
Chapter �

TOTALLYORDERED BROADCAST IN THE

FACE OF NETWORK PARTITIONS

Exploiting Group Communication for Replication in
Partitionable Networks�

Idit Keidar

Laboratory for Computer Science

Massachusetts Institute of Technology

idish�theory�lcs�mit�edu

Danny Dolev

Computer Science Department

Hebrew University of Jerusalem

dolev�cs�huji�ac�il

Abstract We present an algorithm for Totally Ordered Broadcast in the face of net�
work partitions and process failures� using an underlying group communi�
cation service as a building block� The algorithm always allows a majority
�or quorum� of connected processes in the network to make progress �i�e��
to order messages�� if they remain connected for su�ciently long� regard�
less of past failures� Furthermore� the algorithm always allows processes to
initiate messages� even when they are not members of a majority compo�
nent in the network� These messages are disseminated to other processes
using a gossip mechanism� Thus� messages can eventually become totally
ordered even if their initiator is never a member of a majority component�
The algorithm guarantees that when a majority is connected� each mes�
sage is ordered within at most two communication rounds� if no failures
occur during these rounds�

Keywords� Group communication� totally ordered broadcast� replication� network
partitions�

�� INTRODUCTION

Totally Ordered Broadcast is a powerful service for the design of fault
tolerant applications� e�g�� consistent cache� distributed shared mem�
ory and replication� as explained in Schneider� ����� Keidar� ���	� We
present the COReL �Consistent Object Replication Layer� algorithm for
Totally Ordered Broadcast in the face of network partitions and process
failures� The algorithm is most adequate for dynamic networks where
failures are transient�

COReL uses an underlying totally ordered group communication ser�
vice �GCS�� cf� acm� ���
 as a building block� Group communication
introduces the notion of group abstraction which allows processes to
be easily arranged into multicast groups� Within each group� the GCS
provides reliable multicast and membership services� The task of the
membership service is to maintain the set of currently live and con�
nected processes in each group and to deliver this information to the
group members whenever it changes� The reliable multicast services
deliver messages to all the current members of the group� GCSs �e�g��
Transis � Dolev and Malkhi� ���
� Amir et al�� ����� Ensemble � Hayden
and van Renesse� ���
� Horus � van Renesse et al�� ���
 and Totem �
Amir et al�� ���
� Moser et al�� ���
� that use hardware broadcast where
possible lead to simpler and more e�cient solutions for replication than
the traditional point�to�point mechanisms�

COReL multicasts messages to all the connected members using the
underlying GCS� Once messages are delivered by the GCS and logged on
stable storage �by COReL�� they are acknowledged� Acknowledgments
are piggybacked on regular messages� When a majority is connected�
messages become totally ordered once they are acknowledged by all the
members of the connected majority� Thus� the COReL algorithm guar�
antees that when a majority is connected� each message is ordered within
two communication rounds at the most� if no failures occur during these
rounds�� The algorithm incurs low overhead� No �special� messages are
needed and all the information required by the protocol is piggybacked
on regular messages�
Processes using COReL are always allowed to initiate messages� even

when they are not members of a majority component� By carefully
combining message ordering within a primary component and gossiping
of messages exchanged in minority components� messages can eventually
become totally ordered even if their initiator is never a member of a
majority component�
The protocol presented herein uses a simple majority rule to decide

which network component can become the primary one� Alternatively�

one could use a quorum system �cf� Peleg and Wool� ���
�� which is a
generalization of the majority concept� A quorum system is a collection
of sets �quorums� such that any two sets intersect� Using such a quorum
system� a network component can become the primary one if it contains
a quorum� The concept of quorums may be further generalized to al�
low dynamic adjustment of the quorum system� In Yeger Lotem et al��
����� we present a dynamic voting protocol for maintaining the primary
component in the system� this protocol may be used in conjunction with
COReL�

��� THE PROBLEM

The Atomic Broadcast problem de�ned in Hadzilacos and Toueg� ����
deals with consistent message ordering� Informally� Atomic Broadcast
requires that all the correct processes will deliver all the messages to the
application in the same order and that they eventually deliver all mes�
sages sent by correct processes� Furthermore� all the correct processes
must deliver any message that is delivered by a correct processes�
In our model two processes may be detached� and yet both are con�

sidered correct� In this case� obviously� Atomic Broadcast as de�ned
above is unsolvable �even if the communication is synchronous� please
see Friedman et al�� ���
�� We de�ne a variant of Atomic Broadcast for
partitionable networks� We guarantee that if a majority of the processes
form a connected component then these processes eventually deliver all
messages sent by any of them� in the same order� We call this service
Totally Ordered Broadcast�
It is well�known that in a fully asynchronous failure�prone environ�

ment� agreement problems such as Consensus and Atomic Broadcast
are not solvable �as proven in Fischer et al�� ���
�� and it is also im�
possible to implement an algorithm with the above guarantee �please
see Friedman et al�� ���
�� Such agreement problems are solvable� on
the other hand� if the model is augmented with an external failure detec�
tor �please see Chandra and Toueg� ���
� Babao�glu et al�� ���
� Dolev
et al�� ���
� Friedman et al�� ���
� Dolev et al�� ������
The algorithm we present herein uses an underlying group commu�

nication service with a membership protocol that serves as the failure
detector� Our algorithm guarantees that whenever there is a connected
component which contains a majority of the processes� and the member�
ship protocol indicates that this component is connected� the members
of this majority succeed in ordering messages� The safety properties of
COReL are preserved regardless of whether the failure detector is accu�

rate or not� the liveness of the algorithm �its ability to make progress�
depends on the accuracy of this membership protocol�
Informally� COReL satis�es the following conditional liveness prop�

erty� If in a given run of COReL there is a time after which the network
stabilizes with a connected majority component and the membership
is accurate� then COReL eventually totally orders every message sent
in the majority component� This guarantee is formally stated in Prop�
erty ���� Here� we do not analyze how long it takes before COReL totally
orders a message� Such an analysis may be found in Fekete et al�� �����
The term delivery is usually used for delivery of totally ordered mes�

sages by the Atomic Broadcast algorithm to its application� but also for
delivery of messages by the GCS to its application �which in our case is
the Totally Ordered Broadcast algorithm�� To avoid confusion� hence�
forward we will use the term delivery only for messages delivered by the
GCS to our algorithm� When discussing the Totally Ordered Broadcast
algorithm� we say that the algorithm totally orders a message when the
algorithm decides that this message is the next message in the total or�
der� instead of saying that the algorithm �delivers� the message to its
application�

��� RELATED WORK

Group communication systems often provide totally ordered group
communication services� Amoeba �Kaashoek and Tanenbaum� ���
��
Delta�	 �Powell� ����� Ensemble �Hayden and van Renesse� ���
�� Ho�
rus �van Renesse et al�� ���
�� Isis �Birman et al�� ������ Totem �Amir
et al�� ���
� Moser et al�� ���
�� Transis �Dolev and Malkhi� ���
� Amir
et al�� ����� and RMP �Whetten et al�� ���
� are only some examples
of systems that support totally ordered group communication�
To increase availability� GCSs detect failures and extract faulty mem�

bers from the membership� When processes reconnect� the GCS does not
recover the states of reconnected processes� This is where the COReL al�
gorithm comes in� COReL recovers lost messages and extends the order
achieved by the GCS to a global total order�
The majority�based Consensus algorithms of Dwork et al�� ����� Lam�

port� ����� De Prisco et al�� ����� Chandra and Toueg� ���
� Dolev et al��
���
 are guaranteed to terminate under conditions similar to those of
COReL� i�e�� at periods at which the network is stable and message deliv�
ery is timely� or when failure detectors are eventually accurate� Atomic
Broadcast is equivalent to Consensus �as proven in Chandra and Toueg�
���
�� Atomic Broadcast may be solved by running a sequence of Con�

sensus decisions �as done� e�g�� in Chandra and Toueg� ���
� Lamport�
����� De Prisco et al�� ������
The main advantage of using COReL over running a sequence of Con�

sensus algorithms is that COReL essentially pipelines the sequence of
Consensus decisions� While Consensus algorithms involve special rounds
of communication dedicated to exchanging �voting� messages of the pro�
tocol� in our approach all the information needed for the protocol is
piggybacked on regular messages� Furthermore� COReL does not main�
tain the state of every Consensus invocation separately� the information
about all the pending messages is summarized in common data struc�
tures� This allows faster recovery from partitions� when COReL reaches
agreement on all the recovered messages simultaneously�
The Atomic Broadcast algorithm of Chandra and Toueg� ���
 con�

serves special �voting� messages by reaching agreement on the order of
sets of messages instead of running Consensus for every single message�
However� this increases the latency of message ordering and still requires
some extra messages�
In Mann et al�� ����� the Paxos multiple Consensus algorithm of Lam�

port� ���� is used for a replicated �le system� The replication algorithm
suggested in Mann et al�� ���� is centralized� and thus highly increases
the load on one server� while COReL is decentralized and symmetric�
The total ordering protocol in Amir� ���
� Amir et al�� ���	 resem�

bles COReL� it also exploits a group communication service to over�
come network partitions� Like COReL� it uses a majority�based scheme
for message ordering� It decreases the requirement for end�to�end ac�
knowledgments� at the price of not always allowing a majority to make
progress�
Fekete et al�� ���� have studied the COReL algorithm �following its

publication in Keidar and Dolev� ���
� using the I�O automata formal�
ism� They have presented both the speci�cations and the implementa�
tion using I�O automata� They have analyzed the algorithm�s liveness
guarantees in terms of timed automata behavior at periods during which
the underlying network is stable and timely� They made simpli�cations
to the protocol which make it simpler to present� alas less e�cient�
The Total protocol �Moser et al�� ����� also totally orders messages

in the face of process crashes and network partitions� However� it incurs
a high overhead� The maximum number of communication rounds re�
quired is not bounded� while our algorithm requires two communication
rounds to order a message if no failures occur during these rounds�

�� THE MODEL

The underlying communication network provides datagram message
delivery� There is no known bound on message transmission time� hence
the system is asynchronous� Processes fail by crashing� and crashed pro�
cesses may later recover� Live processes are considered correct� crashed
processes are faulty� Recovered processes come up with their stable stor�
age intact� Communication links may fail and recover� Malicious failures
are not considered� messages are neither corrupted nor spontaneously
generated by the network� as stated in the following property�

Property ��� �Message Integrity� If a message m is delivered by a
process p� then there is a causally preceding send event of m at some
process q�

