
A One-Round Algorithm for Virtually Synchronous

Group Communication in Wide Area Networks

by

Roger I Khazan

M.S. in Electrical Engineering and Computer Science, MIT (1998)

B.A., Computer Science and Mathematics, Brandeis University (1996)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

c© Massachusetts Institute of Technology 2002. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 22, 2002

Certified by .
Professor Nancy A. Lynch

NEC Professor of Software Science and Engineering, MIT
Thesis Supervisor

Certified by .
Doctor Idit Keidar

Postdoctoral Research Associate, MIT
Senior Lecturer, The Technion – Israel Institute of Technology

Thesis Supervisor

Accepted by .
Professor Arthur C. Smith

Chairman, Department Committee on Graduate Theses, MIT

2

A One-Round Algorithm for Virtually Synchronous
Group Communication in Wide Area Networks

by

Roger I Khazan

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2002, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

Group communication services, and especially those that implement Virtual Synchrony
semantics, are powerful middleware systems that facilitate the development of fault-tolerant
distributed applications.

In this thesis, we present a high quality, theoretical design of a group communication service
that implements Virtual Synchrony semantics and is aimed for deployment in wide-area net-
works (WANs). The design features a novel algorithm for implementing Virtual Synchrony
semantics; the algorithm is more appropriate for WANs than the existing solutions because
it involves fewer rounds of communication and operates in a scalable WAN-oriented archi-
tecture. The high quality of the design refers to the level of formality and rigor at which
it is done: The design includes formal and precise specifications, algorithms, correctness
proofs, and performance analyses.

We develop the necessary supporting theory and methodology required for producing and
evaluating this design. In particular, we develop a formal, inheritance-based, methodology
that supports incremental construction of specifications, models, and proofs. This method-
ology helps us manage the complexity of the design and makes it evident which part of
the algorithm implements which property of the system. We also develop new, formal
approaches in the area of performance evaluation.

Thesis Supervisor: Professor Nancy A. Lynch
Title: NEC Professor of Software Science and Engineering, MIT

Thesis Supervisor: Doctor Idit Keidar
Title: Postdoctoral Research Associate, MIT
Senior Lecturer, The Technion – Israel Institute of Technology

3

4

Acknowledgments

First, I would like to thank the following five people directly related to this dissertation:

• Nancy Lynch — my dissertation supervisor, research advisor, mentor, teacher, and
research collaborator. Nancy, thank you for the six wonderful years in the TDS group,
for your support, guidance, and encouragement throughout these years. I have learned
a great deal from you, and I thank you for the opportunity to be your student.

• Idit Keidar — my dissertation supervisor, mentor, research collaborator, and (I hope
this is not out of line) friend. Idit, thank you for the exciting times we had doing
research together, and for being there for me every step of the way! I am honored to
be your first Ph.D. student (of the many to come).

• Alex Shvartsman — my mentor, research collaborator, and teacher. Alex, I am very
fortunate to have met you. Thank you for introducing me to Distributed Systems,
steering me to join the TDS group, and for your guidance and wisdom throughout
the years. I am grateful to you for always keeping my best interests at heart.

• Butler Lampson — my Ph.D. committee member and teacher. Prof. Lampson, thank
you for keeping me on my toes with your tough questions; I have learned a lot trying to
answer them. I also thank you for teaching me some of the key principles of designing
sound computer systems (6.826). I hope this dissertation gives them justice.

• Alan Fekete — my Ph.D. committee member. Alan, thank you for always finding time
to meet with me whenever you were in town, for helping me sort out the application
example, and, very importantly, for helping me focus on the immediate goals.

I also thank my mentor, Martin Cohn, for his academic and professional advice.

This dissertation brings to a conclusion six wonderful years in which I have been a member
of the TDS group at MIT. I thank my fellow graduate students: Carl Livadas, Roberto De
Prisco, Victor Luchangco, Rui Fan, and Sayan Mitra for their companionship and insightful
discussions on variety of topics. I thank Roberto for graduating early and bequeathing onto
me the best office corner on the floor

. .
⌣. I am especially grateful to Carl for his friendship.

I know I can always count on you, Carl. (I hope you feel you can count on me too.)

I also would like to acknowledge several other people on our third floor at LCS: our admin-
istrative assistant, Joanne Talbot, for making TDS run so smoothly; our ‘administrative
mom’, Be Blackburn, for chocolate (my mother would be very happy to know about this),
other treats, and fun get-togethers; our system administrators, William Ang, Greg Shomo,
Matt McKinnon, and Michael Vezza — these guys are amazing; and finally the members
of the WWW Consortium (neighboring my office) for their espresso machine, spring water
fountain, and steady supply of snacks. To all of you, Thank You!

In my free time I enjoyed the company of my Boston-area friends: Daniil Utin, Jane Silver,
Mark and Anna Gurevich, Mike and Irina Fazio, and Eddie and Debbie Bruckner. Life
would have been rather dull without you, guys.

5

Finally, I thank my dear parents, Dr. Leonard Khazan and Lana Brodsky; my grandpa,
Isaak Brodsky; my grandma, Mara Khazan; and my parents-in-law, Dr. Simon and Sima
Zaslavsky; as well as the rest of the meshpucha for their love and belief in my abilities.
These have been the driving force behind my accomplishments. Special thanks to my Dad
for keeping my wardrobe up-to-date, to my Mom for the monthly checks, and to Simon for
helping edit my dissertation proposal.

Above all, I am indebted to my wife, Inna Zaslavsky Khazan, for her love, emotional support,
and encouragement (not to mention helping me with the editing and the daily chauffeuring).
Inna, you are and always will be my true inspiration.

Roger I. Khazan
Cambridge, Massachusetts

6

To my parents, Dr. Leonard Khazan and Lana Brodsky.

7

8

Contents

1 Introduction 15

1.1 Background and Motivation . 15

1.2 Our Contributions . 18

1.3 Design Overview . 20

1.4 New Modeling Methodology . 22

1.5 Roadmap . 24

I Formal Foundations 25

2 Formal Model and Notation 27

2.1 I/O Automaton Model . 27

2.2 Proof Techniques . 29

3 Incremental Modeling and Verification 35

3.1 Overview . 36

3.2 Specialization . 36

3.3 Incremental Proofs . 39

3.4 Subclassing for Extension . 43

3.5 Related work . 47

3.6 Discussion . 48

9

II Group Communication Service 51

4 Client-Server Architecture and Environment Specification 55

4.1 The membership service specification . 56

4.2 The reliable fifo multicast service specification 59

5 Specifications of the Group Communication Service 61

5.1 Safety properties . 61

5.1.1 Within-View reliable fifo multicast 61

5.1.2 Virtually-Synchronous delivery . 63

5.1.3 Transitional Set . 63

5.1.4 Self Delivery . 65

5.2 Liveness property . 65

6 The Virtually Synchronous Group Multicast Algorithm 67

6.1 Within-view reliable fifo multicast algorithm 68

6.2 Adding support for Virtually Synchronous Delivery and Transitional Sets . 71

6.3 Adding support for Self Delivery . 79

6.4 Optimizations and Extensions . 80

7 Correctness Proof: Safety Properties 83

7.1 Within-view reliable fifo multicast . 83

7.1.1 Key Invariants . 84

7.1.2 Simulation . 84

7.1.3 Auxiliary Invariants . 85

7.2 Virtual Synchrony . 89

7.2.1 Invariants . 89

7.2.2 Simulation . 90

7.3 Transitional Set . 91

10

7.3.1 Invariants . 91

7.3.2 Simulation . 92

7.4 Self Delivery . 94

7.4.1 Invariants . 95

7.4.2 Simulation . 96

8 Correctness Proof: Liveness Property 99

8.1 Invariants . 99

8.2 Liveness Proof . 101

9 Performance Analysis 107

9.1 Formal Model . 108

9.2 High-level Overview . 111

9.2.1 Definitions . 112

9.2.2 Timing Assumptions . 114

9.2.3 Key Results . 115

9.3 Virtual Synchrony Algorithm . 118

9.3.1 Synchronization Protocol . 119

9.3.2 Message Delivery . 120

9.3.3 View Delivery . 123

9.4 Membership Service . 124

9.5 Composition of the Membership and the Virtual Synchrony bounds 126

10 Application Example: Interim-Atomic Data Service 129

10.1 Application Description . 132

10.1.1 The Obj Data Type . 132

10.1.2 Application Interface . 132

10.1.3 Application Semantics . 133

11

10.2 gcs-based Algorithm . 137

10.2.1 Algorithm Description . 137

10.2.2 Correctness . 144

10.2.3 Performance . 150

11 Conclusions 155

12 Bibliography 159

12

List of Figures

1.1 Interface between application clients and a Virtually Synchronous GCS. . . 17

1.2 Design architecture: decoupling of system components. 21

1.3 Incremental verification. 23

2.1 Illustration of Example 2.1.1. 28

2.2 Illustration of Example 2.2.1. 30

3.1 Illustration of Example 3.2.1. 37

3.2 Intermediate step in incremental verification. 40

3.3 Illustration of Example 3.4.1. 45

4.1 Client-server architecture: GCS end-points use an external membership service. 55

4.2 Membership service interface and safety specification. 57

4.3 A sample execution of the membership service. 58

4.4 Reliable fifo multicast service specification. 59

5.1 Within-View Reliable fifo specification. 62

5.2 Virtually-Synchronous Delivery specification. 63

5.3 Transitional Set specification. 64

5.4 Self Delivery specification. 65

6.1 GCS end-point and its environment. 68

6.2 Within-View Reliable fifo Multicast end-point algorithm. 69

13

6.3 Illustration: Handling of cascading membership changes. 73

6.4 Virtually Synchronous Delivery end-point algorithm: Signature. 74

6.5 Virtually Synchronous Delivery end-point algorithm: State and Transitions. 76

6.6 Self Delivery end-point algorithm. 80

7.1 Blocking client abstract specification. 95

9.1 Analysis of the Virtual Synchrony algorithm. 116

9.2 Assumption on the Membership Service: propagation of group events. . . . 117

9.3 Assumption on the Membership Service: view formation. 118

9.4 Composition of Membership and Virtual Synchrony bounds. 118

9.5 Illustration: GCS messages and events after stabilization. 127

10.1 Interaction between the Interim-Atomic Data Service and its clients. 133

10.2 Interim-Atomic Data Service interface specification. 133

10.3 Abstract data service specifcation. 134

10.4 Generalized atomic object specifcation. 136

10.5 Application design architecture. 138

10.6 Application modes of operation. 139

10.7 Interim-Atomic Data Service end-point algorithm. 140

14

Chapter 1

Introduction

We present a high quality, theoretical design of a group communication service (GCS) that
implements Virtual Synchrony semantics and is aimed for deployment in wide-area net-
works (WANs). Section 1.1, below, presents some basic background on GCSs and Virtual
Synchrony; the section also explains the challenges that arise in WANs. After this intro-
ductory information, we summarize the key contributions made by our work; this is done
in Section 1.2. Then, in Sections 1.3 and 1.4, we overview how each of these contributions
is accomplished: Section 1.3 discusses different aspects of the design, in particular, how
the design addresses the challenges outlined in Section 1.1 and what characteristics make it
high quality. Section 1.4 overviews the supporting theory and methodology that we develop
to help us produce the design.

1.1 Background and Motivation

Modern distributed applications often involve large groups of geographically distributed pro-
cesses that interact by sending messages over an asynchronous fault-prone network. Many
of these applications maintain a replicated state of some sort. In order for these applica-
tions to be correct, the replicas must remain mutually consistent throughout the execution
of the application. For example, in an online game, the states of the game maintained by
different players must be mutually consistent in order for the game to be meaningful to the
players. Designing algorithms that maintain state consistency is difficult however: different
application processes may perceive the execution of the application inconsistently because
of asynchrony and failures. For example if Alice, Bob, and Carol are playing an online
game, the following asymmetric scenario is possible: Alice and Bob perceive each other as
alive and well, but they differ in the way they perceive Carol; one sees Carol as crashed
or disconnected, while the other sees her as alive and well. Middleware systems that hide
from the application some of the underlying inconsistencies and instead present them with
a more consistent picture of the distributed execution facilitate development of distributed
applications.

Group communication services, such as [6, 8, 93, 19], are examples of such middleware

15

systems. They are particularly useful for building applications that require reliable multi-
point to multi-point communication among a group (or groups) of processes. Examples
of such applications are data replication (for example, [57, 7, 39, 63, 42], and [30] Ch. 7),
highly-available servers (for example, [11]), and online games.

GCSs provide a notion of group abstraction, which allows application processes to easily
organize themselves into multicast groups. Application processes can communicate with
the members of a group by addressing messages to the group. The semantics of the group
abstraction is such that different members of the group have consistent perceptions of the
communication done in the group. The abstraction is typically implemented through the
integration of two types of services: membership and reliable multicast.

Membership services maintain information about membership of groups. The membership
of a group can change dynamically due to new processes joining and current members de-
parting, failing, or disconnecting. The membership service tracks these changes and reports
them to group members. The report given by the membership service to a member is called
a view. It includes a unique identifier and a list of currently active and mutually connected
members. Failures can partition a group into disconnected components of mutually con-
nected members. Membership services strive to form and deliver the same views to all
mutually connected members of the group. While this is not always possible, they typically
succeed once network connectivity more or less stabilizes (see, for example, [58, 27]).

Reliable multicast services allow application processes to send messages to the entire mem-
bership of a group. GCSs guarantee that message delivery satisfies certain properties. For
example, one property can be that messages sent by the same sender are delivered in the
order in which they were sent. Different GCSs differ in the specific message delivery prop-
erties they provide, but most of them provide some variant of Virtual Synchrony semantics.
We refer to a GCS providing such semantics as a Virtually Synchronous GCS, and to an
algorithm implementing this semantics as a Virtual Synchrony algorithm.

Virtual Synchrony semantics specifies how GCSs integrate membership and reliable multi-
cast services; in particular, they specify how message deliveries are synchronized with view
deliveries. This synchronization is done in a way that simulates a “benign” world in which
message delivery is reliable within each view. Many variants of Virtual Synchrony have been
suggested (for example, [77, 43, 27, 19, 82, 12]). In addition to other properties, nearly all
of them include a key property, called Virtually-Synchronous Delivery, which guarantees
that processes that receive the same pair of views from the GCS receive the same sets of
messages in between receiving the views. Henceforth, when we refer to Virtual Synchrony,
we assume the semantics includes Virtually-Synchronous Delivery.

Figure 1.1 illustrates a typical interface between application clients and the underlying
GCS. It shows three clients, Alice, Bob, and Carol, using a Virtually Synchronous GCS to
communicate with each other. In addition to the send-deliver events, the interface also has
view events: whenever a client’s view changes, the GCS informs the client of the new view.

The following example illustrates how Alice, Bob, and Carol may exploit the Virtually-
Synchronous Delivery property while playing an online game.

16

Bob Carol

Virtually Synchronous Group Communication Service

s
e
n
d

d
e
l
i
v
e
r

v
i
e
w

d
e
l
i
v
e
r

s
e
n
d

Alice

v
i
e
w

d
e
l
i
v
e
rs
e
n
d

v
i
e
w

Figure 1.1: Typical interface between application clients and a Virtually Synchronous GCS.
Arrows represent direction of the interaction.

Example 1.1.1 Assume that, initially, each of the three clients, Alice, Bob, and Carol, is
given a view 〈{Alice, Bob, Carol}, 1〉, where {Alice, Bob, Carol} is a set of members and
1 is a view id. Then Carol disconnects, and Alice and Bob are given a new view 〈{Alice,
Bob}, 2〉. The Virtually-Synchronous Delivery property guarantees that both Alice and Bob
receive the same messages before receiving the new view. In particular, if Bob receives a
message from Carol before it receives the new view, then Alice also receives this message
before the new view. Therefore, if Alice and Bob modify their game states only when they
receive messages, they remain in consistent states and can safely continue playing the game
after they receive the new view.

In general, Virtually Synchronous GCSs are especially useful for building applications
that maintain a replicated state of some sort using a variant of the well-known state-
machine/active replication approach [66, 83]. With such approach, processes that maintain
state replicas are organized into multicast groups. Actions that update the state are sent
using a multicast primitive that delivers messages to different processes in the same order.
When processes receive these actions, they apply them to their local replicas. Virtual Syn-
chrony guarantees that processes that remain connected receive the same messages. This
implies that processes that remain connected apply the same sequences of actions to their
replicas. Hence, their replicas remain mutually consistent. Examples of GCS applications
that use this technique are [4, 7, 57, 91, 42, 11].

Let us consider what is involved in implementing the Virtually-Synchronous Delivery prop-
erty. Imagine that GCS processes are forming a new view because someone has disconnected
from their current view. The GCS processes must make sure that they deliver the same
messages to their application clients before delivering to them the new view. However, it
may be the case that some of these GCS processes received messages that others did not.
In the scenario illustrated in Example 1.1.1, the last messages from Carol may have reached
the GCS process of only Bob, and not of Alice; Bob and Alice need to agree on whether
or not to deliver these messages. To ensure such agreement, GCS processes invoke a syn-
chronization protocol whenever a new view is forming; the protocol involves the processes
exchanging special synchronization messages.

17

Designing correct and efficient algorithms that implement Virtual Synchrony is not trivial.
Different GCS processes may perceive connectivity changes inconsistently. Since the desired
synchronization depends on who the members of the new view are, the algorithm has to
tolerate transient inconsistent views and cascading connectivity changes.

In particular, a Virtual Synchrony algorithm needs to know which synchronization messages
sent by different processes pertain to the same view formation attempt. Existing algorithms,
such as [43, 6, 82, 12, 47, 8], identify such synchronization messages by tagging them with
a common identifier. Some initial communication is performed first, before synchronization
messages are communicated, in order to agree upon a common identifier and to distribute
it to the members of the forming view.

While a view is forming and a synchronization protocol is executing, there may be changes
in connectivity that call for views with altogether different memberships. When such sit-
uations happen, existing Virtual Synchrony algorithms, for example [43, 47, 82, 12, 8],
continue executing their current synchronization protocol to termination and then deliver
to the application a view that does not reflect the already detected changes in connectivity.
Afterwards, the algorithm is invoked anew to incorporate the new changes.

We refer to a view as obsolete [58] when it is delivered by a GCS even though the GCS
already has information that the view’s membership has changed. Obsolete views cause an
overhead not just for the GCS, but also for applications. Since application processes do not
know when the views delivered to them are obsolete, they handle such views just as they
do any other view, for example by running state-synchronization protocols [57, 39, 63].

Even though the existing algorithms are relaxed about handling obsolete views, they per-
form well in typical local-area networks. Such networks have fairly stable connectivity and
short message latency, so the synchronization protocols are invoked very infrequently and
for very short periods of time.

WANs differ from LANs. WANs may have frequent message loss and changes in connectivity,
as well as high and unpredictable message latency. These characteristics imply that, in order
for a Virtual Synchrony algorithm to be appropriate for a WAN, it has to execute fewer
communication rounds and respond to connectivity changes promptly, without wasting
resources on handling obsolete memberships. Such improvements to the existing algorithms
would reduce the periods of time when application processes are waiting for a new view to
be delivered to them so they may resume their application-related communication in the
new view.

1.2 Our Contributions

In this thesis, we present a novel high quality design of a GCS targeted for WANs. The
design provides a variant of the Virtual Synchrony semantics that combines a core set
of properties that is commonly provided by GCSs. This set captures the properties that
are useful for facilitating implementations of typical GCS applications; it can also support
implementations of other, stronger, GCS properties. The contributions made by our design
are summarized in the following list:

18

• The design features a new algorithm for implementing Virtual Synchrony. The algo-
rithm neither processes nor delivers views with obsolete memberships. Moreover, the
synchronization protocol run by our algorithm involves just a single message exchange
round among members of the new view. We are not aware of any other algorithm for
implementing Virtual Synchrony that has these two features.

• The design demonstrates how to more effectively decouple the algorithm for achieving
Virtual Synchrony from the algorithm for maintaining membership. As suggested
in [9, 58], such efficient decoupling is important for providing scalable GCSs in WANs.

Existing designs typically have a single algorithm handling both Virtual Synchrony
and membership. The few designs that do employ two separate algorithms [82, 18]
still have the two algorithms tightly coupled. In particular, the Virtual Synchrony
algorithms control the membership algorithms: the membership algorithms are not
allowed to incorporate newly joining members while the synchronization protocols are
running. In addition to the control issue, such tight coupling requires two-directional
communication between the two algorithms. In contrast to these two observations,
our design allows the membership algorithm to freely change memberships of forming
views at any time; the interaction between the membership and Virtual Synchrony
algorithms is only in one direction, from the former to the latter, and it has low
overhead. The decoupling is such that the synchronization protocol can execute in
parallel with the view formation protocol.

• The design is well-documented and is carried at a high level of formality and rigor,
much higher than that of most previous designs of Virtually Synchronous GCSs. The
presented specifications of our GCS and its environment, description of the algorithm,
and proof of correctness are all precise and formal. Our project is the first to use formal
methods for modeling a Virtually Synchronous GCS and to provide an assertional
proof of its correctness.

We evaluate the performance claims that we make about our design by doing a formal
analysis. In particular, we investigate how long it takes the GCS to recover and resume
its normal operation after network events occur. We express our results as a collection
of time-bounds depending on the specific types and timing of network events and on
the behavior of underlying services used by the GCS.

In order to manage the complexity of the design, we develop new theory and methodology
that facilitates incremental construction of formal specifications, algorithms, and, very im-
portantly, proofs. In addition to making the design tractable, the use of this methodology
makes it evident which part of the algorithm implements which property. This theory and
methodology are not specific to our GCS design. They are general contributions to the field
of formal modeling and verification, as well as software engineering. Our thesis contains a
comprehensive description of this general approach; an overview of this approach is given
in Section 1.4 below.

The thesis also contains general formalizations of the new approaches that we develop to
evaluate the results of our work, in particular, new approaches to studying the performance
characteristics of our design.

19

1.3 Design Overview

We now discuss each of the different aspects of our design in more detail.

Algorithm for Virtual Synchrony

The novelty of our algorithm for achieving Virtual Synchrony is concentrated in its synchro-
nization protocol. Recall that this protocol is run among GCS processes in order for those
that remain connected to agree upon a common set of messages each of them must deliver
before moving into the new view. The protocol depends on a simple, yet powerful idea.
Instead of using common identifiers to designate which synchronization messages pertain
to the same view formation attempt, we use locally generated identifiers. These identifiers
are then included as part of the formed views1. Once a view formation completes at a GCS
process, the process knows which synchronization messages of other members to consider
for the view – the messages tagged with the identifiers that are included in the view.

Example 1.3.1 Consider a view 〈{Alice, Bob, Carol}, [4, 3, 7], 8}〉. This view has member-
ship {Alice, Bob, Carol}, vector of local identifiers [4, 3, 7], and view identifier 8. When a
GCS process forms this view, it uses the synchronization messages from Alice, Bob, and
Carol tagged respectively with 4, 3, and 7 to decide on the set of messages it must deliver
before delivering this view to its application. Thus, if Alice, Bob, and Carol form the same
view, they use the same synchronization messages, and thus agree on which application
messages each of them needs to deliver.

The use of local identifiers eliminates the need to pre-agree on common identifiers and
allows the synchronization protocol to complete in a single message exchange round. It
also allows the algorithm to promptly and efficiently react to connectivity changes, without
wasting resources on obsolete views. The protocol works correctly even if, because of
network instability, GCS processes send multiple synchronization messages during the same
synchronization protocol.

Decoupling of Virtual Synchrony and Membership

Our design decouples the algorithm for implementing Virtually Synchronous multicast from
the algorithm for maintaining membership; see Figure 1.2. The membership algorithm han-
dles generation of local identifiers and formation of views. The algorithm for implementing
Virtually Synchronous multicast is run by GCS end-points; these end-points synchronize
views and application messages to implement the Virtual Synchrony semantics. In par-
ticular, they handle multicast requests submitted by the application, deliver application
messages and views back to the application, and run the synchronization protocol to syn-
chronize processes that transition together into new views. The decoupling involves low-cost,

1A similar view structure is suggested in [82], for the purpose of not having concurrent views intersect.

20

one-directional communication from the membership to the Virtually Synchronous multi-
cast algorithm. It also allows the synchronization protocol to execute in parallel with the
view formation protocol.

Application Application

GCS End−pointGCS End−point

Group Membership Service

Reliable FIFO Multicast Service

Figure 1.2: The decoupled architecture: GCS end-points provide the Virtual Synchrony
semantics by integrating the output of a membership service and a reliable multicast service.
Arrows represent interaction between GCS End-points and underlying services.

Efficient decoupling of membership and Virtually Synchronous multicast algorithms allows
for an architecture in which the membership service is implemented by a small set of ded-
icated membership servers maintaining the membership information on behalf of a large
set of clients. This architecture was proposed in [9, 58] for supporting scalable membership
services in WANs. Our work extends this architecture by specifying how it can be used as
a base for a Virtually Synchronous GCS. In particular, we present precise specifications
of the interface and semantics that a membership service has to provide in order to be
decoupled from the Virtually Synchronous multicast algorithm.

Our interface and membership service specifications allow for straightforward and efficient
membership and Virtually Synchronous multicast algorithms. The Virtually Synchronous
multicast algorithm presented in this thesis is an example of such an algorithm: the synchro-
nization protocol requires a single message exchange round, which can occur in parallel with
the formation of the view. The algorithm has been implemented (in C++) [92] using the
scalable one-round membership algorithm of [58]. This membership algorithm was specifi-
cally tailored for our design, but other existing membership algorithms (for example, [35, 8])
can be also easily extended to provide the required interface and semantics.

Formal and Rigorous Approach

Our design has been carried out and is presented at a level more formal and rigorous than
that of most previous designs of Virtually Synchronous GCSs. We precisely specify the prop-
erties satisfied by our Virtually Synchronous multicast algorithm, the external membership
service, and the underlying communication substrate. We then give a formal description of
the Virtually Synchronous multicast algorithm. The algorithm is accompanied by a care-
ful, formal correctness proof and performance analysis. The safety properties are proved
by using invariant assertions and simulation mappings; the liveness properties and perfor-
mance claims are proved by using invariant assertions and careful operational arguments.
We found this level of rigor to be important: in the process of specifying and verifying the

21

algorithm, we uncovered several ambiguities and errors.

Previously, formal approaches were used to specify the semantics of Virtually Synchronous
GCSs and to model and verify their applications, for example, in [26, 39, 31, 63, 32, 51]. Ex-
isting algorithms implementing Virtual Synchrony are modeled in pseudo-code and proven
correct operationally. However, due to their size and complexity, such algorithms were not
previously modeled using formal methods nor were they assertionally verified.

1.4 New Modeling Methodology

To manage the complexity of our design we have developed a formal methodology for incre-
mentally constructing specifications, algorithms, and proofs [61, 62]. In addition to making
the project tractable, the use of this construct makes clear which parts of the algorithm
implement which property. The modularity of this approach facilitates further modifica-
tions and alterations of the design. Both the design and the new modeling methodology
are developed in the framework of the I/O automaton formalism (see [72] and [71], Ch. 8).

The developed modeling methodology is not specific to our GCS design, but rather is a
generic extension of the formal modeling and validation methods. We provide a framework
for reuse of proofs analogous and complementary to the reuse provided by object-oriented
software engineering methodologies. Specifically, we present a formal technique for incre-
mentally constructing safety specifications (requirements), abstract algorithm descriptions,
and simulation proofs that algorithms meet their specifications.

Our approach to incremental construction of system models (specifications and algorithms)
relies on the following two modification constructs; these constructs produce a new model,
called child, when they are applied to an existing model, called parent.

1. Specialization: We allow the child to specialize the parent by reusing its state in a read-
only fashion, by adding new state components (which are allowed to be modified),
and by constraining the set of behaviors of the parent. This corresponds to the
subtyping view of inheritance [22]. We will show that any observable behavior of
the child is subsumed (see [2]) by the possible behaviors of the parent, making our
specialization analogous to substitution inheritance [22]. In particular, the child can
be used anywhere the parent can be used.

2. Signature-Extension: A child can modify the signature of the parent’s actions and
introduce new actions not provided by the parent. When the actions of the child are
renamed to their parent’s names and the new actions are projected out, any behavior
of the child is exactly as some behavior of the parent.

The combination of signature extension and specialization provides a powerful mechanism
for incrementally constructing specifications and algorithms; this combination, which we call
specialized-extension, corresponds to the subclassing for extension form of inheritance [22].

Consider the following two examples. The parent defines an unordered point-to-point mes-
saging service with the send(msg) and recv(msg) interface. Specialization can be used to

22

extend the parent with fifo ordering by restricting recv(msg) actions to deliver messages
only according to the sending order. Subclassing for extension can be used to augment
the messaging service with an acknowledgment mechanism: The parent’s signature can be
extended with ack(msg) actions, and then the parent can be specialized to handle acknowl-
edgments by restricting ack(msg) actions to occur only after the corresponding messages
were received by the recipient. The specialization and subclassing for extension constructs
can be applied at both the specification level and the algorithm level in a way that preserves
the relationship between the specification and the algorithm.

The main power of the provided methodology is in supporting incremental construction of
simulation proofs when specifications and algorithms are constructed incrementally using
the specialization and specialized-extension constructs. Simulation proofs are one of the
most important techniques for proving properties of complex systems; such proofs exhibit a
simulation relation (also known as abstraction or refinement) between a formal description
of a system (algorithm) and its specification [1, 54, 71, 68].

Consider the example in Figure 1.4: Let S be a specification, and A an abstract algorithm
description. Assume that we have proven that A implements S using a simulation relation
Rp. Assume further that we specialize the specification S, yielding a new child specification
S′. At the same time, we specialize the algorithm A to construct an algorithm A′ which
supports the additional semantics required by S′.

S

A

S’

A’

simulation

simulation

Rp

Rc ?

inheritance

inheritance

Figure 1.3: Algorithm A simulates specification S with Rp. Can Rp be reused for building a
simulation Rc from a child A′ of A to a child S′ of S?

When proving that A′ implements S′, we would like to rely on the fact that we have already
proven that A implements S, and to avoid the need to repeat the same reasoning. We
would like to reason only about the new features introduced by S′ and A′. The proof reuse
theorem provides the means for incrementally building simulation proofs in this manner.

We present the formalism of our methodology in the context of the I/O automaton model [71,
72], but the methodology is more general than that particular model. We believe that the
essence of our approach is applicable to any state-transition formal model, such as TLA [65],
UNITY [76], or various forms of process algebra [53, 75].

Inheritance, as a means for modular system design, has been a subject of extensive research
for decades. Many researchers employed formal methods to define various inheritance con-
structs and study their properties [2, 16, 28, 33, 49, 56, 70, 69, 79, 88, 87, 86, 13, 76, 48].
Our distinguishing contribution is a provision of a formal framework that allows simulation
proofs to be constructed incrementally when inheritance is applied at two levels: specifi-

23

cation and algorithm. Thus, we extend the applicability of inheritance from the realm of
incremental system design to the realm of incremental system verification.

1.5 Roadmap

The dissertation is organized into two parts. The first part is comprised of two chapters:
Chapter 2 reviews formal model, proof techniques, and notation. Chapter 3 presents the
incremental modeling and verification formalism that we have developed; the presentation
is based on the material published in [61, 62]. We employ this formalism for modeling and
verifying our GCS design.

The second part covers our design of the Virtually Synchronous Group Communication
service; it constitutes the main part of the dissertation. Chapters 4 – 8 are based on the
material published in [59, 60].

In Chapter 4 we present the client-server architecture of our GCS and formally specify
the assumptions we make on the membership service and the underlying communication
substrate. Chapter 5 contains precise specifications of the safety and liveness properties
satisfied by our GCS.

The algorithm implementing Virtual Synchrony is then given in Chapter 6; it is accompa-
nied by informal correctness arguments. A formal correctness proof that the algorithm of
Chapter 6, when it operates in the environment specified in Chapter 4, satisfies the speci-
fications of Chapter 5 is given in the subsequent two chapters: safety – in Chapter 7, and
liveness – in Chapter 8.

In Chapter 9 we consider performance characteristics of our algorithm; we formalize and
prove our claim that our Virtual Synchrony algorithm involves just a single message ex-
change round among members of the new view. This chapter builds upon the liveness proof
of Chapter 8: The liveness proof establishes that, after the environment starts to behave
well, our GCS system eventually does what it is supposed to do; the performance analysis
quantifies what “eventually” means in terms of various parameters such as message latency
and timing of network and membership events.

In Chapter 10 we illustrate the utility of our gcs system by describing a simple application
that can be effectively built using gcs. The application implements a variant of a data
service that allows a dynamic group of clients to access and modify a replicated data object.
The application is prototypical of some collaborative computing applications, such as for
example a shared white-board application.

Chapter 11 concludes this dissertation.

24

Part I

Formal Foundations

25

Chapter 2

Formal Model and Notation

In this chapter we review the formal model, proof techniques, and notation. Section 2.1
presents background on the I/O automaton model [72] and the precondition-effect nota-
tion used for describing I/O automata; the presentation is based on [71, Chapter 8]. In
Section 2.2 we describe the main techniques used to prove correctness of I/O automata:
invariant assertions, hierarchical proofs, and simulation relations and refinement mappings,
as well as the techniques of history and prophecy variables. The material of this section is
closely based on [71, pages 216-228] and [68, pages 3,4, and 13]. The incremental modeling
and verification formalism developed in the next chapter builds upon the formalism and
examples presented here.

2.1 I/O Automaton Model

In the I/O automaton model, a system component is described as a state-machine, called
an I/O automaton. The transitions of the automaton are associated with named actions,
classified as input, output and internal. Input and output actions model the component’s
interaction with other components, while internal actions are externally unobservable. Note
that an action can be either an input or an output, but not both; a function call that returns
a value can be modeled using two actions – an input and an output.

Formally, an I/O automaton A consists of: a signature sig(A), consisting of input, output,
and internal actions; a set of states states(A); a set of start states start(A); a state-
transition relation trans(A) — a subset of states(A) × sig(A) × states(A); and a parti-
tion tasks(A) of output and internal actions into tasks. Tasks are used for defining fairness
conditions. The part of an automaton’s signature consisting of the input and output actions
is called the automaton’s external signature; an action is external if it is either input or out-
put, but not internal. Using a composition operation, one can construct complex automata
consisting of “smaller” automata that interact via their input and output actions.

An action π is said to be enabled in a state s if the automaton has a transition of the form
(s, π, s′); input actions are enabled in every state. An execution fragment of an automaton
A is an alternating sequence of states and actions such that every successive triple of this

27

sequence is an allowable transition; an empty step (s, ǫ, s) is also an execution fragment.
An execution is an execution fragment that begins with a start state. An infinite execution
is fair if, for each task, it either contains infinitely many actions from this task or infinitely
many occurrences of states in which no action from this task is enabled; a finite execution
is fair if no action is enabled in its final state. The trace of an execution α of A, denoted
by trace(α), is a subsequence of α consisting of all the external actions in α. We denote
the set of executions of A by execs(A), and the set of traces of A by traces(A). When
reasoning about an automaton, we are only interested in its externally-observable behavior
as reflected in its traces.

The composition operation defines how automata interact via their input and output ac-
tions: It matches output and input actions with the same name in different component
automata; when a component automaton performs a step involving an output action, so do
all components that have this action as an input one. The result of composing an output
action with an input action is classified as an output to allow for future compositions with
other automata. A hide operator can re-classify an output action as an internal one to
prevent it from being externally observable.

I/O automata are conveniently presented using the precondition-effect style. In this style,
typed state variables with initial values specify the set of states and the start states. Tran-
sitions are grouped by action name, and are specified using a pre: block with preconditions
(guards) on the states in which the action is enabled and an eff: block which specifies how
the pre-state is modified. The effect is executed atomically to yield the post-state.

Example 2.1.1 Figure 2.1 presents an I/O automaton, UpSeq, that prints nondecreasing
sequences of integers. The automaton is expressed in the precondition-effect notation. The
signature of UpSeq consists of output actions of the type print(x), where x is an integer.
The state of UpSeq consists of a single integer variable, last, initialized to an arbitrary
value. The transitions of UpSeq specify that action print(x), with a given x, is enabled in
every state in which x ≥ last, as enforced by the pre: statement; once print(x) occurs,
the automaton moves into a state in which last = x, as specified by the eff: statement.

automaton UpSeq

Signature: Output print(x), x ∈ Integer

State: last ∈ Integer, initially arbitrary

Transitions: OUTPUT print(x)

pre: x ≥ last

eff: last ← x

Tasks: {print(x) : x ∈ Integer}

Figure 2.1: Automaton UpSeq printing a nondecreasing sequence of integers.

The following is a sample infinite execution of UpSeq, where square brackets represent states
of UpSeq, that is, values of last:

[3], print(5), [5], print(11), [11], print(11), [11], print(14), [14], . . .

28

The trace of this execution is “print(5), print(11), print(11), print(14),” In general,
the set of traces of UpSeq is the set of all possible sequences printing nondecreasing integers,
both finite and infinite. In this set, only the infinite sequences are fair.

When reasoning about an automaton, we are interested in only its externally-observable
behavior as reflected in its traces. There are two types of trace properties: safety and
liveness. Safety properties usually specify that some particular bad thing never happens.
In this thesis we specify safety properties using centralized, global, I/O automata that
generate the allowed sets of traces; for such automata we do not specify task partitions.
If every trace of the automaton modeling the system is also a trace of the specification
automaton, then the system always does what is allowed by its specification. In this case,
we say that the system automaton satisfies, or implements, the specification automaton.
Liveness properties usually specify that some good thing eventually happens. An algorithm
automaton satisfies a liveness property if the property holds in all of its fair traces.

2.2 Proof Techniques

Invariants

The most fundamental type of property to be proved about an automaton is an invariant
assertion, or just invariant, for short. An invariant assertion of an automaton A is defined
as any property that is true in every single reachable state of A.

Invariants are typically proved by induction on the number of steps in an execution leading
to the state in question. While proving an inductive step, we consider only critical actions,
which affect the state variables appearing in the invariant.

Hierarchical Modeling and Verification

One of the important proof strategies is based on a hierarchy of automata. This hierarchy
represents a series of descriptions of a system or algorithm, at different levels of abstraction.
The process of moving through the series of abstractions, from the highest level to the lowest
level, is known as successive refinement. The top level may be nothing more than a problem
specification written in the form of an automaton. The next level is typically a very abstract
representation of the system: it may be centralized rather than distributed, or have actions
with large granularity, or have simple but inefficient data structures. Lower levels in the
hierarchy look more and more like the actual system or algorithm that will be used in
practice: they may be more distributed, have actions with small granularity, and contain
optimizations. Because of all this extra detail, lower levels in the hierarchy are usually
harder to understand than the higher levels. The best way to prove properties of the lower-
level automata is by relating these automata to automata at higher levels in the hierarchy,
rather than by carrying out direct proofs from scratch.

By way of an example, regard automaton UpSeq of Example 2.1.1 to be a (safety) specifi-

29

cation for the sequences of nondecreasing integers. In order for some automaton to satisfy
this specification, any possible trace of this automaton has to be a trace of UpSeq. In the
following example we present such an automaton.

Example 2.2.1 Figure 2.2 contains an automaton, FibSeq, that prints, as its sole infinite
trace, the suffix of the Fibonacci sequence that begins with “1, 2, ...”. The Fibonacci sequence
is an infinite sequence that begins with 0 and 1, and in which every further element is equal
to the sum of the two preceding elements.

The signature of the FibSeq automaton is the same as that of UpSeq. The state of FibSeq
consists of two integer variables, n and m, initialized to 0 and 1, respectively. The transitions
of FibSeq specify that action print(x) is enabled in every state in which x is equal to the
sum of n and m, and that, once print(x) occurs, the automaton moves into a state in which
n has the value that m has in the pre-state, and m has the value of x. Thus, FibSeq uses n

and m to store the last two elements printed and to compute from them the next element to
be printed.

automaton FibSeq

Signature: Output print(x), x ∈ Integer

State: n ∈ Integer, initially 0

m ∈ Integer, initially 1

Transitions: OUTPUT print(x)

pre: x = n + m

eff: n ← m

m ← x

Tasks: {print(x) : x ∈ Integer}

Figure 2.2: Automaton FibSeq printing the Fibonacci sequence.

The traces generated by FibSeq are the infinite sequence of Fibonacci numbers,
“print(1), print(2), print(3), print(5), print(8), print(13), . . . ” and all of its prefixes.
Only the infinite sequence is fair.

Every trace of FibSeq is clearly a trace of UpSeq. Therefore, automaton FibSeq satisfies,
or implements, automaton UpSeq. But how can we prove this formally?

Simulation Relations and Refinements

A common technique for establishing that the set of traces of one automaton is included
in the set of traces of another is to exhibit a so-called simulation relation (also known as
an abstraction relation) that relates the states of the two automata and to prove that this
relation satisfies certain conditions [1, 54, 71, 68], as defined below:

30

Definition 2.2.1 Let A and S be two automata with the same external signature. A relation
R ⊆ states(A) × states(S) is a simulation from A to S if it satisfies the following two
conditions:

1. If t is any initial state of A, then there is an initial state s of S such that s ∈ R(t),
where we use notation R(t) as an abbreviation for {s : (t, s) ∈ R}.

2. If t and s ∈ R(t) are reachable states of A and S respectively, and if (t, π, t′) is a step
of A, then there exists an execution fragment of S from s to some s′ ∈ R(t′), having
the same trace as (t, π, t′). The latter conditions means that the externally observable
behavior of the execution fragment must be the same as that of the step.

The two conditions above guarantee that whatever steps A executes, there is always a way
for S to produce the same trace. The following theorem (from [71], Ch. 8) expresses this
property formally:

Theorem 2.2.1 If A and S are two automata with the same external signature and if R is
a simulation from A to S then traces(A) ⊆ traces(S).

