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Abstract— There are two main approaches, static and dynamic,
to broadcast algorithms in wireless ad hoc networks. In the static
approach, local algorithms determine the status (forwarding/non-
forwarding) of each node proactively based on local topology
information and a globally known priority function. In this
paper, we first show that local broadcast algorithms based on the
static approach cannot achieve a good approximation factor to
the optimum solution (an NP-hard problem). However, we show
that a constant approximation factor is achievable if (relative)
position information is available. In the dynamic approach, local
algorithms determine the status of each node “on-the-fly” based
on local topology information and broadcast state information.
Using the dynamic approach, it was recently shown that local
broadcast algorithms can achieve a constant approximation
factor to the optimum solution when (approximate) position
information is available. However, using position information
can simplify the problem. Also, in some applications it may
not be practical to have position information. Therefore, we
wish to know whether local broadcast algorithms based on the
dynamic approach can achieve a constant approximation factor
without using position information. We answer this question in
the positive - we design a local broadcast algorithm in which
the status of each node is decided “on-the-fly” and prove that
the algorithm can achieve both full delivery and a constant
approximation to the optimum solution.

Index Terms— mobile ad hoc networks, distributed algorithms,
broadcasting, connected dominating set, constant approximation.

I. INTRODUCTION

Wireless ad hoc networks have emerged to support ap-
plications, in which it is required/desired to have wireless
communications among a variety of devices without relying on
any infrastructure or central management. In ad hoc networks,
wireless devices, simply called nodes, have limited transmis-
sion range. Therefore, each node can directly communicate
with only those within its transmission range (i.e., its neigh-
bors) and requires other nodes to act as routers in order to
communicate with out-of-range destinations.

One of the fundamental operations in wireless ad hoc net-
works is broadcasting, where a node disseminates a message
to all other nodes in the network. This can be achieved
through ooding, in which every node transmits the message
after receiving it for the rst time. However, ooding can
impose a large number of redundant transmissions, which can
result in signi cant waste of constrained resources such as
bandwidth and power. In general, not every node is required
to forward/transmit the message in order to deliver it to all
nodes in the network. A set of nodes form a Dominating Set
(DS) if every node in the network is either in the set or has a
neighbor in the set. A DS is called a Connected Dominating

Set (CDS) if the subgraph induced by its nodes is connected.
Clearly, the forwarding nodes, together with the source node,
form a CDS. On the other hand, any CDS can be used for
broadcasting a message (only nodes in the set are required
to forward). Therefore, the problems of nding the minimum
number of required transmissions (or forwarding nodes) and

nding a Minimum Connected Dominating Set (MCDS) can
be reduced to each other. Unfortunately, nding a MCDS (and
hence minimum number of forwarding nodes) was proven
to be NP hard even when the whole network topology is
known [1], [2]. A desired objective of many ef cient broadcast
algorithms is to reduce the total number of transmissions to
preferably within a constant factor of its optimum. For local
algorithms and in the absence of global network topology
information, this is commonly believed to be very dif cult
or impossible [3], [4].

The existing local broadcast algorithms can be classi ed
based on whether the forwarding nodes are determined stat-
ically (based on only local topology information) or dy-
namically (based on both local topology and broadcast state
information) [5]. In the static approach, the distinguishing
feature of local algorithms over other broadcast algorithms
is that using local algorithms any local topology changes can
affect only the status of those nodes in the vicinity. Therefore,
local algorithms can provide scalability as the constructed
CDS can be updated, ef ciently. The existing local algorithms
in this category typically use a priority function known by
all nodes in order to determine the status of each node
[5]. In this paper we show that, using only local topology
information and a globally known priority function, the local
broadcast algorithms based on the static approach are not
able to guarantee a good approximation factor to the optimum
solution (i.e., MCDS). On the other hand, we show that local
algorithms based on the static approach can achieve interesting
results such as a constant approximation factor and shortest
path preservation if the nodes are provided with position
information.

In the dynamic approach, the status of each node (hence
the CDS) is determined “on-the- y” during the broadcast
progress. Using this approach, the constructed CDS may vary
from one broadcast instance to another even when the whole
network topology and the source node remain unchanged.
Consequently, the broadcast algorithms based on the dynamic
approach typically have small maintenance cost and are ex-
pected to be robust against node failures and network topology
changes. Many local broadcast algorithms in this category
use local neighbor information to reduce the total number
of transmissions and to guarantee full delivery (assuming no
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loss at the MAC/PHY layer). Others, such as probability-based
and counter-based algorithms [6]–[8], do not rely on neighbor
information. These algorithms typically cannot guarantee full
delivery but eliminate the overhead imposed by broadcasting
“Hello” messages or exchanging neighbor information.

Many of the existing neighbor-information-based broad-
cast algorithms in this category can be further classi ed as
neighbor-designating and self-pruning algorithms. In neighbor-
designating algorithms [9]–[11], each forwarding node selects
some of its local neighbors to forward the message. Only the
selected nodes are then required to forward the message in
the next step. For example, a forwarding node u may select a
subset of its 1-hop neighbors such that any 2-hop neighbor of
u is a neighbor of at least one of the selected nodes [9]. In self-
pruning algorithms [3], [12], [13], on the other hand, each node
decides by itself whether or not to forward a message. The de-
cision is made based on a self-pruning condition. For example,
a simple self-pruning condition employed in [12] is whether
all neighbors have been covered by previous transmissions.
In other words, a node can avoid forwarding/rebroadcasting a
message if all of its neighbors have received the message by
previous transmissions.

In [14], it was shown that neither neighbor-designating
nor self-pruning algorithms can guarantee both full delivery
and a constant approximation if they use only 1-hop neigh-
bor information and do not piggyback information into the
broadcast packets. The authors then proposed a self-pruning
algorithm based on partial 2-hop neighbor information and
proved that the algorithm achieves a constant approximation
to the optimum solution and guarantees full delivery. How-
ever, in their proposed algorithm, each node was assumed
to have its (approximate) position information, which is not
practical in some applications/scenarios. Also, having position
information can provide non-trivial information in wireless
ad hoc networks and can greatly simplify the problem. As
such, we wish to know whether similar results can be obtained
without using position information. In this paper, we answer
this remaining question in the positive - we propose a local
broadcast algorithm based on 2-hop neighbor information
and prove that it guarantees a constant approximation to the
optimum solution. The proposed algorithm is both neighbor-
designating and self-pruning, i.e. the status of each node is
determined by itself and/or other nodes. In particular, using
our proposed algorithm, each broadcasting node selects at most
one of its neighbors to forward the message. If a node is not
selected to forward, it has to decide, on its own, whether or
not to forward the message.

