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Abstract  
TIOA is a simple formal language for modeling distributed systems with timing as collections of 

interacting state machines, called timed input/output automata.  The TIOA Toolkit supports a range of 
validation methods, including simulation and machine-checked proofs.  This user guide and reference 
manual includes a tutorial on the use of timed input/output automata and the TIOA language to model 
timed systems.  It also includes a complete definition of the TIOA language. 
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TIOA User Guide  

1. Preface  
Systems with timing constraints are employed in a wide range of domains including communications, 

embedded systems, real-time operating systems, and automated control.  Many applications involving 
timed systems have strong safety, reliability, and predictability requirements, which make it important to 
have methods for the systematic design of these applications and for a rigorous analysis of their timing-
dependent behavior.  

The correctness and performance of timed systems often depends on the timing of events, not just on 
the order in which they occur.  A typical timed system consists of computer components, which operate in 
discrete steps, and timing-related components such as clocks or physical processes, whose behaviors 
involve continuous transformation over time.  

Timed (input/output) automata [3],[5] provide a mathematical framework that supports the description 
and analysis of timed systems.  The TIOA language provides notations for describing timed automata 
precisely.  The TIOA language is a variant of the IOA language [2], which was designed for use with 
basic (untimed) input/output (I/O) automata.  Like IOA, TIOA is supported by a variety of analytic tools, 
ranging from lightweight tools, which check the syntax and static semantics of automaton descriptions, to 
medium-weight tools, which simulate the action of an automaton, and to heavyweight tools, which 
provide support for proving properties of automata.  

This document is based on material in various descriptions of IOA [2] and TIOA [5].  It is organized 
into two parts, a TIOA User Guide and a TIOA Reference Manual.  The User Guide begins with an 
informal tutorial on timed automata and the TIOA language.  This tutorial consists largely of illustrative 
examples.  Reading it should be sufficient for the reader to begin writing complete TIOA descriptions.  
The remainder of the User Guide provides more details about the constructs used in the examples.  The 
subsequent Reference Manual presents the formal syntax and semantics of the TIOA language. 

2. Introduction to timed automata  
Timed (input/output) automata  are nondeterministic state machines that form the basis of a 

mathematical model suited for describing time-dependent behavior in concurrent systems.  By providing 
precise representations for both systems and their components as timed automata, the model enables us to 
view systems and to reason about them at varying levels of abstraction.  Automata interact with each 
other and with the environment through discrete actions.  Their internal state is invisible to other automata 
and to the environment; parts of that state can evolve continuously over time.  

 
Figure 2.1.  An alarm clock modeled as a timed automaton 



Figure 2.1 illustrates the description of an alarm clock as a timed automaton: AlarmClock is a timed 
automaton with two timed automata, Clock and Alarm, as components.  Arrows in the figure represent the 
actions through which the component automata communicate with each other and with the environment, 
which itself can be considered as yet another timed automaton. 

Outgoing arrows represent output actions that are under the originating automaton's control.  Figure 2.1 
depicts two output actions: showTime, which represents a change in the time being displayed, and ring, 
which represents the alarm going off. 

Incoming arrows represent input actions, which are not under the receiving automaton's control.  The 
input actions setTime, setAlarm, and toggleAlarm in Figure 2.1 represent actions that originate in the 
environment and can occur at any time. The action showTime is an input action of Alarm that originates as 
an output action of Clock.  In the model, paired output and input actions such as these occur 
simultaneously and indivisibly. 

The state  of an automaton is determined by the values of its state variables, which are visible only from 
within the automaton.  State variables internal to the Clock automaton represent the current time, and state 
variables local to the Alarm automaton representing the on/off status of the alarm and the time at which it 
will ring if it is on.  Note that because the states of these automata are not visible to each other or to the 
environment, the Clock automaton can communicate the current time to the Alarm automaton and to the 
environment only through the occurrence of a showTime action. 

Actions occur, and the state of a timed automaton changes, instantaneously by discrete  transitions.  The 
state can also change over an interval of time by following a trajectory, which is a function that describes 
its evolution between discrete transitions.  Each state variable has both a static type, which defines the set 
of values it may assume, and a dynamic type, which defines the set of trajectories it may follow. 

3. Introduction to TIOA 
Figure 2.1 depicts the actions of the automata that comprise the alarm clock, but it does not describe the 

actions completely (i.e., it says nothing about the variables h and m), only hints at the states of the 
automata, and provides no information at all about transitions or trajectories.  We use the TIOA language 
to supply this missing information.  

Figure 3.1 contains a TIOA description of the Alarm automaton.  As shown in Figure 2.1, this 
automaton has three input actions and one output action.  Here, however, we learn that two of the input 
actions are each parameterized by two elements of the set Nat of natural numbers, which are intended to 
express the time of day in hours and minutes on a 24-hour clock.  The let statement that appears before 
the automaton definition defines a predicate, legalTime, used to constrain the values of these action 
parameters. 