Any finite trace inclusion can be shown by using simulation relations, possibly after adding
a special kind of variables, called “prophecy variables” [1, 85].

In some cases, a simulation relation is actually a function from states of the implementation
automaton to the states of the specification automaton. In this case it is called a simulation
mapping (also known as abstraction function or refinement). If R is a simulation function
and t is a state of the implementation automaton, we use R(t) to denote the corresponding
state of the specification automaton.

Example 2.2.2 We illustrate the simulation technique by presenting a simulation function
R from FibSeq to UpSeq. R maps a state t of FibSeq to the state s of UpSeq with s.last
= t.m, where s.last denotes an instance of variable last in state s, and t.m denotes m in
state t. We now argue that R satisfies Definition 2.2.1:

1. In the initial state t0 of FibSeq, t0.m = 1; therefore R(t0).last = 1, which is a valid
initial state of UpSeq.

2. Consider a step (t, print(x), t′) of FibSeq. We claim that (R(t), print(x), R(t′)) is
a legal step of UpSeq.

(a) We show that, in state R(t) of UpSeq, print(x) is enabled, that is, that its
precondition, x ≥ R(t).last, is satisfied. The fact that (t, print(x), t′) is a step
of FibSeq implies that the precondition, x = t.n + t.m, holds in state t. Since
R(t).last is equal to t.m by definition of R, x = t.n + R(t).last. Therefore, x
≥ R(t).last, since t.n ≥ 0, as stated in the following invariant:

31

Invariant 2.2.1 In every reachable state t of FibSeq, t.n ≥ 0 and t.m ≥ 0.
Proof: The proposition is true in the initial state t0, since t0.n = 0 and t0.m
= 1. The proposition is true in state t′, after a step (t, print(x), t′) of FibSeq,
assuming it is true in state t, since t′.n = t.m ≥ 0 and t′.m = t.n + t.m ≥ 0.

(b) After print(x) occurs in state R(t), the value of last in the resulting post-state
s′ is x (see Figure 2.1). In state t′, the value of m is also x (see Figure 2.2).
Hence, by definition of R, s′ = R(t′).

Therefore, R is a simulation mapping from FibSeq to UpSeq, and, as implied by Theo-
rem 2.2.1, FibSeq satisfies UpSeq.

History and Prophecy Variables

Sometimes, however, even when the traces of one automaton, A, are the traces of another,
S, it is not possible to give a refinement mapping from A to S. This may happen due to the
following two generic reasons:

• The states of S may contain more information than the states of A.

• S may make some premature choices, which A makes later.

The situation when A has been optimized not to retain certain information that S maintains
can be resolved by augmenting the state of A with additional components, called history
variables (because they keep track of additional information about the history of execution),
subject to the following constraints ([68, 73]):

1. Every initial state has at least one value for the history variables.

2. No existing step is disabled by the addition of predicates involving history variables.

3. A value assigned to an existing state component must not depend on the value of a
history variable.

These constraints guarantee that the history variables simply record additional state in-
formation and do not otherwise affect the behavior exhibited by the automaton. If the
automaton AHV augmented with history variables can be shown to implement S by present-
ing a refinement mapping, it follows that the original automaton A without the history
variables also implements S, because they have the same traces.

The situation when S is making a premature choice, which A makes later, can be resolved by
augmenting A with a different sort of auxiliary variable, prophecy variable, which can look
into the future just as history variable looks into the past ([68, 73]). A prophecy variable
guesses in advance some non-deterministic choice that A is going to make later. The guess
gives enough information to construct a refinement mapping to S (which is making the
premature choice). For an added variable to be a prophecy variable, it must satisfy the
following conditions:

32

1. Every state has at least one value for the prophecy variable.

2. No existing step is disabled in the backward direction by the new preconditions in-
volving a prophecy variable. More precisely, for each step (t, π, t′) there must be a
state (t, p) and a p such that there is a step ((t, p), π, (t′, p′)).

3. A value assigned to an existing state component must not depend on the value of the
prophecy variable.

4. If t is an initial state of A and (t, p) is a state of the A augmented with the prophecy
variable, then it must be its initial state.

If these conditions are satisfied, the automaton augmented with the prophecy variable will
have the same (finite) traces as the automaton without it. Therefore, if we can exhibit a
refinement mapping from APV to S, we know that the A implements S.

33

34

Chapter 3

Incremental Modeling and
Verification

In this chapter we present the novel inheritance-based formalism that we have developed for
incremental modeling and verification of systems; the presentation is based on the material
published in [61, 62]. We rely on this formalism in Part 2 of this dissertation, where
we present our design of the Virtually Synchronous GCS. The next section overviews the
formalism at a level sufficient for skipping the rest of this chapter and moving on to Part 2.

The rest of the chapter contains thorough description of the formalism; it relies on the
material and examples presented in Chapter 2. The organization of this chapter is as
follows:

In Section 3.2, we formally define and study a construct that corresponds to the specializa-
tion form of inheritance. Then, in Section 3.3, we present a general theorem that enables
incremental verification of systems that are modeled and specified incrementally using the
specialization construct. This theorem provides the foundation for incremental construc-
tion of simulation proofs, and is the key contribution described in this part of the thesis.
In Section 3.4, we extend the theory of incremental modeling and proof construction to the
subclassing for extension form of inheritance: we give a formal definition of the signature
extension construct and show how it can be used in conjunction with the specialization con-
struct to achieve subclassing for extension; we then extend the proof-reuse theory presented
in Section 3.3 to this situation.

Section 3.5 compares our results with related work; it shows that, while many other works
(e.g., [2, 16, 28, 33, 49, 56, 70, 69, 79, 88, 87, 86]) have dealt formally with inheritance,
the distinguishing contribution of our approach is the provision of a formal framework for
applying inheritance to both system modeling and system verification. Section 3.6 concludes
this chapter.

This chapter employs a simple running example to illustrate the use of the presented for-
malism. Part 2 of this thesis is an illustration of how this formalism can be employed in a
real large-scale modeling and verification project.

35

3.1 Overview

In our inheritance-based formalism, a child automaton is specified as a modification of the
parent automaton’s code. When presenting a child we first specify a signature extension
which consists of new actions, labeled new, and modified actions. A modified action is labeled
with the name of the action which it modifies as follows: modifies parent.action(parameters)).
We next specify the state extension consisting of new state variables added by the child. Fi-
nally, we describe the transition restriction which consists of new preconditions and effects
added by the child to both new and modified actions. For modified actions, the precon-
ditions and effects of the parent are appended to those added by the child. New effects
added by the child are performed before the effects of the parent, all of them in a single
atomic step. The child’s effects are not allowed to modify state variables of the parent.
This ensures that the set of traces of the child, when projected onto the parent’s signature,
is a subset of the parent’s set of traces.

Inheritance allows us to reuse code and avoid redundancies. It also allows us to reuse proofs:
Assume that an algorithm automaton A can simulate a specification automaton S, and let
A′ and S′ be child automata of A and S, respectively. Then the Proof Extension theorem
below (Theorem 3.4.4) asserts that in order to prove that A′ can simulate S′ it is sufficient
to show that the restrictions added by A′ are consistent with the restrictions S′ places on S,
and that the new functionality of A′ can simulate new functionality of S′.

3.2 Specialization

We now present the specialization construct for creating a child automaton by specializing
the parent automaton. This construct captures the notion of subtyping [22]. In the next
section, we present the main technical contribution of this paper: a theorem that allows
one to construct a simulation proof from a specialization of an algorithm to a specialization
of its specification by extending the original simulation proof from the algorithm to its
specification.

The specialization construct defined below operates on a parent automaton, and accepts
three additional parameters: a state extension – the new state components, an initial state
extension – the initial values of the new state components, and a transition restriction
specifying how the child specializes the parent’s transitions.

Definition 3.2.1 (Specialization) Let A be an automaton; N be any set of states, called
a state extension; N0 be a non-empty subset of N, called an initial state extension; and
TR ⊆ (states(A) × N) × sig(A) × N be a relation, called a transition restriction.

Then specialize(A)(N, N0, TR) defines the following automaton A′:

• sig(A′) = sig(A);

• states(A′) = states(A) × N; (we denote compound states using angle brackets: 〈·, ·〉)

• start(A′) = start(A) × N0;

36

• trans(A′) = {(〈tp, tn〉, π, 〈t′p, t
′
n〉) : (tp, π, t′p) ∈ trans(A) ∧ (〈tp, tn〉, π, t′n) ∈ TR },

where 〈tp, tn〉 denotes a state in states(A′).

Notation 3.2.2 If A′ = specialize(A)(N, N0, TR) we use the following notation: Given
t ∈ states(A′), we write t|p to denote its parent component and t|n to denote its new
component. If α is an execution fragment of A′, then α|p and α|n denote sequences
obtained by replacing each state t in α with t|p and t|n, respectively.

In the precondition-effect notation, a transition restriction (TR) can be specified for each
action π by (a) additional preconditions that a child places on π, and (b) additional effects
that specify how the new state components are modified as a result of a child taking a step
involving π. Note that these additional effects can rely on but cannot modify the parent’s
state components. The additional preconditions work in conjunction with the preconditions
placed on π by the parent automaton, and the additional effects are executed before the
parent’s effects; thus, when the additional effects read parent state components, they observe
their pre-state values. The transition restriction expressed in this style is the union of the
following two sets:

• All triples of the form (t, π, t|n) for which π is not mentioned in the code for A′, that
is, for which A′ does not restrict transitions involving π. Note that the post-state t|n
is the same as the new state component of the pre-state t.

• All triples (t, π, t′n) for which state t satisfies the new preconditions on π placed by
A′, and state t′n is the result of applying π’s new effects to t.

Example 3.2.1 Figure 3.1 below illustrates the use of the specialization construct. It
presents precondition-effect code for automaton AccSeq, which specializes automaton UpSeq

of Figure 2.1 on page 28 to print only accelerating sequences, that is, sequences in which
the differences between consecutive elements are nondecreasing (in addition to the sequence
itself being nondecreasing).

automaton AccSeq specializes UpSeq

State Extension: diff ∈ Integer, initially arbitrary

Transitions Restriction:
OUTPUT print(x)

new pre: x - last ≥ diff

new eff: diff ← x - last

Figure 3.1: Automaton AccSeq printing accelerating sequences of integers.

AccSeq extends the state of UpSeq with a new integer variable diff having an arbitrary
initial value. This variable is used for storing the difference between the last pair of elements
printed. The new precondition placed on print(x) states that x − last has to be greater
than or equal to diff; it works in conjunction with the precondition, x ≥ last, of print(x)
in UpSeq. The new effect updates diff to be the current difference, x − last; it occurs
before the effect that updates last in UpSeq.

37

As a result of the new precondition and effect, transitions of UpSeq are restricted to only
those in which diff is non-decreasing. Thus, the sample trace of UpSeq given in Exam-
ple 2.1.1 is not a trace of AccSeq because (11 − 11) 6≥ (11 − 5), while that in Example 2.2.1
is.

Our specialization construct is defined so that any behavior of a child is allowed by its
parent. Theorem 3.2.1 below states this property formally: it says that (1) every execution
α of a specialization A′ of an automaton A is also an execution of A when the state extension
of A′ is projected out from α; and (2) every trace of A′ is a trace of A.

Theorem 3.2.1 If A′ is a specialization of automaton A, then:

1. α ∈ execs(A′) ⇒ α|p ∈ execs(A).

2. β ∈ traces(A′) ⇒ β ∈ traces(A).

Proof 3.2.1:

1. Let α be an execution of A′, which, by definition of execution, means that α begins
in some initial state t0 and that every step (ti, π, ti+1) in α is a transition of A′.
By Definition 3.2.1, t0|p is an initial state of A and, for every step (ti, π, ti+1) in α,
the triple (ti|p, π, ti+1|p) is a transition of A. From this it follows that the sequence
obtained by replacing each state t in α with t|p is an execution of A. Since this
sequence is α|p, we conclude that α|p is an execution of A.

2. Follows from Part 1 and the fact that sig(A′) = sig(A).

As a consequence of part 2 of Theorem 3.2.1, we have the following corollary:

Corollary 3.2.1 If automaton A satisfies automaton S in terms of trace inclusion, then a
specialization A′ of automaton A also satisfies S in terms of trace inclusion.

Moreover, given a simulation relation Rp from A to S, the same relation is a simulation from
A′ to S, except for the obvious projection of the states of A′ onto the states of A.

Corollary 3.2.2 If relation Rp is a simulation from A to S, and A′ is a specialization of A,
then relation R′p = {(t, s) : t ∈ states(A′) ∧ (t|p, s) ∈ Rp} is a simulation from A′ to S.

Many similar inheritance constructs, such as, for example, [70, 69, 33, 13] and superposition
of [76], were defined and proven to satisfy properties similar to those of Theorem 3.2.1 and
Corollary 3.2.1. However, these properties are not enough to address the situation illustrated
in Figure 1.4, where we are interested in reusing and extending a proof that automaton A

satisfies automaton S in order to prove that a specialization A′ of A satisfies a specialization
S′ of S. Indeed, from Theorem 3.2.1 and Corollary 3.2.1, we know only that traces(S′) ⊆

38

traces(S) and that traces(A′) ⊆ traces(A) ⊆ traces(S); the solid arrows in Figure 1.4
correspond to these trace inclusions. But, we do not know whether traces(A′) ⊆ traces(S′);
this is what we would like to be able to show without having to repeat the reasoning used
in showing that traces(A) ⊆ traces(S). In the next section, we address this question by
developing a general theorem that facilitates reuse of simulation proofs at the parent level
for the construction of simulation proofs at the child level. The theorem pinpoints exactly
which parts of the child-level proof follow from the parent-level proof (these are the parts
reused), and which do not, and therefore still need to be done in order to complete the
proof.

3.3 Incremental Proofs

We now present the main technical contribution of this paper — a general theorem that
lays the foundation for incremental proof construction. Consider the situation illustrated
in Figure 1.4, where A′ and S′ are specializations of automata A and S respectively. Given
a simulation relation Rp from A to S, Theorem 3.3.1 below states conditions for reusing and
extending Rp to a simulation relation Rc from A′ to S′. Relation Rc has to relate every initial
state of A′ to some initial state extension of S′, and it has to satisfy a step condition similar
to the one in Definition 2.2.1, but only involving the transition restriction relation of S′.

Theorem 3.3.1 Let automaton A′ be a specialization of automaton A. Let automaton S′ be
a specialization of automaton S, such that S′ = specialize(S)(N, N0, TR). Assume that A

and S have the same external signatures and that A implements S via a simulation relation
Rp.

A relation Rc ⊆ states(A′) × states(S′), defined in terms of relation Rp and a new relation
Rn ⊆ states(A′) × N as {(t, s) : (t|p, s|p) ∈ Rp ∧ (t, s|n) ∈ Rn}, is a simulation from A′ to
S′ if Rc satisfies the following two conditions:

1. For every t ∈ start(A′), there exists a state s|n ∈ Rn(t) such that s|n ∈ N0.

2. If t is a reachable state of A′, s is a reachable state of S′ such that s|p ∈ Rp(t|p)
and s|n ∈ Rn(t), and (t, π, t′) is a step of A′, then there exists a finite sequence α of
alternating states and actions of S′, beginning from s and ending at some state s′,
and satisfying the following conditions:1

(a) α|p is an execution fragment of S.

(b) For every step (si, σ, si+1) in α, (si, σ, si+1|n) ∈ TR.

(c) s′|p ∈ Rp(t
′|p).

(d) s′|n ∈ Rn(t
′).

(e) α has the same trace as (t, π, t′).

1Note that if we do not explicitly qualify a sequence as “an execution sequence” we mean that it is “a math-

ematical sequence”, as for example sequence α here and also later in Notation 3.4.3 and Theorem 3.4.4.

39

The theorem follows from Corollary 3.2.2 and Lemma 3.3.2 below. Recall that Corol-
lary 3.2.2 defines a simulation relation R′p from A′ to S in terms of the simulation relation Rp
from A to S (see Figure 3.2). The lemma considers how to construct a simulation relation

simulation
Rp

A

inheritance

S

S’

A’

simulation
Rc ?

inheritance

simulation

R’p

Figure 3.2: Intermediate step: Reusing R′p for building Rc.

Rc from A′ to S′ from the simulation relation R′p. This is a special case of Theorem 3.3.1,
when A′ is the same as A. The statement of this lemma is almost identical to that of Theo-
rem 3.3.1; the only difference is that, in Theorem 3.3.1, state t of states(A′) is projected
onto its parent’s state in order to be used in the simulation relation Rp. The lemma is stated
in terms of A′ and R′p in order to match the notation in Theorem 3.3.1.

Lemma 3.3.2 Let S and A′ be automata with the same external signatures, and let relation
R′p be a simulation from A′ to S. Let S′ = specialize(S)(N, N0, TR). A relation Rc ⊆
states(A′) × states(S′), defined in terms of relation R′p and a new relation Rn ⊆ states(A′)
× N as {(t, s) : (t, s|p) ∈ R′p ∧ (t, s|n) ∈ Rn}, is a simulation from A′ to S′ if Rc satisfies
the following two conditions:

1. For every t ∈ start(A′), there exists a state s|n ∈ Rn(t) such that s|n ∈ N0.

2. If t is a reachable state of A′, s is a reachable state of S′ such that s|p ∈ R′p(t) and s|n
∈ Rn(t), and (t, π, t′) is a step of A′, then there exists a finite sequence α of alternating
states and actions of S′, beginning from s and ending at some state s′, and satisfying
the following conditions:

(a) α|p is an execution fragment of S.

(b) For every step (si, σ, si+1) in α, (si, σ, si+1|n) ∈ TR.

(c) s′|p ∈ R′p(t
′).

(d) s′|n ∈ Rn(t
′).

(e) α has the same trace as (t, π, t′).

Proof 3.3.2: We show that Rc satisfies the two conditions of Definition 2.2.1:

1. Consider an initial state t of A′. By the fact that R′p is a simulation, there must exist
a state s|p ∈ R′p(t) such that s|p ∈ start(S). By condition 1 of the lemma, there must
exist a state s|n ∈ Rn(t) such that s|n ∈ N0. Consider state s = 〈s|p, s|n〉. State s is in
Rc(t) by definition. Also, by Definition 3.2.1, start(S′) = start(S) × N0; therefore,
s = 〈s|p, s|n〉 ∈ start(S) × N0 = start(S′).

40

2. First, notice that the definitions of state s and relation Rc imply that s ∈ Rc(t); also,
notice that conditions 2c and 2d imply that s′ ∈ Rc(t

′).

Next, we show that α is an execution fragment of S′ with the right trace. Indeed,
every step of α is consistent with trans(S) (by 2a) and is consistent with TR (by 2b).
Therefore, by definition of trans(S′) (Definition 3.2.1), every step of α is consistent
with trans(S′). In other words, α is an execution fragment of S′ that starts with state
in Rc(t), ends with state in Rc(t

′), and has the same trace as (t, π, t′) (by 2e).

We are now ready to prove Theorem 3.3.1:

Proof 3.3.1: Theorem 3.3.1 follows from Lemma 3.3.2 applied to automata A′, S, and S′,
with a simulation relation R′p from A′ to S being {(t, s) : t ∈ states(A′) ∧ (t|p, s) ∈ Rp},
as proved in Corollary 3.2.2. Each of the conditions in this theorem implies the correspond-
ing condition in the lemma.

In practice, Theorem 3.3.1 (or Lemma 3.3.2) would be exploited as follows: The simulation
proof between the parent automata already provides a corresponding execution fragment
of the parent specification for every step of the parent algorithm. It is typically the case
that the same execution fragment, padded with new state variables, corresponds to the
same step at the child algorithm. Thus, conditions 2a, 2c, and 2e of Lemma 3.3.2 hold for
this fragment. The only conditions that have to be verified are 2b, and 2d, that is, that
every step of this execution fragment is consistent with the transition restriction TR placed
on S by S′ and that the values of the new state variables of S′ in the final state of this
execution are related to the post-state of the child algorithm. The verification of these two
conditions may depend on some of the invariant assertions that were uncovered during the
parent proof.

To exemplify how Theorem 3.3.1 and Lemma 3.3.2 would be exploited in practice, we use
Lemma 3.3.2 to prove that FibSeq satisfies AccSeq, a specialization of UpSeq. Automata
UpSeq, FibSeq, and AccSeq are simple enough to keep the example tractable, but they are
arguably too simple to demonstrate the full utility of incremental proof construction. Part
II of this dissertation serves as a large-scale example of the use of this framework in the
design of a complex group communication service; Chapter 11 will comment on the specific
contributions of the modeling and verification framework on making the design project
tractable.

Example 3.3.1 Recall that in Example 2.2.2 we presented a simulation mapping R from
the states of FibSeq to the states of UpSeq. To construct a simulation mapping R′ from
FibSeq to AccSeq, we extend R with the following mapping Rn that maps each state t of
FibSeq to the state extension s of AccSeq such that

s.diff =

{

t.m− t.n if t.n 6= 0
0 otherwise

In order to prove that R′ is a simulation mapping we have to prove that it satisfies each of
the conditions of Lemma 3.3.2.

41

Condition 1 is satisfied because, if t is the initial state of FibSeq, Rn(t).diff = 0 is a valid
initial value for the state extension of AccSeq.

For Condition 2, the action correspondence is the same as in the simulation of UpSeq by
FibSeq: a step of AccSeq involving print(x) is simulated whenever FibSeq takes a step
involving print(x). Conditions 2a, 2c, and 2e are implied by the fact that R is a simulation
relation from FibSeq to UpSeq; these were proven in Example 2.2.2. Thus, we only need to
prove conditions 2b and 2d. Condition 2b requires the new precondition, x − last ≥ diff,
to be satisfied in state R′(t), provided the parent’s precondition, x = n + m, holds in state t.
Condition 2d requires the Rn mapping to be preserved in the post-transition states of FibSeq
and AccSeq; namely, the value of the new state variable diff in the post-transition state
of AccSeq has to be the same as that of Rn(t

′).diff. Proving that these two conditions are
satisfied involves reasoning only about how AccSeq specializes UpSeq.

We now prove that conditions 2b and 2d hold. Consider a step (t, print(x), t′) of FibSeq;
it implies that x = t.n + t.m, and that t′.n = t.m and t′.m = t.n + t.m.

• Condition 2b: We have to show that the corresponding print(x) step of AccSeq is
enabled in state R′(t), that is, that x − R′(t).last ≥ R′(t).diff. By using the sim-
ulation mapping, we derive: x − R′(t).last = x − R(t).last = x − t.m = t.n +
t.m − t.m = t.n. If t.n = 0 (as in the initial state of FibSeq), then, by definition
of R′ and Rn, R

′(t).diff = Rn(t).diff = 0, and we are done. Otherwise, if t.n 6= 0,
then R′(t).diff = Rn(t).diff = t.m − t.n, and it remains to show that t.n ≥ t.m −
t.n. Invariant 3.3.2 below establishes this fact by relying on the following auxiliary
invariant:

Invariant 3.3.1 In every reachable state t of FibSeq, t.m ≥ t.n.
Proof: The proposition is true in the initial state t0, since t0.n = 0 and t0.m = 1.
The proposition is true in state t′, after a step (t, print(x), t′) of FibSeq, since t.n
≥ 0 (Invariant 2.2.1), and hence t′.m = t.n + t.m ≥ t.m = t′.n.

Invariant 3.3.2 In every reachable state t of FibSeq, t.n ≥ t.m − t.n, if t.n 6= 0.
Proof: The proposition is vacuously true in the initial state t0, since t0.n = 0. The
proposition is true in state t′, after a step (t, print(x), t′) of FibSeq, since t.m ≥ t.n
(Invariant 3.3.1), and therefore t′.n = t.m ≥ t.n = t′.m − t.m = t′.m − t′.n.

• Condition 2d: According to the code, the post-transition value of diff is x − R′(t).last
= t.n = t′.m − t.m = t′.m − t′.n. If t′.n 6= 0, then t′.m − t′.n = Rn(t

′).diff, and we
are done. Otherwise, if t′.n = 0, Rn(t

′).diff = 0 by definition, and the post-transition
value of diff is also 0, since 0 = t′.n = t.m ≥ t.n ≥ 0 (Invariants 2.2.1 and 3.3.1).

Notice that, in verifying conditions 2b and 2d in Example 3.3.1, we relied on Invariant 2.2.1,
which was stated and proven during the simulation proof from FibSeq to UpSeq. In general,
knowing the invariant assertions that have been uncovered during the parent’s proof can be
helpful in extending that proof to the children.

42

3.4 Subclassing for Extension

In this section, we extend the theory of incremental modeling and proof construction to
a new modification construct, called specialized extension; the construct is formulated in
Definition 3.4.2 and the extended proof-reuse theorem appears as Theorem 3.4.4. This
construct corresponds to the subclassing for extension form of inheritance [22], which is
similar to specialization in that a child cannot override its parent’s behavior, but it is more
powerful than specialization in that a child can introduce new types of behavior through
new actions, nonexistent in the parent.

We define a specialized extension of an automaton by first extending the parent automaton
with new actions using a new construct, called signature extension, and then applying
specialization of Section 3.2. The new actions introduced by signature extension are enabled
in every state and do not modify the state; the subsequent specialization operation gives
meaning to these new actions by restricting transitions involving the new actions, and,
possibly, those involving parent’s actions as well. The resulting automaton can interact
with its environment through both the parent’s actions and the new ones. Because new
actions (even after being specialized) do not affect the parent’s state, any trace of the child
is indistinguishable from a trace of the parent when new actions are projected out from the
trace.2

The signature extension construct, formulated in Definition 3.4.1, creates a new automaton
by adding new actions to an existing automaton. The new automaton has an extended
signature, but the same states and start states as the original automaton; the new state-
transition relation is the same as the one in the original automaton, except that it includes
additional transitions that relate every state to itself via new actions (i.e., new actions are
enabled in every state, but do not modify the state); such transitions are called “stuttering”
steps in [65].

In addition, the signature extension construct allows the new automaton to rename some or
all of the original automaton’s actions. The renaming is specified by a signature-mapping
function that maps actions in the new signature to their counterparts in the parent signature.
The function is allowed to be many-to-one, which means that the same action of the parent
may be renamed into several actions of the child; this is useful because it allows a child
to add new parameters to its parent’s actions, and because instances of the same parent’s
action can be specialized differently under different names. The signature-mapping is onto,
that is, every parent action has at least one corresponding action at the child. The function
is defined only for actions inherited from the parent (renamed or not); it is undefined for
new actions introduced by the signature extension. If π is such a new action and f is a
signature-mapping, we write f(π) = ⊥ to denote the fact that π is not in the domain of
definition of f; ⊥ is a assumed to be different from any action name.

Definition 3.4.1 (Signature Extension) Let A be an automaton, and X be some signa-
ture.

2Notice that this is stronger than behavioral subtyping of Liskov and Wing [69, 70], in which a trace of
a child is required to be indistinguishable from a trace of its parent only when the trace does not contain
actions introduced by the child (see Section 3.5).

43

Let f be a partial function, called a signature-mapping, from X to sig(A) such that f is onto
and preserves the classification of actions as “input”, “output”, and “internal”; the latter
means that, if f(π) is defined, it is of the same classification as π.3

Then, extend(A)(X, f) is defined to be the following automaton A′:

• sig(A′) = X,

• states(A′) = states(A),

• start(A′) = start(A), and

• trans(A′) = {(t, π, t′) ∈ states(A′) × sig(A′) × states(A′) :

((f(π) = ⊥) ∧ (t = t′)) ∨ ((f(π) ∈ sig(A)) ∧ ((t, f(π), t′) ∈ trans(A)))}.

We say that A′ is the signature extension of A with signature-mapping f if A′ is such that A′

= extend(A)(sig(A′), f) for some signature-mapping f from sig(A′) to sig(A).

Having defined the signature extension construct, we now combine it with specialization to
yield specialized extensions of automata.

Definition 3.4.2 (Specialized Extension) Automaton A′ is called a specialized exten-
sion of an automaton A if A′ is a specialization of a signature extension of A.

In precondition-effect notation, we express a specialized extension A′ of an automaton A by
writing “A′ modifies A” and then specifying the signature extension and the specialization
parts of A′. The signature extension part contains the new actions labeled with a keyword
new, and the renamed actions labeled with their original names in sig(A), according to the
signature-mapping; for example, if the signature mapping maps π of A′ to σ of A, we write
“π modifies σ”. We omit specifying the actions of sig(A′) that are inherited from A without
renaming. The specialization part contains the state extension and the transition restriction
specifications, as described in Section 3.2 on page 37.

We now exemplify how the signature extension construct can be used in conjunction with
the specialization construct to create specialized extensions.

Example 3.4.1 Figure 3.3 presents automaton FibSeq+ that modifies automaton FibSeq

to print each element of the Fibonacci sequence together with its sequence number. The
signature-mapping specified by the Signature Extension clause maps actions print(i, x)
where i ∈ Integer to actions print(x) of FibSeq. Thus, for example, actions print(8, 43)
and print(23, 43) of FibSeq+ are among those actions mapped to the print(43) action of
FibSeq. Then, the specialization construct adds a new state variable, last i, that keeps
track of the sequence number of the last Fibonacci element printed; it also adds a new
precondition and a new effect to the print(i, x) action to maintain i and last i properly.

3Signature-mapping is similar to strong correspondence of [94].

44

automaton FibSeq+ modifies FibSeq

Signature Extension: Output print(i, x), i ∈ Integer modifies FibSeq.print(x)

New State: last i ∈ Integer, initially 0

Transition Restriction:
OUTPUT print(i, x)

new pre: i = last i + 1

new eff: last i ← i

Figure 3.3: Automaton FibSeq+ specifying enumerated Fibonacci sequences.

Notice that any execution α of FibSeq+ is an execution of FibSeq when the newly added
state variable, last i, is projected out from every state in α and when every action in α is
renamed according to the specified signature-mapping. Theorem 3.4.2 below formalizes this
property in general. It follows from Theorem 3.2.1, which is a similar execution-inclusion
property of specialization. This is because, modulo the signature-mapping, a signature
extension of an automaton and the automaton itself have exactly the same executions and
traces; we prove this result in Lemma 3.4.1 below.

Notation 3.4.3 Let A′ be a signature extension of A with a signature-mapping f.

If α is a sequence of alternating states and actions of A′, then f(α) denotes the sequence
obtained by replacing each action π in α with f(π), and then collapsing every triple of the
form (t,⊥, t) to t. Triples of the form (t,⊥, t′) where t′ 6= t are not collapsed; such triples
are possible because α is not necessarily an execution sequence of A′.

Likewise, if β is a sequence of external actions of A′, then f(β) denotes a sequence obtained
by replacing each action π in β with f(π), and then removing all the occurrences of ⊥.

Lemma 3.4.1 Let automaton A′ be a signature extension of A with a signature-mapping f.

Let α be a sequence of alternating states and actions of A′ and let β be a sequence of external
actions of A′. Then:

1. α ∈ execs(A′) ⇔ f(α) ∈ execs(A).

2. β ∈ traces(A′) ⇔ f(β) ∈ traces(A).

Proof 3.4.1: The proof follows from Definition 3.4.1 and Notation 3.4.3.

1. ⇒: Let α be an execution of A′. By definition of execution, α begins in some initial state
t0, and every step (ti, π, ti+1) in α is a transition of A′. From this and Definition 3.4.1,
t0 is an initial state of A, and, for every step (ti, π, ti+1) in α, either (ti, f(π), ti+1)
is a step of A when f(π) ∈ sig(A), or ti = ti+1 when f(π) = ⊥.

45

Therefore, by definition of execution, the sequence obtained by replacing every step
(ti, π, ti+1) in α with either (ti, f(π), ti+1) when f(π) ∈ sig(A), or ti when f(π) =
⊥ is an execution of A. Since this sequence is f(α), we conclude that f(α) ∈ execs(A).

⇐: Let α be a sequence of alternating states and actions of A′ such that f(α) ∈
execs(A). This means that α begins with some initial state t0 of A, and that, for every
triple (ti, π, ti+1) of elements in α, either (ti, f(π), ti+1) is a step of A when f(π) ∈
sig(A), or ti = ti+1 when f(π) = ⊥. From this assumption and Definition 3.4.1, it
follows that t0 is an initial state of A′ and that every triple (ti, π, ti+1) of elements
in α is a transition of A′. Thus, α ∈ execs(A′).

2. Follows from part 1 and the fact that f preserves the classification of actions as
“input”, “output”, and “internal”.

Theorem 3.4.2 If A′ is a specialized extension of A with a signature-mapping f, then

1. α ∈ execs(A′) ⇒ f(α|p) ∈ execs(A).

2. β ∈ traces(A′) ⇒ f(β) ∈ traces(A).

Proof 3.4.2: Follows immediately from Theorem 3.2.1 and Lemma 3.4.1

Since signature extension does not modify the original automata beyond simple renaming
of actions, we would expect it to have minimal effect on the proof-reuse theorems (The-
orem 3.3.1 and Lemma 3.3.2) of Section 3.3 when those theorems are used in verifying
specialized extensions of automata. We prove this intuition correct in Theorem 3.4.4 be-
low; this theorem is an adaptation of Theorem 3.3.1 for the case when child automata
are specialized extensions of their parents. The theorem follows from Theorem 3.3.1 and
the following lemma, which establishes that a simulation relation between two automata is
preserved when these automata are signature-extended:

Lemma 3.4.3 Let A′ be the signature extension of A with a signature-mapping f. Let S′

be the signature extension of S with a signature-mapping g. Assume that A has the same
external signature as S and that there is a simulation relation R from A to S. Assume further
that A′ has the same external signature as S′, and that, for every external action π ∈ sig(A′),
g(π) = f(π). Then, R is a simulation relation from A′ to S′.

Proof 3.4.3: Follows straightforwardly from Definitions 2.2.1 and 3.4.1.

The only difference between the statements of Theorem 3.4.4 below and Theorem 3.3.1 is
that here, whenever child’s actions are used in the context of the parent automaton (as in
Condition 2a), they are translated via the signature-mapping to the corresponding actions
of the parent.

46

Theorem 3.4.4 Let automaton A′ be a specialized extension of A with a signature-mapping
f. Let automaton S′ be a specialized extension of S with a signature-mapping g, such that
S′ = specialize(extend(S)(G, g))(N, N0, TR). Assume that A and S have the same external
signatures and that A implements S via a simulation relation Rp. Assume further that A′

and S′ have the same external signatures, and that, for every external action π ∈ A′, g(π)
= f(π).

A relation Rc ⊆ states(A′) × states(S′), defined in terms of relation Rp and a new relation
Rn ⊆ states(A′) × N as {(t, s) : (t|p, s|p) ∈ Rp ∧ (t, s|n) ∈ Rn}, is a simulation from A′ to
S′ if Rc satisfies the following two conditions:

1. For every t ∈ start(A′), there exists a state s|n ∈ Rn(t) such that s|n ∈ N0.

2. If t is a reachable state of A′, s is a reachable state of S′ such that s|p ∈ Rp(t|p)
and s|n ∈ Rn(t), and (t, π, t′) is a step of A′, then there exists a finite sequence α of
alternating states and actions of S′, beginning from s and ending at some state s′,
and satisfying the following conditions:

(a) g(α|p) is an execution fragment of S.

(b) For every step (si, σ, si+1) in α, (si, σ, si+1|n) ∈ TR.

(c) s′|p ∈ Rp(t
′|p).

(d) s′|n ∈ Rn(t
′).

(e) α has the same trace as (t, π, t′).

Proof 3.4.4: Follows straightforwardly as a corollary from Theorem 3.3.1 and Lemma 3.4.3.

Theorem 3.4.4 can be used in practice in the same way as Theorem 3.3.1 and Lemma 3.3.2
(see the discussion after the proof of Theorem 3.3.1 on page 41): Transitions involving
new actions introduced by signature extension are defined entirely by the specialization
code and, therefore, involve reasoning about this code alone. Transitions involving parent’s
actions, which are possibly renamed by the child, depend on the code of both the parent and
the child. Even when actions are renamed, the task of proving that the simulation relation
holds for such transitions typically allows one to rely on the simulation proof of the parent
automata to deduce conditions 2a, 2c, and 2e, and requires verification of conditions 1, 2b,
and 2d only.

3.5 Related work

The works that most closely relate to ours are those of Soundarajan and Fridella [87, 86]
and Stata and Guttag [88]. Unlike our formalisms, both of these works are restricted to the
context of sequential programming and do not encompass reactive components.

Like us, Soundarajan and Fridella [87, 86] have recognized that incremental reasoning is
important in exploiting the full potential of inheritance. They present a specification nota-
tion and a verification procedure geared towards such incremental reasoning. However, they

47

consider a more general type of inheritance — one that allows a child to override behavior
of the parent. As a result, the proof-reuse result they obtain is much weaker and less struc-
tured than ours. In particular, reasoning reuse applies only when the simulation function
(abstraction function, in their case) between child automata is identical to that between
parent automata, and only to those actions that are inherited from the parent without any
modification. In contrast, our framework applies to all types of actions, including those
which are modified by the child.

Stata and Guttag [88] have also recognized the need for proof-reuse in a manner similar to
that suggested here. They suggest a framework for defining programming guidelines and
supplement this framework with informal rules that may be used to facilitate reasoning
about correctness of a subclass given the correctness of the superclass is known. However,
they only addressed informal reasoning and did not provide the mathematical foundation
for formal proofs.

Numerous other research projects, for example [2, 16, 28, 33, 49, 56, 70, 69, 79, 13, 76,
48], have dealt formally with inheritance and its semantics. In particular, many projects,
such as [70, 69, 33, 13, 76], focus on defining inheritance constructs in ways that either
automatically imply or simplify the task of proving that a child behaves indistinguishably
from its parent, in other words, that the child satisfies its parent’s specification. However,
no other work that we are aware of allows for reuse of a parent-level simulation proof when
showing that a child satisfies (simulates) its own specification.

We note also that, while our definition of subclassing for extension is similar to behavioral
subtyping of Liskov and Wing [70, 69], it is not identical: Behavioral subtyping requires
only that a child behave indistinguishably from its parent when the child is used in the
context of the parent, that is, when the execution of the child contains only the parent’s
actions, and none of the actions introduced by the child. Subclassing for extension enforces
a stronger property: any trace (execution) of the child, even one that has actions introduced
by the child, is indistinguishable from a parent’s trace when all such new actions (and new
state variables) are projected out.

3.6 Discussion

In this part of the thesis, we have presented an inheritance-based formalism for modeling
and verifying systems incrementally.

The formalism defines two inheritance constructs that can be used to model a modified
version of an abstract model of a system by specifying how the modification is different
from the original. Using these constructs, one can model a complex system incrementally,
by starting from a basic model and then, at each step, adding support for a new property
of the system.

For simplicity, we described the formalism in terms of two levels of abstraction: “specifica-
tion” and “algorithm”; but in general, the formalism is complementary to the technique of
successive refinement. It can be used for modeling systems at any relevant level of abstrac-
tion, from the lowest level corresponding to software code, to the highest one corresponding

48

to the most abstract system specification.

A distinguishing feature of our formalism is its support for incremental verification, which
compliments incremental modeling. The formalism provides fundamental theorems (3.3.1
and 3.4.4) that state formally how a simulation proof of one abstract model of a system
satisfying another can be reused and extended to a simulation proof for the modified ver-
sions of these models. This allows one, not only to model and specify a complex system
incrementally, but also to verify incrementally that the model satisfies its specification.

The formalism, and in particular its incremental verification component, was motivated
by and refined during the design and modeling of the complex middleware system that
is presented in Part II of this dissertation. The ability to model and verify the system
incrementally was critical in making the project tractable and in making it clear which
part of the algorithm implemented which property. As we explain in Chapter 11, standard
compositional techniques would have not been sufficient.

The formalism described here has been presented using the I/O automaton model — the
same model that we used to model the complex middleware system. The I/O automaton
model has been used extensively for modeling and reasoning about complex distributed
systems and has been developed into a programming and modeling language, called IOA [44,
45]. As one of our future projects, we plan to facilitate the incorporation of our inheritance-
based approach into the IOA toolset, thereby enriching its modeling and reasoning facilities.

The I/O automaton model has been a convenient model in which to express our formal-
ism. The essence of the approach, however, is general enough to be applicable to other
state-transition formal models, such as TLA [65], UNITY [76], or various forms of process
algebra [53, 75], or, in other words, to any formal model that supports simulation proofs.
One interesting direction for future research is to enrich the standard formal modeling
languages with a version of our formalism.

The formalism presented in this chapter allows modeling of systems using two standard and
important types of inheritance: specialization and subclassing for extension. In our future
work, we are planning to expand the formalism, including its incremental verification aspect,
to support other types of inheritance.

Of particular importance is a construct that would allow modifications that override some
of the system’s behavior. In general, one would expect little, if any, proof reuse possible for
such a construct, since modifications done to a system may invalidate whatever reasoning
has been done about it. Nevertheless, useful approaches to circumventing this impasse could
rely on limiting the types of the modifications allowed by the construct and on requiring
the modifications to preserve certain invariants.

The formalism presented here is an important step toward scalable and cost-effective formal
methods and toward practical software design methodologies that, in addition to facilitating
reuse of code, also facilitate reuse of reasoning. In general, any extensions to the formalism
that we make in the future will be motivated and guided by our work on designing and
modeling complex distributed systems. This approach will ensure that, like the formalism
presented in this thesis, these extensions will have important, practical implications.

49

50

Part II

Group Communication Service

51

This part of the dissertation contains our design of the Virtually Synchronous Group Com-
munication service targeted for wide-area networks. Chapters 4 – 8 are based on the material
published in [59, 60].

