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Abstract ~ We present an algorithm for Totally Ordered Broadcast in the face of net-
work partitions and process failures, using an underlying group communi-
cation service as a building block. The algorithm always allows a majority
(or quorum) of connected processes in the network to make progress (i.e.,
to order messages), if they remain connected for sufficiently long, regard-
less of past failures. Furthermore, the algorithm always allows processes to
initiate messages, even when they are not members of a majority compo-
nent in the network. These messages are disseminated to other processes
using a gossip mechanism. Thus, messages can eventually become totally
ordered even if their initiator is never a member of a majority component.
The algorithm guarantees that when a majority is connected, each mes-
sage is ordered within at most two communication rounds, if no failures
occur during these rounds.
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1. INTRODUCTION

Totally Ordered Broadcast is a powerful service for the design of fault
tolerant applications, e.g., consistent cache, distributed shared mem-
ory and replication, as explained in Schneider, 1990; Keidar, 1994. We
present the COReL (Consistent Object Replication Layer) algorithm for
Totally Ordered Broadcast in the face of network partitions and process
failures. The algorithm is most adequate for dynamic networks where
failures are transient.

COReL uses an underlying totally ordered group communication ser-
vice (GCS), cf. acm, 1996 as a building block. Group communication
introduces the notion of group abstraction which allows processes to
be easily arranged into multicast groups. Within each group, the GCS
provides reliable multicast and membership services. The task of the
membership service is to maintain the set of currently live and con-
nected processes in each group and to deliver this information to the
group members whenever it changes. The reliable multicast services
deliver messages to all the current members of the group. GCSs (e.g.,
Transis - Dolev and Malkhi, 1996; Amir et al., 1992, Ensemble - Hayden
and van Renesse, 1996, Horus - van Renesse et al., 1996 and Totem -
Amir et al., 1995; Moser et al., 1996) that use hardware broadcast where
possible lead to simpler and more efficient solutions for replication than
the traditional point-to-point mechanisms.

COReL multicasts messages to all the connected members using the
underlying GCS. Once messages are delivered by the GCS and logged on
stable storage (by COReL), they are acknowledged. Acknowledgments
are piggybacked on regular messages. When a majority is connected,
messages become totally ordered once they are acknowledged by all the
members of the connected majority. Thus, the COReL algorithm guar-
antees that when a majority is connected, each message is ordered within
two communication rounds at the most, if no failures occur during these
rounds?. The algorithm incurs low overhead: No “special” messages are
needed and all the information required by the protocol is piggybacked
on regular messages.

Processes using COReL are always allowed to initiate messages, even
when they are not members of a majority component. By carefully
combining message ordering within a primary component and gossiping
of messages exchanged in minority components, messages can eventually
become totally ordered even if their initiator is never a member of a
majority component.

The protocol presented herein uses a simple majority rule to decide
which network component can become the primary one. Alternatively,



one could use a quorum system (cf. Peleg and Wool, 1995), which is a
generalization of the majority concept. A quorum system is a collection
of sets (quorums) such that any two sets intersect. Using such a quorum
system, a network component can become the primary one if it contains
a quorum. The concept of quorums may be further generalized to al-
low dynamic adjustment of the quorum system. In Yeger Lotem et al.,
1997, we present a dynamic voting protocol for maintaining the primary
component in the system; this protocol may be used in conjunction with
CORelL.

1.1 THE PROBLEM

The Atomic Broadcast problem defined in Hadzilacos and Toueg, 1993
deals with consistent message ordering. Informally, Atomic Broadcast
requires that all the correct processes will deliver all the messages to the
application in the same order and that they eventually deliver all mes-
sages sent by correct processes. Furthermore, all the correct processes
must deliver any message that is delivered by a correct processes.

In our model two processes may be detached, and yet both are con-
sidered correct. In this case, obviously, Atomic Broadcast as defined
above is unsolvable (even if the communication is synchronous, please
see Friedman et al., 1995). We define a variant of Atomic Broadcast for
partitionable networks: We guarantee that if a majority of the processes
form a connected component then these processes eventually deliver all
messages sent by any of them, in the same order. We call this service
Totally Ordered Broadcast.