The automaton Alarm has three state variables: alarmTime, which has static type Nat, represents the 
time of day at which the alarm is set to ring (expressed in minutes past midnight), turnedOn, which has 
static type Bool (the set {true, false} of boolean values), represents whether the alarm is turned on or off, 
and ringing, also of static type Bool, represents whether the alarm should be ringing.  The automaton has a 
single initial state in which these variables have the values 0, false, and false.  The values of these 
variables can change only by the occurrence of a discrete transition.  

The transitions of the automaton Alarm are given in precondition/effect style .  The input actions have 
no preconditions, which is the same as having true as a precondition.  This is the case for all input actions; 
that is, every input action in every automaton is enabled in every state.  The effect of setAlarm is to set 
alarmTime to the time at which the alarm should ring (if it is on).  The effect of toggleAlarm is to switch 
between the alarm being on and off (¬ is the logical not operator, which can be entered by typing the 
symbol ~).  The effect of showTime is to set ringNow to true if the alarm should ring; this happens when 
the alarm is turned on and the automaton learns, through this input action, that the time shown on the 



clock is the time at which the alarm should ring.  Finally, the output action ring can occur only when it is 
enabled, that is, only in states in which ringNow is true.  Its effect is to set ringNow to false, which 
prevents the action from occurring again until another appropriate showTime action enables it once again.  

Figure 3.1.  TIOA description of Alarm component 

As for the Alarm automaton, we discover information about the parameters for the Clock automaton's 
actions in the TIOA description in  

Figure 3.2.  This automaton also has three state variables: whatToShow represents the time that will be 
displayed by the next showTime action, whenToShow represents when the next showTime action will 
occur (expressed in minutes beyond the time at which the clock was started), and now (a real number) 
represents the current time (also expressed in minutes beyond the time at which the clock was started).  

The first two state variables are discrete variables whose values can change only by the occurrence of a 
discrete transition.  Because the third state variable, now, has static type Real, it is an analog variable 
whose value can change continuously over time.  TIOA uses the set of real numbers to represent real 
time, and it treats the values of analog variables as functions of real time.  

The definition of the timePassage trajectory of the Clock automaton governs the evolution of the value 
of the analog variable now and its effect on the operation of the automaton.  The evolve clause in this 
definition, by constraining the first derivative of now to have the constant value 1, constrains now to be a 
function now(t) = t + C for some constant C; in essence, now represents the real time that has elapsed 
since the automaton started.  The stop when clause in the transition definition states that time stops when 
the value of now equals whenToShow (the floor function truncates the real value of now to an integer).  
Time cannot advance again until some action, which is enabled when the stopping condition is true, 
causes the stopping condition to become false.  

The effect of the setTime transition in the automaton Clock is similar to that of the setAlarm transition 
in the automaton Alarm.  This action sets whatToShow to the time that should be displayed on the clock.  
In addition, it sets whenToShow so that the stopping condition of the timePassage trajectory becomes 
true, which prevents time from advancing until a showTime action occurs.  A showTime action is enabled 
if time has stopped and the values of its parameters correspond to the value of whatToShow.  The effect 

let legalTime(hour, minute: Nat) = minute < 60 /\ hour < 24 
 
automaton Alarm 
  signature 
    input showTime(hour, minute: Nat) where legalTime(hour, minute), 
             setAlarm(hour, minute: Nat) where  legalTime(hour, minute), 
             toggleAlarm 
    output ring 
  states 
    alarmTime: Nat := 0, 
    turnedOn: Bool := false, 
    ringNow: Bool := false 
  transitions 
    input setAlarm(hour, minute) 
      eff alarmTime := (60*hour) + minute 
    input showTime(hour, minute) 
      eff ringNow := turnedOn /\ alarmTime = (60*hour) + minute 
    input toggleAlarm 
      eff turnedOn := ¬turnedOn 
    output ring 
      pre ringNow 
      eff ringNow := false 



of such an action is to reset whenToShow to the next time the display needs to be updated (i.e., one 
minute from now) and to reset whatToShow to the time that will be shown then (with the displayed time 
wrapping back to 00:00 after it reaches 23:59).  

Figure 3.2.  TIOA description of Clock component 

Finally, Figure 3.3 uses TIOA to define the alarm clock shown in Figure 2.1 as the composition of the 
Alarm and Clock automata.  This definition matches each output action showTime of the Clock automaton 
with the input action of the same name and the same parameter values in the Alarm automaton.  Actions 
matched in this fashion are performed simultaneously and indivisibly.  

Figure 3.3.  TIOA description of an alarm clock 

4. Specifying timed automata, in mathematics and in TIOA 
Mathematically, a timed (input/output) automaton A is a tuple with six elements 

• an action signature Asig which is the union of disjoint sets Ain, Aout , and Aint  of discrete input, output, 
and internal actions,  

• a set AV of state variables,  
• a set AS of states, which is a subset of the set of all possible valuations of AV, (a valuation is a 

function f that assigns to each variable v in AV a value f(v) in the static type of V), 
• a set AS_0 of initial states, which is a non-empty subset of AS,  
• a discrete transition relation Atran, which is a subset of AS × Asig × AS, and  
• a set Atraj of trajectories for AV, which is a set of functions from intervals of time starting with 0 to AS. 
 
An action of an automaton is called external if it is an input or output action.  