In Chapter 4 we present the client-server architecture of our GCS and formally specify
the assumptions we make on the membership service and the underlying communication
substrate. Chapter 5 contains precise specifications of the safety and liveness properties
satisfied by our GCS.

The algorithm implementing Virtual Synchrony is then given in Chapter 6; it is accompa-
nied by informal correctness arguments. A formal correctness proof that the algorithm of
Chapter 6, when it operates in the environment specified in Chapter 4, satisfies the speci-
fications of Chapter 5 is given in the subsequent two chapters: safety – in Chapter 7, and
liveness – in Chapter 8.

In Chapter 9 we consider performance characteristics of our algorithm; we formalize and
prove our claim that our Virtual Synchrony algorithm involves just a single message ex-
change round among members of the new view. This chapter builds upon the liveness proof
of Chapter 8: The liveness proof establishes that, after the environment starts to behave
well, our GCS system eventually does what it is supposed to do; the performance analysis
quantifies what “eventually” means in terms of various parameters such as message latency
and timing of network and membership events.

In Chapter 10 we illustrate the utility of our gcs system by describing a simple application
that can be effectively built using gcs. The application implements a variant of a data
service that allows a dynamic group of clients to access and modify a replicated data object.
The application is prototypical of some collaborative computing applications, such as for
example a shared white-board application.

Chapter 11 concludes the dissertation.

53

54

Chapter 4

Client-Server Architecture and
Environment Specification

Our service is designed to operate in an asynchronous message-passing environment. Pro-
cesses and communication links may fail and may later recover, possibly causing network
partitions and merges. For simplicity, we assume that processes recover with their running
state intact; this is a plausible assumption as processes can keep their running state on
stable storage. We do not explicitly model process crashes and recoveries because under
this assumption a crashed process is indistinguishable from a slow one. In Section 6.4, we
argue that our algorithm also provides meaningful semantics when group communication
processes lose their entire state upon a crash and recover with their state reset to an initial
value.

Our Group Communication service is implemented by a collection of GCS end-points, which
are the GCS processes that run at the application clients’ locations. GCS end-points handle
clients’ multicast requests and inform their clients of view changes.

Application Application

GCS End−pointGCS End−point

Group Membership Service

Reliable FIFO Multicast Service

Figure 4.1: Client-server architecture: GCS end-points usie an external membership service.
Arrows represent interaction between GCS end-points and underlying services.

The GCS architecture is depicted in Figure 4.1. All GCS end-points run the same algo-
rithm. The algorithm relies on the underlying membership and multicast services to handle
respectively formation of views and transmission of messages. The algorithm’s task is to

55

synchronize output of the two underlying services to implement the Virtual Synchrony
semantics.

Sections 4.1 and 4.2 below give precise specifications of the interface and semantics that the
underlying membership and multicast services have to provide in order to be suitable for our
algorithm. Services that satisfy these (or very similar) requirements have been previously
used for GCSs, and efficient implementations of these services for WANs exist.

4.1 The membership service specification

This section presents a formal specification of the membership services that are appropriate
for our GCS design. For simplicity, here and in the rest of the thesis, we assume that there
is a single process group; multiple groups can be supported by treating each independently.
We also omit the part of the interface that handles processes’ requests to join and leave
groups.

Figure 4.2 contains an I/O automaton, called mbrshp, that defines the interface and the
safety properties of the membership service. The service interface is given by the automa-
ton’s signature;1 Informally, it consists of the following two output actions:

start changep(cid, set) notifies process p that the membership service is attempting to
form a view with the members of set; cid is a local start-change identifier.

viewp(v) notifies process p that the membership service has succeeded in forming view v.
A view v is a triple consisting of an identifier v.id, a set of members v.set, and a
function v.startId that maps members of v to start-change identifiers. Two views
are the same if they consist of identical triples.

Automaton mbrshp maintains two state variables, mbrshp view[p] and start change[p],
for each client p. These variables contain respectively the last view and the last start change
message issued to client p; the variables are updated in the effects of the transitions. The
safety properties satisfied by the mbrshp automaton include two basic properties, which
are provided by virtually all group membership services (for example, [21, 35, 8, 43, 12, 58,
82, 6]), as well as some new properties concerning the start change notifications.

The two basic properties are Self Inclusion and Local Monotonicity. Self Inclusion re-
quires every view issued to a client p to include p as a member; this property is enforced
with a precondition p ∈ v.set on the viewp(v) action. Local Monotonicity requires that
view identifiers delivered to p be monotonically increasing; this property is enforced with
a precondition v.id > mbrshp view[p] on the viewp(v) action. Local Monotonicity has two
important consequences: the same view is not delivered more than once to the same client,
and clients that receive the same two views receive them in the same order [27].

1When specifying a distributed system as a centralized automaton, we subscript each external action of
the specification automaton with the location (or process) in the distributed system at which the action
occurs.

56

automaton mbrshp

Type:
Proc: Set of end-points.

StartChangeId: Total-order; cid0 is smallest.

ViewId: Partial-order; vid0 is smallest.

View: ViewId × SetOf(Proc) × (Proc → StartChangeId).

Def: vp = 〈vid0, {p}, {(p →cid0)}〉.

Signature:
Output: start changep(cid, set), Proc p, StartChangeId cid, SetOf(Proc) set

viewp(v), Proc p, View v

State:
For all Proc p: View mbrshp view[p], initially vp
For all Proc p: (StartChangeId × SetOf(Proc)) start change[p], initially 〈cid0, {}〉

Transitions:
OUTPUT start changep(cid, set)

pre: cid > mbrshp view[p].startId(p)

cid ≥ start change[p].id

p ∈ set

eff: start change[p] ← 〈cid, set〉

OUTPUT viewp(v)

pre: p ∈ v.set ∧ v.id > mbrshp view[p].id

v.set ⊆ start change[p].set

v.startId(p) = start change[p].id

v.startId(p) > mbrshp view[p].startId(p)

eff: mbrshp view[p] ← v

Figure 4.2: Membership service interface and safety specification.

In addition, the mbrshp automaton specifies that the membership service must issue at
least one start change notification to client p before issuing a new view v to p. Also,
the start-change identifier v.startId(p) contained in the new view v must be the same as
the identifier of the latest preceding start change issued to p. These two requirements
are enforced by the last two preconditions on viewp(v). In particular, the former one is
achieved by requiring that a bigger start-change identifier than the one associated with p

in the last view has been issued to p.

The mbrshp specification allows the membership service to react to connectivity changes
happening during view formation. Whenever the service wants to add new members to
the membership, it has to issue a new start change notification to the clients: the second
precondition on viewp(v) actions requires the membership v.set to be a subset of the
tentative membership set included in the last start change notification. In order to remove
members from a forming view, the service does not need to issue a new start change

notification.

The first start change notification issued to p after a view marks the beginning of a new
view formation period. It includes a new local identifier cid, different from the ones that
were previously sent to p: the first precondition on start changep(cid, set) requires cid to
be strictly greater than mbrshp view[p].startId(p). Subsequent start change notifications
sent during an on-going view formation may either reuse the last start-change identifier or
issue a new one, as specified by the second precondition on start change actions. We
ensure uniqueness of local start-change identifiers by generating them in increasing order.

Notice that the mbrshp automaton does not specify any relationship between views issued
to different clients.

57

Example 4.1.1 Figure 4.3 presents a sample execution that shows the mbrshp service
delivering different sequences of views to two different clients, a and b. Arrows represent
time passage at each client; gray dots represent events. First, both clients receive the same
view v = 〈2, {a, b}, [a : 1, b : 1]〉; we illustrate this with a circle around the view events at
both clients. Then, client b receives a view vmid = 〈3, {b}, [b : 2]〉 by itself. Then, both
clients receive another common view v′ = 〈4, {a, b}, [a : 2, b : 3]〉. Notice how the start-
change identifiers included in the views correspond to the last start-change identifiers issued
to the clients.

viewb(4, {a, b}, [a : 2, b : 3])

start changeb(3, {a, b})

viewb(3, {b}, [b : 2])

start changeb(2, {b})

viewb(2, {a, b}, [a : 1, b : 1])

Proc a

start changea(2, {a})

start changea(2, {a, b})

viewa(4, {a, b}, [a : 2, b : 3])

Proc b

v

v′

viewa(2, {a, b}, [a : 1, b : 1])

vmid

Figure 4.3: A sample execution of mbrshp.

We do not specify liveness properties for membership services. Instead, when we specify
the liveness properties of our GCS in Section 5.2, we condition them on the behavior of
the membership service. For example, we state that if the same view is delivered to all the
members and the members do not receive any subsequent membership events, then they
eventually deliver this view to their application clients. Existing membership services
do satisfy meaningful liveness properties. For example, [58] guarantees that, when the
network stabilizes, all members receive the “correct” view and no other views thereafter.
By combining our GCS liveness properties with such membership liveness properties, we
can restate the liveness properties of our GCS conditionally on the network behavior.

The mbrshp specification allows for simple and efficient distributed implementations that
also satisfy meaningful liveness properties. The membership service of [58] is an example
of such an implementation; our design was implemented by Tarashchanskiy [92] using this
membership service. In this service, a small number of servers support a large number of
clients, communicating with them asynchronously via fifo ordered channels (TCP sockets).
In case a server fails, clients can migrate to another server. Other existing membership
algorithms (for example, [35, 8]) could also be extended easily to provide the interface and
semantics specified here.

58

4.2 The reliable fifo multicast service specification

The group communication end-points communicate with each other using an underlying
multicast service that provides reliable fifo communication between every pair of connected
processes. Many existing group communication systems (for example, [47, 12, 35, 6]) imple-
ment Virtual Synchrony over similar communication substrates. In our implementation [92],
we use the service of [10].

Figure 4.4 presents an I/O automaton, co rfifo, that specifies a multicast service appro-
priate for our GCS design. Portions of the code that define liveness properties are colored
gray.

automaton co rfifo

Signature:
Input:

sendp(set,m), Proc p, SetOf(Proc) set, Msg m

reliablep(set), Proc p, SetOf(Proc) set

livep(set), Proc p, SetOf(Proc) set

Output: deliverp,q(m), Proc p, Proc q, Msg m

Internal: lose(p,q), Proc p, Proc q

skip task(p,q), Proc p, Proc q

State:
For all Proc p, Proc q: SequenceOf(Msg) channel[p][q], initially empty

For all Proc p: SetOf(Proc) reliable set[p], initially {p}
For all Proc p: SetOf(Proc) live set[p], initially {p}

Transitions:
INPUT sendp(set, m)

eff: (∀ q ∈ set) append m to channel[p][q]

OUTPUT deliverp,q(m)

pre: m = first(channel[p][q])

eff: dequeue m from channel[p][q]

INPUT reliablep(set)

eff: reliable set[p] ← set

INTERNAL lose(p, q)

pre: q 6∈ reliable set[p]

eff: dequeue last message from channel[p][q]

INPUT livep(set)

eff: live set[p] ← set

INTERNAL skip task(p, q)

pre: q 6∈ live set[p]

Tasks:
For each Proc p, Proq q: Cp,q = ({deliverp,q(m) | m ∈ Msg} ∪ {skip task(p,q)} ∪ {lose(p,q)})

Figure 4.4: Reliable fifo multicast service specification. Liveness-related code is colored
gray.

Automaton co rfifo maintains a fifo queue channel[p][q] for every pair of end-points.
An input action sendp(set, m) models a multicast of message m from end-point p to the end-
points listed in the set by appending m to the channel[p][q] queues for every end-point q

in set. The deliverp,q(m) action removes the first message from channel[p][q] and delivers
it to q.

In addition, the co rfifo specification allows an end-point p to use the reliablep(set)
action to require that the multicast service maintain a reliable (gap-free) fifo connection to
the end-points listed in set. Whenever this action occurs, set is stored in a special variable
reliable set[p]. For every process q not in reliable set[p], the multicast service may
lose an arbitrary suffix of the messages sent from p to q, as modeled by an internal action
lose(p, q).

59

In order for the multicast service to be considered live, messages sent to live and connected
processes must eventually reach their destinations. The co rfifo specification enforces this
property in the gray-colored portion of its code.

Recall from Chapter 2 that an infinite fair execution of an automaton must contain either
infinitely many events from each task C or infinitely many occurrences of states in which no
action in C is enabled. Automaton co rfifo defines the set Cp,q = ({deliverp,q | m ∈ Msg}
∪ skip task(p, q) ∪ lose(p, q)) to be a task for each pair of end-points p and q. This defi-
nition implies that deliverp,q actions must occur in an infinite fair execution of co rfifo,
provided the following three conditions hold: there are messages sent from p to q – hence,
deliverp,q is enabled; the client at p is interested in maintaining reliable connection to q

– hence, lose(p, q) is disabled; and q is believed to be connected to p – hence, a special
action skip task(p, q) is disabled, as explained below.

Action skip task(p, q) is defined only to provide an alternative to deliverp,q actions so
that deliverp,q actions are not required to happen when q is believed to be disconnected
from p. skip task(p, q) is an internal action that has no effect on the state of co rfifo and
is enabled when q is believed to be disconnected from p. Such belief is modeled using special
livep(set) input actions. The set argument is assumed to represent a set of processes that
are alive and connected to p; when such an input happens, set is stored in a state variable
live set[p]. The precondition on the skip task(p, q) action is q 6∈ live set[p].

An important implication of how tasks are defined in co rfifo is that, if q remains in both
live set[p] and reliable set[p] from some point on in a fair execution of co rfifo, then
all the messages that p sends to q from that point on are eventually delivered to q.

60

Chapter 5

Specifications of the Group
Communication Service

The two sections of this chapter contain specifications of the safety and liveness properties
satisfied by our group communication service (gcs). The specifications capture a core set of
properties that is commonly provided by group communication systems and that have been
shown useful for facilitating implementations of many distributed applications and other,
stronger, GCS properties (see [27]). In Chapter 10, we will illustrate the utility of gcs by
describing a simple application that can be effectively built using gcs. The application
implements a variant of a data service that allows a dynamic group of clients to access and
modify a replicated data object.

5.1 Safety properties

We present the safety specification of our group communication service incrementally, as
four automata: In Section 5.1.1 we specify a simple group communication service that
synchronizes delivery of views and application messages to require Within-View Delivery
of messages. In Section 5.1.2 we extend the specification of Section 5.1.1 to also require
Virtually-Synchronous Delivery, the key property of Virtual Synchrony (see Section 1.1).
In Section 5.1.3 we specify the Transitional Set property, which complements Virtually-
Synchronous Delivery. Finally, in Section 5.1.4, we specify the Self Delivery property,
which requires the GCS to deliver to each client the client’s own messages.

The incremental development of the safety specification is matched later when we develop
the algorithm and its correctness proof in Chapter 6 and Chapter 7.

5.1.1 Within-View reliable fifo multicast

In this section we specify a GCS that captures the following properties:

61

• Views delivered to the application satisfy the Self Inclusion and Local Monotonicity
properties of the mbrshp service, see Section 4.1.

• Messages are delivered in the same view in which they were sent. This property
is useful for many applications (see [43, 27, 91]) and appears in several systems and
specifications (for example, [21, 93, 8, 77, 39, 52, 31]). A weaker property that requires
each message to be delivered in the same view at every process that delivers it, but
not necessarily the view in which it was sent, is typically implemented on top of an
implementation of Within-View Delivery (see [27]).

• Messages are delivered in gap-free fifo order (within views). This is a basic property
upon which one can build services with stronger ordering guarantees, such as causal
order or total order. The totally ordered multicast algorithm of [25] is implemented
atop a service with a similar specification.

automaton wv rfifo : spec

Signature:
Input: sendp(m), Proc p, AppMsg m

Output: deliverp(q, m), Proc p, Proc q, AppMsg m

viewp(v), Proc p, View v

State:
For all Proc p, View v: SequenceOf(AppMsg) msgs[p][v], initially empty

For all Proc p, Proc q: Int last dlvrd[p][q], initially 0

For all Proc p: View current view[p], initially vp

Transitions:
INPUT sendp(m)

eff: append m to msgs[p][current view[p]]

OUTPUT deliverp(q, m)

pre: m = msgs[q][current view[p]] [last dlvrd[q][p]+1]

eff: last dlvrd[q][p] ← last dlvrd[q][p]+1

OUTPUT viewp(v)

pre: p ∈ v.set ∧ v.id > current view[p].id

eff: (∀ q) last dlvrd[q][p] ← 0

current view[p] ← v

Figure 5.1: wv rfifo service specification.

Figure 5.1 presents automaton wv rfifo : spec that models this specification. The au-
tomaton uses centralized queues msgs[p][v] of application messages for each sender p and
view v. It also maintains a variable current view[p] that contains the last view delivered to
each process p, and a variable last dlvrd[q][p], for every pair of processes q and p, contain-
ing the index in the msgs[q][current view[p]] queue of the last message from q delivered to
p in p’s current view.

Action viewp(v) models the delivery of view v to process p; the precondition on this ac-
tion enforces Self Inclusion and Local Monotonicity. Action sendp(m) models the mul-
ticast of message m from process p to the members of p’s current view by appending m

to msgs[p][current view[p]]. Action deliverp(q, m) models the delivery to process p of
message m sent by process q. The gap-free fifo ordered delivery of messages within-
views is enforced by its precondition, which allows delivery of only the message indexed
by last dlvrd[q][p] + 1 in the msgs[q][current view[p]] queue.

62

5.1.2 Virtually-Synchronous delivery

In this section we use the inheritance-based methodology to modify the wv rfifo : spec

automaton to also enforce the Virtually-Synchronous Delivery property. The modified au-
tomaton, vsrfifo : spec is defined by the code contained in both Figures 5.1 and 5.2.

automaton vs rfifo : spec modifies wv rfifo : spec

Signature Extension:
Output: viewp(v) modifies wv rfifo.viewp(v)

Internal: set cut(v, v ′ , c), View v, View v ′ , (Proc → Int)⊥ c new

State Extension:
For all View v, v ′ : (Proc→Int)⊥ cut[v][v ′], initially ⊥

Transition Restriction:
OUTPUT viewp(v)

pre: cut[current view[p]] [v] 6= ⊥
(∀ q) last dlvrd[q][p]=cut[current view[p]] [v](q)

INTERNAL set cut(v, v ′ , c)

pre: cut[v][v ′] = ⊥
eff: cut[v][v ′] ← c

Figure 5.2: vs rfifo service specification.

Figure 5.2 contains the code that enforces the Virtually-Synchronous Delivery property.
Recall from Section 1.1 that this property requires processes to move together from view v

to view v′ to deliver same set of messages while in view v. Since the parent specification,
wv rfifo : spec, imposes gap-free fifo delivery of messages, a message set can be repre-
sented by a set of indices, each pointing to the last message from each member of v; such
representation of a set is called a cut.

The wv rfifo : spec automaton fixes a cut for processes that wish to move from some view
v to some view v′: A new internal action set cut(v, v′, c) sets a new variable cut[v][v′]
to a cut mapping c. For a given pair of views, v and v′, the cut is chosen only once,
nondeterministically. Delivery of a view v to process p is allowed only if a cut for moving
from p’s current view into v has been set and if p has delivered all the messages identified
in this cut. These conditions are enforced by the two new preconditions of the viewp(v)
action (see Figure 5.2). Since vsrfifo : spec is a modification of wv rfifo : spec the new
preconditions work in conjunction with the preconditions in viewp(v) of wv rfifo : spec.

The vsrfifo : spec automaton, being a safety specification, does not require liveness prop-
erties to hold, for instance, that processes actually deliver messages specified by the cuts,
and hence, are able to satisfy conditions for delivering new views. Such liveness specifica-
tions are stated in Section 5.2.

5.1.3 Transitional Set

While Virtually-Synchronous Delivery is a useful property, a process that moves from view v

to view v′ cannot tell locally which of the processes in v.set ∩ v′.set move to view v′ directly
from view v, and which move to v′ from some other view. In order for the application to
be able to exploit the Virtually-Synchronous Delivery property, application processes need
to be informed which other processes move together with them from their current view into

63

their new view. The set of processes that transition together from one view into the next
is called a transitional set [27]:

Definition 5.1.1 A transitional set from view v to view v′, is a subset of v.set ∩ v′.set
that includes: (a) all processes that receive view v′ while in view v; and (b) no process that
receive view v′ while in a view other than v.

The notion of a transitional set was first introduced as part of a special transitional view
in the EVS [77] model. In our formulation (as in [27]), transitional sets are delivered to the
application along with views, as an additional parameter T.

Example 5.1.1 Assume that Alice and Bob are using a Virtually Synchronous GCS that
eventually reports the views produced by the mbrshp service to Alice and Bob. Consider
the scenario described in Example 4.1.1: both Alice and Bob receive views v and v′ with the
membership {Alice, Bob}. Just from these views, Alice does not know whether Bob receives
view v′ while in view v, or while in some other view, vmid with the membership {Bob}.
If the former holds, then Alice does not need to synchronize with Bob because Virtually-
Synchronous Delivery guarantees that they have received the same messages while in view
v; otherwise, she does. The transitional set given to Alice together with view v′ provides
this information.

automaton trans set : spec

Signature:
Output: viewp(v,T), Proc p, View v, SetOf(Proc) T

Internal: set prev viewp(v), Proc p, View v

State:
For all Proc p: View current view[p], initially vp
For all Proc p, View v: View⊥ prev view[p][v], initially ⊥

Transitions:
OUTPUT viewp(v, T)

pre: prev view[p][v] = current view[p]

(∀ q ∈ v.set ∩ current view[p].set)

prev view[q][v] 6= ⊥
T = {q ∈ v.set ∩ current view[p].set |

prev view[q][v] = current view[p]}
eff: current view[p] ← v

INTERNAL set prev viewp(v)

pre: p ∈ v.set

prev view[p][v] = ⊥
eff: prev view[p][v] ← current view[p]

Figure 5.3: Transitional set specification.

Figure 5.3 presents an automaton ts : spec that specifies delivery of transitional sets (Def-
inition 5.1.1). The automaton has two types of actions: output actions viewp(v, T), which
deliver view v and transitional set T to process p; and internal actions set prev viewp(v),
which declare that q intends to deliver view v while in its current view. The intentions are
recorded in the variable prev view[p][v], and the current views are recorded in the variable
current view[p].

Before process p can deliver a view v, each member q in the intersection of these views must
execute set prev viewq(v), as enforced by the second precondition. The transitional set T

64

delivered by p with v is then computed to consist of those processes q in the intersection
current view[p].set ∩ v.set for which prev view[q][v] is the same as current view[p]; this
is specified by the third precondition on viewp(v, T).

5.1.4 Self Delivery

We now specify the Self Delivery property, which requires that each client receives all the
messages it sent in a given view before receiving a new view. We specify this property as
a simple modification of the wv rfifo : spec automaton presented in Section 5.1.1; the
modified automaton is defined by the code contained in both Figures 5.1 and 5.4.

automaton wv rfifo+self : spec modifies wv rfifo : spec

Signature Extension:
Output: viewp(v) modifies wv rfifo.viewp(v)

Transition Restriction:
OUTPUT viewp(v)

pre: last dlvrd[p][p] = LastIndexOf(msgs[p][current view[p]])

Figure 5.4: wv rfifo+self service specification.

In order to enforce Self Delivery, a new precondition on the viewp(v) action requires the
last dlvrd[p][p] index to point to the last message sent by client p in its current view. Since
the parent automaton, wv rfifo : spec, guarantees within-view gap-free fifo delivery, this
precondition implies that all of p’s messages have in fact been delivered back to p.

In order for a GCS to be live and satisfy Within-View Delivery, Self Delivery, and Virtually-
Synchronous Delivery, the GCS must block its application from sending new messages during
view formation periods; this is proved in [43]. Therefore, we introduce a block/block ok

synchronization when we extend our algorithm to support the Self Delivery property in
Section 6.3.

Our formulation of Self Delivery as a safety property, when combined with the liveness
property of Section 5.2, implies the formulations in [27] and [77] of Self Delivery as a
liveness property. These formulations require a GCS to eventually deliver to each process
its own messages.

5.2 Liveness property

In a fault-prone asynchronous model, it is not feasible to require that a group communication
service be live in every execution. The only way to specify useful liveness properties without
strengthening the communication model is to make these properties conditional on the
underlying network behavior (as specified, for example, in [39, 29, 27]). Since our GCS
uses an external membership service, we condition the GCS liveness on the behavior of the
membership service.

We define the liveness property for a restricted set of executions in which a component

65

stabilizes from some point on forever thereafter.

Property 5.2.1 (View stability)
Let gcs be a group communication service whose interface with its clients consists of send,
deliver, and view events as defined in the automaton signature in Figure 5.1. Furthermore,
assume that the gcs uses a membership service mbrshp described in Chapter 4.

A view v eventually becomes stable in a given timed execution α = s0, π1, s1, π2, . . . of the
gcs service, provided the mbrshp.viewp(v) event occurs in α for every p ∈ v.set and is
followed by neither mbrshp.viewp nor mbrshp.start changep events.

Given an execution that satisfies Property 5.2.1, the liveness property requires each end-
point in the stable view to eventually deliver this last view and all the messages sent in this
view to its client. Formally:

Property 5.2.2 (Liveness)
Let gcs be a group communication service whose interface with its clients consists of send,
deliver, and view events as defined in the automaton signature in Figure 5.1. Furthermore,
assume that the gcs uses a membership service mbrshp described in Chapter 4.

Let α be a fair execution of gcs in which view v eventually becomes stable (Property 5.2.1).

Then at each p ∈ v.set, gcs.viewp(v) eventually occurs. Moreover, for every gcs.sendp(m)
that occurs after gcs.viewp(v), and for every q ∈ v.set, gcs.deliverq(p, m) also occurs.

It is important to note that although our liveness property requires the GCS to be live only
in certain executions, any implementation that satisfies this property has to attempt to
be live in every execution because it cannot test the external condition of the membership
becoming stable. Also note that, even though membership stability is formally required to
last forever, in practice it only has to hold “long enough” for the GCS to reconfigure, as
explained in [36, 46]. However, we cannot explicitly introduce the bound on this time period
in a fully asynchronous model, since it depends on external conditions such as message
latency, process scheduling, and processing time.

66

Chapter 6

The Virtually Synchronous Group
Multicast Algorithm

In this chapter we present an algorithm for a group communication service, gcs, that sat-
isfies the specifications in Chapter 5. The group communication service is implemented
by a collection of gcs end-points, each running the same algorithm. Figure 6.1 (a) shows
the interaction of a gcs end-point with its environment: a membership service mbrshp

and a reliable fifo multicast service co rfifo; these services are assumed to satisfy the
specifications of Chapter 4. The end-point interacts with its application client by accepting
the client’s send-requests and by delivering application messages and views to the client.
The end-point uses the co rfifo service to send messages to other gcs end-points and
to receive messages sent by other gcs end-points. When necessary, the end-point uses the
reliable action to inform co rfifo of the set of end-points to which co rfifo must main-
tain reliable (gap-free) fifo connections. The gcs end-point also receives start change

and view notifications from the membership service.

The algorithm running at each end-point is constructed incrementally using the inheritance-
based methodology presented in Chapter 3. We proceed in three steps, at each step adding
support for a new property (see Figure 6.1 (b)):

• First, in Section 6.1, we present an algorithm wv rfifop for an end-point of the
within-view reliable fifo multicast service specified in Section 5.1.1, and argue that
this service satisfies safety specification wv rfifo : spec and liveness Property 5.2.2.

• Then, in Section 6.2, we add support for the Virtually-Synchronous Delivery and
Transitional Set properties specified in Sections 5.1.2 and 5.1.3. We present a child
vs rfifo+tsp of wv rfifop, and argue that the service built from vs rfifo+tsp

end-points satisfies safety specifications vsrfifo : spec and ts : spec, and liveness
Property 5.2.2.

• Finally, in Section 6.3, we add support for the Self Delivery property specified in Sec-
tion 5.1.4. The resulting automaton vs rfifo+ts+sdp models a complete gcs end-
point. Due to the use of inheritance, the service built from these end-points automat-
ically satisfies safety specifications wv rfifo : spec, vsrfifo : spec, and ts : spec.

67

Interaction with Membership and Multicast Services(a)

WV_RFIFO

VS_RFIFO+TS

VS_RFIFO+TS+SD

GCS End−Point

(b) Inheritance Hierarchy
d
e
l
i
v
e
r

s
e
n
d

Connection−Oriented Reliable FIFO Multicast

l
i
v
e

s
e
n
d

d
e
l
i
v
e
r

GCS
End−pointMembership

start_change

r
e
l
i
a
b
l
e

view

v
i
e
w

Client

Figure 6.1: A GCS end-point and its environment.

We argue that it also satisfies safety specification self : spec and liveness Prop-
erty 5.2.2.

In the presented automata, each locally controlled action is defined to be a task by itself,
which means that, if it becomes and stays enabled, it eventually gets executed.

When composing automata into a service, actions of the type mbrshp.start changep(id, set)
are linked with co rfifo.livep(set), and actions of the type mbrshp.viewp(v) are linked
with co rfifo.livep(v.set); the “link” operation can be formally expressed using the sig-
nature extension construct. When mbrshp and co rfifo actions are linked this way, the
live set[p] variable of co rfifo matches the mbrshp’s perception of which end-points
are alive and connected to p. (We assume that every permanently disconnected end-point
is eventually excluded by either a start change or a view notification.) In the composed
system, all output actions except the application interface are reclassified as internal.

For simplicity of the code, the presented automata do not include certain practical opti-
mizations such as, for example, garbage collection; we point out some of the important ones
in Section 6.4.

6.1 Within-view reliable fifo multicast algorithm

In this section we present the wv rfifop algorithm running at an end-point p of a basic
group communication service, wv rfifo. The end-point algorithm is quite simple: It relies

68

on the mbrshp service to form and deliver views involving end-point p; the end-point
forwards these views to its client. The algorithm also relies on the co rfifo service to
provide reliable gap-free fifo multicast communication. When the end-point receives a
message-send request from its client, it uses co rfifo to send the message to other end-
points in the client’s current view. The end-point delivers to its client the messages received
from other end-points via co rfifo, provided the client’s current view matches the views in
which the messages were sent. The algorithm keeps track of the views in which messages are
sent using the following technique: each time the end-point delivers a view v to its client, it
sends a special view msg message to the end-points in v.set, informing them that the end-
point’s future messages will be sent in view v. Reliable delivery of messages is ensured by
having co rfifo maintain a reliable connection to every member of the end-point’s view.

automaton wv rfifop

Type:
ViewMsg = View

FwdMsg = Proc × View × AppMsg × Int

Signature:
Input: sendp(m), AppMsg m

co rfifo.deliverq,p(m), Proc q,

(AppMsg + ViewMsg + FwdMsg) m

mbrshp.viewp(v), View v

Output: deliverp(q, m), Proc q, AppMsg m

co rfifo.sendp(set, m), SetOf(Proc) set,

(AppMsg + ViewMsg + FwdMsg) m

co rfifo.reliablep(set), SetOf(Proc) set

viewp(v), View v

State:
// Variables for handling application messages
For all Proc q, View v: SequenceOf(AppMsg⊥)

msgs[q][v], initially empty

Int last sent, initially 0

For all Proc q: Int last rcvd[q], initially 0

For all Proc q: Int last dlvrd[q], initially 0

// Variables for handling views and view messages
View current view, initially vp
View mbrshp view, initially vp
For all Proc q: View view msg[q], initially vq

SetOf(Proc) reliable set, initially vp.set

Transitions:
INPUT mbrshp.viewp(v)

eff: mbrshp view ← v

OUTPUT viewp(v)

pre: v = mbrshp view 6= current view

eff: current view ← v

last sent ← 0

(∀ q) last dlvrd[q] ← 0

OUTPUT co rfifo.reliablep(set)

pre: current view.set ⊆ set

reliable set 6= set

eff: reliable set ← set

OUTPUT co rfifo.sendp(set, 〈‘view msg’, v〉)

pre: view msg[p] 6= current view

current view.set ⊆ reliable set

set = current view.set - {p}
v = current view

eff: view msg[p] ← current view

INPUT co rfifo.deliver
q, p

(〈‘view msg’, v〉)

eff: view msg[q] ← v

last rcvd[q] ← 0

INPUT sendp(m)

eff: append m to msgs[p][current view]

OUTPUT deliverp(q, m)

pre: m = msgs[q][current view][last dlvrd[q]+1]

eff: last dlvrd[q] ← last dlvrd[q] + 1

OUTPUT co rfifo.sendp(set, 〈‘app msg’, m〉)

pre: view msg[p] = current view

set = current view.set - {p}
m = msgs[p][current view][last sent + 1]

eff: last sent ← last sent + 1

INPUT co rfifo.deliverq,p(〈‘app msg’, m〉)

eff: msgs[q][view msg[q]] [last rcvd[q]+1]←m

last rcvd[q] ← last rcvd[q] + 1

OUTPUT co rfifo.sendp(set,〈‘fwd msg’,r,v,m,i〉)

pre: (p 6∈ set) ∧ (m = msgs[r][v][i])

INPUT co rfifo.deliverq,p(〈‘fwd msg’,r,v,m,i〉)

eff: msgs[r][v][i] ← m

Figure 6.2: Within-view reliable fifo multicast end-point automaton.

Figure 6.2 models the wv rfifop algorithm as an automaton. The signature defines the
interface through which end-point p interacts with its client and with the mbrshp and

69

co rfifo services.

When a view v is received from mbrshp via action mbrshp.viewp(v), end-point p saves it
in a variable mbrshp view and then delivers v to its client by executing action viewp(v).
Variable current view contains the last view delivered to the client. The precondition, v
= mbrshp view 6= current view, on the viewp(v) action ensures that v is indeed the last
view received from mbrshp and that it has not already been delivered to the client. After
end-point p delivers view v to its client, it sends a view msg containing v to the rest of the
members of current view.set by using action co rfifo.sendp(set, 〈‘view msg’, v〉) with
set = current view.set − {p} and v = current view. Variable view msg[p] contains
the last view sent as a view msg. The first precondition, view msg[p] 6= current view,
on co rfifo.sendp(set, 〈‘view msg’, v〉) ensures that each view msg is sent only once,
and the second precondition, current view.set ⊆ reliable set, ensures that, prior to
sending the view msg, end-point p has requested co rfifo to maintain reliable connection
to every member of the client’s view by executing action co rfifo.reliablep(set), which
sets variable reliable set to the value of set. When end-point p receives a view msg

from some end-point q via the co rfifo.deliverq,p(〈‘view msg’, v〉) action, it stores v in
a variable view msg[q].

End-point p maintains a queue msgs[q][v] per each end-point q and view v; these queues are
used for storing application messages received from other end-points via co rfifo.deliverq,p
and from the end-point’s own client via sendp. When action sendp(m) occurs, message m

is appended to msgs[p][current view]. The end-point maintains the following indices that
enforce message handling in the order of their appearances in the msgs queues:

• last sent points to the last application message m on msgs[p][current view] that
was sent using co rfifo.sendp(set, 〈‘app msg’, m〉);

• last rcvd[q], for each end-point q, points to the last message m on msgs[q][view msg[q]]
that was delivered to p by co rfifo.deliverq,p(〈‘app msg’, m〉);

• last dlvrd[q], for each end-point q, points to the last message m

on msgs[q][current view] that was delivered to p’s client using deliverp(q, m).

The first precondition of co rfifo.sendp(set, 〈‘app msg’, m〉) ensures that a view msg con-
taining current view has been already sent to everybody in set = current view − {p}.
The preconditions on sending view msg s, imply that co rfifo already maintains a reliable
connection to everyone in set, when co rfifo.sendp(set, 〈‘app msg’, m〉) occurs.

Automaton wv rfifop also implements auxiliary functionality that allows end-point p to
forward an application message received from some end-point to some other end-points.
Specifically, using co rfifo.sendp(set, 〈‘fwd msg’, r, v, m, i〉), end-point p can forward to
some set of end-points the i th message, m, sent by the client at r in view v. In turn, when
end-point p receives co rfifo.deliverq,p(〈‘fwd msg’, r, v, m, i〉), it stores the forwarded
message m in the i th location of the msgs[r][v] queue. The code of wv rfifop does
not specify a particular strategy for forwarding messages; the strategy can be chosen non-
deterministically. Such a strategy can be specified by more refined versions of the algorithm
and/or by modifications of wv rfifop, as we do in the vs rfifo+tsp modification of the
wv rfifop automaton in Section 6.2 below.

70

Leaving a certain level of non-determinism at the parent automaton, with the intention of
resolving it later at the child automaton, is a technique similar to the use of abstract meth-
ods or pure virtual methods in object-oriented methodology. We use the same technique in
the co rfifo.reliablep(set) action when we require set to be a nondeterministic super-
set of current view.set. The vs rfifo+tsp modification of wv rfifop places additional
preconditions on this action, thereby specifying precise values for the set argument.

The wv rfifo automaton resulting from the composition of all the end-point automata and
the mbrshp and co rfifo automata models the wv rfifo service. The automaton satisfies
the safety properties specified by wv rfifo : spec: it preserves the Local Monotonicity and
Self Inclusion properties of view deliveries guaranteed by the mbrshp service; and it also
extends the gap-free fifo-ordered message delivery of co rfifo with the Within-View
Delivery property. The Within-View Delivery is achieved by delivering messages to the
clients only if the views in which the messages were sent match the clients’ current views.

Chapter 7.1 contains a simulation from wv rfifo to wv rfifo : spec: Actions of automa-
ton wv rfifo : spec involving viewp(v), sendp(m), and deliverp(q, m) are simulated when
wv rfifo takes the corresponding viewp(v), sendp(m), and deliverp(q, m) actions. Steps
of wv rfifo involving other actions correspond to empty steps of wv rfifo : spec. We
define the following function R that maps every reachable state s of wv rfifo to a reachable
state of wv rfifo : spec, where s[p].var denotes an instance of a variable var of end-point
p in a state s:

R(s ∈ ReachableStates(wv rfifo)) = t ∈ ReachableStates(wv rfifo : spec), where

For each Proc p, View v: t.msgs[p][v] = s[p].msgs[p][v]

For each Proc p, Proc q: t.last dlvrd[p][q] = s[q].last dlvrd[p]

For each Proc p: t.current view[p] = s[p].current view

Lemma 7.1.1 states that R is a refinement mapping from wv rfifo to wv rfifo : spec; the
proof relies on a number of invariant assertions, stated and proved in Chapter 7.1 as well.

The wv rfifo automaton also satisfies liveness Property 5.2.2. Consider a fair execution
in which each end-point p in v.set receives the same view v from the membership and
no view events afterwards. Starting from the time the mbrshp.viewp(v) action occurs, the
viewp(v) action stays enabled; therefore it eventually happens due to the fairness of the
execution. After view v is delivered to the clients, all messages sent in view v are also
eventually delivered to the clients. This is due to the liveness property of co rfifo, which
guarantees that messages sent between live and connected end-points (as perceived by the
membership service) are eventually delivered to their destinations. We prove these claims
formally for the complete gcs algorithm in Chapter 8.

6.2 Adding support for Virtually Synchronous Delivery and
Transitional Sets

The wv rfifo service of the previous section guarantees that each member p of a view v

receives some prefix of the fifo ordered stream of messages sent by every member q in v.

71

In this section, we modify the wv rfifop algorithm to yield an end-point vs rfifo+tsp

of a service, vs rfifo+ts, that, in addition to the semantics provided by wv rfifo, guar-
antees that those members that transition from v in to the same view v′, receive not just
some but the same prefix of the message stream sent by each member q in v. This is
the Virtually-Synchronous Delivery property, the key property of Virtual Synchrony se-
mantics (see Section 5.1.2). Overall, the vs rfifo+ts service satisfies the vsrfifo : spec

and ts : spec safety specifications, as well as liveness Property 5.2.2; we prove these claims
respectively in Sections 7.2 and 7.3 and in Chapter 8.

Algorithm Overview

In a nutshell, here is how vs rfifo+tsp computes transitional sets and enforces Virtually-
Synchronous Delivery: When end-point p is notified via start changep(cid, set) of the
mbrshp’s attempt to form a new view, p sends via co rfifo a synchronization message
tagged with cid to every end-point in set. The synchronization message includes p’s current
view v and a mapping cut, such that cut(q) is the index of the last message from each q

in v.set that p commits to deliver in view v.

End-point p may receive subsequent start changep(cid, set) notifications from mbrshp.
When such a notification includes a new cid, p sends a new synchronization message, with a
freshly made cut, to the proposed set; otherwise, when the cid is the same as the last one,
p simply forwards the last synchronization message to the joining end-points, that is, to the
end-points of the current set that were not listed in the previously proposed membership.

Once p receives via viewp(v
′) a new view v′ from mbrshp and a synchronization message

tagged with v′.startId(q) from each end-point q in v.set ∩ v′.set, p computes a transitional
set from v to v′ and decides on which messages it needs to deliver to its client in view v

before delivering view v′. A transitional set T from v to v′ is computed to include every client
q in v.set ∩ v′.set whose synchronization message tagged with v′.startId(q) contains p’s
current view v. For each client r in v.set, end-point p decides to deliver all the messages of
r that appear in the cut of the synchronization message of any member q of T. Section 6.2
describes two message-forwarding strategies that ensure p’s ability to actually deliver all
the messages it decides to deliver. After p delivers all these messages to its client, it then
delivers to its client the new view v′ along with the transitional set T.

Virtually-Synchronous Delivery follows from the fact that all end-points transitioning from
view v to v′ consider the same synchronization messages, compute the same set T, and
hence use the same data to decide which messages to deliver in view v before delivering
view v′. Set T satisfies Definition 5.1.1 of a transitional set from v to v′ because (a) every
end-point that computes T is itself included in T, and (b) no end-point q in T is allowed
to deliver v′ while in some view other than v because v′.startId(q) is linked through q’s
synchronization message to v.