The rest of the paper is organized as follows. In Section II,
we describe our system model and assumptions. In Sections III
and IV we analyze the power of local broadcast algorithms
based on the static and dynamic approach, respectively. In
Section V, we use simulation to con rm the analytical results
presented in Section IV. Finally, we conclude the paper in
Section VI. Most of the proofs are placed in the appendix.

II. SYSTEM MODEL AND ASSUMPTIONS

We assume that the network consists of a set of nodes
V , |V | = N . Each node is equipped with omnidirectional

antennas. Every node u ∈ V has a unique id, denoted id(u),
and every packet is stamped by the id of its source node and
a nonce, a randomly generated number by the source node.
For simplicity, we assume that all nodes are located in two-
dimensional space. However, all the results presented in this
paper can be readily extended to three-dimensional ad hoc
networks.

To model the network, we assume two different nodes
u ∈ V and v ∈ V are connected by an edge if and only
if |uv| ≤ R, where |uv| denotes the Euclidean distance
between nodes u and v and R is the transmission range of
the nodes. Thus, we can represent the communication graph by
G(V, R), where V is the set of nodes and R is the transmission
range. This model is, up to scaling, identical to the unit disk
graph model, which is a typical model for two-dimensional
ad hoc networks. In reality, however, the transmission range
can be of arbitrary shape as the wireless signal propagation
can be affected by many unpredictable factors. Finally, we
assume that the network is connected and static during the
broadcast and that there is no loss at the MAC/PHY layer.
These assumptions are necessary in order to prove whether
or not a broadcast algorithm can guarantee full delivery. Note
that without these assumptions even ooding cannot guarantee
full delivery.

III. BROADCASTING USING THE STATIC APPROACH

Let the k-neighborhood of a node u, denoted Gk(u), be the
subgraph induced by u and nodes at most k hops away from u.
Suppose each node is given a globally xed priority function
Pr(id(w), Gh′ (w)) which gets a node’s id, id(w), and its
local topology information, Gh′(w), as inputs and returns a
real number that determines the priority of w. For example,
priority of a node can be determined by its id, by its degree
(i.e. the number of its 1-hop neighbors) or by its neighbor
connectivity ratio (i.e. ratio of pairs of neighbors that are not
directly connected to all possible pairs of neighbors).

In local broadcast algorithms based on the static ap-
proach, the status (forwarding/non-forwarding) of each node u,
Stat(u), is a function of id(u), Gh(u) and Pr(id(v), Gh′ (v)),
where v ∈ Gh(u) and the parameters h and h′ are xed
constant numbers1. Note that the status of each node does not
depend on that of other nodes. Therefore, any local topology
change can only affect the status of the nodes in the vicinity. In
designing local broadcast algorithms, we are looking for status
functions that not only guarantee constructing a CDS (hence
full delivery) but also ensure that the constructed CDS has
small size, preferably within a constant factor of the optimum.
In the following, we show that no such status function exists.
The idea is to nd a graph in which any status function fails
either in constructing a CDS or nding a CDS whose size is
smaller than Ω(N), where N is the total number of nodes in
the network. Our approach is to construct a graph with a large
number of nodes for which both the local topology, Gh(.),
and the relative priority of the nodes in Gh(.) are the same.

Without loss of generality, we can assume R = 1. As shown
in Figure 1, let us distribute N nodes on the x-axis between

1For the sake of generality, we consider two separate parameters h and h′.
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the coordinates 0 and 2(h + h′) + 1 such that the coordinate
of the ith node is (i−1)

(N−1) × (2(h + h′) + 1), where 1 ≤ i ≤ N

and N � 2(h + h′) + 1. It is easy to see that Gh′(u) and
Gh′(v) are isomorphic if u, v ∈ [h′, 2h+h′+1]. Based on the
de nition of priority function, the relative priority of two nodes
u and v only depends on their ids if Gh′(u) and Gh′(v) are
isomorphic. Therefore, we can distribute all nodes in the inter-
val [h′, 2h + h′ + 1] such that their priorities increase as their
coordinates (their distance to the origin) increase. Using this
distribution, all nodes in the unit interval [h′ + h, h′ + h + 1]
will have similar views of the local topology Gh(.) and priority
relationship between the nodes in Gh(.). Therefore, the output
of the status function is the same for all nodes in this unit
interval, i.e., either all or none of the nodes in the unit interval
will be selected. Clearly, the latter case is not possible since
at least one node in every unit interval has to be selected
(otherwise the graph induced by the selected nodes will be
disconnected). On the other hand, selecting all nodes in the
interval [h′+h, h′+h+1] will result in a large set of selected
nodes. Note that every MCDS consists of at most two nodes
in each unit interval. Therefore, for the simple network shown
in Figure 1, we have |MCDS| ≤ 2 × (2(h + h′) + 1), where
|MCDS| denotes the size of a MCDS. 2 If all nodes in a unit
interval are selected, the size of the obtained CDS would be
at least

� N − 1

2(h + h′) + 1
� + 2(h + h′ − 1).

Since h and h′ are constant, the approximation factor would
be at least

� N−1
2(h+h′)+1� + 2(h + h′ − 1)

2 × (2(h + h′) + 1)
∈ Ω(N).

Consequently, local broadcast algorithms based on the static
approach are not able to guarantee a good approximation factor
in the worst case. Note that this result does not imply that local
broadcast algorithms cannot achieve a good bound on average.

0

�h� � h, h� � h � 1�

2�h � h�� � 121 h� h� � 1 2h � h�

Priority increases

∆ �i � 1�∆
ith node

Fig. 1. Distributing nodes on a line segment with length 2(h + h′) + 1.