TIOA provides notations for defining timed automata either as primitive automata by specifying their 
names, signatures, state variables, transition relations, and trajectories, or as composite automata  by 

automaton AlarmClock 
  components Clock; Alarm 

automaton Clock 
  signature 
    output showTime(hour, minute: Nat) where  legalTime(hour, minute) 
    input  setTime(hour, minute: Nat) where  legalTime(hour, minute) 
  states  
    whatToShow: Nat := 0, 
    whenToShow: Nat := 0, 
    now: Real := 0 
  transitions  
    input setTime(hour, minute) 
      eff whatToShow := (60*hour) + minute; 
       whenToShow := floor(now) 
    output showTime(hour, minute) 
      pre whenToShow = floor(now); 
            hour = div(whatToShow, 60); 
            minute = mod(whatToShow, 60) 
      eff whenToShow := floor(now) + 1; 
           whatToShow := mod(whatToShow + 1, 24*60) 
  trajectories 
    trajdef timePassage 
      stop when whenToShow = floor(now) 
      evolve d(now) = 1 



specifying their decomposition into simpler timed automata.  The following subsections describe these 
notations and their relation to the mathematical model of timed automata.  

4.1. Automaton names and parameters  
The first line of an automaton description in TIOA consists of the keyword automaton followed by the 

name of the automaton.  The name may be followed by a list of formal parameters enclosed within 
parentheses.  For example, the Channel automaton defined in Figure 4.1 has three parameters, i being the 
index of a process that uses the channel to convey messages of type M to another process with index j. 

automaton Channel(i, j: Nat, M: type) 
  signature  
    input   send(const i, const j, m: M) 
    output receive(const i, const j, m: M) 
  states buffer: Seq[M] := Ø  
  transitions  
    input send(i, j, m) 
      eff  buffer := buffer ?  m 
    output receive(i, j, m) 
      pre buffer ≠  Ø /\ m = head(buffer) 
      eff  buffer := tail(buffer) 

Figure 4.1.  TIOA description of an untimed FIFO communication channel 

There are two kinds of automaton parameters.  An indiv idual parameter, such as i: Nat or j: Nat, 
consists of an identifier and an associated type, and it denotes a fixed element of that type.  Individual 
parameters with the same type can be specified together, as in i, j: Nat.  A type parameter, such as M: type, 
consists of an identifier followed by the keyword type, and it denotes a type.  

An automaton with individual parameters can contain a clause that constrains the values of those 
parameters.  For example, an automaton whose definition begins with 

automaton Swap(A, B: Set[Int]) where  A ⊂ B 

is parameterized by two sets of integers, the first of must be a proper subset of the second.  

4.2. Action signatures 
The signature for an automaton is declared using the keyword signature followed by lists of entries 

describing the automaton's input, internal, and output actions.  Each entry contains a name and an optional 
list of parameters enclosed in parentheses.  There are two kinds of action parameters.  Varying parameters 
(such as hour, minute: Nat in  

Figure 3.2) consist of identifiers with associated types, and they denote arbitrary elements of those 
types.  A fixed parameters (such as const i and const j in Figure 4.1) consists of the keyword const 
followed by term denoting fixed element of its type.  Neither kind of parameter can have type as its type.    

Each entry in the signature denotes a set of actions, one for each assignment of values to its varying 
parameters.  Thus the set of input actions for the Channel automaton contains one action send(i, j, m) for 
each value of the action parameter m of type M; the values of i and j in these actions are fixed by their 
values as parameters of the automaton.  

It is possible to constrain the values of the varying parameters for an entry in the signature using the 
keyword where followed by a predicate. For example, the where  clauses in  

Figure 3.2 constrain the values of the parameters hour and minute.  Thus the set of output actions for 
the Clock automaton contains one action showTime(hour, minute) for each pair of values of its parameters 
that satisfy the predicate legalTime(hour, minute).  



4.3. State variables  
As in the examples, state variables are declared in TIOA using the keyword states followed by a 

comma-separated list of state variables and their static types.  The initial values of state variables can be 
constrained using the assignment operator :=.  For example, the initial value of the state variable  buffer in 
the Channel automaton (Figure 4.1) must be the empty set; hence there is a single initial state for this 
automaton.    

Initial values of state variables need not be constrained in this fashion.  For example, if the assignment 
:= 0 were omitted from the declaration of the state variable whatToShow in the Clock automaton ( 

Figure 3.2), then that automaton would have an infinite number of initial states, one for each natural 
number n.  If n is less than 24*60, the clock will display that time when power is turned on.  Otherwise, 
the clock will display nothing until either a setTime action occurs or at least an entire day of real time 
elapses.  

To rule out this latter aberrant behavior, the initial value of whatToShow can be constrained to be some 
arbitrary, but legal time of day by means of a declaration such as  

whatToShow: Nat := choose  n where  n < (24*60)  
 

When such a nondeterministic choose  clause is used to initialize a state variable, there must be some 
value of the variable that satisfies the predicate following the where clause.  If the predicate is true for all 
values of the variable, then the effect is the same as if no initial value had been specified for the state 
variable.  