72

Illustration

The following example demonstrates how our algorithm does not waste resources on forming
and synchronizing views that are known to be obsolete.

Example 6.2.1 Figure 6.3 presents a sample execution of gcs involving two clients, a

and b. The two vertical arrows represent time passage at each client; small empty circles
represent client-level events, and gray circles – mbrshp-level events.

Initially, both clients receive the same view v = 〈2, {a, b}, [a : 1, b : 1])〉 from their gcs end-
points, gcsa and gcsb; the ellipse encircling these view events highlights the fact that the
delivered views are the same.

Then, at some point, the mbrshp service notifies gcsb that it is starting to form a view
without a. While doing so, mbrshp detects that a is connected to b afterall, so it changes
the membership of the forming view to {a, b}. As a result, end-point gcsb forwards to gcsa

its latest synchronization message (denoted by a dashed arrow).

End-point gcsa is also notified by mbrshp of the mbrshp’s attempt to form a new view
with b; this causes gcsa to send a synchronization message to gcsb.

synch msgs

gcs.viewa(v, T)

mbrshp.start changea(2, {a, b})

mbrshp.viewb(3, {a, b}, [a : 2, b : 2])

gcs.viewb(v
′, T′)

mbrshp.viewb(3, {a, b}, [a : 2, b : 2])

mbrshp.start changeb(2, {a, b})

mbrshp.start changeb(2, {b})

gcs.viewb(v, T)

Client a Client b

gcs.viewa(v
′, T′)

Figure 6.3: Handling membership changes while synchronization protocol is running.

When the mbrshp service completes its view formation protocol, it delivers the new view
v′ = 〈3, {a, b}, [a : 2, b : 2]〉 to each gcs end-point. When, in addition to these views, the
gcs end-points receive each-others’ synchronization messages, the end-points compute the
transitional set for view v′ to be T′ = {a, b}; they also decide which application messages
they need to deliver to their clients, deliver these messages, and then deliver to their clients
view v′ and transition set T′.

From the transitional set T′, clients a and b know that, due to Virtual Synchrony, they
received the same messages while in v, and therefore their states are synchronized. Hence,
they can avoid state-transfer.

73

In addition to demonstrating the benefits of not wasting resources on forming and syn-
chronizing views that are known to be obsolete, Example 6.2.1 also demonstrates that the
application too benefits from not seeing obsolete views, as it has to do fewer state transfers
(or other similar view processing activity). In contrast to our algorithm, algorithms that do
not allow new members to be added to the membership of an already forming view (such
as, [8, 47, 12, 82]) lack these advantages. The following example illustrates this.

Example 6.2.2 When executed in the scenario of Example 6.2.1, algorithms that do not
allow new members to be added to the membership of an already forming view would deliver
an obsolete view vmid with membership {b} to client b, and then re-start the view formation
and the synchronization protocols anew in order to deliver to a and b a view with membership
{a, b}. As part of the synchronization protocol, a and b would first exchange messages to
agree upon a common identifier before actually exchanging synchronization messages. At
the end, however, the synchronization protocol would not synchronize end-points a and b

because they would be transitioning into the new view from different views, a from v and
b from vmid. Hence, after the clients get the final view from gcs, they would still need to
synchronize by running a state transfer protocol.

Algorithm Automaton

Figures 6.2, 6.4 and 6.5, together, contain the code of the vs rfifo+tsp automaton that
models end-point p of the vs rfifo+ts service. Figures 6.4 and 6.5 specify how the
wv rfifop automaton of Figure 6.2 is modified to support Virtually-Synchronous Delivery
and Transitional Sets. Figure 6.4 contains the Signature Extension that defines the signa-
tures of new and modified actions; Figure 6.5 contains the State Extension and Transition
Restriction defining respectively new state variables and new precondition/effect code. We
now describe automaton vs rfifo+tsp in detail.

automaton vs rfifo+tsp modifies wv rfifop

Type: SyncMsg = StartChangeId × View × (Proc→Int)

Signature Extension:
Input: mbrshp.start changep(id, set), StartChangeId id, SetOf(Proc) set new

co rfifo.deliverq,p(m), Proc q, SyncMsg m new

Output: deliverp(q, m) modifies wv rfifo.deliverp(q, m)

viewp(v, T), SetOf(Proc) T modifies wv rfifo.viewp(v)

co rfifo.reliablep(set), SetOf(Proc) set modifies wv rfifo.co rfifo.reliablep(set)

co rfifo.sendp(set, m), SetOf(Proc) set, SyncMsg m new
co rfifo.sendp(set, m) modifies wv rfifo.co rfifo.sendp(set, m), FwdMsg m

Internal: set cutp() new

Figure 6.4: Virtually Synchronous reliable fifo multicast: Signature Extension.

Upon receiving mbrshp.start changep(cid, set), vs rfifo+tsp stores the cid and set

parameters in the id and set fields of a variable start change. When start change 6= ⊥,
it indicates that vs rfifo+tsp is engaged in a synchronization protocol, during which it
exchanges synchronization messages tagged with start change.id with the end-points in
start change.set; after vs rfifo+tsp sends a view to its client, it sets start change to ⊥.

74

Variable sync set indicates the set of end-points to which a synchronization message
tagged with the latest start change.id has already been sent. When end-point p receives
start changep(cid, set) with a new cid, sync set is reset to ∅ to indicate that a new
synchronization message needs to be sent to every end-point in set. However, if the cid

is the same as the last one, sync set is set to sync set ∩ set. This way, the end-point
will send its last synchronization message only to the joining end-points (i.e., those in set

− sync set), and not to those to which the message was already sent. Notice that the
disconnected end-points (i.e., those that are not in set) are removed from sync set.

After vs rfifo+tsp receives a start changep(cid, set) input from mbrshp, it executes
an internal action, set cutp(). This action commits p to deliver to its client all the
messages it has so far received from the members of its current view. For each mem-
ber q of current view.set, cut(q) is set to the length of the longest continuous prefix
of messages in msgs[q][current view].1 Action set cutp() results in p’s current view
being stored in sync msg[p][start change.id].view, the committed cut being stored in
sync msg[p][start change.id].cut, and sync set being set to {p}.

vs rfifo+tsp specifies precise preconditions on the co rfifo.reliablep(set) actions. When
vs rfifo+tsp is not engaged in a synchronization protocol (i.e., when start change = ⊥),
co rfifo is asked to maintain reliable connection just to the end-points in p’s current
view, current view.set. When vs rfifo+tsp is engaged in a synchronization protocol,
it requires co rfifo to maintain reliable connection to the members of a forming view,
start change.set, as well as to those in current view.set. Thus, co rfifo avoids loss
of messages sent to the disconnected end-points in case these end-points are later added to
the forming view.

After setting the cut and telling co rfifo to maintain reliable connection to everyone in
current view.set ∪ start change.set, vs rfifo+tsp uses co rfifo.sendp to send the
synchronization message sync msg[p][start change.id] tagged with start change.id to
the end-points in start change.set − sync set, that is, to all those end-points in the
proposed membership to which this synchronization message has not already been sent.
Afterwards, sync set is adjusted to start change.set.

Whenever end-point p receives synchronization messages from other end-points,
via co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉), it saves 〈v, cut〉 in sync msg[q][cid].

vs rfifo+tsp restricts delivery of application messages while it is engaged in a synchroniza-
tion protocol (i.e., when start change 6= ⊥ and sync msg[p][start change.id] 6= ⊥): Prior
to receiving a new view from mbrshp, only the messages identified in the cut of its own latest
synchronization message, sync msg[p][start change.id].cut, can be delivered to the client.
After mbrshp.viewp(v) occurs, vs rfifo+tsp is allowed to deliver messages identified in the
cut sync msg[q][v.startId(q)].cut received from q, provided q is a member of the transi-
tional set from current view to v. An end-point q ∈ current view.set ∩ v.set is consid-
ered to be in the transitional set from current view to v if sync msg[q][v.startId(q)].view
is the same as p’s current view.

1The longest continuous prefix can be different from the length of msgs[q][current view] because for-
warded messages may arrive out of order and introduce gaps in the msgs queues.

75

automaton vs rfifo+tsp modifies wv rfifop

State Extension:
(StartChangeId × SetOf(Proc))⊥ start change, initially ⊥
For all Proc q, StartChangeId id: (View v, (Proc→Int) cut)⊥ sync msg[q][id], initially ⊥
SetOf(Proc) sync set, initially empty

SetOf((Proc × Proc × View × Int)) forwarded set, initially empty

Transition Restriction:
INPUT mbrshp.start changep(cid, set)

eff: if start change 6= ⊥ ∧ start change.id = cid

then sync set ← sync set ∩ set

else sync set ← ∅
start change ← 〈cid, set〉

OUTPUT co rfifo.reliablep(set)

pre: start change = ⊥ ⇒ set = current view.set

start change 6= ⊥ ⇒ set = current view.set ∪ start change.set

INTERNAL set cutp()

pre: start change 6= ⊥ ∧ sync msg[p][start change.id] = ⊥
eff: Let cut = {〈q, LongestPrefixOf(msgs[q][current view])〉 | q ∈ current view.set}

sync msg[p][start change.id] ← 〈current view, cut〉
sync set ← {p}

OUTPUT co rfifo.sendp(set, 〈‘sync msg’, cid, v, cut 〉)

pre: start change 6= ⊥ ∧ sync msg[p][start change.id] 6= ⊥
set = (start change.set - sync set) 6= ∅
set ⊆ reliable set

cid = start change.id ∧ 〈v, cut〉 = sync msg[p][cid]

eff: sync set ← start change.set

INPUT co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut 〉)

eff: sync msg[q][cid] ← 〈v, cut〉

OUTPUT deliverp(q, m)

pre: if (start change 6= ⊥ ∧ sync msg[p][start change.id] 6= ⊥) then

if start change.id 6= mbrshp view.startId(p) then

last dlvrd[q]+1 ≤ sync msg[p][start change.id].cut(q)

else let S = {r ∈ mbrshp view.set ∩ current view.set |

sync msg[r][mbrshp view.startId(r)].view = current view}
last dlvrd[q]+1 ≤ max

r ∈ S
sync msg[r][mbrshp view.startId(r)].cut(q)

OUTPUT viewp(v, T)

pre: v.startId(p) = start change.id // to prevent delivery of obsolete views
v.set - sync set = ∅ // all sync msgs are sent
last sent ≥ sync msg[p][v.startId(p)].cut(p) // sent out your own msgs
(∀ q ∈ v.set ∩ current view.set) sync msg[q][v.startId(q)] 6= ⊥
T = {q ∈ v.set ∩ current view.set | sync msg[q][v.startId(q)].view = current view}
(∀ q ∈ current view.set) last dlvrd[q] = max

r ∈ T
sync msg[r][v.startId(r)].cut(q)

eff: start change ← ⊥
sync set ← ∅

OUTPUT co rfifo.sendp(set,〈‘fwd msg’,r,v,m,i〉)

pre: (∀ q ∈ set) (〈q, r, v, i〉 6∈ forwarded set) ∧ ForwardStrategyPredicate(set, r, v, i)

eff: (∀ q ∈ set) add 〈q, r, v, i〉 to forwarded set

Figure 6.5: Virtually Synchronous reliable fifo multicast: State Extension & Transition
Restriction.

76

vs rfifo+tsp delivers a view v received from mbrshp and a transitional set T to its
client when p has received a synchronization message sync msg[q][v.startId(q)] from ev-
ery q in current view.set ∩ v.set, has computed T, and has delivered all the application
messages identified in the cuts of the members of T, as specified by the last three pre-
conditions on viewp(v, T). The first two preconditions ensure respectively that no new
mbrshp.start changep notification was issued after mbrshp.viewp(v) and that p has sent
its synchronization message to everybody in v.set. The third precondition specifies that p
has sent to others all of its own messages indicated in its own cut. All these preconditions
work in conjunction with those in wv rfifo.viewp(v).

Recall from Section 6.1 that wv rfifop allows for nondeterministic forwarding of other
end-points’ application mesages. vs rfifo+tsp resolves this nondeterminism by placing two
additional preconditions on co rfifo.sendp(set, 〈‘fwd msg’, r, v, m, i〉): The first checks a
variable forwarded set to make sure that message m was not previously forwarded to any-
one in set. The second tests that a certain ForwardingStrategyPredicate(set, r, v, i)
holds. This predicate is designed to ensure that all end-points in the transitional set
T are able to deliver all the messages that each has committed to deliver in its syn-
chronization message, in particular those sent by disconnected clients. End-points test
ForwardingStrategyPredicate to decide whether they need to forward any messages to
others.

Forwarding Strategy Predicate

We now provide two examples of ForwardingStrategyPredicates. With the first, multiple
copies of the same message may be forwarded by different end-points. The second strategy
reduces the number of forwarded copies of a message. Many other possible strategies exist.
For example, a strategy can employ randomization to decide whether an end-point should
forward a message in a certain time slice, and suppress forwarding of messages that have
already been forwarded by others.

A simple strategy: With our first strategy, end-point p forwards message m only if p has
committed to deliver m. In addition, if m was originally sent in view v, p forwards m to an
end-point q only if p does not know of any view of q later than v, and if the latest sync msg

from q sent in view v indicates that q has not received message m.

ForwardingStrategyPredicate(set, r, v, i) ≡
(∃ cid) (sync msg[p][cid].view = v ∧ i ≤ sync msg[p][cid].cut(r))

∧ set = { q | view msg[q] ≤ v ∧ (∃ cid ′) (sync msg[q][cid ′].view = v

∧ (6∃ cid ′ ′ > cid ′) sync msg[q][cid ′ ′].view = v

∧ sync msg[q][cid ′].cut(r) < i) }

If some end-point q is missing a certain message m, m will be forwarded to q by some end-
point p that has committed to deliver m, when p learns from q’s synchronization message
that q misses m.

Reducing the number of forwarded copies of a message: The second strategy relies
on the computed transitional set T from view v to v′ to decide which message should be for-

77

warded by which member of the transitional set. Assume that a member u of T misses a mes-
sage m that was originally sent in v by a non-member r of T, but that was committed to deliv-
ery by some other members of T. Among these members, ForwardingStrategyPredicate
selects the one with the minimal process-identifier to forward m to u; variations of this
predicate may use a different deterministic rule for selecting a member, for example, ac-
counting for network topology or communication costs. The selected end-point, p, forwards
the message to u only if view v′ is the latest view known to p, as specified by the first
conjunct below. Otherwise, v′ is an obsolete view, so there is no need to help u transition
in to v′. The described strategy does not forward to u ∈ T messages from the members
of T because u is guaranteed to receive these messages directly from their original senders
(unless v′ becomes obsolete because of further view changes occur).

ForwardingStrategyPredicate(set, r, v, i) ≡
Let v ′ = mbrshp view ∧ // latest view known to { p}

sync msg[p][v ′.startId(p)] 6= ⊥ ∧ // already sent own sync msg

Let v = sync msg[p][v ′.startId(p)].view ∧
(∀ q ∈ v.set ∩ v ′.set) sync msg[q][v ′.startId(q)] 6= ⊥ ∧ // received right sync msgs

Let T = {q ∈ v.set ∩ v ′.set | sync msg[q][v ′.startId(q)].view = v} ∧
r 6∈ T ∧ // only forward messages from end--point not in T

set = {u ∈ T | sync msg[u][v ′.startId(u)].cut(r) < i } ∧
p = min{u ∈ T | sync msg[u][v ′.startId(u)].cut(r) ≥ i }

If all end-points receive the same view from mbrshp, only one copy of m will be forwarded to
each u. In rare cases, however, when mbrshp delivers different views to different end-points,
more than one end-point may forward the same message m to the same end-point u.

Each end-point waits to receive a new view from mbrshp and all the right synchronization
messages before it forwards messages to others. Thus, compared to the first strategy, this
strategy reduces the communication traffic at the cost of slower recovery of lost messages.

Correctness Argument Overview

The vs rfifo+ts automaton, resulting from the composition of all end-point automata
and the mbrshp and co rfifo automata, satisfies the vsrfifo : spec and ts : spec safety
specifications, as well as Liveness Property 5.2.2, as we formally prove in Chapters 7.2, 7.3,
and 8, respectively. Below we give highlights of these proofs.

vsrfifo : spec is a modification of wv rfifo : spec. The proof that vs rfifo+ts satis-
fies vsrfifo : spec reuses the proof that wv rfifo satisfies wv rfifo : spec and involves
reasoning about only how vsrfifo : spec modifies wv rfifo : spec. The proof extends
refinement mapping R between wv rfifo and wv rfifo : spec with a mapping Rn. Rn
maps the cut used by the end-points of vs rfifo+ts to move from a view v to a view
v′ to the cut[v][v′] variable of vsrfifo : spec. The proof depends on Invariant 7.2.1 and
Corollary 7.2.1, which state that all end-points that move from a view v to a view v′ use
the same synchronization messages, compute the same transitional set T, and therefore, use
the same cut.

78

The proof in Chapter 7.3 shows that vs rfifo+ts satisfies ts : spec. The proof augments
vs rfifo+tsp with a prophecy variable that guesses, at the time end-point p receives a
start changep(cid, set) notification from mbrshp, possible future views that may contain
cid in their startId(p) mappings. For each of these views v′, vs rfifo+ts simulates a
set prev viewp(v

′) action of ts : spec, thereby fixing the previous view of v′ to be p’s
current view v.

In a fair execution of vs rfifo+ts in which the same last view v′ is delivered to all its
members and no start change events subsequently occur, the three preconditions on the
viewp(v

′, Tp) delivery are eventually satisfied for every p ∈ v′.set:

1. Condition v′.startId(p) = start change.id remains true since the execution has no
subsequent start change events at p.

2. End-point p eventually receives synchronization messages tagged with the “right” cid

from every member of v.set ∩ v′.set because they keep taking steps towards reliably
sending these synchronization messages to p (by low-level fairness of the code) and
because co rfifo eventually delivers these messages to p (by the liveness assumption
on co rfifo).

3. End-point p eventually receives and delivers all the messages committed to in the cuts
of the members of the transitional set Tp because for each such message there is at
least one end-point in Tp that has the message in its msgs buffer and that will reliably
forward it to p (according to the ForwardingStrategyPredicate) if necessary. Also,
p never delivers any messages beyond those committed to in the cuts of the members
of Tp because of the precondition on application message delivery.

6.3 Adding support for Self Delivery

As a final step in constructing the automaton that models an end-point of our group com-
munication service, gcsp, we add support for Self Delivery to the vs rfifo+tsp automaton
presented above. Self Delivery requires each end-point to deliver to its client all the messages
the client sends in a view, before moving on to the next view.

In order to implement Self Delivery, Virtually-Synchronous Delivery, and Within-View De-
livery together in a live manner, each end-point must block its client from sending new
messages while a view change is taking place (as proven in [43]). Therefore, we add to
vs rfifo+tsp an output action block and an input action block ok. We assume that the
client at end-point p has the matching actions and that it eventually responds to every
block request with a block ok response and subsequently refrains from sending messages
until a view is delivered to it. In Section 7.4, we formalize this requirement as an abstract
client automaton.

The gcsp automaton appears in Figure 6.6. After receiving the first start change notifi-
cation in a given view, end-point p issues a block request to its client and awaits receiving
a block ok response before executing set cutp(). As a result of set cutp(), p commits to
deliver all the messages its client has sent in the current view. Therefore, p has to deliver

79

automaton gcsp = vs rfifo+ts+sdp modifies vs rfifo+tsp

Signature Extension:
Input: block okp() new
Internal: set cutp() modifies set cutp()

Output: blockp() new
viewp(v,T) modifies vs rfifo+ts.viewp(v,T)

State Extension:
block status ∈ {unblocked, requested, blocked}, initially unblocked

Transition Restriction:
INTERNAL set cutp()

pre: block status = blocked

OUTPUT viewp(v,T)

eff: block status ← unblocked

OUTPUT blockp()

pre: start change 6= ⊥
block status = unblocked

eff: block status ← requested

INPUT block okp()

eff: block status ← blocked

Figure 6.6: GCSp end-point automaton.

all these messages before moving on to a new view, and Self Delivery is satisfied. Due to
the use of inheritance, the gcs automaton preserves all the safety properties satisfied by
its parent. Since end-point p has its own messages on the msgs[p][p] queue and can deliver
them to its client, liveness is also preserved. Thus, gcs satisfies all the properties we have
specified in Chapter 5.

6.4 Optimizations and Extensions

Having formally presented the basic algorithm for an end-point of our Virtually-Synchronous
GCS, we now discuss several optimizations and extensions that can be added to the algo-
rithm to make its implementation more practical. Specifically, we discuss ways to reduce
the size and number of synchronization messages, as well as to avoid the use of non-volatile
storage. We also discuss garbage collection.

The first optimization that reduces the size of synchronization messages relies on the fol-
lowing observation: An end-point p does not need to send its current view and its cut to
end-points that are not in current view.set because p cannot be included in their transi-
tional sets. However, these end-points still need to hear from p if p is in their current views.
Therefore, end-point p could send a smaller synchronization message to the end-points in
start change.set − current view.set, containing its start change.id only (but neither a
view nor a cut). This message would be interpreted as saying “I am not in your transitional
set”, and the recipients of this message would know not to include p in their transitional
sets for views v′ with v′.startId(p) = p’s start change.id. When using this optimization,
p also does not need to include its current view in the synchronization messages sent to
current view.set− start change.set, since the view information can be deduced from
p’s view msg.

An additional optimization can be used if we strengthen the membership specification to re-
quire a mbrshp.start change with a new identifier to be sent every time mbrshp changes its
mind about the membership of a forming view. In this case, the latest mbrshp.start change

80

has the same membership as the delivered mbrshp.view. Therefore, the synchronization
messages can be shortened to not include information about application messages delivered
from end-points in start change.set ∩ current view.set: for an end-point p, end-points
that have p in their transitional sets will deliver all the application messages that p sent
before its synchronization message.

Other optimizations can reduce the total number of messages sent during synchronization
protocol by all end-points. A simple way to do this is to transform the algorithm into a
leader-based one, as [93, 82]. A more scalable approach was suggested by Guo et al. [47].
Their algorithm uses a two-level hierarchy for message dissemination in order to implement
Virtual Synchrony: end-points send synchronization messages to their designated leaders,
which in turn exchange only the cumulative information among themselves. Also, the
number of messages exchanged to synchronize multiple groups can be reduced, as suggested
in [18, 81], by aggregating information pertaining to multiple groups into a single message.

Another optimization addresses the use of stable storage. Recall that in Chapter 4 we
assumed that end-points keep their running states on stable storage, and therefore, recover
with their state intact. However, our group multicast service does provide meaningful
semantics even when gcs end-points maintain their running state on volatile storage. When
an end-point p recovers after a crash, it can start executing with its state reset to an initial
value with current view being the singleton view vp. It needs to contact the mbrshp

service to be re-admitted to its groups. The client would refrain from sending any messages
in its recovered view until it receives a new view from its end-point. This view would satisfy
Local Monotonicity and Self Inclusion because these are the properties guaranteed by the
mbrshp service. The specification of Virtually-Synchronous Delivery should be changed so
that recovery is interpreted as delivering a singleton view. The remaining safety properties
are also preserved because they involve message delivery within a single view.

In a practical implementation of our service, some sort of garbage collection mechanism
is required in order to keep the buffer sizes finite. The implementation of [92] discards
messages from older views when moving to a new view, and also when learning that they
were already delivered to every client in the view. This implementation also discards older
synchronization messages: an end-point holds on to only the latest synchronization message
it has received from each end-point. This optimization does not violate liveness since
discarded synchronization messages necessarily pertain to obsolete views.

81

82

Chapter 7

Correctness Proof: Safety
Properties

We now formally prove using invariant assertions and simulations that our algorithms sat-
isfies the safety properties of Section 5.1. Proofs done with invariant assertions and simula-
tions are verifiable (even by a computer) because they involve reasoning only about single
steps of the algorithm. A review of the standard proof techniques used in this chapter
appears in Chapter 2; our incremental verification technique is presented in Chapter 3.

The safety proof is modular: we exploit the inheritance-based structure of our specifica-
tions and algorithms to reuse proofs. In Section 7.1 we prove correctness of the within-
view reliable fifo multicast service by showing a refinement mapping from wv rfifo to
wv rfifo : spec. In Section 7.2 we extend this refinement mapping to map the new state
added in vs rfifo+ts to that in vsrfifo : spec. In Section 7.3 we prove that vs rfifo+ts

also simulates ts : spec. Finally, in Section 7.4 we extend the refinement above to map
the new state of gcs to that of self : spec. The proof-extension theorem of Chapter 3
implies that the gcs automaton satisfies wv rfifo : spec, vsrfifo : spec, ts : spec, and
self : spec.

7.1 Within-view reliable fifo multicast

Intuitively, in order to simulate wv rfifo : spec with wv rfifo, we need to show that
wv rfifo satisfies Self Inclusion and Local Monotonicity for delivered views, and we need
to show that the i’th message delivered by q from p in view v is the i’th message sent in view
v by the client at p. In order to prove this, we need to show that the algorithm correctly
associates messages with the views in which they were sent and with their indices in the
sequences of messages sent in these views. We split the proof into three parts: Section 7.1.1
states key invariants, but defers the proof of one of them to Section 7.1.3; Section 7.1.2
contains the simulation proof.

83

7.1.1 Key Invariants

The following invariant captures the Self Inclusion property.

Invariant 7.1.1 (Self-Inclusion) In every reachable state s of wv rfifo, for all Proc p,
p ∈ s[p].mbrshp view.set and p ∈ s[p].current view.set.

Proof 7.1.1: Immediate from the mbrshp specification.

The Local Monotonicity property follows directly from the precondition, v.id > mbrshp view,
of the mbrshp.viewp(v) actions.

The following invariant relates application messages at different end-points’ queues to the
corresponding messages on the original senders’ queues.

Invariant 7.1.2 (Message Consistency) In every reachable state s of wv rfifo, for all
Proc p and Proc q, if s[q].msgs[p][v][i] = m, then s[p].msgs[p][v][i] = m.

This proposition is vacuously true in the initial state because all message queues are empty.
For the inductive step, we have to consider actions co rfifo.deliverq,p(〈‘app msg’, m〉)
and co rfifo.deliverq,p(〈‘fwd msg’, r, v, m, i〉), and have to argue that the message m they
deliver is placed in the right place in q’s msgs buffer. The proof of this invariant appears
in Section 7.1.3, after the simulation proof.

7.1.2 Simulation

Lemma 7.1.1 The following function R is a refinement mapping from automaton wv rfifo

to automaton wv rfifo : spec with respect to their reachable states.

R(s ∈ ReachableStates(wv rfifo)) = t ∈ ReachableStates(wv rfifo : spec), where

For each Proc p, View v: t.msgs[p][v] = s[p].msgs[p][v]

For each Proc p, Proc q: t.last dlvrd[p][q] = s[q].last dlvrd[p]

For each Proc p: t.current view[p] = s[p].current view

Proof 7.1.1:

Action Correspondence: Automaton wv rfifo : spec has three types of actions. Ac-
tions of the types viewp(v), sendp(m), and deliverp(q, m), are simulated when wv rfifo

takes the corresponding viewp(v), sendp(m), and deliverp(q, m) actions. Steps of wv rfifo

involving other actions correspond to empty steps of wv rfifo : spec.

Simulation Proof: In the most part the simulation proof is straightforward. Here, we
present only the interesting steps:

84

The fact that the corresponding step of wv rfifo : spec is enabled when wv rfifo takes
a step involving viewp(v) relies on p ∈ mbrshp view.set (Invariant 7.1.1).

For the steps involving the deliverp(q, m) action, in order to deduce that the corresponding
step of wv rfifo : spec is enabled, we need to know that the message located at index
s[p].last dlvrd[q] + 1 on the s[p].msgs[q][s[p].current view] queue is the same
message that end-point q has on its corresponding queue at the same index. This property
is implied by Invariant 7.1.2.

Steps that involve receiving original and forwarded application messages from the network
simulate empty steps of wv rfifo : spec. Among these steps the only critical ones are
those that deliver a message from p to p because they may affect s[p].msgs[p][p] queue.
Since end-points do not send messages to themselves, such steps may not happen. Indeed,
co rfifo.sendp(set, 〈‘app msg’, m〉) has a precondition set = s[p].current view.set

− {p}, and co rfifo.sendp(set, 〈‘fwd msg’, r, v, m, i〉) has a precondition p 6∈ set.

From Lemma 7.1.1 and Theorem 2.2.1 we conclude the following:

Theorem 7.1.2 wv rfifo implements wv rfifo : spec in the sense of trace inclusion.

7.1.3 Auxiliary Invariants

We now state and prove a number of auxiliary invariants necessary for the proof of the key
message consistency invariant (Invariant 7.1.2).

In any view, before an end-point sends a view msg to others (and hence before it sends any
application message to others) it tells co rfifo to maintain reliable connection to every
member of its current view. The following invariant captures this property.

Invariant 7.1.3 (Connection Reliability) In every reachable state s of wv rfifo, for
all Proc p, if s[p].current view = s[p].view msg[p], then s[p].current view.set ⊆
s[p].reliable set.

Proof 7.1.3: By induction on the length of the execution sequence; follows directly from
the code.

After an end-point delivers a new view to its client, it sends a view msg to other members
of the view. The stream of view msgs that an end-point sends to others is monotonic
because the delivered views satisfy Local Monotonicity. The following invariant captures
this property. It states that the subsequence of messages in transit from end-point p to
end-point q consisting solely of the view msg s is monotonically increasing. It also relates
the current view of an end-point p to the view contained in the p’s latest view msg to q.

Invariant 7.1.4 (Monotonicity of View Messages) Let s be a reachable state of
wv rfifo. Consider the subsequence of messages in s.channel[p][q] of the ViewMsg

type. Examine the sequence of views included in these view messages, and construct a new

85

sequence seq of views by pre-pending this view sequence with the element s[q].view msg[p].
For all Proc p, Proc q, the following propositions are true:

1. The sequence seq is (strictly) monotonically increasing.

2. If s[p].current view 6= s[p].view msg[p], then s[p].current view is strictly
greater then the last (largest) element of seq.

3. If s[p].current view = s[p].view msg[p], and if q ∈ s[p].current view.set,
then s[p].current view is equal to the last (largest) element of seq.

Proof 7.1.4: All three propositions are true in the initial state. We now consider steps
involving the critical actions:
co rfifo.lose(p, q): The first two propositions remain true because this action throws
away only the last message from the co rfifo s.channel[p][q].

The third proposition is vacuously true because q can not be in s[p].current view.set. If
it were, the co rfifo.lose(p, q) action would not be enabled because Invariant 7.1.3 would
imply that s[p].current view.set is a subset of s[p].reliable set, which would then
imply that q ∈ s.reliable set[p] (because s[p].reliable set = s.reliable set[p],
as can be shown by straightforward induction).

viewp(v): The first proposition is unaffected. The second proposition follows from the in-
ductive hypothesis and the precondition v.id > s[p].current view.id. The third propo-
sition is vacuously true because s[p].current view 6= s[p].view msg[p] as follows from
the precondition v.id > s[p].current view.id and the fact that, in every reachable state
s, s[p].current view ≥ s[p].view msg[p] (can be proved by straightforward induction).

co rfifo.sendp(set, 〈‘view msg’, v〉): The first proposition is true in the post-state be-
cause of the inductive hypothesis of the second proposition. The second proposition is
vacuously true in the post-state. The third proposition is true in the post-state because of
the effect of this action.

co rfifo.deliverp,q(〈‘view msg’, v〉): It is straightforward to see that all three proposi-
tions remain true in the post-state.

History Tags

In order to reason about original application messages traveling on co rfifo channels
we need a way to reference, for each of these messages, the view in which it was origi-
nally sent and its index in the fifo-ordered sequence of messages sent in that view. To
this end, we augment each original application message 〈‘app msg’, m〉 with two history
tags, Hv and Hi, that are set to current view and last sent + 1 respectively when
co rfifo.sendp(set, 〈‘app msg’, m〉) occurs. (See Chapter 2 for details on history vari-
ables).

OUTPUT co rfifo.sendp(set, 〈‘app msg’, m, Hv, Hi〉)

pre: ...

Hv = current view

Hi = last sent + 1

eff: ...

86

With the history tags, the interface between wv rfifo and co rfifo for handling original
application messages becomes co rfifo.sendp(set, 〈‘app msg’, m, Hv, Hi〉) and
co rfifo.deliverp,q(〈‘app msg’, m, Hv, Hi〉).

The goal of the next three invariants is to show that, when end-point q receives an appli-
cation message m tagged with a history view Hv and a history index Hi, the current value
of q’s view msg[p] equals Hv and that of last rcvd[p] + 1 equals Hi.

Invariant 7.1.5 (History View Consistency) In every reachable state s of wv rfifo,
for all Proc p, Proc q, the following holds: For all messages 〈‘app msg’, m, Hv, Hi〉 on the
co rfifo s.channel[p][q], view Hv equals either the view of the closest preceding view
message on s.channel[p][q] if there is such, or s[q].view msg[p] otherwise.

Proof 7.1.5: Induction. A step involving co rfifo.sendp(set, 〈‘app msg’, m, Hv, Hi〉) fol-
lows directly from Invariant 7.1.4 Part 3. The proposition is not affected by steps involving
co rfifo.lose(p, q) because those may only remove the last messages from the co rfifo

s.channel[p][q]. The other steps are straightforward.

The following invariant states that the value of s[p].last sent equals to the number of
application messages that p sent in its current view and that are either still in transit on
the co rfifo s.channel[p][q] or are already received by q.

Invariant 7.1.6 In every reachable state s of wv rfifo, for all Proc p and for all Proc q,
such that q ∈ s[p].current view.set − {p}, the following is true:

s[p].last sent =
∣

∣{msg ∈ s.channel[p][q] : msg ∈ AppMsg and msg.Hv = s[p].current view}
∣

∣ +

+

{

s[q].last rcvd[p] if s[q].view msg[p] = s[p].current view

0 otherwise.

Proof 7.1.6: By induction. Consider steps involving the following critical actions:
co rfifo.lose(p, q): Assume that the last message on s.channel[p][q] is an application
message msg with msg.Hv = s[p].current view. If a step involving co rfifo.lose(p, q)
action could occur, then the proposition would be false. However, as we are going to argue
now, q ∈ s.reliable set[p], so such a step cannot occur.

We can prove by induction that msg ∈ s.channel[p][q] implies s[p].view msg[p] =
s[p].current view. By invariant 7.1.3, s[p].current view.set ⊆ s[p].reliable set.
Since q ∈ s[p].current view.set and s[p].reliable set = s.reliable set[p], it fol-
lows that q ∈ s.reliable set[p].

viewp(v): The proposition remains true for steps involving viewp(v) action because its effect

sets s′[p].last sent to 0 and because both summands of the right hand side of the equation
also becomes 0. Indeed, the first summand becomes 0 because co rfifo channels never
have messages tagged with views that are larger then the current views of the messages’
senders (as can be shown by a simple inductive proof); the second summand becomes 0

because Invariant 7.1.4 Part 2 implies that s′[q].view msg[p] 6= s′[p].current view.

87

co rfifo.deliverp,q(〈‘view msg’, v〉): The proposition remains true for steps involving
this action because s[q].view msg[p] 6= s[p].current view, as follows immediately from
Invariant 7.1.4.

co rfifo.sendp(set, 〈‘app msg’, m, Hv, Hi〉) and

co rfifo.deliverp,q(〈‘app msg’, m, Hv, Hi〉): For steps involving these actions the truth
of the proposition follows immediately from the effects of these actions, the inductive hy-
potheses, and Invariant 7.1.5.

The history index attached to an original application message m sent in a view Hv that is
in transit on a co rfifo channel to end-point q is equal to the number of such messages
(including m) that precede m on that channel, plus those (if any) that q has already received.

Invariant 7.1.7 (History Indices Consistency) In every reachable state s of wv rfifo,
for all Proc p and Proc q, if 〈〈‘app msg’, m, Hv, Hi〉 〉 = s.channel[p][q][j] for some
index j, then

Hi =
∣

∣{msg ∈ s.channel[p][q][.. j] : msg ∈ AppMsg and msg.Hv = Hv}
∣

∣ +

+

{

s[q].last rcvd[p] if s[q].view msg[p] = Hv

0 otherwise.

Proof 7.1.7: In the initial state s.channel[p][q] is empty. For the inductive step, we
consider steps involving the following critical actions:
co rfifo.lose(p, q): The proposition remains true since co rfifo.lose(p, q) discards only
the last messages from the co rfifo s.channel[p][q].

co rfifo.deliverp,q(〈‘view msg’, v〉): We have to consider the effects on two types of
application messages: those associated with view s[q].view msg[p], and those associated
with view Hv. Invariants 7.1.4 Part 1 and 7.1.5 imply that there are no application messages
with msg.Hv =
s[q].view msg[p] on the co rfifo channel[p][q]. Thus, the proposition does not apply
for such messages. For those messages that have msg.Hv = Hv, the proposition remains
true because s′[q].last rcvd[p] is set to 0 as a result of this action.

co rfifo.deliverp,q(〈‘app msg’, m, Hv, Hi〉): Follows immediately from the effect of this
action, the inductive hypothesis, and Invariant 7.1.5.

co rfifo.sendp(set, 〈‘app msg’, m, Hv, Hi〉): The inductive step follows immediately from
the inductive hypothesis and Invariant 7.1.6.

We now prove a generalization of Invariant 7.1.2, which relates application messages either
in transit on the co rfifo channels or at end-points’ queues to their corresponding messages
on the senders’ queues.

Invariant 7.1.8 (General Message Consistency) In every reachable state s of
wv rfifo, for all Proc p and Proc q, the following are true:

1. If 〈〈‘app msg’, m, Hv, Hi〉 ∈ s.channel[p][q], then s[p].msgs[p][Hv][Hi] = m.

88

2. If 〈‘fwd msg’, r, m, v, i〉 ∈ s.channel[p][q], then s[r].msgs[r][v][i] = m.

3. If s[q].msgs[p][v][i] = m, then s[p].msgs[p][v][i] = m.

Proof 7.1.8:

Basis: In the initial state all message queues are empty.

Inductive Step: The following are the critical actions:

sendp(m),

co rfifo.sendp(set, 〈‘app msg’, m, Hv, Hi〉),

co rfifo.deliverq,p(〈‘app msg’, m, Hv, Hi〉),

co rfifo.sendp(set, 〈‘fwd msg’, r, v, m, i〉),

co rfifo.deliverq,p(〈‘fwd msg’, r, v, m, i〉).

For steps involving co rfifo.deliverq,p(〈‘app msg’, m, Hv, Hi〉), we use Invariants 7.1.5
and Invariant 7.1.7, which respectively imply that history view Hv equals s[p].view msg[q]

and that history index Hi equals s[p].last rcvd[q] + 1. Inductive steps involving each
of the other actions are straightforward.

Invariant 7.1.2 is a private case of this invariant.

7.2 Virtual Synchrony

We now show that automaton vs rfifo+ts simulates vsrfifo : spec. We prove this by
extending the refinement above using the Proof Extension Theorem of Chapter 3.

7.2.1 Invariants

We prove that end-points that move together from one view to the next consider the same
synchronization messages and thus compute the same transitional sets and use the same
cuts from the members of the transitional set.

Invariant 7.2.1 In every reachable state s of vs rfifo+ts, for all Proc p, Proc q, and
for every
StartChangeId cid,

if s[q].sync msg[p][cid] 6= ⊥, then s[q].sync msg[p][cid] = s[p].sync msg[p][cid].

Proof 7.2.1: The proposition is true in the initial state s0 as all s0[q].sync msg[p][cid] = ⊥.
The inductive step involving a set cutp() action is trivial, for it only affects the case q =
p. The inductive step involving a co rfifo.deliverp,q(〈‘sync msg’, cid, v, cut〉) action
follows immediately from the following proposition:

〈‘sync msg’, cid, v, cut〉 ∈ s.channel[p][q] ⇒ s[p].sync msg[p][cid] = 〈v, cut〉,

89

which can be proved by straightforward induction. Indeed, there are two critical actions:
co rfifo.sendp(set, 〈‘sync msg’, cid, v, cut〉) – immediate from the code, and
co rfifo.deliverp,p(〈‘sync msg’, cid, v, cut〉) – may not occur because end-points do not
send synchronization messages to themselves.

Corollary 7.2.1 End-points that move together from one view to the next, use the same
sets of synchronization messages to calculate transitional sets and message cuts.

Proof : Consider two end-points that deliver view v′ while in view v. At the time of
delivering view v′, each of these end-points has synchronization messages from all end-
points in the intersection of these views (second precondition), and these synchronization
messages are the same as those at their original end-points (Invariant 7.2.1). Thus, the two
end-points calculate the same transitional sets, and use the same cuts from the members of
this transitional set.

7.2.2 Simulation

We augment vs rfifo+ts with a global history variable H cut that keeps track of the cuts
used for moving between views.

For each View v, v ′: (Proc → Int)⊥ H cut[v][v ′], initially ⊥

OUTPUT viewp(v, T) modifies wv rfifo.viewp(v)

pre: ...

eff: ...

(∀ q ∈ Proc)

H cut[current view][v](q) ← maxr∈T (sync msg[r][v.startId(r)].cut(q))

Variable H cut[v][v′] is updated every time any end-point is delivering view v′ while in view
v. Corollary 7.2.1 implies that whenever this happens after H cut[v][v′] is set for the first
time the value of H cut[v][v′] remains unchanged.

We now extend the refinement mapping R() of Lemma 7.1.1 with the new mapping Rn():

For each View v, View v′: Rn(s.H cut[v][v′]) = cut[v][v′].

We call the resulting mapping R′(). We exploit the Proof Extension Theorem of Chapter 3
in order to prove that R′() is a refinement mapping from vs rfifo+ts to vsrfifo : spec.