A. Using Position Information

In the context of broadcast algorithms based on the static
approach, we may wish to know whether using position
information can help us to yield a small approximation factor.
In this section, we show that a constant approximation factor
is achievable if position information is available. To show this,
we partition the network area into square cells as illustrated

2To be exact, |MCDS| =

‰
l−1

�N−1

l
�× l

N−1

ı
, where l = 2(h + h′) + 1.

in Figure 2 and present simple local algorithms that select a
constant number of nodes in each cell.

The approach of network partitioning to use geographical
information has been used for different purposes including
saving energy in sensor networks, and handling mobility in
broadcast algorithms for ad hoc networks. In the primary
work by Xu et al. [15], the authors propose an algorithm that
partitions the network area into square cells. To save energy,
at each time, the algorithm selects one node in each cell as
active and puts other nodes in the cell to sleep. The set of
active nodes must form a CDS in order to maintain network
connectivity and coverage. To guarantee this, the proposed
algorithm in [15] assumes that the side length of each square
cell is R√

5
, where R is the radio transmission range. However,

this is not suf cient to guarantee connectivity, because some
square cells may not contain any node3. In this section, we
show under what conditions the set of nodes constructed by
selecting one node in each non-empty set form a CDS. We
also show that these conditions can be relaxed at the price
of selecting more than one yet a constant number of nodes in
some non-empty cells. Therefore, the result of this section can
be used to extend the work in [15] to the case where some
cells may contain no (working) sensor due to, for example, a
non-uniform distribution of sensors, sensor mobility or sensor
failure.

In [16], authors use a network partitioning approach in de-
signing broadcast protocols for dense mobile ad hoc networks.
To handle mobility, the proposed broadcast protocols in [16]
rely on the distribution of nodes as opposed to the majority
of existing broadcast protocols that rely on the frequently
changing communication topology. In this section, we focus
on reducing the number of transmissions in a general static ad
hoc network. Readers may refer to [16] for a discussion on
how to handle mobility when network partitioning is used.

Theorem 1: Let α > 0 and m ≥ 1 be constant numbers.
Let S be a CDS. Suppose there are at most m nodes of S in
any square of size αR × αR. Then, we have

|S| ≤ (m� 2

α
�2)|MCDS|,

that is, the size of S is within a constant factor of |MCDS|.
For proof see Appendix.)

As shown in Figure 2, assume that all nodes in the network
are located in a square area of size L × L. Considering
Theorem 1, it is natural to partition the network area into
small square cells of size αR×αR, where α is a positive real
number, and search for algorithms that guarantee a constant
number of selected nodes in each cell. One simple algorithm
is to select exactly one node in each non-empty cell. A node
can be selected using local neighbor information as follows:
Suppose each node knows the id and position of itself and
its 1-hop neighbors. Also, assume that α ≤

√
2

2 . Therefore,
the maximum distance between any two points in a cell is at
most R, hence all the nodes in a cell are 1-hop neighbors of
each other. Thus, a node can verify whether or not it has the
minimum id in the cell in which it is located. Consequently,

3In [15], the authors implicitly assume that there exists at least one node
in each square cell. This assumption guarantees connectivity.
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in every cell, using local neighbor information, the node with
minimum id can select itself. Note that the set of selected
nodes form a dominating set as every node in the network
is either in the set or within the transmission range of the
selected node in its cell.

Let α be a positive real number. Let Ssq(α) denote a set
constructed by dividing the network area into small square
cells of size αR × αR (as shown in Figure 2) and selecting
exactly one node in each non-empty cell. As explained earlier,
the set Ssq(α) is a dominating set (DS) if α ≤

√
2

2 . Therefore,
we use the notation DSsq(α) instead of Ssq(α), wherever
α ≤

√
2

2 . In general, the graph induced by DSsq(α) is not
connected even for small values of α. Nevertheless, it can
be proven that the graph induced by DSsq(α) is connected
(hence, DSsq(α) is a CDS) if the network satis es any of the
two conditions that we call high-connectivity condition and
high-transmission condition.

We say a network satis es the high-connectivity condition
if there exists a constant c, 0 < c < 1, such that the network
remains connected if the transmission ranges of all nodes is
reduced from R to cR. Dense networks typically satisfy the
high-connectivity condition. For example, when the density
of nodes is high, it is expected that the network remains
connected if all nodes reduce their transmission range to,
say, 90% of the original. Notice that the high-connectivity
condition does not require nodes to reduce their transmission
ranges. It just states that the network remains connected if the
transmission range of nodes is reduced by a constant.

The high-transmission condition is an alternative condition
that can guarantee the constructed DSsq(α) is a CDS. We
say a network satis es the high-transmission condition if there
exists a constant c, c > 0, such that every selected node by
the algorithm can increase its transmission range from R to
at least (1 + c)R by increasing its transmission power. In the
following we show that, if α is selected carefully, then high-
connectivity and high-transmission conditions can guarantee
that the constructed DSsq(α) (by, for example, the simple
local algorithm explained above) is a CDS. The following
lemma is useful in proving these results.

Lemma 1: Let α be a positive real number. Let u ∈ Ci and
v ∈ Cj be two nodes located in two different square cells Ci

and Cj , where the size of each cell is αR×αR. For any pair
of nodes u′ ∈ Ci and v′ ∈ Cj we have

|u′v′| ≤ |uv| + 2
√

2αR.
For the set of nodes V and any positive real number r, let
G(V, r) denote the graph constructed by connecting two nodes
in V if and only if their Euclidean distance is at most r.
Using this notation, the high-connectivity condition implies
that G(V, cR) is connected for some constant c, 0 < c < 1.
The following theorem shows that, for some range of values
of α, DSsq(α) is a CDS if the network satis es the high-
connectivity condition.

Theorem 2: Let α, 0 < α ≤ 1−c

2
√

2
, be a real number. Note

that α ≤
√

2
2 . Let DSsq(α) be a constructed DS by selecting

one node in each non-empty set. If G(V, cR) is connected,
then DSsq(α) is a CDS whose size is at most � 2

α
�2|MCDS|.

