
Group Communicationas a Base for aLoad-Balancing Replicated Data ServicebyRoger I KhazanB.A., Computer Science and MathematicsSumma Cum Laude, Highest Honors in Computer ScienceBrandeis University (1996)Submitted to theDepartment of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degree ofMaster of ScienceinElectrical Engineering and Computer Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYMay 1998c Massachusetts Institute of Technology 1998. All rights reserved.
Author .Department of Electrical Engineering and Computer ScienceMay 22, 1998Certi�ed by. .Professor Nancy A. LynchNEC Professor of Software Science and EngineeringThesis SupervisorAccepted by .Professor Arthur C. SmithChairman, Department Committee on Graduate Theses

2

Group Communicationas a Base for aLoad-Balancing Replicated Data ServicebyRoger I KhazanSubmitted to the Department of Electrical Engineering and Computer Scienceon May 22, 1998, in partial ful�llment of the requirements for the degree ofMaster of Science in Electrical Engineering and Computer ScienceAbstractReplication and load-balancing are two fundamental techniques for improving avail-ability and performance of distributed systems. However, correct and e�cient realiza-tion of these techniques is intricate when the distributed environment may partitionand merge because of processor and communication failures.In this thesis, we show how a view-synchronous group communication service recentlyspeci�ed by Fekete, Lynch, and Shvartsman can be used to support a sequentiallyconsistent replicated data service that load balances queries and tolerates partitioningand merging of the underlying network.Our work is done in the framework of the I/O automaton model of Lynch and Tuttle.First, we present an I/O automaton speci�cation that de�nes the allowed behavior ofa sequentially consistent replicated service. Then, we successfully re�ne this speci�ca-tion to arrive at an I/O automaton that models a distributed implementation of thisservice. In this implementation, update requests are processed in the same order atall servers of the system, thus guaranteeing mutual consistency of all replicas; queryrequests are processed at single servers determined by a load-balancing strategy whichequalizes the number of queries assigned to each member of the same group. Third,we give a rigorous hierarchical proof that the implementation automaton implementsthe speci�cation automaton in the sense of trace inclusion. This proof establishespartial correctness of the implementation. Finally, we prove a liveness-related claimthat servers are always able to process the queries assigned to them; that is, theservers are never blocked by missing update information.Thesis Supervisor: Professor Nancy A. LynchTitle: NEC Professor of Software Science and Engineering3

4

AcknowledgmentsI am grateful to Dr. Nancy Lynch for her guidance and many insightful discussionsthroughout this project. I am also grateful to Dr. Alan Fekete who, together withDr. Nancy Lynch, suggested this project and helped me make the �rst steps.I owe many thanks to Dr. Alex Shvartsman for introducing me to Distributed Com-puting back when I was an undergraduate and for encouraging me to pursue this �eldduring my graduate studies.I thank my fellow graduate students: Carl Livadas, Victor Luchangco, Roberto DePrisco, Mandana Vaziri, and Josh Tauber for their companionship. I am especiallythankful to Carl Livadas and Victor Luchangco for insightful discussions and help.For the past four years, Inna Zaslavsky has been an endless source of inspiration,emotional support, encouragement, and love. I thank her for that and for everythingelse she has given me.I dedicate this thesis to my parents, Dr. Leonid Khazan and Lana Brodsky, who taughtme so many precious lessons in life. Their devotion and belief in my abilities has beenthe driving force behind my accomplishments. To them I owe eternal gratitude.

5

6

Contents
1 Introduction 131.1 Service Description . 131.2 Related Work . 151.2.1 Group Communication . 151.2.2 Replication and Load Balancing 151.2.3 Sequential Consistency . 161.3 Our Contributions . 161.4 Thesis Organization . 182 Presentation Formalism 192.1 The I/O Automaton Model . 192.1.1 I/O Automata . 192.1.2 Executions and Traces . 202.1.3 Operations on Automata . 202.2 Properties and Proof Methods . 222.2.1 Invariants . 222.2.2 Hierarchical Proofs . 227

2.3 Mathematical Foundation and Notation 242.3.1 Sets and Functions . 242.3.2 Disjoint Unions . 252.3.3 Sequences . 252.3.4 Helpful Functions . 262.3.5 Notation . 263 Service Speci�cation S 273.1 Type Information . 273.2 I/O Automaton S . 283.3 Sequential Consistency . 303.4 Client Speci�cation C . 303.5 Closed Automaton S . 314 Intermediate Speci�cation D 334.1 Motivation . 334.2 I/O Automaton D . 334.3 Correctness of D . 344.3.1 Invariants on D . 344.3.2 Re�nement Mapping DS : D! S 355 Service Implementation T 375.1 Architectural Structure of T . 375.2 Communication Layer . 388

5.2.1 The VS Speci�cation . 385.2.2 The PTP Speci�cation . 395.3 Servers' Layer . 405.3.1 Type Information . 405.3.2 I/O Automaton VStoDp . 416 Correctness of T : Simulation 536.1 High-Level Invariants . 536.2 Re�nement Mapping TD : T ! D . 556.2.1 The Mapping . 556.2.2 Action Correspondence . 566.2.3 Simulation Proof . 567 Correctness of T : Invariants 657.1 View-Related Derived Variables . 657.2 VS Invariants . 667.3 Basic Invariants . 687.3.1 Consistency of Current Views 687.3.2 Initial and Primary Views . 697.3.3 Expertise Messages . 697.3.4 Established and Normal Views 757.4 Derived Expertise X . 787.4.1 De�nition of X . 799

7.4.2 Correspondence between Derived and Real Expertise 807.4.3 Derived Expertise-level vs Real View 827.4.4 Recursive Nature of X . 837.4.5 Consistency of Derived Expertise 837.5 Consistency of updates, safe and done sequences 917.6 Coherence of Local Bu�ers . 947.7 Coherence of Local Database Replicas 967.8 Coherence of Query Processing . 978 Correctness of Load Balancing 998.1 Correctness of T 0 . 998.1.1 History Variable . 1008.1.2 Properties . 1018.2 Properties of T 0 . 1039 Conclusions and Future Work 105

10

List of Figures
3.1 Type information . 273.2 Speci�cation S . 283.3 Speci�cation Cc for a nondeterministic blocking client c 304.1 Intermediate Speci�cation D . 345.1 Automaton VS . 395.2 Speci�cation Lp;p0 for a reliable reordering channel from p to p0 405.3 Additional type declaration . 405.4 Implementation VStoDp: Signature and State Variables 425.5 Implementation VStoDp: Transitions 446.1 Circumstances under which each action of D is simulated by T 56

11

12

Chapter 1
Introduction
Multicast group communication services are important building blocks for fault-tolerantapplications that require reliable and ordered communication among multiple parties.These services manage their clients as collections of dynamically changing groups andprovide strong intra-group multicast primitives. Recently, in an e�ort to remedy theexisting lack of good speci�cations for these services and to facilitate consensus onwhat properties these services should exhibit, Fekete, Lynch, and Shvartsman gavea simple automaton speci�cation VS for a view-synchronous group communicationservice and demonstrated its power by using it to support a totally-ordered broadcastapplication TO [13, 14]. In this thesis, we further investigate the power of VS byusing it to support an intricate and important application: a replicated data servicethat load-balances queries, guarantees sequential consistency, and tolerates partition-ing and merging of the underlying network.1.1 Service DescriptionThe service maintains a data object replicated at a �xed set of servers in a consistentand transparent fashion and enables the clients to update and query this object. Weassume the underlying network is asynchronous, strongly-connected, and subject toprocessor and communication failures and recoveries. The failures and recoveries maycause the network or its components to partition and merge. The greatest challengefor the service is coping with network partitioning while preserving correctness and13

maintaining liveness.We assume that executed updates cannot be undone, which implies that update oper-ations must be processed in the same order at each replica. To avoid inconsistencies,the algorithm allows updates to occur only in primary components. Following thecommonly used de�nition, primary components are de�ned as those containing a ma-jority (or more generally, a quorum) of all servers. The nonempty intersection ofany two majorities (quorums) guarantees the existence of at most one primary ata given time and allows for the necessary ow of information between consecutiveprimaries. Our service guarantees processing of update requests whenever there is astable primary component, regardless of the past network perturbations.On the other hand, processing of queries is not restricted to primary componentsand is guaranteed provided that the client's component eventually stabilizes. Theservice uses a round-robin load-balancing strategy to distribute queries to each serverevenly within each component. This strategy makes sense in commonly occurringsituations when queries take approximately the same amount of time, and this timeis signi�cant. Each query is processed with respect to a data state that is at least asadvanced as the last state witnessed by the query's client. The service is arranged insuch a way that the servers are always able to process the queries assigned to them;that is, they are not blocked by missing update information.Architecturally, the service consists of two layers: the servers' layer and the com-munication layer. The servers' layer is symmetric: all servers run identical state-machines. The communication layer consists of two parts, a group communicationservice satisfying VS , and a collection of individual channels providing reliable re-ordering point-to-point communication between all pairs of servers. The servers usethe group communication service to disseminate update and query requests to themembers of their groups and rely on the properties of this service to enforce theformation of identical sequences of update requests at all servers and to schedulequery requests correctly. The point-to-point channels are used to return the resultsof processed queries back to their original servers.
14

1.2 Related Work1.2.1 Group CommunicationA good overview of the rational and usefulness of group communication services isgiven in [4]. Examples of implemented group communication services are Isis [5],Transis [10], Totem [24], Newtop [12], Relacs [3], and Horus [27]. Di�erent servicesdi�er in the way they manage groups and in the speci�c message ordering and deliveryproperties of their multicast primitives. Even though there is no consensus on whichproperties these services should provide, a typical requirement is to deliver messagesin total order within a single group.To be most useful, group communication services have to come with precise descrip-tions of their behavior. Many speci�cations have been proposed using a range ofdi�erent formalisms [3, 6, 9, 11, 15, 23, 26]. Fekete, Lynch, and Shvartsman re-cently presented the VS speci�cation for a partitionable group communication ser-vice. Chapter 5 of this thesis presents a short summary of the VS speci�cation. Fora more detailed description of VS and a comparison of VS with other speci�cations,the reader is referred to [13].Several papers have since extended the VS speci�cation. Chockler, Huleihel, andDolev [8, 7] have used the same style to specify a virtually synchronous FIFO groupcommunication service and to model an adaptive totally-ordered group communi-cation service. De Prisco, Fekete, Lynch, and Shvartsman [25] have presented aspeci�cation for group communication service that provides a dynamic notion of aprimary view.1.2.2 Replication and Load BalancingThe most popular application of group communication services is for maintainingcoherent replicated data through applying all operations in the same sequence at allreplicas. The details of doing this in partitionable systems have been studied by Amir,Dolev, Friedman, Keidar, Melliar-Smith, Moser, and Vaysburd [18, 1, 2, 19, 16, 17].In his recent book [4, p. 329], Birman points out that process groups are ideallysuited for fault-tolerant load-balancing. He proposes two styles of load-balancing15

algorithms. In the �rst, more traditional, style, scheduling decisions are made byclients, and tasks are sent directly to the assigned servers. In the second style, tasksare multicast to all servers in the group; each server then applies a deterministic ruleto decide on whether to accept each particular task.In this thesis, we use a round-robin strategy originally suggested by Birman [4, p.329]. In accordance with this strategy, tasks are sent to the servers using a totally-ordered multicast; the ith task delivered in a group of n servers is assigned to theserver whose rank within this group is (i mod n). Since tasks are delivered to allmembers of the same group in the same order, each member is assigned the samenumber of tasks as any other member of its group. The load-balancing algorithmpresented in this thesis extends this round-robin strategy with a fail-over policy thatreissues query requests when group membership changes.1.2.3 Sequential ConsistencyThere are many di�erent ways in which a collection of replicas may provide the ap-pearance of a single shared data object. The seminal work in de�ning these precisely isLamport's notion of sequential consistency [20]. A system provides sequential consis-tency when for every execution of the system there is an execution with a single sharedobject that is indistinguishable to each individual client. A much stronger coherenceproperty is atomicity, where a universal observer can't distinguish the execution ofthe system from one with a single shared object. The algorithm presented in thisthesis provides an intermediate condition where the updates are atomic, but queriesare sequentially consistent. Overall, the algorithm satis�es sequential consistency.1.3 Our ContributionsThis thesis presents a new distributed algorithm for providing replicated data on top ofa partitionable group communication system, in which the work of processing queriesis rotated among the group replicas in a round-robin fashion. While the replicationpart of the algorithm relates to the ideas of [18, 1, 2, 19] and the load-balancingstrategy relates to the one in [4, p. 329], the novelty of the algorithm comes fromthe integration of these two parts. In particular, the algorithm supports sequentially16

consistent processing of queries in all, not just primary, components and guaranteesthat the servers of these components always have su�ciently advanced replicas inorder to be able to process the queries assigned to them.A major accomplishment of this work is in modeling and verifying the presentedalgorithm formally. This is done in the framework of the I/O automaton model forasynchronous computing [21] and includes the following components:� An I/O automaton that speci�es the allowed behavior of a sequentially consis-tent replicated service.� An I/O automaton that models a distributed implementation of this speci�ca-tion as a composition of a servers' layer and a communication layer. The servers'layer consists of a number of identical state-machines, one for each server. Thecommunication layer consists of a group communication service speci�cationsatisfying VS and of a collection of speci�cations for reliable reordering chan-nels between any pair of servers.� A hierarchical simulation proof that establishes that all traces of the implemen-tation automaton are valid traces of the speci�cation automaton. This proofrelies on a number of high-level properties of the reachable states of the imple-mentation automaton.� An assertional proof of the high-level properties. The proof of these propertiesis based on an interesting approach: we invent a derived function X that ex-presses recursively the highest state reached by each server in each group. In asense, this function presents a law according to which the replication part of thealgorithm operates. As seen in Section 7.4, the recursive nature of this func-tion makes proofs by induction easy: proving an inductive step simply involvesunwinding a recursive step of the derived function X .� A proof that the load-balancing part of the algorithm is uniform and non-blocking. For uniformity, we show that each member of a group is assignedthe same number of query requests as any other member of that group. Fornon-blockage, we show that the servers are always able to su�ciently advancethe state of their replicas in order to process the queries assigned to them.Another important contribution of this thesis is its support of VS as an adequatespeci�cation for a group communication service. A critical advancement of this work17

over the previous one [13] is that it explores some of the stronger properties of VS .Previous work [13] veri�ed TO , an application in which all servers within a groupprocess messages identically. In a sense, the TO application is anonymous, since aserver uses its identity only to generate unique labels. While the proof in [13] uses theproperty of agreed message sequence, it does not account for the identical membershipof message recipients. In contrast, the load-balancing part of our algorithm uses thefact that query recipients have the same idea of their membership when they decidewhich of them has to process a query.Finally, the algorithm and the correctness proof presented in this work reveal sev-eral generic approaches that can be used to formally model other replication andload-balancing algorithms that are based on formally speci�ed group communicationservices.1.4 Thesis OrganizationThe rest of the thesis is organized as follows. Chapter 2 presents an overview of theI/O automaton model of Lynch and Tuttle [21] and introduces basic mathematicalnotation used in the thesis. Chapter 3 presents an I/O automaton that speci�es theallowed behavior of the replicated service from the point of view of its blocking clients.Chapter 4 presents an intermediate speci�cation for the service, the purpose of whichis to simplify the proof of correctness. Chapter 5 presents an I/O automaton for theservice implementation. Chapters 6 and 7 contain a proof that the implementationautomaton implements the speci�cation automaton in the sense of trace inclusion.Chapter 8 argues that the load-balancing strategy is uniform and non-blocking.

18

Chapter 2
Presentation Formalism
In this chapter, we summarize the I/O automaton model (without fairness) of Lynchand Tuttle [21], and present the mathematical notation used in this thesis.2.1 The I/O Automaton ModelThe following summary of the I/O automaton model for asynchronous computingis based on Chapter 8 of [22, pages 199-234]. We present only those aspects of themodel that are used in this thesis.2.1.1 I/O AutomataAn I/O automaton models a distributed system component that can interact withother system components. It is a simple state machine in which the transitions areassociated with named actions, each one of which is classi�ed as either input, output,or internal. The inputs and outputs are used for communication with the automaton'senvironment and are externally visible; The internal actions are visible only to theautomaton itself. The input actions are assumed not to be under the automaton'scontrol | they arrive from the outside|while the automaton itself speci�es whatoutput and internal actions should be performed. The output and internal actions ofthe automaton are said to be locally controlled.19

An I/O automaton is de�ned by the following four components: signature (input,output and internal actions), set of states, set of start states (a nonempty subset ofstates), and a state-transition relation (a subset of the cross-product of states, actions,and states). Note that the de�nition in [21, 22] has a �fth component, tasks, which isused to de�ne fairness conditions on an execution of the automaton. We do not usethis component because our current work deals only with the safety properties of thepresented automata.We call an element (s; ; s0) of the state-transition relation a transition, or a step. Iffor a particular state s and action , the automaton has some transition of the form(s; ; s0), then we say that is enabled ; States s and s0 are respectively called prestateand poststate. A step (s; ; s0) such that s0 equals s is called an empty transition andis denoted by �.I/O automata are said to be input-enabled, since the input actions are not under theautomatons control, and hence, are always enabled.2.1.2 Executions and TracesAn execution fragment of an I/O automaton A is either a �nite sequence, s0; 1; s2; 2;: : : ; r; sr, or an in�nite sequence, s0; 1; s2; 2; : : : ; r; sr; : : : , of alternating statesand actions of A such that (sk; k+1; sk+1) is a transition of A for every k � 0. If thesequence is �nite, it must end with a state. An execution fragment beginning with astart state is called an execution. A state is said to be reachable in A if it is the �nalstate of a �nite execution of A.The trace of an execution � of A is a subsequence of � consisting of all externalactions. We say that � is a trace of A if � is a trace of an execution of A.2.1.3 Operations on AutomataCompositionThe composition operation allows an automaton representing a complex system to beconstructed by composing automata representing individual system components. The20

composition identi�es actions with the same name in di�erent component automata.When any component automaton performs a step involving , so do all componentautomata that have in their signatures.The composition operation is restricted to compatible automata, which for our pur-poses have to satisfy the following two conditions:1. The internal actions of each automaton have to be disjoint from all actions ofthe other automata. This condition is necessary to keep the internal actions ofone automaton unobservable by other automata.2. The output actions of all automata have to be disjoint. This condition is nec-essary to have at most one automaton control any given action.In addition, the de�nition of compatibility in [22, pages 207-211] requires that eachaction be an action of only �nitely many of the component automata. We do not usethis condition because the compositions in this thesis contain only �nite number ofcomponents.When we compose a collection of automata, output actions of the components becomeoutput actions of the composition, internal actions of the components become internalactions of the composition, and actions that are inputs to some components butoutputs of none become input actions of the composition.The states and start states of the composition automaton are vectors of states andstart states, respectively, of the component automata. The transition of the compo-sition are obtained by allowing all the component automata that have a particularaction in their signature to participate simultaneously in steps involving , whileall the other component automata do nothing.In order to prove properties of a composed system of automata, it is often helpful toreason about the component automata individually. Section 8.5.4 of [22] shows thatthe composition operation has the nice properties that we expect it to have.The composition of a countable, compatible collection of I/O automata fAigi2I isdenoted by Qi2I Ai. If I is a �nite set, we sometimes use the in�x operator symbol� to denote the composition. E.g., if I = f1; : : : ; ng, A1;� � � ��An denotes Qi2I Ai.21