Lemma 7.2.1 Function R′() defined above is a refinement mapping from vs rfifo+ts to
vsrfifo : spec.

Proof 7.2.1:

90

Action Correspondence: The action correspondence is the same as that of wv rfifo,
except for the steps of the type (s, viewp(v

′, T), s′) which involve vs rfifo+ts delivering
views to the application clients. Among these steps, those that are the first to set variable
H cut[v][v′] (when s.H cut[v][v′] = ⊥) simulate two steps of vsrfifo : spec:
set cut(v, v′, s′.H cut[v][v′]) followed by viewp(v

′). The rest (when s.H cut[v][v′] 6= ⊥)
simulate single steps that involve just viewp(v

′).

Simulation Proof:

First, we show that the refinement mapping of wv rfifo (presented in Lemma 7.1.1) is
still preserved after the modifications introduced by vsrfifo : spec to wv rfifo : spec.
Automaton vsrfifo : spec adds the following preconditions to the viewp(v) actions of au-
tomaton wv rfifo : spec:

cut[current view[p]][v] 6= ⊥
(∀ q) last dlvrd[q][p] = cut[current view[p]][v](q)

The first precondition holds since set cut(current view[p], v, s′.H cut[current view[p]][v])
is simulated before viewp(v). The second one follows immediately from the precondition
on vs rfifo+ts.viewp(v, T), and the extended mapping R′().

Second, we show that the mapping Rn() used to extend R() to R′() is also a refinement.
For those steps (s, viewp(v

′, T), s′) that are the first to set variable H cut[v][v′], the action
correspondence implies that the mapping is preserved. For those steps that are not the first
to set variable H cut[v][v′], the mapping is preserved because s′.H cut[v][v′] = s.H cut[v][v′],
by Corollary 7.2.1.

From Lemmas 7.1.1 and 7.2.1 and from Theorem 2.2.1 we conclude the following:

Theorem 7.2.2 vs rfifo+ts implements vsrfifo : spec in the sense of trace inclusion.

7.3 Transitional Set

We now show that vs rfifo+ts simulates ts : spec. The proofs makes use of prophecy
variables. A simulation proof that uses prophecy variables implies only finite trace inclusion,
but this is sufficient for proving safety properties, (see Chapter 2).

7.3.1 Invariants

Invariant 7.3.1
In every reachable state s of vs rfifo+ts, for all Proc p and for all StartChangeId id,
if id > s[mbrshp].start change[p].id, then s[p].sync msg[p][id] = ⊥.

Proof 7.3.1: The proposition is true in the initial state. It remains true for the inductive
step involving mbrshp.start changep(id, set) because s[mbrshp].start change[p].id

is increased as a result of this action. For the step involving set cutp(), the proposition

91

remains true because s[p].start change.id = s[mbrshp].start change[p].id, as im-
plied by the following invariant, which can be proved by straightforward induction:

In every reachable state s of vs rfifo+ts, for all Proc p, if s[p].start change.id 6= ⊥,
then s[mbrshp].start change[p].id = s[p].start change.id. This invariant holds in
the initial state. Critical action mbrshp.start changep(id, set) makes it true; Critical
action viewp(v, T) makes it vacuously true.

Finally, a step involving co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉) does not affect the
proposition because the case q=p can not happen since end-points do not send synchroniza-
tion messages to themselves.

Lemma 7.3.1 For any step (s,mbrshp.start changep(id, set), s
′) of vs rfifo+ts,

s[p].sync msg[p][start change.id] = ⊥.

Proof 7.3.1: Follows from the precondition id > s[mbrshp].start change[p].id and
Invariant 7.3.1.

Invariant 7.3.2 In every reachable state s of vs rfifo+ts, for all Proc p,
if s[p].start change 6= ⊥ and s[p].sync msg[p][s[p].start change.id] 6= ⊥, then

s[p].sync msg[p][s[p].start change.id].view = s[p].current view.

Proof 7.3.2: The proposition is vacuously true in the initial state. For the inductive step,
consider the following critical actions:
mbrshp.start changep(id, set): The proposition remains vacuously true because

s′[p].sync msg[p][start change.id] = s[p].sync msg[p][start change.id] = ⊥ (Lemma 7.3.1).

set cutp(): Follows immediately from the code.

co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉): The proposition is unaffected because the
case q=p can not happen since end-points do not send synchronization messages to them-
selves.

viewp(v): The proposition becomes vacuously true because s′[p].start change = ⊥.

7.3.2 Simulation

We augment vs rfifo+ts with a prophecy variable P legal views(p)(id) for each Proc p,
and each StartChangeId id. At the time a start change id is delivered to an end-point p,
this variable is set to a predicted finite set of future views that are allowed to contain id as
p’s start change id.

92

Prophecy Variable:

For each Proc p, StartChangeId id: SetOf(View) P legal views(p)(id), initially

arbitrary

INTERNAL mbrshp.start changep(id, set) hidden parameter V, a finite set of views

pre: ...

choose V such that ∀ v ∈ V: (p ∈ v.set) ∧ (v.startId(p) = id)

eff: ...

P legal views(p)(id) ← V

OUTPUT viewp(v, T)

pre: ...

(∀ q ∈ v.set) v ∈ P legal views(q)(v.startId(q))

eff: ...

The vs rfifo+ts automaton augmented with the prophecy variable has the same traces
as those of the original automaton because, it is straightforward to show that the following
conditions required for adding a prophecy variable hold:

1. Every state has at least one value for P legal views(p)(id).

2. No step is disabled in the backward direction
by the new preconditions involving P legal views.

3. Values assigned to state variables do not depend on the values of P legal views.

4. If s0 is an initial state of vs rfifo+ts, and 〈s0, P legal views〉 is a state of the
automaton vs rfifo+ts augmented with the prophecy variable, then this state is an
initial state.

Invariant 7.3.3
In every reachable state s of vs rfifo+ts, for all Proc p, if s[p].start change 6= ⊥,
then, for all View v ∈ P legal views(p)(s[p].start change.id), it follows that p ∈
v.set and v.startId(p) = s[p].start change.id.

Proof 7.3.3: By induction. The only critical actions are mbrshp.start changep(id, set)
and viewp(v, T). The proposition is true after the former, and is vacuously true after the
latter.

Lemma 7.3.2 The following function TS() is a refinement mapping
from automaton vs rfifo+ts to automaton ts : spec with respect to their reachable states.

TS(s ∈ ReachableStates(vs rfifo+ts)) = t ∈ ReachableStates(ts : spec), where

For each Proc p: t.current view[p] = s[p].current view

For each Proc p, View v: t.prev view[p][v] =

=

{

⊥ if v 6∈ s.P legal views[p][v.startId(p)]

s[p].sync msg[p][v.startId(p)].view otherwise

Proof 7.3.2:

93

Action Correspondence: A step (s, set cutp(), s
′) of vs rfifo+ts simulates a sequence

of steps of ts : spec. The sequence consists of steps that invlove one set prev viewp(v
′)

action for each v′ ∈ s.P legal views(p)(cid), where cid = s[p].start change.id. A step
(s, viewp(v, T), s

′) of vs rfifo+ts simulates (TS(s), viewp(v, T), TS(s
′)) of ts : spec.

Simulation Proof: Consider the following critical actions:
mbrshp.start changep(id, set): A step involving this action simulates an empty step of

ts : spec. The simulation holds because s′[p].sync msg[p][id] = s[p].sync msg[p][id]

= ⊥ (Lemma 7.3.1).

set cutp(): simulates a sequence of steps of ts : spec that involve one set prev viewp(v
′)

for each v′ ∈ s.P legal views(p)(cid), where cid = s[p].start change.id. Each such
step is enabled as can be seen from the following derivation:

TS(s).prev view[p][v’] =

= s[p].sync msg[p][v’.startId(p)].view (Refinement mapping)

= s[p].sync msg[p][cid].view (Invariant 7.3.3)

= ⊥. (Precondition of set cutp())

In the post-state, s’[p].sync msg[p][cid].view and all TS(s’).prev view[p][v’] are
equal to s[p].current view, thus the simulation step holds.

co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉): A step involving this action does not af-
fect any of the variables of the refinement mapping and thus simulates an empty step of
ts : spec. In particular, note that the case of q=p may not happen because end-points do
not send synchronization messages to themselves.

viewp(v, T): A step involving this action simulates a step of ts : spec that involves viewp(v, T).

The key thing is to show that it is enabled (since it is straightforward to see that, if it is,
the refinement is preserved). Action viewp(v, T) of ts : spec has three preconditions. The
fact that they are enabled follows directly from the inductive hypothesis, the code, the
refinement mapping, and Invariants 7.3.2 and 7.3.3.

From Lemma 7.3.2 and Theorem 2.2.1 we conclude the following:

Theorem 7.3.3 vs rfifo+ts implements ts : spec in the sense of finite trace inclusion.

7.4 Self Delivery

We now prove that the complete gcs end-point automaton simulates self : spec. In order
to prove this, we need to formalize our assumptions about the behavior of the clients
of a gcs end-point: we assume that a client eventually responds to every block request
with a block ok response and subsequently refrains from sending messages until a view is
delivered to it. We formalize this requirement by specifying an abstract client automaton
in Figure 7.4. In this automaton, each locally controlled action is defined to be a task by
itself, which means that it eventually happens if it becomes enabled unless it is subsequently
disabled by another action.

94

automaton clientp : spec

Signature:
Input: deliverp(q, m), Proc q, AppMsg m

viewp(v), View v

blockp()

Output: sendp(m), AppMsg m

block okp()

State: block status ∈ {unblocked, requested, blocked}, initially unblocked

Transitions:
INPUT blockp()

eff: block status ← requested

OUTPUT block okp()

pre: block status = requested

eff: block status ← blocked

OUTPUT sendp(m)

pre: block status 6= blocked

eff: none

INPUT deliverp(q, m)

eff: none

INPUT viewp(v)

eff: block status ← unblocked

Figure 7.1: Abstract specification of a blocking client at end-point p

7.4.1 Invariants

The following invariant states that gcs end-points and their clients have the same perception
of what their block status is.

Invariant 7.4.1 In every reachable state s of gcs, for all Proc p,
s[gcsp].block status = s[clientp].block status.

Proof 7.4.1: Trivial induction.

Invariant 7.4.2 In every reachable state s of gcs, for all Proc p, if s[p].start change

6= ⊥ and

s[p].block status 6= blocked, then s[p].sync msg[p][s[p].start change.id] = ⊥.

Proof 7.4.2: In the initial state s0, s0[p].start change = ⊥; so the proposition is vacu-
ously true. For the inductive step, consider the following critical actions:
mbrshp.start changep(id, set): The proposition remains true because of Lemma 7.3.1.

blockp(): The proposition is true in the post-state if it is true in the pre-state.

block okp(): The proposition becomes vacuously true, as s′[p].block status = blocked.

set cutp(): The proposition remains vacuously true because

s[p].block status = s′[p].block status = blocked.

co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉): The proposition is unaffected because the
case q=p can not happen since end-points do not send synchronization messages to them-
selves.

viewp(v, T): The proposition becomes vacuously true because s′[p].start change = ⊥.

95

Invariant 7.4.3 In every reachable state s of gcs, for all Proc p, if s[p].start change

6= ⊥ and
s[p].sync msg[p][s[p].start change.id] 6= ⊥, then
s[p].sync msg[p][s[p].start change.id].cut[p] =
=LastIndexOf(s[p].msgs[p][s[p].current view]).

Proof 7.4.3: In the initial state s0, s0[p].start change = ⊥, so the proposition is vacu-
ously true. For the inductive step, consider the following critical actions:
sendp(m): The proposition is vacuously true because s′[p].sync msg[p][s[p].start change.id]

= ⊥, as follows from the precondition s[clientp].block status 6= blocked on this action
at clientp, and from Invariants 7.4.1 and 7.4.2.

mbrshp.start changep(id, set): The proposition is vacuously true because

s′[p].sync msg[p][id] = s[p].sync msg[p][id], which by Lemma 7.3.1 is ⊥.

set cutp(): Follows from p ∈ current view.set (Invariant 7.1.1) and

the precondition (∀q ∈ current view.set) cut(q) = LongestPrefixOf(msgs[q][v]).

co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉): The proposition is unaffected because the
case q=p can not happen since, as can be proved by straightforward induction, end-points
do not send synchronization messages to themselves.

viewp(v, T): The proposition becomes vacuously true because s′[p].start change = ⊥.

7.4.2 Simulation

Lemma 7.2.1 in Section 7.2 on page 90 establishes function R′() as a refinement mapping
from automaton vs rfifo+ts to automaton vsrfifo : spec. We now argue that R′() is also
a refinement mapping from automaton gcs to automaton self : spec.

Lemma 7.4.1 Refinement mapping R′() from vs rfifo+ts to vsrfifo : spec (given in
Lemma 7.2.1) is also a refinement mapping from automaton gcs to automaton self : spec,
under the assumption that clients at each end-point p satisfy the clientp : spec specification
for blocking clients.

Proof : Automaton self : spec modifies automaton wv rfifo : spec by adding a pre-
condition, last dlvrd[p][p] = LastIndexOf(msgs[p][current view[p]]), to the steps
involving viewp() actions. We have to show that this precondition is enabled when a step
of gcs involving viewp(v, T) attempts to simulate a step of self : spec involving viewp(v).
Indeed:

s[p].last dlvrd[p] = maxr∈Tsync msg[r][v.startId(r)].cut[p] (a precondition)

= s[p].sync msg[p][v.startId(p)].cut[p] (Invariant 7.2.1.)

= s[p].sync msg[p][s[p].start change.id].cut[p] (a precondition)

= LastIndexOf(s[p].msgs[p][s[p].current view]) (Invariant 7.4.3).

96

Thus, R′(s).last dlvrd[p][p] = LastIndexOf(R′(s).msgs[p][R′(s).current view[p]]) and the
precondition is satisfied.

From Lemmas 7.1.1, 7.2.1, and 7.4.1 and Theorem 2.2.1 we conclude the following:

Theorem 7.4.2 Automaton gcs implements automaton self : spec in the sense of trace
inclusion, under the assumption that clients at each end-point p satisfy the clientp : spec

specification for blocking clients.

As a child of vs rfifo+ts, gcs also satisfies all the safety property that vs rfifo+ts does,
in particular ts : spec. Thus, from Theorems 7.3.3, and 7.4.2 we conclude the following:

Theorem 7.4.3 Automaton gcs implements each of the wv rfifo : spec, vsrfifo : spec,
ts : spec, and self : spec automata in the sense of trace inclusion, under the assumption
that clients at each end-point p satisfy the clientp : spec specification for blocking clients.

97

98

Chapter 8

Correctness Proof: Liveness
Property

In this chapter we prove that fair executions of our group communication service gcs satisfy
Liveness property 5.2.2 of Section 5.2. In order to show that a certain action eventually
happens, we argue that the preconditions on this action eventually become and stay satisfied,
and thus the action eventually occurs, by fairness of the execution. Subsection 8.1 below
presents a number of invariant that are used in the proof of Liveness property 5.2.2 in
Subsection 8.2.

8.1 Invariants

The following invariant captures the fact that, before an end-point computes who the mem-
bers of its transitional set are, it does not deliver to its client application messages other than
those committed by its own synchronization message. Afterwards, the end-point delivers
only the messages committed to delivery by the members of the transitional set.

Invariant 8.1.1 In every reachable state s of gcs, for all Proc p, if s[p].start change

6= ⊥ and
s[p].sync msg[p][s[p].start change.id] 6= ⊥, then for all Proc q ∈ s[p].current view.set,

1. If s[p].start change.id 6= s[p].mbrshp view.startId(p), then
s[p].last dlvrd[q] ≤ s[p].sync msg[p][s[p].start change.id].cut[q].

2. Otherwise, let v = s[p].current view, v′ = s[p].mbrshp view, and let
T = {q ∈ v′.set ∩ v.set | sync msg[q][v′.startId(q)].view = v }, then
s[p].last dlvrd[q] ≤ maxr∈T s[p].sync msg[r][v′.startId(r)].cut[q].

Proof 8.1.1: The proposition is true in the initial state s0, since s0[p].start change = ⊥.
For the inductive step, consider the following critical actions:

99

deliverp(q, m): The proposition remains true because the precondition on this action mim-
ics the statement of this proposition.

mbrshp.start changep(id, set): The proposition is vacuously true because

s′[p].sync msg[p][id] = s[p].sync msg[p][id], which by Lemma 7.3.1 is equal to ⊥.

mbrshp.viewp(v): In the post-state, s[p].start change.id = s[p].mbrshp view.startId(p),
so we must consider the second proposition. Its truth follows from the inductive hypothesis
and the fact that p ∈ T, as implied by Invariant 7.1.1.

set cutp(): The proposition holds since index s[p].last dlvrd[q] is bounded by

LongestPrefixOf(s[p].msgs[q][s[p].current view]) in every reachable state of the system
for any Proc q ∈ s[p].current view.set (this fact can be straightforwardly proved by
induction), and from the precondition, (∀q ∈ s[p].current view.set)
cut(q) = LongestPrefixOf(s[p].msgs[q][s[p].current view]).

co rfifo.deliverq,p(〈‘sync msg’, cid, v, cut〉): The proposition is unaffected because the
case q = p is impossible since end-points do not send cuts to themselves.

viewp(v, T): The proposition becomes vacuously true because s′[p].start change = ⊥.

The following Invariant states that if an end-point p has end-point q’s cut committing certain
messages sent by end-point r in view v, then end-point q has those messages buffered.

Invariant 8.1.2 In every reachable state s of gcs, for all Proc p, Proc q, Proc r, and
StartChangeId cid, if s[p].sync msg[q][cid] 6= ⊥, then, for every integer i between 1

and s[p].sync msg[q][cid].cut[r], s[q].msgs[r][s[p].sync msg[q][cid].view][i] 6= ⊥.

Proof 8.1.2: The truth of the invariant follows from Invariant 7.2.1 if we can prove that an
end-point’s cut commits the end-point to deliver only those messages that it already has on
its msgs queue. Formally, this proposition means that, in every reachable state s of gcs, for
all Proc q, if s[q].start change 6= ⊥ and s[q].sync msg[q][s[q].start change.id] 6= ⊥, then,
for all Proc r and all Int i such that 1≤ i≤ s[q].sync msg[q][s[q].start change.id].cut[r],
s[q].msgs[r][s[q].current view][i] 6= ⊥. This proposition can be straightforwardly proved
by induction: The only interesting action is set cutq(). The truth of the proposition after
this action is taken follows immediately from the precondition: (∀r ∈ s[q].current view.set)
cut(r) = LongestPrefixOf(s[q].msgs[r][s[q].current view]).

Invariant 8.1.3 In every reachable state s of gcs, for all Proc p and Proc q, if q ∈
s[p].sync set then (a) q ∈ s[p].start change.set and (b) q ∈ s[p].reliable set.

Proof 8.1.3: The proposition is vacuously true in the initial state, where s[p].sync set

is empty. The inductive steps for the critical actions mbrshp.start changep(id, set),
gcs.viewp(v, T), and co rfifo.sendp(set, 〈‘sync msg’, cid, v, cut〉) follow immediately
from their code in Figure 6.5. The inductive step for co rfifo.reliable setp(set) follows
straightforwardly from the precondition-effect code in Figures 6.2 and 6.5. The inductive

100

step for the critical action gcs.set cutp() follows from the code, which sets sync set to
{p}, and from the fact that p is always in its own reliable set and start change.set
(provided start change 6= ⊥), which can be straightforwardly proved by induction.

8.2 Liveness Proof

The following lemma states that, in any execution of gcs, every gcs.viewp event is preceded
by the right mbrshp.viewp event, which itself is preceded by the right mbrshp.start changep
event.

Lemma 8.2.1 In every execution sequence α of gcs, the following are true:

1. For every gcs.viewp(v, T) event, there is a preceding mbrshp.viewp(v) event. More-
over, neither a mbrshp.start changep nor a mbrshp.viewp event occurs between
mbrshp.viewp(v) and gcs.viewp(v, T).

2. For every mbrshp.viewp(v) event, there is a preceding mbrshp.start changep(id, set)
event with id = v.startId(p) and set ⊇ v.set, such that
neither a mbrshp.start changep, nor a mbrshp.viewp, nor a gcs.viewp event oc-
curs in α between mbrshp.start changep(id, set) and mbrshp.viewp(v).

Proof 8.2.1:

1. Assume that gcs.viewp(v, T) occurs in α. Two of the preconditions on gcs.viewp(v, T)
are v = p.mbrshp view and v.startId(p) = p.start change.id, which can only be-
come satisfied as a result of a preceding mbrshp.viewp(v) event, followed by no
mbrshp.start changep and mbrshp.viewp events.

2. Assume that mbrshp.viewp(v) occurs in α. Then a mbrshp.start changep(id, set)
event with id = v.startId(p) and set ⊇ v.set must precede mbrshp.viewp(v) be-
cause, by the mbrshp specification, it is the only possible event that can cause the
preconditions for mbrshp.viewp(v) to become true, and because these preconditions
do not hold in the initial state of mbrshp.

There maybe several mbrshp.start changep(id, set) events with the same id and
different set arguments. After the last such event, an occurrence of a different
mbrshp.start changep event or a mbrshp.viewp event would violate one of the pre-
conditions of mbrshp.viewp(v); thus, such events may not happen. As a corollary
from this and part 1 of this Lemma, a gcs.viewp(v

′, T′) event cannot occur between
the last mbrshp.start changep(id, set) and mbrshp.viewp(v).

Lemma 8.2.2 (Liveness) Let α be a fair execution of a group communication service gcs

in which view v becomes eventually stable as defined by Property 5.2.1. Then at each end-
point p ∈ v.set, gcs.viewp(v, T), with some T, eventually occurs. Furthermore, for every

101

gcs.sendp(m) that occurs after gcs.viewp(v, T) and for every q ∈ v.set, gcs.deliverq(p, m)
also occurs.

Proof 8.2.2:
Part I We first prove that gcs.viewp(v, T) eventually occurs. Our task is to show that, for
each p ∈ v.set and some transitional set T, action gcs.viewp(v, T) becomes enabled at some
point after p receives mbrshp.viewp(v) and that it stays enabled forever thereafter unless
it is executed. The fact that α is a fair execution of gcs then implies that gcs.viewp(v, T)
is in fact executed.

In order for gcs.viewp(v, T) to become enabled, its preconditions (see Figures 6.2 and 6.5)
must eventually become and stay satisfied until gcs.viewp(v, T) is executed. We now con-
sider each of these preconditions:
v = p.mbrshp view 6= current view: This precondition ensures that view v that is at-
tempted to be delivered to the client at p is the latest view produced by mbrshp and
has not yet been delivered to the client. The precondition becomes satisfied as a result
of mbrshp.viewp(v). Since in any reachable state of the system mbrshp.mbrshp view =
p.mbrshp view ≥ p.current view (Local Monotonicity), this precondition remains satisfied
forever, unless gcs.viewp(v, T) is executed. This is because, by our assumption, α does
not contain any subsequent mbrshp.viewp(v

′), and hence, by contrapositive of part 1 of
Lemma 8.2.1, it also does not contain any subsequent gcs.viewp(v

′, T′) with v′ 6= v.

v.startId(p) = p.start change.id: This precondition prevents delivery of obsolete views:
it ensures that the mbrshp service has not issued a new start change notification since
the time it produced view v. If this condition is not already satisfied before the last
mbrshp.start changep(id, set) event with id = v.startId(p) and set ⊇ v.set, then
it becomes satisfied as a result of this event, which, by part 2 of Lemma 8.2.1, must precede
mbrshp.viewp(v) in α.

This condition stays satisfied from the time of the last mbrshp.start changep(id, set) at
least until gcs.viewp(v, T) occurs because the only two types of actions,
mbrshp.start changep(id

′, set′) and gcs.viewp(v
′, T′) with v′ 6= v, that may affect the

value of p.start change cannot occur in α after mbrshp.start changep(id, set), as im-
plied by the assumption on this lemma and Lemma 8.2.1.

v.set− sync set = ∅: This precondition ensures that prior to delivering view v, end-point
p sends out its synchronization message to every member of v.

Notice that if this precondition becomes satisfied any time after the occurence of the
last mbrshp.start changep(id, set) event with id = v.startId(p) and set ⊇ v.set,
then it stays satisfied from then on until gcs.viewp(v, T) is executed. If the precondi-
tion is not already satisfied right after the mbrshp.start changep action, it becomes sat-
isfied as a result of co rfifo.sendp(set, 〈‘sync msg’, v.startId(p), v, cut〉) with set =
p.start change.set − p.sync set. This co rfifo.sendp action must eventually occurs
in α because its two preconditions, (p.sync msg[p][id] 6= ⊥) and (set ⊆ reliable set),
eventually become satisfied, for the following reasons:

• If the first precondition holds any time after the last mbrshp.start changep(id, set)
event with id = v.startId(p) and set ⊇ v.set occurs, then it stays satisfied from
that point on. If it is not already satisfied right after the mbrshp.start changep

102

action, it becomes satisfied as a result of set cutp(). In order for set cutp() to occur,
its precondition, block status = blocked, has to becomes satisfied (see Figure 6.6).
This occurs as a result of a block okq() input from the client at q. If block status

equals blocked at anytime after mbrshp.start changeq(v.startId(q), set), then it
remains such until gcs.viewq(v) happens because blockq() is not enabled after that,
and because gcs.viewq(v) is the only possible gcs view event (by the contrapositive
of part 2 of Lemma 8.2.1). To see that block status does in fact become blocked

consider the three possible values of block status right after
mbrshp.start changeq(v.startId(q), set) occurs:

1. block status = blocked: We are done.

2. block status = requested: By Invariant 7.4.1, client.block okq() is enabled.
It stays enabled until it is executed because the actions, blockq() and gcs.viewq(),
which would disable it, cannot occur. When it is executed, the precondition be-
comes satisfied.

3. block status = unblocked: When mbrshp.start changeq(v.startId(q), set)
occurs, blockq() becomes and stays enabled until it is executed. After that, the
value of block status becomes requested and the same reasoning as in the pre-
vious case applies.

• The second precondition, set ⊆ reliable set, becomes satisfied as a result of action
co rfifo.reliableq(set) with set = current view.set ∪ start change.set. This
action becomes enabled when q receives mbrshp.start changeq(v.startId(q), set),
and therefore it eventually occurs. Afterwards, reliable set remains unchanged be-
cause co rfifo.reliableq(set) remains disabled; this is because of the precondition
reliable set 6= set and the fact that q’s current view and start change remain
unchanged.

When co rfifo.sendp(set, 〈‘sync msg’, v.startId(p), v, cut〉) occurs, p.sync set is
set to p.start change.set. Since v.set is a subset of p.start change.set, this implies
that v.set − p.sync set eventually becomes and stays ∅.

(∀q ∈ v.set ∩ p.current view.set) p.sync msg[q][v.startId(q)] 6= ⊥: This precondition en-
sures that p has received the right synchronization message from every q in v.set ∩
p.current view.set. The argument above implies that q eventually sends to p a synchro-
nization message tagged with v.startId(q) and, at the same time, adds p to q.sync set,
where p remains forever, unless gcs.viewp(v, T) with some T occurs. In order to conclude
that co rfifo eventually delivers this synchronization message to p, we argue that, from
the time the last synchronization message from q to p is placed on co rfifo.channel[q][p]
and at least until it is delivered to p, end-point p is in both co rfifo.reliable set[q] and
co rfifo.live set[q]. The former implies that co rfifo does not lose any messages (in
particular, this synchronization message) from q to p. In conjunction with α being a fair
execution, the latter implies that co rfifo eventually delivers every message (in particular,
this synchronization message) on the channel from q to p.

• From the time q sends to p the last synchronization message tagged with v.startId(q)
until gcs.viewq(v, T) occurs, p is included in q.sync set. Invariant 8.1.3 implies that in
that period p is included in co rfifo.reliable set[q]. After gcs.viewq(v, T) occurs,
p is still included in co rfifo.reliable set[q], since p ∈ v.set.

• End-point p becomes a member of co rfifo.live set[q] at the time of mbrshp.viewq(v),
because mbrshp.viewq(v) is linked to co rfifo.live setq(v.set) and because p ∈

103

v.set. This property remains true afterward because α does not contain any subse-
quent mbrshp events at end-point q.

Thus, end-point p eventually receives the right synchronization messages from every q in
v.set ∩ p.current view.set.

last sent ≥ sync msg[p][v.startId(p)].cut(p): This precondition ensures that before de-
livering view v, p sends to others all of its own messages indicated in its own cut. This
precondition eventually becomes satisfied because sending of of application messages via
co rfifo.sendp, which increments p.last sent, is enabled at least until p.last sent reaches
sync msg[p][v.startId(p)].cut(p), as implied by Invariant 8.1.2.

(∀q ∈ current view.set) p.last dlvrd[q] = maxr∈Tp.sync msg[r][v.startId(r)].cut[q]:
This precondition verifies that p has delivered to its client exactly the application messages
that it needs to deliver in order for Virtually-Synchronous Delivery to be satisfied. By
Invariant 8.1.1, p.last dlvrd[q] never exceeds maxr∈T {p.sync msg[r][v.startId(r)].cut[q]}
for any q. It is left to show that p.last dlvrd[q] does not remain smaller than maxr∈T.

We have shown above that all the other preconditions for delivering view v by p eventually
become and remain satisfied until the view is delivered. Consider the part of α after
all of these preconditions hold. Let q be an end-point in current view.set such that
p.last dlvrd[q] < maxr∈Tp.sync msg[r][v.startId(r)].cut[q]. Let i = p.last dlvrd[q] + 1.
We now argue that p.last dlvrd[q] eventually becomes i, that is, that p eventually delivers
the next message from q. Applying this argument inductively, implies that p.last dlvrd[q]
eventually reaches maxr∈T {p.sync msg[r][v.startId(r)].cut[q]}.

All the preconditions (except perhaps p.msgs[q][p.current view][i] 6= ⊥) for delivering the
i’th message from q are eventually satisfied because they are the same as the preconditions
for p delivering view v, which we have shown to be satisfied. Thus, if the i’th message is
already on p.msgs[q][p.current view][i], then delivery of this message eventually occurs by
fairness, resulting in p.last dlvrd[q] being incremented; in this case, we are done.

Therefore, consider the case when p lacks the i’th message, m, from q. There are two
possibilities:

1. If end-point q is in p’s transitional set T for view v, then we know the following:

• q’s view prior to installing view v is the same as p’s current view (by definition of
T and Invariant 7.3.2).

• q’s reliable set contains p starting before q sent any messages in that view and
continuing for the rest of α.

• Invariant 8.1.2 implies that q has this message and all the messages that precede
it in
q.msgs[q][p.current view].

• End-point q is enabled to send these messages to p in fifo order. The only event
that could prevent q from sending these messages is gcs.viewq(v), as it would
change the value of q.current view. However, as we argued above, q must send
all of the messages it committed in its cut before delivering view gcs.viewq(v).
Self Delivery (Invariant 7.4.3) implies that q’s cut includes all of the messages q

sent while in v. Thus, q would eventually send m to p.

• The fact that the connection between q and p is live at least after mbrshp.viewq(v)
occurs implies that co rfifo eventually delivers this message to p.

104

2. Otherwise, if end-point q is not in p’s transitional set T for view v, we know by the
fact that i is ≤ maxr∈T {p.sync msg[r][v.startId(r)].cut[q]}, that there exist some
end-points in T whose synchronization messages commit to deliver the i’th message
from q in view p.current view. Let r be an end-point with a smallest identifier among
these end-points. Here is what we know:

• Invariant 8.1.2 implies that r has this message on its r.msgs[r][p.current view]
queue.

• r’s reliable set contains p starting before r sent any messages in that view and
continuing for the rest of α.

• Upon examination of each of the ForwardingStrategyPredicate s in Section 6.2,
we see that the preconditions for r forwarding the i’th message of q to a set
including p eventually become and stay satisfied.

• Since in both forwarding strategies there is only a finite number of messages from
q sent in this view that can be forwarded, fairness implies that the i’s message is
eventually forwarded to p.

• The fact that the connection between r and p is live at least after mbrshp.viewq(v)
occurs implies that co rfifo eventually delivers this message to p.

Therefore, the i’th message from q is eventually delivered to end-point p, and since, as a
result of this, the preconditions on delivering this message to the client at p are satisfied, this
delivery eventually occurs, and p.last dlvrd[q] is incremented. By applying this argument
inductively, we conclude that p.last dlvrd[q] eventually reaches
maxr∈T p.sync msg[r][v.startId(r)].cut[q] for every q in current view.set.

We have shown that each precondition on p delivering gcs.viewp(v, T) eventually becomes
and stays satisfied. Fairness implies that gcs.viewp(v, T) eventually occurs.

Part II We now consider the second part of the lemma. The following argument proves
that, after gcs.viewp(v, T) occurs at p, for every subsequent gcs.sendp(m) event at p, there
is a corresponding gcs.deliverq(p, m) event that occurs at every q ∈ v.set:

1. For the rest of α, after gcs.viewp(v, T) occurs, co rfifo.live set[p] is equal to v.set.

This is true because co rfifo.live set[p] is set to v.set when mbrshp.viewp(v)
occurs and remains unchanged thereafter because of the assumption that α does not
contain any subsequent mbrshp events at end-point p.

2. After gcs.viewp(v, T) occurs and before any co rfifo.sendp event involving a ViewMsg
or an AppMsg occurs, p eventually executes co rfifo.reliablep(v.set). Moreover, af-
ter that and forever thereafter, both p.reliable set and co rfifo.reliable set[p]
equal v.set.

This is true because gcs.viewp(v, T) sets p.start change to ⊥ and p.current view.set
to v.set, thus enabling co rfifo.reliablep(v.set). This action eventually hap-
pens because α is a fair execution and because for the rest of α there are no sub-
sequent mbrshp.start changep and gcs.viewp(v

′, T′) events. Because of the lat-
ter reason, p.start change and p.current view.set remain unchanged. Therefore,

105

co rfifo.reliablep remains disabled and both variables co rfifo.reliable set[p]
and p.reliable set remain equal to v.set.

From the above argument and from fairness, it follows that any kind of message that
end-point p sends subsequently to q via co rfifo will eventually reach end-point q.

3. Action co rfifo.sendp(v.set− {p}, 〈‘view msg’, v〉) eventually occurs after action
co rfifo.reliablep(v.set) occurs, as follows from the code in Figure 6.5. By the
reasoning above, co rfifo delivers this ViewMsg to every end-point q ∈ v.set − {p},
resulting in q.view msg[p] being set to v for the remainder of α (Invariant 7.1.4).

4. When gcs.sendp(m) event occurs at p, m is appended to p.msgs[p][v].

5. After sending the ViewMsg, for the rest of α, if p.msgs[p][v][p.last sent + 1] contains
a message (say m′), action co rfifo.sendp(v.set− {p}, 〈‘app msg’, m′〉) is enabled,
and hence eventually occurs by fairness. Since p.last sent is incremented after each
application message is sent using co rfifo.sendp, any message on p.msgs[p][v] is
eventually sent to v.set − {p}. As was argued above, these messages are eventually
delivered to every end-point q ∈ v.set− {p}. Since q.view msg[p] = v at the time q

receives m′, q puts m′ in q.msgs[p][v][q.last rcvd + 1] (Invariant 7.1.5) and increments
q.last rcvd. Therefore, all messages that end-point p sends in view v are eventually
inserted with no gaps in the end-point q’s queue, q.msgs[p][v], for every q ∈ v.set −
{p}.

6. Once gcs.viewq(v, T) happens (by Part I of the lemma), end-point q ∈ v.set is con-
tinuously enabled to deliver a message, m′, from q.msgs[p][v][q.last dlvrd + 1]; by
fairness, such delivery eventually occurs, resulting in q.last dlvrd[p] being incre-
mented. Therefore, every messages on q.msgs[p][v] is eventually delivered to client at
p, including the case of q = p.

It follows from this argument that every gcs.sendp(m) event at end-point p that occurs after
gcs.viewp(v, T) in α is eventually followed by a gcs.deliverq(p, m) at every q ∈ v.set.

106

Chapter 9

Performance Analysis

In the previous chapter we formally proved that the gcs system satisfies Liveness prop-
erty 5.2.2 of Section 5.2. Specifically, we showed that the gcs system guarantees that, if
each of the end-points comprising a view receives the view as its last one from the mbrshp

service, then each of these end-points eventually delivers the view to its application client.
In this chapter, we evaluate performance characteristics of the gcs system by quantifying
what “eventually” means; we determine an upper-bound on the time by which all of the
end-points comprising the last view deliver it to their application clients.

In the next section, we outline the formalism used for analyzing our gcs system. Specifically,
we extend the I/O automaton model with the notions of timed executions and upper-bound
constraints. Using these notions, one can derive upper-bounds on how fast certain high-
order events must happen in a timed execution provided the execution satisfies upper-bound
constraints on the timing of certain low-order events.

Section 9.2 gives an overview of the analysis. It presents the key definitions and assumptions
of the analysis and outlines the high-level results derived in the three subsequent sections.

In Section 9.3, we apply the formalism of Section 9.1 to the analysis of the Virtual Synchrony
algorithm run by gcs end-points. We derive an upper-bound on the time each end-point
of a stabilized view delivers the view to its clients, in terms of the timing of the relevant
mbrshp events, and under certain timing assumptions about end-points’ local steps, clients’
responses, and message latencies (co rfifo); we assume the timing assumptions hold after
stability is reached.

Expressing performance characteristics of the Virtual Synchrony algorithm in terms of the
timing of mbrshp events constitutes the key part of our performance analysis. This is
because the focus of our design is a novel algorithm for implementing Virtual Synchrony,
given a membership service that satisfies the mbrshp specification of Chapter 4.

Different membership services may have different performance characteristics. The advan-
tage of our approach to performance analysis is that it yields naturally to composition:
upper-bound results about the performance of a specific membership service can be com-
posed with the upper-bound results about the performance of the Virtual Synchrony algo-

107

rithm to yield upper-bound results about the performance of the gcs service in terms of
the timings of the underlying network events.

In Section 9.4, we consider a specific membership service – the optimistic service of Keidar
et al. [58] – and express reasonable time bounds on the events of this service in terms of
the timings of the underlying network events. The reasonable bounds correspond to the
“fast path” of [58]; according to the empirical tests reported in [58], the fast path case
was observed in almost all of the view changes. We then compose these bounds with those
derived in Section 9.3 to yield an upper-bound on the times when gcs end-points deliver
new views following a network event, provided the assumed bounds on the mbrshp and
co rfifo services hold; this is done in Section 9.5.

9.1 Formal Model

We analyze the time complexity of our gcs system within the same model in which we
described the system — the I/O automaton model. We associate events in an execution
with real time. We then assume upper-bound constraints on how fast certain events (such
as local processing time and message delivery time) happen in the execution. By relying on
these assumptions, we prove that certain higher-order events (such as a delivery of a new
view) must happen within certain time.

Timed executions

Definition 9.1.1 A timed execution of an automaton is a fair execution of the automaton,
in which every event is associated with a real-valued time, so that the times are monotone
nondecreasing and, in an infinite execution, approach infinity.

If πi is an event in a timed execution α = s0, (π1, t1), s1, (π2, t2), . . ., we use T[πi] to denote
its time. Formally, an event in an execution is a pair consisting of an action and its
index. Sometimes we will refer to events by their actions when the actions’ positions in the
execution are unambiguous, as for example πi’s position in α.

We order events in an execution α so that πi < πj if i < j, that is, if πi precedes πj in α.

For simplicity, in our analysis, we assume that the considered timed executions are infinite.

We also let t0 = 0 and π0 be an empty action.

Upper-bound constraints

Given specific upper-bound constraints on how fast certain events must happen in an ex-
ecution, there may be many timed executions that satisfy these upper-bound constraints,
that is, many ways to associate times with the events in an execution so that they satisfy
the upper-bound constraints. We measure the time until some designated event π by the

108

supremum of the times that can be assigned to π in all such executions. Likewise, we mea-
sure the time between two events by the supremum of the differences between the times
that can be assigned to those two events.

Notice that placing upper-bound constraints on how fast events happen does not restrict
the set of possible executions of an automaton. Also notice that we are working still in
the context of the I/O automaton model for asynchronous networks; The processes of our
system do not have any notion of time. This is unlike the I/O automaton model for partially-
synchronous networks ([71], Ch. 23), where system component do have some information
about time and can use this information.

Section 8.6 of [71] contains a similar approach to time analysis. In this approach, upper
time bounds are associated with the equivalence classes in the task partition. Specifically,
any task C may be associated with an upper-bound upperc, which can be either a positive
real number of ∞. A timed execution is defined the same way as in Definition 9.1.1, except
for the following additional requirement: from any point in the execution, each task C can
be enabled for time at most upperc before some action in C must occur.

We use a less restricted approach for the following reasons. We want to state upper-
bounds as assumptions on particular types of events in particular situations in a particular
execution. That is, we do not want to make general timing assumptions that always apply.
Moreover, some of the timing assumptions we would like to make cannot be expressed
by associating upper time bounds with tasks. In particular, we would want to assume an
upper-bound on the delivery time of each co rfifo message. That is, we would want to say
that a co rfifo.deliver event must happen within a certain time from the corresponding
co rfifo.send event. (We define what corresponding means below.) Associating an upper-
bound d with each task Cp,q of co rfifo, would result in an upper-bound for the oldest

message in transit from p to q; this would mean that, when a message is sent from p to q

(and q is in both p.live set and p.reliable set), the message would be guaranteed to be
delivered to q within time kd, where k is the number of messages on channel[p][q].