It is well-known that in a fully asynchronous failure-prone environ-
ment, agreement problems such as Consensus and Atomic Broadcast
are not solvable (as proven in Fischer et al., 1985), and it is also im-
possible to implement an algorithm with the above guarantee (please
see Friedman et al., 1995). Such agreement problems are solvable, on
the other hand, if the model is augmented with an external failure detec-
tor (please see Chandra and Toueg, 1996; Babaoglu et al., 1995; Dolev
et al., 1996; Friedman et al., 1995; Dolev et al., 1997).

The algorithm we present herein uses an underlying group commu-
nication service with a membership protocol that serves as the failure
detector. Our algorithm guarantees that whenever there is a connected
component which contains a majority of the processes, and the member-
ship protocol indicates that this component is connected, the members
of this majority succeed in ordering messages. The safety properties of
COReL are preserved regardless of whether the failure detector is accu-



rate or not; the liveness of the algorithm (its ability to make progress)
depends on the accuracy of this membership protocol.

Informally, COReL satisfies the following conditional liveness prop-
erty: If in a given run of COReL there is a time after which the network
stabilizes with a connected majority component and the membership
is accurate, then COReL eventually totally orders every message sent
in the majority component. This guarantee is formally stated in Prop-
erty 3.8. Here, we do not analyze how long it takes before COReL totally
orders a message. Such an analysis may be found in Fekete et al., 1997.

The term delivery is usually used for delivery of totally ordered mes-
sages by the Atomic Broadcast algorithm to its application, but also for
delivery of messages by the GCS to its application (which in our case is
the Totally Ordered Broadcast algorithm). To avoid confusion, hence-
forward we will use the term delivery only for messages delivered by the
GCS to our algorithm. When discussing the Totally Ordered Broadcast
algorithm, we say that the algorithm totally orders a message when the
algorithm decides that this message is the next message in the total or-
der, instead of saying that the algorithm “delivers” the message to its
application.

1.2 RELATED WORK

Group communication systems often provide totally ordered group
communication services. Amoeba (Kaashoek and Tanenbaum, 1996),
Delta-4 (Powell, 1991) Ensemble (Hayden and van Renesse, 1996), Ho-
rus (van Renesse et al., 1996), Isis (Birman et al., 1991), Totem (Amir
et al., 1995; Moser et al., 1996), Transis (Dolev and Malkhi, 1996; Amir
et al., 1992) and RMP (Whetten et al., 1995) are only some examples
of systems that support totally ordered group communication.

To increase availability, GCSs detect failures and extract faulty mem-
bers from the membership. When processes reconnect, the GCS does not
recover the states of reconnected processes. This is where the CORelL al-
gorithm comes in: COReL recovers lost messages and extends the order
achieved by the GCS to a global total order.

The majority-based Consensus algorithms of Dwork et al., 1988; Lam-
port, 1989; De Prisco et al., 1997; Chandra and Toueg, 1996; Dolev et al.,
1996 are guaranteed to terminate under conditions similar to those of
CORelL, i.e., at periods at which the network is stable and message deliv-
ery is timely, or when failure detectors are eventually accurate. Atomic
Broadcast is equivalent to Consensus (as proven in Chandra and Toueg,
1996); Atomic Broadcast may be solved by running a sequence of Con-



sensus decisions (as done, e.g., in Chandra and Toueg, 1996; Lamport,
1989; De Prisco et al., 1997).

The main advantage of using COReL over running a sequence of Con-
sensus algorithms is that COReL essentially pipelines the sequence of
Consensus decisions. While Consensus algorithms involve special rounds
of communication dedicated to exchanging “voting” messages of the pro-
tocol, in our approach all the information needed for the protocol is
piggybacked on regular messages. Furthermore, COReL does not main-
tain the state of every Consensus invocation separately, the information
about all the pending messages is summarized in common data struc-
tures. This allows faster recovery from partitions, when COReL reaches
agreement on all the recovered messages simultaneously.

The Atomic Broadcast algorithm of Chandra and Toueg, 1996 con-
serves special “voting” messages by reaching agreement on the order of
sets of messages instead of running Consensus for every single message.
However, this increases the latency of message ordering and still requires
some extra messages.

In Mann et al., 1989, the Paxos multiple Consensus algorithm of Lam-
port, 1989 is used for a replicated file system. The replication algorithm
suggested in Mann et al., 1989 is centralized, and thus highly increases
the load on one server, while COReL is decentralized and symmetric.