HidingThe hiding operation reclassi�es the speci�ed output actions of an automaton asinternal. This prevents them from being used for further communication and meansthat they are no longer included in traces.2.2 Properties and Proof MethodsIn this section we describe the main techniques used to prove correctness of I/Oautomata: invariant assertions and hierarchical proofs. The material in this sectionis closely based on [22, pages 216-228].2.2.1 InvariantsThe most fundamental type of property to be proved about an automaton is an in-variant assertion, or just invariant, for short. An invariant assertion of an automatonA is de�ned as any property that is true in every single reachable state of A.Invariants are typically proved by induction on the number of steps in an executionleading to the state in question. While proving an inductive step, we consider onlycritical actions, which a�ect the state variables appearing in the invariant. In thisthesis, there are also several invariants that are proved by inductive arguments thatdo not rely directly on the length of the execution sequence.2.2.2 Hierarchical ProofsOne of the important proof strategies is based on a hierarchy of automata. Thishierarchy represents a series of descriptions of a system or algorithm, at di�erentlevels of abstraction. The process of moving through the series of abstractions, fromthe highest level to the lowest level, is known as successive re�nement. The toplevel may be nothing more than a problem speci�cation written in the form of anautomaton. The next level is typically a very abstract representation of the system:it may be centralized rather than distributed, or have actions with large granularity,22

or have simple but ine�cient data structures. Lower levels in the hierarchy look moreand more like the actual system or algorithm that will be used in practice: they maybe more distributed, have actions with small granularity, and contain optimizations.Because of all this extra detail, lower levels in the hierarchy are usually harder tounderstand than the higher levels. The best way to prove properties of the lower-level automata is by relating these automata to automata at higher levels in thehierarchy, rather than by carrying out direct proofs from scratch.The simplest way to relate two automata, say D and S, is to present a re�nementmapping DS () from the reachable states of D to the reachable state of S such thatit satis�es the following two conditions:1. If d is an initial state of D, then DS(d) is an initial state of S.2. If d and DS(d) are reachable states of D and S respectively, and (d; �; d0) isa step of D, then there exists an execution fragment of S beginning at stateDS(d) and ending at state DS(d)0, with its trace being the same as the trace of� and its �nal state DS(d)0 being the same as DS(d0).The �rst condition, or initial condition, asserts that any initial state of D has somecorresponding initial state of S. The second condition, or step condition, asserts thatany step ofD has a corresponding sequence of steps of S. This corresponding sequencecan consist of one step, many steps, or even no steps, as long as the correspondencebetween the states is preserved and the external behavior is the same.The following theorem gives the key property of re�nement mappings:Theorem 2.1 If there is a re�nement mapping from D to S, thentraces(D) � traces(S):If automata D and S have the same external signature and traces of D are tracesof S, then we say that D implements S in the sense of trace inclusion, which meansthat D never does anything that S couldn't do. Theorem 2.1 implies that, in orderto prove that one automaton implements another in the sense of trace inclusion, it isenough to produce a re�nement mapping from the former to the latter.23

Proving that one automaton implements another in the sense of trace inclusion con-stitutes only partial correctness, as it implies safety but not liveness. In other words,partial correctness ensures than \bad" things never happen, but it does not say any-thing whether some \good" thing eventually happens.In this thesis, we concentrate on proving the partial correctness of our implementation.In addition, we prove a liveness-related claim that servers are always enabled toadvance their replica states su�ciently far to be able to process the queries assignedto them. Future work will consider liveness properties, such as performance and fault-tolerance, stated conditionally to hold in periods of good behavior of the underlyingnetwork.2.3 Mathematical Foundation and NotationWe use standard notation on sets, functions, and sequences, with the followingspeci�cs.2.3.1 Sets and FunctionsIf A is a set, then P() denotes the power set of A, i.e., the set consisting of all thesubsets of A: fS j S � Ag.If A and B are two sets, then A�B denotes the set fha; bi j a 2 A ^ b 2 Bg.Total functions are denoted by \!" and partial functions are denoted by \,!". Iff : A ! B then the domain of f , denoted dom(f), is the entire set A; so for anya 2 A, f(a) is an element of B. If g : A ,! B then the domain of g is de�ned as a setfa j 9 b : ha; bi 2 gg; so for any a 2 A, f(a) is an element of B if a 2 dom(f), or is ?otherwise.Given a total or a partial function f from A to B and elements a 2 A and b 2 B,f [a : b] denotes a function that is the same as f except it maps a to b. Sometimeswe treat functions as sets of elements, where each element is a pair of an abscissa andordinate.Given a set A and some condition, con(a), on its elements, the set Ajcon(a) denotes a24

subset of A that consists solely of elements that satisfy this condition:Ajcon(a) = fa j a 2 A ^ con(a)g:2.3.2 Disjoint UnionsSomewhat non-standard is our use of disjoint unions (+), which di�ers from theusual set union ([) in that each element is implicitly tagged with what component itcomes from. For simplicity, we use variable name conventions to avoid more formal\injection functions" and \matching constructs." Thus, for example, if Update andQuery are the respective types for update and query requests, then type Request =Update + Query de�nes a general request type. Furthermore, if req 2 Request ,and u and q are the established variable conventions for Update and Query types,then \req u" and \req = q" are both valid statements, denoting an assignmentstatement and an equality statement respectively.2.3.3 SequencesIf x is a sequence then jxj denotes the length of x. Sequences of zero length aredenoted by []. If x is a sequence and 1 � i � j � jxj, then x[i] is the ith element ofx, x[i::j] is the subsequence x[i]; : : : ; x[j] of x, and [i::] is the su�x of x starting atthe ith element. Indexing of sequences starts either from 0 or 1. If x is an instance ofthe former, then the �rst element is x[0], and the last element is x[jxj � 1]; if x is aninstance of the latter, then the �rst element is x[1], and the last element is x[jxj]. Ifx and y are sequences, then x+ y is the concatenation of them (we sometimes abusethis notation by letting x or y be a single element). Notation x � y expresses the factthat x is a pre�x of y. Two sequences are consistent, denoted by x �� y, if one is apre�x of another. We use x <jj y and x �jj y to denote the length-wise comparisonof x and y.We use the dot notation to project sequences of tuples on their individual elements.For example, if z is a sequence hx1; y1i; : : : ; hxn; yni, then z:x denotes the sequencex1; : : : ; xn.If z is a sequence each element of which is an element of a disjoint union, we denote25

the subsequence of z consisting solely of the elements that belong to the same basictype by subscripting z with a conventional symbol for that type. For example, if z isa sequence each element of which is of type (Update + Query), then zu denotes thesubsequence of z that consists solely of elements of Update.2.3.4 Helpful FunctionsGiven two partial functions, f : X ,! Y and g : X ,! Y , function overlay(f; g) :X ,! Y is de�ned as g over dom(g) and as f over (dom(f)� dom(g)).If a is an element of a totally ordered set A, then rank(a; A) is de�ned to be thenumber of elements that are smaller than a.If x is a sequence \f1; f2; : : : ; fn" with each element fi being a function of the typeA ! A, and if a is an element of A, then apply(x; a) =\f1(a); f2(a); : : : ; fn(a)",compose(x) =\(fn � : : :� f2 � f1)", and scan(x) =\f1; (f2 � f1); : : : ; (fn � : : :� f2 � f1)".2.3.5 NotationTo access components of compound objects we use the dot notation. Thus, if dbs isa state variable of an automaton, then its instance in a state s is expressed as s:dbs.Likewise, if view is a state variable of a server p, then its instance in a state t isexpressed as t[p]:view ; When the state is clear from the discussion, we write p:view .We describe the transition relation in a precondition-e�ect style (as in [22]), whichgroups together all transitions that involve each particular type of action into a singleatomic piece of code.

26

Chapter 3
Service Speci�cation S
In this chapter, we present an I/O automaton S that speci�es the allowed behaviorof the replicated data service from the clients' point of view. Automaton S operatesunder the assumption that its clients are blocking. Being input-enabled, it cannotrestrict its traces to those exhibited only by blocking clients. In order to get anautomaton with well-formed traces, we close S by composing it with an automatonC that models a collection of nondeterministic blocking clients.3.1 Type InformationThe complete information on basic and derived types, along with a convention forvariable usage, is given in Figure 3.1.Figure 3.1 Type informationVariable Type Descriptionc C Finite set of clients.db DB Database type with a distinguished initial value db0.a Answer Answer type for queries. (Answers for updates are fokg.)u Update : DB ! DB Update requests.q Query : DB ! Answer Query requests.r Request = Update +Query Request is a disjoint union of Update and Query types.o Output = Answer + fokg Output is a disjoint union of Answer and fokg types.

27

3.2 I/O Automaton SThe entire code for the I/O automaton S appears in Figure 3.2.Figure 3.2 Speci�cation SSignature:Input:request(r)c; r 2 Request ; c 2 COutput:reply(o)c; o 2 Output; c 2 C Internal:update(c; u); c 2 C; u 2 Updatequery(c; q; l); c 2 C; q 2 Query ; l 2 NState:dbs 2 SEQ0 DB , initially db0. Sequence of database states. Indexing starts from 0.last 2 C ! N , initially f� ! 0g. Index of the last db state witnessed by c.map 2 C ,! (Request +Output), initially ?. Bu�er for the clients' pending requests or replies.Transitions:request(r)cE�: map(c) r reply(o)cPre: map(c) = oE�: map(c) ?update(c; u)Pre: u = map(c)E�: dbs dbs + u(dbs [jdbs j � 1])map(c) oklast(c) jdbs j � 1 query(c; q; l)Pre: q = map(c)last(c) � l � jdbs j � 1E�: map(c) q(dbs [l])last(c) l
SignatureThe interface between the service and its blocking clients is typical of a client-server architecture: Clients' requests are delivered to S via input actions of the formrequest(r)c; S replies to its clients via actions of the form reply(o)c.Submitted requests are processed by internal actions of the form update(c; u) andquery(c; q; l). The former represents processing of an update request u submitted byclient c. The latter represents processing of a query request q submitted by client cwith respect to the lth database state.State VariablesIf our service were to satisfy atomicity (i.e., behave as a non-replicated service), thenspeci�cation S would include a state variable db of type DB and would process each28

update and query request with respect to the latest value of this variable. Since,in the actual distributed setting, servers of non-primary components may have out-dated database values, satisfying atomicity would restrict processing of queries to theprimary components of the system.In order to eliminate this restriction and increase availability of the service, we givea slightly weaker speci�cation that requires each query to be processed with respectto a value that is only at least as advanced as the last value witnessed by the query'sclient, not necessarily the latest one. For this purpose, S maintains a history dbs ofdatabase states and keeps an index last(c) to the latest state witnessed by each clientc. Please note that indexing of the dbs sequence starts from zero, which places thelatest database state at the index jdbsj � 1.In addition to dbs and last , there is a third state variable, map, that associates eachclient c with the status of its current request, if there is such. This status can beeither the request itself if it has not been processed yet, or an output value if therequest was processed but the output value has not been delivered to the client yet.In the initial state, the variables have the following values. Sequence dbs containsonly a single element db0. The value of last(c) for each client c is 0, as it points tothe initial database db0 in dbs. The map is empty since at this time there are nosubmitted requests.TransitionsWhen a client c submits a request r via action request(r)c, automaton S adds to thepartial function map an association between c and r.If the request r is an update request, u, then this association enables an internal actionupdate(c; u). When this action is executed, automaton S applies update requestu to the latest database state dbs[jdbsj � 1] and appends the resultant databasestate to the dbs sequence. As another two consequences of this action, automaton Sreassociates c with ok in map, and sets last to point to the last element of dbs.Otherwise, if the request r is a query request, q, then the association of c with r inmap enables the following internal actions: fquery(c; q; l) j last(c) � l � jdbsj � 1g.The condition on l ensures that query request q will be processed with respect to a29

state that is at least as advanced as the last one witnessed by client c. When oneof these enabled actions is executed, automaton S applies query request q to the lthdatabase state, reassociates c in map with the answer to this query, and sets last(c)to point to l , which now represents the last database state witnessed by client c.After a request r is processed by one of the internal actions, the entry in map asso-ciated with its client c points to an output value. This association enables an outputaction reply(o)c. When this action is executed, automaton S removes c from map.3.3 Sequential ConsistencyEven though our service is not atomic, it still appears to each particular client asa non-replicated one, and thus, satis�es sequential consistency. Note that, since theatomicity has been relaxed only for queries, the service is actually stronger than theweakest one allowed by sequential consistency.3.4 Client Speci�cation CAutomaton S operates under the assumption that its clients do not submit subsequentrequests before they receive replies for the earlier submitted requests. Figure 3.3presents an automaton Cc for such a well-formed client c.Figure 3.3 Speci�cation Cc for a nondeterministic blocking client cSignature:Input:reply(o)c; o 2 Output Output:request(r)c; r 2 RequestState:busy 2 Bool, initially false. A status ag that keep track of whether there is a pending request.Transitions:request(r)cPre: busy = falseE�: busy true reply(o)cE�: busy false
The state of this automaton is a single boolean variable busy , initially equal to false.This variable reects whether the client is currently awaiting a reply for a submitted30

earlier request.Whenever busy is false, the automaton is enabled to submit an arbitrary request rvia an output action request(r)c. When it does so, it sets busy to true, which blocksany subsequent submissions until a reply is received. When an input action reply(o)coccurs, the automaton resets busy to false, thus enabling further request submissions.Automaton Cc is nondeterministic in a sense that it submits arbitrary requests atarbitrary times. A real blocking client can be shown to implement such a nondeter-ministic one.Traces of the automaton Cc are alternating sequences of request(r)c and reply(o)cactions that begin with request(r)c.3.5 Closed Automaton SBeing input-enabled, automaton S allows for request actions to occur at any time,possibly deviating from the assumed pattern. In order to constrain the allowed exe-cutions of automaton S to follow the assumed pattern, we form a closed automatonS by composing S with the automata for the nondeterministic blocking clients.S = S �Qc2C(Cc):In the rest of the thesis, when we present other automata, we will deal with theirclosed versions and will denote them with a bar (as in S).Invariant 3.1 For each client c 2 C, (c:busy = false) if and only if (map(c) = ?).Proof 3.1: A proof by induction is straightforward: As far as the basis, the invariantis true in the initial state because c:busy = false and map(c) = ?. As far as theinductive step, we observe the following. The values of the two sides of the propositionboth remain the same as their pre-state values when update and query actions takeplace, and they both reverse their pre-state values when request and reply actionstake place. From this observation, it follows that the proposition is true in the post-state, assuming it is true in the pre-state.31

32

Chapter 4
Intermediate Speci�cation D
In this chapter we introduce an intermediate speci�cation D and prove that automa-ton D implements automaton S in the sense of trace inclusion. Later, when wepresent an implementation automaton T , we prove the same result about automataT and D, which by transitivity of the \implements" relation implies that automatonT implements automaton S in the sense of trace inclusion.4.1 MotivationAction update of speci�cation S accomplishes two logical tasks: It updates the cen-tralized database, and it sets client-speci�c variables, map(c) and last(c), to theirnew values. In a distributed setting, these two tasks are generally accomplished bytwo separate transitions. To simplify the re�nement mapping between the implemen-tation and the speci�cation, we introduce an intermediate speci�cation D, in whichthese two tasks are separated.4.2 I/O Automaton DAutomaton D is formed by splitting each update action of S into two, update andservice. The �rst one extends dbs with a new database state, but instead of settingmap(c) to \ok" and last(c) to its new value as in S, it saves this value (i.e., the33

index to the most recent database state witnessed by c) in delay bu�er. The secondaction sets map(c) to \ok" and uses information stored in delay to set last(c) to itsvalue. The code for automaton D appears in Figure 4.1.Figure 4.1 Intermediate Speci�cation DSignature: Same as in S, with the addition of an internal action service(c); c 2 C.State: Same as in S, with the addition of a state variable delay 2 C ,! N , initially ?.Transitions: Same as in S, except update is modi�ed and service is de�ned.update(c; u)Pre: u = map(c)c 62 dom(delay)E�: dbs dbs + u(dbs [jdbs j � 1])delay(c) jdbs j � 1 service(c)Pre: c 2 dom(delay)E�: map(c) oklast(c) delay(c)delay(c) ?
4.3 Correctness of DIn this section, we prove that the closed automaton D implements the closed automa-ton S in the sense of trace inclusion. First, we study the invariants of D needed forthe correctness proof. Then, we present a mapping between the reachable states ofD and S and prove that this mapping is a re�nement, which implies the correctnessresult.4.3.1 Invariants on DInvariant 4.1 For each client c 2 C, each of the following propositions is true.1. (c:busy = false)) (map(c) = ?)2. (map(c) = ?)) (c:busy = false)3. (c:busy = false)) (delay(c) = ?)Proof 4.1: This multipart invariant can be proved by induction on the length ofthe execution sequence similarly to the proof of Invariant 3.1 in Chapter 3.Invariant 4.2 For each client c 2 C, if delay(c) 6= ? then map(c) 2 Update.Proof 4.2: A proof by induction on the length of the execution sequence is straight-forward. The parts of the inductive step that involve actions request and servicerely on Invariant 4.1. 34

4.3.2 Re�nement Mapping DS : D ! SWe want to construct a mapping DS() that maps each reachable state of D to areachable state of S and satis�es the following two properties:1. If d is an initial state of D, then DS(d) is an initial state of S.2. If d and DS(d) are reachable states of D and S respectively, and (d; �; d0) isa step of D, then there exists an execution fragment of S beginning at stateDS(d) and ending at state DS (d)0, with its trace being the same as � and its�nal state DS(d)0 being the same as DS (d0).A state of S consists of the following components: dbs, map, last , and c:busy forall c 2 C. The re�nement mapping DS() has to specify how these components areconstructed from a reachable state d of D in a way that preserves the two propertiesabove.The di�erence between automata D and S is that D delays the propagation of newvalues in to map and last by temporarily storying them in delay . Thus, the entries indelay are always more up-to-date than the corresponding entries in map and last . Inautomaton S, on the other hand, the values in map and last are always up-to-date.De�nition: Given two partial functions f; g : X ,! Y , we de�ne a partial functionoverlay(f; g) : X ,! Y to be as g over dom(g) and as f over (dom(f)� dom(g)).Lemma 4.1 The following function DS () is a re�nement from automaton D to au-tomaton S with respect to the reachable states of D and S.DS (d : D) ! S = s; wheres:dbs = d:dbss:map = overlay(d:map; fhc; oki j c 2 dom(d:delay)g)s:last = overlay(d:last; d:delay)s[c]:busy = d[c]:busy for all c 2 CProof 4.1:1. Basis: We want to show that the initial state d0 of D maps to the initial state s0 ofS. Consider the initial state d0. It is straightforward to see that DS (d0):dbs = s0:dbsand DS (d0)[c]:dbs = s0[c]:dbs for all c 2 C. For the remaining two state variables,notice that d0:delay = ? implies that DS (d0):map = d0:map and DS(d0):last =d0:last . Since map and last are the same in the initial states of D and S, it followsthat DS (d0):map = s0:map and DS (d0):last = s0:last . Thus DS(d0) = s0.35