(For proof see Appendix.)

The next theorem proves that, for some range of α, the
constructed DSsq(α) is a CDS whose size is within a con-
stant factor of |MCDS| if the selected nodes increase their
transmission range by a constant.

Theorem 3: Let α, 0 < α ≤ min(2,c)

2
√

2
, and c > 0 be real

numbers. Note that α ≤
√

2
2 . Let DSsq(α) be a constructed

DS by selecting one node in each non-empty set. If every
node in DSsq(α) increases its transmission range to at least
(1 + c)R, then DSsq(α) will be CDS whose size is at most
� 2

α
�2|MCDS|.

(For proof see Appendix.)
There are optimization techniques to further reduce the

size of a constructed DSsq(α) or to relax the requirement
of transmitting at higher power for many selected nodes. For
example, suppose that node us is the selected node in cell Ci.
The node us is not required to increase its transmission power
if every node v within transmission range of any node u ∈ Ci

is within the transmission range of either us or a selected
neighbor of us. This condition can be formally expressed as

∀u, v s.t. u ∈ Ci ∧ |uv| ≤ R :

∃ws ∈ DSsq(α) s.t. |usws| ≤ R ∧ |wsv| ≤ R.
(1)

Both the high-connectivity and high-transmission conditions
can be relaxed if we allow selecting more than one yet a
constant number of nodes in each non-empty cell. In the
following, we describe a simple algorithm that achieves a
constant approximation factor in any network G(V, R) without
relying on any condition.
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Fig. 2. Network partitioning and possible neighbors of a cell Ci for the case
α =

√
2

2
.

Suppose we divide the network into square cells with size√
2

2 R×
√

2
2 R. All nodes in a cell are 1-hop neighbors of each

other as the maximum distance between any two point in the
cell is R. Two different cells Ci and Cj are called neighbors
if and only if

∃u ∈ Ci, v ∈ Cj s.t. |uv| ≤ R.

In this case, nodes u and v are called connectors of the
neighbor cells Ci and Cj , and u is referred to as a connector
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to the cell Cj through the node v. As shown in Figure 2,
each cell is a neighbor of at most 20 other cells if the side
of each square cell is set to

√
2

2 R. Assume that each node
has a list of its 2-hop neighbors together with their positions.
Suppose u is a node located in the cell Ci. The node u selects
itself as a member of CDS if, based on a criteria, it is the
selected connector to a neighboring cell Cj through a node
v ∈ Cj . The designed criteria must be symmetric in the sense
that u selects itself as a connector to the cell Cj through the
node v ∈ Cj if and only if v selects itself as a connector to
the cell Ci through the node u ∈ Cj . As an example of a
symmetric criteria, a node u ∈ Ci can select itself if and only
if it has a neighbor v in a neighboring cell Cj such that |uv|
is minimum among all the possible connectors of the cells Ci

and Cj . Any tie can be broken using, for example, nodes’ ids.
Note that node u has a list of its 2-hop neighbors (as well
as their positions) and therefore it can compute the set of all
possible connectors between its own cell and any neighboring
cell. By Theorem 1, the constructed set is a CDS whose size
is at most 20 × � 2

α
�2 = 180 times of its optimum. Note that,

to construct a smaller CDS, many of the selected nodes can
be pruned using similar conditions as (1).

An important application of constructing a CDS is to em-
ploy it as a backbone for routing. When a CDS is constructed,
only the nodes in the set are required to forward packets
towards the destination. Therefore, each path between the
source node s and destination node d can be represented as

s, w1, w2, . . . , wk, d,

where wi are in the CDS. Let l(s, d) and lCDS(s, d) denote
the length of shortest paths between s and d in the original
graph and the graph induced by CDS ∪ {s, d}, respectively.
In general, the ratio lCDS(s,d)

l(s,d) can be very large, in the worst
case. For example, consider a network with N > 3 nodes
located on a circle with radius R

2 sin( π
N

) such that the distance
between any two neighbors is R. In the corresponding cycle
graph, every MCDS is a simple path of length N − 3. Let s
and d be the nodes at the two ends of the path. Nodes s and d
are only 3 hops away from each other. However, lMCDS(s, d),
the length of the shortest path between s and d in the graph
induced by the nodes in MCDS, is N − 3. Thus,

lMCDS(s, d)

l(s, d)
=

N

3
− 1.

Consequently, even a MCDS cannot provide a good approx-
imation of a shortest path in the original graph. Theorem 4,
on the other hand, shows that the length of a shortest path
in CDSsq(α) constructed based on the high-transmission
condition is at most one more than that of the original shortest
path.

Theorem 4: For the CDS constructed based on the high-
transmission condition we have

lCDS(s, d) ≤ l(s, d) + 1.

Employing a symmetric criteria to construct the CDS or using
Condition (1) will change the shortest path approximation to

lCDS(s, d) ≤ 2 × l(s, d) + 1.
(For proof see Appendix.)

IV. BROADCASTING USING THE DYNAMIC APPROACH

Using the dynamic approach, the status (forwarding/non-
forwarding) of each node is determined “on-the- y” as the
broadcasting message propagates in the network. In particular,
in neighbor-designating broadcast algorithms, each forwarding
node selects a subset of its neighbors to forward the packet
and in self-pruning algorithms each node determines its own
status based on a self-pruning condition after receiving the rst
or several copies of the message. It was recently proved that
self-pruning broadcast algorithms (hence broadcast algorithms
based on the dynamic approach) are able to guarantee both full
delivery and a constant approximation factor to the optimum
solution (MCDS) [14]. However, the proposed algorithm in
[14] uses position information in order to design a strong
self-pruning condition. In the previous section, we observed
that position information can simplify the problem of reducing
the total number of broadcasting nodes. Moreover, having
position information may not be practical in some applications.
Therefore, it is interesting to know if both full delivery and a
constant approximation factor can be achieved when position
information is not available. In this section, we design a hybrid
(i.e., both neighbor-designating and self-pruning) broadcast
algorithm and show that the algorithm can achieve both full
delivery and constant approximation only using connectivity
information.

