nondeterministi
 
hoi
es, and de�ne re
eptive-

ness in terms of the existen
e of a progressive strategy.

We de�ne a strategy for a TIOA A to be a TIOA A

0

that di�ers from A only in that

D

0

� D and T

0

� T . That is, we require:

� D

0

� D.

� T

0

� T .

� X = X

0

, Q = Q

0

, � = �

0

, E = E

0

, H = H

0

, I = I

0

, and O = O

0

.

Our strategies are nondeterministi
 and memoryless. They provide a way of 
hoosing some

of the evolutions that are possible from ea
h state x of A. The fa
t that the state set Q

0

of A

0

is the same as the state set Q of A implies that A

0


hooses evolutions from every

state of A.

Notions of strategy have been used also in previous studies of re
eptiveness [12, 1,

36, 24℄. However, in these earlier works, strategies have been formalized using two-player

games rather than automata. De�ning strategies using automata allows us to avoid intro-

du
ing extra mathemati
al ma
hinery.

Lemma 7.5 If A

0

is a strategy for A, then every exe
ution fragment of A

0

is also an

exe
ution fragment of A.

We de�ne a TIOA to be re
eptive if it has a progressive strategy. The following theorem

says that any re
eptive TIOA 
an respond to any inputs from the environment.

Theorem 7.6 Every re
eptive TIOA is I/O feasible.

Proof: The proof is similar to that of the 
orresponding theorem for HIOAs [22℄.

Example 7.7 (Progressive and re
eptive TIOAs) The time-bounded 
hannel au-

tomaton des
ribed in Example 4.1 is not progressive sin
e it allows for an in�nite exe
ution

in whi
h send and re
eive a
tions alternate without any passage of time in between. The

time-bounded 
hannel automaton is re
eptive, however, as we may 
onstru
t a progressive

strategy for it by adding a 
ondition u = now to the pre
ondition of the re
eive a
tion.
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In this way we enfor
e that the 
hannel operates maximally slow and messages are only

delivered at their delivery deadline. The 
lo
k syn
hronization automaton of Example 4.6

is progressive (and therefore re
eptive) sin
e it 
an only generate a lo
ally 
ontrolled a
-

tion ea
h time its physi
al 
lo
k advan
es by u time units and the real time that elapses

between two lo
ally produ
ed a
tions is at least u(1� �) time units.

7.4 Implementation Relationships

Two TIOAs A

1

and A

2

are 
omparable if their inputs and outputs 
oin
ide, that is, if

I

1

= I

2

and O

1

= O

2

. If A

1

and A

2

are 
omparable, then A

1

� A

2

is de�ned to mean

that the tra
es of A

1

are in
luded among those of A

2

: A

1

� A

2

�

= tra
es

A

1

� tra
es

A

2

.

Lemma 7.8 Let A

1

, A

2

be two 
omparable TIOAs and let B

1

, B

2

be, respe
tively, the

underlying TAs for A

1

and A

2

. Then B

1

and B

2

are 
omparable and A

1

� A

2

i� B

1

� B

2

.

Proof: Immediate from the de�nitions.

7.5 Simulation Relations

The de�nition of forward simulation for TIOAs is the same as for TAs. Formally, if

A

1

= (B

1

; I

1

; O

1

) and A

2

= (B

2

; I

2

; O

2

) are two 
omparable TIOAs, then a forward

simulation from A

1

to A

2

is a forward simulation from B

1

to B

2

.

Theorem 7.9 If A

1

and A

2

are 
omparable TIOAs and there is a forward simulation

from A

1

to A

2

, then A

1

� A

2

.

The de�nitions and results about ba
kward simulations, history and prophe
y relations

for timed automata from Se
tion 4 
arry over to timed automata with input and output

distin
tion in a similar fashion.

8 Operations on Timed I/O Automata

8.1 Composition

In this se
tion, we de�ne the operations of 
omposition and hiding and present proje
-

tion, pasting and substitutivity results for TIOAs. We revisit the spe
ial kinds of TIOAs

introdu
ed in Se
tion 7 and show that the 
lasses of progressive and re
eptive timed I/O

automata are 
losed under 
omposition, while this is not true for the 
lass of I/O feasible

automata.
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8.1.1 De�nitions and Basi
 Results

The de�nition of 
omposition for TIOAs is based on the 
orresponding de�nition for TAs,

but also takes the input/output stru
ture into a

ount. We say that TIOAs A

1

and A

2

are 
ompatible if, for i 6= j, X

i

\X

j

= H

i

\A

j

= O

i

\O

j

= ;.

Lemma 8.1 If A

1

= (B

1

; I

1

; O

1

) and A

2

= (B

2

; I

2

; O

2

) are 
ompatible TIOAs, then B

1

and B

2

are 
ompatible TAs.

If A

1

and A

2

are 
ompatible TIOAs then their 
omposition A

1

kA

2

is de�ned to be the

tuple A = (B; I; O) where

� B = B

1

kB

2

,

� I = (I

1

[ I

2

)� (O

1

[O

2

)

� O = O

1

[O

2

.

Thus, an external a
tion of the 
omposition is 
lassi�ed as an output if it is an output of

one of the 
omponent automata, and otherwise it is 
lassi�ed as an input. The 
omposition

of two TIOAs is guaranteed to be a TIOA:

Theorem 8.2 If A

1

and A

2

are TIOAs then A

1

kA

2

is a TIOA.

Proof: The proof is straightforward ex
ept for showing that Axiom E2 is satis�ed by the


omposition. Let x be a state of A

1

kA

2

. We need to show the existen
e of a traje
tory

from x that satis�es E2.

By de�nition of A

1

kA

2

, x dX

1

is a state of A

1

and x dX

2

is a state of A

2

. We know

that both A

1

and A

2

satisfy E2. Let �

1

be a traje
tory of A

1

with �

1

:fstate = x dX

1

that

satis�es E2, let �

2

be a traje
tory of A

2

with �

2

:fstate = x dX

2

that satis�es E2, and


onsider the following 
ases:

1. �

1

:ltime =1 and �

2

:ltime =1.

Then, de�ne � su
h that � # X

1

= �

1

and � # X

2

= �

2

.

2. �

1

:ltime =1 and �

2

is 
losed where some l 2 L

2

is enabled in �

2

:lstate .

Then, de�ne � su
h that � # X

1

= �

1

d dom(�

2

) and � # X

2

= �

2

.

3. �

1

is 
losed where some l 2 L

1

is enabled in �

1

:lstate and �

2

:ltime =1.

Then, de�ne � su
h that � # X

1

= �

1

and � # X

2

= �

2

d dom(�

1

).
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4. �

1

is 
losed where some l 2 L

1

is enabled in �

1

:lstate and �

2

is 
losed where some

l 2 L

2

is enabled in �

2

:lstate .

If dom(�

1

) � dom(�

2

), then de�ne � su
h that � # X

1

= �

1

and � # X

2

=

�

2

d dom(�

1

). Otherwise, de�ne � su
h that � # X

1

= �

1

d dom(�

2

) and � # X

2

= �

2

.

In all the 
ases, by de�nition of traje
tories for a TIOA, � is a traje
tory of A

1

kA

2

from

x, whi
h satis�es E2 by 
onstru
tion.

Note that this theorem is stronger than the 
orresponding theorem (Theorem 6.12

in [22℄) for general HIOAs. Two HIOAs A

1

and A

2

are required to be \strongly 
ompati-

ble" for their 
omposition to be a hybrid I/O automaton. This extra 
ondition is needed

to rule out dependen
ies among external variables that may prevent the 
omponent au-

tomata from evolving together. The absen
e of external variables in TIOA eliminates this

kind of problemati
 behavior. Thus, for the timed 
ase, we do not require the notion of

strong 
ompatibility that was needed for the hybrid 
ase.

Composition of TIOAs satis�es the following proje
tion and pasting result, whi
h

follows from Theorem 5.4.

