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Abstract—Motivated by applications to distributed
storage and computing, the multi-version coding prob-
lem was formulated by Wang and Cadambe in [4].
In this problem, a client sequently over time stores v
independent versions of a message in a storage system
with n server nodes. It is assumed that, a message
version may not reach some servers, and that each
server is unaware of what has been stored in other
servers. The problem requires that any c servers must
be able to reconstruct their latest common version. An
extended multi-version problem introduced in [5] relaxes
the above requirement by requiring any c servers to be
able to reconstruct their latest common version or any
version later than that. The objective in both the original
and extended multi-version problem is to minimize the
worst case storage cost.

In this work, we propose codes for both the multi-
version problem and its extension. For the original multi-
version coding problem, we show that the storage cost of
our proposed codes are near-optimal. For the extended
multi-version coding problem, we show that the storage
cost of our first algorithm is optimal when v|c — 1. Our
second proposed extended multi-version code shows that
storage cost of strictly less than one is achievable even
when v is 50% larger than c. This is interesting, as the
storage cost of existing codes becomes one as soon as v
becomes larger than c.

I. INTRODUCTION

We study the multi-version coding problem formu-
lated by Wang and Cadambe [4], and its extension
introduced in [5]. The problem was motivated by appli-
cations in distributed computing and storage (see [4],
for a list of such applications). In the original multi-
version problem, there is a distributed storage system
with n servers, and v independent message versions.
The informal description of the problem is as follows.
Every time, a client uploads one version (starting with
version 1) by connecting to the n servers. Because of,
say network failures, a version may not reach all the
servers. However, when a version is reached/received
by a server, the server stores some information about

that message version (not necessarily the whole mes-
sage), and perhaps modifies the information stored
about previous versions. For example, in a replication
strategy, when a version reaches a sever, the server
stores the whole version and deletes any version stored
before.

Let ¢, 1 < ¢ < n be an integer. Parametrized
by ¢, the multi-version coding problem requires any
set of ¢ servers to have collectively enough infor-
mation to reconstruct their latest common version.
The parameter c is similar to the locality parameter
in locally recoverable codes designed for distributed
storage systems (see [2] and [3] for instances). The
objective of the problem is to minimize the worst-case
storage cost, informally defined as the size of server’s
storage divided by the size of message (assuming that
all versions have the same size).

By the above definition, the storage cost of the
simple replication strategy is one. When ¢ < v, a better
strategy than the replication strategy, as stated in [4],
is to use an (n,c) MDS code for each version. Using
this approach, the worst-case storage cost becomes .
Interestingly, it was shown that the cost of  can be
slightly reduced for v = 2, and v = 3, to 2‘;1, and
3;2’ respectively [4]. The authors of [4] also proved
a lower bound of 1 — (1 — 1)V for the worst-case
storage cost, hence concluded that when the number of
versions v approaches infinity, the replication strategy
is close to optimal. Their lower bound also indicates
that for small values of v, MDS codes are almost
optimal.

The main contributions of this work are:

e We derive a new lower bound for multi-version
codes. The lower bound in [4] holds for n >
¢+ v — 1, while our lower bounds holds for any
n > c+ 1. Also, our lower bound shows that
the storage cost of multi-version codes is at least
one as soon as v becomes larger than c. From
the lower bound in [4] we can only conclude that
the storage cost approaches one as the number of
versions v approaches infinity.



e We propose two different multi-version coding
algorithms. Compared to the first algorithm, the
second algorithm has slightly lower storage cost,
which is near-optimal by our derived lower bound.
This answers an open question raised in [4] about
codes for moderate values of v. It also answers
another question raised in [4] on whether coding
across versions may help to improve the storage
cost.

e For the extended multi-version codes, we also
propose two coding algorithms. When v|c — 1,
the storage cost of the first algorithm' matches
the lower bound shown in [1] and [6]. Our second
algorithm shows that storage cost of strictly less
than one is achievable even when v is 50% larger
than c.

The organization of this paper is as follows. In Sec-
tion II, the problem is formally defined. In Section III
we derive a new lower bound on the storage cost of
multi-version codes. We also propose two algorithms
that nearly match the lower bound. Section IV proposes
two extended multi-version algorithms, and Section V
concludes the paper.

II. SYSTEM MODEL AND DEFINITIONS

For i,j5 € N*, j > 4, let [{] and [i,j] denote the
sets {1,2,3,...,4}, and {4, +1,..., 7}, respecitvely.
Also, for a set of integers S = {s1,...,Smn}, we use
Xg to denote Xg,,...,Xs, .