The causal partial order ��rst de�ned in Lamport� ��� is de�ned as
the transitive closure of� m

cause

�� m� if deliverq�m� � sendq�m
�� or if

sendq�m�� sendq�m
���

�� THE SYSTEM ARCHITECTURE

COReL is an algorithm for Totally Ordered Broadcast� COReL is de�
signed as a high�level service atop a group communication service which
provides totally ordered group multicast and membership services� and
is omission fault free within connected network components�

COReL uses the GCS as a failure detector and as a building block
for reliable communication within connected network components� The
layer structure of COReL is depicted in Figure ����
All the copies of COReL are members of one multicast group� Each

copy of COReL uses the GCS to send messages to the members of its
group� all the members of the group deliver �or receive� the message�
After a group is created� the group undergoes view changes when

processes are added or are taken out of the group due to failures� The
membership service reports these changes to COReL through special
view messages� A view v is a pair consisting of a view identi�er v�id and
a set of members v�set� We say that a process p is a member of a view
v if p � v�set�
Views are delivered among the stream of regular messages� We say

that a send �receive� event e occurs at process p in view v �or in the
context of v� if v was the latest view that p received before e�

Application

COReL - Totally Ordered Broadcast

GCS

application
messages

COReL
messages

Totally Ordered Broadcast
messages

messages
with TS

views

Figure ��� The layer structure of COReL�

��� PROPERTIES OF THE GCS

COReL may be implemented using any GCS that provides reliable
locally ordered group multicast and membership services� We assume
the GCS ful�lls the following properties�
Messages are not duplicated in transit�

Property ��� �No Duplication� Every message delivered at a pro�
cess p is delivered only once at p�

Messages are totally ordered within each connected network compo�
nent � if two processes deliver the same two messages then they deliver
them in the same order� This feature is guaranteed using logical times�
tamps �TSs� which are delivered along with the messages�

Property ��� �Total Order� A logical timestamp �TS� is attached to
every message when it is delivered� Every message has a unique TS�
which is attached to it at all the processes that deliver it� The TS total
order preserves the causal partial order� The GCS delivers messages at
each process in the TS order �possibly with gaps��

The following property is perhaps the most well known property of
GCSs� to the extent that it engendered the whole Virtual Synchrony

�cf� Birman and van Renesse� ���	� Birman and Joseph� ����� Friedman
and van Renesse� ���
� Moser et al�� ���	� model�

Property ��� �Virtual Synchrony� Any two processes undergoing the
same two consecutive views in a group G deliver the same set of messages
in G within the former view�

Virtual Synchrony guarantees that process that remain connected
agree upon the set of messages they deliver� Among processes that
do not remain connected we would also like to guarantee agreement to
some extent� If two processes become disconnected� we do not expect to
achieve full agreement on the set of messages they delivered in the con�
text of the old view before detaching� Instead� we require that they agree
on a pre�x of the messages that they deliver in this view� as described
below�
Let processes p and q be members of view v�� Assume that p delivers

a message m before m� in v�� and that q delivers m�� but without deliv�
ering m� This can happen only if p and q became disconnected �from
Properties ��� and ��	� they will not both be members of the same next
view�� In Property ��
 below� we require that if q delivers m� without
m� then no message m�� sent by q� after delivering m�� can be delivered
by p in the context of v�� as illustrated in Figure ����

Property ��	 Let p and q be members of view v� If p delivers a message
m before m� in v� and if q delivers m� and later sends a message m���
such that p delivers m�� in v� then q delivers m before m��

The GCS also preserves the Message Integrity property �Property ����
of the underlying communication�
These properties are ful�lled by several GCSs� e�g�� Totem �Amir

et al�� ���
� Moser et al�� ���
�� the ATOP �Chockler et al�� ����� Chock�
ler� ����� and All�Ack �Dolev and Malki� ���
� Malki� ���	� total order
protocols in Transis �Dolev and Malkhi� ���
�� the strong total order
implemented in Phoenix �Malloth et al�� ���
�� and two of the total
order protocols in Horus �Friedman and van Renesse� ������

�� PROBLEM DEFINITION� THE SERVICE
GUARANTEES

Safety

COReL ful�lls the following two safety properties�

Property ��
 At each process� messages become totally ordered in an
order which is a pre�x of some common global total order� I�e�� for

Deliver m'

Deliver m

Deliver m'

Send m''

Deliver m''

View {P, Q} View {P, Q}

P Q

Q also delivers m

Figure ��� Property ��	�

any two processes p and q� and at any point during the execution of the
protocol� the sequence of messages totally ordered by p is a pre�x of the
sequence of messages totally ordered by q� or vice versa�

Property ��� Messages are totally ordered by each process in an order
which preserves the causal partial order�

In addition� COReL preserves the following properties of underly�
ing GCS� Message Integrity �Property ���� and No Duplication �Prop�
erty �����

Liveness

Property ��� �Liveness� Let P be a set of processes and v a view s�t�
v�set � P� Assume there is a time t such that no member of P delivers
any view after time t and the last view delivered by each p � P before
time t is v� Furthermore� assume that every message sent by a process
p � P in view v is delivered by every process q � P� Then� COReL
guarantees that every message sent by a process in P in any view is
eventually totally ordered by all the members of P�

�� THE COREL ALGORITHM

We present the COReL algorithm for reliable multicast and total or�
dering of messages� The COReL algorithm is used to implement long�
term replication services using a GCS as a building block� COReL guar�
antees that all messages will reach all processes in the same order� It
always allows members of a connected primary component to order mes�
sages� The algorithm is resilient to both process failures and network
partitions�

��� RELIABLE MULTICAST

When the network partitions� messages are disseminated in the re�
stricted context of a smaller view� and are not received at processes
which are members of other components� The participating processes
keep these messages for as long as they might be needed for retrans�
mission� Each process logs �on stable storage� every message that it
receives from the GCS� A process acknowledges a message after it is
written to stable storage� The acknowledgments �ACKs� may be piggy�
backed on regular messages� Note that it is important to use application
level ACKs in order to guarantee that the message is logged on stable
storage� If the message is only ACKed at the GCS level� it may be lost
if the process crashes�
When network failures are mended and previously disconnected net�

work components re�merge� a Recovery Procedure is invoked� the mem�
bers of the new view exchange messages containing information about
messages in previous components and their order� They determine which
messages should be retransmitted and by whom�
When a process crashes� a message that it sent prior to crashing may

be lost� When a process recovers from such a crash� it needs to recover
such messages� Therefore� messages are stored �on stable storage� when
they are received by the application �before the application send event
is complete��

��� MESSAGE ORDERING

Within each component messages are ordered by the GCS layer� which
supplies a unique timestamp �TS � for each message when it delivers the
message to COReL� When COReL receives the message� it writes the
message on stable storage along with its TS� Within a majority compo�
nent COReL orders messages according to their TS� The TS is globally
unique� even in the face of partitions� and yet COReL sometimes orders
messages in a di�erent total order� COReL orders messages from ma�

jority component before �causally concurrent� messages with a possibly
higher TS from minority components� This is necessary in order to al�
ways allow a majority to make progress� Note that both the TS order
and the order provided by COReL preserve the causal partial order�
When a message is retransmitted� the TS that was given when the

original transmission of the message was received is attached to the
retransmitted message� and is the only timestamp used for this message
�the new TS generated by the GCS during retransmission is ignored��
We use the notion of a primary component to allow members of one

network component to continue ordering messages when a partition oc�
curs� For each process� the primary component bit indicates if this pro�
cess is currently a member of a primary component� In Section
�
�� we
describe how a majority of the processes may become a primary compo�
nent� Messages that are received in the context of a primary component
�i�e�� when the primary component bit is true� may become totally
ordered according to the following rule�

Order Rule � Members of the current primary component PM are al�
lowed to totally order a message �in the global order� once the message
was acknowledged by all the members of PM �

If a message is totally ordered at some process p according to this rule�
then p knows that all the other members of the primary component re�
ceived the message� and have written it on stable storage� Furthermore�
the algorithm guarantees that all the other members already have an
obligation to enforce this decision in any future component� using the
yellow message mechanism explained in Section
���� below�
Every instance of COReL maintains a local message queue MQ that

is an ordered list of all the messages that this process received from the
application and the GCS� After message m was received by COReL at
process p� and p wrote it on stable storage �in its MQ� we say that
p has the message m� Messages are uniquely identi�ed through a pair
hsender� counteri� This pair is the message id�
Incoming messages within each component are inserted at the end of

the local MQ� thus MQ re�ects the order of the messages local to this
component� Messages are also inserted to theMQ �without a TS� when
they are received from the application� Once Self Delivery occurs� these
messages are tagged with the TS provided by the GCS and are moved to
their proper place in the MQ� When components merge� retransmitted
messages from other components are inserted into the queue in an order
that may interleave with local messages �but never preceding messages
that were ordered already��

����� The Colors Model� COReL builds its knowledge about
the order of messages at other processes� We use the colors model de�ned
in Amir et al�� ���� to indicate the knowledge level associated with each
message� as follows�

green
 Knowledge about the message�s global total order� A process
marks a message as green when it knows that all the other mem�
bers of the primary component know that the message is yellow�
Note that this occurs exactly when the message is totally ordered
according to Order Rule �� The set of green messages at each pro�
cess at a given time is a pre�x of MQ� The last green message in
MQ marks the green line�

yellow
 Each process marks as yellow messages that it received and ac�
knowledged in the context of a primary component� and as a result�
might have become green at other members of the primary com�
ponent� The yellow messages are the next candidates to become
green� The last yellow message in MQ marks the yellow line�

red
 No knowledge about the message�s global total order� A message
inMQ is red if there is no knowledge that it has a di�erent color�
Yellow messages precede all the red messages inMQ� Thus� MQ
is divided into three zones� a green pre�x� then a yellow zone and
a red su�x�

An example snapshot of di�erent message queues at di�erent processes
is shown in Figure ���� In this example� P and Q form a majority
component� R is a member of a minority component� Messages � and
� have become green in a former majority component that all processes
have knowledge of� Messages � and 	 have become green at P in the
current majority component� therefore� they are either green or yellow
at Q� P has messages
 and
 as yellow� which implies that it does not
know whether Q has these messages or not� Message x was sent in a
minority component� and therefore it is red�
When a message is marked as green it is totally ordered� If a member

of a primary component PM marks a message m as green according to
Order Rule � then for all the other members of PM � m is yellow or green�
Since two majorities always intersect� and every primary component
contains a majority� in the next primary component that will be formed
at least one member will have m as yellow or green�
When components merge� processes recover missing messages and

have to agree upon their order� members of the last primary compo�
nent enforce all the green and the yellow messages that they have before
any concurrent red messages� Concurrent red messages from di�erent