It is also possible to constrain the initial values of all state variables taken together, whether or not 
initial values are assigned to any individual state variable.  This can be done using the keyword initially 
followed by a predicate (involving state variables and automaton parameters).  For example, we can allow 
the Clock automaton to display an arbitrary time of day when its power is turned on by constraining the 
three state variables of the Clock automaton to have the same unspecified value: 

states  
    whatToShow: Nat, whenToShow: Nat, now: Real 
    initially whatToShow = whenToShow /\ whatToShow = floor(now) 

 

The order in which state variables are declared makes no difference: they are initialized simultaneously.  
Furthermore, the expressions denoting their initial values cannot refer to the values of any state variables.  

4.4. Transition relations  
Transitions for the actions in an automaton's signature are defined following the keyword transitions.  

A transition definition consists of an action type (i.e., input, internal, or output), an action name with 
optional parameters (see Section 4.5), an optional where  clause, an optional precondition (see Section 
4.6), and an optional effect (see Section 4.7).   This definition groups transitions that involve a particular 
type of action together into a single piece of code.   

More than one transition definition can be given for an entry in an automaton's signature.  For example, 
we could define the transitions of the showTime action in the Clock automaton in two parts, one 

    output showTime(h, m) where  h = 23 ⇒  m < 50 
      pre whenToShow = floor(now); 
            div(whatToShow, 60) = h; 
            mod(whatToShow, 60) = m 
      eff whenToShow := floor(now) + 1; 
           whatToShow := whatToShow + 1 

 



describing what happens before midnight and the other 

output showTime(23, 59) 
      pre whenToShow = floor(now) /\ div(whatToShow, 60) = 23 /\ mod(whatToShow, 60) = 50 
      eff whenToShow := floor(now) + 1; 
           whatToShow := 0 
 

how the time of day is reset to 00:00 at midnight. 

4.5. Transition parameters  
The parameters that follow an action name in a transition definition must match those that follow the 

action name in the automaton's signature, both in number and in type.  The simplest way to formulate 
parameters for a transition definition is to erase the keyword const and the type modifiers from the 
parameters given for the action in the automaton’s signature; thus, in Figure 2.1, the parameters of the 
send action are given as (const i, const j, m: M) in the signature, but are shortened to (i, j, m) in the 
transition definition. 

Action parameters and transition parameters differ in several respects.  Parameters in the action 
signature can be terms (identified by the keyword const) that denote fixed values or they can be 
(declarations for) variables.  If they are variables, their types matter, but their names do not.  On the other 
hand, all parameters in transition definitions are terms, and the keyword const does not appear.  
Parameters in transition definitions can denote either fixed or varying values.  If they contain no variables 
other than automaton parameter, then they denote fixed values.  For example, the parameters in 
showTime(23, 59) denote fixed values.  If they contain other variables (such as h and m), these variables 
can have arbitrary values.   

Transition definition can contain additional local parameters, which are specified after the ordinary 
parameters and identified by the keyword local.  Local variables serve two purposes.  They can be 
constrained by a transition’s precondition and used in the effects, as in 

automaton PitchTwo(s: Set[Nat]) 
  signature output pitch(n: Nat) 
  states left: Set[Nat] := s 
  transitions output pitch(n; local x: Nat)  
      pre n ∈ left /\ x ∈ left /\ n < x 
      eff  left := delete(n, delete(x, left)) 

  

which defines an automaton that discards two numbers at a time from a set, but communicates only the 
smaller of the two when a transition occurs.  When the effects clause in a transition definition does not 
assign any values to a local variable, as is the case here, the definition can be rewritten using explicit 
quantification instead of local variables, as in  

  transitions output pitch(n)  
      pre n ∈ left /\ ∃ x: Nat (x ∈ left /\ n < x) 
      eff  left := choose  s where  ∃ x: Nat (x ∈ left /\ n < x /\ s = delete(n, delete(x), left)) 

 
In general, to eliminate local variables to which no values are assigned, one quantifies them explicitly in 
the precondition for the transition, and then repeats the quantified precondition as part of the effects 
clause. 

Local parameters can also be used as temporary variables in the effects clause, as in the following 
definition of an automaton that sorts an array into ascending order by swapping pairs of incorrectly 
ordered elements. 

 



. 

 

automaton Arrange 
  signature output swap(i, j: Nat) 
  states A: Array[Nat, Nat] 
  transitions output swap(I, j; local temp) 
    pre A[I] < A[j] 
    eff  temp := A[I]; A[I] := A[j]; A[j] := temp 
 

4.6. Preconditions  
The precondition in a transition definition is a predicate  (that is, a boolean-valued expression) on the 

state indicating the conditions under which the transition can occur.  In TIOA, preconditions can be 
defined for transitions of output or internal actions using the keyword pre followed by one or more 
predicates.  If no precondition is present, it is assumed to be true.  If a precondition contains more than 
one predicate, it is equivalent to the conjunction of those predictes. 

An action π is said to be enabled in a state s if there is a state s’ such that the triple (s, π, s’) is the 
transition relation of the automaton.  In TIOA, an action π is enabled in a state s if there are values for the 
local variables in one of the transition definitions for π that satisfy the transition’s where clause and, 
together with the values of the state variables in state s, also satisfy the transition’s precondition. 