The total ordering protocol in Amir, 1995; Amir et al., 1994 resem-
bles COReL; it also exploits a group communication service to over-
come network partitions. Like COReL, it uses a majority-based scheme
for message ordering. It decreases the requirement for end-to-end ac-
knowledgments, at the price of not always allowing a majority to make
progress.

Fekete et al., 1997 have studied the COReL algorithm (following its
publication in Keidar and Dolev, 1996) using the I/O automata formal-
ism. They have presented both the specifications and the implementa-
tion using I/O automata. They have analyzed the algorithm’s liveness
guarantees in terms of timed automata behavior at periods during which
the underlying network is stable and timely. They made simplifications
to the protocol which make it simpler to present, alas less efficient.

The Total protocol (Moser et al., 1993) also totally orders messages
in the face of process crashes and network partitions. However, it incurs
a high overhead: The maximum number of communication rounds re-
quired is not bounded, while our algorithm requires two communication
rounds to order a message if no failures occur during these rounds.



2. THE MODEL

The underlying communication network provides datagram message
delivery. There is no known bound on message transmission time, hence
the system is asynchronous. Processes fail by crashing, and crashed pro-
cesses may later recover. Live processes are considered correct, crashed
processes are faulty. Recovered processes come up with their stable stor-
age intact. Communication links may fail and recover. Malicious failures
are not considered; messages are neither corrupted nor spontaneously
generated by the network, as stated in the following property:

Property 3.1 (Message Integrity) If a message m is delivered by a
process p, then there is a causally preceding send event of m at some
process q.

The causal partial order (first defined in Lamport, 78) is defined as

the transitive closure of: m — m/ if deliver,(m) — send,(m') or if
send, (m) — send,(m’).

3. THE SYSTEM ARCHITECTURE

CORelL is an algorithm for Totally Ordered Broadcast. COReL is de-
signed as a high-level service atop a group communication service which
provides totally ordered group multicast and membership services, and
is omission fault free within connected network components.

COReL uses the GCS as a failure detector and as a building block
for reliable communication within connected network components. The
layer structure of CORelL is depicted in Figure 3.1.

All the copies of COReL are members of one multicast group. Each
copy of COReL uses the GCS to send messages to the members of its
group; all the members of the group deliver (or receive) the message.

After a group is created, the group undergoes view changes when
processes are added or are taken out of the group due to failures. The
membership service reports these changes to COReL through special
view messages. A view v is a pair consisting of a view identifier v.id and
a set of members v.set. We say that a process p is a member of a view
v if p € v.set.

Views are delivered among the stream of regular messages. We say
that a send (receive) event e occurs at process p in view v (or in the
context of v) if v was the latest view that p received before e.
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Figure 3.1 The layer structure of COReL.

3.1 PROPERTIES OF THE GCS

COReL may be implemented using any GCS that provides reliable
locally ordered group multicast and membership services. We assume
the GCS fulfills the following properties:

Messages are not duplicated in transit:

Property 3.2 (No Duplication) Every message delivered at a pro-
cess p 1s delivered only once at p.

Messages are totally ordered within each connected network compo-
nent — if two processes deliver the same two messages then they deliver
them in the same order. This feature is guaranteed using logical times-
tamps (TSs) which are delivered along with the messages:

Property 3.3 (Total Order) A logical timestamp (TS) is attached to
every message when it is delivered. Fvery message has o unique TS,
which is attached to it at all the processes that deliver it. The TS total
order preserves the causal partial order. The GCS delivers messages at
each process in the TS order (possibly with gaps).

The following property is perhaps the most well known property of
GCSs, to the extent that it engendered the whole Virtual Synchrony



(cf. Birman and van Renesse, 1994; Birman and Joseph, 1987; Friedman
and van Renesse, 1995; Moser et al., 1994) model:

Property 3.4 (Virtual Synchrony) Any two processes undergoing the
same two consecutive views in a group G deliver the same set of messages
in G within the former view.

Virtual Synchrony guarantees that process that remain connected
agree upon the set of messages they deliver. Among processes that
do not remain connected we would also like to guarantee agreement to
some extent. If two processes become disconnected, we do not expect to
achieve full agreement on the set of messages they delivered in the con-
text of the old view before detaching. Instead, we require that they agree
on a prefix of the messages that they deliver in this view, as described
below.