2. Inductive Step: Assume that d and DS (d) are reachable states of D and S respec-tively, and that (d; �; d0) is a step of D. We show that, for all �, the step (d; �; d0)of D simulates the step (DS(d); ;DS(d)0) of S with = � and DS(d0) = DS(d)0,except when � is a service action, then the step (d; �; d0) of D simulates an emptytransition of S.Even though the code for actions request, reply, and query is identical in S and D,the preservation of the re�nement mapping for the transitions involving these actionsis not trivial because state variables d:map and d:last do not map directly to theircounterparts s:map and s:last in S.Consider a transition (d; �; d0) of D that involves any one of these three actions andassume it is enabled in state d. Then, d:map(c) 62 Update in the pre-state (forrequest use Invariant 4.1.1). By Invariant 4.2, d:delay(c) is unde�ned, and thus, c 62domain(d:delay). From this and the fact that d0:delay = d:delay it is straightforwardto show that the re�nement mapping is preserved.The two remaining actions of D are update and service. Let's examine them closer:� = update(c; u) | A transition of D with this action corresponds to a tran-sition of S with the same action. The precondition on this action implies thatc 62 dom(d:delay), and thus DS(d):map(c) = u. This means that the correspond-ing action of S, update(c), is enabled. It is straightforward to see that the re�nementholds for state variables dbs and c:busy . For map and last we use the fact thatdom(d0:delay) = dom(d:delay) [fcg.� = service(c) | A transition of D with this action corresponds to an emptytransition of S. We have to show that DS(d) = DS(d0). The precondition on � impliesthat c 2 dom(d:delay). This means that DS(d):map(c) = ok and DS(d):last(c) =d:delay(c). In the post-state DS(d0), these variables are the same because even thoughc is no longer in dom(d0:delay), DS (d0):map(c) and DS(d0):last(c) have been setrespectively to ok and d:delay(c) by �. Finally, d0:dbs = d:dbs, and for all c 2 C,d0[c]:busy = d[c]:busy since these state variables are not a�ected by �.Theorem 4.2 Automaton D implements automaton S in the sense of trace inclusion.Proof : Follows immediately from Lemma 4.1.
36

Chapter 5
Service Implementation T
In this chapter, we present an I/O automaton T that models a distributed implemen-tation of the replicated data service speci�ed by the automaton S of Chapter 3. Theproof of correctness that establishes T as an implementation of S appears in the nexttwo chapters.5.1 Architectural Structure of TThe distributed implementation of the service consists of the servers' layer and thecommunication layer. The servers' layer is symmetric: all servers run identical state-machines. The communication layer consists of two parts, a group communicationservice satisfying VS , and a collection of individual channels providing reliable re-ordering point-to-point communication between all pairs of servers.The servers use the group communication service to disseminate update and queryrequests to the members of their groups and rely on the properties of this service toenforce the formation of identical sequences of update requests at all servers and toschedule query requests correctly. The point-to-point channels are used to send theresults of processed queries directly to the original servers.Figure 5.0 below depicts the major components of the system and their interactions.Set P represents the set of servers. Each server p 2 P runs an identical state-machineVStoDp and serves the clients whose c:proc equals p.37

gprcv(m)q;p
reply(r)c0qrequest(r)cp request(r)cq

V SPTP
V StoDqV StoDp reply(r)c0p request(r)c0q

newview(v)psafe(m)q;pgpsnd(m)p newview(v)qsafe(m)p;qgprcv(m)p;qgpsnd(m)q
request(r)c0p reply(r)cqreply(r)cp

Figure 5.0 System components and their interactions.The I/O automaton T for the service implementation is a composition of the servers'layer I =Qp2P (VStoDp) with the group-communication service speci�cation VS anda collection PTP of reliable reordering point-to-point channels between any pair ofservers, with all the output actions of this composition hidden, except for the servers'replies. T = hideout(I � VS � PTP)� freply(o)cg�I � VS � PTP�:5.2 Communication Layer5.2.1 The VS Speci�cationThe state-machine VS of [13, 14, without the performance/fault-tolerance propertyVS-property] is reprinted in Figure 5.1.For the rest of the paper, we �x M to be a message alphabet for the group commu-nication service, and hG ; <G ; g0i to be a totally-ordered set of view identi�ers withan initial view identi�er. An element of the set V = G �P(P) is called a view. If vis a view, we write v :id and v :set to denote its components.Automaton VS speci�es a partitionable service in which, at any moment of time,every client has precise knowledge of its current view. VS does not require clients tolearn about every view of which they are members, nor does it place any consistencyrestrictions on the membership of concurrent views held by di�erent clients. Its only38

Figure 5.1 Automaton VSSignature:Input:gpsnd(m)p, m 2M , p 2 PInternal:createview(v), v 2 viewsvs-order(m; p; g), m 2M , p 2 P , g 2 G Output:gprcv(m)p;q m 2M , p 2 P , q 2 P , hidden g 2 Gsafe(m)p;q m 2M , p; q 2 P , hidden v 2 viewsnewview(v)p, v 2 views , p 2 P , p 2 v:setState:created � V , initially fhg0; P igfor each p 2 P :current viewid[p] 2 G, initially g0for each g 2 G:queue[g], a sequence of M �P , initially empty for each p 2 P , g 2 G:pending[p; g], a sequence of M , initially emptynext[p; g] 2 N>0, initially 1next safe[p; g] 2 N>0, initially 1Transitions:createview(v)Pre: v:id > max (g : 9S; hg; Si 2 created)E�: created created [fvgnewview(v)pPre: v 2 createdv:id > current viewid [p]E�: current viewid [p] v:idgpsnd(m)pE�: append m to pending [p; current viewid [p]]vs-order(m; p; g)Pre: m is head of pending [p; g]E�: remove head of pending [p; g]append hm; pi to queue[g]

gprcv(m)p;q ; hidden gPre: g = current viewid [q]queue[g](next [q; g]) = hm; piE�: next [q; g] next[q; g] + 1safe(m)p;q ; hidden g, SPre: g = current viewid [q]hg; Si 2 createdqueue[g](next safe [q; g]) = hm; pifor all r 2 S:next [r; g] > next safe [q; g]E�: next safe [q; g] next safe [q; g] + 1
view-related requirement is that views are presented to each client according to thetotal order on view identi�ers. VS provides a multicast service that imposes a totalorder on messages submitted within each view and delivers these messages accordingto this order, with no omissions, and strictly within a view. In other words, thesequence of messages received by each client while in a certain view is a pre�x ofthe total order on messages associated with that view. Separately from the multicastservice, VS provides a \safe" noti�cation once a message has been delivered to allmembers of the view.5.2.2 The PTP Speci�cationThe automaton PTP for the collection of reliable reordering point-to-point channelsbetween all pairs of clients is a compositionQp;p02P (Lp;p0) of individual channels Lp;p0for all p; p0 2 P . 39

The code for the I/O automaton Lp;p0 appears in Figure 5.2; it is similar to theautomaton A in [22, pages 460-461].For the rest of the paper, we �x Packet to be a message alphabet for the point-to-pointchannels and denote by pkt an element of this alphabet.Figure 5.2 Speci�cation Lp;p0 for a reliable reordering channel from p to p0Signature:Inp: ptpsnd(pkt)p;p0 ; pkt 2 Packet ; p 2 P; p0 2 POut: ptprcv(pkt)p0;p; pkt 2 Packet ; p 2 P; p0 2 P State:in-transitp;p0 , a multiset of elements of Packet ,initially ;Transitions:ptpsnd(pkt)p;p0E�: add pkt to in-transitp;p0 ptprcv(pkt)p;p0Pre: pkt 2 in-transitp;p0E�: remove pkt from in-transitp;p0
5.3 Servers' LayerThe servers' layer is composed of jP j identical state-machines, one for each serverp 2 P . We next describe an automaton VStoDp that models the state-machine of aserver p.5.3.1 Type InformationAs an extension to Figure 3.1 on page 27, Figure 5.3 presents additional informationon types and a convention for variable-name usage.Figure 5.3 Additional type declarationVariable Type DescriptionP Fixed set of servers.Q � P(P) Fixed set of quorums. Notice: P 2 Q.g hG ; <G ; g0i Totally-ordered set of view identi�ers.v V = G �P(P) Set of views.x X = G � (C �Update)� �N Expertise information for exchange process.m M = C �Update + C �Query �N +X Messages sent via VS .pkt Packet = C �Answer �N �G Packets sent via PTP .For the rest of the paper, we �x a set Q of quorums, each of which is a subset of P .We assume that every pair Q, Q0 in Q satis�es the intersection property Q \Q0 6= ;.40

The sets V and G of VS views and their identi�ers are introduced on page 38.There are three di�erent types of messages that are transmitted via the group com-munication service: update, query, and expertise. An update message consists of anupdate requests paired with its client id. If m is an update message, then m:u andm:c denote its components. A query message is a triple consisting of a query request,its client id, and an index to the last database state witnessed by this client. If mis a query message, then m:q , m:c, and m:l denote its components. An expertisemessage is a triple consisting of a view identi�er, a sequence of update messages, anda natural number representing the length of a certain pre�x of this sequence. If x is anexpertise message, then x:xl , x:us , and x:su respectively denote the just mentionedcomponents. Expertise messages are used during expertise-exchange process, whichis explained in the next section.Packets transmitted via point-to-point channels carry information pertaining to theprocessed query requests. Each packet consists of four components: a client id, ananswer to the client's query, an index to the database states with respect to whichthe query was processed, and a view identi�er of a view in which the query wasprocessed. If pkt is a packet, then pkt :c, pkt :a, pkt :l , and pkt :g respectively denotethe just mentioned components.5.3.2 I/O Automaton VStoDpThe I/O code for the VStoDp state machine is given in Figures 5.4 and 5.5.SignatureThe external actions of the automaton VStoDp represent its interface with the outsideworld, namely, with the group communication service, the point-to-point channels,and the clients. Thus, the external actions of VStoDp are exactly the external actionsof VS projected on p, of Qp02P (Lp;p0 � Lp0;p), and of Qfc2C j c:proc=pg(Cc).The internal actions of the automaton VStoDp are labeled update and query. Aninstance of the former applies an update request u from a client c to the currentdatabase state. An instance of the latter applies a query request q from a client c tothe current database state which is at least as advanced as the lth state.41

Figure 5.4 Implementation VStoDp : Signature and State VariablesSignature:Input:request(r)c; r 2 Request ; c 2 C; c:proc = pgprcv(m)p0;p;m 2 M ; p0 2 Psafe(m)p0;p;m 2 M ; p0 2 Pnewview(v)p; v 2 Vptprcv(pkt)p0;p; pkt 2 Packet ; p0 2 P Output:reply(o)c; o 2 Output; c 2 C; c:proc = pgpsnd(m)p;m 2 Mptpsnd(pkt)p;p0 ; pkt 2 Packet ; p0 2 PInternal:update(c; u); c 2 C; u 2 Updatequery(c; q; l); c 2 C; u 2 UpdateState:db 2 DB , initially db0. Local database replica.last 2 Cj(c:proc=p) ! N , initially Cj(c:proc=p) ! 0. Index of the last db state seen by each client.map 2 Cj(c:proc=p) ,! Request +Output, initially ?. Bu�er for pending requests or replies.pending 2 P(Cj(c:proc=p)), initially ;. Clients whose requests are being processed.updates 2 (C �Update)�, initially []. Sequence of update requests (indexing from 1).safe to update 2 N , initially 0. Index of the last safe element in updates .last update 2 N , initially 0. Index of the last executed element in updates .query counter 2 N , initially 0. Load-balancing counter.queries 2 C ,! (Query �N) + (Answer �N), Query requests paired with their last(c) orinitially ?. query answers paired with their last(c).view 2 V , initially V0 = hg0; Pi. Current view of p.expertise level 2 G , initially g0. The highest primary view id known to p.expertise max 2 X , initially hg0; []; 0i. The highest expertise received so far.expert counter1 2 N , initially 0. Number of expertise messages received so far.expert counter2 2 N , initially 0. Number of expertise messages received safely.mode 2 fnormal ; expertise broadcast ; Modes: The �rst item is normal activity,expertise collectiong, initially normal . the last two are recovery activity.State VariablesState variable db models the server's local database replica. The initial state of thisvariable is db0. Notice that VStoDp maintains only one database state, the currentone. This is in contrast to the speci�cations S and D which maintain a history ofdatabase states.State variables last and map have the same purpose as in the speci�cation automata:last(c) is an index to the last database state witnessed by the client c of p; map(c)is either unde�ned if there is no outstanding request from the client c, or Requestif VStoDp has not begun processing a submitted by client c request, or Output ifVStoDp has already obtained an output value for a request submitted by client c buthas not delivered it to c yet. When VStoDp begins processing submitted by a client crequest, it enters c in a set pending until the output value for the request is obtained.VStoDp maintains a sequence updates of update requests paired with their client iden-42

ti�ers. The purpose of this sequence is to enforce the order in which update requestsare applied to the local database replica db. The sequence has two distinguishedpre�xes updates[1::safe to update] and updates[1::last update], called safe and done,that mark respectively those update requests that have been determined as safe toexecute and those that have been already executed.A query counter keeps track of the number of query requests delivered in the currentview. Based on this number, the server decides whether or not to accept for processingeach query request. Partial function queries associates clients, whose requests havebeen accepted, with either of the two types of pairs: A pair of the �rst type containsa query request and an index to a minimum database state with respect to which thequery has to be processed. A pair of the second type contains an answer to a queryand an index to a database state with respect to which this answer was obtained.A view variable contains the current view of the server. A view can be either primaryor not depending on whether the members of the view comprise a quorum. In orderfor the server to determine how advanced its state is compared to others, it keepstrack of a view identi�er of the latest primary view of which it has knowledge. Thisidenti�er is stored in the expertise level variable.The purpose of the mode variable is to enable/disable certain transitions dependingon the current state of the automaton.In certain automaton states, the server receives expertise messages from other serversof its view. The state variable expertise max keeps track of the highest expertisereceived so far. The two counters, expert counter1 and expert counter2 , keep trackrespectively of how many expertise messages and of how many safe noti�cations forthese messages have been delivered to the server in its current view.TransitionsTransitions of VStoDp can be classi�ed as either front end, processing of query re-quests, processing of update requests, or recovery activity.Front end transitions involve actions of the form request(r)c and reply(o)c, whichresult in the submitted requests being checked in to and the replied output valuesbeing checked out of the map bu�er. 43

Figure 5.5 Implementation VStoDp: TransitionsTransitions:request(r)cE�: map(c) rgpsnd(c; q; l)pPre: mode = normalq = map(c) ^ c 62 pendingl = last(c)E�: pending pending [cgprcv(c; q; l)p0;pE�: query counter query counter + 1if (rank(p; view :set) =query counter mod jview :set j)then queries(c) hq; liquery(c; q; l)Pre: hq; li 2 queries(c)last update � lE�: queries(c) hq(db); last updateiptpsnd(c; a; l ; g)p;p0Pre: c 2 dom(queries) ^ c:proc = p0ha; li 2 queries(c)g = view :idE�: queries(c) ?ptprcv(c; a; l ; g)p0;pE�: if (g = view :id ^ c:proc = p) thenpending pending � cmap(c) alast(c) lnewview(v)pE�: queries ?; query counter 0pending pending � fc j (9 q : hc; qi 2 map)gsafe to update safe to update +�expertise max expertise max 0expert counter1 0; expert counter2 0mode expertise broadcastview vgpsnd(x)pPre: mode = expertise broadcastx = hexpertise level ; updates ; safe to updateiE�: mode expertise collection

reply(o)cPre: map(c) = oE�: map(c) ?gpsnd(c; u)pPre: mode = normal ^ view :set 2 Qu = map(c) ^ c 62 pendingE�: pending pending [cgprcv(c; u)p0;pE�: updates updates + hc; uisafe(c; u)p0;pE�: safe to update safe to update + 1update(c; u)Pre: last update < safe to updatehc; ui = updates [last update + 1]E�: last update last update + 1db u(db)if (c:proc = p) thenpending pending � cmap(c) oklast(c) last updategprcv(x)p0;pE�: expertise max maxX (expertise max ; x)expert counter1 expert counter1 + 1if (expert counter1 = jview :set j) thenexpertise level expertise max :xlupdates expertise max :ussafe to update expertise max :suif (view :set 2 Q) thenexpertise level view :idsafe(x)p0 ;pE�: expert counter2 expert counter2 + 1if (expert counter2 = jview :set j) thenif (view :set 2 Q) thensafe to update jexpertise max :usjpending pending �fc j c 2 pending ^c 62 updates [(last update + 1) : :safe to update]:cgmode normal
The server initiates processing of the submitted requests by multicasting them to themembers of its current view (including itself) using the gpsnd primitive of VS . Thisoperation is limited to the times when the server's mode is normal , which correspondsto the server being in an established view.44