Theorem 8.3 Let A

1

and A

2

be 
omparable TIOAs, and let A = A

1

kA

2

. Then tra
es

A

is exa
tly the set of (E; ;)-sequen
es whose restri
tions to A

1

and A

2

are tra
es of A

1

and A

2

, respe
tively. That is, tra
es

A

= f� j � is an (E; ;)-sequen
e and � d(E

i

; ;) 2

tra
es

A

i

; i = f1; 2gg.

8.1.2 Substitutivity Results

The following theorem is analogous to Theorem 5.8 for TAs without input/output distin
-

tion. It shows that the introdu
tion of the input/output distin
tion does not 
ause any


hanges to the substitutivity results we obtained for general TAs.

Theorem 8.4 Suppose A

1

and A

2

are 
omparable TIOAs with A

1

� A

2

. Suppose that B

is a TIOA that is 
ompatible with ea
h of A

1

and A

2

. Then A

1

kB � A

2

kB.

The 
orollaries below follow from the Corollaries 5.9 and 5.10 of Theorem 5.8.

Corollary 8.5 Suppose A

1

, A

2

, B

1

, and B

2

are TIOAs, A

1

and A

2

are 
omparable, B

1

and B

2

are 
omparable, and ea
h of A

1

and A

2

is 
ompatible with ea
h of B

1

and B

2

. If

A

1

� A

2

and B

1

� B

2

then A

1

kB

1

� A

2

kB

2

.

Corollary 8.6 Suppose A

1

, A

2

, B

1

, and B

2

are TAs, A

1

and A

2

are 
omparable, B

1

and B

2

are 
omparable, and ea
h of A

1

and A

2

is 
ompatible with ea
h of B

1

and B

2

. If

A

1

kB

2

� A

2

kB

2

and B

1

� B

2

then A

1

kB

1

� A

2

kB

2

.
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The basi
 substitutivity theorem, Theorem 8.4, is desirable for any formalism for in-

tera
ting pro
esses. For design purposes, it enables one to re�ne individual 
omponents

without violating the 
orre
tness of the system as a whole. For veri�
ation purposes, it

enables one to prove that a 
omposite system satis�es its spe
i�
ation by proving that

ea
h 
omponent satis�es its spe
i�
ation, thereby breaking down the veri�
ation task into

more manageable pie
es. However, it might not always be possible or easy to show that

ea
h 
omponent A

1

(resp. B

1

) satis�es its spe
i�
ation A

2

(resp. B

2

) without using any

assumptions about the environment of the 
omponent. Assume-guarantee style results

su
h as those presented in [19, 33, 38, 1, 2, 18, 39℄ are spe
ial kinds of substitutivity re-

sults that state what guarantees are expe
ted from ea
h 
omponent in an environment


onstrained by 
ertain assumptions. Sin
e the environment of ea
h 
omponent 
onsists of

the other 
omponents in the system, assume-guarantee style results need to break the 
ir-


ular dependen
ies between the assumptions and guarantees for 
omponents. We present

below two assume-guarantee style theorems Theorem 8.7 and Corollary 8.8, whi
h 
an be

used for proving that a system spe
i�ed as a 
omposite automaton A

1

kB

1

implements a

spe
i�
ation represented by a 
omposite automaton A

2

kB

2

.

The main idea behind Theorem 8.7 is to assume that A

1

implements A

2

in a 
ontext

represented by B

2

, and symmetri
ally that B

1

implements B

2

in a 
ontext represented

by A

2

where A

2

and B

2

are automata whose tra
e sets are 
losed under limits. The

requirement about limit-
losure implies that A

2

and B

2

spe
ify tra
e safety properties.

Moreover, we assume that the tra
e sets of A

2

and B

2

are 
losed under time-extension.

That is, the automata allow arbitrary time-passage. This is the most general assumption

one 
ould make to ensure that A

2

kB

2

does not impose stronger 
onstraints on time-passage

than A

1

kB

1

. Note that the de�nitions of limit and time extension of a hybrid sequen
e


an be found in Se
tion 9.2.

Theorem 8.7 Suppose A

1

, A

2

, B

1

, B

2

are TIOAs su
h that A

1

and A

2

are 
omparable,

B

1

and B

2

are 
omparable, and A

i

is 
ompatible with B

i

for i 2 f1; 2g. Suppose further

that:

1. The sets tra
es

A

2

and tra
es

B

2

are 
losed under limits.

2. The sets tra
es

A

2

and tra
es

B

2

are 
losed under time-extension.

3. A

1

kB

2

� A

2

kB

2

and A

2

kB

1

� A

2

kB

2

.

Then A

1

kB

1

� A

2

kB

2

.

Proof: We �rst prove by indu
tion on the length of tra
es of A

1

kB

1

that every 
losed

tra
e of A

1

kB

1

is a tra
e of A

2

kB

2

.

For the base 
ase, let � be a tra
e of A

1

kB

1

su
h that � 2 trajs(;) (a single traje
tory

over the empty set of variables). By Axiom T0 in the de�nition of a TA, we know that
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A

2

and B

2

have tra
es �

1

and �

2

su
h that �

1

:ltime = �

2

:ltime = 0. By Assumption 2 we

have �

1

_

� 2 tra
es

A

2

and �

2

_

� 2 tra
es

B

2

. Sin
e, �

1

_

� = � and �

2

_

� = �, it follows

that � 2 tra
es

A

2

and � 2 tra
es

B

2

. By pasting using Theorem 8.3, � 2 tra
es

A

2

kB

2

, as

needed.

For the indu
tive step we 
onsider the following 
ases:

1. � = �

0

a � , where a is an output a
tion of A

1

and � is a point traje
tory.

Then � d(E

A

1

; ;) 2 tra
es

A

1

by proje
tion using Theorem 8.3. By indu
tive hypoth-

esis, �

0

2 tra
es

A

2

kB

2

. So �

0

d(E

B

2

; ;) 2 tra
es

B

2

, by proje
tion using Theorem 8.3.

Let � be an exe
ution of B

2

su
h that tra
e(�) = �

0

d(E

B

2

; ;). Sin
e A

1

and B

1

are 
ompatible TIOAs, B

1

and B

2

are 
omparable, and a is an output a
tion of

A

1

, we know that either a is an input a
tion of B

2

or the a
tion set of B

2

does

not 
ontain a. In the former 
ase, by the input-enabling axiom (E1) we know that

there exists x

0

su
h that (�:lstate ; a;x

0

) is a dis
rete transition of B

2

. It follows

that � d(E

B

2

; ;) 2 tra
es

B

2

. In the latter 
ase, sin
e � d(E

B

2

; ;) = �

0

d(E

B

2

; ;) and

�

0

d(E

B

2

; ;) 2 tra
es

B

2

we get � d(E

B

2

; ;) 2 tra
es

B

2

. By pasting using Theorem 8.3,

� 2 tra
es

A

1

kB

2

. Then by Assumption 3, � 2 tra
es

A

2

kB

2

.

2. � = �

0

b � , where b is an output a
tion of B

1

and � is a point traje
tory.

This 
ase is symmetri
 with the previous one.

3. � = �

0


 � , where 
 is an input a
tion of both A

1

and B

1

and � is a point traje
tory.

By indu
tive hypothesis, �

0

2 tra
es

A

2

kB

2

. By proje
tion using Theorem 8.3 we

get �

0

d(E

A

2

; ;) 2 tra
es

A

2

and �

0

d(E

B

2

; ;) 2 tra
es

B

2

. Let � be an exe
ution of A

2

su
h that tra
e(�) = �

0

d(E

A

2

; ;). Sin
e A

1

and A

2

are 
omparable and a is an input

a
tion of A

1

we know that a is an input a
tion of A

2

. By the input-enabling axiom

(E1) we know that there exists x

0

su
h that (�

0

:lstate ; a;x

0

) is a dis
rete transition

of A

2

. It follows that � d(E

A

2

; ;) 2 tra
es

A

2

. Similarly, let �

0

be an exe
ution of B

2

su
h that tra
e(�

0

) = �

0

d(E

B

2

; ;). Sin
e B

1

and B

2

are 
omparable and a is an input

a
tion of B

1

we know that a is an input a
tion of B

2

. By the input-enabling axiom

(E1) we know that there exists y

0

su
h that (�

0

:lstate ; a;y

0

) is a dis
rete transition

of B

2

. It follows that � d(E

B

2

; ;) 2 tra
es

B

2

. By pasting using Theorem 8.3, we get

� 2 tra
es

A

2

kB

2

.