Let processes p and ¢ be members of view v1. Assume that p delivers
a message m before m' in vy, and that ¢ delivers m/, but without deliv-
ering m. This can happen only if p and ¢ became disconnected (from
Properties 3.3 and 3.4, they will not both be members of the same next
view). In Property 3.5 below, we require that if ¢ delivers m’ without
m, then no message m” sent by ¢, after delivering m/, can be delivered
by p in the context of vy, as illustrated in Figure 3.2.

Property 3.5 Letp and g be members of view v. If p delivers a message
m before m' in v, and if q delivers m' and later sends a message m”,
such that p delivers m” in v, then q delivers m before m'.

The GCS also preserves the Message Integrity property (Property 3.1)
of the underlying communication.

These properties are fulfilled by several GCSs, e.g., Totem (Amir
et al., 1995; Moser et al., 1996), the ATOP (Chockler et al., 1998; Chock-
ler, 1997) and All-Ack (Dolev and Malki, 1995; Malki, 1994) total order
protocols in Transis (Dolev and Malkhi, 1996), the strong total order
implemented in Phoenix (Malloth et al., 1995), and two of the total
order protocols in Horus (Friedman and van Renesse, 1997).

4. PROBLEM DEFINITION: THE SERVICE
GUARANTEES

Safety
CORelL fulfills the following two safety properties:

Property 3.6 At each process, messages become totally ordered in an
order which is a prefit of some common global total order. ILe., for
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Figure 3.2 Property 3.5.

any two processes p and q, and at any point during the execution of the
protocol, the sequence of messages totally ordered by p is a prefix of the
sequence of messages totally ordered by q, or vice versa.

Property 3.7 Messages are totally ordered by each process in an order
which preserves the causal partial order.

In addition, COReL preserves the following properties of underly-
ing GCS: Message Integrity (Property 3.1) and No Duplication (Prop-
erty 3.2).

Liveness

Property 3.8 (Liveness) Let P be a set of processes and v a view s.t.
v.set = P. Assume there is a time t such that no member of P delivers
any view after time t and the last view delivered by each p € P before
time t is v. Furthermore, assume that every message sent by a process
p € P in view v is delivered by every process q € P. Then, COReL
guarantees that every message sent by a process in P in any view is
eventually totally ordered by all the members of P.



5. THE COREL ALGORITHM

We present the COReL algorithm for reliable multicast and total or-
dering of messages. The COReL algorithm is used to implement long-
term replication services using a GCS as a building block. COReL guar-
antees that all messages will reach all processes in the same order. It
always allows members of a connected primary component to order mes-
sages. The algorithm is resilient to both process failures and network
partitions.

5.1 RELIABLE MULTICAST

When the network partitions, messages are disseminated in the re-
stricted context of a smaller view, and are not received at processes
which are members of other components. The participating processes
keep these messages for as long as they might be needed for retrans-
mission. Each process logs (on stable storage) every message that it
receives from the GCS. A process acknowledges a message after it is
written to stable storage. The acknowledgments (A CKs) may be piggy-
backed on regular messages. Note that it is important to use application
level ACKs in order to guarantee that the message is logged on stable
storage. If the message is only ACKed at the GCS level, it may be lost
if the process crashes.

When network failures are mended and previously disconnected net-
work components re-merge, a Recovery Procedure is invoked; the mem-
bers of the new view exchange messages containing information about
messages in previous components and their order. They determine which
messages should be retransmitted and by whom.

When a process crashes, a message that it sent prior to crashing may
be lost. When a process recovers from such a crash, it needs to recover
such messages. Therefore, messages are stored (on stable storage) when
they are received by the application (before the application send event
is complete).

5.2 MESSAGE ORDERING

Within each component messages are ordered by the GCS layer, which
supplies a unique timestamp (7'S) for each message when it delivers the
message to COReL. When CORelL receives the message, it writes the
message on stable storage along with its T'S. Within a majority compo-
nent COReL orders messages according to their TS. The TS is globally
unique, even in the face of partitions, and yet COReL sometimes orders
messages in a different total order: COReL orders messages from ma-



jority component before (causally concurrent) messages with a possibly
higher TS from minority components. This is necessary in order to al-
ways allow a majority to make progress. Note that both the TS order
and the order provided by COReL preserve the causal partial order.

When a message is retransmitted, the TS that was given when the
original transmission of the message was received is attached to the
retransmitted message, and is the only timestamp used for this message
(the new TS generated by the GCS during retransmission is ignored).