In the problem setting, there are n servers, and v
versions (versions 1,2, ..., v) of a message. The value
of the ith, ¢ € [v], version is denoted by W; € [M].
Each server can store a value from the set [¢]. The set
of versions reached/received by server i, ¢ € [n], is
called the state of server i and is denoted by S(i) €
[v]. For example S(2) = {2,4,5,7} indicates that the
second server has received versions 2,4, 5, and 7.

As defined in [4] and [5], the multi-version and
the extended multi-version codes can be expressed
formally as follows.

Definition 1. (Multi-version code [4])
(n,c,v, M, q) multi-version code consists of

An

e encoding functions
o M) [q)

for every i € [n] and every S C [v], and

"This algorithm was proposed by this author in [1], and inde-
pendently by Wang and Cadambe in [6].

e decoding functions

¥§ : [q)° — [M]U {0},

|° =
for every set S € P([v])", and set T C [n] with
|T| = ¢, where P([v]) denotes the power set of

[v].
where the encoding and decoding functions satisfy

T c
( ) <¢(S(t)1)(WS(t1))7 s 7%0(St(t)n) (WS(tL)>>
_ {WmameTS(i) lf ﬂiET S(l) 7é (Z)

0, otherwise,

q

for every W[v} € [M]?, where
T = {t17t27 e 7t0}7

Definition 2. (Extended multi-version code [5]) Sim-
ilar encoding and decoding functions definitions as
those in Definition 1. This time, the functions must

satisfy
(T) (,,(t:) (te)
S <¢s(t1)(WS(t1))v e 7‘~Ps(tc)<WS(tc)>>
_ {Wm if Nier S(i) # 0
0,

otherwise,
for some m > max N;erS(i), and every W,y € [M]°,
where

<t <...<t,

T = {ty,to,...,tc},

The storage cost of an (n,c,v,M,q) (extended)
multi-version code is defined to be equal to 1})?5]\(14'
Given parameters (n,c,v), the objective of the (ex-
tended) multi-version coding problem is to find a code
with minimal storage cost.

t1 <tg<...<t.

III. THE MULTI-VERSION CODING PROBLEM

We present a lower bound on the storage cost multi-
version codes. The lower bound shows that the storage
cost will become at least one when v becomes larger
than c. Therefore, for v > ¢, the storage cost of
multi-version codes will not be better than that of
the replication strategy?. We also propose two multi-
version coding algorithms. The second algorithm has
slightly better storage cost, which can be shown to be
near-optimal by the lower bound derived.

A. Lower Bound

Proposition 1. For ¢ > 2,2 <v <c¢+1,andn > c+
1, the storage cost of any (n,c,v, M, q) multi-version

Note that replication strategy is an extended multi-version code.



code is at least c_ﬁ—l
In particular, when v = c+ 1, the storage cost will be
at least one.

Proof. Suppose the state of the ith server, i € [n], is

S(i) = {M\{i} ifi<o

[v] it i>w.

Consider the set of servers [c + 1]. For i € [v], let
T; = [c+ 1]\{i}. We have T; C [c¢+ 1], and |T;| = c.
Also,

Vi € [v], maxNjer,S(j) = 1.

In other words, the latest common version of servers
in 7; is 4. Therefore, wéTf’) returns W;, that is the ith
version is decodable by servers in 7;. Thus, any version
i € [v] is decodable by the set of servers in [c+ 1], as
for each version i, there is a subset of [c¢+ 1] (i.e., T3)
that can decode that version. Intuitively, this implies
that the set of servers [c + 1] must collectively have
enough information about all the v versions. The v
versions have vlog M bits of information, assuming
that their values are taken independently and uniformly
at random from [M]. The maximum information that
can be stored in servers [c + 1] is (¢ + 1) log g. Thus,

we must have (¢ + 1)logq > vlog M, hence kfgg 4 >
v
c+1°

B. Near-Optimal Multi-Version Coding Algorithms

Following we describe two multi-version coding al-
gorithms. The proposed algorithms have the following
properties:

o The algorithms are simple in the sense that they

do not code across versions.

e The proposed algorithms assure that, at each step
of the process, the storage cost per server does
not exceed the maximum storage cost.

o The information stored for one version does not
need to increase when later versions arrive. This
is an important practical constraint which is not
captured by Definition 1.

Before delving into the descriptions of our algorithms,
we would like to remark that multi-version codes that
do not code across versions can be simply viewed as
multi-version storage assignment algorithms. In other
words, an algorithm that, upon reception of a new
version ¢ € [v], and given the current state of the
server, determines how much storage should be used
for version ¢, can be transferred to a multi-version code
using MDS (maximum distance separable) codes such

as Reed-Solomon codes. We briefly explain this for the
first algorithm.

1) First Algorithm (Algorithm 1): Let us first ex-
plain the storage assignment. Later, we explain how
that storage assignment can be transferred into a multi-
version code.