Identifying corresponding messages

In order to formally express that co rfifo.deliver events must occur within a certain
bound from their corresponding co rfifo.send events, we need to formally define what
corresponding events mean. That is, we need to express somehow that the deliver action
delivers the m that was sent by the send action (and not just some other m with the same
content). In the remainder of this section, we define the notion of message correspondence
formally. These definitions are provided for completeness of the presentation; they are not
essential for following the material in the subsequent sections.

If message loss was not possible, then we could have expressed the correspondence between
send and deliver events simply by requiring the number of intermediate deliver events
between the given send and deliver to be equal to the number of messages in transit from
p to q at the time of the send event (i.e., the number of messages on co rfifo.channel[p][q]
in the state prior to the send event).

109

With message loss being possible, this definition is incorrect. For example, there maybe
two co rfifo.sendp(set, m) events, and one lose(p, q) event. Depending on whether the
lose(p, q) event occurred before or after the second send, the subsequent deliver event
corresponds either to the second or to the first send. However, if we were to adopt the
above definition of correspondence, the deliver event would correspond to each of the
send events.

The following definitions of message correspondence take into account message loss. Def-
inition 9.1.2 below considers two states of the same co rfifo channel and defines the
correspondence for the messages that are in transit on this channel. Definition 9.1.3 then
builds on top of Definition 9.1.2 to define the correspondence between co rfifo.send and
co rfifo.deliver events.

Definition 9.1.2 (Corresponding co rfifo messages)
Let β = sr, (πr+1, tr+1), sr+1, (πr+2, tr+2), . . . be a timed execution fragment of gcs and Ω
be a given set of gcs end-points.

Consider the ith message on co rfifo.channel[p][q] in state sk and the jth messages on
co rfifo.channel[p][q] in state sl, where r ≤ k ≤ l, i ≥ j, and p and q are members of
Ω. These two messages correspond, provided:

• sk [co rfifo].channel[p][q](i) = sl [co rfifo].channel[p][q](j)

• The number of co rfifo.deliverp,q() events between the states sk and sl is (i− j).

• For every state sn, k ≤ n ≤ l, the number of co rfifo.lose(p, q) events between sk
and sn is less than or equal to the sum of two terms:

– the number of co rfifo.sendp(set, m) events, q ∈ set, between sk and sn; and

– LengthOf(sk[co rfifo].channel[p][q]) −i.

Definition 9.1.3 (Corresponding co rfifo.send and co rfifo.deliver events)
Let β = sr, (πr+1, tr+1), sr+1, (πr+2, tr+2), . . . be a timed execution fragment of gcs and Ω
be a given set of gcs end-points.

Consider a co rfifo.sendp(set, m) event that occurs in β as some πk, and consider a
co rfifo.deliverp,q(m) event, q ∈ set, that occurs in β as some πl+1, where r ≤ k ≤ l,
and p and q are members of Ω.

The two events correspond provided the last message on sk [co rfifo].channel[p][q] and
the first message on sl [co rfifo].channel[p][q] correspond, as defined by Definition 9.1.2.

Notice, that the definition is expressed simply in terms of the number of messages on the
channel[p][q] queue and the numbers of send, deliver and lose events. It does not check
whether the messages that are in transit are in fact those that are later delivered; this is
ensured by the co rfifo specification (Chapter 4).

Similarly to Definition 9.1.3, we define correspondence between a co rfifo.deliverp,q(m)
event that occurs in β as some πl+1 and the ith message on co rfifo.channel[p][q] in state

110

sk (the latter has to correspond to the first messages on sl [co rfifo].channel[p][q]); also
between a co rfifo.sendp(set, m) event and the jth messages on sl [co rfifo].channel[p][q].
Likewise, we extend the definition of correspondence to relate co rfifo.lose(p, q) events to
the messages on co rfifo.channel[p][q] queue and then to co rfifo.sendp(set, m) events.

9.2 High-level Overview

One of the most important performance characteristics of a GCS is how fast it delivers
new views to its clients after the client’s view membership changes. How fast this happens
depends on how quickly the GCS detects a change in the current view membership, forms
a new view that reflects the change, and establishes Virtual Synchrony.

In our design, the detection of membership changes and the formation of views is handled
by an external membership service; the establishment of Virtual Synchrony is accomplished
by the novel algorithm run by the end-points of the GCS. The design does not fix the
membership service to a particular one; it can work with any membership service satisfying
the mbrshp specification of Chapter 4. As part of this specification, the membership
service issues two types of notifications to the end-points: start change and view. The
start change notifications are assumed to be issued as soon as the membership service
detects a change in the membership; this allows the Virtual Synchrony algorithm to proceed
in parallel with the membership service forming the new view. Once the end-points are
notified of the new view, they complete the Virtual Synchrony algorithm and pass the new
view to their clients.

Thus, the time from when a change in the view membership occurs until the GCS clients
receive a view that reflects the change depends on

1. the performance characteristics of the Virtual Synchrony algorithm relative to the
times of the start change and view notifications, and

2. the performance characteristics of the specific membership service used in the design;
that is, the times of the start change and view notifications relative to the time of
the view membership change.

Following this observation, we split our performance analysis into the following three parts:
In Section 9.3, we analyze the performance characteristics of the Virtual Synchrony al-
gorithm in terms of the times of the relevant start change and view inputs from the
membership service. Then, in Section 9.4, we state reasonable performance assumptions on
the membership service, and, then, in Section 9.5, combine these assumptions with the per-
formance properties derived for the Virtual Synchrony algorithm to obtain a performance
property for the system as whole.

In the remainder of this section we present the key definitions and assumptions of the
analysis and then outline the high-level results derived in the three subsequent sections.

111

9.2.1 Definitions

Group Events

A specific membership service may change views for a variety of reasons, such as for exam-
ple new members joining, current members crashing, disconnecting, or partitioning, views
merging together, communication links becoming temporarily congested, etc. We refer to
such events, generally, as group events and denote all possible such events by an abstract
type, GE.

Our specification, mbrshp, of a membership service that is appropriate for the gcs design
does not include the notion of group events. This is because the specification does not cover
the liveness properties of the mbrshp service, but only the safety properties of the interface
between the membership service and the gcs end-points. The gcs design does not specify
the liveness properties of the underlying membership service because liveness properties
of the gcs system are made conditional on the behavior of the membership service; see
discussion in Chapter 5 on page 65.

For the purpose of the performance analysis, we add group events as events of the gcs

system. Formally, we use the signature extension construct, defined in Chapter 3, to add
group event(e), e ∈ GE, actions to the input signature of the mbrshp automaton. No other
changes are made to the gcs system.

Intuitively, extending the signature of mbrshp with the group event inputs does not change
the behavior of the gcs system. The sets of executions of the original gcs system and of
the signature extended one are identical, except the executions of the latter may include
group events. Lemma 3.4.1 justifies this claim formally.

From here on, we use mbrshp and gcs to refer to the signature extended versions of these
automata, that is, we assume that group events occur in executions of the gcs system.

We introduce an abstract function ge() that links membership events in an execution to the
sets of group events that lead to the membership events. We do not define explicitly what
it means to “lead” to a membership event; ge() is just an abstract function that allows us
to talk about group events, and in particular the time of the last group event, that lead to
a particular membership event.

Definition 9.2.1 Given a mbrshp event πi in an execution s0, (π1, t1), s1, (π2, t2), . . . of
the gcs system, ge(πi) is a finite set of events in the execution consisting of group events
that lead to the mbrshp event πi.

Fixed execution of gcs and relevant events

We restrict our analysis to executions in which a view becomes stable, as defined by Prop-
erty 5.2.1 on page 66.

112

Definition 9.2.2 (Execution α and stable view v)
For the rest of this chapter fix α = s0, (π1, t1), s1, (π2, t2), . . . and v to be respectively a timed
execution of the gcs system and a view such that v becomes view stable in α (Property 5.2.1).

Different end-points of view v may have different views prior to view v. We denote the view
of an end-point p prior to view v as v−p .

Definition 9.2.3 (Previous view notation) For each p ∈ v.set, let v−p refer to p’s view
prior to v, that is, the value of p.current view in the state preceding the mbrshp.view(v)p
event in α.

View v being stable in α means that, for every end-point p ∈ v.set, the mbrshp.viewp(v)
event occurs in α and is followed by neither mbrshp.viewp nor mbrshp.start changep
events. Lemma 8.2.1 establishes that the mbrshp.viewp(v) event is preceded by at least
one mbrshp.start changep(cid, set) event, and that the last of these events has cid =
v.startId[p] and set ⊇ v.set. Lemma 8.2.2 establishes that mbrshp.viewp(v) is followed
by exactly one gcs.viewp(v, ∗) event. Our analysis relies on these mbrshp and gcs events
and their timings. The following definition introduces shortcut names for these events:

Definition 9.2.4 (Relevant mbrshp and gcs events in α)
For each p ∈ v.set, let

• mviewp refer to the mbrshp.viewp(v) event in α.

• mstartp refer to the last mbrshp.start changep(∗, ∗) event in α. More formally,

mstartp
def
= max{πi : πi = mbrshp.start changep(∗, ∗)}.

• gcviewp refer to the gcs.viewp(v, ∗) event in α.

Furthermore, let first-mstart and last-mstart refer respectively to the first and the last
events among the mstartp events for all p ∈ v.set. More formally:

first-mstart
def
= min{πi : πi = mstartp for some p ∈ v.set}.

last-mstart
def
= max{πi : πi = mstartp for some p ∈ v.set}.

Likewise, for the first-mview, last-mview, first-gcview, and last-gcview events.

Recall from Section 9.1, that, if π is an event in a timed execution, T[π] denotes its time. We
use this notation to denote the times of the events identified in Definitions 9.2.4 and 9.2.5.
For example, T[last-mview] denotes the time of the very last mview event in α at any of
the end-points in v.set.

The fact that view v becomes stable in α means that, at some point in the execution, there
is a final group event that leads to view v becoming stable; after this final event, no other
group events affecting the view occur. For the rest of this chapter, we fix last-ge to denote
the final group event leading to stability of view v.

113

Definition 9.2.5 (Final group event) Let

last-ge
def
= max{max(ge(mviewp)) : p ∈ v.set}.

One of the assumptions (Assumption 9.4.1) that we will make when considering the per-
formance of the underlying membership algorithm will be that all the membership servers
of view v perceive the final group event last-ge and produce mstart outputs within one
message latency from the time last-ge occurs.

9.2.2 Timing Assumptions

The time it takes the gcs service to output new views to its clients after the clients’ view
changes depends on how fast the relevant low-order events occur. In particular, this time de-
pends on message latency, local speed of gcs processes (i.e., gcs end-points and membership
servers), and client latency during the block/block ok synchronization. In our analysis,
we assume that, after a view becomes stable, message latency in the underlying network
component is δ, process speed is negligible, and the block/block ok synchronization takes
at most c units of time.

We use these assumptions in our derivation of upper time bounds for the high-order events,
such as the deliveries of views to the gcs clients. For example, in our analysis of the Virtual
Synchrony algorithm we show that the gcviewp event must occur at every view member
either within one δ and one c from T[mstart] or immediately after mview, whichever of the
two occurs later.

We formalize the low-order timing assumptions as generic constraints. The constraints
apply to a given timed execution fragment of gcs.

Constraint 9.2.1 expresses our assumption that end-points’ local steps take zero time. It
states that a local action cannot remain enabled for a non-zero unit of time without being
executed.

Constraint 9.2.1 (The zero bound on end-points’ local steps)
Given a timed execution fragment, β = sr, (πr+1, tr+1), sr+1, (πr+2, tr+2), . . . of gcs, a time
index tr, and a set of end-points Ω, the following holds:

For all p ∈ Ω, and for each locally controlled action π of gcsp, if π is enabled in a state sk,
k ≥ r, then ∃ l > k such that tl = tk and either πl = π, or π is disabled in sl.

Constraint 9.2.2 requires a client to issue a block ok response within c units of time from
receiving a block request.

Constraint 9.2.2 (The c bound on client’s block ok)
Given a timed execution fragment, β = sr, (πr+1, tr+1), sr+1, (πr+2, tr+2), . . . of gcs, a time
index tr, and a set of end-points Ω, the following holds:

114

For all p ∈ Ω, if gcsp.block okp() is enabled in some state sk, k ≥ r, then ∃ l > k such
that tl ≤ tk + c and either πl = gcsp.block okp(), or gcsp.block okp() is disabled in sl.

Finally, Constraint 9.2.3 says that delivery of co rfifo messages between lively connected
end-points should take no more than δ units of time. The statement of this constraint uses
the notion of message correspondence (see page 110).

Constraint 9.2.3 (The δ bound on co rfifo message delivery)
Given a timed execution fragment, β = sr, (πr+1, tr+1), sr+1, (πr+2, tr+2), . . . of gcs, a time
index tr, and a set of end-points Ω, the following holds for every p and q ∈ Ω:

For every message m on the sk[co rfifo].channel[p][q] queue, if the corresponding
co rfifo.deliverp,q(m) event occurs as some πl, l ≥ k ≥ r, then tl ≤ tk + δ,
provided q ∈ si[co rfifo].live[p] for all k ≤ i ≤ l.

Constraint 9.2.3 implies that, for every co rfifo.sendp(set, m) event occurring in β as
some πk, if the corresponding co rfifo.deliverp,q(m) event occurs as some πl, l ≥ k, and
if q ∈ si[co rfifo].live[p] for all k ≤ i ≤ l, then tl ≤ tk + δ.

Notice that Constraint 9.2.3 applies only if the corresponding co rfifo.deliver events
occur in β, and only when communication is live. This fits with our strategy of constraining
only the times of events, and not the execution itself.

9.2.3 Key Results

In this section we summarize the high-level results of the performance analysis appearing
in the next three sections.

Virtual Synchrony Algorithm

The first part of the analysis upper-bounds the time by which every end-point p of the
stable view v outputs the view to its clients. The upper-bound is expressed in terms of the
times of the relevant membership events, last-mstart and mviewp, and in terms of the
assumed upper-bounds on message latency δ and client response time c. Recall that in our
analysis we consider end-points’ local steps to cause insignificant delay.

The top-level result, appearing as Corollary 9.3.2, of Section 9.3 will prove that every end-
point in v.set will produce the gcviewp event either within δ + c from last-mstart or
immediately after the mviewp event, whichever is later. Stated more formally,

T[gcviewp] ≤ max

{

T[mviewp]
T[last-mstart] + c + δ

.

The upper-bound is consistent with the intuitive understanding of how the Virtual Syn-
chrony algorithm works. The algorithm is initiated by every end-point at the time the

115

(b)

(a)

gcviewp

mviewp

=last-mstart

mstartr

≤ δ + c

mstartq mstartp

gcviewp

mviewp

=last-mstart

mstartr

≤ δ + c

mstartq mstartp

α

α

Figure 9.1: Analysis of the Virtual Synchrony algorithm. The gcviewp event must occur
either (a) within δ + c from last-mstart or (b) right after mviewp, whichever is later.

end-point receives a mbrshp.start change notification from the membership service. The
algorithm involves blocking the client and exchanging synchronization and application mes-
sages with other end-points. The algorithm terminates when the end-point receives a
view from the membership service and the right synchronization and application mes-
sages from other end-points. The latest times by which this happens are T[mviewp] and
T[last-mstart] + c + δ respectively.

Figure 9.1 illustrates this upper-bound result. It has two parts, each depicting execution
sequence α, the mstart events, including the last-mstart event, the mviewp event, and the
gcviewp event. The first part shows the situation when the membership service produces
the final view before end-point p is ready to deliver the view to its client; in this case, the
algorithm is guaranteed to terminate within δ+c from last-mstart. The second part shows
the situation when the membership algorithm takes longer than δ + c from last-mstart to
produces the final view; in this case end-point p delivers the view to its client immediately
after the mviewp event.

Membership Service

The second part of the analysis suggests reasonable assumptions on the timing of the mem-
bership events, T[last-mstart] and T[mview], relative to time of the final group event,
last-ge. These assumptions are based on the typical properties of an optimistic member-
ship algorithm of Keidar et al. [58].

The first assumption (Assumption 9.4.1) about the performance properties of the underlying
membership service concerns the time by which the membership service perceives the final
group events and produces the mstart events. We assume that

T[mstartp] ≤ T[last-ge] + δdetection,

116

where δdetection is an upperbound on group event detection latency. The exact value of
δdetection depends on the types of the final group events and on how the group event
detection mechanism is implemented. However, in most cases the value of δdetection is
similar to the message latency δ.

For example, when final group events involve members leaving and/or joining the group, it is
reasonable to assume that δdetection is δ. Other types of group events may involve different,
somewhat bigger bounds. For example, when timeout mechanisms are used to detect failed
and disconnected members, δdetection corresponds to the timeout values, which typically
approximate δ but may be bigger.

Figure 9.2 illustrates this upper-bound. It shows execution α, the final group event last-ge,
and the mstart events.

=last-mstart

mstartrmstartq mstartp

α

last-ge

≤ δdetection

Figure 9.2: Reasonable assumption on the Membership Service. The last-mstart event
occurs within δdetection from the final event last-ge that leads to stability of view v.

The second assumption (Assumption 9.4.2) about the performance properties of the under-
lying membership service concerns the time by which the membership service produces the
final view outputs relative to the times when the membership service perceives the final
group event. We assume that

T[mviewp] ≤ T[last-mstart] + δ.

This assumption is justified by the fast path behavior of the membership algorithm of Keidar
et al. [58]. We discuss the justifications for this assumption in Section 9.4.

Figure 9.3 illustrates this upper-bound. It shows execution α, the the mstart events,
including the last-mstart event, and the mviewp event occurring at end-point p.

Composing the Membership and Virtual Synchrony bounds

The final part of the analysis combines the upper-bound assumptions about the membership
events relative to the time of the final group event and the upper-bound result derived for
the final gcs view outputs relative to the times of the membership events. The combined
upper-bound, appearing in Corollary 9.5.1, states that all the end-points of view v output
view v to its clients within one detection and one message latencies δdetection+δ and within

117

mviewp

=last-mstart

mstartrmstartq mstartp

α

≤ δ

Figure 9.3: Reasonable assumption on the Membership Service. The mviewp event occurs
within δ from the last-mstart event.

one client delay c after the final group event occurs:

T[gcviewp] ≤ T[last-ge] + δdetection + δ + c.

Figure 9.4 illustrates this composed bound.

≤ δ gcviewp

mviewp

=last-mstart

mstartrmstartq mstartp

α

≤ δdetection

last-ge

≤ δ + c

Figure 9.4: Composition of Membership and Virtual Synchrony bounds. The last-gcviewp
event must occur within δdetection+δ+c from the final event last-ge that leads to stability
of view v.

Even though the bound is conditioned on various assumptions, we believe that the assump-
tions correspond to what is typically observed in real network environments. Therefore,
the bound provides useful information in assessing performance characteristics of our GCS
design.

9.3 Virtual Synchrony Algorithm

In this section, we analyze performance characteristics of the Virtual Synchrony algorithm
run by gcs end-points. We restrict our attention to execution α, in which view v becomes
stable (see Definition 9.2.2). Given α and v, we derive an upper-bound on the time by which
every end-point that is a member of v delivers view v to its client. The upper-bound is
expressed in terms of the timing of the relevant mbrshp events (defined in Subsection 9.2.1)
and the assumed upper-bound constraints on message latency, client response time, and
end-points’ speed; the constraints were defined in Subsection 9.2.2.

118

According to our algorithm, an end-point p, that is in view v−p , is able to deliver view v to
its client as soon as the following three milestones are accomplished:

• The end-point receives new view v from the mbrshp service. Recall that the view
contains a function v.startId linking every member of v to a start change identifier.

• The end-point completes its participation in the synchronization protocol; that is it
receives the synchronization message tagged with v.startId(q) from every end-point
q ∈ v−p .set ∩ v.set. Recall that the synchronization message from q informs p of

– whether q is in the transitional set of v−p and v, and

– which application messages q commits to deliver in view v−p .

• The end-point delivers to its client all of the application messages identified by the
synchronization protocol. These are the messages that are committed to delivery by
the members of the transitional set of v−p and v.

Thus, the time by which end-point p delivers the new view to its client is bounded by the
maximum of the times by which each of these milestones is accomplished; Theorem 9.3.3 of
Subsection 9.3.3 formalizes this. The bounds on the times by which end-point p completes
the synchronization protocol and delivers all of the application messages are established in
subsections 9.3.1 and 9.3.2 respectively. Corollary 9.3.2 of Subsection 9.3.3, then, combines
these bounds to produce the bound for the time when end-point p delivers v to its client in
terms of the membership events and end-point independent constants. Roughly speaking, it
states that end-point p delivers new view v to its client after it receives v from the mbrshp

service and within about one message latency away from the time everyone in v.set receives
the final start change notification.

9.3.1 Synchronization Protocol

In this subsection, we establish an upper-bound on the time an end-point completes its
participation in the synchronization protocol.

Recall that the synchronization protocol involves end-points exchanging synchronization
messages. An end-point p, that is currently in some view v−p , completes its participation in
the synchronization protocol for view v once it receives the synchronization message tagged
with v.startId(q) from every end-point q ∈ v−p .set ∩ v.set.

The following definition pinpoints the earliest event in α after which p’s participation in
the synchronization protocol for view v is completed.

Definition 9.3.1 For each end-point p ∈ v.set, we define syncp to refer to the earliest
event in α after which p has in its sync msg buffer the “right” synchronization message
from every member in v−p .set ∩ v.set. More formally,

syncp
def
= min{πk : πk ∈ acts(gcsp)

∧ ∀ q ∈ (v.set ∩ v−p .set) sk[p].sync msg[q][v.startId(q)] 6= ⊥},

119

where v−p denotes p’s view prior to v (see Definition 9.2.4).

Typically, syncp would correspond to the delivery of the last synchronization message com-
pleting the synchronization protocol at p for view v. However, when the new view v is a
singleton view, syncp would correspond to the set cutp() event because v−p .set ∩ v.set =
{p}. This is why we did not define syncp in terms of co rfifo.deliver events.

The following lemma establishes that an end-point p completes its participation in the syn-
chronization protocol for view v within one message latency δ away from the time everyone
in v.set receives the final start change notification, plus the client’s blocking c.

Lemma 9.3.1 The following bound holds for each p ∈ v.set:

T[syncp] ≤ T[last-mstart] + c + δ,

provided the suffix of α following the last-mstart event satisfies Constraints 9.2.1, 9.2.2,
and 9.2.3 with the given time index T[last-mstart] and set of end-points v.set.

Proof 9.3.1: Liveness Proof 8.2.2 establishes that each end-point q ∈ v.set eventually
sends to every end-point in v.set a synchronization message tagged with the start-change
identifier v.startId(q). By following that part of the proof and using the fact that α
satisfies Constraints 9.2.1 and 9.2.2 after the last-mstart event, we derive that every end-
point q ∈ v.set sends the right synchronization message to everyone in v.set at most by
T[last-mstart] + c. This is because the longest time it can take an end-point to send a
synchronization message after receiving a start change notification is to issue a block()
request to the client, wait until the client responds with the block ok(), and then execute
set cutq() and co rfifo.sendp(set, 〈‘sync msg’, v.startId(q), v−q , cut〉).

Liveness Proof 8.2.2 also establishes that an end-point p ∈ v.set eventually receives all
the right synchronization messages from every end-point in v−p .set ∩ v.set. The desired
bound for T[syncp] follows from the derived in the previous paragraph upper-bound on
the time by which the synchronization messages are sent to p and the fact that α satisfies
Constraint 9.2.3 after the last-mstart event.limited

9.3.2 Message Delivery

In this subsection, we derive an upper-bound on the time an end-point delivers to its client
all of the application messages identified by the synchronization protocol.

The time by which an end-point p delivers messages to its client is affected by the following
two processes:

• Assuming that the message originated from the client of some other end-point, the
end-point must first receive the actual message from co rfifo before it can deliver it.
How fast this occurs depends on the co rfifo latency and also on the parameters of
the forwarding strategy used to recover messages lost from disconnected end-points.

120

• Moreover, while the end-point participates in the synchronization protocol, it delivers
only those application messages beyond its own cut that it has already determined
appropriate for delivery. For this, the application messages have to be identified by
the synchronization message from some end-point that has already been determined
to belong to p’s transitional set. Thus, in the worst case, an application message that
is ready to be delivered, can remain in p’s msgs buffer until p receives the view from
the mbrshp service and until it receives the synchronization message from the last
member of its transitional set.

We formalize this relationship in Lemma 9.3.2, after making two auxiliary definitions. Then,
after the lemma, we consider a particular message forwarding strategy and its implications
on the time of message delivery. We finish this subsection with a Corollary 9.3.1 that states
the upper-bound on the time by which p completes delivering messages in view v−p .

The messages that are identified by the synchronization protocol are those that comprise the
maximal cut obtained from the members of the transitional set of v−p and v; the following
definition expresses the transitional set and the maximal cut in terms of the p’s state
preceding the mviewp event.

Definition 9.3.2 For each p ∈ v.set we define TSp and cutp to be respectively the tran-
sitional set and the cut that p calculates when it delivers view v. More formally, assuming
that the mviewp event occurs as some πk in α,

TSp
def
= {q ∈ v−p .set ∩ v.set : sk−1[p].sync msg[q][v.startId(q)].view = v−p }

(∀ q ∈ v−p .set) cutp(q)
def
= max{sk−1[p].sync msg[r][v.startId(r)].cut(q) : r ∈ TSp}

Definition 9.3.3 pinpoints the earliest events, rcvdp, in the execution after which end-point
p has on its msgs queue all of the messages it is supposed to deliver in view v−p ; likewise,
event msgsp pinpoints the earliest event after which all of these messages are delivered to
p’s client.

Definition 9.3.3 For each p ∈ v.set, we define rcvdp to refer to the earliest event in α
after which p has on its msgs queue all the messages it is supposed to deliver to its client
in view v−p . More formally,

rcvdp
def
= min{πk : πk ∈ acts(gcsp)

∧ (∀ q ∈ v−p .set) (∀ 0 ≤ i ≤ cutp(q)) sk[p].msgs[q][v
−
p](i) 6= ⊥},

where cutp is the cut that p calculates when it delivers view v (see Definition 9.3.2).

Likewise, for each p ∈ v.set, we define msgsp to refer to the earliest event in α after which
p has delivered to its client all the messages it is supposed to deliver in view v−p . More
formally,

msgsp
def
= min{πk : πk ∈ acts(gcsp)

∧ (∀ q ∈ v−p .set) sk[p].last dlvrd[q] = cutp(q)}.

121

Note that, like syncp, we did not define rcvdp and msgsp in terms of the last co rfifo

and gcs deliver events. This is because such definitions would not be well defined for the
executions in which p delivers no messages in view v−p . For such executions, rcvdp = msgsp
= π0, and T[rcvdp] = T[msgsp] = 0 (as assumed in Section 9.1 on page 108).

The following lemma upper-bounds the time by which an end-point delivers to its client all
of the application messages it is supposed to deliver in view v−p . The upper-bound is stated
as some constant number of local steps plus the maximum of the times by which end-point
p: has all of these messages in its msgs queue, receives the mbrshp view, and completes the
synchronization protocol. This bound follows immediately from the preconditions placed
on the gcs.deliverp action.

Lemma 9.3.2 The following bound holds for each p ∈ v.set:

T[msgsp] ≤ max







T[mviewp]
T[synchp]
T[rcvdp]

,

provided the suffix of α following the last-mstart event satisfies Constraints 9.2.1 with the
given time index T[last-mstart] and set of end-points v.set.

Proof : Once an end-point enters a synchronization protocol it restricts delivery of ap-
plication messages only to those identified for delivery by the synchronization protocol.
According to the preconditions on the gcs.deliverp events, even when the end-point has
a message on its msgs queue, in the worst case the end-point may delay the delivery of this
message until it receives mbrshp.view and the final synchronization message completing
the synchronization protocol. Once message delivery is enabled, it takes zero time to deliver
messages to the clients, according to Constraint 9.2.1.

The bound on T[rcvdp] depends on the message forwarding strategy that end-points use
to recover lost messages sent originally by disconnected end-points. For the purpose of the
analysis, we assume the message forwarding strategy that minimizes this bound at the cost
of increased message complexity; existing designs of Virtually Synchronous GCSs suggest
similar strategies.

According to this strategy, end-points periodically inform others about the messages they
have received in their current view; upon receiving a start change notification, each end-
point forwards to other end-points those messages that were not reported as received by
these end-points. The strategy can be straightforwardly modeled using I/O Automata.
With this strategy, it takes at most T[last-mstart] + δ for the forwarded messages to
arrive to their destinations. It takes at most the same time for all the original messages to
arrive. Thus, rcvdp occurs about one message latency away from the final start change

notification., as formalized in the following assumption:

Assumption 9.3.1 The following bound holds for each p ∈ v.set:

T[rcvdp] ≤ T[last-mstart] + δ,

122

provided the suffix of α following the last-mstart event satisfies Constraints 9.2.1 and 9.2.3
with the given time index T[last-mstart] and set of end-points v.set.

By combining Lemmas 9.3.1 and 9.3.2 and Assumption 9.3.1, we get the following Corollary.

Corollary 9.3.1 The following bound holds for each p ∈ v.set:

T[msgsp] ≤ max

{

T[mviewp]
T[last-mstart] + c + δ

,

provided Assumption 9.3.1 holds and the suffix of α following the last-mstart event sat-
isfies Constraints 9.2.1, 9.2.2, and 9.2.3 with the given set of end-points v.set and time
index T[last-mstart].

9.3.3 View Delivery

In this section we combine the results of the preceding sections to derive an upper-bound on
the time an end-point p delivers view v to its client. We first state a high-level Theorem 9.3.3
that expresses this upper-bound in terms of the times when the end-point receives the view
from the mbrshp service, completes the synchronization protocol, and delivers to its client
all of the messages identified by the synchronization protocol. Then, we plug in the bounds
for these events to yield a low-level Corollary 9.3.2 upper-bounding T[gcviewp] solely in
terms of the timing of the relevant mbrshp events and the assumed timing constraints.

Theorem 9.3.3 (High Level) The following bound holds for each p ∈ v.set:

T[gcviewp] ≤ max







T[mviewp]
T[synchp]
T[msgsp]

,

provided the suffix of α following the last-mstart event satisfies Constraint 9.2.1 with the
given time index T[last-mstart] and set of end-points v.set.

Proof 9.3.3: Follows from the preconditions on gcviewp and Liveness Proof 8.2.2. By
Constraint 9.2.1, end-point p must deliver view v to its client within zero time after it re-
ceives the view from the mbrshp service (T[mviewp]), completes the synchronization proto-
col (T[syncp]), and delivers all of the application messages identified by the synchronization
protocol (T[msgsp]), as well as sends out via co rfifo all of its client’s application messages
and its synchronization message (all local steps).

When we plug in bounds for T[syncp] and T[msgsp] from Lemma 9.3.1 and Corollary 9.3.1,
we get the following bound for T[mviewp]:

123

Corollary 9.3.2 (Low level) The following bound holds for each p ∈ v.set:

T[gcviewp] ≤ max

{

T[mviewp]
T[last-mstart] + c + δ

,

provided Assumption 9.3.1 holds, and the suffix of α following the last-mstart event sat-
isfies Constraints 9.2.1, 9.2.2, and 9.2.3 with the given set of end-points v.set and time
index T[last-mstart].

9.4 Membership Service

In the previous section we have analyzed the performance characteristics of the Virtual
Synchrony algorithm. In particular, in Corollary 9.3.2, we have stated an upper-bound on
the time by which every end-point of a stabilized view delivers the view to its client; the
upper-bound on T[gcviewp] is stated in terms of the timing of the relevant mbrshp events:
mviewp and last-mstart. The times by which these mbrshp events happen in an execution
depend on the performance characteristics of the specific membership algorithm used in the
design.

In this section, we consider one such algorithm, [58], and express upper-bounds on the
times of the mviewp and last-mstart events in terms of the timing of the final group event
affecting the view’s membership. In our analysis, we concentrate only on certain common
executions of the membership algorithm. We compose the Membership Service upper-
bounds with the Virtual Synchrony upper-bounds (given by Corollary 9.3.2) in Section 9.5.

The membership algorithm of [58] is implemented by a set of membership servers running
on top of a network event notification service (ne) and a reliable fifo service (rfifo).
All servers run the same algorithm. Each server handles a number of clients – end-points
in our design. The service of [58] satisfies our mbrshp specification of Chapter 4; the
start change interface was specifically built into [58] to accommodate our gcs design.

The ne service informs membership servers of the changes in the group’s membership. The
changes may occur because of clients joining and leaving the group, clients crashing, and
communication links failing and recovering. The ne service guarantees that, if a member-
ship set Ω becomes stable, every membership server of Ω eventually perceives the group’s
membership as Ω. The rfifo service guarantees that each message sent from one server r
to another u is either eventually delivered or the ne service eventually notifies r that all the
clients of u are unreachable. The rfifo service also guarantees that messages sent from one
server to another are delivered in fifo order. This means that, if a server sends a message
m and then another message m′ both to server u, and if u receives both of these messages,
then it receives m before m′.

Each membership server executes an algorithm that has two paths: fast and slow. The fast
path addresses scenarios that are typical in real networks; empirical testing of [58] showed
that the fast path was taken in more than 99% of the view changes. The fast path requires
one message exchange among the affected servers. However, certain out-of-sync scenarios
cannot be resolved by the fast path; they are handled by the slow path, which requires

124

several message exchanges.

In our analysis, we concentrate solely on the fast path; we assume that, after a membership
set becomes stable, the membership algorithm succeeds in forming the last view using the
fast path. We will make the same assumption when evaluating performance characteristics
of other GCS services in the next section.

Briefly, the fast path of [58] is as follows. Whenever the server is informed by the ne service
about the changes in its group’s membership, the server sends a start change notification to
its clients and a proposal to other servers. The start change notification and the proposal
both include a fresh start change identifier and the updated membership set, say Ω. The
server outputs a new view to its clients when it collects proposals for the new membership
Ω from all the servers of Ω. The view identifier is one more than the maximum of the
collected start change identifiers; the membership set is Ω; and the startId mapping maps
every client to its start change identifier.

In executions in which a membership set Ω becomes stable, the ne service guarantees that
all the servers of Ω eventually perceive the group’s membership as Ω. We assume that it
takes at most one detection latency δdetection from the time the final group event last-ge
affecting the membership occurs until every membership server of Ω perceives the group’s
membership as Ω. Thus, within one detection latency from T[last-ge], every membership
server of Ω sends its last start change notification and its last proposal; we formalize this
in Assumption 9.4.1 below. Within one more message latency, every server of Ω must receive
all the proposals and output its last view; we formalize this in Assumption 9.4.2.

Assumption 9.4.1 The following bound holds for each p ∈ v.set:

T[mstartp] ≤ T[last-ge] + δdetection,

where last-ge is the final group event that results in the group’s membership stabilizing to
v.set, and δdetection is the detection latency – similar to message latency δ.

Notice that the mstartp events correspond to the events at the clients of the mbrshp

service, i.e., at the gcs end-points. In the bound for T[mstartp], the time interval it takes
for the start change notification to travel from p’s membership server to p is included in
δdetection. The same applies to the mviewp events in the next assumption.

Assumption 9.4.2 The following bound holds for each p ∈ v.set:

T[mviewp] ≤ T[last-mstart] + δ,

where δ approximates message latency – the same constant as in Constraint 9.2.3.

125

9.5 Composition of the Membership and the Virtual Syn-
chrony bounds

Now that we have expressed reasonable upper-bounds on the behavior of the underlying
membership service, we can compose them with the performance result for the Virtual
Synchrony algorithm (given by Corollary 9.3.2).

The composition yields an upper-bound on how long it takes the gcs end-points to deliver
their last views after the final group event occurs. Roughly speaking, this upper-bound
states that every end-point delivers the last view about two latencies – one detection latency
and one message latency – away from the time the final group event occurs. The detection
latency upper-bounds the time it takes for the information about the group event to reach
the membership servers and the gcs end-points; the message latency upper-bounds the
time it takes the membership algorithm and the Virtual Synchrony algorithm to execute.

Corollary 9.5.1 Assuming that last-ge is the final group event that results in the group’s
membership stabilizing to v.set, the following bound holds for each p ∈ v.set:

T[gcviewp] ≤ T[last-ge] + δdetection + δ + c,

provided Assumptions 9.3.1, 9.4.1, and 9.4.2 hold, and the suffix of α
following the last-mstart event satisfies Constraints 9.2.1, 9.2.2, and 9.2.3 with the given
set of end-points v.set and time index T[last-mstart].

Proof : Follows immediately from Corollary 9.3.2 and Assumptions 9.4.1 and 9.4.2.

Corollary 9.5.1 expresses an upper-bound on how long it takes the gcs end-points of a sta-
bilized membership to deliver the last views to their application clients after the final group
event affecting the membership occurs. The upper-bound applies only to those executions
that satisfy the abovementioned constraints and assumptions. Since such executions corre-
spond to what we believe is typically observed in real network environments, the derived
upper-bounds provide useful information in assessing performance characteristics of our gcs

service.

In comparison, existing Virtual Synchrony algorithms, such as [43, 6, 82, 12, 47, 8], identify
synchronization messages by tagging them with a common identifier. Some initial commu-
nication is performed first, before synchronization messages are communicated, in order to
agree upon a common identifier and to distribute it to the members of the forming view.
Therefore, existing algorithms require an additional communication round to deliver the
last view after the final group event affecting the stable component occurs.

An additional advantage of our algorithm is that, unlike existing solutions (e.g., [8, 47,
12, 82]), our algorithm is able to respond dynamically to cascading connectivity changes,
without wasting resources on handling obsolete network situations. This is illustrated by
Example 6.2.1 in Chapter 6. Expressing the performance characteristics of our algorithm
formally for this case is the subject of future work.

126

Illustration

Figure 9.5 illustrates Corollary 9.5.1. It depicts the key messages and events produced by
the gcs system in response to the final group event that leads to stability of a component
{p, q}.

Horizontal lines represent passage of time at different components of the system. There are
six components (listed on the left); three per each member: application client, gcs end-
point, and mbrshp server. Bold lines represent events and messages of the gcs end-points.

proposals
forwarded messages
synchronization and

mbrshpp

gcsp

gcsq

mbrshpq

mstartp

mstartq

mviewp

blockp block okp

block okqblockq

mviewq

≤ δdetection

clientp

clientq

last-ge

gcviewq

gcviewp

≤ c + δ

Figure 9.5: Flow of messages and events in the gcs system after a component stabilizes.

The black dot on the left represents the final group event last-ge. The dashed-dotted
lines originating at last-ge represent propagation of information about the last-ge to the
membership servers; the lines do not necessarily correspond to messages. The specifics of
how the information about group events propagates to membership servers depends on the
specific event detection mechanism employed by the gcs and on the specific types of the
final group events. According to Assumption 9.4.1, the membership servers detect the final
group event last-ge within δdetection time after the last-ge; the dashed bracket at the
bottom of the figure identifies this time interval.

When a membership server detects the last-ge it issues the mstart notification to the gcs

end-points that it serves and sends a view proposal to the membership servers handling the
new membership. Both the mstart and the proposals include a fresh start change identifier
and the new membership set. Once the membership server collects proposals for the new
membership from all the servers of the membership, the server outputs mview to its gcs

end-points; the view identifier in the mview is one more than the maximum of the collected

127

start change identifiers. According to Assumption 9.4.2, the mview events occur at every
end-point within δ from the last-mstart.

In parallel to the mbrshp servers exchanging proposals for the new view, the gcs end-points
exchange synchronization and forwarded messages among themselves. Synchronization mes-
sages are sent after the end-points complete the block/block ok synchronization with their
clients; this takes at most c time after last-mstart (Assumption 9.2.2). The synchroniza-
tion messages arrive within δ time from the time they are sent out (Assumption 9.2.3). The
forwarded messages are sent according to the specific forwarded strategy used in the gcs

system; for the sake of the performance analysis, we assume a strategy that starts forward-
ing (unstable) messages as soon as the mstart notifications arrive; it completes within δ
time (Assumption 9.3.1).

According to Theorem 9.3.3, the gcs end-point delivers gcview to its application client after
it receives the view form the membership server, completes the synchronization protocol,
and delivers to its client all of the application messages identified by the synchronization
protocol. Taking into account all of the results and assumptions we have established about
the gcs system, Corollary 9.5.1 upperbounds T[gcviewp] by T[last-ge] + δdetection + δ + c;
see the dashed bracket on the figure.

128

Chapter 10

Application Example:
Interim-Atomic Data Service

In this chapter, we illustrate the utility of our gcs system by describing a simple application
that can be effectively built using gcs. The application implements a variant of a data
service that allows a dynamic group of clients to access and modify a replicated data object.
The application is prototypical of some collaborative computing applications, such as a
shared white-board application (e.g., [74, 84]).

The application we present implements particular consistency guarantees regarding how
different clients perceive the data object. We call this type of consistency interim atom-
icity ; and the data service that satisfies interim atomicity — interim-atomic data service
(iads). Roughly speaking, interim atomicity guarantees that, while the underlying network
component is stable, clients perceive the data object as atomic [64, 71, Ch. 13]1. During
periods of instability, the clients’ perceptions of the object may diverge from the atomic
one. The non-atomic semantics may persist until after the underlying component becomes
stable again. When stability is regained, the atomic semantics is restored within some finite
amount of time: The clients comprising the stable component are informed about the cur-
rent membership of the client group and the new state of the data object. The new state is
computed as an application-specified merge of the states of the members’ object replicas.
From that point on while stability lasts, the clients again perceive the object as an atomic
one.

The iads application can be conveniently built using gcs, as we demonstrate by presenting
a simple algorithm, iads, that operates atop gcs. The algorithm follows the active repli-
cation/state-machine approach [66, 83] and utilizes the state-transfer protocol of Amir, et
al. [5].