5

2
3

4

1

5

2
3

4

1

6

2
X

1

{P, Q} {R}

R is disconnected from P and Q

gr
ee

n

gr
ee

n

gr
ee

n

ye
llo

wye
llo

w

re
d

Figure ��� TheMQs at three processes running COReL�

components are interleaved according to the TS order� After recovery is
complete� all the messages in MQ are marked as green�
Consider� for example� the state illustrated in Figure ��� above� As�

sume that at this point in the execution� P partitions from Q and forms
the singleton minority component fPg� while Q re�connects with R to
form the majority component fQ�Rg� Figure ��	 depicts the state of the
MQs of the members of the two components once recovery is complete�

5

2
3
4

1

5

2
3
4

1

6 X

{P} {Q,R}

gr
ee

n
ye

llo
w

gr
ee

n

Figure ��� TheMQs after after recovery�

As explained in Amir et al�� ����� Keidar� ���	� it is possible to pro�
vide the application with red messages if weak consistency guarantees
are required� For example� eventually serializable data services �e�g�� Pu

and Le�� ����� Fekete et al�� ���
� Amir et al�� ����� deliver messages to
the application before they are totally ordered� Later� the application
is noti�ed when the message becomes stable �green in our terminology��
Messages become stable at the same order at all processes� The advan�
tage of using COReL for such applications is that with COReL messages
become stable even whenever a majority is connected� while with the im�
plementations presented in Pu and Le�� ����� Fekete et al�� ���
� Amir
et al�� ����� messages may become stable only after they are received by
all the processes in the system�

��� NOTATION

We use the following notation�

MQp is the MQ of process p�

Pre�x �MQp�m� is the pre�x of MQp ending at message m�

Green�MQp� is the green pre�x of MQp�

We de�ne process p knows of a primary component PM recursively
as follows�

�� If a process p was a member of PM then p knows of PM �

�� If a process q knows of PM � and p recovers the state of q��
then p knows of PM �

��� INVARIANTS OF THE ALGORITHM

The order of messages in MQ of each process always preserves the
causal partial order� Messages that are totally ordered are marked as
green� Once a message is marked as green� its place in the total order
may not change� and no new message may be ordered before it� There�
fore� at each process� the order of green messages inMQ is never altered�
Furthermore� the algorithm totally orders messages in the same order at
all processes� therefore the di�erent processes must agree on their green
pre�xes�
The following properties are invariants maintained by each step of the

algorithm�

Causal If a process p has in its MQ a message m that was origi�
nally sent by process q� then for every message m� that q sent
before m� MQp contains m

� before m�

If a process p has in itsMQ a message m that was originally
sent by process q� then for every message m� that q had in its
MQ before sending m� MQp contains m

� before m�

No Changes in Green New green messages are appended to the end
of Green�MQp�� and this is the only way that Green�MQp� may
change�

Agreed Green The processes have compatible green pre�xes� Let p
and q be a pair of processes running the algorithm� At any point in
the course of the execution � one ofGreen�MQp� andGreen�MQq�
is a pre�x of the other�

Yellow If a process p marked a message m as green in the context of a
primary component PM � and if a process q knows of PM � then�

�� Process q has m marked as yellow or green�

�� Pre�x �MQq�m� � Pre�x �MQp�m��

In Keidar� ���	 we formally prove that these invariants hold inCOReL�
and thus prove the correctness of COReL�

��� HANDLING VIEW CHANGES

The main subtleties of the algorithm are in handling view changes�
Faults can occur at any point in the course of the protocol� and the
algorithm ensures that even in the face of cascading faults� no inconsis�
tencies are introduced� To this end� every step taken by the handler for
view changes must maintain the invariants described in Section
�	�
When a view change is delivered� the handler described in Figure ��
 is

invoked� In the course of the run of the handler� the primary component
bit is false� regular messages are blocked� and no new regular messages
are initiated�

View Change Handler for View v�

Set the primary component bit to false�

Stop handling regular messages� and stop sending regular mes�
sages�

If v contains new members� run the Recovery Procedure described
in Section
�
���

If v is a majority� run the algorithm to establish a new primary
component� described in Section
�
���

Continue handling and sending regular messages�

Figure ��� View change handler�

When merging components� messages that were transmitted in the
more restricted context of previous components need to be disseminated
to all members of the new view� Green and yellow messages from a pri�
mary component should precede messages that were concurrently passed
in other components� All the members of the new view must agree upon
the order of all past messages� To this end� the processes run the Re�
covery Procedure�
If the new view v introduces new members� the Recovery Procedure

is invoked in order to bring all the members of the new view to a com�
mon state� New messages that are delivered in the context of v are not
inserted intoMQ before the Recovery Procedure ends� as not to violate
the Causal invariant� The members of v exchange state messages� con�
taining information about messages in previous components and their
order� In addition� each process reports of the last primary component
that it knows of� and of its green and yellow lines� Every process that
receives all the state messages knows exactly which messages every other
member has� Subsequently� the messages that not all the members have
are retransmitted�
In the course of the Recovery Procedure� the members agree upon