In the first algorithm, upon receiving a version i €
[v], a server node i) assigns 02% bits of storage to
version 7 if ¢ < v, and % bits if ¢ = v; ii) reduces the
storage assignment of version i— 1 (if version ¢ —1 was
received before) from 2B to - +1 Let G(i) denote the
amount of storage in b1ts ass1gned to a received version
i € [v] by the first algorithm. By the above description,
we have

B if 1 =v;
(&
B

G(i) = o1 if i <o, and version i + 1 was received;
STB; if i < v, and version i + 1 was not received.

Now to transfer the storage assignment by the first
algorithm to a multi-version coding solution we can
use a (2n,c+ 1) MDS code for versions i € [v — 1],
and a (n,c) MDS code for version v. To do this, a
version ¢ € [v — 1] is divided into ¢ 4 1 blocks (the
version v is divided into ¢ blocks). Using MDS codes,
the ¢ + 1 blocks are then coded into 2n blocks for
versions i € [v—1] (the ¢ blocks of version v are coded
into n blocks). Upon reception of version i € [v — 1]
the server stores two coded blocks. If version ¢ + 1 is
received later, one of the two coded blocks of version
1 is deleted. For version v, the server stores only a
single block when the version is received. Now, by
the property of MDS codes, a version is recoverable
by a set of servers if the sum of the storages assigned
to that version over the set of servers is at least equal
to the size of the version (as this translates to having
enough number of blocks, that is ¢ + 1 for version
i € [v—1], and ¢ for version i = v).

Proposition 2. Algorithm 1 is a multi-version code

with storage cost of == o1 T C(C+1)

Proof. Consider any set ' C [n] of ¢ servers. Let
t € [v] be their latest common version. To prove that
version v can be decoded by servers in T, it suffices
to show that the sum of storages assigned to version
t over the servers in 7T is at least B. If t = v, the the
sum of storages will be c-= = B, as each server stores
a coded block of size = of version v. Equivalently, we
can say that there are c coded blocks of the (n, c) MDS
code, hence version v is decodable. Now, suppose
t < v. In this case, every server has stored at least
one coded block (of size %) of version v. Also, since



t is the latest common version, there must be server
u € S that has not received version ¢ + 1. By the
description of Algorithm 1, server u has stored two
coded blocks for version ¢. Therefore, the number of
coded blocks of version ¢ stored across servers in 7' is
at least 2+ (c—1) = c+1, hence version ¢ is decodable
(as we have ¢+ 1 coded blocks of a (2n,c+ 1) MDS
code).

Finally, the sum of storages assigned to different
versions in a server is at most

Zgis(v—l)i+§

A c+1 ¢ M
1€[v]

To see why (1) holds, one can change storage assign-

ments as follows: For every ¢ < v — 1, if G; = 02%
(which means G;y1 = 0). change G; to ?BI, and

Giy1 to c% if i+ 1 < v, and to %, otherwise. The
following changes, do not reduce the sum of storage
assignments. After applying the above change, the
storage assignment for each version i = [v — 1] is
either C% or zero. The storage assignment of version
v does not change, hence it is either % or zero.

By (1), the storage cost of the code is

(v_l)%*’%_v—l_‘_l_ vy 1
B e+l e e+l cle+1)
Recall that the minimum storage cost by Proposition 1
is == O

c+1°

2) Second Algorithm (Algorithm 2): The second

algorithm slightly improves the storage cost of the first
algorithm to
c—v+1
Ale+1)
For Algorithm 2, we just explain how storage is
assigned to each version in a server. As before, using
MDS codes, we can easily guarantee that a version
is decodable by a set of servers as long as the sum
of storages assigned to that version across the set of
servers is at least B bits.

The storage assignment of the second algorithm
works simply as follows. After receiving the first
version, a server stores %B bits of information
for the first version. When another version is received,
the server deletes % bits of information of the first
version (if it was received), and stores % bits of
information of the version received.

ve—(v—1) v

c2 e +1

Proposition 3. Algorithm 2 is a multi-version code
with storage cost of %

Proof. By its descvrcip(tvif)lr)l, the storage cost of Algo-
rithm 2 is clearly —< B vﬁg*l).