A. The Proposed Local Broadcast Algorithm

Suppose each node has a list of its 2-hop neighbors (i.e.,
nodes that are at most 2 hops away). This can be achieved in
two rounds of information exchange. In the rst round, each
node broadcasts its id to its 1-hop neighbors (simply called
neighbors). Thus, at the end of the rst round, each node has
a list of its neighbors. In the second round, each node transmits
its id together with the list of its neighbors.

The proposed broadcast algorithm is a hybrid algorithm,
hence every node that broadcasts the message may select
some of its neighbors to forward the message. In our proposed
broadcast algorithm, every broadcasting node selects at most
one of its neighbors. A node has to broadcast the message
if it is selected to forward. Other nodes that are not selected
have to decide whether or not to broadcast on their own. This
decision is made based on a self-pruning condition called the
coverage condition.

To evaluate the coverage condition, every node u maintains
a list Listcov

u (m) for every unique message m. Upon receiving
a message m for the rst time, Listcov

u (m) is created and lled
with the ids of all neighbors of u and then updated as follows.
Suppose u receives m from its neighbor v and assume that v
selects w �= u to forward the message. Note that w may not
be a neighbor of u. However, since w is a neighbor of v, it is
at most 2 hops away from u. Having id’s of v and w (included
in the message), node u updates Listcov

u (m) by removing all
nodes in Listcov

u (m) that are a neighbor of either v or w. This
update can be done because u has a list of its 2-hop neighbors.
Since w will eventually broadcast the message, by updating the
list, u removes those neighbors that have received the message
or will receive it, eventually. Every time u receives a copy
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of message m it updates Listcov
u (m) as explained earlier. If

w = u (i.e., u is selected by v to forward the message), node
u updates Listcov

u (m) by removing only neighbors of v from
the list. Note that in this case, u must broadcast the message.
However, u has to update Listcov

u (m) as it needs to select one
of its neighbors from the updated list (if it is not empty) to
forward the message.

Definition 1 (coverage condition): We say the coverage
condition for node u is satis ed at time t if Listcov

u (m) = ∅
at time t.

Algorithm 1 shows our proposed hybrid broadcast algo-
rithm. When a node u receives a message m, it creates a
list Listcov

u (m) if it is not created yet and updates the list
as explained earlier. Then, based on whether u was selected
to forward or whether the coverage condition is satis ed, u
may schedule a broadcast by placing a copy of m in its MAC
layer queue. There are at least two sources of delay in the
MAC layer. First, a message may not be at the head of the
queue so it has to wait for other packets to be transmitted.
Second, in contention based channel access mechanisms such
as CSMA/CA, to avoid collision, a packet at the head of
the queue has to wait for a random amount of time before
getting transmitted. In this paper, we assume that a packet
can be removed from the MAC layer queue if it is no longer
required to be transmitted. Therefore, the broadcast algorithm
has access to two functions to manipulate the MAC layer
queue. The rst function is the scheduling/placing function,
which is used to place a message in the MAC layer queue. We
assume that the scheduling function handles duplicate packets,
i.e., it does not place the packet in the queue if a copy of it is
already in the queue. The second function is called to remove
a packet form the queue (it does not do anything if the packet
is not in the queue). Note that to remove a packet from the
queue, the algorithm needs to have access to the MAC layer
queue. This requires a cross-layer design. In the absence of
any cross-layer design, the broadcast algorithm can use a timer
at the network layer. We refer the reader to [17] (Section IV)
for a discussion on how to use a timer to avoid this cross-layer
problem.
The proposed algorithm obeys the following:

1) u discards a received message m if it has broadcast m
before.

2) If u is selected to forward the message, it schedules
a broadcast (regardless of the coverage condition) and
never removes the messages from the queue in future.
However, u may change or remove the selected node’s
id from the scheduled message every time it receives a
new copy of the message and updates Listcov

u (m).
3) Suppose u has not been selected to forward the message

by time t and the Listcov
u (m) becomes empty at time t

after an update. Then at time t, it removes the message
from the MAC layer queue (if the message has been
scheduled before and is still in the queue).

4) If Listcov
u (m) �= ∅ then u selects a node from

Listcov
u (m) �= ∅ to forward the message and adds the id

of the selected node in the message. The selection can
be done randomly or based on a criteria. For example,
u can select the node with the minimum id or the one

with maximum battery life-time.
5) If u has been selected to forward and Listcov

u (m) = ∅ it
does not select any node to forward the message. This is
the only case where a broadcasting node does not select
any of its neighbors to forward the message.

Algorithm 1 The proposed hybrid algorithm executed by u

1: Extract ids of the broadcasting node and the selected node
from the received message m

2: if u has broadcast the message m before then
3: Discard the message
4: Return
5: end if
6: if u receives m for the rst time then
7: Create and ll the list Listcov

u (m)
8: end if
9: Update the list Listcov

u (m)
10: Remove the information added to the message by the

previous broadcasting node
11: if Listcov

u (m) �= ∅ then
12: Select an id from Listcov

u (m) and add it to the message
13: Schedule the message {(*only update the selected id if

m is already in the queue*)}
14: else {(*Listcov

u (m) = ∅ in this case*)}
15: if u was selected then
16: Schedule the message {(*only remove the id of the

selected neighbor if m is already in the queue*)}
17: else
18: Remove the message form the queue if u has not

been selected by any node before
19: end if
20: end if

B. Analysis of the Proposed Broadcast Algorithm

In this section, we prove that the proposed broadcast algo-
rithm guarantees full delivery as well as a constant approxi-
mation to the optimum solution irrespective of the forwarding
node selection criteria and the random delay in the MAC layer
(hence, the random sequence of the broadcasting nodes). In
order to prove these properties, we assume that nodes are static
during the broadcast, the network is connected and there is no
loss at the MAC/PHY layer. Note that even ooding cannot
guarantee full delivery without these assumptions.

Theorem 5: Algorithm 1 guarantees full delivery.
Proof: Every node broadcasts a message at most once.