We use the notion of a primary component to allow members of one
network component to continue ordering messages when a partition oc-
curs. For each process, the primary component bit indicates if this pro-
cess is currently a member of a primary component. In Section 5.5.1 we
describe how a majority of the processes may become a primary compo-
nent. Messages that are received in the context of a primary component
(i.e., when the primary component bit is TRUE) may become totally
ordered according to the following rule:

Order Rule 1 Members of the current primary component PM are al-
lowed to totally order a message (in the global order) once the message
was acknowledged by all the members of PM.

If a message is totally ordered at some process p according to this rule,
then p knows that all the other members of the primary component re-
ceived the message, and have written it on stable storage. Furthermore,
the algorithm guarantees that all the other members already have an
obligation to enforce this decision in any future component, using the
yellow message mechanism explained in Section 5.2.1 below.

Every instance of COReL maintains a local message queue M Q that
is an ordered list of all the messages that this process received from the
application and the GCS. After message m was received by CORelL at
process p, and p wrote it on stable storage (in its MQ) we say that
p has the message m. Messages are uniquely identified through a pair
(sender, counter). This pair is the message id.

Incoming messages within each component are inserted at the end of
the local M Q, thus MQ reflects the order of the messages local to this
component. Messages are also inserted to the M Q (without a T'S) when
they are received from the application. Once Self Delivery occurs, these
messages are tagged with the TS provided by the GCS and are moved to
their proper place in the M Q. When components merge, retransmitted
messages from other components are inserted into the queue in an order
that may interleave with local messages (but never preceding messages
that were ordered already).



5.2.1 The Colors Model. CORelL builds its knowledge about
the order of messages at other processes. We use the colors model defined
in Amir et al., 1993 to indicate the knowledge level associated with each
message, as follows:

green: Knowledge about the message’s global total order. A process
marks a message as green when it knows that all the other mem-
bers of the primary component know that the message is yellow.
Note that this occurs exactly when the message is totally ordered
according to Order Rule 1. The set of green messages at each pro-
cess at a given time is a prefix of M Q. The last green message in
MQ marks the green line.

yellow: Each process marks as yellow messages that it received and ac-
knowledged in the context of a primary component, and as a result,
might have become green at other members of the primary com-
ponent. The yellow messages are the next candidates to become
green. The last yellow message in M Q marks the yellow line.

red: No knowledge about the message’s global total order. A message
in M@ is red if there is no knowledge that it has a different color.
Yellow messages precede all the red messages in M Q. Thus, MQ
is divided into three zones: a green prefix, then a yellow zone and
a red suffix.

An example snapshot of different message queues at different processes
is shown in Figure 3.3. In this example, P and @) form a majority
component. R is a member of a minority component. Messages 1 and
2 have become green in a former majority component that all processes
have knowledge of. Messages 3 and 4 have become green at P in the
current majority component, therefore, they are either green or yellow
at Q). P has messages 5 and 6 as yellow, which implies that it does not
know whether @@ has these messages or not. Message z was sent in a
minority component, and therefore it is red.

When a message is marked as green it is totally ordered. If a member
of a primary component PM marks a message m as green according to
Order Rule 1 then for all the other members of PM, m is yellow or green.
Since two majorities always intersect, and every primary component
contains a majority, in the next primary component that will be formed
at least one member will have m as yellow or green.

When components merge, processes recover missing messages and
have to agree upon their order; members of the last primary compo-
nent enforce all the green and the yellow messages that they have before
any concurrent red messages. Concurrent red messages from different
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Figure 3.3 The MQs at three processes running COReL.

components are interleaved according to the TS order. After recovery is
complete, all the messages in M Q are marked as green.

Consider, for example, the state illustrated in Figure 3.3 above. As-
sume that at this point in the execution, P partitions from @) and forms
the singleton minority component {P}, while @) re-connects with R to
form the majority component {Q, R}. Figure 3.4 depicts the state of the
M Qs of the members of the two components once recovery is complete.

{P} {Q.R}

—
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Figure 3.4 The M Qs after after recovery.