4. � = �

0

d � , where d is an input a
tion of A

1

but not an a
tion of B

1

and � is a point

traje
tory.

By indu
tive hypothesis, �

0

2 tra
es

A

2

kB

2

. By proje
tion using Theorem 8.3, we

have �

0

d(E

A

2

; ;) 2 tra
es

A

2

and �

0

d(E

B

2

; ;) 2 tra
es

B

2

. Let � be an exe
ution

of A

2

su
h that tra
e(�) = �

0

d(E

A

2

; ;). Sin
e A

1

and A

2

are 
omparable TIOAs

and a is an input a
tion of A

1

, a must be an input a
tion of A

2

. By the input-

enabling axiom (E1) we know that there exists x

0

su
h that (�:lstate ; a;x

0

) is a

dis
rete transition of A

2

. It follows that � d(E

A

2

; ;) 2 tra
es

A

2

. Sin
e B

1

and
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B

2

are 
omparable and a is not an a
tion of B

1

, a 
annot be an external a
tion

of B

2

. Therefore, � d(E

B

2

; ;) = �

0

d(E

B

2

; ;). Sin
e �

0

d(E

B

2

; ;) 2 tra
es

B

2

we get

� d(E

B

2

; ;) 2 tra
es

B

2

. By pasting using Theorem 8.3, we get � 2 tra
es

A

2

kB

2

.

5. � = �

0

d� , where d is an input a
tion of B

1

but not an a
tion of A

1

and � is a point

traje
tory.

This 
ase is symmetri
 with the previous one.

6. � = �

0 _

�

00

, where �

00

is a hybrid sequen
e 
onsisting of a single traje
tory � .

By indu
tive hypothesis, �

0

2 tra
es

A

2

kB

2

. By proje
tion using Theorem 8.3, we

get �

0

d(E

A

2

; ;) 2 tra
es

A

2

and �

0

d(E

B

2

; ;) 2 tra
es

B

2

. By Assumption 2, we have

�

0

d(E

A

2

; ;)

_

�

00

d(E

A

2

; ;) 2 tra
es

A

2

and �

0

d(E

B

2

; ;)

_

�

00

d(E

B

2

; ;) 2 tra
es

B

2

.

Then by pasting using Theorem 8.3, � 2 tra
es

A

2

kB

2

, as needed.

We have thus shown that every 
losed tra
e of A

1

kB

1

is a tra
e of A

2

kB

2

. Now 
onsider

any non-
losed tra
e � of A

1

kB

1

. This � 
an be written as the limit of a sequen
e

�

1

�

2

� � � of 
losed tra
es of A

1

kB

1

. By the �rst part of the proof we know that ea
h

�

i

2 tra
es

A

2

kB

2

, and by proje
tion using Theorem 8.3 ea
h �

i

d(E

A

2

; ;) is a 
losed tra
e

of A

2

, and �

i

d(E

B

2

; ;) is a 
losed tra
e of B

2

. We know that � d(E

A

2

; ;) is the limit of

the �

i

d(E

A

2

; ;) and similarly � d(E

B

2

; ;) is the limit of the �

i

d(E

B

2

; ;). Sin
e the sets

tra
es

A

2

and tra
es

B

2

are limit-
losed by Assumption 1, we get � d(E

A

2

; ;) 2 tra
es

A

2

and

� d(E

B

2

; ;) 2 tra
es

B

2

. Finally, by pasting using Theorem 8.3, we get � 2 tra
es

A

2

kB

2

.

Note that automata with FIN and timing-independen
e (see Se
tion 4.3.1 for de�ni-

tions) 
onstitute examples for 
ontext automata A

2

and B

2

that satisfy Assumptions 1

and 2. The property FIN implies Assumption 1 (Lemma 4.18) and timing-independen
e

implies Assumption 2.

Theorem 8.7 has a 
orollary, Corollary 8.8 below, whi
h 
an be used in the de
om-

position of proofs even when A

2

and B

2

neither admit arbitrary time-passage nor have

limit-
losed tra
e sets. The main idea behind this 
orollary is to assume that A

1

imple-

ments A

2

in a 
ontext B

3

that is a variant of B

2

, and symmetri
ally that B

1

implements

B

2

in a 
ontext that is a variant of A

2

. That is, the 
orre
tness of implementation rela-

tionship between A

1

and A

2

does not depend on all the environment 
onstraints, just on

those expressed by B

3

(symmetri
ally for B

1

,B

2

, and A

3

). In order to use this 
orollary

to prove A

1

kB

1

� A

2

kB

2

one needs to be able to �nd appropriate variants of A

2

and B

2

that meet the required 
losure properties. This 
orollary prompts one to pin down what

is essential about the behavior of the environment in proving the intended implementa-

tion relationship, and also allows one to avoid the unne
essary details of the environment

in proofs. In Se
tion 9 we extend this 
orollary to the 
ase where properties, typi
ally

liveness properties, are added to automaton spe
i�
ations.
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Corollary 8.8 Suppose A

1

, A

2

, A

3

, B

1

, B

2

, B

3

are TIOAs su
h that A

1

, A

2

, and A

3

are


omparable, B

1

, B

2

, and B

3

are 
omparable, and A

i

is 
ompatible with B

i

for i 2 f1; 2; 3g.

Suppose further that:

1. The sets tra
es

A

3

and tra
es

B

3

are 
losed under limits.

2. The sets tra
es

A

3

and tra
es

B

3

are 
losed under time-extension.

3. A

2

kB

3

� A

3

kB

3

and A

3

kB

2

� A

3

kB

3

.

4. A

1

kB

3

� A

2

kB

3

and A

3

kB

1

� A

3

kB

2

.

Then A

1

kB

1

� A

2

kB

2

.

Proof: Sin
e A

2

� A

3

by Assumption 3 and A

1

kB

3

� A

2

kB

3

by Assumption 4, we

get A

1

kB

3

� A

2

kB

3

� A

3

kB

3

, by Theorem 8.4. Similarly, we have A

3

kB

1

� A

3

kB

2

�

A

3

kB

3

. Sin
e A

1

kB

3

� A

3

kB

3

and A

3

kB

1

� A

3

kB

3

, by using Assumptions 1 and 2, and

Theorem 8.7 we have A

1

kB

1

� A

3

kB

3

.

Let � be a tra
e of A

1

kB

1

. By proje
tion using Theorem 8.3, � d(E

A

1

; ;) 2 tra
es

A

1

and � d(E

B

1

; ;) 2 tra
es

B

1

. Sin
e A

1

kB

1

� A

3

kB

3

, we know that � 2 tra
es

A

3

kB

3

. By

proje
tion using Theorem 8.3, � d(E

A

3

; ;) 2 tra
es

A

3

and � d(E

B

3

; ;) 2 tra
es

B

3

. By

pasting using Theorem 8.3, we have � 2 tra
es

A

1

kB

3

and � 2 tra
es

A

3

kB

1

. By Assumption

4, we get � 2 tra
es

A

2

kB

3

and � 2 tra
es

A

3

kB

2

. Then, by proje
tion using Theorem 8.3,

� d(E

A

2

; ;) 2 tra
es

A

2

and � d(E

B

2

; ;) 2 tra
es

B

2

. Finally, by pasting using Theorem 8.3

we have � 2 tra
es

A

2

kB

2

, as needed.

Example 8.9 (Using environment assumptions to prove safety)

This example illustrates that, in 
ases where spe
i�
ations A

2

and B

2

satisfy 
ertain


losure properties, it is possible to de
ompose the proof of A

1

kB

1

� A

2

kB

2

by using

Theorem 8.7, even if it is not the 
ase that A

1

� A

2

or B

1

� B

2

.