Active replication, also known as a state-machine approach, is one of the standard ways
to implement replicated data services [66, 83]. In a nutshell, according to this approach,
the service is provided by a collection of servers, each maintaining a replica of the data

1Atomic objects are also known as linearizable [50] and sometimes are referred to as strongly-consistent,
non-replicated, and one-copy equivalent [15, 3]

129

object. Clients’ requests to modify the data object are sent to all the servers. The servers
apply these requests to their object replicas all in the same order, and send responses to the
clients. Since different object replicas undergo the same modifications, the object replicas
stay consistent, and the clients perceive the replicated data object as an atomic one.

In fault-prone, asynchronous environments, replicated data services are typically organized
to alternate between two modes of operation: normal and state-transfer (e.g., [83, 41,
23]). In normal mode, clients’ requests are processed according to the active replication
approach. When previously disconnected replicas reconnect, state-transfer is used to bring
these replicas to a common state. This common state has to be consistent with the current
states of the replicas and is suitable for the resumption of the normal mode of operation.
After state-transfer completes, the servers resume normal mode, i.e., process their clients’
operations according to the active replication approach.

Replicated data services can be conveniently built using GCSs [17, 40, 41, 42, 57, 7, 39, 63].
In GCS-based solutions for replication, servers hosting object replicas are organized into
a group. When a server receives a request from a client to modify the data object, it
disseminates the request to other servers using the group communication primitives. The
servers exploit the reliability and ordering properties of the group communication primitives
to process the client’s request in a way that would maintain mutual consistency of the
replicas; one of the servers then sends the response back to the client. Processing of requests
is done during normal mode of operation, which corresponds to the periods when the servers
interact in stable views. When servers’ views change, the servers may switch to state-transfer
mode, in which they synchronize their replica states with those of other view members.

In a straightforward setup, the replicated services built using GCSs switch to state-transfer
mode whenever the GCSs form new views; e.g., [41, 42, 57, 7, 39, 63]. In this mode, every
server multicasts the state of its object replica (and other relevant information, such as
pending requests) to the members of the new view. The server then collects a state-transfer
message from each member and uses these messages to compute a new, common state for
its object replica. Every server that completes the state-transfer protocol gathers the same
messages, and thus computes the same new state.

There are two types of overhead associated with state-transfer: First, messages commu-
nicated during state-transfer are typically large, as they include the entire object states.
Second, normal mode of operation is suspended during state-transfer. In light of this, the
straightforward setup, in which state-transfer is performed every time there is a view change
and in which every server participates by multicasts its own state-transfer message, is quite
costly.

The Virtual Synchrony semantics provided by our gcs allows the application to sometimes
avoid state-transfer when views change and also to reduce the number of state messages
exchanged during a state-transfer protocol. Recall that the set of group members that
transitions together from v to v′ is known as the transitional set T of v and v′. The
Virtually Synchronous Delivery property guarantees that every server in T receives the
same set of messages while in view v, before receiving view v′ and set T from gcs. Thus,
if the object replicas of T were mutually consistent upon entering normal mode in view v,
they remain mutually consistent when view v′ is delivered. This leads to two observations:
First, it is enough for only one member of T to communicate the state of its replica during

130

state-transfer protocol. Second, state-transfer is unnecessary in situations when the entire
membership of the new view v′ has transitioned together from view v (i.e., v.set = T).
These two observations lie at the heart of the state-transfer protocol of Amir et al. [5].

Note that the state-transfer protocol of Amir, et al. is only an example of the kinds of
optimizations enabled by Virtual Synchrony; others are possible. For example, Bartoli et
al., in [14], discuss reconfiguration issues arising in replicated databases built using GCSs,
and in particular those that implement Virtual Synchrony.

An alternative approach to using Group Communication for building replicated data ser-
vices is to use Consensus (e.g., [67, 83]). In this approach, during normal mode of operation,
the servers hosting object replicas run Consensus to agree on the order in which to process
clients’ requests. Different replicated services differ in the particular data consistency se-
mantics that they guarantee. For the ones that provide strong consistency semantics (such
as, atomicity), the approaches based on Consensus and Group Communication are compet-
itive in their performance characteristics during normal mode of operation. However, for
the services that provide weaker consistency semantics, such as the iads application, the
approach based on Group Communication allows for solutions that are significantly more
efficient than those that use Consensus. We explain this on page 152 below.

The rest of this chapter is organized as follows: Section 10.1 describes the interface and
semantics of the iads application. Section 10.2 then describes an algorithm for implementing
the application. The algorithm operates atop gcs and utilizes the state-transfer protocol of
Amir, et al.; the protocol has been precisely stated and carefully verified in the TR version
of [5]. We convert the protocol into an I/O automaton, but otherwise leave everything as
in [5], including variable names.

For the underlying computational model, we assume an asynchronous system enriched with
an eventually perfect failure detector (3P), as defined by Chockler et al. in [27]. According
to [27], an eventually perfect failure detector is a failure detector that, in executions in
which a set Ω of clients becomes stable from some point on, eventually stabilizes to the
exact set Ω at every process in Ω from some point onward.

We assume this particular model of computation in order keep the definition of the iads

application general. Our algorithm for iads will use the gcs system, which itself uses an
external membership service. We will assume that the membership service is precise, i.e.,
that the membership service delivers a stable view to the members of a stable component
(Property 5.2.1). Chockler et al., in [27], prove that an asynchronous system with an
eventually perfect failure detector is equivalent to an asynchronous system with a precise
group membership service. Thus, in essence, our iads algorithm will match the assumed
model of computation.

Note that, when we defined the gcs system, we did not need to explicitly assume the
existence of an eventually perfect failure detector because we made the liveness property of
gcs (Property 5.2.2, page 66) conditional on the stability of the underlying mbrshp service
(Property 5.2.1).

The material in this chapter is presented less formally then in the rest of the dissertation.
Part of the reason is that the material in this chapter contains mostly well-established

131

results, such as active replication techniques and the state-transfer algorithm of [5]. The
other reason is that the material in this chapter is presented simply for the purpose of
demonstrating how one would use our gcs system to build effective distributed applications.
Going beyond this simple demonstration into the domain of formal specification, verification,
and analysis of iads is outside the scope of this dissertation.

10.1 Application Description

In this section, we describe the interim-atomic data service application, iads. We define a
data type, called Obj, for the data object managed by iads. We then specify the interface
of iads with its clients and the semantics of the provided service.

10.1.1 The Obj Data Type

The application manages deterministic data objects whose serial behavior is specified by
some data type, Obj. The Obj data type defines possible states of the objects and operators
on the objects; it is defined similarly to the variable type of [71] and the serial data type
of [37, 38]. Formally, the Obj type consists of:

• a set S of object states;

• a distinguished initial state s0 ∈ S;

• a set R of response values; and

• a set O of operations, each of the type S → (S × R).

Furthermore, we assume an application-defined function merge: SetOf(Proc × S) → S.
This function is used during state-transfer to compute a new, common, state of the object
based on, possibly different, states of the participating object replicas. We assume that the
merge function has the identity property, i.e., merge({〈p1, x〉, 〈p2, x〉, . . . , 〈pk, x〉}) = x.

For simplicity we assume that the application manages a single data object and all the
operations requested by clients pertain to this object.

10.1.2 Application Interface

The interface between the iads application and its clients consists of the typical request,
and response actions: The application receives client p’s request to process operation
o ∈ O via input action requestp(o), and it eventually responds to the operation via
responsep(o, r), where r ∈ R is the return value resulting from applying operation o to the
underlying data object.

132

request
response

refresh

Client p

The IADS Application

request
response

refresh

Client q
request

response
refresh

Client r

Figure 10.1: Interaction of the application with its clients.

In addition to the request/reply actions, the interface with client p includes special
refreshp(set, x) actions, where set ∈ SetOf(Proc) and x ∈ S. The application uses these
actions to refresh the client’s perception of its collaboration group (set) and the state of
the underlying data object (x). The interface is summarized in Figure 10.2.

iads Signature:

Input:

requestp(o), Proc p, O o

Output:

responsep(o, r), Proc p, O o, R r

refreshp(s, x), Proc p, SetOf(Proc) s, S x

Figure 10.2: Interface specification.

For simplicity, we do not include the join and leave actions as part of the interface. Such
actions can be processed by the group communication service as requests to join or leave a
specified application group.

10.1.3 Application Semantics

We now define a collection of properties that specify behavior of iads. Among them, there
are some basic properties that are not specific to interim atomicity; these include properties
such as correspondence between requests and responses, and processing of requests submit-
ted by a given client in gap-free fifo order. The properties that are specific to interim
atomicity are Stabilization and Interim Atomicity. The Stabilization property is a liveness
property that requires iads to eventually stabilize after a set of clients becomes stable.
The Interim Atomicity property is a combination of safety and liveness; it requires iads to
behave as a strongly-consistent data service in situations when iads is stable.

Correspondence between requests and responses, and fifo ordering

Our iads application supports non-blocking interaction with its clients and guarantees
processing of requests in fifo order with no gaps. Figure 10.3 contains an I/O automaton,
eo fifo ds, that captures these basic properties.

133

automaton eo fifo ds

Signature:
Input:

requestp(o), Proc p, O o

State:
(∀ p ∈ Proc) QueueOf(O) ops[p], initially empty

Output:

responsep(o, r), Proc p, O o, R r

refreshp(s, x), Proc p, SetOf(Proc) s S x

Transitions:
INPUT requestp(o)

eff: append o to ops[p]

OUTPUT responsep(o, r)

pre: o is first on ops[p]

let x− be some state in S

let x in S be s.t. 〈x, r〉 = o(x−)

eff: remove first element from ops[p]

OUTPUT refreshp(s, x)

pre: s is some element in SetOf(Proc)

p ∈ s

x is some state in S

eff: none

Figure 10.3: Specification eo fifo ds of an abstract data service that supports non-blocking
processing of requests in the gap-free fifo order of their submission.

Every responsep event has a unique corresponding requestp event, and every requestp
event has a unique corresponding responsep event provided eo fifo ds keeps deliver-
ing responses to p. When client p submits operation requests, they are inserted into a
queue, ops[p], and are then processed in the fifo order defined by the queue. Automaton
eo fifo ds does not specify any data consistency semantics: when a request is processed,
it is allowed to be applied to an arbitrary object state; see the I/O code for responsep.
Likewise, the automation does not specify the semantics of refreshp events; the refresh
information is allowed to be arbitrary.

We could define the notion of reachable states of an object replica and require the service
to use only such states when applying operations and when issuing refresh notifications.
Roughly speaking, a reachable state of an object replica for a given iads state in the
execution of can be defined recursively as an application of a sequence of some subset of
operations previously submitted by clients to either the initial state of the object or a merge
of some set of reachable states of object replicas for some earlier iads states in the execution.

Note that so far we have not defined any liveness properties that require our application
to eventually respond to clients’ requests. One such property will be defined below as part
of Interim Atomicity: The property will require liveness in situations when a set of clients
becomes and remains stable from some point forever on. Looking ahead to Section 10.2,
our algorithm for iads, will also satisfy another, less restrictive, liveness property (Theo-
rem 10.2.5 on page 148): Fair executions of our algorithm would guarantee that every server
p eventually responds to every request submitted by its client as long as the server does not
stay blocked from some point forever on by the underlying gcs service.

134

Stabilization

We now define what we mean by a set of clients being stable, and then state the iads

Stabilization property.

Definition 10.1.1 (Stable set of clients) A set Ω of clients of iads is stable if from
some point on no new clients join Ω, no client in Ω leave the iads application, and the
underlying network component involving the clients in Ω remains stable (i.e., the processes
in the component remain mutually connected, and the component does not connect with any
other components).

In situations when a set of clients becomes and remains stable from some point on, the iads

application is required to eventually stabilize to the same set. Recall from page 131 that,
in the context of the iads application, we assume the underlying computational model to
be an asynchronous system enriched with an eventually perfect failure detector (3P), as
defined by Chockler et al. in [27]. According to [27], an eventually perfect failure detector
is a failure detector that, in executions in which a set Ω of clients becomes stable from some
point on, eventually stabilizes to the exact set Ω at every process in Ω from some point
onward. We assume this particular model of computation in order keep the definition of
the iads application general.

Property 10.1.1 (iads Stabilization) Let α be an execution of iads in which a set Ω of
clients becomes and remains stable from some point on. iads guarantees that, eventually
after the set Ω of clients becomes stable, a refreshp(Ω, base state) event occurs at every
client p ∈ Ω, and the following two conditions hold:

• following the refreshp(Ω, base state) event, no subsequent refreshp events occur;

• the refreshed state, base state, is the same for all the clients in Ω.

Our algorithm for iads will use the gcs system, which itself uses an external membership
service. We will assume that the membership service is precise, i.e., that the member-
ship service delivers a stable view to the members of a stable component (Property 5.2.1).
Chockler et al., in [27], prove that an asynchronous system with an eventually perfect failure
detector is equivalent to an asynchronous system with a precise group membership service.
Thus, in essence, our iads algorithm will match the assumed model of computation.

Note that for non-triviality, we can require base state to be one of the reachable states of
p’s object replica at the time of the refreshp(Ω, base state) event (see above).

At the time the final refreshp, p ∈ Ω, event occurs in α, client p possibly has a number of
pending operation requests to which iads has not responded yet; we denote the sequence
of these operations as init ops(p).

135

Interim Atomicity

Figure 10.4 contains an I/O automaton ao[Ω, sb, Ob] modeling an atomic object of type
Obj with the initial state sb, set of clients Ω, and initial sequence of operations Ob(p) from
each client p ∈ Ω. Requests from a client p are put into a queue ops[p]. An internal
action do picks the first operation request from ops[p] for some client p and applies it to
the current state of the data object; the operation and the resulting return value are placed
into a queue out[p]; this queue contains responses to be delivered to client p. The Tasks
component specifies that fair executions of ao have to keep processing requests from each
client and have to keep delivering responses to each client (provided the client keeps issuing
requests).

automaton ao[Ω, sb, Ob], where Ω ∈ SetOf(Proc), sb ∈ S , Ob: Ω→Seq(O)

Signature:
Input: requestp(o), Proc p ∈ Ω, O o

Output: responsep(o, r), Proc p ∈ Ω, O o, R r

Internal: do(p, o), Proc p ∈ Ω, O o

State:
S obj, initially sb

(∀ p ∈ Ω) QueueOf(O) ops[p], initially Ob(p)

(∀ p ∈ Ω) QueueOf(O × R) out[p], initially empty

Transitions:
INPUT requestp(o)

eff: append o to ops[p]

OUTPUT responsep(o, r)

pre: 〈o, r〉 is first on out[p]

eff: remove 〈o, r〉 from out[p]

INTERNAL do(p, o)

pre: o = First(ops[p])

let x and r be s.t. 〈x, r〉 = o(obj)
eff: remove o from ops[q]

obj ← x

append 〈o, r〉 to out[p]

Tasks: For every p ∈ Ω:

Cp,1 = {responsep(o, r) | o ∈ O; r ∈ R } and Cp,2 = {do(p, o) | o ∈ O }

Figure 10.4: Specification ao of an atomic object of type Obj, with initial state sb, set of
clients Ω, and initial operations Ob.

Property 10.1.2 (Interim Atomicity) Let α be an execution sequence in which set Ω
of clients becomes and remains stable from some point on. The subsequence of the trace of
iads involving clients in Ω following the final refresh(Ω, base state) events (as defined by
Property 10.1.1) is a trace of an atomic object ao[Ω, base state, init ops].

It is important to note the following: Even though the Interim Atomicity property is de-
fined for the executions in which a network component remains stable forever, the stability
condition is external to the application. Thus, the application has to attempt to satisfy this
property in every execution, as it can never know whether there is a stable component.

Therefore, whenever a set of clients stabilizes and remains stable for a sufficiently long
period of time, an implementation that satisfies Interim Atomicity would deliver the same
refresh(set, x) to all the clients in the set and would then behave as an atomic service

136

(while the set of clients remains stable). If instabilities occur, the implementation may
cease to provide atomic perception of the data object. This would last until the client’s
component becomes stable again (and remains stable for a sufficiently long time). Then,
the implementation would refresh the client with the new collaboration set and the new
state of the object; from that point, while stability lasts, the client would again perceive
the object as an atomic one.

Looking ahead to Section 10.2, our algorithm for iads, will always apply operations in the
same order at different object replicas. However, at the times when it does not preserve
atomicity, the actual sequences of operations applied to different object replicas may be
different.

10.2 gcs-based Algorithm

In this section, we present a distributed algorithm, iads, for the interim-atomic data ser-
vice defined in Section 10.1. The algorithm follows the standard active replication (state-
machine) approach [66, 83] and utilizes the state-transfer protocol of Amir et al. [5].

The iads algorithm is composed of a collection of application end-points, which run the
same algorithm. The application end-points operate as clients of the gcs system — as
members of the same process group.

The application end-points act as servers: each application end-point maintains a replica of
the data object. We use the term “application end-point” rather than “server” to highlight
the fact that, in our algorithm, servers and clients are tightly coupled: Each client, cp
interacts with the application through the underlying application end-point iadsp. We
assume that the client, its application end-point, and the underlying gcs end-point all
operate in the same location p, and therefore, share their fate when network events occur.
We will often refer to client cp and to application end-point iadsp simply by their location
p, as “client p” and “application end-point p”.

Figure 10.5 shows interaction of an application end-point with its client and with the un-
derlying gcs end-point. The interaction between the application end-point and its client is
consistent with the description of the application interface in Section 10.1. The interaction
between the application end-point and the underlying gcs end-point is consistent with the
gcs end-point’s interface defined in Chapter 5.

10.2.1 Algorithm Description

Every application end-point maintains a replica of the data object. The object replicas are
modified during normal mode of operation when clients’ requests are processed, and as a
result of state-transfer when a new state of the object is computed from the merge of the
object replicas of different application end-points.

Figure 10.6 depicts a state-transition diagram that governs transitions between normal and

137

s
e
n
d

b
l
o
c
k

b
l
o
c
k
_
o
k

d
e
l
i
v
e
r

v
i
e
w

response
request

refresh

Client

IADS End−point

GCS End−Point

Figure 10.5: Application design architecture: An application end-point interacts with its
client and the underlying gcs end-point.

state-transfer modes. Initially, the mode is normal. An application end-point may switch
from normal to state-transfer when it receives a new view from gcs; in some situations,
discussed below, the application end-point is able to rely on the guarantees provided by
gcs to avoid state-transfer and remain in normal mode. When an application end-point
completes state-transfer, it switches back to normal mode. If gcs delivers a new view be-
fore the application end-point completes state-transfer, the application end-point typically
remains in state-transfer mode, but in some situations, discussed below, it may again rely
on the guarantees provided by gcs to immediately switch to normal mode.

Figure 10.7 contains an I/O automaton, iadsp, modeling the application end-point at pro-
cess p. The application end-point maintains a replica, obj, of the data object. Requests
submitted by the client are placed into a queue, inp, and later multicast using gcs to the
application end-points comprising the current view. gcs delivers these requests within the
same view and in fifo order. The application end-points append the requests delivered by
gcs into a queue, ops[q], according to the sender q. The requests stored in the ops queues
are processed during normal mode, according to a total order on all requests communicated
in a given view; as we explain below, the algorithm establishes this total order by tagging
requests with logical timestamps [66] (see also [83] and [71, page 607]).2 Processing of re-
quests is done by an internal action do and as a result of receiving a view input from gcs.
When an application end-point processes an operation request, it applies the operation to
its object replica. If the operation request that is being processed was submitted by the
application end-point’s own client, the application end-point places the operation and the

2Note that we implement total ordering within the application algorithm to make it easier to visualize how
the algorithm works. In general, however, total ordering would be implemented as a separate layer, above
gcs and below the application; many different algorithms for implementing total-ordering exist, e.g., [26, 25]
is a practical algorithm that dynamically adapts message delivery order to the transmission rates of the
participating processes.

138

normal
state transfer
completed

view

view

state
transfer

Figure 10.6: Application modes of operation: view-labeled transitions leading to normal

mode correspond to circumstances when an application end-point avoids state-transfer by
relying on the gcs semantics.

resulting return value into an output queue, out, to be later reported to the client.

Consider application end-points belonging to some stable view. Assume that, at the times
when the application end-points start processing requests in the view, the states of their ob-
ject replicas are the same. In order for their object replicas to stay mutually consistent, the
object replicas should undergo the same modifications in the same order at different appli-
cation end-points; that is, different application end-points should apply the same sequences
of operations to their object replicas.

Total order through logical time

The algorithm establishes a total ordering of all requests communicated through gcs in a
given view using logical timestamps, as in [66] and [71, Sec. 18.3.3]. Application end-point
p maintains an integer lt[p] which corresponds to p’s logical time within the current view;
the initial value of lt[p] is 0 and it is reset to 0 when p receives view inputs. When p

starts processing a request by multicasting it to other application end-points, p increments
lt[p] and tags the request with the timestamp. Also, whenever p receives a request tagged
with a timestamp ts from some application end-point q, p updates its logical time to
max(lt[p], ts) + 1. The total order on messages communicated within the same view is
defined as their ordering by the “timestamp, application end-point identifier” pair. That is,
op totally precedes oq if and only if ((tsp < tsq) ∨ ((tsp = tsq) ∧ (p < q)), where op is an
operation sent by p and tagged with timestamp tsp, and oq is an operation sent by q in the
same view as op and tagged with timestamp tsq. Note that this total order is consistent
with both fifo and causal orderings of requests and responses.

Normal mode

In normal mode, application end-point p processes the operations in its ops queues according
to the total order defined above. Internal action dop(q, o) models processing of an operation

139

automaton iads p
Type:
AppMsg = (O × Int) ∪ Int ∪ (SetOf(Proc) × S) // operations, heartbeats, and state--transfer
OutType = (O × R) ∪ (SetOf(Proc) × S) // operation replies and refresh information

Signature:
Input: requestp(o), O o

gcs.deliverp(q, m), Proc q, m ∈ AppMsg

gcs.viewp(v, T), View v, SetOf(Proc) T

gcs.blockp()

Internal: dop(q, o), Proc q, O o

Output: responsep(o, r), O o, R r

refreshp(s, x), SetOf(Proc) s, S x

gcs.sendp(m), m ∈ AppMsg

gcs.block okp()

State:
S obj, initially s0

QueueOf(O) inp, initially empty

QueueOf(OutType) out, initially empty

(∀ q ∈ Proc) Int lt[q], initially 0

(∀ q ∈ Proc) QueueOf(O × Int) ops[q], initially empty

block status ∈ {unblocked, requested, blocked},
initially unblocked

View myview, initially vp
Bool mode ∈ {normal, st}
Bool send state, initially false

SetOf(Proc) SS, initially {p}
SetOf(Proc × S) StatesV, initially empty

SetOf(Proc) States Await, initially {}

Transitions:
INPUT requestp(o)

eff: append o to inp

OUTPUT gcs.sendp(〈‘op msg’, o, ts〉)

pre: block status 6= blocked

o = First(inp) ∧ ts = lt[p] + 1

eff: remove o from inp

lt[p] ← lt[p]+1

append 〈o, ts〉 to ops[p]

INPUT gcs.deliverp(q, 〈‘op msg’, o, ts〉)

eff: if (q 6= p) then

lt[q] ← ts

lt[p] ← max(lt[p], ts) + 1

append 〈o, ts〉 to ops[q]

INTERNAL dop(q, o)

pre: mode = normal

q = min{t ∈ myview.set : First(ops[t]).ts =

= (min{First(ops[r]).ts : r ∈ myview.set})}
(∀ t ∈ myview.set) lt[t] > First(ops[q]).ts

〈o, ts〉 = First(ops[q])

let x and r be s.t. 〈x, r〉 = o(obj)
eff: remove 〈o, ts〉 from ops[q]

obj ← x

if(p = q) then append 〈o, r〉 to out

OUTPUT responsep(o, r)

pre: 〈o, r〉 is first on out

eff: remove 〈o, r〉 from out

OUTPUT refreshp(set, x)

pre: 〈set, x〉 is first on out

eff: remove 〈set, x〉 from out

OUTPUT gcs.sendp(〈‘lt msg’, ts〉)

pre: block status 6= blocked ∧ ts = lt[p]

INPUT gcs.deliverp(q, 〈‘lt msg’, ts〉)

eff: if (q 6= p) then

lt[q] ← ts

lt[p] ← max(lt[p], ts) + 1

INPUT gcs.blockp()

eff: block status ← requested

OUTPUT gcs.block okp()

pre: block status = requested

eff: block status ← blocked

INPUT gcs.viewp(v, T)

eff: // process all operations in the ops queue
while (∃ q) such that

(q = min{t ∈ myview.set : First(ops[t]).ts =

= (min{First(ops[r]).ts : r ∈ myview.set})})
remove first element 〈o, ts〉 from ops[q]

〈obj, r〉 ← o(obj)
if(p = q) then append 〈o, r〉 to out

end

(∀ t ∈ myview.set) lt[t] ← 0

myview ← v

block status ← unblocked

// state transfer decision:
(mode = normal ? SS ← T : SS ← SS ∩ T)

if(v.set = SS) then // normal mode
append 〈v.set, obj〉 to out

mode ← normal

else // state--transfer
State Await ← v.set; StatesV ← empty

send state ← (p = min(SS))

mode ← st

state transfer

OUTPUT gcs.sendp(〈‘st msg’, set, x〉)

pre: block status = unblocked

send state = true ∧ 〈set, x〉 = 〈SS, obj〉
eff: send state ← false

INPUT gcs.deliverp(q, 〈‘st msg’, set, x〉)

eff: (∀ t ∈ set) add 〈t, x〉 to StatesV

States Await ← States Await - set

if (States Await = {}) then

obj ← merge(StatesV)
append 〈myview.set, obj 〉 to out

mode ← normal

Figure 10.7: Application end-point iadsp of an Interim-Atomic Data Service.

140

o submitted by client at q. Operation o is processed if

(a) operation o totally precedes all other operations currently in the ops queues; and

(b) p knows that the logical times of all other application end-points in the view exceed
the timestamp associated with o.

Condition (b) guarantees that p has received all the operations that precede o, and thus, o
is the next one in the totally ordered sequence of operations sent in the current view; see [71,
Sec. 18.3.3]. The algorithm implements condition (b) by keeping track of the known logical
time of every application end-point q in the current view. The application end-point updates
lt[q] whenever it receives operation requests sent by q. In addition to communicating the
values of their logical times through operations, application end-points also let others know
of their logical times by periodically sending special heartbeat messages, 〈‘lt msg’, ts〉.

While the current view remains stable, the application end-points process the same se-
quences of operations, and thus, remain mutually consistent.

When an application end-point receives a new view from gcs, the application end-point
processes all of the operations in its ops queues according to the total order, even though
condition (b) may not hold for these messages. The sequence of operations processed at this
point may diverge from the global sequence because the application end-point may have
received only a subset of all of the operations sent in the current view; for example, it may
be missing some of the operations sent by disconnected application end-points. However,
what is guaranteed by gcs is that members of the transitional set of the new view receive
the same set of messages, and hence process the same sequence, if they receive the new view.
Thus, after processing the operations in their ops queues, the members of the transitional
set have the same states of their object replicas.

Deciding whether to enter state-transfer

After the operations are processed, application end-point p decides whether or not to enter
the state-transfer protocol. The decision algorithm is taken from [5]. We describe it here.

Variable SS is used for keeping track of the set of application end-points whose object
replicas are synchronized with p. If SS is the same as the membership of a new view v, then
everyone in the new view is already synchronized and p does not need to participate in a
state-transfer protocol for view v; it may resume its normal mode of operation. Otherwise,
p enters the state-transfer protocol, which we discuss below.

According to [5], variable SS is computed as the intersection of all the transitional sets
delivered since normal mode: When an application end-point p receives gcs.viewp(v, T)
while in a normal mode, set SS is initialized to be the transitional set T. If p receives
subsequent views while in state-transfer mode, set SS is intersected with the new transitional
sets.

Indeed, consider an application end-point p in view v− that receives gcs.viewp(v, T). As-
sume that p’s mode is normal prior to receiving the new view. If the membership v.set

141

of the new view is the same as transitional set T, then all of the members of v enter the
new view directly from v− (provided they do enter v). The Virtual Synchrony semantics
guarantees that these members have received the same sets of messages while in view v−,
and hence have applied the same operations in the same order to their object replicas. Since
the states of the object replicas of the members of T were the same when they began normal
mode in view v−, their object replicas are the same after receiving view v from gcs.

Now consider a situation in which an application end-point p receives gcs.viewp(v
′, T′)

while engaged in state-transfer in view v. Even though all the application end-points may
be transitioning together from v to v′, it may be the case that these application end-points
had inconsistent object replicas prior to entering view v. Since the state-transfer protocol
was interrupted, they did not have a chance to synchronize their object replicas. Thus, it is
not sufficient to simply consider transitional set T. The intersection of SS and T gives a set
of application end-points that a) were synchronized when they switched from normal mode
to state-transfer, and b) have been synchronized since.

Hence, if the membership of the new view v is the same as set SS, the application end-point
places the refresh information onto the out queue and continues normal mode of operation.
The refresh information contains the new membership set and the current object state.3

Otherwise, if v.set 6= SS, application end-point p enters the state-transfer protocol.

State-transfer protocol

The state-transfer protocol involves each application end-point collecting the states of the
object replicas of the members of the new view, and then computing a new state for its
replica as a merge of the collected states. After the object replica is updated with the result
of the merge, the refresh information is placed on the out queue. The refresh information
contains the new membership set and the new state of the object.

The part of the code in Figure 10.7 that implements state-transfer follows the algorithm
of [5]; we use the same names for variables, except for variable SS, which is named S in [5].
As was explained above, variable SS defines the set of application end-points whose object
replicas are synchronized; it is computed as the intersection of all the transitional sets
delivered since normal mode.

The gcs semantics allows us to reduce the number of messages and the amount of in-
formation communicated during the protocol: Only one application end-point among the
members of SS needs to send the state of its object replica to others [5]. This is because our
algorithm maintains a property that after receiving a view, all members of SS have their
object replicas in the same state. The optimization is important because state-transfer
messages are typically “costly” due to their large size.

Boolean variable send state controls whether application end-point p has to send its object
replica’s state on behalf of the application end-points in set SS. As in [5], if p is the smallest
one in SS, it sets its send state to true and enables gcs.sendp(〈‘st msg’, SS, objp〉), which

3At this point, the application could have also informed the client that the object state has not been
modified.

142

multicasts objp on behalf of application end-points in SS to the members of v.set.4

Set StatesV is used for collecting object replicas’ states of the view members, and set
States Await is used for keeping track of the list of application end-points from whom p

has not yet received a state-transfer message. If p decides to participate in state-transfer
when gcs.viewp(v, T) occurs, States Await is initialized to v.set, and StatesV is emptied.
Whenever application end-point p receives a state x on behalf of set of application end-
points set, p adds 〈t, x〉 to StatesV for every t in set, and removes members of set from
States Await.

If States Await becomes empty, implying that all the states have been collected in StatesV,
application end-point p computes a new object state by applying the merge function to
StatesV. The application end-point then updates the state of its object replica with the
result of the merge, and places the refresh information onto the out queue. The refresh
information contains the current view’s membership and the new object state.

Note that application end-points keep multicasting their clients’ operations to one another
in the new view, in parallel with the state-transfer protocol. The only part of the algorithm
that is blocked during state-transfer is the actual processing of the operations. When state-
transfer completes, the application end-point may be able to process a whole bunch of
operations collected in the ops queues right away, by executing a sequence of do actions.

If the state-transfer protocol is interrupted by a delivery of a new view, the application
end-point, as before, processes all of the operations in its ops queues according to the total
order, and then decides whether to re-start a state-transfer protocol or to switch back to
normal mode.

Tasks

Figure 10.7 does not specify the tasks partition of the application end-point automaton.
We define the following tasks:

• Cp,1 = {responsep, refreshp};

• Cp,2 = {gcs.sendp(〈‘op msg’, o, ts〉) : o ∈ O ∧ ts ∈ Int};

• Cp,3 = {gcs.sendp(〈‘lt msg’, ts〉) : ts ∈ Int};

• Cp,4 = {gcs.sendp(〈‘st msg’, set, x〉) : set ∈ SetOf(Proc) ∧ x ∈ S};

• Cp,5 = {gcs.block okp};

• Cp,6 = {dop}.
4Notice that the state-transfer message does not need to be sent to the entire view, but only to the

members of v.set − SS. As is, our gcs system supports sending messages to the entire view memberships
only. However, in general, it is straightforward to extend gcs to support group multicasts to subsets of view
memberships. The underlying communication service co rfifo already provides this functionality.

143

This means that, in a fair execution, application end-point p must keep responding to its
client, keep multicasting its client’s requests to other application end-points using gcs,
keep informing other application end-points of its logical time, and keep participating in
state-transfer protocols, as well as keep processing requests.

10.2.2 Correctness

In this subsection we prove that the composition of all the application end-point automata
iadsp and the gcs system satisfies the specification of iads given in Section 10.1. We first
establish key properties of our algorithm, and then use them to derive the Stabilization and
Interim Atomicity properties; showing the one-to-one correspondence between requests and
responses and the fifo properties is straightforward.

Key properties of the algorithm

The properties and their proofs are similar to the correctness proof in the TR version of [5].

First, we define the following helpful notation:

Notation 10.2.1 Given an event gcs.viewp(v, T) in an execution of iads,

• prevp and postvp are respectively the pre-state and post-state of iads when gcs.viewp(v, T)
occurs.

• Tvp = T.

• SSvp = postvp[p].SS, that is the value of set SS that p has after it receives view v.
According to the code, SSvp = Tvp if prevp[p].mode = normal;

SSvp = SS
v−p
p ∩ Tvp if prevp[p].mode = st, where v−p is p’s view prior to v.

• objvp = postvp[p].obj, that is, the state of object replica obj that p has after it receives
view v (i.e., after it applies all the operations communicated in the view v−p that
precedes v).

• base objvp is defined if p ever operates in normal mode while in v and denotes the
state of p’s object replica at the time p starts normal mode of operation in v.

base objvp is equal to objvp if p does not participate in state-transfer. Otherwise,
base objvp is the state of p’s object replica at the time p completes state-transfer pro-
tocol in v and switches to normal mode of operation.

From the fact that gcs satisfies the Transitional Set property (Property 5.1.1, page 64), it
follows that, if two application end-points p and q receive the same view v and if q is in p’s
transitional set for view v, then p and q transition into v from the same view v− and their
transitional sets for view v are the same.

144

Property 10.2.1 If both p and q receive view v, and q ∈ Tvp, then v−q = v−p and Tvq = Tvp.

The following Lemma states that if two application end-points p and q initiate state-transfer
while in view v− and then later transition together from v− into view v, then they either
both complete the state-transfer protocol while in v− or both do not.

Lemma 10.2.1 If both p and q receive view v, and q ∈ Tvp, then if postv
−

p [p].mode =

postv
−

q [q].mode = st, then prevp[p].mode = prevq[q].mode, where v− denotes v−p = v−q (Prop-
erty 10.2.1).

Proof : Upon receiving view v−, both p and q set their State Await variables to v−.set.
Because gcs satisfies Virtually Synchronous Delivery and because p and q transition to-
gether from view v− to view v, p and q receive the same sets of messages while in view v−.
Therefore, either they both receive all the state-transfer messages and switch to normal

mode while in view v−, or they both do not.

Correctness of the state-transfer protocol relies heavily on the soundness of the SS sets. The
next two lemmas and the corollary that follows establish soundness of the SS sets and the
key properties of the algorithm that this soundness implies.

Lemma 10.2.2 If both p and q receive view v, and q ∈ SSvp, then

1. prevp[p].mode = prevq[q].mode, and

2. SSvq = SSvp.

Proof : End-point q ∈ SSvp implies q ∈ Tvp, and hence Tvq = Tvp and v−p = v−q (Prop-
erty 10.2.1); let v− denote v−p = v−q . We now consider the cases of prevp[p].mode = normal

and prevp[p].mode = st separately:

• prevp[p].mode = normal:

1. There are two cases:

postv
−

p [p].mode = normal: From the iads code we have, SSv
−

p = v−.set. Since q

∈ v−.set, it follows that q ∈ SSv
−

p . Hence, inductively, SSv
−

q = SSv
−

p . Thus,

postv
−

q [q].mode = normal, which means that prevq[q].mode = normal.

postv
−

p [p].mode = st: If postv
−

q [q].mode = st, then by Lemma 10.2.1 prevq[q].mode

= normal. The case of postv
−

q [q].mode = normal is not possible, but even if
it were, then prevq[q].mode would be normal.

2. From the code: SSvp = Tvp. By Property 10.2.1), Tvp = Tvq. By part 1, Tvq = SSvq.
Thus, SSvp = SSvq.

• prevp[p].mode = st:

1. We have postv
−

p [p].mode = st, and then by Lemma 10.2.1 prevq[q].mode = st.

145

2. From the iads code, we have SSvp = SSv
−

p ∩ Tvp. Since, q ∈ SSvp, it follows that q

∈ SSv
−

p . Hence, inductively, SSv
−

p = SSv
−

q . By part 1, prevq[q].mode = st, which

means that SSvq = SSv
−

q ∩ Tvq; and, by Property 10.2.1, Tvq = Tvp. Thus, SSvq =

SSv
−

q ∩ Tvq = SSv
−

p ∩ Tvp = SSvp.

Lemma 10.2.3 If both p and q receive view v, and q ∈ SSvp, then objvq = objvp.

Proof : End-point q ∈ SSvp implies q ∈ Tvp, and hence Tvq = Tvp and v−p = v−q (Prop-
erty 10.2.1); let v− denote v−p = v−q . We now consider the cases of prevp[p].mode = normal

and prevp[p].mode = st separately:

• prevp[p].mode = normal: There are two cases:

postv
−

p [p].mode = normal: From the iads code we have, SSv
−

p = v−.set. Since q ∈

v−.set, it follows that q ∈ SSv
−

p . Hence, inductively, objv
−

q = objv
−

p , that is the
object replicas of p and q have the same state respectively after p and q receive
view v−.

We now argue that p and q apply the same set of operations in the same order
to their object replicas after they receive view v−. Consider the following three
facts: a) Because p and q transition together from view v− to view v, p and
q receive the same sets of messages while in view v− (Virtually Synchronous
Deliver), and in particular the same sets of operation requests. b) p and q apply
the operation received in view v− according to the total order defined by logical
timestamps. c) p and q process all of the operations that they receive from gcs in
view v−. Hence, application end-points p and q apply the same set of operations
in the same order to their object replicas.

Since the replicas are initially in the same states objv
−

q = objv
−

p , the resulting
states are also the same: objvq = objvp.

postv
−

p [p].mode = st: First, we argue that postv
−

q [q].mode = st. Assume other-

wise: postv
−

q [q].mode = normal. Then, it follows from the code that SSv
−

q

= v−.set, and thus p ∈ SSv
−

q . By Lemma 10.2.2, SSv
−

q = SSv
−

p , which im-

plies that postv
−

p [p].mode should be normal, not st — a contradiction. Thus,

postv
−

q [q].mode = st; so both p and q enter the state-transfer protocol in view
v−, and both of them complete it (Lemma 10.2.1).

Upon receiving view v−, both p and q set their State Await variables to v−.set
and their StatesV variable to empty. End-points p and q receive the same sets
of messages while in view v− (Virtually Synchronous Deliver).

In particular, they receive the same sets of state-transfer messages and, therefore,
apply function merge to the same StatesV vector. Thus, the states of their object
replicas are the same after each of them finishes the state-transfer protocol in
view v−: base objv

−

p = base objv
−

q .

Just as in the previous case, we can argue that p and q apply the same sets of
operations in the same order to their object replicas in view v−. Thus, objvq =
objvp.

146

• prevp[p].mode = st: From the iads code, we have SSvp = SSv
−

p ∩ Tvp. Since, q ∈ SSvp, it

follows that q ∈ SSv
−

p . Hence, inductively, objv
−

p = objv
−

q .

As before, we can argue that, since p and q receive and the same sets of operation
requests while in view v− and since p and q process all of these requests in the same
order. Hence, objvp = objvq.

Corollary 10.2.1 Given a view v, if every member p ∈ v receives v, then

1. ∪ p∈v.setSS
v
p = v.set;

2. (∀ p ∈ v.set) (∀ q ∈ v.set) (SSvp ∩ SSvq 6= 0 ⇒ SSvp = SSvq);

3. (∀ p ∈ v.set) (∀ q ∈ v.set) (SSvp = SSvq ⇒ objvp = objvq);

Proof :

1. First, observe that for any p ∈ v.set, SSvp ⊆ v.set since SSvp ⊆ Tvp ⊆ v.set. Thus,
∪ p∈v.setSS

v
p ⊆ v.set. Second, since every transitional set that p receives includes

p itself, p ∈ SSvp. This means that, for every p ∈ v.set, p ∈ ∪ p∈v.setSS
v
p. Thus,

∪ p∈v.setSS
v
p ⊇ v.set.

2. If SSvp ∩ SSvq 6= 0, then there exists some t ∈ v.set such that t ∈ SSvp and t ∈ SSvq.
By Lemma 10.2.2, it follows that SSvp = SSvt = SSvq.

3. Since every transitional set that p receives includes p itself, p ∈ SSvp. From SSvp = SSvq,
it follows that p ∈ SSvq and, by Lemma 10.2.3, objvp = objvq.

The following lemma establishes that, when application end-points complete the state-
transfer protocol in some view, the new object states that the application end-points com-
pute are the merge of the states that the members had when they entered the view.

Lemma 10.2.4 Given a view v such that all q ∈ v.set receive view v, if an end-point p ever
operates in normal mode while in view v, then base objvp = merge({〈q, objvq〉 : q ∈ v.set}).