When a view of the server changes, the server suspends processing of new requests byswitching its mode away from normal and starts recovery activity. The goal of therecovery activity is to establish the server's new view so it may resume its normalmode of operation. Successful completion of this activity requires collaboration of allthe servers of the new view.We will now describe each of the di�erent transition categories in more detail. Pleaserefer to the corresponding code fragments in Figure 5.5.Front EndTransitions involving input actions of the form request(r)c cause the server to ex-tend its map bu�er with the corresponding client/request associations. Presence ofclient/output-value associations in the server's map bu�er enables transitions involv-ing output actions of the form reply(o)c.The code models map bu�er as a partial function because it asserts that, at any giventime, for each client c, there can be at most one outstanding request. The validity ofthis assertion depends on the well-formedness of clients.Processing of Query RequestsProcessing of query requests is handled by actions of the form gpsnd(c; q; l)p,gprcv(c; q; l)p0;p, query(c; q; l), ptpsnd(c; a; l ; g)p;p0, ptprcv(c; a; l ; g)p0;p, andnewview(v).The server initiates processing of each submitted query request by multicasting it tothe members of its view, using a gpsnd(c; q; l)p action. The last argument, l , is anindex to the least database state with respect to which query q has to be processed inorder to ensure sequential consistency. The value of l is taken as the value of last(c).When VS delivers a query request to the server using a gprcv(c; q; l)p0;p action, theserver checks if it is its turn to service this query, and if so, accepts the request. Thefact that all members of the server's view receive query requests in the same orderguarantees that the delivered in this view queries are scheduled uniformly among itsmembers.Accepted query requests are serviced by internal actions of the form query(c; q; l),which is enabled only when the state of the server's database db is no smaller than the45

one speci�ed by the request. This condition is captured by last update being greaterthan or equal to l . The non-trivial guarantee of the algorithm is that the servers arealways enabled to advance their database states su�ciently far to be able to processthe accepted queries.Answers for the serviced queries are forwarded to the queries' original servers usingactions of the form ptpsnd(c; a; l ; g)p;p0. The �rst argument, c, speci�es the client of p0to whom answer a has to be relayed. The third argument, l , speci�es an index of thedatabase state with respect to which the answer was obtained. The last argument, g,speci�es the current view of the server. It is included in the packet in order to ensurethe within-view delivery to p0.When a point-to-point channel PTPp0;p delivers to the server a packet hc; a; l ; gicarrying an answer to a query, the server accepts this answer only if the following twoconditions are met. The �rst condition checks if the server's current view matchesthe one speci�ed in the packet. This condition implements the within-view deliveryof answers and is necessary in order to eliminate unexpected packet arrivals (see nextparagraph). The second condition checks if c is among the server's clients. Thiscondition is just a technical one: It always holds (as shown by Invariant 6.5 onpage 54) but is included to ensure well-typing (as the domains of map, pending, andlast are restricted to those cs whose c:proc = p).When the server learns of its new view, it executes a simple query-related recoveryprocedure , in which it moves its own pending queries for reprocessing and erases anyinformation pertaining to the queries of others.Processing of Update RequestsProcessing of update requests is handled by actions of the type gpsnd(c; u)p,gprcv(c; u)p0;p, safe(c; u)p0;p, and update(c; u).The server initiates processing of each submitted update request by multicasting itto the members of its view, using a gpsnd(c; u)p action. This action is allowed onlywhen the current view of the server is a primary one.When VS delivers an update request to the server using a gprcv(c; u)p0;p action, theserver �xes a tentative position of this request by appending it to its updates sequence.The algorithm ensures that, when this request is delivered to other members of the46

service's view, it is assigned the same tentative position in the updates sequencesof these members. This is necessary in order to maintain the updates sequences ofdi�erent servers mutually consistent. Attainment of this behavior directly relies onthe following four properties of the algorithm: First, servers start with the same,empty, updates sequences. Second, updates sequences of the members of the sameprimary (non-initial) view are the same when each is taken at the time when itsserver establishes this view. Third, when update requests are delivered to servers,the servers' views are already established. Finally, members of the same view receiveupdate requests in the same order with no omissions. The second and third propertiesare established as a result of preceding recovery activity; The last one is guaranteedsolely by VS .When VS delivers a safe noti�cation to the server using a safe(c; u)p0;p action, theserver extends the safe pre�x of its updates sequence to cover an adjacent to the pre�xrequest. The code asserts that the covered request is in fact the one for which theserver has received the safe noti�cation. The validity of this assertion rests on thefollowing �ve properties of the algorithm: First, servers start with the same, empty,safe pre�xes. Second, safe pre�xes of all the members of the same primary (non-initial)view are the same when each is taken at the time when its server switches to normalmode. Third, when each server switches to normal mode, the only unsafe requests onits updates sequence are those that it has received in its current view. Fourth, whensafe noti�cations for update requests are delivered to servers, the servers' modes arealready normal . Finally, safe noti�cations arrive in the same order with no omissionsas the delivered requests. The second, third, and fourth properties are established asa result of preceding recovery activity; The last one is guaranteed solely by VS .Update requests that are covered by the server's safe pre�x are applied to the server'sdatabase replica by internal actions of the form update(c; u), in the order speci�edby the pre�x. If the applied request happens to be native, i.e., belong to one of theserver's clients, then the server also removes c from pending, sets map(c) to ok andlast(c) to last update (which is the index of the current database state).Notice that a simple operation of extending a safe pre�x to cover an adjacent to thepre�x request has crucial implications: It allows for the covered request to be appliedto the server's database (once all the preceding, say i� 1, requests in the pre�x areapplied), and as a consequence, requires that the ith update request applied by anyserver to its database be this particular request (or otherwise mutual consistency of47

data replicas is violated). The ability of the algorithm to allow these implications andstill guarantee correctness rests in large on the way recovery activity is organized.Recovery ActivityThe server's recovery activity is initiated when the server is informed of its new view,and is handled by actions of the form newview(v)p, gpsnd(x)p, gprcv(x)p0;p, andsafe(x)p0;p.When VS informs the server of its new view using a newview(v)p action, the serverperforms the following three tasks: First, it executes a small query-related recoveryprocedure described on page 46. Second, it adjusts its safe to update index to be atleast as advanced as each of the last indices witnessed by its clients; This is discussedin more detail on page 49. Third, it enters an expertise-exchange procedure thatconstitutes the rest of the recovery activity.During an expertise exchange procedure, servers exchange their expertise, which isde�ned as a triple consisting of expertise level , updates, and safe to update. Thepurpose of the expertise-exchange procedure is to bring everyone's expertise to acommon base that is consistent with these and other servers' execution histories andis suitable for the resumption of their normal modes of operation.De�nition 5.1 The cumulative expertise, maxX (X), of a set or a sequence, X, ofexpertise elements is de�ned as the following triplemaxX (X) =
max<G fx:xl j x 2 Xg;max<jj fx:us j (x 2 X) ^ (x:xl 2 max<Gfx:xl j x 2 Xg)g;max<N fx:su j x 2 Xg�
As a �rst step, the server's collaboration with others during an expertise-exchangeprocess aims at advancing everyone's expertise to the highest one know to them as agroup. This step is completed with a delivery of the last expertise message via actiongprcv(x)p0;p. 48

Advancing the servers' expertise achieves two purposes. First, it ensures the propa-gation of update requests to previously inaccessible replicas. Second, it ensures thefuture ability of servers to process the queries that are assigned to them.In addition to advancing their expertise, the servers of primary views have to ensuretheir ability to process new update requests once they resume their normal activity,which subsumes that they have to start normal activity with identical updates se-quences, the entire content of which is safe and contains as pre�xes the safe pre�xesof all other servers in the system. For this purpose, once the server of a primary viewlearns that all expertise-exchange messages have been delivered to all servers of thisview, it extends its safe pre�x to cover the entire updates sequence adopted duringthe expertise-exchange process.The resultant safe pre�x acts as a new base that all servers of the future primaryviews will contain in their updates sequences. Attainment of this behavior dependson the intersection property of primary views and the fact that subsequent primaryviews have higher identi�ers. (This property is expressed in part 2 of Invariant 7.30on page 91.)The established base works as a divider: partially processed update requests thatare not included in the base will never �nd a way to a safe pre�x unless they areresubmitted by their original servers. Therefore, once a server of a primary viewestablishes the base, it moves all pending update requests that are not in this baseback for reprocessing. After this step, the server may resume its normal activity,which enables it to process new update and query requests.The � statementOne of the e�ects of a newview action adjusts the safe to update index of a serverby �, a derived variable de�ned below (see De�nition 5.2). For convenience, we willrefer to this statement as the � statement. We will now take a close look at thisstatement.Motivation: In a primary view, di�erent servers may possess di�erent safe to updateindices, which may result in queries being performed with respect to database statesthat are more advanced than those that are regarded as safe by the queries' originalservers. In order to ensure that the servers of subsequent views have su�ciently49

advanced database states to process queries, each server, upon learning of a newview, adjusts its safe to update index to be at least as large as the last(c) index ofany of its clients.De�nition of �: For each server p, we de�ne two derived variables, last max and �,to be respectively the largest database index witnessed by clients of p and the amountby which this index surpasses the safe to update index of p. An invariant will showthat p:� can be greater than zero only when p:view is primary and p:mode is normal .De�nition 5.2 For each server p, de�ne last max and � as follows:p:last max = max<N fp:last(c) j c 2 C ^ c:proc = pgp:� = (p:last max � p:safe to update if p:last max > p:safe to update0 otherwiseHandling of the � statement: The � statements ensure that servers of future viewshave su�ciently advanced safe to update indices to enable database replicas to reachsu�ciently advanced states that may be required in order to process certain queries.We prove this property in Chapter 8. Note that this property is a part of liveness; itensures that something \good" happens.On the other hand, the absence of the � statement would not violate the safetyproperties of the system; The traces of the implementation would still be included inthe traces of the speci�cation. However as a result, the servers would be unable toprocess certain queries in minority views, because they may require database statesthat are more advanced than those that the servers know as safe.For convenience, we introduce the following notation that distinguishes between thetwo versions of the automata, with and without the � statements:Notation: Denote by VStoDp, I, and T the I/O automata respectively for theserver's state-machine, the servers' layer, and the service implementation, eachwithout the � statements. Likewise, denote by VStoD 0p, I 0, and T 0 these I/O au-tomata but with the � statements.In this notation, our ultimate goal is to show that implementation automaton T 0implements speci�cation automaton S in the sense of trace inclusion. There are two50

ways we can go about achieving this goal: First, we can give a direct simulation fromT 0 to D. Second, we can give two simulations, one from T to D and another from T 0to T .An obvious advantage of the �rst approach is that it is direct. An advantage of thesecond approach is that it keeps the proof of the replication part of the algorithm sep-arate from that of the load-balancing part, and thus, allows its future reuse in similarsettings (e.g., same replication but di�erent load-balancing algorithms). We chosethe second approach because it has long-term bene�ts, and because its complexity issimilar to (if not less than) that of the �rst approach.Proof Outline: There are two stages that we have to accomplish. First, we have toprove that T implements D in the sense of trace inclusion. Then, we have to provethat T 0 implements T in the sense of trace inclusion.The second stage is straightforward: The re�nement mapping between reachablestates of T 0 and T is identity. The action correspondence is also identity, except fornewview actions; A transitions of T 0 that involves actions of the form newview(v)psimulates the execution sequence of T that contains safe noti�cations for � actions ofthe form safe(c; u)p0;p (possibly separated with safe noti�cations for query requests,which have no e�ect on the algorithm) followed by the corresponding newview(v)paction. As a result of this simulation, the p:safe to update index of T is advancedforward by �, which corresponds to what is accomplished with the � statement inT 0. The only non-trivial part of this stage is to prove that this execution sequenceis possible, i.e., that safe noti�cations for � update requests are enabled. We provethis part in Lemma 8.2 of Chapter 8 on 103. Assuming that this lemma holds, weconclude the following lemma:Lemma 5.1 Automaton T 0 implements automaton T in the sense of trace inclusion.We note that, if we went with the �rst, direct, approach, then the simulation proofthat T 0 implements D in the sense of trace inclusion would be identical to the proofthat T implements D in the sense of trace inclusion, except for the proofs of severalinvariants in Section 7.4 of Chapter 7.
51

52

Chapter 6
Correctness of T : Simulation
In this chapter, we present a mapping from the reachable states of the closed imple-mentation automaton T to the reachable states of the closed intermediate-speci�cationautomaton D, and give a simulation proof that this mapping is a re�nement. Thisresult, in conjunction with Theorem 4.2 of Chapter 4 and Lemma 5.1 of Chapter 5,implies that the implementation automaton T 0 implements the speci�cation automa-ton S in the sense of trace inclusion.6.1 High-Level InvariantsThe simulation proof given in this chapter relies on the following �ve high-level invari-ant assertions. These assertions are speci�cally designed to be used in the simulationproof; Many of them depend on more general properties of the algorithm. A detailedproof of these assertions is postponed until the next chapter.Invariant 6.1 For each server p 2 P , the value of p:last update is bounded fromabove by p:safe to update, which in turn is bounded from above by the length ofp:updates sequence:p:last update � p:safe to update � jp:updatesj:

53

The following invariant expresses a very speci�c consistency property, which is aconsequence of a more general one that states that safe and done pre�xes of allservers are consistent. This property is discussed in the next chapter.Invariant 6.2 For any two servers p1 and p2 2 P , if the lengths of their done pre-�xes are the same, then their done pre�xes are the same:p1:last update = p2:last update impliesp1:updates[1::p1:last update] = p2:updates[1::p2:last update]:The following invariant expresses the fact that all update requests that are safe some-where but has not been executed at there native location are still reected in theirnative map and pending bu�ers.Invariant 6.3 If hc; ui = p:updates[i], c:proc:last update < i, and i � p:safe to update,then(a) hc; ui 2 c:proc:map(b) c 2 c:proc:pendingThe following invariant states that at most one unexecuted update request per eachclient can appear at that client's server. This property is a consequence of the factthat clients are blocking.Invariant 6.4 For all clients c 2 C, there exists at most one index i 2 N suchthat i > c:proc:last update and c = c:proc:updates[i]:c.The following invariant expresses the properties of packets on a point-to-point chan-nel. It is the key to correctness of queries.Invariant 6.5 For all packets hc; a; l ; gi 2 in-transitp0;p, it follows that c:proc = p.Moreover, if p:view :id = g then(a) c 2 dom(p:map) ^ p:map(c) 2 Query (d) l � p:last(c)(b) c 2 p:pending (e) l � max}f}:last updateg(c) a = p:map(c)(compose(p:updates[1::l])(db0))
54

6.2 Re�nement Mapping TD : T ! DWe want to construct a re�nement mapping TD() that maps each reachable state ofimplementation T to a reachable state of speci�cation D. This mapping has to satisfythe following two properties:1. Basis: If t is any initial state of T , then TD(t) is an initial state of D.2. Inductive Step: If t and TD(t) are reachable states of T and D respectively,and (t; �; t0) is a step of T , then there exists an execution fragment of D fromTD(t) to TD(t0) with the same trace as �.A state of D consists of the following components: map, dbs, last , delay, and c:busyfor all c 2 C. Function TD() should specify how to construct these components froma reachable state t of T , in a way that preserves the two properties above.6.2.1 The MappingLemma 6.1 The following function is a re�nement from T to D with respect toreachable states of T and D.1TD(t : T) ! D =let t:done = t[}]:updates[1::t[}]:last update], where } is any such thatt[}]:last update = maxpft[p]:last updategdbs = db0 + apply (scan(t:doneu); db0)map = Sp2P t[p]:maplast = Sp2P t[p]:lastdelay = fht:done[i]:c; ii j 1 � i � jt:donej ^ t[t:done[i]:c:proc]:last update < igc:busy = c:busy for all c 2 CDe�nitions of TD(t):map, TD(t):last , and TD(t)[c]:busy are straightforward.Invariant 6.2 states that all executed sequences of the same length are in fact the same.Derived variable t:done denotes the longest sequence of update requests processed by1Notation: If s is a sequence \hc1; u1i; : : : ; hcn; uni", then su denotes the sequence \u1; : : : ; un".55

one of the servers. This sequence corresponds to all modi�cations applied to thedatabase of D, which explains the way TD(t):dbs is de�ned.Domain of TD(t):delay consists of ids of update requests that have been executedsomewhere (i.e., in t:done) but not at their native locations (i.e., the last update attheir native locations have not yet surpassed these update requests). With each c inthis domain we associate its position in sequence t:done. This position correspondsto the last database state witnessed by client c, which explains the way d:delay isde�ned.6.2.2 Action CorrespondenceAutomaton D has �ve types of actions. Actions of the types request(r)c andreply(o)c are simulated when T takes the corresponding actions. Actions of thetype query(c) are simulated when T executes ptprcv(c; a; l ; g)p0;p with g = p:view :id .The last two types of actions, update(c; u) and service(c), are both simulated undercertain conditions when T executes update(c; u)p: We de�ne an action update(c; u)pof T as leading when t[p]:last update = max}ft[}]:last updateg, and as native whenc:proc = p. Actions that are just leading simulate update(c; u), that are just nativesimulate service(c), that are leading and native simulate \update(c; u),service(c)",and that are neither simulate empty transitions. Transitions of T with any otheractions simulate empty transitions of D. This is summarized in Figure 6.1.Figure 6.1 Circumstances under which each action of D is simulated by T .D T Conditionrequest(r)c request(r)creply(o)c reply(o)cupdate(c; u) update(c; u)p t[p]:last update = max}ft[}]:last updategservice(c) update(c; u)p c:proc = pquery(c; q; l) ptprcv(c; a; l ; g)p0;p g = t[p]:view :id
6.2.3 Simulation ProofWe now give a simulation proof of Lemma 6.1.56

Basis:The fact that the initial state of T maps into the initial state of D is straightforward.Inductive Step:Before considering each possible transition (t; �; t0) of T , we highlight the tasks thatneed to be accomplished in order to show that the inductive step holds for thistransition:1. Identify the corresponding action sequence � of D;2. Check that traces exhibited by (t; �; t0) and (TD(t); �;TD(t)0) are the same;3. Prove that every action in the sequence � is enabled; and4. Prove that TD(t0) is equal to TD(t)0, the post-state of (TD(t); �;TD(t)0).The correspondence of actions has been presented in Figure 6.1 on page 56. Task 2is just a check that � contains the same external action as �. The last two tasks relyon invariants presented in Section 6.1 on page 53 and involve reasoning about � and�.We note the following four facts here, in order to eliminate their repetition in manyplaces of the proof.1. Two states are equal if their corresponding state components are equal. Avariable of D is the same in states TD(t) and TD(t0) if the variables of T thatde�ne it are the same in states t and t0.2. If, for all p 2 P , t0[p]:last update = t[p]:last update, then t0:done = t:done,TD(t0):dbs = TD(t):dbs, and TD(t0):delay = TD(t):delay.3. Many transitions (t; �; t0) of T correspond to empty transitions of D. Task 2 istrue if � is not an external action of T . Task 3 is satis�ed since empty transitionsare always enabled. Task 4 involves showing that TD(t0) = TD(t), which is trueif none of the variables of T that appear in TD() are changed as a result of �.4. It is straightforward to see that the re�nement is preserved for the busy com-ponents. We, therefore, omit restating this fact in the proof.We now investigate each of the possible actions � taken by some processor } 2 P :57

1. � = request(r)c | the corresponding action of D is � = request(r)c. Bothare external actions, so their traces are the same. Action � is enabled sinceaction � is enabled, which means that t[c]:busy and TD(t)[c]:busy are bothfalse. State variables dbs, last , and delay are the same in TD(t) and TD(t)0.They are also the same in TD(t) and TD(t0) since none of the variables of Tinvolved in their de�nition in TD() are a�ected by �. Thus, they are the samein TD(t)0 and TD(t0). The only state component left to consider is map:TD(t)0:map = TD(t):map[c : r]= �Sp2P t[p]:map�[c : r]= Sp2(P�}) t[p]:map [t[}]:map[c : r]= Sp2(P�}) t0[p]:map [t0[}]:map= Sp2P t0[p]:map= TD(t0):map2. � = reply(o)c | the corresponding action ofD is � = reply(o)c. Both are out-put actions, so their external traces are the same. Since � is enabled, its precon-dition t[}]:map(c) = o is satis�ed. By the TD() mapping, TD(t):map(c) = o,and thus � is enabled. Using the same reasoning as in 1 we can show that statevariables map, dbs, last , and delay are the same in TD(t)0 and TD(t0).3. � = update(c; u) | the corresponding action sequence of D is not constantlike in the cases above. It depends on the current state of T . More speci�cally,it depends on whether or not � is a leading update, and on whether or not it isa native update.Equations (L) and (N) express what it means for an update to be leading andnative. t[}]:last update = maxpft[p]:last updateg (L)c:proc = } (N)We write (L) and (N) when the opposites apply. Also, for convenience, we usei to denote the value of t[}]:last update + 1.Recall from the code that c and u stand for t[}]:updates[i]:c and t[}]:updates [i]:u.Delayed spec D takes action update(c; u) when (L), and it takes actionservice(c) when (N). A particular state t may exhibit none, one, or both58

of these properties, yielding to the following four possibilities for �:f(�); (update(c; u)); (service(c)); (update(c; u); service(c))g:We investigate each of these possibilities.a) � = (�) when (L) and (N).Since (N), the if-then clause of � is not executed. This means that TD(t0):map= TD(t):map and TD(t0):last = TD(t):last .We now show that TD(t0):dbs = TD(t):dbs and TD(t0):delay = TD(t):delay .(L) implies that t0[}]:last update = t[}]:last update + 1< maxpft[p]:last updateg+ 1� maxpft[p]:last updateg:Since, for all p 6= }, t0[p]:last update = t[p]:last update, it follows thatmaxpft0[p]:last updateg = maxpft[p]:last updateg:Together with invariant 6.2, this result implies that t0:done = t:done, and thusTD(t0):dbs = TD(t):dbs:Moreover, by taking into account (N), we getTD(t0):delay = TD(t):delay :b) � = update(c; u) when (L) and (N).First we have to show that � is enabled. Since � is enabled, we know that itsprecondition is true:t[}]:last update < t[}]:safe to update:This implies that the following bound holds for i:t[}]:last update < i � t[}]:safe to update:59