The automata AlternateA and AlternateB in Figure 16 are timing-independent au-

tomata in whi
h no 
onse
utive outputs o

ur without inputs happening in between.

AlternateA and AlternateB perform a handshake, outputting an alternating sequen
e

of a and b a
tions when they are 
omposed. The automata Cat
hUpA and Cat
hUpB

in Figure 17 are timing-dependent automata that do not ne
essarily alternate inputs and

outputs as AlternateA and AlternateB. Cat
hUpA 
an perform an arbitrary number

of b a
tions, and 
an perform an a provided that 
ounta � 
ountb. It allows 
ounta to

in
rease to one more than 
ountb. Cat
hUpB 
an perform an arbitrary number of a a
-

tions, and 
an perform a b provided that 
ounta � 
ountb+ 1. It allows 
ountb to rea
h


ounta. Timing 
onstraints require ea
h output to o

ur exa
tly one time unit after the

last a
tion. Cat
hUpA and Cat
hUpB perform an alternating sequen
e of a a
tions and

b a
tions when they are 
omposed.
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Automaton AlternateA

Variables X : dis
rete myturn 2 Bool initially true

States Q : val(X)

A
tions A : input b, output a

Transitions D : input b output a

e�e
t pre
ondition

myturn := true myturn

e�e
t

myturn := false

Traje
tories T : satis�es


onstant(myturn)

Automaton AlternateB

Variables X : dis
rete myturn 2 Bool initially false

States Q : val(X)

A
tions A : input a, output b

Transitions D : input a output b

e�e
t pre
ondition

myturn := true myturn

e�e
t

myturn := false

Traje
tories T : satis�es


onstant(myturn)

Figure 16: Example automata for A

2

and B

2

in Theorem 8.7

Suppose that we want to prove that Cat
hUpAkCat
hUpB � AlternateAkAlternateB.

We 
annot apply the basi
 substituvity theorem Theorem 8.7, in parti
ular Corollary 8.5,

sin
e the assertions Cat
hUpA � AlternateA and Cat
hUpB � AlternateB are not true.

Consider the tra
e �

0

b�

1

a�

2

a�

3

of Cat
hUpA where �

0

, �

1

, �

2

and �

3

are traje
tories with

limit time 1. After having performed one b and one a, Cat
hUpA 
an perform another

a. But, this is impossible for AlternateA whi
h needs an input to enable the se
ond a.

AlternateA and Cat
hUpA behave similarly only when put in a 
ontext that imposes

alternation.

It is easy to 
he
k that AlternateA and AlternateB satisfy the 
losure properties

required by Assumptions 1 and 2 of Theorem 8.7 and, hen
e 
an be substituted for A

2
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Automaton Cat
hUpA

Variables X : dis
rete 
ounta; 
ountb 2 N initially 0

analog now 2 R

�0

initially 0

analog next 2 R

�0

[ f1g initially 0

States Q : val(X)

A
tions A : input b, output a

Transitions D : input b output a

e�e
t pre
ondition


ountb := 
ountb + 1 
ounta � 
ountb ^ now = next

next := now + 1 e�e
t


ounta := 
ounta+ 1

next := now + 1

Traje
tories T : satis�es


onstant(
ounta,
ountb)

stops when

now = next

Automaton Cat
hUpB

Variables X : dis
rete 
ounta; 
ountb 2 N initially 0

analog now 2 R

�0

initially 0

analog next 2 R

�0

[ f1g initially 0

States Q : val(X)

A
tions A : input a, output b, internal 


Transitions D : input a output b

e�e
t pre
ondition


ounta := 
ounta+ 1 
ountb+ 1 � 
ounta ^ now = next

next := now + 1 e�e
t


ountb := 
ountb + 1

next = now + 1

Traje
tories T : satis�es


onstant(
ounta,
ountb)

stops when

now = next

Figure 17: Example automata A

1

and B

1

for Theorem 8.7
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and B

2

respe
tively. Similarly, we 
an easily 
he
k that Assumption 3 is satis�ed if we

substitute Cat
hUpA for A

1

and Cat
hUpB for B

1

.

Example 8.10 (Extra
ting essential environment assumptions with auxiliary

automata) This example illustrates that it may be possible to de
ompose veri�
ation,

using Corollary 8.8, in 
ases where Theorem 8.7 is not appli
able. If the aim is to show

A

1

kB

1

� A

2

kB

2

where A

2

and B

2

do not satisfy the assumptions of Theorem 8.7, then

we �nd appropriate 
ontext automata A

3

and B

3

that abstra
t from those details of A

2

and B

2

that are not essential in proving A

1

kB

1

� A

2

kB

2

.

Consider the automata UseOldInputAandUseOldInputB in Figure 18. UseOldInputA

keeps tra
k of whether or not it is UseOldInputA's turn, and when it is UseOldInputA's

turn, it keeps tra
k of the next time it is supposed to perform an output. The number of

outputs that UseOldInputA 
an perform is bounded by a natural number. In the 
ase

of repeated b inputs, it is the oldest input that determines when the next output will

o

ur. The automaton UseOldInputB is the same as UseOldInputA (inputs and outputs

reversed) ex
ept that the turn variable of UseOldInputB is set to false initially. Note

that UseOldInputA and UseOldInputA are not timing-independent and their tra
e sets

are not limit-
losed. For ea
h automaton, there are in�nitely many start states, one for

ea
h natural number. We 
an build an in�nite 
hain of tra
es, where ea
h element in the


hain 
orresponds to an exe
ution starting from a distin
t start state. The limit of su
h

a 
hain, whi
h 
ontains in�nitely many outputs, 
annot be a tra
e of UseOldInputA or

UseOldInputA sin
e the number of outputs they 
an perform is bounded by a natural

number. The automaton UseNewInputA in Figure 19 behaves similarly to UseOldInputA

ex
ept for the handling of inputs. In the 
ase of repeated b inputs, it is the most re
ent

input that determines when the next output will o

ur. The automaton UseNewInputB

in Figure 19 is the same as UseNewInputA (inputs and outputs reversed) ex
ept that the

turn variable of UseNewInputB is set to false initially.

Suppose that we want to prove that:

UseNewInputAkUseNewInputB � UseOldInputAkUseOldInputB.

Theorem 8.7 is not appli
able here be
ause the high-level automata UseOldInputA

and UseOldInputB do not satisfy the required 
losure properties. However, we 
an use

Corollary 8.8 to de
ompose veri�
ation. It requires us to �nd auxiliary automata that are

less restri
tive than UseOldInputA and UseOldInputB but that are restri
tive enough

to express the 
onstaints that should be satis�ed by the environment, for UseNewInputA

to implement UseOldInputA and for UseNewInputB to implement UseOldInputB.

The automata AlternateA and AlternateB in Figure 16 
an be used as auxiliary

automata in this example. They satisfy the 
losure properties required by Corollary 8.8

and impose alternation, whi
h is the only additional 
ondition to ensure the needed tra
e

in
lusion.
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Automaton UseOldInputA

Variables X : dis
rete myturn 2 Bool initially true

dis
rete maxout 2 N initially arbitrary

analog now 2 R

�0

initially 0

analog next 2 R

�0

[ f1g initially 0

States Q : val(X)

A
tions A : input b, output a

Transitions D : input b output a

e�e
t pre
ondition

myturn := true myturn ^ (maxout > 0) ^ (now = next)

if next =1 e�e
t

then next := now + 1 myturn := false

maxout := maxout� 1

next :=1

Traje
tories T : satis�es


onstant(myturn;maxout; next)

d(now) = 1

stops when

now = next

Automaton UseOldInputB

Variables X : dis
rete myturn 2 Bool initially false

dis
rete maxout 2 N initially arbitrary

analog now 2 R

�0

initially 0

analog next 2 R

�0

[ f1g initially 0

States Q : val(X)