As explained in Amir et al., 1993; Keidar, 1994, it is possible to pro-
vide the application with red messages if weak consistency guarantees
are required. For example, eventually serializable data services (e.g., Pu



and Leff, 1991; Fekete et al., 1996; Amir et al., 1993) deliver messages to
the application before they are totally ordered. Later, the application
is notified when the message becomes stable (green in our terminology).
Messages become stable at the same order at all processes. The advan-
tage of using CORelL for such applications is that with COReL messages
become stable even whenever a majority is connected, while with the im-
plementations presented in Pu and Leff, 1991; Fekete et al., 1996; Amir
et al., 1993, messages may become stable only after they are received by
all the processes in the system.

5.3 NOTATION

We use the following notation:

m MQ, is the MQ of process p.

»  Prefir(MQp, m) is the prefix of MQ,, ending at message m.
m Green(MQ)) is the green prefix of MQ,,.

m We define process p knows of a primary component PM recursively
as follows:

1. If a process p was a member of PM then p knows of PM.

2. If a process ¢ knows of PM, and p recovers the state of ¢°,
then p knows of PM.

5.4 INVARIANTS OF THE ALGORITHM

The order of messages in MQ of each process always preserves the
causal partial order. Messages that are totally ordered are marked as
green. Once a message is marked as green, its place in the total order
may not change, and no new message may be ordered before it. There-
fore, at each process, the order of green messages in M Q is never altered.
Furthermore, the algorithm totally orders messages in the same order at
all processes, therefore the different processes must agree on their green
prefixes.

The following properties are invariants maintained by each step of the
algorithm:

Causal = If a process p has in its M Q a message m that was origi-
nally sent by process ¢, then for every message m’ that g sent
before m, MQ,, contains m’ before m.
m [f a process p has in its M Q a message m that was originally
sent by process ¢, then for every message m' that ¢ had in its
MQ before sending m, MQ, contains m' before m.



No Changes in Green New green messages are appended to the end
of Green(MQ,), and this is the only way that Green(MQ,) may
change.

Agreed Green The processes have compatible green prefixes: Let p
and g be a pair of processes running the algorithm. At any point in
the course of the execution — one of Green(MQ,) and Green(MQ,)
is a prefix of the other.

Yellow If a process p marked a message m as green in the context of a
primary component PM, and if a process q knows of PM, then:

1. Process ¢ has m marked as yellow or green.

2. Prefit(MQg,m) = Prefit(MQ,,m).

In Keidar, 1994 we formally prove that these invariants hold in COReL,
and thus prove the correctness of CORelL.

5.5 HANDLING VIEW CHANGES

The main subtleties of the algorithm are in handling view changes.
Faults can occur at any point in the course of the protocol, and the
algorithm ensures that even in the face of cascading faults, no inconsis-
tencies are introduced. To this end, every step taken by the handler for
view changes must maintain the invariants described in Section 5.4.

When a view change is delivered, the handler described in Figure 3.5 is
invoked. In the course of the run of the handler, the primary component
bit is FALSE, regular messages are blocked, and no new regular messages
are initiated.

View Change Handler for View v:
s Set the primary component bit to FALSE.

m Stop handling regular messages, and stop sending regular mes-
sages.

s [f v contains new members, run the Recovery Procedure described
in Section 5.5.2.

s If v is a majority, run the algorithm to establish a new primary
component, described in Section 5.5.1.

m  Continue handling and sending regular messages.

Figure 3.5 View change handler.




When merging components, messages that were transmitted in the
more restricted context of previous components need to be disseminated
to all members of the new view. Green and yellow messages from a pri-
mary component should precede messages that were concurrently passed
in other components. All the members of the new view must agree upon
the order of all past messages. To this end, the processes run the Re-
covery Procedure.

If the new view v introduces new members, the Recovery Procedure
is invoked in order to bring all the members of the new view to a com-
mon state. New messages that are delivered in the context of v are not
inserted into M Q before the Recovery Procedure ends, as not to violate
the Causal invariant. The members of v exchange state messages, con-
taining information about messages in previous components and their
order. In addition, each process reports of the last primary component
that it knows of, and of its green and yellow lines. Every process that
receives all the state messages knows exactly which messages every other
member has. Subsequently, the messages that not all the members have
are retransmitted.

In the course of the Recovery Procedure, the members agree upon
common green and yellow lines. The new green line is the mazimum of
the green lines of all the members: Every message that one of the mem-
bers of v had marked as green, becomes green for all the members. The
members that know of the latest primary component, PM, determine
the new yellow line. The new yellow line is the minimum of the yellow
lines of the members that know of PM. If some message m is red for
a member that knows of PM, then by the Yellow invariant, it was not
marked as green by any member of PM. In this case if any member had
marked m as yellow, it changes m back to red. A detailed description of
the Recovery Procedure is presented in Section 5.5.2.