Since transitions of input actions cannot have preconditions, input actions are enabled enabled in every 
state; i.e., automata are not able to ``block'' input actions from occurring.    

4.7. Effects 
The effects clause in a transition definition describes the changes that occur as a result of the action, 

either in the form of a simple program or in the form of a predicate relating the pre-state and the post-
state (i.e., the states before and after the action occurs).  However a transition is defined, it always 
happens instantaneously and indivisibly. 

In TIOA, the effect of a transition is defined following the keyword eff, generally in terms of a 
(possibly nondeterministic) program that assigns new values to state variables.  If a transition definition 
has no effects clause, then that transition leaves the state unchanged. The amount of nondeterminism in a 
transition can also be limited by a predicate relating the values of state variables in the post-state to each 
other and to their values in the pre-state.  

4.7.1. Using programs to specify effects 

A program is a list of statements, separated by semicolons.  Statements in a program are executed 
sequentially.  There are three kinds of statements:  

• assignment statements,  
• conditional statements, and  
• for statements. 

4.7.2. Assignment statements 

An assignment statement changes the value of a state or local variable.  The statement consists of a 
state or local variable followed by the assignment operator := and an expression.  When a state variable is 
an array or a tuple, then terms denoting its elements or its fields can also appear on the left hand side (lhs) 
of the assignment operator, as in the automaton Arrange displayed at the end of Section 4.5. 



The expression following the assignment operator must have the same type as the variable on the lhs of 
the assignment operator.  TIOA considers the value of the expression to be defined mathematically, rather 
than computationally.  This value is determined in the state in which the assignment statement is 
executed, and it becomes the value of the variable on the lhs in the subsequent state.  Execution of an 
assignment statement does not have side effects; i.e., it does not change the value of any state or local 
variable other than the one on the left side of the assignment operator.  

As illustrated in the discussion of the automaton PitchTwo (see page 10), the expression on the right 
side of an assignment statement can consist of a nondeterministic choose  clause.  The value of such a 
clause is constrained by a predicate following the keyword where .  If the choose  clause does not contain 
the keyword where  (as in the statement x := choose ), then it is treated as if it contained where true , and 
it produces an arbitrary new value. 

4.7.3. Conditional statements 
A conditional statement selects one of several program segments to execute in a larger program.  Each 

conditional statement starts with the keyword if followed by a predicate and a then clause.  The then 
clause contains a program segment that is executed if the condition is true.  Each conditional statement 
ends with the keyword fi.  As illustrated by 

if x < y then x := x + y fi; 
if x < y then x := x + y else  y := x + y; x := x + y fi; 
if x < y then x := x + y elseif y < x then y := x + y fi; 
if x < y then x := x + y elseif y < x then y := x + y else  y := x fi; 
if x < y then x := x + y elseif y < x then y := x + y elseif x + y < z then y := x fi; 
 

a conditional statement can contain any number of elseif clauses (each of which contains a predicate and 
a then clause) and/or a final else  clause, which also contains a program segment that.  The effect of 
executing a conditional statement is that of executing the program segment in the first then clause, if any, 
for which the preceding predicate is true and otherwise that of executing the program segment in the else  
clause, if one exists. 

4.7.4. For statements 
A for statement executes a program segment once for each value of a variable that satisfies a given 

condition.  It starts with the keyword for followed by a variable, a clause describing a set of values for 
this variable, a do clause that contains a program segment, and the keyword od.  

Figure 4.2 illustrates the use of a for statement in a high-level description of a multicast protocol that 
has no timing constraints.  The figure begins with the definition of a vocabulary (i.e., a set of symbols) 
that can be used to describe packets sent by the protocol.  The Packet data type to consist of triples 
[contents, source, dest], in which the contents field represents a message, the source field the Node 
sending the message, and the dest field the set of Nodes to which the message should be delivered.  The 
state of the multicast algorithm consists of a multiset network , which represents the packets currently in 
transit, and an array queue, which represents, for each Node, the sequence of packets delivered to that 
Node, but not yet read by the Node.  

The mcast action inserts a new packet in the network; the tuple data type provides the notation [m, i, I] 
and the multiset data type provides the insert operator by (see Section 4.3). The deliver action, which is 
described using a for statement, distributes a packet to all nodes in its destination set (by appending the 
packet to the queue for each destination node and then deleting the packet from the network).  The read 
action receives the contents of a packet at a particular Node by removing that packet from its queue of 
delivered packets.  

There are two ways to describe the set of values for the control variable in a for statement.  The first 
(shown in Figure 4.2) consists of the keyword in followed by an expression denoting a set or multiset of 



values of the appropriate type, in which case the program segment in the do clause is executed once for 
each value in the set or multiset.  The second consists of the keyword where followed by a predicate, in 
which case the program is executed once for each value satisfying the predicate.  These executions of the 
program occur in an arbitrary order, and TIOA requires that the effect of a for statement be independent 
of the order in which executions of its program occur.  