A
tions A : input a, output b

Transitions D : input a output b

e�e
t pre
ondition

myturn := true myturn ^ (maxout > 0) ^ (now = next)

if next =1 e�e
t

then next := now + 1 myturn := false

maxout := maxout� 1

next :=1

Traje
tories T : satis�es


onstant(myturn;maxout; next)

d(now) = 1

stops when

now = next

Figure 18: Example automata for A

2

and B

2

in Theorem 8.8
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Automaton UseNewInputA

Variables X : dis
rete myturn 2 Bool initially true

dis
rete maxout 2 N initially arbitrary

analog now 2 R

�0

initially 0

analog next 2 R

�0

[ f1g initially 0

States Q : val(X)

A
tions A : input b, output a

Transitions D : input b output a

e�e
t pre
ondition

myturn := true myturn ^ (maxout > 0) ^ (now = next)

next := now + 1 e�e
t

myturn := false

maxout := maxout� 1

next :=1

Traje
tories T : satis�es


onstant(myturn;maxout; next)

d(now) = 1

stops when

now = next

Automaton UseNewInputA

Variables X : dis
rete myturn 2 Bool initially false

dis
rete maxout 2 N initially arbitrary

analog now 2 R

�0

initially 0

analog next 2 R

�0

[ f1g initially 0

States Q : val(X)

A
tions A : input a, output b

Transitions D : input a output b

e�e
t pre
ondition

myturn := true myturn ^ (
ount > 0) ^ (now = next)

next := now + 1 e�e
t

myturn := false

maxout := maxout� 1

next :=1

Traje
tories T : satis�es


onstant(myturn;maxout; next)

d(now) = 1

stops when

now = next

Figure 19: Example automata for A

1

and B

1

in Theorem 8.8
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We 
an de�ne a forward simulation relation from UseNewInputAkUseNewInputB

to UseOldInputAkUseOldInputB, whi
h is based on the equality of the turn variables

of the implementation and the spe
i�
ation automata. The fa
t that this simulation

relation only uses the equality of turn variables reinfor
es the idea that the auxiliary


ontexts, whi
h only keep tra
k of their turn, 
apture exa
tly what is needed for the proof

of UseNewInputAkUseNewInputB � UseOldInputAkUseOldInputB. We 
an observe

that a dire
t proof of this assertion would require one to deal with state variables su
h

as maxout and next of both UseOldInputA and UseOldInputB, whi
h do not play any

essential role in the proof. On the other hand, by de
omposing the proof along the lines

of Corollary 8.8 some of the unne
essary details 
an be avoided. Even though, this is a

toy example with an easy proof it should not be hard to observe how this simpli�
ation

would s
ale to large proofs.

8.1.3 Composition of Spe
ial Kinds of TIOAs

The following example illustrates that the set of I/O feasible TIOAs is not 
losed under


omposition:

Example 8.11 (Two I/O feasible TIOAs whose 
omposition is not I/O feasible)

Consider two I/O feasible TIOAs A and B, where O

A

= I

B

= fag and O

B

= I

A

= fbg.

Suppose that A performs its output a at time 0 and then waits, allowing time to pass,

until it re
eives input b. If and when it re
eives b, it responds with output a without

allowing any time to pass (and ignoring any inputs that o

ur before it has a 
han
e to

perform its output). On the other hand, B starts out waiting, allowing time to pass, until

it re
eives input a. If and when it re
eives a, it responds with output b without allowing

time to pass.

It is not diÆ
ult to see that A and B are individually I/O feasible. We 
laim that the


omposition AkB is not I/O feasible. To see this, 
onsider the start state of AkB and the

unique input sequen
e � with �:ltime =1; � simply allows time to pass to in�nity. The


omposition AkB has no way of a

ommodating this input, sin
e it will never allow time

to pass beyond 0.

On the other hand, the following theorems say that the 
lasses of progressive and

re
eptive TIOAs are 
losed under 
omposition:

Theorem 8.12 If A

1

and A

2

are 
ompatible progressive TIOAs, then their 
omposition

is also progressive.

Proof: The proof is similar to the proof of Theorem 7.4 in [22℄. The main idea behind the

proof is that a Zeno exe
ution of A

1

kA

2

with in�nitely many lo
ally 
ontrolled 
ontains
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in�nitely many lo
ally 
ontrolled a
tions of either A

1

or A

2

. Suppose without loss of

generality that the automaton that 
ontributes in�nitely many lo
ally 
ontrolled a
tions

is A

1

. Then the proje
tion onto A

1

violates progressiveness for A

1

.

Theorem 8.13 Let A

1

and A

2

be two 
ompatible TIOAs with strategies A

0

1

and A

0

2

,

respe
tively. Then A

0

1

kA

0

2

is a strategy for A

1

kA

2

.

Proof: The proof is similar to the proof of Theorem 7.7 in [22℄.

Now, we 
an state the main result of this se
tion, whi
h follows easily from the previous

two theorems. It shows that the 
lass of re
eptive TIOAs is 
losed under 
omposition.

Theorem 8.14 Let A

1

and A

2

be two 
ompatible re
eptive TIOAs with progressive strate-

gies A

0

1

and A

0

2

, respe
tively. Then A

1

kA

2

is a re
eptive TIOA with progressive strategy

A

0

1

kA

0

2

.

Example 8.15 (Composition of re
eptive TIOAs) Theorem 8.14 implies that the


omposition of 
lo
k syn
hronization automata with 
hannel automata des
ribed in Ex-

ample 5.7 (viewed as TIOAs as explained in Example 7.1) is re
eptive. By Theorem 7.6

we also have that it is I/O feasible.

In fa
t, the fa
t that the set of I/O feasible TIOAs is not 
losed under 
omposition

motivated the de�nition of the more restri
tive 
lass of re
eptive TIOAs. That is, re
ep-

tiveness is a reasonable suÆ
ient 
ondition that implies I/O feasibility, and that also is

preserved by 
omposition.

The spe
ial 
ase of the HIOA model, represented by the TIOA model, has simpler and

stronger 
omposition theorems than the general HIOA model. In parti
ular, the main


ompositionality result for re
eptive HIOAs (Theorem 7.12 in [22℄) has a more intri
ate

proof than ours. It makes an assumption about the existen
e of strongly 
ompatible

strategies (dis
ussed brie
y at the end of Se
tion 8.1.1) and needs an additional lemma

that shows that if two HIOAs A

1

and A

2

whi
h may not be strongly 
ompatible have

strongly 
ompatible strategies A

0

1

and A

0

2

, then A

1

and A

2

are also strongly 
ompatible.

8.2 Hiding

We extend the de�nition of a
tion hiding to any TIOA A. For TIOAs, we 
onsider

hiding outputs only (but not inputs), by 
onverting them to internal a
tions. Namely, if

O � O

A

, then A
tHide(O;A) is the TIOA B that is equal to A ex
ept that O

B

= O

A

�O

and H

B

= H

A

[O.
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Lemma 8.16 If A is a TIOA and O � O

A

then A
tHide(O;A) is a TIOA.

Lemma 8.17 If A is a TIOA and O � O

A

then tra
es

A
tHide(O;A)

= f� d(O

A

� O;V

A

) j

� 2 tra
es

A

g.

Theorem 8.18 Suppose A and B are TIOAs with A � B, and suppose O � O

A

. Then

A
tHide(O;A) � A
tHide(O;B).

9 Properties for Timed I/O Automata

In this se
tion, we present some de�nitions and results for timed I/O automata with

properties. We fo
us on the de�nitions and results, su
h as those that involve re
eptiveness

for properties, that be
ome of interest with the introdu
tion of input, output distin
tion

to the model.

9.1 De�nitions and Basi
 Results

A property for a timed I/O automaton A = (B; I; O) is de�ned to be a property of its

underlying timed automaton, that is, it is a subset of the exe
ution fragments of B.

Now, we introdu
e a notion of liveness property that takes into a

ount how a system

responds to inputs from its environment. A property P for a TIOA A is de�ned to be

an I/O liveness property provided that for ea
h 
losed exe
ution fragment � of A and

ea
h (I; ;)-sequen
e �, there is some exe
ution fragment �

0

su
h that �

0

d(I; ;) = � and

�

_

�

0

2 P . In other words, no matter how A behaves for a �nite period of time, and no

matter what inputs arrive, it is still possible for A to 
ontinue in some way and satisfy P .