After reaching an agreed state, the members of a majority component
in the network may practice their right to totally order new messages.
They must order all the yellow messages first, before new messages and
before red messages form other components. This is necessary in order
to be consistent with decisions made in previous primary components.

If the new view is a majority, the members of v will try to establish a
new primary component. The algorithm for establishing a new primary
component is described in Section 5.5.1. All committed primary com-
ponents are sequentially numbered. We refer to the primary component
with sequential number ¢ as PM;.

5.5.1 Establishing a Primary Component. A new view, v,
is established as the new primary component, if v is a majority, af-



ter the retransmission phase described in Section 5.5.2. The primary
component is established in a three-phase agreement protocol, similar
to Three Phase Commit protocols (cf. Skeen, 1982; Keidar and Dolev,
1998). The three phases are required in order to allow for recovery in
case failures occur in the course of the establishing process. The three
phases correlate to the three levels of colors in M Q.

Establishing a New Primary Component in view v

If v contains new members, the Recovery Procedure is run first.

Let New_Primary = maX;c, set(Last_Attempted_Primary;) + 1.

If v is a majority, all members of a view v try to establish it as the new
primary component PMpyew_primary:

Phase 1 — Attempt (red):

Set Last_Attempted_Primary to New_Primary on stable storage, and
send an attempt message to the other members of v. Wait for attempt
messages from all members of v.

Phase 2 — Commit (yellow):

Once attempt messages from all members of v arrive, commit to the
view by setting Last_Committed_Primary to New_Primary on stable
storage and marking all the messages in the M Q that are not green as
yellow.

Send a commit message to the other members of v.

Phase 3 — Establish (green):

Once commit messages from all members of v arrive, establish v, by
setting to TRUE the primary component bit and marking as green all
the messages in M Q.

If the GCS reports of a view change before the process is over —
the establishing is aborted, but its effects are not undone.

Figure 3.6 Establishing a new primary component.

In the first phase all the processes multicast a message to notify the
other members that they attempt to establish the new primary compo-
nent. In the second phase, the members commit to establish the new
primary component, and mark all the messages in their M Q as yellow.
In the establish phase, all the processes mark all the messages in their
MQ as green and set the primary component bit to TRUE. A process
marks the messages in its MQ as green only when it knows that all




the other members marked them as yellow. Thus, if a failure occurs in

the course of the protocol, the Yellow invariant is not violated. If the

GCS reports of a view change before the process is over — the establish-

ing is aborted, but none of its effects need to be undone. The primary

component bit remains FALSE until the next successful establish process.
Each process maintains the following variables:

Last_Committed Primary is the number of the last primary compo-
nent that this process has committed to establish.

Last_Attempted_Primary is the number of the last primary compo-
nent that this process has attempted to establish. This number
may be higher than the number of the last component actually
committed to.

The algorithm for establishing a new primary component is described
in Figure 3.6.

5.5.2 Recovery Procedure. If the new view, v, introduces new
members, then each process that delivers the view change runs the fol-
lowing protocol:

Recovery Procedure for process p and view v

1. Send state message including the following information:

m  Last_Committed_Primary.
m  Last_Attempted_Primary.

m  For every process ¢, the id of the last message that p received
from ¢*.
= The id of the latest green message (green line).

= The id of the latest yellow message (yellow line).
2. Wait for state messages from all the other processes in v.set.

3. Let: Max_Committed = max,cy.set Last_-Committed_Primary,.

Let Representatives be the members that have:
Last_Committed_Primary = Maxz_Committed.

The Representatives advance their green lines to include all mes-
sages that any member of v had marked as green, and retreat
their yellow lines to include only messages that all of them had
marked as yellow, and in the same order. For example, if process
p has a message m marked as yellow, while another member with
Last_Committed_Primary = Maxz_Committed has m marked as



red, or does not have m at all, then p changes to red m along with
any messages that follow m in MQ,,.

. If all the members have the same last committed primary compo-
nent, (i.e., all are Representatives), go directly to Step 7.

A unique representative from the group of Representatives is cho-
sen deterministically.

Determine (from the state messages) the following sets of messages:

component_stable is the set of messages that all the members
of v have.

component_ordered is the set of messages that are green for all
the members of v.

priority are yellow and green messages that the representative
has.