Figure 4.2.  TIOA description of a multicast protocol 

4.7.5. Using predicates to constrain effects 
The results of a program in the effects clause can be constrained by a predicate relating the values of 

state variables after a transition has occurred to the values of state variables before the transition began.  
For example, the transition definition for the swap action in the Arrange automaton (see page 11) can be 
rewritten as follows: 

  

The assignment statements indicate that the array A may be modified at indices i and j, and the ensuring 
clause constrains the modifications.  A primed state variable in this clause (i.e., A’) indicates the value of 
the variable in the post-state; an unprimed state variable (i.e., A) indicates its value in the pre-state.  This 
notation allows us to eliminate the local variable  temp needed previously for swapping.  

There are important differences between where clauses attached to nondeterministic choose  operators 
and ensuring clauses.  A where clause restricts the value chosen by a choose  operator in a single 
assignment statement, and variables appearing in the where  clause denote values in the state before the 

vocabulary Packet    
   types Message, Node, Packet tuple [contents: Message, source: Node, dest: Set[Node]]  
 
automaton Multicast 
   imports Packet 
   signature 
     input     mcast(m: Message, i: Node, I: Set[Node]) 
     internal deliver(p: Packet) 
     output   read(m: Message, j: Node) 
   states 
     network: Mset[Packet] := Ø, 
     queue:   Array[Node, Seq[Packet]] 
       initially ∀ i: Node (queue[i] = Ø ) 
   transitions 
     input mcast(m, i, I) 
       eff  network := insert([m, i, I], network) 
     internal deliver(p) 
       pre p ∈ network 
       eff  for j: Node in p.dest do queue[j] := queue[j] ?  p od; 
              network := delete(p, network) 
     output read(m, j) 
       pre queue[j] ≠  Ø  /\  head(queue[j]).contents = m 
       eff  queue[j] := tail(queue[j]) 

transitions output swap(i, j: Nat) 
  eff A[i] := choose ; 
        A[j] := choose  
        ensuring A[i] = A[j] /\ A[j] = A[i] 



assignment statement is executed.  An ensuring clause can be attached only to an entire eff clause; 
unprimed variables appearing in an ensuring clause denote values in the state before the transition 
represented by the entire eff clause occurs, and primed variables denote values in the state after the 
transition has occurred.  

TIOA assumes that state variables do not change value during a transition unless they occur on the lhs 
in an assignment statement.  Therefore, nondeterministic choose  statements such as the ones shown here 
give a transition defined with an ensuring clause license to change the values of the state variables 
mention in both the choose  statements and the ensuring clause. 

 

Editorial note: The following sections need to be expanded and polished.  At present, they contain 
snippets of text extracted from other documents. 

4.8. Trajectories 
The dynamic type of a discrete variable  is the set of piecewise continuous functions from real time to 
values in the static type of the variable.  The dynamic type of an analog variable  is the set of piecewise 
continuous functions from real time to values in the static type of the variable.  In TIOA, variables of type 
Real are analog; all other variables are discrete. 

A trajectory for a variable $v$ describes the evolution of its value over time.  Formally, it is a function 
$\tau_v$ in the dynamic type of $v$ whose domain is an interval $I$ of time starting with $0$.    

A trajectory for a set $V$ of variables describes the evolution of each of their values over time.  
Formally, it is a function $\tau$ that assigns to each $i$ in an interval $I$ of time starting with $0$ a 
valuation $f_i$ of $V$ such that, for any $v \in V$, the function $\tau_v$ defined by $\tau_v(i) = f_i(v)$ 
is a trajectory of $v$.  

Trajectories are defined using invariants, algebraic and differential equations, and ``urgency'' 
conditions that specify when time must stop to allow a discrete action to occur. 

Trajectories of an automaton are defined following the keyword trajectories.  A trajectory definition 
consists of the keyword trajdef followed by a name, an invariant, an evolve clause, and a stopping 
condition.  More than one trajectory definition can be used to define trajectories of an automaton.  For 
example, the automaton Timeout in Figure~\ref{code:timeout} has two.  

Each trajdef defines a set of trajectories; the set of all trajectories for an automaton is the concatenation 
closure of all of these sets (see~\cite{KLSV03b} for the definition of concatenation for 
trajectories).%SJG: We need to say more here. A trajectory belongs to the set of trajectories defined by a 
trajectory definition if it satisfies the predicate in its invariant clause, the differential equations in the 
evolve clause and the stopping condition expressed by the stop when clause. The stopping condition is 
satisfied by a trajectory if the only state in which the condition holds is the last state of that trajectory. In 
other words, time cannot advance once the stopping condition becomes true.    

\caption{Example showing trajectory definitions} 

The algorithm ClockSync is based on the exchange of physical clock values between different 
processes in the system.  The parameter u determines the frequency of sending messages.  Processes in 
the system are indexed by the elements of the type Index, which we assume to be pre-defined.  ClockSync 
has a physical clock physclock, which may drift from the real time with a drift rate bounded by r.  It uses 
the variable maxother to keep track of the largest physical clock value of the other processes in the 
system.  The variable nextsend records when it is supposed to send its physical clock to the other 
processes.  The logical clock, logclock, is defined to be the maximum of maxother and physclock. 
Formally, logclock is a derived variable , which is a function whose value is defined in terms of the state 
variables.    