The following theorem relates I/O feasibility and I/O liveness. An I/O feasible TIOA


an be 
hara
terized by the fa
t that its set of exe
ution fragments form an I/O liveness

property.

Theorem 9.1 A TIOA is I/O feasible if and only if its set of exe
ution fragments is an

I/O liveness property.

Proof: Fix A, a TIOA. First, assume that A is I/O feasible. Let � be a 
losed exe
ution

fragment of A with �:lstate = x and let � be an (I; ;)-sequen
e. I/O feasibility of A

implies that there is some �

0

from x su
h that �

0

d(I; ;) = �. Sin
e �

_

�

0

2 frags

A

, we


an 
on
lude that the set of exe
ution fragments frags

A

of A is an I/O liveness property.

For the 
onverse, suppose that the set of exe
ution fragments of A is an I/O liveness

property. Let x be a state of A and � be an (I; ;)-sequen
e. Sin
e the set of exe
ution

fragments of A is an I/O liveness property, there must be some �

0

su
h that }(x)

_

�

0

2

frags

A

and �

0

d(I; ;) = �. Clearly, (}(x)

_

�

0

) d(I; ;) = �, and therefore A is I/O feasible.
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9.2 Composition

The following proje
tion and pasting theorem for TIOAs with properties follows from a

similar theorem, Theorem 6.24, for TAs with properties.

Theorem 9.2 Let A

1

and A

2

be two 
ompatible TAs and P

1

and P

2

be properties for A

1

and A

2

, respe
tively. Then tra
es

(A

1

kA

2

;P

1

kP

2

)

is exa
tly the set of (E; ;)-sequen
es whose

restri
tions to A

1

and A

2

are tra
es

(A

1

;P

1

)

and tra
es

(A

2

;P

2

)

, respe
tively. That is,

tra
es

(A

1

kA

2

;P

1

kP

2

)

= f� j � is an (E; ;)-sequen
e and � d(E

i

; ;) 2 tra
es

(A

i

;P

i

)

; i 2 f1; 2gg.

Theorem 8.7 and its 
orollary presented in Se
tion 8 assume spe
i�
ation automata

whose tra
e sets are 
losed under limits, and hen
e express safety 
onstraints. In this

se
tion we present a theorem that 
an be used in the de
omposition of veri�
ation where

the spe
i�
ation automata may also express liveness properties.

The de
omposition of a proof of the assertion (A

1

; P

1

)k(B

1

; Q

1

) � (A

2

; P

2

)k(B

2

; Q

2

)


an be viewed as 
onsisting of two parts. The �rst part involves the de
omposition of the

proof that (A

1

; P

1

) and (B

1

; Q

1

) satisfy their safety properties and the se
ond part involves

the de
omposition of the proof that (A

1

; P

1

) and (B

1

; Q

1

) satisfy their liveness properties.

Theorem 9.3 uses Corollary 8.8 for the safety part of proofs; the �rst four hypotheses

of Theorem 9.3 imply those of Corollary 8.8. The remaining two hypotheses involve

the liveness part of proofs. It requires one to �nd auxiliary automata with properties,

(A

3

; P

3

) and (B

3

; Q

3

), su
h that (A

1

; P

1

) implements (A

3

; P

3

) in the 
ontext of B

3

without

relying on the liveness property of B

3

, and (B

1

; Q

1

) implements (B

3

; Q

3

) in the 
ontext of

A

3

without relying on the liveness property of A

3

. Moreover, (A

1

; P

1

) must implement

(A

2

; P

2

) in the 
ontext of (B

3

; Q

3

) and (B

1

; Q

1

) must implement (B

2

; Q

2

) in the 
ontext of

(A

3

; P

3

). That is, the implementation relation between (A

1

; P

1

) and (A

2

; P

2

) depend on

the liveness property Q

3

of the auxiliary 
ontext, and the implementation relation between

(B

1

; Q

1

) and (B

2

; Q

2

) depend on the liveness property P

3

of the auxiliary 
ontext.

Theorem 9.3 Suppose A

1

, A

2

, A

3

, B

1

, B

2

, B

3

are TIOAs su
h that A

1

, A

2

, and A

3

are


omparable, B

1

, B

2

, and B

3

are 
omparable, and A

i

is 
ompatible with B

i

for i 2 f1; 2; 3g.

Suppose that P

i

is a property for A

i

and Q

i

is a property for B

i

for i 2 f1; 2; 3g. Suppose

further that:

1. The sets tra
es

A

3

and tra
es

B

3

are 
losed under limits.

2. The sets tra
es

A

3

and tra
es

B

3

are 
losed under time-extension.

3. A

2

� A

3

and B

2

� B

3

.

4. A

1

kB

3

� A

2

kB

3

and A

3

kB

1

� A

3

kB

2

.

5. (A

1

; P

1

)k(B

3

; frags

B

3

) � (A

3

; P

3

)k(B

3

; frags

B

3

) and

(A

3

; frags

A

3

)k(B

1

; Q

1

) � (A

3

; frags

A

3

)k(B

3

; Q

3

).
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6. (A

1

; P

1

)k(B

3

; Q

3

) � (A

2

; P

2

)k(B

3

; Q

3

) and

(A

3

; P

3

)k(B

1

; Q

1

) � (A

3

; P

3

)k(B

2

; Q

2

).

Then (A

1

; P

1

)k(B

1

; Q

1

) � (A

2

; P

2

)k(B

2

; Q

2

).

Proof: Let � 2 tra
es

(A

1

;P

1

)k(B

1

;Q

1

)

. By de�nition of 
omposition for automata with

properties, � 2 tra
es

(A

1

kB

1

)

. By Assumptions 1, 2, 3 and 4 and Theorem 8.8, we have � 2

tra
es

(A

2

kB

2

)

. By proje
tion using Theorem 8.3, � d(E

A

2

; ;) 2 tra
es

A

2

and � d(E

B

2

; ;) 2

tra
es

B

2

. By Assumption 3, � d(E

A

2

; ;) 2 tra
es

A

3

and � d(E

B

2

; ;) 2 tra
es

B

3

. Sin
e A

2

and A

3

are 
omparable, � d(E

A

2

; ;) = � d(E

A

3

; ;) and � d(E

B

2

; ;) = � d(E

B

3

; ;). There-

fore, � d(E

A

3

; ;) 2 tra
es

A

3

and � d(E

B

3

; ;) 2 tra
es

B

3

.

By proje
tion using Theorem 9.2, we have � d(E

A

1

; ;) 2 tra
es

(A

1

;P

1

)

and � d(E

B

1

; ;) 2

tra
es

(B

1

;Q

1

)

. By pasting using Theorem 9.2, we have � 2 tra
es

(A

1

;P

1

)k(B

3

;frags

B

3

)

and

� 2 tra
es

(B

1

;Q

1

)k(A

3

;frags

A

3

)

. By Assumption 5, we have � 2 tra
es

(A

3

;P

3

)k(B

3

;frags

B

3

)

and

� 2 tra
es

(B

3

;Q

3

)k(A

3

;frags

A

3

)

. By proje
tion using Theorem 9.2, we get � d(E

A

3

; ;) 2

tra
es

(A

3

;P

3

)

and � d(E

B

3

; ;) 2 tra
es

(B

3

;Q

3

)

. Sin
e � d(E

A

1

; ;) 2 tra
es

(A

1

;P

1

)

, by past-

ing using Theorem 9.2, we have � 2 tra
es

(A

1

;P

1

)k(B

3

;Q

3

)

, similarly sin
e � d(E

B

1

; ;) 2

tra
es

(B

1

;Q

1

)

, we have � 2 tra
es

(B

1

;Q

1

)k(A

3

;P

3

)

.