Therefore, the broadcast process eventually terminates. By
contradiction, assume that node d has not received the message
by the broadcast termination. Since the network is connected,
there is a path from the source node s (the node that initiates
the broadcast) to node d. Clearly, we can nd two nodes u and
v on this path such that u and v are neighbors, u has received
the message and v has not received it. The node u has not
broadcast the message since v has not received it. Therefore, u
has not been selected to broadcast; thus the coverage condition
must have been satis ed for u. As the result, v must have a
neighbor w, which has broadcast the message or was selected
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to broadcast. Note that all the selected nodes will eventually
broadcast the message. This is a contradiction as, based on the
assumption, v cannot have a broadcasting neighbor.

Lemma 2: Using Algorithm 1, the number of broadcasting
nodes inside any disk DO, R

2

centered at an arbitrary point O

and with a radius R
2 is bounded by 33.

Proof: All nodes inside DO, R
2

are neighbors of each
other, thus they receive each others messages. The broadcast-
ing nodes can be divided into two types based on whether or
not the coverage condition was satis ed for them just before
they broadcast the message. Recall that the coverage condition
may be satis ed for a broadcasting node if the node has been
selected to forward the message. It is because a selected node
has to broadcast the message irrespective of the coverage
condition. Consider two disks centered at O with radii R

2 and
3R
2 , respectively. Suppose k is the minimum number such that

for every set of k nodes wi ∈ DO, 3R
2

, 1 ≤ i ≤ k, we have

∃i, j �= i : |wiwj | ≤ R.

Following, we nd an upper bound on k. By the minimality
of k, there must exist k−1 nodes wi ∈ DO, 3R

2

, 1 ≤ i ≤ k−1,
such that

∀i, j �= i : |wiwj | > R. (2)

Consider k − 1 disks D1, . . . , Dk−1 with radius R
2 centered

at wi, 1 ≤ i ≤ k − 1, respectively. By (2), D1, . . . , Dk−1 are
non-overlapping disks. Also, every disk Di, 1 ≤ i ≤ k − 1,
resides in DO,2R, that is the disk centered at O with radius
2R. It is because, the center of every Disk Di, 1 ≤ i ≤ k− 1,
is inside DO, 3R

2

. Thus, by an area argument, we get

(k − 1)

(
π(

R

2
)2

)
≤ π(2R)2.

Hence, k ≤ 17.
We rst prove that the number of broadcasting nodes inside
DO, R

2

for which the coverage condition is not satis ed is at
most k − 1. we then prove the same upper bound for the
number of broadcasting nodes inside DO, R

2

for which the
coverage condition is satis ed. Consequently, the total number
of broadcasting nodes inside DO, R

2

is bounded by 2k−2 ≤ 32.
By contradiction, suppose that there are more than k−1 broad-
casting nodes inside DO, R

2

for which the coverage condition is
not satis ed. Let u1, . . . uk be the rst k broadcasting nodes
ordered chronologically based on their broadcast time, and
a1, . . . ak the corresponding selected neighbor. Thus, for every
i, 1 ≤ i ≤ k, we have ai ∈ Listcov

ui
(m), where Listcov

ui
(m)

is the list of node ui at the time it broadcasts the message.
Since u1, . . . uk are all in DO, R

2

and for every i, 1 ≤ i ≤ k,
|uiai| ≤ R, we get:

∀i, 1 ≤ i ≤ k : ai ∈ DO, 3R
2

.

Thus, by the de nition of k, there are two nodes ai, aj , i < j
such that |aiaj | ≤ R. The node ui is broadcast before uj and
is a neighbor of it. Therefore, uj is aware of ui’s selected
neighbor ai and removes aj from Listcov

uj
(m) as soon as it

receives the message from ui. This is a contradiction because
aj ∈ Listcov

uj
(m) at the time uj is broadcast.

It remains to prove that the number of broadcasting nodes
inside DO, R

2

for which the coverage condition is satis ed
is at most k − 1. By contradiction, suppose that there are
at least k broadcasting nodes inside DO, R

2

for which the
coverage condition is satis ed. Let v1, . . . vk ∈ DO, R

2

be
the rst k broadcasting nodes, ordered chronologically based
on their broadcast time. Note that a broadcasting node must
have been selected (by another node) to forward the message
if its coverage condition is satis ed. Let b1, b2, . . . bk be the
nodes that selected v1, . . . vk to forward the message. Clearly,
for every i, 1 ≤ i ≤ k, we have bi ∈ DO, 3R

2

. Also, for
every i, 1 ≤ i ≤ k and every j, 1 ≤ j ≤ k and j �= i,
we get bi �= bj , because each node can select at most one
other node to forward. By the de nition of k, there must exist
two nodes bi and bj , i < j such that |bibj| ≤ R. This is a
contradiction because bi and bj are neighbors and bj receives
the bi broadcast message, thus vj /∈ Listcov

vj
(m) as vi and vj

are neighbors.
Corollary 1: Let u be any node in the network. Using

Algorithm 1, the number of broadcasting nodes within the
transmission range of u is at most 224.

Proof: All the nodes within the transmission range of
u (including u) are inside a disk with radius R. A disk with
radius R can be covered with at most 7 disks with radius R

2
[18]. Thus, by Lemma 2, the number of broadcasting nodes
within the transmission range of u is at most 7 ∗ 32 = 224.

Theorem 6: Algorithm 1 has a constant approximation fac-
tor to the optimal solution (MCDS). Moreover, the approxi-
mation factor is at most 224.

Proof: Let SMCDS be a MCDS and SAlg be the set of
broadcasting nodes using Algorithm 1. Let u be any node in
SMCDS . By Corollary 1, the number of broadcasting nodes
within the transmission range of u is at most 224. Note that
every broadcasting node is within the transmission range of at
least one node in SMCDS , because SMCDS is a dominating
set. Therefore,

|SAlg| ≤ 224 × |SMCDS |.

C. The Strong Coverage Condition

As proven, the proposed broadcast algorithm guarantees that
the total number of transmissions is always within a constant
factor of the minimum number of required ones. However, the
number of transmissions may be further reduced by slightly
modifying the broadcast algorithm. As explained earlier, in
the proposed algorithm, a selected node has to broadcast the
message even if its coverage condition is satis ed. Neverthe-
less, in some cases, a selected node can avoid broadcasting.
For example, a selected node u can abort transmission (by
removing the message from the queue) at time t if by time t
and based on its collected information, all its neighbors have
received the message. This idea can be generalized as follows.