The unique trajectory definition in this example shows that the variable physclock drifts with a rate that 
is bounded by r.  The periodic sending of physical clocks to other processes is enforced through the 
stopping condition in the trajectory specification.  Time is not allowed to pass beyond the point where 
physclock = nextsend.  

4.9. Operations  on automata 
The operation of composition allows an automaton representing a complex system to be constructed by 

composing automata representing individual system components.  The composition identifies actions with 
the same name in different component automata.  When any component automaton performs a step 
involving an action $\pi$, so do all component automata that have $\pi$ in their signatures.  

The hiding operation ``hides'' output actions of an automaton by reclassifying them as internal actions; 
this prevents them from being used for further communication and means that they are no longer included 
in traces.  

The renaming operation changes the names of an automaton's actions, to facilitate composing that 
automaton with others that were defined with different naming conventions.  The TIOA language does 
not currently support this operation. 

5. Properties of automata 

5.1. Executions and traces 
A simple mathematical object called a trace, which is essentially a sequence of actions interspersed 

with time-passage steps, defines the external behavior of a timed automaton.  

An execution fragment of a timed automaton is a sequence $\tau_0$, $\pi_1$, $\tau_1$, $\pi_2$, \ldots 
of alternating trajectories $\tau_i$ and actions $\pi_i$ such that, if $\tau_i$ is not the last trajectory in the 
sequence, then the domain of $\tau_i$ is a closed interval $[0, t_i]$ of time and $(\tau_i(t_i), \pi_{i+1}, 
\tau_{i+1}(0))$ is a transition of the automaton. An execution is an execution fragment such that 
$\tau_0(0)$ is an initial state.  A state is reachable if it occurs in some execution.    

If a program consists of more than a single assignment statement, then the states before and after the 
assignment statements in the program may be intermediate states, which do not appear in the execution 
fragments of the automaton. 

The trace of an execution is the alternating sequence of external actions trajectories for the empty set of 
variables in that execution.  Thus, the only information conveyed by these trajectories consists of their 
domains, that is, ob the amount of time that passes.  

Editorial note: Give examples of traces for the alarm clock.  

5.2. Invariants 
An invariant of an automaton is a property that is true in all reachable states of the automaton.  

Editorial note: Give examples. 

5.3. Simulation relations  
It is often useful to view timed systems at multiple levels of abstraction, starting with a high-level 

version that describes required properties, and ending with a low-level version that describes a detailed 
design or implementation.  An automaton $A$ is said to implement an automaton $B$ provided that $A$ 
and $B$ have the same input and output actions and that every trace of $A$ is also a trace of $B$.  When 
$A$ implements $B$, it might be more deterministic than $\B$, in terms of either discrete transitions or 



trajectories.  For instance, $\B$ might be allowed to perform an output action at an arbitrary time before 
noon, whereas $\A$ guarantees that this action occurs between 10 and 11AM.  

Editorial note: The rest of this section needs to be updated to describe simulation relations between 
timed automata, not just simulation relations between untimed automata.  

The notion of a simulation relation between the states $\A$ and the states of $\B$ provides a sufficient 
condition for demonstrating that $\A$ implements $\B$.  A simulation relation must satisfy three 
conditions, one relating initial states, one relating discrete transitions, and one relating trajectories of $\A$ 
and $\B$; loosely speaking, every initial state of $A$ is related to an initial state of $B$ and every 
reachable state of $A$ is related to a state of $B$ reached by the same series of external actions.  

\caption{Forward simulation relation} 

For the purpose of a formal definition, we assume that $A$ and $B$ have the same input and output 
actions.  A relation $R$ between the states of $A$ and $B$ is a forward simulation with respect to 
invariants $I_A$ and $I_B$ of $A$ and $B$ if and only if (as illustrated in 
Figure~\ref{fig:forwardSimulation}) \begin{itemize} \item every initial state of $A$ is related (via $R$) 
to an initial state of $B$, and \item for all states $s$ of $A$ and $u$ of $B$ satisfying the invariants 
$I_A$ and $I_B$ such that $R(s, u)$, and for every step $(s, \pi, s')$ of $A$, there is an execution 
fragment $\alpha$ of $B$ starting with $u$ that contains the same external actions as $\pi$ and ends with 
a state $u'$ such that $R(s', u')$. \end{itemize} A general theorem is that $A$ implements $B$ if there is 
a forward simulation from $A$ to $B$.  

Similarly, a rela tion $R$ between the states of $A$ and $B$ is a backward simulation with respect to 
invariants $I_A$ and $I_B$ of $A$ and $B$ if \begin{itemize} \item every state of $A$ that satisfies 
$I_A$ corresponds (via $R$) to some state of $B$ that satisfies $I_B$, \item if an initial state $s$ of $A$ 
is related (via $R$) to a state $u$ of $B$ that satisfies $I_B$, then $u$ is an initial state of $B$, and \item 
for all states $s, s'$ of $A$ and $u'$ of $B$ satisfying the invariants such that $R(s', u')$, and for every 
step $(s, \pi, s')$ of $A$, there is an execution fragment $\alpha$ of $B$ ending with $u'$ that contains 
the same external actions as $\pi$ and that starts with a state $u$ satisfying $I_B$ such that $R(s, u)$. 
\end{itemize} \noindent Another general theorem is that $A$ implements $B$ if there is an image-finite  
backward simulation from $A$ to $B$.  Here, a relation $R$ is image-finite provided that for any $x$ 
there are only finitely many $y$ such that $R(x, y)$.  Moreover, the existence of any backward simulation 
from $A$ to $B$ implies that all finite traces of $A$ are also traces of $B$.  