Example 9.4 (Using environment assumptions to prove liveness)This example

illustrates the use of Theorem 9.3 in de
omposing the proof of an implementation relation-

ship where the implementation and spe
i�
ation are not merely 
omposition of automata

but 
omposition of automata that satisfy some liveness property.

Let UseOldInputA

0

, UseOldInputB

0

, UseNewInputA

0

, and UseNewInputB

0

be au-

tomata whi
h are de�ned exa
tly as UseOldInputA, UseOldInputB, UseNewInputA,

and UseNewInputB from Example 8.10 ex
ept that there is no bound on the number of

outputs that the automata 
an perform. That is, maxout is removed from their sets of

state variables. Let P

1

; P

2

; Q

1

and Q

2

be properties for, respe
tively, UseNewInputA

0

,

UseOldInputA

0

, UseNewInputB

0

and UseOldInputB

0

de�ned as follows:

� P

1


onsists of the admissible exe
ution fragments of UseNewInputA

0

.

� Q

1


onsists of the admissible exe
ution fragments of UseNewInputB

0

.

� P

2


onsists of the exe
ution fragments of UseOldInputA

0

that 
ontain in�nitely

many a a
tions.

� Q

2


onsists of the exe
ution fragments of UseOldInputB

0

that 
ontain in�nitely

many b a
tions.

Suppose that we want to prove that:

(UseNewInputA

0

; P

1

)k(UseNewInputB

0

; Q

1

) � (UseOldInputA

0

; P

2

)k(UseOldInputB

0

; Q

2

).
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The automata UseNewInputA

0

kUseNewInputB

0

and UseOldInputA

0

kUseOldInputB

0

perform an alternating sequen
e of a and b a
tions. The properties express the additional


ondition that as time goes to in�nity the 
omposite automaton UseNewInputA

0

kUseNewInputB

0

performs in�nitely many a and in�nitely many b a
tions where a and b a
tions alternate.

As in Example 8.10 automata AlternateA and AlternateB from Figure 16 satisfy the

required 
losure properties for auxiliary automata and 
apture what is essential about

the safety part of the proof, namely that the environments of UseNewInputA

0

and

UseNewInputB

0

impose alternation. The essential point in the proof of the liveness

part is that ea
h automaton responds to ea
h input it re
eives from its environment.

Therefore, we need to pair AlternateA and AlternateB with properties that eliminate

non-responding behavior. The properties P

3

and Q

3

de�ned below satisfy this 
ondition:

� P

3


onsists of exe
ution fragments � of AlternateA that satisfy the following 
ondi-

tion: if � has �nitely many a
tions then the last a
tion in � is a.

� Q

3


onsists of exe
ution fragments � of AlternateB that satisfy the following 
ondi-

tion: if � has �nitely many a
tions and 
ontains at least one a then the last a
tion

in � is b.

In order to see why the �rst part of Assumption 5 is satis�ed we 
an inspe
t the

de�nition of UseNewInputA and observe that UseNewInputA performs an output a one

time unit after ea
h input b, when it is 
omposed with AlternateB. This implies that

in any admissible exe
ution fragment of UseNewInputAkAlternateB with �nitely many

a
tions the last a
tion must be a. This is exa
tly the liveness 
onstraint expressed by P

3

.

The se
ond part of Assumption 5 
an be seen to hold using a symmetri
 argument.

In order to see why the �rst part of Assumption 6 holds 
onsider any exe
ution fragment

� of UseNewInputAkAlternateB. For � to satisfy P

1

and Q

3

at the same time, it must


onsist of an in�nite sequen
e in whi
h a and b a
tions alternate. It is not possible for

UseNewInputAkAlternateB to have an admissible exe
ution fragment with �nitely many

a
tions be
ause the de�nition of UseNewInputA requires su
h a sequen
e to end in a while

this is ruled out by Q

3

, whi
h requires AlternateB to respond to a. The se
ond part of

Assumption 6 
an be seen to hold using a symmetri
 argument.

Note that in our explanations we refer to exe
ution fragments rather than tra
es of

exe
ution fragments. This is be
ause our examples do not in
lude any internal a
tions

and our arguments for exe
ution fragments extend to tra
e fragments in a straightforward

way.

9.3 Re
eptiveness for Properties

If we would de�ne a live TIOA to be a pair (A; L) of a TIOAA 
oupled with an I/O liveness

property L then the resulting 
lass of systems would not be 
losed under 
omposition. The
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problem, and this was noted already in previous studies of liveness properties for timed

I/O automata su
h as [36℄, is that this de�nition allows a system to 
hoose its relative

speed with respe
t to the environment, and to base its de
isions on the future behavior of

the environment. As a result, the live preorder is not substitutive for parallel 
omposition.

To solve these problems, previous studies have introdu
ed notions of re
eptive strategies

to guarantee that a system does not 
onstrain its environment. The TIOA framework

in
orporates a simpler (although less general) notion of strategy than those 
onsidered in

previous work on timed I/O automata [36℄.

We begin with a de�nition of re
eptiveness for a property. Let A be a TIOA and let

P be a property for A, that is, a subset of the exe
ution fragments of A. Then we say

that A is re
eptive for P provided that there exists a strategy A

0

for A su
h that every

exe
ution fragment of A

0

is in P . That is, A has a strategy that 
an always ensure that

P is satis�ed (regardless of the behavior of the environment).

The following theorem shows that if A is re
eptive for P and P is history-independent,

then we 
an 
on
lude that P is a liveness property for A. Theorem 9.6 strengthens this

result: if we also know that P 
onsists of non-lo
ally-Zeno exe
ution fragments, then P

must be an I/O liveness property.

Theorem 9.5 If a TIOA A is re
eptive for P and P is history-independent then P is a

liveness property for A.

Proof: Suppose that A is re
eptive for P . That is, A has a strategy A

0

su
h that

frags

A

0

� P . Let � be a 
losed exe
ution fragment of A with �:lstate = x. Sin
e

Q

A

= Q

A

0

, we know that x 2 Q

A

0

. Now, we need to show that there exists some �

0

su
h

that �

_

�

0

2 P . Let �

0

= }(x). We know that }(x) 2 frags

A

0

by axiom T0. Sin
e

frags

A

0

� P , �

0

2 P . Sin
e P is history-independent �

_

�

0

2 P , as needed.

Theorem 9.6 If a TIOA A is re
eptive for P and P is a history-independent property for

A 
onsisting of non-lo
ally-Zeno exe
ution fragments, then P is an I/O liveness property

for A.

Proof: Suppose A is re
eptive for P . Then there exists a strategy A

0

for A su
h that

frags

A

0

� P . Sin
e all elements of P are non-lo
ally-Zeno, it follows that every element

in frags

A

0

is non-lo
ally-Zeno, equivalently, A

0

is progressive. By Theorem 7.4, we know

that any progressive strategy is I/O feasible.

Now, let � be a 
losed exe
ution fragment of A with �:lstate = x and let � be an

(I; ;)-sequen
e. Sin
e Q

A

= Q

A

0

, we have x 2 Q

A

0

, and sin
e A

0

is I/O feasible, there

exists some exe
ution fragment �

0

of A

0

from x su
h that �

0

d(I; ;) = �. Sin
e �

0

2 P and

P is history-independent we have that �

_

�

0

2 P . Hen
e, P is an I/O liveness property

for A.
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The need for the history-independen
e assumption for the two theorems above stems

from the fa
t that strategies of our framework are memoryless whereas liveness properties

are de�ned in terms of the possibility of extending every 
losed exe
ution fragment to a

live exe
ution fragment. The history-independen
e assumption might be
ome unne
essary

if we de�ned strategies to have memory while keeping the liveness property de�nition as

is. Alternatively, we 
ould 
hange the de�nition of a liveness property to a non-standard

one su
h that a property P for A is de�ned to be a liveness property provided that for

any state x of A, there is some exe
ution fragment � from x that is in P .

The following is a basi
 theorem that has ni
e 
onsequen
es for 
omposition of au-

tomata with liveness properties. Together with Theorems 9.5 and 9.6, it 
an be used for


ompositional reasoning about TIOAs with liveness properties.