(L) and invariant 6.3 imply t[c:proc]:map(c) = u, and thus, the �rst preconditionon � is true: TD(t):map(c) = u:The fact that the second precondition, c 62 dom(TD(t):delay), on � is truefollows from t[c:proc]:last update � t[}]:last update and Invariant 6.4, which to-gether imply that c does not occur in t:done between indices t[c:proc]:last update+1 and jt:donej.Because of (N), the if-then clause of � is not executed. Thus, TD(t0):map =TD(t):map and TD(t0):last = TD(t):last . Action � does not modify these com-ponents either. So TD(t0):map = TD(t)0:map and TD(t0):last = TD(t)0:last .We now consider the remaining components, dbs and delay .TD(t)0:dbs = TD(t):dbs + u(TD(t):dbs:last)= db0 + apply (scan(t:done); db0) + u(TD(t):dbs:last)= db0 + apply (scan(t:done); db0) + u(compose(t:done)(db0))(L) and t0[}]:last update = t[}]:last update +1 imply t0:done = t:done + hc; ui= db0 + apply (scan(t:done); db0) + compose(t0:done)(db0)= db0 + apply (scan(t0:done); db0)= TD(t0):dbs:Finally,TD(t)0:delay = TD(t):delay [hc; jTD(t):dbsji= TD(t):delay [hc; jt:donej+ 1i= TD(t):delay [hc; ii= TD(t0):delay;where the last step is justi�ed by (N).c) � = service(c) when (L) and (N).This action is enabled because its precondition, c 2 dom(TD(t):delay), follows60

from hc; ii 2 TD(t):delay , which is true because(L)) i = t[}]:last update + 1 � jt:donej(N)) t[t:done[i]:c:proc]:last update = t[}]:last update < i:We now consider the state components of D:TD(t)0:map = TD(t):map[c : ok]= (Sp2P t[p]:map)[c : ok]= Sp2(P�}) t[p]:map [t[}]:map[c : ok]= Sp2(P�}) t0[p]:map [t0[}]:map= Sp2P t0[p]:map= TD(t0):map:Using the same reasoning as in a) we can show thatTD(t)0:dbs = TD(t0):dbs:Similarly to map we getTD(t)0:last = TD(t):last [c : TD(t):delay(c)]= (Sp2P t[p]:last)[c : i]= Sp2(P�}) t[p]:last [t[}]:last [c : i]= Sp2(P�}) t0[p]:last [t0[}]:last= Sp2P t0[p]:last= TD(t0):last :Finally, since t0[}]:last update = i, hc; ii is no longer in TD(t0):delay, soTD(t)0:delay = TD(t):delay � hc; ii = TD(t0):delay :d) � = (update(c; u); service(c)) when (L) and (N).The �rst action is enabled because of the reasons given in b). The second actionis enabled because the �rst one de�nes delay at c. Using a straightforward61

combination of b) and c) we can show that TD(t)0 = TD(t0).4. � = ptprcv(c; a; l ; g)} | the corresponding action of D is query(c; q; l) pro-vided that g = t[}]:view :id , where q = TD(t):map(c).The �rst precondition on � is true because of part (a) of Invariant 6.5. Usingparts (d) and (e) of Invariant 6.5, we get the following bounds for l :TD(t):last(c) = t[}]:last(c) � l � jt:donej = jTD(t):dbs � 1j;which establishes the truth of the second precondition.We now consider the state components of D. Notice that q is t[}]:map(c).TD(t)0:map = TD(t):map[c : q(TD(t):dbs[l + 1])]= (Sp2P t[p]:map)[c : q(compose(t[}]:updates[1::l])(db0))]Using part (c) of Invariant 6.5,= Sp2(P�}) t[p]:map [t[}]:map[c : a]= Sp2(P�}) t0[p]:map [t0[}]:map= Sp2P t0[p]:map= TD(t0):map:Similarly to map, we getTD(t)0:last = TD(t):last [c : l]= (Sp2P t[p]:last)[c : l]= Sp2(P�}) t[p]:last [t[}]:last [c : l]= Sp2(P�}) t0[p]:last [t0[}]:last= Sp2P t0[p]:last= TD(t0):last :
62

None of the variables in the de�nitions of dbs and delay are a�ected by �,thereforeTD(t)0:dbs = TD(t):dbs = TD(t0):dbsTD(t)0:delay = TD(t):delay = TD(t0):delay:5. The rest of the actions of T do not a�ect any of the variables involved in TD().They correspond to empty transitions of D. For one action, gprcv(x)p0;p, wehave to invoke a theorem (see Corollary 7.34 on page 93) that says that if(t; �; t0) is a transition of T , then, for all p in P , t[p]:updates[1::t[p]:last update]is a pre�x of t0[p]:updates[1::t0[p]:last update]. In the case of gprcv(x)p0;p, thistheorem implies that t[p]:updates[1::t[p]:last update] remains unchanged.This completes the proof of Lemma 6.1 which established function TD() as are�nement mapping from implementation T to delayed speci�cation D.Theorem 6.2 Automaton T and automaton T 0 implement automaton S in the senseof trace inclusion.Proof 6.2: Follows immediately from Lemma 5.1, Lemma 6.1, Theorem 4.2, andtransitivity of the \implements" relation.

63

64

Chapter 7
Correctness of T : Invariants
The goal of this chapter is to prove the high-level invariants used in the simulationargument of chapter 6. Most of these invariants (e.g., Invariant 6.2) are the conse-quences of more general properties of the system. To prove these properties, we stateand prove an elaborate collection of invariants. These invariants are given in termsof the state variables of T taken at a single reachable state of T ; their statementssometimes involve variables that are derived from the state variables of T .7.1 View-Related Derived VariablesIn this section, we present a number of useful view-related derived variables, suchas a derived function that maps processes to the sets of views that contain them asmembers. These derived variables are based solely on the state components of VS .First, notice that an identi�er of a created view uniquely de�nes the view and its cor-responding membership set (this will be demonstrated by part 1 of Invariant 7.1). Weintroduce the derived functions GtoV and GtoS that map a view identi�er to its viewand to its membership set, respectively. We sometimes allow ourselves to exploit theequivalence between views and their identi�ers by using these terms interchangeably.State variable created captures all views that have been created by VS . We de�necreated views(p) to be a set of all created views that contain p as a member. Notice65

that for any p 2 P , the initial view v0 is always in created views(p).created views(p) = fv j v 2 created ^ p 2 v :setgElements of created views(p) are ordered according to the total order on view iden-ti�ers. Given an element v of created views(p), di�erent from v0, function prev viewproduces an immediately preceding element of created views(p).prev view(p; v) = (maxfv0 j v0 2 created views(p) ^ v0:id < v:idg if v 6= v0? otherwiseRecall that Q denotes a �xed set of quorums, subsets of P , such that any twohave nonempty intersection. We de�ne a derived set primary views consisting ofcreated views whose membership sets are quorums. (Invariant 7.3 will show thatt[p]:view :set 2 Q if and only if current viewid [p] 2 primary views).primary views = fv j v 2 created ^ v :set 2 QgWe use created viewids, prev viewid , and primary viewids to stand for the variablesthat are de�ned as above, but in terms of view identi�ers.createdid = fg j 9S : hg; Si 2 createdgcreated viewids(p) = fg j 9S : hg; Si 2 created ^ p 2 Sgprev viewid(p; g) = (maxfg0 j g0 2 created viewids(p) ^ g0 < gg if g 6= g0? otherwiseprimary viewids = fg j 9S : hg; Si 2 created ^ S 2 Qg7.2 VS InvariantsThis section presents basic invariants of VS . These invariants are preserved when VSis composed with the other automata to yield the service implementation automatonT . We use these invariants in the later sections to prove invariants of T .All but the last three statements of the following invariant are reprinted from [14, VS66

Lemma 4.1, page 10]; the last three statement reveal additional properties of VS .Invariant 7.1 For any p 2 P , S � P , m 2 M , g 2 G, the following statements aretrue:1. If g 2 createdid then there is a unique S such that hg; Si 2 created.2. current-viewid [p] 2 createdid.3. If hcurrent-viewid [p]; Si 2 created then p 2 S.4. If pending[p; g] 6= � then g 2 createdid.5. If pending[p; g] 6= � then g � current-viewid [p].6. If queue[g] 6= � then g 2 createdid.7. If hm; pi is in queue[g] then g � current-viewid [p].8. next [p; g] � length(queue[g]) + 1.9. next-safe[p; g] � length(queue[g]) + 1.10. next-safe[p; q] � next [p; g].11. If hg; Si 2 created and next [p; g] 6= 1 then p 2 S.12. If hg; Si 2 created and next-safe[p; g] 6= 1 then p 2 S.13. If hg; Si 2 created then next-safe[p; g] � next [p0; g] for all p0 2 S.14. If next [p; g] > 1 or next-safe[p; g] > 1 then g � current-viewid [p].15. If m 2 pending [p; g] or hm; pi 2 queue[g] then p 2 GtoS (g).Proof 7.1: All are straightforward by induction.
67

7.3 Basic InvariantsIn this section, we study basic invariants of the system. First, we exhibit the corre-spondence between view-related information in VStoDp and VS . Then, we investigatethe structure of the total order that VS provides on messages sent within one view.We prove facts such as \expertise messages sent within one view appear as a pre�xof the total order on messages of this view." Finally, we de�ne derived variables thatexpress the notions of views being established and normal, and state properties thatrelate these notions to the state variables of VS and VStoDp.7.3.1 Consistency of Current ViewsThe following invariant states that VS has a correct notion of each server's currentview. (Thus, in the future, we use p:view :id and current viewid [p] interchangeably.)Invariant 7.2 p:view :id = current viewid [p] and p:view = GtoV (current viewid [p]).Proof 7.2: Easy induction. The only critical action is newview.As a corollary from Invariant 7.2, we note the following invariant.Invariant 7.3 The following statements are true for all p 2 P :1. p:view 2 created2. p:view 2 created views(p)3. p:view :set 2 Q if and only if current viewid [p] 2 primary viewids.Proof 7.3: Follows immediately from p:view :id = current viewid [p] (Invariant 7.2)and Invariant 7.1 (parts 1, 2, and 3).
68

7.3.2 Initial and Primary ViewsThe following invariant presents the basic properties of the initial view v0. It statesthat processes in the initial view always operate in normal mode and never com-municate expertise messages. The �rst part involves the state variables of VStoDp,while the second | of VS . These parts appear under the same invariant statementbecause the proof of the second part depends on the �rst. (Notice the usage of queuexto denote the subsequence of queue consisting solely of expertise messages.)Invariant 7.4 The following statements are true:1. p:view :id = g0) p:mode = normal2. pendingx [�; g0] = [] ^ queuex [g0] = []Proof 7.4: For part 1, the critical actions are newview(v)p (use its precondition ande�ect) and gpsnd(x)p (use the inductive hypothesis) | The invariant is vacuouslytrue. For part 2, the critical actions are gpsnd(x)p (use part 1) and vs-order(m; p; g)(use the inductive hypothesis).The following invariant states that update requests are communicated only by pro-cesses that are members of a primary view.Invariant 7.5 For all hg; Si 2 created, if there is an update message on pending [p; g]or on queue[g] then g 2 primary viewids.Proof 7.5: Basis is trivial. For the inductive step, the critical actions are gpsndand vsorder, both are straightforward.7.3.3 Expertise MessagesPer-process uniqueness of expertise messages in one viewThe following two invariants show that, in any state of the system, there is at mostone expertise message from each process in a given view.69

First, for all p 2 P , if p is in expertise broadcast mode then there are no expertisemessages from p in VS associated with the current view of p. This is true becausewhen p is in expertise broadcast mode it has not yet sent its expertise message.Invariant 7.6 If p:mode = expertise broadcast then there is no x such that x 2pending [p; p:view:id] or hx; pi 2 queue[p:view :id].Proof 7.6:Basis: In the initial state, every process is in normal mode. Thus, the proposition isvacuously true.Inductive Step: The critical actions are newview, gpsnd, and vs order. The �rst onechanges the antecedent from false to true, while the last two may a�ect the conclusion.newview(v)p: One of the preconditions that must hold for this action to be enabledis v :id > current viewid [p]. When used with the contrapositives of parts 5 an 7of Invariant 7.1, it implies that pending [p; v :id] is empty and that there are nomessages from p on queue[v :id]. Absence of all messages implies absence of expertisemessages there. Thus, in the poststate, the proposition is trivially true.gpsnd(x)p: When enabled, this action places x on pending [p; current viewid [p]], butits second e�ect changes the mode of p from expertise broadcast to expertise collection.Thus, in the poststate, the proposition is vacuously true.vs order(x; p; g): The precondition on this action and the contrapositive of the induc-tive hypothesis imply that, in the prestate, p:mode is di�erent from expertise broadcast.Since p:mode is unchanged as the e�ect of this action, the proposition is vacuouslytrue for the poststate.We can use this invariant to prove the per-process uniqueness of expertise messagesin each view.Invariant 7.7 For all p 2 P and for all g 2 G, there is at most one expertisemessage from p in both pending [p; g] and queue[g].Proof 7.7:Basis: In the initial state, pending [p; g] and queue[g] are empty. Thus, the proposi-tion is trivially true.Inductive Step: The critical actions are gpsnd, and vs order.70

gpsnd(x)p: The precondition on this action ensures that, in the prestate, p:mode isexpertise broadcast . Invariant 7.6 implies that there are no expertise messages fromp in pending [p; p:view:id] and queue[p:view :id]. Since the e�ect of this action placesx on pending [p; p:view :id], there is only one such message in the poststate. Thus, theproposition holds.vs order(x; p; g): The e�ect of this action moves an expertise message from pending [p; g]to queue[g]. Therefore, the number of expertise messages in these sequences remainsunchanged. The inductive hypothesis ensures that the proposition holds.
Upper-limit on the number of expertise messages in one viewThe following invariant states that the total number of expertise messages that mayappear in any view is limited from above by the number of members in that view.This property is obvious in the light of Invariant 7.7, which limits to one the numberof expertise messages sent by each process.Invariant 7.8 For each view v, the number of expertise messages appearing in VSis less than or equal to the size of v's membership set. If g denotes v :id, thenjpendingx [�; g]j+ jqueuex [g]j � jv :setjProof 7.8: Since the only messages that occur in pending [�; g] and queue[g] arefrom members of v (part 15 of Invariant 7.1), and since Invariant 7.7 states that thereis at most one expertise message from each process associated with g, it follows thatthe invariant is true.
Expertise messages are a pre�x of the total order on messages of one viewRecall that state variables expert counter1 and expert counter2 of VStoDp track re-spectively the number of delivered expertise messages and the number of deliveredsafe noti�cations for these messages. To show that the subsequence of queue[g] con-71

sisting of expertise messages is a pre�x of queue[g] we develop a number of invariantsthat involve these state variables.The �rst invariant relates the values of expert counter1 and expert counter2 to thelengths of the delivered and the safe pre�xes of queue[g].Invariant 7.9 For all p 2 P, the following statements are true:1. p:expert counter1 = jqueuex [p:view :id][1::(next [p; p:view :id]� 1)]j2. p:expert counter2 = jqueuex [p:view :id][1::(next safe[p; p:view :id]� 1)]jProof :Basis: In the initial state, both sides of each of these propositions are equal to zero.Inductive Step: The critical actions are newview(v)p, vs order(x; p; g), gprcv(x)p0;p,and safe(x)p0;p.newview(v)p: A precondition on this action ensures that v :id > current viewid [p].Part 14 of Invariant 7.1 implies that if next [p; g] or next safe[p; g] is greater than 1,then g � current viewid [p]. The contrapositive of this lemma implies that the rightsides of the two propositions are equal to zero. One of the e�ects of this action setscounters p:expert counter1 and p:expert counter2 to zero. So, both sides are equal,and the proposition holds in the poststate.vs order(x; p; g): Parts 8 and 9 of Invariant 7.1 state that next and next safe arebounded by the size of their corresponding queue sequence. Thus, even though one ofthe e�ects of this action appends an element to queue[g], the subsequences appearingon the right sides of the two propositions are not a�ected. The counters are una�ected,as well.gprcv(x)p0;p: only the �rst proposition is a�ected | both sides are increased by 1.safe(x)p0;p: only the second proposition is a�ected | both sides are increased by 1.Invariants 7.8 and 7.9 imply the following corollary:Invariant 7.10 The values of p:expert counter1 and p:expert counter2 are lessthan or equal to jp:view :set j.The following invariant relates the values of the server's mode and expert counter2 .It states that, if a server p is not in the initial view and is operating under normal72

mode, then it has successfully completed an expertise-exchange process, which meansthat p has received safe noti�cation for expertise messages from all members of itscurrent view, and therefore, its expert counter2 equals jp:view :set j.Invariant 7.11 (p:view :id 6= g0 ^ p:mode = normal) , p:expert counter2 =jp:view :set j.Proof 7.11:Basis: In the initial view, both sides of the proposition are false, so the propositionis vacuously true (domination law). The left side is false because the viewid of anyprocess in the initial state is g0. As for the right side: Invariant 7.2 and Invariant 7.1(part 1, 2, 3) imply p 2 p:view :set . This means that jp:view :set j is greater than orequal to one. Therefore, jp:view :set j may not be equal to zero, the initial value ofp:expert counter2 . Thus, the right side is false as well.Inductive Step: The critical actions are newview(v)p and safe(x)p0;p.newview(v)p: In the poststate, both sides are false. The left side is false becausep:mode is set to expertise broadcast . The right side is false because p:expert counter2is set to zero, while (as was argued in the Basis case) jp:view :set j cannot be zero.safe(x)p0;p: Using the inductive hypothesis, we can show that, if this action hap-pens, then both sides of the proposition are false in the prestate. Indeed, Corol-lary 7.10 states that p:expert counter2 cannot be larger than jp:view :set j. Sincep:expert counter2 is increased by 1 as an e�ect of this action, we can conclude that itis strictly less than jp:view :set j in the prestate. So, the right side is false. Inductivehypothesis implies that the left side is false as well. Now, for the poststate, we havetwo cases:(a) If p:expert counter2 reaches jp:view :set j as a result of this action, then the rightside of the proposition becomes true as well: p:mode is set to normal as an e�ect of thisaction, and the fact that p:view :id is not equal to g0 follows from the contrapositiveof Invariant 7.4 (part 1) used with the prestate value of p:mode.(b) Otherwise, if p:expert counter2 is still less than jp:view :set j as a result of thisaction, then both sides of the proposition remain false.We need one more intermediate invariant before we can prove the pre�x property onexpertise messages. 73