Suppose, for each unique message m, every node u
maintains and updates an extra list Liststr

u (m). Similar to
Listcov

u (m), Liststr
u (m) is created and lled with the ids of

u’s neighbors upon the rst reception of message m. Also,
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every time u receives m, it updates Liststr
u (m) as follows.

Let v be the broadcasting node and w �= u the selected node
by v. Node u rst removes the nodes in Liststr

u (m) that are
neighbors of v. If the priority of w (e.g., its id) is higher than
u, it also removes the nodes in Liststr

u (m) that are neighbors
of w. To further reduce the number of redundant transmissions,
a selected node can abort broadcasting m under the following
strong coverage condition.

Definition 2 (strong coverage condition): We say the
strong coverage condition is satis ed for node u at time t if
Liststr

u (m) = ∅ at time t.
Note that the strong coverage condition is only used by
selected nodes to check whether they need to broadcast. Other
nodes make a decision based on the previously-de ned cov-
erage condition (a weaker condition). The following theorem
states that the full delivery is guaranteed if the selected nodes
abort transmissions when the strong coverage condition is
satis ed. Using a similar approach to that used in the proof of
Lemma 2, it can be proven that this extension of the algorithm
also achieves a constant approximation factor.

Theorem 7: Suppose Alg-str is a modi ed version of Algo-
rithm 1 in which each node maintains two lists Listcov

u (m) and
Liststr

u (m) and selected nodes can avoid broadcasting under
the strong coverage condition. Alg-str guarantees full delivery.
(For proof see Appendix.)

D. Extending the Network Model

The results presented in the paper can be extended to the
case where the nodes are distributed in three-dimensional
space. In other words, when the nodes are distributed in three-
dimensions it can be shown that local broadcast algorithms
based on the static approach can provide a constant approxi-
mation if nodes have their position information. By replacing
circles with balls, it can be similarly shown that Algorithm 1
can provide both full delivery and a constant approximation
to the optimum solution.

Algorithm 1 (the proposed algorithm based on the dynamic
approach) can be extended to the case where the nodes have
different transmission ranges. In this case, it can be proved
that the algorithm guarantees a constant approximation factor
if the ratio RMax

RMin
is constant, where RMax is the maximum

transmission range and RMin is the minimum transmission
range of the nodes in the network and two nodes have a link
iff both are in transmission range of each other. Similar to
the proof of Theorem 6, this can be proved by showing that
the number of broadcasting nodes inside any disk D

O,
RMin

2

is
constant. Also, we can use the quasi unit disk graph to model
the network [19]. In this model, there is a link between two
nodes if their Euclidean distance is less than γR, 0 < γ ≤ 1,
and there is no link if the Euclidean distance is more than
R. This model is closer to reality than the unit disk graph
model. Using the quasi unit disk graphs model we can show
that Algorithm 1 guarantees a constant approximation factor
if γ is constant. Similarly, the proof is by showing that the
number of broadcasting nodes in any disk DO, γR

2

is constant.

V. EXPERIMENTAL RESULTS

One of the major contributions of this work is the design of
a local broadcast algorithm based on the dynamic approach
(Algorithm 1) that can achieve both full delivery and a
constant approximation factor to the optimum solution without
using position information. To con rm the analytical results,
we implemented Algorithm 1, Liu’s algorithm (a neighbor-
designating algorithm) [9], edge forwarding algorithm (a self-
pruning algorithm) [20] and ooding in the network simulator
ns-2 and evaluated the ratio of broadcasting nodes (i.e.,
number of broadcasting nodes/total number of nodes) and
end-to-end delay for each algorithm. Table I summarizes the
parameters used in the ns-2 simulator. We also implemented
the Wan-Alzoubi-Frieder algorithm [21] in C++ and used it
as an approximation of the minimum number of broadcasting
nodes required. Note that the Wan-Alzoubi-Frieder algorithm
(referred to as ratio-6 approximation algorithm) is not a local
algorithm and is only used as a benchmark as it has an
approximation factor of at most 6 [22].

Both Liu’s broadcast algorithm and the edge-forwarding
algorithm use position information of nodes to reduce the total
number of transmissions. Liu et al. showed that the number of
broadcasting nodes using their algorithm is signi cantly lower
that that of previous notable broadcast algorithms [20], [23].
In Liu’s algorithm, each broadcasting node selects a smallest
group of its 1-hop neighbors such that any potential 2-hop
neighbor is within transmission range of at least one of the
selected nodes. It then piggybacks the list of the selected
nodes in the message before broadcasting it. Upon receiving a
message for the rst time, a node schedules a broadcast if and
only if it is selected to forward; otherwise, it never broadcasts
the message. Using the edge-forwarding algorithm, each node
divides its transmission coverage into six equal size sectors. It
then decides whether or not to broadcast based on the sector
in which the broadcasting node is located, and the position of
its 1-hop neighbors that have received the message.

To compute the number of broadcasting nodes, we uni-
formly distributed the nodes in a square of size 1000×1000m2.
We allowed only one network-wide broadcast at each simu-
lation run, selected the next forwarding node randomly, and
used the strong coverage condition in Algorithm 1 to further
reduce the total number of transmissions.

Figures 3 and 4 show the average ratio of broadcasting
nodes for over 500 runs for each given value of the input
(i.e., the total number of nodes or the transmission range).
To get the results shown in Figure 3, we set the transmission
range to 250m and varied the total number of nodes from 25
to 1000. In Figure 4, the number of nodes was xed to 1000
and the transmission range was varied from 50m to 300m.
The transmission range and the total number of nodes were
selected from a large interval so that the simulation covers
very sparse and very dense networks as well as the networks
with large diameters. Both Figures 3 and 4 show that the
ratio of broadcasting nodes using Algorithm 1 is signi cantly
lower than that of Liu’s algorithm and the edge-forwarding
algorithm and is very close to the estimated minimum number
of required transmissions (computed using the Wan-Alzoubi-
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Frieder algorithm).
We computed another metric called the algorithm delay,

which we de ne as the time between the rst and the last
transmission in a single network-wide broadcast. Figure 5,
shows the average delay of our proposed algorithm, Liu’s
algorithm and the ooding algorithm. To get these results, we

xed the transmission range to 250m and varied the number
of nodes from 25 to 1000. Based on the simulation results, the
average delay of our broadcast algorithm is 86% to 54% of
that of Liu’s algorithm and 87% to 71% of that of the ooding
algorithm.