Theorem 9.7 Let A

1

and A

2

be two 
ompatible TIOAs. If A

1

is re
eptive for P

1

and A

2

is re
eptive for P

2

then A

1

kA

2

is re
eptive for P

1

kP

2

.

Proof: The proof follows from Theorem 8.13 and the de�nition of 
omposition of prop-

erties P

1

kP

2

from Se
tion 6.

10 Con
lusions

In this paper, we have de�ned a new timed I/O automaton modeling framework for de-

s
ribing and analyzing the behavior of timed systems. This framework is a spe
ial 
ase of

the re
ently presented hybrid I/O automaton modeling framework [22℄. We used what we

have learned in developing the HIOA framework to revise the earlier work on timed I/O

automaton models. Our main motivation was to have a timed I/O automaton model that

is 
ompatible with the new HIOA model. We sought to bene�t from the new style used

in des
ribing hybrid behavior in simplifying the prior de�nitions and results on timed

I/O automata. Moreover, we extended the work on the HIOA model by investigating

safety and liveness properties and re
eptiveness for general liveness, not only for feasibil-

ity as in the HIOA framework. The results presented in this paper suggest that we are

not that far from having a uni�ed framework for timed and hybrid systems in whi
h we


an 
olle
t and summarize previous results of our own work. We have also established

formal relationships with other models that are 
omparable to ours, showing that the

TIOA framework is general enough to express previous results from other frameworks,

su
h as [29, 28, 6, 27, 25, 36℄.

Designers of real-time systems or timing-based algorithms 
an use the TIOA frame-

work to des
ribe 
omplex systems and to de
ompose them into manageable pie
es. In

parti
ular, they 
an use the TIOA framework to des
ribe their systems at multiple lev-

els of abstra
tion, to establish implementation relationships between these levels and to

de
ompose their systems into more primitive, intera
ting 
omponents.
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The TIOA framework supports pre
ise statement and veri�
ation of safety, liveness,

and performan
e properties of timing-dependent systems. Sin
e the TIOA framework is

purely mathemati
al, proofs are generally done by hand at present. However, the TIOA

framework provides a natural basis for 
omputer support tools, whi
h will be developed

in the future as an extension to the IOA toolkit [13℄. These tools in
lude a syntax and

stati
 semanti
s 
he
ker for TIOA spe
i�
ations, a simulator and partially automated proof

tools that employ dynami
 invariant dete
tion te
hniques. There is also work in progress

toward a tool to automati
ally translate TIOA spe
i�
ations into the input language of

UPPAAL [32, 21℄, whi
h is dis
ussed in more detail in Se
tion 1.2. This would allow

us to bene�t from fully automated methods in verifying TIOAs that are expressible in

UPPAAL.
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A Notational Conventions

a; b a
tion

f; g; h fun
tion

i; j index

l lo
ally 
ontrolled a
tion

t time point

v; x variable

A set of a
tions

C task

E set of external a
tions

F set of fun
tions

H set of internal (hidden) a
tions

I set of input a
tions

J interval

K set of time points

L set of lo
ally 
ontrolled a
tions

O set of output a
tions

P set of elements in 
po

Q set of automaton states

R (simulation) relation

S set

T set of traje
tories

V set of variables

X set of internal variables

x state

v valuation

A;B; C timed (I/O) automaton

D set of dis
rete transitions

T set of traje
tories

N the natural numbers

R the real numbers

T the time axis

Z the integers

V the universe of variables

�; �; Æ (A; V )-sequen
e


 sequen
e

� the empty sequen
e

� proje
tion fun
tion

�; � sequen
e

� , � traje
tory

� set of start states
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Index

(A; V )-restri
tion, 19

(A; V )-sequen
e, 17

abstra
tion, 5

admissible, 17, 19, 88

Alur-Dill timed automaton, 8, 37, 38, 77

analog, 14

analog variable, 22

assume-guarentee, 105

ba
kward simulation, see simulation rela-

tion, 48


hain, 11


lo
k syn
hronization, 27, 44

Clo
kSyn
, 29, 58, 98


omparable

TA, 39

TIOA, 102


ompatible

TA, 55

TIOA, 103


omplete partial order, 11


omposition, 5, 55, 103


ongruen
e, 73


po, see 
omplete partial order

dis
rete

variable, 14

dis
rete a
tion, 20

dis
rete transition, 20

dis
rete variable, 14, 22

dynami
 type, 13

e�e
t, 22

enabled, 20

exe
ution, 30, 98

Periodi
Send, 32

T imeout, 32

exe
ution fragment, 30, 31, 98

fair forward simulation, see simulation rela-

tion

fairness property, see property

feasible, 37

FIN, see �nite internal nondeterminism, 107

�nite internal nondeterminism, 35

Fis
her's mutual ex
lusion, 26, 33, 71

Fis
herME, 27

Fis
herME2, 71

forward simulation, see simulation relation


lo
k syn
hronization, 44

time-bounded 
hannels, 43

hiding, 62

HIOA, 6, 104

history relation, 50, 51, 103

time-bounded 
hannels, 53

history variable, 50, 51

time-bounded 
hannels, 50

history-independent property, see property

hybrid automaton, 21, 55

Hybrid I/O Automaton modeling framework,

6, 122

hybrid sequen
e, 16

admissible, 17


losed, 17


on
atenation, 18

limit time, 17

pre�x, 18

time-bounded, 17

Zeno, 17

HyTe
h, 8

I/O feasible, 99, 114

I/O liveness property, see property

implementation, 5, 39

invariant, 31


lo
k agreement, 60


lo
k validity, 59, 60

Clo
kSyn
, 59, 60
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failure and timeout, 58

Fis
herME, 33, 34

T imedChannel, 33

timeout, 57

isomorphism, 46

limit, 11

linear hybrid automaton, 8

liveness property, see property

lo
ally Zeno, 98

ma
hine-
losed, 83{85

ma
hine-
losure, 6

non-Zeno, 17, 19

parallel 
omposition, see 
omposition

partial order, 11


omplete partial order, 11

periodi
 sending pro
ess, 24, 32

periodi
 sending pro
ess with failures, 24

Periodi
Send, 24, 56

Periodi
Send2, 57

Periodi
Send2, 25

point traje
tory, see traje
tory

pre
ondition, 22

progressive, 99, 102

property, 81, 116

fairness, 6, 86

history-independent, 88

I/O liveness, 116

liveness, 6, 82, 89, 116, 118

safety, 6, 81, 89

prophe
y relation, 53, 103

prophe
y variable, 53

rea
hable, 31

re
eptive, 102, 115

re
eptiveness, 6, 100

re
eptiveness for a property, 120

re�nement, 46

safety property, see property

sequen
e, 10

simulation relation, 5, 41

ba
kward simulation, 41, 47, 103

forward simulation, 41, 102

re�nement, 46

stati
 type, 13

stopping 
ondition, 23

strategy, 100, 101

strongly fair, 87

substitutivity, 61, 62, 104, 105

suÆx, 31

TA, see timed automaton

TA with bounds, 65

task, 65

lower bound, 66

upper bound, 66

time axis, 13

time interval, 13

time-bounded 
hannel, 23, 33, 43, 50, 53

timed automaton, 20

timed automaton model, 20

Timed I/O automaton, 5, 97

Timed Input/Output Automaton modeling

framework, 5

T imedChannel, 23, 56, 57, 98

T imeout, 26, 56, 57

timeout pro
ess, 25, 32

timing-independent, 37, 107

TIOA, see Timed I/O automaton

tra
e, 5, 31, 98

Periodi
Send, 32

T imeout, 33

tra
e fragment, 31, 98

traje
tory, 14, 20


on
atenation, 15

limit time, 15

point traje
tory, 14, 17

pre�x, 15

untimed automaton, 12

untiming, 71, 73

UPPAAL, 8, 123

variables, 13, 14, 20
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analog, 14

dis
rete, 14

dynami
 types, see stati
 type

stati
 type, see stati
 type

weakly fair, 87

Zeno, 6, 17, 34, 88
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