Invariant 7.12 For all created views hg; Si, other than g0, if there exists an updateor a query message in either pending [�; g] or queue[g] then jqueuex [g]j = jSjProof 7.12:Basis: The proposition is vacuously true for the initial state.Inductive Step: The critical actions are createview(v), and gpsnd(m)p andvs order(m; p; g) when m is an update or a query message (i.e., hc; ui or hc; qi).createview(v): The precondition on this action ensures that v :id is greater than allpreviously created viewids. Contrapositives of parts 4 and 6 of Invariant 7.1 implythat pending [�; v :id] and queue[v :id] are empty; that is, there are no messages onthese sequences. Therefore, the proposition is vacuously true.gpsnd(m)p: This action has a precondition \p:mode = normal ." Invariant 7.11tells us that p:expert counter2 = jp:view :set j, which, when used with Invariants 7.9and 7.8, yields the desired conclusion: jqueuex [p:view :id]j = jp:view :set j.vs order(m; p; g): The fact that the proposition holds for the poststate follows im-mediately from the inductive hypothesis.Finally, we are able to prove the pre�x property on expertise messages.Invariant 7.13 For all created views g, the subsequence of queue[g] that consistssolely of expertise messages is a pre�x of queue[g].Proof 7.13: If g = g0, then there are no expertise messages on the queue of VS(Invariant 7.4) | so we are all set. Otherwise, we proceed by induction. Considera critical action vs order, which places a message hx; pi on queue[g]. In orderfor the proposition to hold, there should be no update and no query messages onqueue[g]. We show this fact by contradiction: If there is an update or a query mes-sage on queue[g], it means that, in the prestate, the number of expertise messages onqueue[g] is jGtoS (g)j (Invariant 7.12). By Invariant 7.8 this number is the largestpossible, implying the impossibility of this action in the �rst place.
74

7.3.4 Established and Normal ViewsIn Chapter 5, when we described the server's automaton VStoDp, we used the termsestablished and normal to refer to certain states of the server's view. The server wassaid to \establish" its view when it received an expertise message from the last serverin its view. Likewise, the server's view was said to become \normal" when the serverreceived safe noti�cation for the last expertise message in its view. The initial viewof any server was considered both established and normal.Derived FunctionsThe following two functions map each process to the sets of established and normalviews of which it is a member. They are derived from the state variables of VS .established views(p) = fv0g [fv j next [p; v :id] > jv :set jgnormal views(p) = fv0g [fv j next safe[p; v :id] > jv :set jgGiven any view v, we can also de�ne the latest preceding established view of p.last established view(p; v) = max<Gfv 0 j v 0 2 established views(p) ^ v 0:g � v :idgNotice that last established view(p; v) is well de�ned for all views v because v0 2established views(p) and v :id0 � v :id .The following set captures all the views that are established at all their members.totally established views = fv j 8 p 2 v :set : v 2 established views(p)gWe will use established viewids, normal viewids, last established viewid , andtotally established viewids to stand for the variables that are de�ned as above, but interms of view identi�ers. Since there is an equivalence between views and their view
75

identi�ers, we sometimes allow ourselves to use these variables interchangeably.established viewids(p) = fg0g [fg j next [p; g] > jGtoS (g)jgnormal viewids(p) = fg0g [fg j next safe[p; g] > jGtoS (g)jglast established viewid(p; g) = max<Gfg0 j g0 2 established viewids(p) ^ g0 � ggtotally established viewids = fg j 8 p 2 GtoS (g) : g 2 established viewids(p)gInvariantsWe now present invariants that involve the de�ned above functions.First, notice the following relationship between normal views, established views, andtotally established views.Invariant 7.14 The following statements are true for all p 2 P :1. normal views(p) � established views(p)2. normal views(p) � totally established viewsProof 7.14: Follows immediately from the de�nitions of normal views,established views and totally established views, and from the fact that next safe[p; g] �next [p 0; g] for all p0 2 GtoS (g) (Invariant 7.1, part 13).The following two invariants relate the notion of a view v being established or normalto the types of messages that appear on queue[v :id].First, if a non-initial view v is established at some process, then queue[v :id] containsan expertise message from each member of v.Invariant 7.15 For all p and g, if g 6= g0 and g 2 established viewids(p) then theset f} j hx; }i 2 queue[g]g is the same as GtoS (g).Proof 7.15: Straightforward. Follows from the invariants in Section 7.3.3.
76

Second, if VS delivered an update or a query request to p in a certain view, then thisview is established at p. Likewise, if VS delivered a safe noti�cation for an update ora query request to p in a certain view, then this view is normal in p.Invariant 7.16 For all p and g,1. If 9hhc; ri; p0i 2 queue[g][1::(next [p; g]� 1)] then g 2 established viewids(p).2. If 9hhc; ri; p0i 2 queue[g][1::(next safe[p; g]� 1)] then g 2 normal viewids(p).Proof 7.16: Straightforward induction. Follows from the invariants in Section 7.3.3.
The following two statements relate the server's mode of operation to the notion thatthe server's current view is established or is normal. First, if the server's mode isexpertise broadcast , then its view is not established. This follows from the fact thatthe server has not yet submitted its expertise message, which means that it could havenot received all expertise messages, and therefore, its view is not established. Second,the server's view being normal is equivalent to the server's mode being normal. Thisstatement is trivial for initial views. For non-initial views, it follows from the factthat the server's mode becomes normal when it receives the last safe noti�cation forthe expertise-exchange process, which is exactly when the server's view is consideredto become normal.Invariant 7.17 p:mode = expertise broadcast) p:view 62 established views(p).Invariant 7.18 p:mode = normal , p:view 2 normal views(p)Proof 7.17 and 7.18: Straightforward induction. Relies on invariants in Sec-tion 7.3.3.Functions established views and normal views are de�ned on state variables of VS .We now express the notion that the current view of a server p is established/normalin terms of the state variables of VStoDp, and then, connect these notions togetherin Invariant 7.19. 77

De�nition 7.1 A derived boolean ag p:established is de�ned to be true if andonly if either p:view :id = g0 or p:expert counter1 = jp:v :set j. Likewise, a derivedboolean ag p:normal is de�ned to be true if and only if either p:view :id = g0 orp:expert counter2 = jp:v :set j.Invariant 7.19 The following statements are true for all p 2 P :1. p:established is true if and only if p:view 2 established views(p)2. p:normal is true if and only if p:view 2 normal views(p)7.4 Derived Expertise XThis section develops an approach for proving major correctness results about ouralgorithm, such as consistency of updates sequences and of their safe and done pre�xesat di�erent servers. Proving such results requires reasoning on the values of statevariables at di�erent points of the execution. However, the advantage of invariantproofs over operational proofs is exactly in that they avoid reasoning about multiplestates and restrict their properties to single reachable states. In order to carry outinvariant proofs and still be able to reason about past values of variables, these valueshave to be accessible within single states of the system. A traditional approach isto de�ne history variables that preserve values of regular state variables as theychange throughout the execution. In this work, however, we do not introduce historyvariables, as we are able to access all necessary historic information at a single stateof the VS speci�cation.In particular, a single state of the VS speci�cation includes information about previ-ously created views and about their pending and queue bu�ers. Using this informa-tion, we are able to derive a powerful function, X (p; g), that maps each process p anda view g 2 created viewids(p) to (what we claim is) the highest expertise attainedby p during its participation in the view g.The power of this function comes from the fact that it expresses the expertise ofa process in a given view recursively in terms of the expertise of this and otherprocesses in earlier views. In a sense, this function presents the law according towhich the replication part of the algorithm operates. The recursive nature of thisfunction makes it simple to establish various properties of this law by induction,78

because inductive steps can be proved by unwinding the recursive de�nition of X toreach the domains of the underlying inductive hypotheses.7.4.1 De�nition of XDe�nition 7.2 For each process p 2 P and each view g 2 G, we de�ne X (p; g) tobe ? if g 62 created views(p). Otherwise, if g 2 created views(p), thenX (p; g) =If g 2 established viewids(p) thenxl = 8<:maxX (queuex [g]):xl if g 62 primary viewids;g otherwise:us = maxX (queuex [g]):us+ queueu [g][1::(next [p; g]� 1)]su = 8<:maxX (queuex [g]):su if g 62 primary viewids _ g 62 normal viewids(p);jmaxX (queuex [g]):us+ queueu [g][1::(next safe[p; g]� 1)]j otherwise:else X (p; prev view(p; g))Notice that X (p; g) is well-de�ned because the smallest possible view, g0, is estab-lished at all processes.The de�nition of X (p; g) corresponds to our understanding how the algorithm oper-ates. First, if a process p has never succeeded in establishing a view g, then it hasnever modi�ed its expertise level , updates sequence, and safe to update index in thatview, which explains why its expertise in that view is de�ned as its own expertise inthe preceding to g view. Invariant 7.20 extends this case in stating that the expertiseof a process p in a view g is the expertise of p in its last established view.Second, if process p has succeeded in establishing view g, then the three componentsof p's expertise are de�ned as follows: The expertise level of p in view g is either gitself if the view is primary, or it is the expertise that p has acquired as a result ofthe expertise-exchange process in g (see gprcv(x)p0;p). The sequence of updates at pis de�ned as the sequence that p has adopted as a result of the expertise-exchangeprocess in g (see gprcv(x)p0;p) extended with the update requests that p has receivedduring its participation in g (see gprcv(c; u)p0;p). Notice that, if g is a non-primary79

view, then the sequence at p is only the adopted sequence since there are no updaterequests that p has received in that view. Finally, there are the following three casesfor the safe to update index at p: (a) If g is a non-primary view, then the indexis just that which p has adopted as a result of the expertise-exchange process in g(see gprcv(x)p0;p); (b) If g is a primary view, but is not normal in p (i.e., p has notreceived safe noti�cations for all expertise messages), then the index is the same as inthe previous case; (c) If g is both primary and normal, then the value of the index isde�ned as the length of the sequence of updates that p has adopted as a result of theexpertise-exchange process in g (see safe(x)p0;p) plus the number of safe noti�cationsfor the update requests delivered to p during its participation in g (see safe(c; u)p0;p).The following invariant expresses two basic properties of X .Invariant 7.20 For all p 2 P and for all g 2 created views(p),1. g > current viewid [p]) X (p; g) = X (p; current viewid [p])2. X (p; g) = X (p; last established viewid(p; g))Proof 7.20: Follows immediately from the total ordering of views in created views,and from the de�nition of X .Having de�ned the derived expertise X , we now have to accomplish the following twosteps. First, we have to show that the derived expertise X indeed corresponds to thereal expertise of each server. For this purpose, we prove that, in any reachable stateof the system, the value of the derived expertise taken at the current view of anyserver is the same as the real expertise of that server. This result will allow us toextend properties of the derived expertise to those of the real expertise. Second, wehave to study various properties of the derived expertise, with a goal of identifying aprecise relationship among expertise possessed by di�erent servers in di�erent views.Reaching this goal will allow us to prove important consistency properties of ouralgorithm.7.4.2 Correspondence between Derived and Real ExpertiseThe following invariant shows the correspondence between p:expertise max , a statevariable used in expertise-exchange process to keep track of the running expertise80

maximum, and the messages on the VS queue.Invariant 7.21 For all p 2 P, the value of p:expertise max is equal tomaxX (expertise max 0; queuex [p:view :id][1::(next [p; p:view :id]� 1)])Proof 7.21: The critical actions are newview and gprcv| both are straightforward.Now, we are able to link real expertise of a server to that de�ned by function X :Invariant 7.22 For all p 2 P,hp:expertise level ; p:updates; p:safe to updatei = X (p; p:view :id):Proof 7.22:Basis: Straightforward.Inductive Step: The critical actions are gprcv(h�; ui)p0;p, safe(h�; ui)p0;p, gprcv(x)p0;p,and safe(x)p0;p.gprcv(h�; ui)p0;p: Only p:updates is a�ected. Invariant 7.16 part 1 implies thatp:view :id is in established viewids(p). The validity of the proposition in the poststateimmediately follows from the inductive hypothesis.safe(h�; ui)p0;p: Only p:safe to update is a�ected. Invariants 7.5 and 7.16 imply thatp:view :id is primary and normal. The step itself is just as above.gprcv(x)p0;p: The only interesting action is when p establishes its view, i.e., when itreceives the last expertise message. Use Invariant 7.21 directly. Then, show that a)queuex [p:view :id][1::(next [p; p:view :id]� 1)] is the entire queuex [p:view :id] (Invari-ant 7.8); b) the view is established but not normal; c) there are no update messageson queue[p:view :id].safe(x)p0;p: The only interesting action is when p switches to normal mode. Onlysafe to update is a�ected. Show that a) the view is established; and b) if the view isprimary then it is normal.
81

7.4.3 Derived Expertise-level vs Real ViewThe following invariant reveals the relationship between derived expertise level of aprocess p in a view g and the view g itself.Invariant 7.23 For all p and all g 2 created views(p), X (p; g):xl � g. Morestrongly, if g 62 primary views or g 62 established viewids(p) then X (p; g):xl < g.Proof 7.23:Basis: In the initial state, g0 is the only view created. For all p, g0 2 created views(p).The value of X (p; g0):xl is equal to g0, as g0 is both, established at p and primary.Inductive Step: A critical action always deals with a single p and a single g. If inthe poststate, g 62 established viewids(p), then X (p; g):xl = X (p; prev view(p; g)):xl.By the inductive hypothesis, X (p; prev view(p; g)):xl � prev view(p; g), which, inturn, is less than g. (Notice that, since g 62 established viewids(p), g > g0 andprev view is de�ned.) Otherwise, if g 2 established viewids(p) in the poststate, weshould consider whether or not g is a primary view. a) If g is not a primary view,then X (p; g):xl = maxX (queuex [g]):xl = x:xl for some hx; p0i 2 queuex [g]. ByInvariant 7.25, x:xl = X (p0; prev view(p 0; g)):xl. By inductive hypothesis, this is lessthan prev view(p 0; g), which, in turn, is less than g. b) Otherwise, if g is a primaryview, then X (p; g):xl = g.The following invariant reveals monotonicity of each server's expertise level.Invariant 7.24 For all p and all g1 and g2, if g1 � g2, g1 2 created viewids(p) andg2 2 created viewids(p), then X (p; g1):xl � X (p; g2):xl.Proof 7.24: The case of g1 = g2 is trivial. Let's consider g1 < g2.Basis: In the initial state, g0 is the only created view. It is established for all p andis primary. Therefore, X (p; g1):xl = X (p; g2):xl.Inductive Step: The critical actions are those that involve p and g2. If, in the post-state, g2 62 established viewids(p), then X (p; g2):xl = X (p; prev view(p; g2)):xl, andthe inductive hypothesis applies, since g1 � prev view(p; g2). Otherwise, if g2 2established viewids(p) in the poststate, then by Invariant 7.15 there exists hx; pi 2queuex [g2]. By Invariant 7.25, x:xl = X (p; prev view(p; g2)):xl, which, according to82

the inductive hypothesis, is greater than X (p; g1):xl. We are done if we can show thatX (p; g2):xl � x:xl .To show that X (p; g2):xl � x:xl , we consider the following two cases: a) If g2 isnot a primary view, then X (p; g2):xl = maxX (queuex [g2]):xl � x:xl . b) if g2 is aprimary view, then x:xl � maxX (queuex [g2]):xl = X (p0; prev view(p 0; g2)):xl. ByInvariant 7.23, this is less than or equal to prev view(p 0; g2), which is less than g2,the value of X (p; g2):xl.7.4.4 Recursive Nature of XThe following invariant expresses the fact that an expertise message x sent by p in aview g is the maximum expertise possessed by p during its previous view.Invariant 7.25 (x 2 pending [p; g] _ hx; pi 2 queue[g])) x = X (p; prev view(p; g))Proof 7.25:Basis: In the initial state, pending [p; g] and queue[g] are empty for all p and g. Thusthe proposition is vacuously true.Inductive Step: The critical actions are gpsnd(x)p, and vs order(x; p; g).gpsnd(x)p: This action appends x to pending [p; current viewid [p]]. By a precondi-tion on this action, x is hp:expertise level ; p:updates; p:safe to updatei, which, ac-cording to Invariant 7.22, is equal to X (p; p:view :id). Another precondition en-sures that process p is in expertise broadcast mode. Invariant 7.17 implies thatp:view :id 62 established viewids(p). Thus, according to the de�nition of X , x isX (p; prev view(p; g)).vs order(x; p; g): Follows immediately from the inductive hypothesis.
7.4.5 Consistency of Derived ExpertiseIn this section, we prove key invariants that express relationship between derivedupdates and safe sequences of di�erent servers in di�erent views depending on theirderived expertise level . All together, we show the following three results: First, the83

updates sequences of di�erent servers are consistent if their expertise levels are thesame. Second, the safe sequence of one server is always a pre�x of the updatessequence of another server with the same or higher expertise level. Finally, the safesequence of a server in a normal primary view contains as a pre�x the safe sequenceof any server with a strictly smaller expertise level.Proof OutlineEach of these invariants deals with two servers, p1 and p2, and two views, g1 andg2, such that g1 2 created viewids(p1) and g2 2 created viewids(p2). We prove eachof them by induction on the upper bound g on g1 and g2, rather then by inductionon the length of the execution sequence. This type of induction is valid because viewidenti�ers are totally ordered and have a minimum element g0.The proof of each of these invariants follows the same pattern: For the basis we showthat an invariant is true when g1 and g2 are both the initial view. This part isstraightforward. For the inductive hypothesis, we suppose that an invariant is truefor all g1 and g2 strictly smaller than g. For the inductive step, we show that theinvariant is true for all g1 and g2 smaller than or equal to g.To show that the invariant is true for all g1 and g2 smaller than or equal to g, westudy each of the following cases:1. g1 < g and g2 < g2. g1 < g and g2 = g3. g1 = g and g2 < g4. g1 = g and g2 = gThe �rst case is covered directly by the inductive hypothesis. To show that theinvariant is true for each of the other three cases, we use the de�nition and invariantsof X to relate the values of derived variables associated with the view g to thoseassociated with a smaller view. For this purpose, we look at possible subcases, suchas whether or not a view is established at a server, a view is normal at a server, and aview is primary. Most of the cases follow the same argument and are straightforward.84

However, there are are also unique cases, the proof of which exploits fundamentalassumptions about the algorithm, e.g., that any two primary views have commonmembers.InvariantsThe following invariant states that the updates sequences of any two servers in anytwo views are consistent (��) if their expertise levels are the same. (Recall that twosequences are said to be consistent if one is a pre�x of another.)Invariant 7.26 For all p1 and p2, and all g1 and g2 such that g1 2 created views(p1)and g2 2 created views(p2)X (p1; g1):xl = X (p2; g2):xl) X (p1; g1):us �� X (p2; g2):usProof 7.26: By induction on the upper bound g of g1 and g2.Basis: If g = g0, then g1 = g2 = g0 and it is straightforward to show that theproposition is true.Inductive Step: Assume that the proposition is true for all g1 and g2 such that g1 < gand g2 < g. We want to show that the proposition is true for all g1 and g2 such thatg1 � g and g2 � g.We consider the following four cases:1.g1 < g and g2 < g. The proposition is true by the inductive hypothesis.2.g1 < g and g2 = g. We consider the following three subcases:(a)g2 62 established viewids(p2)By de�nition of X ,X (p2; g2):xl = X (p2; prev view(p2 ; g2)):xlX (p2; g2):us = X (p2; prev view(p2 ; g2)):us:Since prev view(p2 ; g2) < g2 = g, it follows that the proposition is true bythe inductive hypothesis.
85