Since Algorithm 1 requires nodes to collect their 2-hop
neighbor information, it is mainly suitable for networks in
which nodes have low mobility. The network-wide broadcast
may take from a fraction of second to a few seconds depending
on the MAC layer settings, the size of the network and the
amount of contention. Therefore, if the average distance that
nodes move during the network-wide broadcast is a small
fraction of R, then we expect Algorithm 1 to achieve similar
results as in the static networks. Otherwise, in networks
with high mobility rates, Algorithm 1 cannot use the bene t
of selecting nodes to forward the message. It is because,
a node does not know at what time a selected node will
transmit the message if the selected node is not within its
transmission range. Therefore, in high mobility settings, a node
may not know whether any of its neighbors is covered by
the transmission of a selected node as it does not know the
list of 1-hop neighbors of the selected node at the time the
selected node transmits the message. If nodes do not select
other nodes to forward, then Algorithm 1 becomes similar
to the proposed algorithm in [12]. The proposed algorithm
in [12] can provide full delivery in static networks, but it
cannot guarantee a constant approximation factor. To evaluate
the impact of low mobility on the number of transmissions
required by Algorithm 1, we performed a simulation experi-
ment. As before, we distributed the nodes in a square of size
1000×1000m2 and allowed only one network-wide broadcast
at each simulation run. We set the transmission range to 250m
and the number of nodes to 50. At the beginning of each
run, nodes start exchanging Hello messages. After a period of
time, a random node initiates a broadcast. During the whole
simulation run, nodes move according to the random waypoint
mobility model [24]. In our previous simulations experiments,
nodes do not exchange Hello messages after the broadcast
initiation. Therefore, they do not take into consideration the
overhead of the 2-hop neighbor discovery messages. However,
in this setting, nodes exchange Hello messages during the
whole simulation run in order to keep the list of neighbors up-
to-date. Figure 6 shows the effect of mobility on the number
of transmissions. The x-axis is the maximum speed set in the
random waypoint mobility model and the y-axis is the average
ratio of broadcasting nodes for at least 500 runs. As shown
in Figure 6, the number of transmissions slightly decreases
as mobility increases. Figure 7, shows the average delay of
Algorithm 1 decreases as mobility increases.

We also evaluated the performance of Algorithm 1 in denser
networks. Figure 8 shows the average number of transmissions
when the total number of nodes varies from 50 to 1000. To

obtain the results shown in Figure 8, we set the maximum
speed to 10m/s and xed the hello message transmission rate
to one per second. The simulation results show that for low
mobility rates, the performance (in terms of the number of
transmissions) of both Algorithm 1 and Liu’s algorithm are
very close to the case where the network is static. Also, for
both algorithms, the average number of nodes that do not
receive a message in the aforementioned settings is less than 2.

As mentioned in Section IV, Algorithm 1 can use a back-
off timer in the network layer in the absence of a cross layer
design. Each time a node receives a message, it sets the timer
with a random number and decides upon timer expiration
whether to retransmit. Larger back-off delays decrease the
probability of collisions and reduce the number of trans-
missions as nodes can hear more transmissions, hence make
better decisions on whether or not to retransmit. However,
as shown in Figure 9, algorithm’s end-to-end delay linearly
increases with the maximum duration of back-off timer. To
obtain the results shown in Figure 9, we set the transmission
range to 250m and considered the network static. The x-axis
represents the maximum back-off delay in seconds and the
y-axis represents the delay of Algorithm 1 in seconds.

Finally, gures 10 and 11, respectively, show an instance
of using our proposed algorithm and Liu’s algorithm for the
same network where the total number of nodes is 400 and
the transmission range is set to 250m (broadcasting nodes are
shown by stars). As proven in [14], in neighbor-designating
algorithms based on 1-hop neighbor information (and in Liu’s
algorithm, in particular) most of the nodes around the bound-
ary of the network broadcast the message. This undesirable
property of Liu’s algorithm can be observed in Figure 11.
Note that these snapshots of Algorithm 1 and Liu’s algorithm
are not necessarily representative of the overall performance
of the two algorithms.

Parameter Value

Simulator ns-2 (version 2.33)
MAC Layer IEEE 802.11
Propagation Model two-ray ground
Packet Size 256 bytes
Bandwidth 2 Mb/sec
Size of Square Area 1000 × 1000m2

Average Forwarding Delay 1 ms
Transmission Range 50–300m
Number of Nodes 25–1000

TABLE I
SIMULATION PARAMETERS
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VI. CONCLUSIONS

In this paper, we investigated capabilities of local broadcast
algorithms in reducing the total number of transmissions that
are required to achieve full delivery. As proven, local broadcast
algorithms based on the static approach cannot guarantee a
small sized CDS if the position information is not available.
It was shown that having relative position information can
greatly simplify the problem of reducing the total number of
selected nodes using the static approach. In fact, we showed
that a constant approximation factor is achievable using posi-
tion information. Using the dynamic approach, it was recently
shown that a constant approximation is possible using (ap-
proximate) position information [14]. In this paper, we showed
that local broadcast algorithms based on the dynamic approach
do not require position information to guarantee a constant
approximation factor. The results presented in the paper can
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Fig. 11. An instance of using Liu’s broadcast algorithm; Transmission
range=250m, # nodes=400.

be extended to the case where nodes are distributed in three-
dimensional space. Also, the proposed algorithm based on the
dynamic approach can be extended to the case where nodes
have different transmission ranges or when the network is
modeled using the quasi unit disk graph model.
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