Proof : First, consider the case when p avoids state-transfer in v, that is, when SSvp =
v.set. By Corollary 10.2.1, for every q ∈ v.set, SSvq = SSvp (part 2), and objvq = objvp (part
3). Thus, merge({〈q, objvq〉 : q ∈ v.set}) = merge({〈q, objvp〉 : q ∈ v.set}), which by the
identity property of the merge function is equal to objvp. obj

v
p = base objvp by definition of

base objvp and the fact that p avoids state-transfer in v.

Now, consider the case when p does participate in state-transfer in v. In order for p to
switch to normal mode, its StatesV set must contain state entries for every member q ∈
v.set; we must prove that these entries are correct, i.e., are indeed objvq. An application
end-point t multicasts a state-transfer message containing objvt on behalf of q only if q ∈
SSvt. But then, by Corollary 10.2.1, SSvt = SSvq (part 2), and objvt = objvq (part 3).

147

Correspondence between requests and responses and fifo ordering

It is straightforward to prove that clients receive no spurious responses, that is, that for
every response there is a unique, corresponding request. The fact that, for a given client,
the order of responses is the same as the order of requests is implied by the use of fifo

queues in the algorithm.

In fact, we can define a refinement RMfifo between iads and eo fifo ds: RMfifo maps a state
s of iads into a state of eo fifo ds in which ops[p] is equal to the concatenation of s[p].inp,
s[p].ops[p].o, and s[p].out[p].o. The proof of RMfifo being a refinement is straightforward.

We can also prove that, under certain conditions, iads keeps processing requests. There are
two conditions: First, is fairness of the execution, i.e., that iads keeps taking locally-enabled
steps. Second, is that gcs does not block a given application end-point from some point
forever on. (Note that we do not need to assume stabilization of the underlying network
components.)

Theorem 10.2.5 (Eventual Response) In a fair execution of iads in which an appli-
cation end-point p is not blocked by gcs from some point forever on, every requestp event
has a unique, corresponding responsep event.

Proof : Consider a fair execution of iads and application end-point p. Provided application
end-point p is not blocked forever from some point on, p eventually places every request
received from its client into queue ops[p] at the time it multicasts the request using gcs.
There are two cases: If p’s view does not change, this means that p’s view is stable (i.e., the
members are connected and are able to communicate). Thus, p will eventually learn that
everyone’s time has passed the timestamp of the request, and will be able to process the
request. Otherwise, if p’s view changes, then p processes the request when it receives the
next view. Whenever p processes requests, it places them on the out queue, and eventually
delivers them to its client.

Stabilization

We now prove that the iads algorithm satisfies the iads Stabilization property (Prop-
erty 10.1.1).

First, we argue that stabilization of a set of clients leads to the stabilization of gcs. Consider
an execution α of iads in which a set Ω of clients becomes and remains stable from some
point on (Definition 10.1.1). Recall that we assume that the underlying model is an asyn-
chronous system enriched with an eventually perfect failure detector (3P), as defined by
Chockler et al., in [27]. In [27], Chockler et al., also prove that an eventually perfect failure
detector is equivalent to a precise group membership service. Thus, it is valid to assume that
the mbrshp service component of gcs behaves like a precise group membership service; in
other words, that execution α satisfies View Stability (Property 5.2.1): the mbrshp service
component of gcs delivers a stable view v with the membership set Ω to the gcs end-points

148

of Ω. Since α satisfies View Stability, gcs satisfies Liveness Property 5.2.2: gcs eventually
delivers view v to every application end-point in Ω, and does not deliver any subsequent
views; moreover, gcs eventually delivers to every application end-point in Ω every message
sent in view v. It remains to prove that, after every application end-point p of Ω receives
the final view v, the end-point eventually outputs the final refreshp(Ω, base state) event,
where base state is the same at all the members.

We now prove that the stabilization of gcs leads to the stabilization of iads.

Theorem 10.2.6 (iads Stabilization) In a fair execution in which all application end-
points of Ω receive the same view v, with v.set = Ω, and no subsequent views afterwards,
every application end-point p ∈ Ω eventually starts operating in normal mode in v, eventu-
ally outputs refreshp(Ω, base state), and produces no refreshp events afterwards, where
base state is the same for all application end-points in v.set.

Proof : If we show that everyone in v.set eventually places the correct refresh information
in its out queue, we are done, because, by fairness, everything placed in the out queues
gets eventually delivered to the clients. Since p does not receive any other views after v, it
does not place any other refresh information on the out queue.

• If SSvp = v.set, then p sets mode to normal and places the refresh information,
〈v.set, base objvp〉, on the out queue when it receives view v. By Lemma 10.2.4
all p ∈ v.set have the same base objvp. Thus, when the final refresh events even-
tually occur at every p ∈ v.set, the refreshed object state base state = base objvp is
the same at all these events.

• If SSvp 6= v.set, then by Corollary 10.2.1 part 2, there is no application end-point q

∈ v.set such that SSvq = v.set. Thus, every q ∈ v.set participates in state-transfer
protocol in v. We now argue that eventually the state-transfer protocol completes at
every p, at which time the application end-point switches to normal mode and places
the refresh information, 〈v.set, base objvp〉, on its out queue.

From the code, we see that state-transfer protocol completes when application end-
point p collects state-transfer messages on behalf of everyone in v.set. We need to
show that, for every q ∈ v.set, there is some application end-point t ∈ v.set that sends
a state-transfer message on q’s behalf. Fix q and let t be min(SSvq). By Lemma 10.2.2,
we have SSvt = SSvq, and thus t = min(SSvt); so, t sets its send state flag to true

and eventually multicasts a state-transfer message, 〈SSvt, obj
v
t〉 to everyone in view

v. Since view v is stable, gcs eventually delivers this message to every p ∈ v.set,
at which time p subtracts SSvt (and in particular q) from its States Await set and
adds 〈q, objvt〉 to its StatesV set. Hence p eventually collects state-transfer messages
on behalf of everyone in v.set and completes the state-transfer protocol: computes
base objvp as a merge of the object states collected in StatesV, switches to normal

mode, and places 〈v.set, base objvp〉 on its out queue.

Again, by Lemma 10.2.4, all p ∈ v.set have the same base objvp. Thus, when the
final refresh events eventually occur at every p ∈ v.set, the refreshed object state
base state = base objvp is the same at all these events.

149

Interim Atomicity

Consider a fair execution in which all application end-points of Ω receive the same view v,
with v.set = Ω, and no subsequent views afterwards. Let base state be base objvp for any
p ∈ v.set, since base objvp are the same for all p ∈ v.set. Let init ops(p) be postvp[p].inp.

We need to prove that the subsequence of a trace of iads comprised of the events in-
volving the clients of Ω after the final refresh events is indistinguishable from a trace
of ao[Ω, base state, init ops]. The proof of this property relies on the correctness of the
active replication algorithm that uses logical timestamps to implement global ordering of
operations. This algorithm is well-known and has been proved correct before.

10.2.3 Performance

We consider two performance characteristics of iads. The first one is how quickly iads

reconfigures and delivers refresh inputs when instabilities occur. The second one is how
quickly iads processes requests and delivers responses to its clients. There are other inter-
esting performance characteristics that we could have considered in addition to these ones:
for example, message complexity of reconfiguration.

Bound on stabilization

We consider executions of iads in which a set Ω of clients stabilizes from some point
on and all application end-points of Ω receive the same final view v, with v.set = Ω.
Theorem 10.2.6 established that every application end-point p ∈ Ω eventually outputs a
final refreshp(Ω, base state) event.

There are two possible scenarios depending on whether or not the application end-points of
Ω execute a state-transfer protocol while in view v.

1. If not, then the final refreshp event occurs immediately after the final viewp(v, T
v
p); as

in Chapter 9 we assume that local actions, except for the block okp responses and for the
heartbeat messages gcs.sendp(〈‘lt msg’, ...〉), occur immediately after being enabled and
take zero time. That is, T[refreshp] = T[gcviewp], where refreshp denotes the final refresh
event at p, and gcviewp refers to the viewp(v, T

v
p) event (Definition 9.2.4, page 113).

2. Otherwise, if application end-points of Ω execute a state-transfer protocol while in
view v, the final refresh events occur once the protocol completes. Let δst denote the
latency of state-transfer messages in view v. Then, T[refreshp] ≤ last-gcview + δst,
where last-gcview refers to the last event among the gcviewp events for all p ∈ Ω (Defi-
nition 9.2.4, page 113).

For simplicity, we assume that δst is the same as the underlying message latency δ of
co rfifo (Constraint 9.2.3, page 115). In general, δst could be larger than δ because the
size of state-transfer messages is typically much larger than that of regular messages.

150

Now, we can use the performance results about the gcs system that we derived in Chapter 9
to express an upper-bound on T[refreshp] in terms of the time of the final group event
last-ge and in terms of various low-level timing assumptions, such as detection latency
δdetection and message latency δ. In particular, we use the upper-bound for T[gcviewp]
established by Corollary 9.5.1, page 126.

Roughly speaking, the following Theorem 10.2.7 states that every application end-point
delivers the final refresh event within about two latencies – one detection latency and one
message latency – away from the time the final group event occurs, provided the application
end-point is able to rely on Virtual Synchrony to avoid participating in a state-transfer
protocol. Otherwise, if state-transfer is necessary, the final refresh event occurs within
about three latencies – one detection latency and two message latencies – away from the
time the final group event occurs.

Theorem 10.2.7 Let α be a timed execution of iads in which view v becomes stable, as
defined by Property 5.2.1. Assuming that last-ge is the final group event that results in
the group’s membership stabilizing to v.set, the following bound holds for each p ∈ v.set:

T[refreshp] ≤

{

T[last-ge] + δdetection + δ + c if SSvp = v.set

T[last-ge] + δdetection + 2 × δ + c if SSvp 6= v.set
,

provided Assumptions 9.3.1, 9.4.1, and 9.4.2 hold, and provided the suffix of α following
the last-mstart event satisfies Constraints 9.2.1, 9.2.2, and 9.2.3 with the given set of
application end-points v.set and time index T[last-mstart].

Proof : Follows immediately from Corollary 9.5.1 and the code for the iads application
end-points.

Notice that the condition for whether or not the application end-point avoids a state-transfer
in view v is internal to the iads algorithm: The theorem states this condition in terms of
the value of the p.SS variable after view v is delivered to p. The condition depends on the
specific behavior of the gcs system.

Theorem 10.2.7 captures one type of benefit that is enabled by the GCSs that provide
Virtual Synchrony: In some situations the application is able to avoid performing a state-
transfer protocol after instabilities occur. An example of a typical situation that leads
to this optimization is when a member end-point disconnects or fails in temporal isolation
from other group events affecting the membership. In such situations, gcs would (typically)
transition all the surviving members together into the same new view. More complicated
network changes may also lead to the optimization, especially because our gcs avoids
reporting obsolete views to the application. Future research work is necessary in order
to classify such situations more precisely.

There is also another type of benefit that is enabled by Virtual Synchrony: A reduction
in the number of state messages communicated during state-transfer (when state-transfer
can not be avoided). As the iads algorithm demonstrates, because Virtual Synchrony
synchronizes the application end-points that transition together into the new view, it is

151

enough for only one representative from the sets of synchronized end-points to send its
state during state-transfer.

Processing of requests

First consider how quickly client’s requests are processed in a stable component when all
the end-points comprising the component operate in normal mode. The iads algorithm
is able to process a given request as soon as it determines the request’s position in the
totally-ordered sequence of all the requests communicated in the current view and as soon
as it receives and processes all the preceding requests. This time depends on the specific
algorithm used for totally ordering requests.

For the sake of concreteness, we presented a simple, symmetric algorithm based on logical
time. Recall that, in this algorithm, an application end-point determines the order of an
operation o as soon as the end-point learns that all the other end-points have reached the
logical time assigned to o. In the worst case, this time is bounded by approximately two
message latencies (a precise bound must involve the frequency of heart-beat messages).
However, if the end-points’ logical clocks are kept closely synchronized, then the bound is
approximately one message latency (as explained in [71, p. 609]).

Instead of the total-order algorithm based on logical time, we could have used other total-
order algorithms, such as based on a sequencer process or a token (e.g., [24, 55, 20, 78],
or on other, more sophisticated schemes [25, 80]. An algorithm that uses a dedicated
“leader” end-point to order requests and inform other end-points of the ordering requires
two message latencies: one from the original end-point to the leader and the other from the
leader to the end-points. Token-based solution achieve similar performance. In general, the
performance of state-of-the-art total order algorithms, in situations when the underlying
network is well-behaved, is close to a single message latency.

An alternative approach to using Group Communication for building replicated data ser-
vices is to use Consensus (e.g., [67, 83]). In this approach, during normal mode of operation,
the servers hosting object replicas run Consensus to agree on the order in which to process
clients’ requests. Different replicated services differ in the particular data consistency se-
mantics that they guarantee. For the services that provide weaker consistency semantics,
such as the iads application, using Consensus is an overkill. Our algorithm for iads is able
to process requests in the time it takes to totally-order them; in the case of a leader-based
scheme — one round-trip time to the leader. In contrast, optimized solutions based on
Consensus require two round-trip messages: the original message to the leader, a “query”
message from the leader to the end-points and back, and then the “decision” message from
the leader to the end-points [67]. In addition, the replication approaches based on Group
Communication provide convenient mechanisms to support partitionable semantics and dy-
namic sets of clients; Consensus offers no such mechanisms.

Now, we consider different factors that affect processing of requests when the clients’ com-
ponent undergoes changes or when the iads algorithm executes state-transfer protocol.

When instabilities occur, the total-order algorithm may take longer than “normal-case”

152

latency to finalize the position of a request, and in some cases it may not succeed. For
example, the end-point may never receive the information from disconnected end-points
that is necessary for determining the position of the request. Our algorithm guarantees
that, once the end-point starts processing a request (i.e., multicasts the request to other
end-points using gcs), it will apply the request to the object replica and respond to the
client at most by the time the end-point receives a next view.

An addition factor that must be considered is the time it takes the end-point to start
processing a request after the request is submitted by the client. This time depends on
whether or not at the time the request is submitted the end-point is blocked by gcs. If
it is not blocked, then the end-point starts processing the request immediately after it is
submitted. Otherwise, the end-point keeps the request in its inp queue and then starts
processing the request only at the time it receives the next view from gcs.5

The final factor that affects how quickly the end-point processes requests is the mode of
operation, which can be either normal or state-transfer. Recall that the end-point may
apply clients’ operations to its object replica only when its mode is normal, i.e., it is not
engaged in state-transfer. Thus, when the end-point receives a view from gcs and starts
processing operation requests in this new view, the final application of the operations to
the object replica is delayed until the end-point completes the state-transfer protocol. In
situations, when the end-point is able to rely on Virtual Synchrony to avoid participating
in a state-transfer protocol, this potential delay is also avoided.

5An extension of Virtual Synchrony, called Optimistic Virtual Synchrony, supports transmission of ap-
plication messages in parallel with formation of new views (Sussman et al., in [90, 89]). With Optimistic
Virtual Synchrony, the iads application can be modified to avoid the processing delay caused by blocking.

153

154

Chapter 11

Conclusions

We have developed a formal design of a novel group communication service targeted for
WANs. The design implements a variant of the Virtual Synchrony semantics that includes
a collection of properties that have been shown useful for many distributed applications
(see [27]). Many GCSs, for example [93, 82, 12, 8, 34], support these and similar properties.
The design provides theoretical underpinnings for a practical group communication system
for WANs: our Virtual Synchrony algorithm was implemented (in C++) [92] as an extension
of the Xpand system [10] under development at the Hebrew University of Jerusalem.

The motivation for this dissertation was twofold: First, the specifications and descriptions
of the existing GCSs had been shown to be highly imprecise and ambiguous, and some, as
we discovered, had serious algorithmic flaws. Due to the complexity of GCSs, prior efforts
formalizing these systems had only limited success. Second, the existing systems had been
designed for local-area networks, and did not perform well in wide-area networks. The
dissertation addresses both of these challenges.

The contributions made by this dissertation include a complete formalization of a large-
scale Virtually Synchronous GCS, a superior WAN-oriented architecture, and a superior
algorithm for implementing Virtual Synchrony.

The formalization of the Virtually Synchronous GCS includes: precise specifications of
the GC service and its execution environment; a precise and modular description of the
algorithm implementing the service specification; a formal correctness proof showing that
the algorithm satisfies the specified properties; and a formal analysis of the algorithm’s
performance.

The new architecture decouples two key components of GCSs — Virtual Synchrony and
Membership — allowing them to execute asynchronously and in parallel. Such decoupling
has been regarded as critical for providing scalable and efficient group communication ser-
vices in wide-area networks: It allows for the utilization of a scalable architecture for group
membership in which a small set of membership servers maintains group membership of a
large set of clients [9]. The architecture suggested here has been adopted by the Moshe
system developed at UCSD and MIT [58].

155

The new algorithm for implementing Virtual Synchrony involves just a single message-
exchange round among the participating processes. This constitutes a significant improve-
ment from the existing solutions (e.g., [43, 8, 47, 6, 12]), which require at least two commu-
nication rounds. Moreover, unlike existing solutions (e.g., [8, 47, 12, 82]), the new algorithm
is able to respond dynamically to cascading connectivity changes, without wasting resources
on handling obsolete network situations. These innovations to the algorithm are critical for
WANs, which typically have high and unpredictable message latency, and frequent connec-
tivity changes.

At the heart of the decoupled architecture and the one-round Virtual Synchrony algorithm
lies a simple yet powerful idea: start-change identifiers. When a membership server decides
to start forming a new view, it notifies its clients (the gcs end-points) about this; the
notification message includes a start-change identifier that corresponds to the current view
formation attempt of the server. Upon receiving these notifications, the gcs end-points start
a synchronization protocol by sending their synchronization messages tagged with the start-
change identifiers. The protocol proceeds in parallel with the membership service forming
a new view; when formed and delivered to the gcs end-points, the view will include infor-
mation about which start-change identifiers were given to which member. This information
communicates to the end-points which synchronization messages they need to consider from
other end-points. Since no pre-agreement upon a common identifier takes place, there is
nothing that inhibits the membership service and the Virtual Synchrony algorithm from
handling changes in the membership when a view formation and synchronization protocols
are already in progress: the membership service has to notify the affected end-points of
the change, and the end-points just have to forward their synchronization messages to the
joining members.

A distinct and important characteristic of our design is the high level of formality and
rigor at which it was carried out. This dissertation provides precise descriptions of the
gcs algorithm and its semantics, as well as a formal proof of the algorithm’s correctness
(both safety and liveness). Previously, formal approaches based on I/O automata were
used to specify the semantics of Virtually Synchronous GCSs and to model and verify
their applications, for example, in [26, 39, 31, 63, 32, 51]. However, due to their size
and complexity, Virtual Synchrony algorithms were not previously modeled using formal
methods, nor were they assertionally verified. Our experience has taught us the importance
of careful modeling and verification: in the process of proving our algorithm’s correctness
we often uncovered subtleties and ambiguities that had to be resolved.

Developing a formal and rigorous design was challenging due to the project’s scale and intri-
cacy. In order to accomplish this goal, we developed a novel inheritance-based methodology
for incremental construction of specifications, algorithms, and, above all, proofs (Chap-
ter 3, [61, 62]). The key contribution of this methodology is a generic framework for reuse
of proofs analogous and complementary to the reuse provided by object-oriented software
engineering methodologies; this is the first work that addressed reuse of proofs. Proof reuse
is critical for improving cost-effectiveness and scalability of formal methods, which itself is
crucial for successful efforts in modeling and validation of large-scale software systems.

Using the inheritance-based methodology, we were able to specify, describe, and verify the
Virtual Synchrony algorithm incrementally, at each step focusing on a different property.

156

This way, it was easy to see which part of the algorithm corresponds to which property of the
specification. Likewise, the proof was broken up into pieces of manageable sizes, with each
piece focusing solely on the part of the code that was being proven. For example, in order to
prove that vs rfifo+ts simulates vsrfifo : spec we extended the simulation relation from
wv rfifo to wv rfifo : spec and reasoned solely about the extension, without repeating
the reasoning about the parent components; this-proof reuse was justified by the Proof
Extension theorem of Chapter 3. The use of the incremental modeling and verification
methodology was the key to our success in formalizing such a complex and sophisticated
distributed system. We hope that this methodology shall also be helpful to other researchers
working on formal modeling of complex distributed systems.

Previous projects that modeled large-scale complex systems using I/O automata relied on
composition: complex algorithms were expressed by multiple manageable parts that jointly
compose the algorithm (see, for example, [51]). In the context of our project, however, com-
position could not have been used in lieu of inheritance for two reasons: First, composition
does not allow different components to share the same data structures. In contrast, all the
parts of our algorithm share common data structures such as message buffers. Using com-
position, we would have had to duplicate these data structures as well as the book-keeping
logic associated with them. This would make the algorithm models more cumbersome.

The second and more important reason is that composition does not allow for proof reuse,
since it does not guarantee that one component does not violate the guarantees of another.
Consider our project, for example. Had we implemented the Virtually-Synchronous Deliv-
ery property as a layer above wv rfifo, we would have had no guarantee that the combined
system preserved the Within-View Delivery and the Reliable fifo properties. In fact, we
would have had to prove (1) that the wv rfifo layer satisfies these properties; (2) that
the Virtually-Synchronous Delivery layer does not change message ordering in a way that
violates the wv rfifo properties; and (3) that the Virtually-Synchronous Delivery layer
satisfies the Virtually-Synchronous Delivery property. When introducing a third layer that
implements Self Delivery, we would, once again, have had to prove that the new compo-
nent does not violate the previously established properties. This repetition of reasoning is
precisely what our inheritance-based technique allowed us to avoid.

In addition to specifying, modeling, and verifying our design, we have also carried out a
theoretical analysis of its performance characteristics. The analysis follows the conditional
approach that involves statements about system’s behavior, under particular assumptions
about behavior of the environment and of the network substrate. Specifically, in our analy-
sis, we considered an execution of gcs in which a network component becomes stable from
some point on, and investigated how long it takes gcs to deliver the final views to the
component members after the final group event affecting the component occurs.

One important feature of the conditional approach to performance analysis is that it focuses
on establishing precise performance predictions for particular, interesting types of executions
(such as normal and failure cases); this is in contrast to a more common approach that lumps
all the cases together and complicates and obscures the situation with probabilities. The
analysis we carried out in this dissertation is a first step towards a well-defined methodology.
To go one step further, other execution scenarios must be considered. The expected behavior
of the system can then be derived from the performance results for different scenarios and

157

from the probabilities of these scenarios occurring.

Another important feature of the conditional approach is that it lends itself naturally to
composition: The performance characteristics of the entire system can be expressed as a
composition of the performance properties of individual components. Thus, in our analysis,
we first analyzed the performance of the Virtual Synchrony algorithm run by gcs end-
points in terms of the timings of the relevant mbrshp events, and under certain low-level
timing assumptions. Then, we considered a specific membership service, [58], and expressed
reasonable time bounds on the events of this service in terms of the timings of the underlying
network events. Finally, we composed the two bounds to yield a performance result for the
gcs system as a whole.

The advantage of the compositional approach to performance analysis is that different com-
ponents can be studied in isolation, and that the analysis of a system can be reused when
alternative implementations of system components are plugged in instead of the original
ones. Thus, if a different GCS uses our Virtual Synchrony algorithm in the context of a
membership service different from [58], it would be straightforward to compose the perfor-
mance characteristics that we derived for the Virtual Synchrony algorithm with those of
the membership service to yield the result about the performance of the GCS.

Finally, in order to illustrate the utility of our gcs system, we presented a simple algorithm
that uses the gcs system to implement a replicated data service. The service allows a
dynamic group of clients to access and modify a replicated data object. It guarantees a
particular type of weak data consistency that preserves atomicity when the set of clients and
the underlying network remain stable. We called this type of consistency Interim Atomicity.

The algorithm we presented formalizes the ideas of [5, 66, 83]. Our contribution lies in
finding a clean, clear way to specify the semantics of Interim Atomicity. In our specification,
we define a generalized atomic object, and then require the subsequence of a trace of the
system involving the clients of a stable component to be a trace of the generalized atomic
object. An interesting future step is to use this approach to study and define other types
of weak consistency semantics that could be useful for applications that operate in highly
dynamic, partitionable environments (e.g., mobile).

158

Bibliography

[1] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical Com-
puter Science, 82(2):253–284, May 1991.

[2] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[3] Divyakant Agrawal and Amr El Abbadi. Exploiting logical structures in replicated
databases. Information Processing Letters, 33(5):255–260, January 1990.

[4] Y. Amir, D. Breitgand, G. Chockler, and D. Dolev. Group communication as an
infrastructure for distributed system management. In 3rd International Workshop on
Services in Distributed and Networked Environment (SDNE), pages 84–91, June 1996.

[5] Y. Amir, G. V. Chockler, D. Dolev, and R. Vitenberg. Efficient state transfer in parti-
tionable environments. In 2nd European Research Seminar on Advances in Distributed
Systems (ERSADS’97), pages 183–192. BROADCAST (ESPRIT WG 22455), Operat-
ing Systems Laboratory, Swiss Federal Institute of Technology, Lausanne, March 1997.
Full version: Technical Report CS98-12, Institute of Computer Science, The Hebrew
University, Jerusalem, Israel.

[6] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication sub-system
for high availability. In 22nd IEEE Fault-Tolerant Computing Symposium (FTCS),
July 1992.

[7] Y. Amir, D. Dolev, P. M. Melliar-Smith, and L. E. Moser. Robust and efficient repli-
cation using group communication. Technical Report CS94-20, Institute of Computer
Science, Hebrew University, Jerusalem, Israel, 1994.

[8] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. The
Totem single-ring ordering and membership protocol. ACM Transactions on Computer
Systems, 13(4), November 1995.

[9] T. Anker, G. Chockler, D. Dolev, and I. Keidar. Scalable group membership services
for novel applications. In Marios Mavronicolas, Michael Merritt, and Nir Shavit, edi-
tors, Networks in Distributed Computing (DIMACS workshop), volume 45 of DIMACS,
pages 23–42. American Mathematical Society, 1998.

[10] T. Anker, G. Chockler, I. Shnaiderman, and D. Dolev. The design of Xpand: A group
communication system for wide area networks. Technical Report 2000-31, Institute of
Computer Science, Hebrew University, Jerusalem, Israel, July 2000.

159

[11] T. Anker, D. Dolev, and I. Keidar. Fault tolerant video-on-demand services. In 19th
International Conference on Distributed Computing Systems (ICDCS), pages 244–252,
June 1999.

[12] Ö. Babaoğlu, R. Davoli, and A. Montresor. Group communication in partitionable
systems: Specification and algorithms. IEEE Transactions on Software Engineering,
27(4):308–336, April 2001. Previous version: University of Bologna Department of
Computer Science Technical Report UBLCS98-1.

[13] Ralph-Johan Back, Anna Mikhajlova, and Joakim von Wright. Class refinement as
semantics of correct object substitutability. Formal Aspects of Computing, 12:18–40,
2000.

[14] A. Bartoli, B. Kemme, and Ö. Babaoğlu. Online reconfiguration in replicated databases
based on group communications. Technical Report UBLCS-2000-17, Departement of
Computer Science, University of Bologna, Mura Anteo Zamboni 7, 40127 Bologna
(Italy), December 2000.

[15] Philip Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems, chapter 7-8, pages 217–304. Addison-Wesley, 1987.

[16] Mark Bickford and Jason Hickey. An object-oriented approach to verifying group
communication systems. http://www.cs.cornell.edu/jyh/papers/cav99 ooioa/, 1998.

[17] K. Birman. Building Secure and Reliable Network Applications. Manning, 1996.

[18] K. Birman, R. Friedman, M. Hayden, and I. Rhee. Middleware support for distributed
multimedia and collaborative computing. In Multimedia Computing and Networking
(MMCN98), 1998.

[19] K. Birman and T. Joseph. Exploiting virtual synchrony in distributed systems. In 11th
ACM SIGOPS Symposium on Operating Systems Principles (SOSP), pages 123–138.
ACM, Nov 1987.

[20] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group
multicast. ACM Transactions on Computer Systems, 9(3):272–314, 1991.

[21] K. Birman and R. van Renesse. Reliable Distributed Computing with the Isis Toolkit.
IEEE Computer Society Press, 1994.

[22] T. Budd. An Introduction to Object-Oriented Programming, 2nd Edition. Addison
Wesley Longman, 1996.

[23] Miguel Castro and Barbara Liskov. Proactive recovery in a byzantine-fault-tolerant
system. In Proceedings of the Fourth Symposium on Operating Systems Design and
Implementation, October 2000.

[24] J. Chang and N. Maxemchunk. Reliable broadcast protocols. ACM Transactions on
Computer Systems, 2(3), 1984.

[25] G. Chockler, N. Huleihel, and D. Dolev. An adaptive totally ordered multicast pro-
tocol that tolerates partitions. In 17th ACM Symposium on Principles of Distributed
Computing (PODC), pages 237–246, June 1998.

160

[26] G. V. Chockler. An Adaptive Totally Ordered Multicast Protocol that Tolerates Par-
titions. Master’s thesis, Institute of Computer Science, Hebrew University, Jerusalem,
Israel, 1997.

[27] G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifications: A
Comprehensive Study. ACM Computing Surveys, 33(4):1–43, December 2001. Previous
version: MIT Technical Report MIT-LCS-TR-790, September 1999.

[28] William Cook and Jens Palsberg. A denotational semantics of inheritance and its
correctness. Information and Computation, 114(2):329–350, 1994. Preliminary version
in Proceedings of OOPSLA’89, ACM SIGPLAN 4th Annual Conference on Object-
Oriented Programming Systems, Languages and Applications, pages 433–443, New
Orleans, Louisiana, October 1989.

[29] F. Cristian and F. Schmuck. Agreeing on process group membership in asynchronous
distributed systems. Technical Report CSE95-428, Department of Computer Science
and Engineering, University of California, San Diego, 1995.

[30] R. De Prisco. On building blocks for distributed systems. PhD thesis, MIT Department
of Electrical Engineering and Computer Science, Cambridge, MA, USA, December
1999.

[31] R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman. A dynamic view-oriented
group communication service. In 17th ACM Symposium on Principles of Distributed
Computing (PODC), pages 227–236, June 1998.

[32] R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman. A dynamic primary configu-
ration group communication service. In 13th International Symposium on DIStributed
Computing (DISC), pages 64–78, Bratislava, Slovak Republic, 1999.

[33] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through
specification inheritance. In Proceedings of the 18th International Conference on Soft-
ware Engineering, Berlin, Germany, pages 258–267. IEEE Computer Society Press,
March 1996. A corrected version is Iowa State University, Dept. of Computer Science
TR #95-20c.

[34] D. Dolev and D. Malkhi. The Transis approach to high availability cluster communi-
cation. Communications of the ACM, 39(4):64–70, April 1996.

[35] D. Dolev, D. Malki, and H. R. Strong. An asynchronous membership protocol that
tolerates partitions. Technical Report CS94-6, Institute of Computer Science, Hebrew
University, Jerusalem, Israel, 1994.

[36] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial syn-
chrony. Journal of the ACM, 35(2):288–323, April 1988.

[37] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvartsman. Eventually-
serializable data services. In 15th ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 300–309, May 1996.

[38] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvartsman. Eventually-
serializable data services. Theoretical Computer Science special issue on Distributed
Algorithms, 220, 1999.

161

[39] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partitionable group
communication service. ACM Transactions on Computer Systems, 19(2):171–216, May
2001. Previous version appeared in PODC 1997.

[40] R. Friedman. Using virtual synchrony to develop efficient fault tolerant distributed
shared memories. Technical Report TR-95-1506, Cornell University, 1995.

[41] R. Friedman and A. Vaysburd. Fast replicated state machines over partitionable
networks. In 16th IEEE International Symposium on Reliable Distributed Systems
(SRDS), October 1997.

[42] R. Friedman and A. Vaysburd. High-performance replicated distributed objects in
partitionable environments. Technical Report 97-1639, Dept. of Computer Science,
Cornell University, Ithaca, NY 14850, USA, July 1997.

[43] Roy Friedman and Robbert van Renesse. Strong and Weak Virtual Synchrony in Horus.
TR 95-1537, dept. of Computer Science, Cornell University, August 1995.

[44] Stephen J. Garland and Nancy A. Lynch. Using I/O automata for developing dis-
tributed systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations of
Component-Based Systems, chapter 13, pages 285–312. Cambridge University Press,
USA, 2000.

[45] Stephen J. Garland, Nancy A. Lynch, and Mandana Vaziri. IOA: A
Language for Specifying, Programming and Validating Distributed Sys-
tems. MIT Lab for Computer Science, Cambridge, MA, December 1997.
http://sds.lcs.mit.edu/∼garland/ioaLanguage.html.

[46] R. Guerraoui and A. Schiper. Consensus: the big misunderstanding. In Proceedings of
the 6th IEEE Computer Society Workshop on Future Trends in Distributed Computing
Systems (FTDCS-6), pages 183–188, Tunis, Tunisia, October 1997. IEEE Computer
Society Press.

[47] Katherine Guo, Werner Vogels, and Robbert van Renesse. Structured virtual syn-
chrony: Exploring the bounds of virtual synchronous group communication. In 7th
ACM SIGOPS European Workshop, September 1996.

[48] David Harel and Orna Kupferman. On the behavioral inheritance of state-based ob-
jects. In Technology of Object-Oriented Languages (TOOLS). IEEE Computer Society
Press, Los Alamitos, CA, July 30th – August 3rd 2000.

[49] Andreas V. Hense. Wrapper semantics of an object-oriented programming language
with state. In T. Ito and A. R. Meyer, editors, Proceedings of Theoretical Aspects of
Computer Software, pages 548–568. Springer-Verlag (LNCS 526), 1991.

[50] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492, July 1990.

[51] Jason Hickey, Nancy Lynch, and Robbert van Renesse. Specifications and proofs for
ensemble layers. In 5th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), LNCS. Springer-Verlag, March 1999.

162

[52] M. Hiltunen and R. Schlichting. Properties of membership services. In 2nd Interna-
tional Symposium on Autonomous Decentralized Systems, pages 200–207, 1995.

[53] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[54] Bengt Jonsson. Compositional specification and verification of distributed systems.
ACM Transactions on Programming Languages and Systems, 16(2):259–303, March
1994.

[55] M. F. Kaashoek and A. S. Tanenbaum. An evaluation of the Amoeba group commu-
nication system. In 16th International Conference on Distributed Computing Systems
(ICDCS), pages 436–447, May 1996.

[56] Samuel Kamin. Inheritance in Smalltalk–80: A denotational definition. In Fifteenth
Symposium on Principles of Programming Languages, pages 80–87, 1988.

[57] I. Keidar and D. Dolev. Efficient message ordering in dynamic networks. In 15th ACM
Symposium on Principles of Distributed Computing (PODC), pages 68–76, May 1996.

[58] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. Moshe: A group membership service
for WANs. ACM Transactions on Computer Systems, 2002. To appear.

[59] Idit Keidar and Roger Khazan. A client-server approach to virtually synchronous group
multicast: Specifications and algorithms. In 20th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 344–355. IEEE Computer Society Press,
April 2000. Full version: MIT Lab. for Computer Science Tech. Report MIT-LCS-TR-
794.

[60] Idit Keidar and Roger Khazan. A virtually synchronous group multicast algorithm for
WANs: Formal approach. SIAM Journal on Computing, 2002. To appear.

[61] Idit Keidar, Roger Khazan, Nancy Lynch, and Alex Shvartsman. An inheritance-
based technique for building simulation proofs incrementally. In 22nd International
Conference on Software Engineering (ICSE), pages 478–487. ACM, June 2000.

[62] Idit Keidar, Roger Khazan, Nancy Lynch, and Alex Shvartsman. An inheritance-
based technique for building simulation proofs incrementally. ACM Transactions on
Software Engineering and Methodology, 11(1):1–29, January 2002. Previous version in
ICSE 2000, pp. 478–487.

[63] Roger Khazan, Alan Fekete, and Nancy Lynch. Multicast group communication as a
base for a load-balancing replicated data service. In 12th International Symposium on
DIStributed Computing (DISC), pages 258–272, Andros, Greece, September 1998.

[64] L. Lamport. On interprocess communication, Parts I and II. Distributed Computing,
1(2):77–101, 1986.

[65] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Lan-
guages and Systems, 16(3):872–923, May 1994.

[66] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558–565, July 78.

163

[67] B. Lampson. How to build a highly available system using consensus. In Babaoğlu and
Marzullo, editors, Distributed Algorithms, LNCS 1151. Springer-Verlag, 1996.

[68] B. Lampson. Generalizing Abstraction Functions. Massachusetts Institute of Technol-
ogy, Laboratory for Computer Science, principles of computer systems class, handout
8, 1997. ftp://theory.lcs.mit.edu/pub/classes/6.826/www/6.826-top.html.

[69] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans. Prog.
Lang. and Sys., 16(1):1811–1841, November 1994.

[70] Barbara Liskov and Jeannette M. Wing. A New Definition of the Subtype Relation. In
O. Nierstrasz, editor, Proceedings of the ECOOP ’93 European Conference on Object-
oriented Programming, LNCS 707, pages 118–141, Kaiserslautern, Germany, July 1993.
Springer-Verlag.

[71] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[72] N. A. Lynch and M.R. Tuttle. An introduction to Input/Output Automata. CWI
Quarterly, 2(3):219–246, 1989.

[73] Nancy Lynch and Frits Vaandrager. Forward and backward simulations — Part I:
Untimed systems. Information and Computation, 121(2):214–233, September 1995.

[74] S. McCanne. A distributed whiteboard for network conferencing, 1992.

[75] R. Milner. Communication and Concurrency. Prentice-Hall, 1995.

[76] J. Misra and K.M. Chandy. Parallel Program Design: A Foundation. Addison-Wesley,
1988.

[77] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended virtual syn-
chrony. In 14th International Conference on Distributed Computing Systems (ICDCS),
pages 56–65, June 1994. Full version: technical report ECE93-22, Department of Elec-
trical and Computer Engineering, University of California, Santa Barbara, CA.

[78] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-
Papadopoulos. Totem: A fault-tolerant multicast group communication system. Com-
munications of the ACM, 39(4):54–63, April 1996.

[79] Uday S. Reddy. Objects as closures: Abstract semantics of object-oriented languages.
In Proceedings of ACM Conference on Lisp and Functional Programming, pages 289–
297, 1988.

[80] L. Rodrigues, H. Fonseca, and P. Verissimo. Totally ordered multicast in large-scale
systems. In International Conference on Distributed Computing Systems (ICDCS),
1996.

[81] Luis Rodrigues, Katherine Guo, Antonio Sargento, Robbert van Renesse, Brad Glade,
Paulo Verissimo, and Ken Birman. A dynamic light-weight group service. In 15th
IEEE International Symposium on Reliable Distributed Systems (SRDS), pages 23–25,
October 1996. also Cornell University Technical Report, TR96-1611, August, 1996.

164

[82] A. Schiper and A.M. Ricciardi. Virtually synchronous communication based on a weak
failure suspector. In 23rd IEEE Fault-Tolerant Computing Symposium (FTCS), pages
534–543, June 1993.

[83] F. B. Schneider. Implementing fault tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

[84] G. Shamir. Shared Whiteboard: A Java Application in the Tran-
sis Environment. Lab project, High Availability lab, The Hebrew Uni-
versity of Jerusalem, Jerusalem, Israel, October 1996. Available from:
http://www.cs.huji.ac.il/∼transis/publications.html.

[85] A. P. Sistla. Proving correctness with respect to nondeterministic safety specifications.
Information Processing Letters, 39(1):45–49, July 1991.

[86] Neelam Soundarajan and Stephen Fridella. Inheriting and modifying behavior. In
R. Ege, M. Singh, and B. Meyer, editors, Technology of Object-Oriented Languages
(TOOLS-23), pages 148–162. IEEE Computer Society Press, 1997.

[87] Neelam Soundarajan and Stephen Fridella. Inheritance: From code reuse to reasoning
reuse. In P. Devanbu and J. Poulin, editors, Proceedings: Fifth International Confer-
ence on Software Reuse, pages 206–215. IEEE Computer Society Press, 1998.

[88] Raymie Stata and John V. Guttag. Modular reasoning in the presence of subclassing. In
Proceedings of OOPSLA ’95 Tenth Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, volume 30 of ACM SIGPLAN Notices,
pages 200–214. ACM, October 1995.

[89] J. Sussman, I. Keidar, and K. Marzullo. Optimistic virtual synchrony. Technical Report
MIT-LCS-TR-792, MIT Lab for Computer Science, November 1999. Also Technical
Report CS1999-634 University of California, San Diego, Department of Computer Sci-
ence and Engineering.

[90] J. Sussman, I. Keidar, and K. Marzullo. Optimistic virtual synchrony. In 19th IEEE In-
ternational Symposium on Reliable Distributed Systems (SRDS), pages 42–51, October
2000.

[91] J. Sussman and K. Marzullo. The Bancomat problem: An example of resource allo-
cation in a partitionable asynchronous system. In 12th International Symposium on
DIStributed Computing (DISC), September 1998. Full version: Tech Report 98-570
University of California, San Diego Department of Computer Science and Engineering.

[92] Igor Tarashchanskiy. Virtual Synchrony Semantics: Client-Server Implementation.
Master’s thesis, MIT Department of Electrical Engineering and Computer Science,
August 2000. Master of Engineering.

[93] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible group communication
system. Communications of the ACM, 39(4):76–83, April 1996.

[94] Daniel Yates, Nancy Lynch, Victor Luchangco, and Margo Seltzer. I/O automaton
model of operating system primitives. Technical report, Harvard University and Mas-
sachusetts Institute of Technology, May 1999. Bachelor’s thesis.

165