(b)g2 2 established viewids(p2) and g2 62 primary viewsX (p2; g2):us = maxX (queuex [g2]):us { de�nition of X and Invariant 7.5= x:us ;for some hx; p0i 2 queuex [g2], such that x:xl = maxX (queuex [g2]):xl andx:us = maxX (queuex [g2]):us.= X (p0; prev view(p 0; g2)):us { Invariant 7.25.X (p2; g2):xl = maxX (queuex [g2]):xl { de�nition of X= x:xl= X (p0; prev view(p 0; g2)):xl:Since prev view(p 0; g2) < g2 = g, it follows that the proposition is true bythe inductive hypothesis.(c)g2 2 established viewids(p2) and g2 2 primary viewsIn this subcase, the antecedent of the proposition cannot be true:X (p2; g2):xl = g2 { by de�nition of X> g1 { case assumption� X (p1; g1):xl { Invariant 7.23.Thus, the proposition is vacuously true.3.g1 = g and g2 < g This case is symmetric to the previous one.4.g1 = g and g2 = gThe case when either g 62 established viewids(p1) or g 62 established viewids(p2)is straightforward as it brings us to one of the previous cases (Invariant 7.25).Therefore, we consider the case wheng 2 established viewids(p1) ^ g 2 established viewids(p2):There are two subcases depending on whether or not g is a primary view:(a)g 62 primary views
86

By the de�nition of X , the contrapositive of Invariant 7.5, and Invariant 7.25,X (p1; g):us = maxX (queuex [g]):us = x1:us = X (p01; prev view(p 01 ; g)):usX (p2; g):us = maxX (queuex [g]):us = x2:us = X (p02; prev view(p 02 ; g)):us;for some hx1; p01i 2 queuex [g] and hx2; p02i 2 queuex [g] such thatx1:xl = x2:xl = maxX (queuex [g]):xljx1:usj = jx2:usj = jmaxX (queuex [g]):usj:Notice that we do not assume that x1:us = x2:us.SinceX (p1; g):xl = maxX (queuex [g]):xl = x1:xl = X (p01; prev view(p 01 ; g)):xl=X (p2; g):xl = maxX (queuex [g]):xl = x2:xl = X (p02; prev view(p 02 ; g)):xl;and both prev view(p 01 ; g) and prev view(p 02 ; g) are strictly smaller thang, it follows that the proposition is true by the inductive hypothesis.Notice that, since jx1:usj = jx2:usj, in addition to consistency of updatessequences, we can actually conclude their equality:Corollary 7.27 For all p1, p2, and g such that g 62 primary viewids andg 2 established viewids(p1) and g 2 established viewids(p2), it follows thatX (p1; g):us = X (p2; g):us(b)g 2 primary viewsBy de�nition of X , X (p1; g):xl = X (p2; g):xl = g andX (p1; g):us = maxX (queuex [g]):us+ queueu [g][1::(next [p1 ; g]� 1)]= x1:us+ queueu [g][1::(next [p1 ; g]� 1)]X (p2; g):us = maxX (queuex [g]):us+ queueu [g][1::(next [p2 ; g]� 1)]= x2:us+ queueu [g][1::(next [p2 ; g]� 1)];87

for some hx1; p01i 2 queuex [g] and hx2; p02i 2 queuex [g] such thatx1:xl = x2:xl = maxX (queuex [g]):xljx1:usj = jx2:usj = jmaxX (queuex [g]):usj:As we did in subcase (a), we can show that x1:us = x2:us. Therefore,since queueu [g][1::(next [p1 ; g]� 1)] and queueu [g][1::(next [p2 ; g]� 1)] areconsistent, it follows that the proposition is true.
We introduce the following notation for the safe pre�x of derived expertise:De�nition 7.3 X (p; g):sp = X (p; g):us[1::X (p; g):su].The following invariant states that the safe sequence of any server is as a pre�x ofthe updates sequence of any other server with a higher or the same expertise level.(Recall the discussion in Chapter 5 on page 49 about safe sequences acting as a basefor future views.) To prove this property, it is helpful to note that a server couldhave gotten its safe sequence directly by participating in a primary normal view, orindirectly by adopting it from another server during an expertise-exchange process.We express this fact as an additional part of this invariant.Invariant 7.28 The following two statements are true:1. For all p1 and g1 such that g1 2 created viewids(p1), there exist p2 and g2such that the following four statements are true:(a) g2 2 primary viewids (c) X (p2; g2):xl � X (p1; g1):xl(b) g2 2 normal viewids(p2) (d) X (p2; g2):sp = X (p1; g1):sp:2. For all p1 and p2, and all g1 and g2 such that g1 2 created views(p1) andg2 2 created views(p2), it follows thatX (p1; g1):xl � X (p2; g2):xl) X (p1; g1):sp � X (p2; g2):us:Proof 7.28: By induction on the upper bound g of g1 and g2.88

Basis: If g = g0, then g1 = g2 = g0 and it is straightforward to show that bothpropositions are true.Inductive Step: Assume that both propositions are true for all g1 and g2 such thatg1 < g and g2 < g. We want to show that both propositions are true for all g1 andg2 such that g1 � g and g2 � g. We consider each of the two propositions separately.Part 1. If g1 < g, then the truth of part 1 follows immediately from the inductivehypothesis. Otherwise, if g1 = g, then we consider the following cases:1.g1 62 established views(p1). Then the proposition is true because, accordingto the de�nition of X , X (p1; g1) = X (p1; prev view(p1 ; g1)), and the inductivehypothesis applies.2.g1 2 established views(p1) and g1 62 primary views.X (p1; g1):sp = X (p1; g1):us[1::X (p1; g1):su]= xu:us[1::xs:su]= X (pu; prev view(pu ; g1)):us[1::X (ps; prev view(ps; g1)):su];for some hxu; pui 2 queuex [g1] and hxs; psi 2 queuex [g1] such thatxs:xl � xu:xl = maxX (queuex [g]):xl = X (p1; g1):xl:By the inductive hypothesis of part 2, X (ps; prev view(ps ; g1)):sp is a pre�x ofX (pu; prev view(pu ; g1)):us, and thus,X (p1; g1):sp = X (ps; prev view(ps ; g1)):spTherefore, the inductive hypothesis of part 1 applies, and the proposition is true.3.g1 2 established views(p1), g1 2 primary views, but g1 62 normal viewids(p1).The proof that the proposition is true in this case is very similar to the previousone.4.g1 2 established views(p1), g1 2 primary views, and g1 2 normal viewids(p1).The proposition is true because we can take p2 as p1 and g2 as g1.Part 2. We consider the following three cases:1.g1 < g and g2 < g. The proposition is true by the inductive hypothesis.2.g1 < g and g2 = g. We consider the following three subcases:89

(a)g2 62 established viewids(p2). Similarly to the corresponding case in theproof of Invariant 7.26.(b)g2 2 established viewids(p2) and g2 62 primary views. Similarly to thecorresponding case in the proof of Invariant 7.26.(c)g2 2 established viewids(p2) and g2 2 primary views.By the inductive hypothesis of part 1, there exists a primary gs (gs �X (p1; g1):xl) and a process ps such thatgs 2 normal viewids(ps) and X (p1; g1):sp = X (ps; gs):sp:Since gs is normal for ps, it follows from part 2 of Invariant 7.14 that gs istotally established. From the de�nition of X and the inductive hypothesisof part 2, it follows that, for all p 2 GtoS (gs),X (ps; gs):xl = X (p; gs):xl = gsX (ps; gs):sp � X (p; gs):usSince gs and g2 are primary views, there exists a process p\ that is amember of both views (by the de�nition of primary views).Since g2 is established at p2, Invariant 7.15 implies that there exists hx\; p\i 2queuex [g2]. By Invariant 7.24, X (p\; gs):xl � x\:xl. Moreover, by def-inition of maxX () it follows that x\:xl � maxX (queuex [g2]):xl andx\:us � maxX (queuex [g2]):us.By de�nition of X , X (p2; g2):us contains as a pre�x maxX (queuex [g2]):us,which equals to xu for some hxu; pui 2 queuex [g2] such that xu:xl =maxX (queuex [g2]):xl.It follows thatX (p1; g1):xl � x\:xl � xu:xl = X (pu; prev view(pu ; g2)):xl;and the inductive hypothesis applies:X (p1; g1):sp � X (pu; prev view(pu; g2)):us � X (p2; g2):us3.g1 = g and g2 � g. We have to consider the following four subcases:(a)g1 62 established viewids(p1). Straightforward.90

(b)g1 2 established viewids(p1) and g1 62 primary viewsStraightforward. Similarly to the corresponding case in part 1.(c)g1 2 established viewids(p1) and g1 62 normal views(p1).Straightforward. Similarly to the corresponding case in part 1.(d)g1 2 established viewids(p1), g1 2 primary views, and g1 2 normal views(p1).Straightforward. Directly from the de�nition of X and part 13 of Invari-ant 7.1.
Finally, the following invariant states that the safe sequence of any server in a primaryand normal view contains as pre�xes safe sequences of other servers with strictlysmaller expertise levels.Invariant 7.29 For all p1 and p2, and all g1 and g2 such that g1 2 created views(p1)and g2 2 created views(p2),g2 2 primary viewidsg2 2 normal viewids(p2)X (p1; g1):xl < X (p2; g2):xl 9>=>;) X (p1; g1):sp � X (p2; g2):spProof 7.29: Straightforward. The proof is very similar to that of Invariant 7.28.
7.5 Consistency of updates, safe and done sequencesIn this section, we extend Invariants 7.26, 7.28, and 7.29 of the previous section,which express consistency properties of the derived expertise, to the real expertiseof servers. Then, we use this result to obtain a number of high-level consistencyproperties, among which there are Invariants 6.1 and 6.2 (Chapter 6, page 53).Invariant 7.30 For all processes p1 and p2,1. If their expertise levels are the same, then their updates sequences are consistent.p1:expertise level = p2:expertise level) p1:updates �� p2:updates91

2. If expertise level of p1 is less than or equal to that of p2, then p1:safe is a pre�xof p2:updates.p1:expertise level � p2:expertise level) p1:safe � p2:updates3. If expertise level of p1 is less than or equal to that of p2, and p2 is in normalmode of a primary view, then p1:safe is a pre�x of p2:safe.(p1:expertise level < p2:expertise level)(p2:mode = normal)(p2:view 2 primary views) 9>=>;) p1:safe � p2:safeProof 7.30: The proof follows immediately from Invariant 7.22, which states thecorrespondence between state variables of T and the derived expertise X , and fromInvariants 7.26, 7.28, and 7.29, which restate Invariant 7.30 in terms of the derivedexpertise X .
Corollary 7.31 For all processes p1 and p2, safe pre�xes of their updates sequencesare consistent.Proof 7.31: According to part 2 of Invariant 7.30, safe pre�x of a node is a pre�xof updates sequence of a node with a greater or equal expertise level . Without lossof generality assume that p1:expertise level is less than or equal to p2:expertise level .Then, p1:safe is a pre�x of p2:updates. Applying the same part of Invariant 7.30 justto p2, we have p2:safe is a pre�x of p2:updates. Therefore, p1:safe and p2:safe areconsistent.
Corollary 7.32 For any reachable state t, if (t; �; t0) is a transition of T , then forall p 2 P , t[p]:safe � t0[p]:safe.Proof 7.32: The only interesting actions in the inductive proof are the last gprcv(x)p0;pand safe(x)p0;p. The proof is straightforward.92

For simplicity, we introduce the following notation:De�nition 7.4 Let p:done denote p:updates [1::p:last update].Invariant 7.33 For all p 2 P , p:done � p:safe.Proof : Straightforward proof by induction on the length of the execution sequence.Relies directly on corollary 7.32.
Corollary 7.34 For any reachable state t, if (t; �; t0) is a transition of T , then forall p 2 P , t[p]:done � t0[p]:done.Proof 7.34: Follows directly from Invariant 7.33 and Corollary 7.32.Top-level Invariants 6.1 and 6.2 follow immediately from the corollaries above. Hereare the restatements of these top-level invariants:Corollary 7.35 p:done � p:safe � p:updates.Corollary 7.36 In any reachable state t of T , for any p1 and p2, p1:done andp2:done are consistent.

93

7.6 Coherence of Local Bu�ersTwo of the top-level invariants (Invariants 6.3 and 6.4) in Chapter 6 express coherenceproperties of the server's map and pending bu�ers. One of the properties states that,if an update request appears as safe at some server but has not been yet executed byits native server, then it is still reected in the native server's map and pending bu�ers.The other property states that a server can have at most one unexecuted native updaterequest on its updates sequences. The non-triviality of the �rst property comes fromthe fact that servers can remove update requests from their pending bu�ers not onlyas a result of executing them, but also as a result of an expertise-exchange process thatmoves these update requests for reprocessing. The second property is straightforward,but one of its proof cases has to deal with the updates sequence being adopted fromanother server during expertise-exchange process.As is, these properties do not immediately allow for proofs by induction because theircritical actions are not grounded in inductive hypotheses. That is, for example, whenan update request is delivered to a server, there is no direct way to argue what theprestate value of the updates sequence at that server is.In order to prove these properties, we generalize them to include statements thatallow us to track the state of the system throughout its execution: from the time thatmessages are submitted to the group communication layer, while they are in transit,and until they are �nally delivered to the replication layer.Invariant 7.37 For all clients c 2 C, let p stand for c:proc . Then, the followingstatements are true:1. There exists at most one element of the form hc; ui in the following sequences:pending [p; g], queueu [g][next [p; g]::], and p:updates[(p:last update + 1)::], where g rangesthrough all the views that are at least as large as the last normal primary view of p.2. Moreover, if there is one such element, then hc; ui 2 p:map and c 2 p:pending.Proof 7.37: By induction on the length of the execution sequence.Basis: Straightforward since all bu�ers are empty in the initial state.Inductive Step: We consider the following critical actions:94

gpsnd(c; u)p: This action adds element hc; ui to pending [p; g]. For part one, we haveto show that, in the prestate, there are no such elements in the considered sequences.This immediately follows from the precondition c 62 p:pending and the contrapositiveof part two of the inductive hypothesis. For part two, we have to show that thiselement in reected in its native map and pending bu�ers. This follows immediatelyfrom the precondition hc; ui 2 p:map and the e�ect p:pending p:pending [c.vs order(hc; ui; p; g): This action moves hc; ui from pending [p; g] toqueueu [g][next [p; g]::]. The proposition follows from the inductive hypothesis.gprcv(c; u)p;p: This action moves hc; ui from queueu [g][next [p; g]::] top:updates[(p:last update + 1)::]. The proposition follows from the inductive hypothe-sis.update(c; u)p: This action removes hc; ui from p:pending, but it also advancesp:last update to cover this element. Therefore, the proposition is vacuously true.gprcv(x)p0;p: The only action of interest is the last action of the expertise exchangeprocess, when p adopts the updates sequence of an expert. We have to show thatthere can be at most one element of the type hc; ui on that sequence, and if there isone, that it is reected in p's local bu�ers. The proposition follows from the inductivehypothesis, once we notice that any adopted sequence of updates contains as a pre�xthe safe pre�x of p in its last normal primary view (Invariant 7.30); therefore, allthe remaining elements of this sequence come after that view and are covered by theinductive hypothesis.safe(x)p0;p: The only action of interest is the last action of the expertise exchangeprocess in a primary view p:view that removes hc; ui from p:pending. We want toshow that there are no elements of the type hc; ui in the sequences listed in the propo-sition. This action makes p:view be the last normal primary view of p (Invariant 7.18).Thus, there are only three sequences that we need to consider: pending [p; p:view :id],queueu [p:view :id][next [p; p:view :id]::], and p:updates[(p:last update + 1)::]. The propo-sition is true because p has not had a chance yet to send any update requests in itspresent view (by the contrapositive of part 2 of Invariant 7.16) and because hc; ui isremoved from p:pending only if it is not on the p:updates sequence of p (according tothe condition in the code).Top-level Invariants 6.3 and 6.4 follow straightforwardly from Invariant 7.37.95

7.7 Coherence of Local Database ReplicasIn this section, we show that the state of the local database replica at any servercorresponds to the sequence of executed update requests at that server. We use thisfundamental fact in the next section when we prove coherence of query processing.Invariant 7.38 For all p 2 P, p:db = compose(p:updates :u[1::p:last update])(db0).Proof 7.38:Basis: In the initial state, p:db = db0, p:updates:u[1::p:last update] = [],and compose([])(db0) = db0. Therefore, the proposition holds.Inductive Step: The critical actions are gprcv(c; u)p0;p, gprcv(x)p0;p, and update(c; u)p.gprcv(c; u)p0;p: The left side of the proposition is una�ected. The right side is alsouna�ected because of Corollary 7.35. Therefore, the proposition is true.gprcv(x)p0;p: Only the last action of expertise-exchange process is of interest. Theleft side of the proposition is una�ected. The right side of the proposition is alsouna�ected because of Corollary 7.34 and the fact that p:last update is unchanged asa result of this action.update(c; u)p: Both sides change. The proposition follows immediately from theinductive hypothesis and the de�nition of compose. Indeed,t0[p]:db = u(t[p]:db); by an e�ect of update(c; u)p;= t[p]:updates[t[p]:last update + 1]:u(t[p]:db); by precondition on update(c; u)p;= t[p]:updates[t[p]:last update + 1]:u(compose(t[p]:updates:u[1::t[p]:last update]));by the inductive hypothesis;= compose(t[p]:updates:u[1::(t[p]:last update + 1)]); by de�nition of composition;= compose(t0[p]:updates:u[1::(t0[p]:last update)]); by an e�ect of update(c; u)p.