. Retransmission of priority messages:

The chosen representative computes the maximal prefix of its MQ
that contains component_ordered messages only. It sends the set
of priority messages in its M Q that follow this prefix. For com-
ponent_stable messages, it sends only the header (including the
original ACKs), and the other messages are sent with their data
and original piggybacked ACKs.

Members from other view insert these messages into their M Qs,
in the order of the retransmission, following the green prefix, and
ahead of any non_priority messages®.

. If Last_Committed_Primary, < Max_Committed; do the follow-
ing in one atomic step:

m If p has yellow messages that were not retransmitted by the
representative, change these messages to red, and reorder
them in the red part of MQ according to the TS order.

n Set Last_Committed_Primary to Max_Committed (on sta-
ble storage).

m  Set the green and yellow lines according to the representative;
the yellow line is the last retransmitted message.
. Retransmission of red messages:

Messages that not all the members have, are retransmitted. Each
message is retransmitted by at most one process. The processes
that need to retransmit messages send them, with their original



ACKs, in an order maintaining the Retransmission Rule described
in Figure 3.7.

Retransmission Rule If process p has messages m and m' such that
m' is ordered after m in p’s messages queue, then during Step 7 of the
Recovery Procedure:

m  [fp has to retransmit both messages then it will retransmit m before
!/

m'.

m Ifp has to retransmit m' and another process q has to retransmit m
then p does not retransmit m' before receiving the retransmission
of m.

Figure 3.7 Retransmission rule.

Concurrent retransmitted messages from different processes are
interleaved in M@ according to the TS order of their original
transmissions.

Note: If the GCS reports of a view change before the protocol is over,
the protocol is immediately restarted for the new view. The effects of
the non-completed run of the protocol do not need to be undone.

After receiving all of the retransmitted messages, if v is a majority
then the members try to establish a new view. (The algorithm is de-
scribed Section 5.5.1).

If the view change reports only of process faults, and no new members
are introduced, the processes need only establish the new view and no
retransmissions are needed. This is due to the fact that, from Prop-
erty 3.4 of the GCS, all the members received the same set of messages
until the view change.

6. DISCUSSION

We presented an efficient algorithm for totally ordered multicast in
an asynchronous environment, that is resilient to network partitions and
communication link failures. The algorithm always allows a majority of
connected members to totally order messages within two communication
rounds. The algorithm is constructed over a GCS that supplies group
multicast and membership services among members of a connected net-
work component.

The algorithm allows members of minority components to initiate
messages. These messages may diffuse through the system and become
totally ordered even if their initiator is never a member of a majority




component: The message is initially multicast in the context of the
minority component, if some member of the minority component (not
necessarily the message initiator) later becomes a member of a majority
component, the message is retransmitted in the majority component and
becomes totally ordered.

Some of the principles presented in this protocol may be applied to
make a variety of distributed algorithms more available, e.g., network
management services and distributed database systems. In Keidar and
Dolev, 1998 we present an atomic commitment protocol for distributed
database management based on such principles.

The algorithm presented herein uses a majority to decide if a group of
processors may become a primary component. The concept of majority
can be generalized to quorums, and can be further generalized, to allow
more flexibility yet: The dynamic voting paradigm for electing a pri-
mary component defines quorums adaptively. When a partition occurs,
a majority of the previous quorum may chosen as the new primary com-
ponent. Thus, a primary component must not necessarily a majority
of the processors. Dynamic voting may introduce inconsistencies, and
therefore should be handled carefully. In Yeger Lotem et al., 1997 we
suggest an algorithm for consistently maintaining a primary component
using dynamic voting. This algorithm may be easily incorporated into
COReL, optimizing it for highly unreliable networks.

In Keidar, 1994 we prove the correctness of the COReL algorithm.
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Notes

1. This chapter is based on the paper Keidar and Dolev, 1996

2. By “no failures occur” we implicitly mean that the underlying membership service does not
report of failures.

3. precovers the state of ¢ when p completes running the Recovery Procedure for a view that
contains q.

4. Note that this is sufficient to represent the set of messages that p has, because the order of
messages in M Q,, always preserves the causal order.

5. Note that it is possible for members to already have some of these messages, and even in
a contradicting order (but in this case, not as green messages). In this case they adopt the order
enforced by the representative.
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