6. Data types in TIOA  
TIOA enables users to define the actions and states of I/O automata abstractly, using mathematical 

notations, without having to provide concrete representations for these abstractions.  Some mathematical 
notations are built into TIOA; the user can define others.  

Notations for the primitive data types Bool, Nat , Int, Real, AugmentedReal (which adds two elements, 
$\infty$ and $-\infty$ to the set of reals), Char, and String can appear in TIOA descriptions without 
explicit definition.  

Notations for compound data types that result from using the following type constructors can also 
appear in TIOA descriptions without explicit definition. \begin{itemize} \item \mbox{}\ioa`Array[I1, 
\̀ldots , In, E] is an $n$-dimensional array of elements of type E indexed by elements of types \ioa`I1`, 

\ldots,  In. \item \mbox{}\ioa`Map[D1, \̀ldots , Dn, R] is a finite partial mapping of elements of an $n$-
dimensional domain with type $\ioa`D1` \times \cdots \times  Dn$ to elements of a range with type R.  
Mappings differ from arrays in that they are defined only for finitely many elements of their domains (and 
hence may not be totally defined). \item \mbox{} Seq[E] is a finite sequence of elements of type E. \item 
\mbox{} Set[E] is a finite set of elements of type E. \item \mbox{} Mset[E] is a finite multiset of elements 
of type E. \item \mbox{} Null[E] is isomorphic to E extended by a single element  nil.  \end{itemize} %In 



this tutorial, we describe operators on the built-in data types informally %when they first appear in an 
example.  

Users can introduce additional data types and type constructors by defining vocabularies for them.  
Each vocabulary introduces notations for a set of types and a set of operators.  In fact, each of the built-in 
data types is defined by a built-in vocabulary.  For example, the following built-in vocabularies provide 
notations for the Real data type and its associated operators.  Each operator has a signature that specifies 
the types of its arguments and the type of its result.  Infix, prefix, postfix, and mixfix operators are named 
by sequences of non-letter characters and are defined using placeholders  __ to indicate the locations of 
their arguments.  Operators used in functional notation (e.g., in $max(a, b)$) are named by simple 
identifiers.  

vocabulary Real 
   imports NumericOps(type Real, type Real, type Real) 
    operators 
     -__, abs: Real -> Real 
     __**__: Real, Int -> Real 
     int2real: Int -> Real  
 
vocabulary NumericOps(T1, T2, T3: type) 
   types T1 T2 T3 
   operators 
     __+__, __-__, __*__, __/__, min, max: T1, T2 -> T3 
     __<__, __<=__, __>__, __>=__, __=__, __~=__: T1, T2 -> Bool 
 

As these examples illustrate, a vocabulary can import notations from other vocabularies, and it can be 
parameterized to make operator notations such as  __<__:Real,Real→Bool available for the Real data 
type.  

A vocabulary can define a type constructor, as in the following built-in vocabulary for the Null 
constructor 

vocabulary Null defines Null[T] 
   operators 
     nil : →  Null[T] 
     embed : T →  Null[T] 
     __.val : Null[T] →  T  
 

The identifier T in this vocabulary is a type parameter, which is instantiated any time the constructor 
Null is used to provide operator notations appropriate for that use.  Thus, if x is a variable of type Null[Int], 
then one can write embed(x).val = x.  

User-defined vocabularies can introduce notations for enumeration, tuple, and union types analogous to 
those found in many common programming languages.  For example, 

vocabulary sampleVocab 
   types Color enumeration [red, white, blue], 
         Msg   tuple [source, dest: Process, contents: String], 
         Fig   union [sq: Square, circ: Circle]  

can be imported by the definition of any other vocabulary or automaton to provide notations for three data 
types it describes.  

In this tutorial, some operators are displayed using mathematical symbols that do not appear on the 
standard keyboard.  Table~\ref{table:symbols} shows the input conventions for entering these symbols.  

Logical Operator 
Symbol Meaning Input 



∀ Forall \A 
∃ There exists \E 
¬ Not ~ 
≠ Not equals ~= 
∧  And /\ 
∨  Or \/ 
⇒  Implies => 
⇔  If and only if <=> 
   

Operator Signature  
Symbol Meaning Input 
→  Domain→Range -> 
   

Datatype Operator 
Symbol Meaning Input 
≤ Less than or equal <= 
≥ Greater than or equal >= 
∈ Member of \in 
∉ Not a member of \not \in 
?  Proper subset of \subset 
⊆  Subset of \subseteq 
⊃ Proper superset of \supset 
⊇  Superset of \supseteq 
?  Append element |- 
?  Prepend element -| 
8  Infinity \infty 
?  Bottom element \bot 
?  Top element \top 
Ø  Empty set or sequence {} 
 
\caption{Typographical conventions} 
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