96

7.8 Coherence of Query ProcessingWe conclude this chapter by proving top-level Invariant 6.5 which expresses coher-ence properties of query processing. Parts (a) and (b) of this multipart invariantclaim that, when query answers arrive within the same view of their submission, thecorresponding query requests are still reected in the map and pending bu�ers oftheir recipients; This is similar to what we established before for update requests, butis simpler because it concerns only single views. Parts (c), (d), and (e) claim thatquery answers are correct in terms of both, the sequences of update requests at theirrecipients and the last database states that their clients have witnessed.As is, Invariant 6.5 does not immediately allow for a proof by induction becauseits critical actions are not grounded in inductive hypotheses. In order to prove thisinvariant, we generalize it to express coherence of query processing in its intermediatestages (Invariants 7.40 and 7.42).First, we state the following two auxiliary invariants:The following invariant expresses a perhaps obvious fact that query counter of anyprocess is equal to the number of queries delivered to this process in its current view.Invariant 7.39 p:query counter = jqueueq [p:view :id][1::(next [p; p:view :id]� 1)]jProof 7.39: Straightforward induction.The following invariant expresses the fact that for each entry in the p:queries bu�erof VStoDp there is a corresponding entry in the queue[p; p:view :id] bu�er of VS .Invariant 7.40 For any p, let hg; Si denote p:view. Then the following statementsare true:1. If hc; q; li 2 p:queries then there exists i such that the following two statementsare true:(a) hhc; q; li; c:proci = queue[g][i](b) rank(p; S) = i mod jSj 97

2. If hc; a; li 2 p:queries then there exists q, l 0, and i such that the following fourstatements are true:(a) hhc; q; l 0i; c:proci = queue[g][i] and l 0 � l(b) rank(p; S) = i mod jSj(c) a = q(compose(p:updates:u[1::l])(db0))(d) l � p:last updateProof 7.40: Straightforward induction. Relies on Invariants 7.38 and 7.39.Corollary 7.41 In any reachable state of the system, for any p and g, if hc; a; li 2p:queries or hc; a; l ; gi 2 in-transitp;c:proc, then l � X (p; g):su.Finally, we are able to state and prove an invariant that generalizes Invariant 6.5 tointermediate stages of query processing.Invariant 7.42 For any client c 2 C, let p denote c:proc , g denote p:view :id, andl denote p:last(c). Then, the validity of one of the following two statements:1. hc; q; li 2 pending [p; g]2. hhc; q; li; pi = queue[g][i] for some i 2 N and either one of the followingstatements is true for p0 such that rank(p0;GtoS (g)) = i mod jGtoS (g)j:(a) next [p 0; g] � i(b) hc; q; li 2 p0:queries(c) hc; a; l 0i 2 p0:querieswhere a = q(compose(p:updates:u[1::l 0])(db0)) and l � l 0 � p0:last update(d) hc; a; l 0; gi 2 in-transitp0;pwhere a = q(compose(p:updates:u[1::l 0])(db0)) and l � l 0 � p0:last updateimplies the validity of the following two statements: hc; qi 2 p:map and c 2 p:pending.Proof 7.42: Straightforward induction. Relies on Invariants 7.38, 7.39, and 7.40and Corollary 7.36.The proof of top-level Invariant 6.5 follows straightforwardly from this invariant.98

Chapter 8
Correctness of Load Balancing
In the previous two chapters, we proved that automaton T implements automatonS in the sense of trace inclusion. In this chapter, we accomplish the following threetasks:First, we complete the proof of Lemma 5.1, which states that automaton T 0 imple-ments automaton T in the sense of trace inclusion. This result implies that automatonT 0 also implements automaton S in the sense of trace inclusion (see Theorem 6.2).Once we establish partial correctness of automaton T 0, we prove a liveness-relatedclaim that its servers are always enabled to advance their database states su�cientlyfar to be able to process queries that are assigned to them.Finally, we argue that, in any given view, each server is assigned the same (plus orminus one) number of query requests as any other server of that view.8.1 Correctness of T 0This section completes the proof that automaton T 0 implements automaton S in thesense of trace inclusion. Recall from Chapter 5 pages 49{51 that what is left to beshown is that the identity mapping from the reachable states of T 0 to the reachablestates of T holds when T 0 takes a newview action.When T 0 executes a transition with a newview(v)p action, the corresponding execu-99

tion sequence of T contains p:� actions of the form safe(c; u)p0;p, possibly separatedby actions of the form safe(c; q; l)p0;p (which have no e�ect on the algorithm), followedby a newview(v)p action. The fact that the simulation holds follows immediately oncewe show that this execution sequence, call it �, is possible in T .In order to show that � is possible, we have to show that p:� actions of the formsafe(c; u)p0;p are enabled in VS . In other words, if hg; Si denotes the current viewof p prior to the newview action, then we have to show that for each r 2 S thesequence queue[g][next safe[p; g]::(next [r ; g]� 1)] contains p:� update messages.However, this complicated condition is true, if we can show that there exists a memberp0 2 S such that the sequence queue[g][next safe[p; g]::(next safe[p 0; g]� 1)] containsp:� update messages. This is valid since part 13 of Invariant 7.1 states that the nextindex of any member in any given view is bounded from below by the next safe indicesof all the members in that view.In order to show this result, we proceed with the following three steps: We �rst de�ne acollection of history variables that keeps track of the largest database states witnessedby each process p in each view g. We then prove that in any reachable state t of T thatcorresponds to a reachable state of T 0, if t[p]:� is greater than zero, then the largestdatabase state known to the clients of p has been witnessed by p during its currentview. Finally, we show that, if t[p]:� is greater than zero, then there exists a processp0 such that the sequence queue[g][next safe[p; g]::(next safe[p 0; g]� 1)] contains p:�update messages.8.1.1 History VariableRecall the de�nition of the derived variables p:last max and p:� from De�nition 5.2on page 50. Variable p:last max represents an index to the largest database stateknown to the clients of p. Variable p:� represents the di�erence between p:last maxand p:safe to update if this di�erence is positive, and zero otherwise.We de�ne a history variable, last max [p; g] for each p and g, to keep track of thelargest database state witnessed by p during its participation in view g. The initialvalue of each of these variables is 0. The history variables are set in an obvious wayat the places where variable last is modi�ed:100

update(c; u)pPre: last update < safe to updatehc; ui = updates [last update + 1]E�: last update last update + 1db u(db)if (c:proc = p) thenpending pending � cmap(c) oklast(c) last updateif (last update > last max [p; p:view :id])then last max [p; p:view :id] last update
ptprcv(c; a; l ; g)p0;pE�: if (g = view :id ^ c:proc = p) thenpending pending � cmap(c) alast(c) lif (l > last max [p; p:view :id])then last max [p; p:view :id] l

8.1.2 PropertiesWe now present a number of properties involving the values of last max [p; g].First, we prove that, in any reachable state t of T that corresponds to a reachablestate of T 0, t[p]:� can be greater than zero only due to the database indices that phas witnessed during its current view. This result is stated in Corollary 8.2, whichfollows from Invariant 8.1 and Lemma 8.1 stated below.The following invariant states that the value of p:safe to update in a reachable stateof T 0 is greater than the values of last max [p; g] for all previous views g of p.Invariant 8.1 In any reachable state of T 0, for all p in P and all g in G,if g < p:view :id, then last max [p; g] � p:safe to update.Proof : Straightforward induction. The only interesting action of T 0 is newview. Itse�ect makes sure that p:safe to update is at least as large as last max [p; g].The following is an auxiliary lemma that states that throughout an execution of T ,the values of last(c) are non-decreasing.Lemma 8.1 For any reachable state t of T , if (t; �; t0) is a transition of T , then, forall p in P and all c in C such that c:proc = p, it follows that t[p]:last(c) � t0[p]:last(c).101

Proof 8.1: Straightforward induction. The critical actions are update and ptprcv.The inductive step for the former is straightforward. The inductive step for the latterfollows immediately from part (d) of Invariant 6.5.From Invariant 8.1 and Lemma 8.1, it follows that, in any reachable state t ofT corresponding to a reachable state of T 0, if t[p]:� > 0, then t[p]:last max =t:last max [p; t [p]:view :id]. Therefore, the following corollary is true:Corollary 8.2 In any reachable state t of T corresponding to a reachable state of T 0,if t[p]:� > 0, then t[p]:� = t:last max [p; t [p]:view :id]� t[p]:safe to update.The following invariant states that last max [p; g] can surpass X (p; g):su only wheng is primary and normal at p. Moreover, there always exists a member p0 of GtoS (g)such that last max [p; g] is bounded from above by X (p0; g):su.Invariant 8.3 In any reachable state of T , for all p in P and all g in G,if X (p; g):su < last max [p; g], then1. g 2 normal viewids(p)2. g 2 primary viewids3. 9 p0 2 GtoS (g) : last max [p; g] � X (p0; g):suProof : Straightforward induction. The only interesting action is ptprcv. The proofrelies on Corollary 7.41 and Invariant 7.42.From this invariant it is straightforward to show the following corollary:Corollary 8.4 In any reachable state of T , for all p and all g, if X (p; g):su <last max [p; g], then there exists p0 2 GtoS (g) such thatjqueueu [g][next safe[p; g]::(next safe[p 0; g]� 1)]j � (last max [p; g]�X (p; g):su)Proof : Straightforward. Relies on Invariant 8.3102

Finally, we are able to conclude that the identity re�nement from T 0 to T holds whenT 0 executes a transition with a newview action.Lemma 8.2 If t is a reachable state of T corresponding to a reachable state of T 0,then the corresponding execution sequence � is enabled and the mapping is preserved.This completes the proof of Lemma 5.1 that T 0 implements T in the sense of traceinclusion. Therefore, Theorem 6.2 holds, and the implementation automaton T 0 ispartially correct with respect to the speci�cation automaton S.8.2 Properties of T 0Notice that all invariants of T are the invariants of T 0. This is true since T 0 implementsT in the sense of trace inclusion and since the re�nement mapping from T 0 to T isidentity.Using a very similar argument to the one used in the previous section, we can showthat servers of T 0 are always enabled to advance their database states su�ciently farto be able to process the queries assigned to them.Finally, we observe that the number of query requests assigned to each particularserver during its participation in a certain view is the same (plus or minus one) asthe number of query requests assigned to any other server during its participation inthat view. This property follows immediately from the fact that each server sees apre�x of the total order on query requests delivered within the same view and fromthe properties of the mod function.

103

104

Chapter 9
Conclusions and Future Work
Group communication services provide powerful abstractions upon which it is possibleto construct highly fault-tolerant applications, such as replication and load-balancingsystems that tolerate partitioning and merging of the underlying network. Unfortu-nately, the lack of formalism at the level of group communication services had impededthe development of systematic and formal approaches for the design of applicationsthat use these services.In an e�ort to remedy the lack of good speci�cations for group communication ser-vices, Fekete, Lynch, and Shvartsman recently proposed a simple automaton speci�-cation for a view-synchronous group communication service [13].In this thesis, we have used this speci�cation as a building block to formally modelan intricate and important application that integrates replication and load-balancing,guarantees sequentially consistent behavior, and tolerates network partitioning.Using the I/O automaton model of Lynch and Tuttle, we have presented a speci�ca-tion and an implementation automata for this service, and have given a hierarchicalproof that the latter implements the former in the sense of trace inclusion.The speci�cation automaton de�nes a sequentially consistent data service, in whichupdate requests are performed with respect to the latest data states. Query requests,on the other hand, are performed with respect to the data states that are not neces-sarily the latest ones, but that are at least as advanced as the last states witnessedby the queries' clients. 105

The implementation automaton is composed of a collection of identical automataspecifying a state machine of each server, the VS speci�cation automaton for a groupcommunication service, and a collection of automata specifying reliable reorderingchannels between any two servers. The implementation automaton models a repli-cated service in which update requests are processed in the same order at all servers,thus guaranteeing mutual consistency of data replicas, and in which query requests areprocessed at single servers determined by a load-balancing strategy which equalizesthe number of queries assigned to each member of the same group.The hierarchical proof of correctness establishes that all traces of the implementationautomaton are valid traces of the speci�cation automaton. This proof relies on anumber of high-level invariants, which we have proved assertionally. The proof ofthese invariants is based on an interesting approach: we have invented a derivedfunction X that expresses recursively the highest state reached by each server in eachgroup. In a sense, this function presents a law according to which the replicationpart of the algorithm operates. As seen in Section 7.4, the recursive nature of thisfunction makes proofs by induction easy: proving an inductive step simply involvesunwinding a recursive step of the derived function X .We have also proved a liveness-related claim that the load-balancing part of thealgorithm is uniform and non-blocking. For uniformity, we have shown that eachmember of a group is assigned the same number of query requests as any othermember of that group. For non-blockage, we have shown that the servers are alwaysable to su�ciently advance the state of their replicas in order to process the queriesassigned to them.In addition to presenting a novel algorithm that integrates replication and load-balancing, this work has the following two important implications:First, it demonstrates that VS speci�es a powerful service capable of supporting im-portant applications. Moreover, it demonstrates that the style of the VS speci�cationis formal enough to support rigorous modeling of applications and is simple enough toprovide intuitive understanding of the group communication service. We note that theVS speci�cation can be easily extended to include other potentially useful properties.Based on our experience with the load-balancing part of the presented algorithm, weidentify the following two useful extensions to VS : a version of multicast without safenoti�cations, and a version of within-view unicast.106

Second, our work exhibits a number of general approaches that can be used to formallymodel other replication and load-balancing algorithms based on formally speci�edgroup communication services.In order to keep the discussion and the correctness proof tractable, we have chosento omit secondary functionality from our algorithm, such as support for non-blockingclients and for updates that return data values (instead of ok). However, the algorithmand the proof can be straightforwardly extended to accommodate this functionality.Another straightforward extension to the algorithm would be to implement propaga-tion by eventual path [2, 1], a strategy in which servers of non-primary views sharetheir update requests with the other members of their views. As a result of this shar-ing, update requests can reach primary groups and be executed faster than if theyremained known only to their original servers. This strategy makes more sense whenit is less important to notify clients that their requests have been performed thanto actually perform them. In particular, this strategy makes less sense when clientsblock, which is why we did not implement it in our algorithm.Regarding future work, an important direction would be to investigate liveness of thepresented algorithm. While this thesis has dealt solely with the safety properties of thealgorithm, it is important to consider its performance and fault-tolerance properties,which are stated conditionally to hold in periods of good behavior of the underlyingnetwork. In particular, it would be interesting to analyze conditions under which theload-balancing part of the algorithm performs adequately compared to other load-balancing schemes.Another important direction for future research would be to investigate the suit-ability of multicast group communication systems for other, possibly adaptive, load-balancing schemes. These schemes could take advantage of powerful multicast primi-tives provided by the underlying group communication service to yield good schedul-ing strategies. To o�set the extra computation and communication costs associatedwith multicast, these schemes could, for example, pack several tasks on one message.Finally, it would be interesting to adopt the algorithm presented in this thesis to adynamically evolving set of processes by using a variant of a dynamic view-orientedgroup communication service presented in [25], instead of VS . This adaptation wouldbe similar to the way a static totally-ordered broadcast application of [13] has beenadopted to its dynamic version in [25]. 107

108

Bibliography
[1] Y. Amir, D. Dolev, P. Melliar-Smith, and L. Moser. Robust and e�cient replica-tion using group communication. Technical Report 94-20, The Hebrew Universityof Jerusalem, Jerusalem, Israel, 1994.[2] Yair Amir. Replication using Group Communication over a Partitioned Network.PhD thesis, The Hebrew University of Jerusalem, Jerusalem, Israel, 1995.[3] O. Babaoglu, R. Davoli, L. Giachini, and P. Sabattini. The inherent cost ofstrong-partial view-synchronous communication. Lecture Notes in Computer Sci-ence, 972:72{86, 1995.[4] Kenneth P. Birman. Building Secure and Reliable Network Applications. Man-ning Publications Co., Greenwich, CT, 1996.[5] Kenneth P. Birman and Robbert van Renesse, editors. Reliable Distributed Com-puting with the Isis Toolkit. IEEE Computer Society Press, 1994.[6] Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and BernadetteCharron-Bost. On the impossibility of group membership. In Proceedings of the15th Annual ACM Symposium on Principles of Distributed Computing (PODC'96), pages 322{330, New York, USA, May 1996. ACM.[7] G. V. Chockler, N. Huleihel, and D. Dolev. An adaptive totally ordered multi-cast protocol that tolerates partitions. In Proceedings of the 17h Annual ACMSymposium on Principles of Distributed Computing (PODC '98). ACM, 1998. toappear.[8] Gregory V. Chockler. An adaptive totally ordered multicast protocol that tol-erates partitions. Master's thesis, Institute of Computer Science, The HebrewUniversity of Jerusalem, Jerusalem, Israel, 1997.109

[9] F. Cristian. Group, majority, and strict agreement in timed asynchronous dis-tributed systems. In Proceedings of the Twenty-Sixth International Symposiumon Fault-Tolerant Computing, pages 178{189, Washington, June25{27 1996.IEEE.[10] Danny Dolev and Dalia Malki. The Transis approach to high availability clustercommunication. Communications of the ACM, 39(4):64{70, April 1996.[11] Danny Dolev, Dalia Malki, and Ray Strong. A framework for partitionable mem-bership service. Technical Report TR94-6, Department of Computer Science,Hebrew University, 1994.[12] P. D. Ezhilchelvan, R. A. Macêdo, and S. K. Shrivastava. Newtop: A fault-tolerant group communication protocol. In Proceedings of the 15th InternationalConference on Distributed Computing Systems (ICDCS'95), pages 296{306, LosAlamitos, CA, USA, May30 June{2 1995. IEEE Computer Society Press.[13] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and using a par-tionable group communication service. In Proceedings of the Sixteenth AnnualACM Symposium on Principles of Distributed Computing, pages 53{62, SantaBarbara, California, 21{24 August 1997.[14] Alan Fekete, Nancy Lynch, and Alex Shvartsman. Specifying and usinga partionable group communication service. extended version, available athttp://theory.lcs.mit.edu/tds, 21{24 August 1997.[15] Roy Friedman and Robbert van Renesse. Strong and weak virtual synchronyin horus. Technical Report TR95-1537, Cornell University, Computer ScienceDepartment, August 24, 1995.[16] Roy Friedman and Alexey Vaysburd. Implementing replicated state machinesover partitionable networks. Technical Report TR96-1581, Cornell University,Computer Science, April 17, 1996.[17] Roy Friedman and Alexey Vaysburd. High-performance replicated distributedobjects in partitionable environments. Technical Report TR97-1639, CornellUniversity, Computer Science, July 16, 1997.[18] Idit Keidar. A highly available paradigm for consistent object replication. Mas-ter's thesis, Institute of Computer Science, The Hebrew University of Jerusalem,Israel, 1994. 110

[19] Idit Keidar and Danny Dolev. E�cient message ordering in dynamic networks.In Proceedings of the 15th Annual ACM Symposium on Principles of DistributedComputing (PODC '96), pages 68{76, New York, USA, May 1996. ACM.[20] Leslie Lamport. How to make a multiprocessor computer that correctly exe-cutes multiprocess programs. IEEE Transactions on Computers, C-28(9):690{691, September 1979.[21] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata.CWI Quarterly, 2(3):219{246, 1989. Also available as MIT Technical MemoMIT/LCS/TM-373.[22] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann series in datamanagement systems. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA,1996. Prepared with LATEX.[23] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended virtualsynchrony. In Proceedings of the 14th International Conference on DistributedComputing Systems, pages 56{65, Los Alamitos, CA, USA, June 1994. IEEEComputer Society Press.[24] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A.Lingley-Papadopoulos. Totem: A fault-tolerant multicast group communicationsystem. Communications of the ACM, 39(4):54{63, April 1996.[25] R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman. A dynamic view-orientedgroup communication service. In Proceedings of the 17h Annual ACM Symposiumon Principles of Distributed Computing (PODC '98). ACM, 1998. to appear.[26] Aleta M. Ricciardi, Andre Schiper, and Kenneth P. Birman. Understandingpartitions and the \no partition" assumption. Technical Report TR93-1355,Cornell University, Computer Science Department, June 1993.[27] Robbert van Renesse, Kenneth P. Birman, and Silvano Ma�eis. Horus: A exiblegroup communication system. Communications of the ACM, 39(4):76{83, April1996.
111