Consider any set ' C [n] of ¢ servers. Let ¢ € [v] be
their latest common version. If ¢ > 1, then each server
has % bits of information of version ¢, hence the latest
version can be decoded. If ¢ = 1, the minimum storage
cost assigned to the first version by a server u is

1)3—(11—1)15 = &2_1)3,

ve — (v —

2

C C

which occurs when all the other versions are received
by u. Note that, this cannot occur to all the ¢ servers
in T, as, otherwise, the first version will not be their
latest common version. In fact, for each version 7 > 1,
there must be server in 7' that has not received version
i. By the description of Algorithm 2, that sever does
not need to delete % bits of information of the first
version. Since this holds for v — 1 versions 2,3, ..., v,
the sum of storages assigned to the first version across
servers in 7' is at least

C<C_(”2_1)B> +(v—1)§ - B,

(&

hence the first version is decodable. O

IV. THE EXTENDED MULTI-VERSION CODING
PROBLEM

In the original multi-version coding problem, the
latest common version of any set of ¢ servers should
be decodable. This can be relaxed, as explained in [5],
by requiring the latest common version or any later
version to be decodable. In [5], it was shown that the
storage cost of the extended multi-version coding prob-
lem is strictly less than that in the original problem.
Recently, a lower bound of +§_1 was proven in [6].
The same lower bound was attempted concurrently
in [1]. In this work, we focus on constructing codes.
Our first extended multi-version code (Algorithm 3)
has optimal storage cost when v|c — 1 by the lower
bound proven in [6]. Our second code is proposed for
the regime v > ¢, for which there is not any proposed
code with storage cost less than one. Interestingly,
using our second code (Algorithm 3), we show that
storage costs of strictly less than one is possible for
some values of v > c.

Our first multi-version code, Algorithm 3, works
as follows. Each message version is divided into ﬁ

blocks. Then using an (n, ﬁ) MDS code, n coded
blocks are generated. When réceiving a version i € [v],
a server deletes all the information stored about previ-
ous version, and stores a coded block of version i.



Proposition 4. Algorithm 3 is an extended multi-
version code with storage cost ﬁ

Proof. Algorithm 3 stores only one coded block of the

latest version received, hence its storage cost is not
more than ﬁ

Now consider a set T € [n] of ¢ servers, with some
common latest version ¢ > 1. Since every server in
T has received at least one version in [¢,v], and each
server has exactly one latest version received, by the
extended pigeonhole principle, there must be version
t' € [t,v] that is the latest received version in at least
[ 5=fz7 | servers. Since we only need [ coded blocks
to decode a version, version ¢’ is decodable, which
completes the proof as t' > t. 0

Remark 1. For v|c — 1, we get ¢ = vq + 1 for some
non-negative integer q. In this case, the storage cost
of the proposed code (Algorithm 3) is

1 1 1 v
T = = 1 = N
(61 ¢+1 <41 cto-—1

v

with matches the lower bound proven in [6].

Our second extended multi-version code (Algo-
rithm 4) uses a (2, 1) MDS code for versions ¢ > v—c,
and a (n,c) MDS code for versions ¢ € [v — ¢ — 1]. If
the received version is ¢, 1 <7 < v —c— 1, a server
simply stores a coded block of version i. However, if
the received version is ¢, ¢ > v—c, in addition to storing
a coded block of version 2, the server deletes the coded
blocks of any received version j, v — ¢ < j < 7. In
other words, a server keeps only the coded block of
the latest version among versions j, v — ¢ < j < wv.
The coded block of any earlier version than v — c is
never deleted.

Proposition 5. Algorithm 4 is an extended multi-
version code with storage cost
v—c—1

0.5+
c

Proof. Each server, in the worst case, stores a single
coded block of the (2,1) MDS code, and v — ¢ — 1
coded blocks of the (n,c) MDS code. Therefore, the
total number of bits stored in a server is at most

B B
5—&-(1)—0—1)?,

hence the code’s storage cost is 0.5 4 ¥=¢=1

C
Let T' € [n] be a set of ¢ servers, with latest common

version ¢ € [v]. If t < v —c— 1, then each server in T
must have a code block of version ¢, hence version ¢

is decodable. Now suppose ¢ > v — c. In this case, the
latest received version of each server is in the set [v —
¢, v], which consists of ¢+ 1 versions. Since there are
c servers in T', by the pigeonhole principle, there must
be two servers with the same latest common version
t', t' >t > v —c. Version t' is threfore decoded. This
completes the proof as t' > t. 0

Remark 2. Suppose v < 1.5¢c. Then the storage cost
of Algorithm 4 is
c—1 1.5¢—c—1

054+ 7 <2
C C

which is strictly less than one.

V. CONCLUSION

We studied the multi-version coding problem and
its extension. For the multi-version coding problem,
we proved a lower bound, and constructed two near-
optimal multi-version codes. For the multi-version
problem, we proposed to extended multi-version codes.
We showed that, the storage cost of our first code is
optimal when v|c — 1. Using our second code, we
showed that storage cost of strictly less than one is
possible if v is at most 1.5c. An interesting question
is whether extended multi-version codes with storage
cost of less than one exist for large values of v (for
example, v > 2c¢).
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