common green and yellow lines� The new green line is the maximum of
the green lines of all the members� Every message that one of the mem�
bers of v had marked as green� becomes green for all the members� The
members that know of the latest primary component� PM � determine
the new yellow line� The new yellow line is the minimum of the yellow
lines of the members that know of PM � If some message m is red for
a member that knows of PM � then by the Yellow invariant� it was not
marked as green by any member of PM � In this case if any member had
marked m as yellow� it changes m back to red� A detailed description of
the Recovery Procedure is presented in Section
�
���
After reaching an agreed state� the members of a majority component

in the network may practice their right to totally order new messages�
They must order all the yellow messages �rst� before new messages and
before red messages form other components� This is necessary in order
to be consistent with decisions made in previous primary components�
If the new view is a majority� the members of v will try to establish a

new primary component� The algorithm for establishing a new primary
component is described in Section
�
��� All committed primary com�
ponents are sequentially numbered� We refer to the primary component
with sequential number i as PMi�

����� Establishing a Primary Component� A new view� v�
is established as the new primary component� if v is a majority� af�

ter the retransmission phase described in Section
�
��� The primary
component is established in a three�phase agreement protocol� similar
to Three Phase Commit protocols �cf� Skeen� ����� Keidar and Dolev�
������ The three phases are required in order to allow for recovery in
case failures occur in the course of the establishing process� The three
phases correlate to the three levels of colors in MQ�

Establishing a New Primary Component in view v

If v contains new members� the Recovery Procedure is run �rst�
Let New Primary � maxi�v�set�Last Attempted Primaryi� � ��
If v is a majority� all members of a view v try to establish it as the new
primary component PMNew Primary�

Phase � � Attempt �red��
Set Last Attempted Primary to New Primary on stable storage� and
send an attempt message to the other members of v� Wait for attempt
messages from all members of v�

Phase � � Commit �yellow��
Once attempt messages from all members of v arrive� commit to the
view by setting Last Committed Primary to New Primary on stable
storage and marking all the messages in the MQ that are not green as
yellow�
Send a commit message to the other members of v�

Phase � � Establish �green��
Once commit messages from all members of v arrive� establish v� by
setting to true the primary component bit and marking as green all
the messages in MQ�

If the GCS reports of a view change before the process is over �
the establishing is aborted� but its e�ects are not undone�

Figure ��� Establishing a new primary component�

In the �rst phase all the processes multicast a message to notify the
other members that they attempt to establish the new primary compo�
nent� In the second phase� the members commit to establish the new
primary component� and mark all the messages in their MQ as yellow�
In the establish phase� all the processes mark all the messages in their
MQ as green and set the primary component bit to true� A process
marks the messages in its MQ as green only when it knows that all

the other members marked them as yellow� Thus� if a failure occurs in
the course of the protocol� the Yellow invariant is not violated� If the
GCS reports of a view change before the process is over � the establish�
ing is aborted� but none of its e�ects need to be undone� The primary
component bit remains false until the next successful establish process�
Each process maintains the following variables�

Last Committed Primary is the number of the last primary compo�
nent that this process has committed to establish�

Last Attempted Primary is the number of the last primary compo�
nent that this process has attempted to establish� This number
may be higher than the number of the last component actually
committed to�

The algorithm for establishing a new primary component is described
in Figure ��
�

����� Recovery Procedure� If the new view� v� introduces new
members� then each process that delivers the view change runs the fol�
lowing protocol�

Recovery Procedure for process p and view v

�� Send state message including the following information�

Last Committed Primary�

Last Attempted Primary�

For every process q� the id of the last message that p received
from q��

The id of the latest green message �green line��

The id of the latest yellow message �yellow line��

�� Wait for state messages from all the other processes in v�set�

�� Let� Max Committed � maxp�v�set Last Committed Primaryp�

Let Representatives be the members that have�
Last Committed Primary �Max Committed�

The Representatives advance their green lines to include all mes�
sages that any member of v had marked as green� and retreat
their yellow lines to include only messages that all of them had
marked as yellow� and in the same order� For example� if process
p has a message m marked as yellow� while another member with
Last Committed Primary � Max Committed has m marked as

red� or does not have m at all� then p changes to red m along with
any messages that follow m in MQp�

	� If all the members have the same last committed primary compo�
nent� �i�e�� all are Representatives�� go directly to Step ��

A unique representative from the group of Representatives is cho�
sen deterministically�

Determine �from the state messages� the following sets of messages�

component stable is the set of messages that all the members
of v have�

component ordered is the set of messages that are green for all
the members of v�

priority are yellow and green messages that the representative
has�

� Retransmission of priority messages�

The chosen representative computes the maximal pre�x of itsMQ
that contains component ordered messages only� It sends the set
of priority messages in its MQ that follow this pre�x� For com�
ponent stable messages� it sends only the header �including the
original ACKs�� and the other messages are sent with their data
and original piggybacked ACKs�

Members from other view insert these messages into their MQs�
in the order of the retransmission� following the green pre�x� and
ahead of any non priority messages��

� If Last Committed Primaryp � Max Committed� do the follow�
ing in one atomic step�

If p has yellow messages that were not retransmitted by the
representative� change these messages to red� and reorder
them in the red part of MQ according to the TS order�

Set Last Committed Primary to Max Committed �on sta�
ble storage��

Set the green and yellow lines according to the representative�
the yellow line is the last retransmitted message�

�� Retransmission of red messages�

Messages that not all the members have� are retransmitted� Each
message is retransmitted by at most one process� The processes
that need to retransmit messages send them� with their original

ACKs� in an order maintaining the Retransmission Rule described
in Figure ����

Retransmission Rule If process p has messages m and m� such that
m� is ordered after m in p�s messages queue� then during Step 	 of the
Recovery Procedure

If p has to retransmit both messages then it will retransmit m before
m��

If p has to retransmit m� and another process q has to retransmit m
then p does not retransmit m� before receiving the retransmission
of m�

Figure ��	 Retransmission rule�

Concurrent retransmitted messages from di�erent processes are
interleaved in MQ according to the TS order of their original
transmissions�

Note� If the GCS reports of a view change before the protocol is over�
the protocol is immediately restarted for the new view� The e�ects of
the non�completed run of the protocol do not need to be undone�
After receiving all of the retransmitted messages� if v is a majority

then the members try to establish a new view� �The algorithm is de�
scribed Section
�
����
If the view change reports only of process faults� and no new members

are introduced� the processes need only establish the new view and no
retransmissions are needed� This is due to the fact that� from Prop�
erty ��	 of the GCS� all the members received the same set of messages
until the view change�

�� DISCUSSION

We presented an e�cient algorithm for totally ordered multicast in
an asynchronous environment� that is resilient to network partitions and
communication link failures� The algorithm always allows a majority of
connected members to totally order messages within two communication
rounds� The algorithm is constructed over a GCS that supplies group
multicast and membership services among members of a connected net�
work component�
The algorithm allows members of minority components to initiate

messages� These messages may di�use through the system and become
totally ordered even if their initiator is never a member of a majority

component� The message is initially multicast in the context of the
minority component� if some member of the minority component �not
necessarily the message initiator� later becomes a member of a majority
component� the message is retransmitted in the majority component and
becomes totally ordered�
Some of the principles presented in this protocol may be applied to

make a variety of distributed algorithms more available� e�g�� network
management services and distributed database systems� In Keidar and
Dolev� ���� we present an atomic commitment protocol for distributed
database management based on such principles�
The algorithm presented herein uses a majority to decide if a group of

processors may become a primary component� The concept of majority
can be generalized to quorums� and can be further generalized� to allow
more �exibility yet� The dynamic voting paradigm for electing a pri�
mary component de�nes quorums adaptively� When a partition occurs�
a majority of the previous quorum may chosen as the new primary com�
ponent� Thus� a primary component must not necessarily a majority
of the processors� Dynamic voting may introduce inconsistencies� and
therefore should be handled carefully� In Yeger Lotem et al�� ���� we
suggest an algorithm for consistently maintaining a primary component
using dynamic voting� This algorithm may be easily incorporated into
COReL� optimizing it for highly unreliable networks�
In Keidar� ���	 we prove the correctness of the COReL algorithm�

Acknowledgments

The authors are thankful to Yair Amir Dalia Malki and Catriel Beeri for many

interesting discussions and helpful suggestions�

Notes

�� This chapter is based on the paper Keidar and Dolev� ����

�� By �no failures occur� we implicitly mean that the underlying membership service does not
report of failures�

	� p recovers the state of q when p completes running the Recovery Procedure for a view that
contains q�

� Note that this is su�cient to represent the set of messages that p has� because the order of
messages in MQp always preserves the causal order�

�� Note that it is possible for members to already have some of these messages� and even in
a contradicting order
but in this case� not as green messages�� In this case they adopt the order
enforced by the representative�

References

����
�� Communications of the ACM ���
�� special issue on Group Com�
munications Systems� ACM�

Amir� O�� Amir� Y�� and Dolev� D� ������� A highly available application
in the Transis environment� In Proceedings of the Hardware and Soft�
ware Architectures for Fault Tolerance Workshop� at Le Mont Saint�
Michel� France� LNCS ��	�

Amir� Y� ����
�� Replication Using Group Communication Over a Par�
titioned Network� PhD thesis� Institute of Computer Science� The He�
brew University of Jerusalem� Jerusalem� Israel�

Amir� Y�� Dolev� D�� Kramer� S�� and Malki� D� ������� Transis� A
communication sub�system for high availability� In ��nd IEEE Fault�
Tolerant Computing Symposium �FTCS��

Amir� Y�� Dolev� D�� Melliar�Smith� P� M�� and Moser� L� E� ����	��
Robust and E�cient Replication using Group Communication� Tech�
nical Report CS�	���� Institute of Computer Science� The Hebrew
University of Jerusalem� Jerusalem� Israel�

Amir� Y�� Moser� L� E�� Melliar�Smith� P� M�� Agarwal� D� A�� and Ciar�
fella� P� ����
�� The Totem single�ring ordering and membership pro�
tocol� ACM Transactions on Computer Systems� ���	��

Babao�glu� �O�� Davoli� R�� and Montresor� A� ����
�� Failure Detectors�
Group Membership and View�Synchronous Communication in Par�
titionable Asynchronous Systems� TR UBLCS��
���� Department of
Conmputer Science� University of Bologna�

Birman� K� and Joseph� T� ������� Exploiting virtual synchrony in dis�
tributed systems� In ��th ACM SIGOPS Symposium on Operating
Systems Principles �SOSP�� pages �������� ACM�

Birman� K�� Schiper� A�� and Stephenson� P� ������� Lightweight causal
and atomic group multicast� ACM Transactions on Computer Sys�
tems� �����������	�

Birman� K� and van Renesse� R� ����	�� Reliable Distributed Computing
with the Isis Toolkit� IEEE Computer Society Press�

Chandra� T� D� and Toueg� S� ����
�� Unreliable failure detectors for
reliable distributed systems� Journal of the ACM� 	�������
��
��

Chockler� G�� Huleihel� N�� and Dolev� D� ������� An adaptive totally
ordered multicast protocol that tolerates partitions� In �	th ACM
Symposium on Principles of Distributed Computing �PODC�� pages
�����	
�

Chockler� G� V� ������� An Adaptive Totally Ordered Multicast Proto�
col that Tolerates Partitions� Master�s thesis� Institute of Computer
Science� The Hebrew University of Jerusalem� Jerusalem� Israel�

De Prisco� R�� Lampson� B�� and Lynch ������� Revisiting the Paxos
algorithm� In Mavronicolas� M� and Tsigas� P�� editors� ��th Interna�
tional Workshop on Distributed Algorithms �WDAG�� pages ������
�
Saarbrucken� Germany� Springer Verlag� LNCS �����

Dolev� D�� Friedman� R�� Keidar� I�� and Malki� D� ����
�� Failure Detec�
tors in Omission Failure Environments� TR �
���� Institute of Com�
puter Science� The Hebrew University of Jerusalem� Jerusalem� Is�
rael� Also Technical Report �
��
��� Department of Computer Sci�
ence� Cornell University�

Dolev� D�� Friedman� R�� Keidar� I�� and Malki� D� ������� Failure de�
tectors in omission failure environments� In ��th ACM Symposium
on Principles of Distributed Computing �PODC�� page ��
� Brief an�
nouncement�

Dolev� D� and Malkhi� D� ����
�� The Transis approach to high avail�
ability cluster communication� Communications of the ACM� ���	��

Dolev� D� and Malki� D� ����
�� The design of the Transis system� In
Birman� K� P�� Mattern� F�� and Schipper� A�� editors� Theory and
Practice in Distributed Systems
 International Workshop� pages ���
��� Springer Verlag� LNCS ����

Dwork� C�� Lynch� N�� and Stockmeyer� L� ������� Consensus in the
presence of partial synchrony� Journal of the ACM� �
������������

Fekete� A�� Gupta� D�� Luchangco� V�� Lynch� N�� and Shvartsman� A�
����
�� Eventually�serializable data services� In ��th ACM Symposium
on Principles of Distributed Computing �PODC�� pages ��������

Fekete� A�� Lynch� N�� and Shvartsman� A� ������� Specifying and using
a partionable group communication service� In ��th ACM Symposium
on Principles of Distributed Computing �PODC�� pages
��
��

Fischer� M�� Lynch� N�� and Paterson� M� ����
�� Impossibility of dis�
tributed consensus with one faulty process� Journal of the ACM�
�����	�����

Friedman� R�� Keidar� I�� Malki� D�� Birman� K�� and Dolev� D� ����
��
Deciding in Partitionable Networks� TR �
��
� Institute of Computer
Science� The Hebrew University of Jerusalem� Jerusalem� Israel� Also
Cornell University TR�
��

	�

Friedman� R� and van Renesse� R� ����
�� Strong and Weak Virtual
Synchrony in Horus� TR �
��
��� dept� of Computer Science� Cornell
University�

Friedman� R� and van Renesse� R� ������� Packing messages as a tool for
boosting the performance of total ordering protocols� In �th IEEE In�
ternational Symposium on High Performance Distributed Computing�
Also available as Technical Report �
��
��� Department of Computer
Science� Cornell University�

Hadzilacos� V� and Toueg� S� ������� Fault�tolerant broadcasts and re�
lated problems� In Mullender� S�� editor� chapter in
 Distributed Sys�
tems� ACM Press�

Hayden� M� and van Renesse� R� ����
�� Optimizing Layered Commu�
nication Protocols� Technical Report TR�
��
��� Dept� of Computer
Science� Cornell University� Ithaca� NY �	�
�� USA�

Kaashoek� M� F� and Tanenbaum� A� S� ����
�� An evaluation of the
Amoeba group communication system� In ��th International Confer�
ence on Distributed Computing Systems �ICDCS�� pages 	�
�		��

Keidar� I� ����	�� A Highly Available Paradigm for Consistent Object
Replication� Master�s thesis� Institute of Computer Science� The He�
brew University of Jerusalem� Jerusalem� Israel� Also Institute of
Computer Science� The Hebrew University of Jerusalem Technical Re�
port CS�
�
�

Keidar� I� and Dolev� D� ����
�� E�cient message ordering in dynamic
networks� In ��th ACM Symposium on Principles of Distributed Com�
puting �PODC�� pages
���
�

Keidar� I� and Dolev� D� ������� Increasing the resilience of distributed
and replicated database systems� Journal of Computer and System
Sciences special issue with selected papers from ACM SIGACT�SIGMOD
Symposium on Principles of Database Systems �PODS� �����
���������
��	�

Lamport� L� ������� The part�time parliament� TR 	�� Systems Research
Center� DEC� Palo Alto�

Lamport� L� ����� Time� clocks� and the ordering of events in a dis�
tributed system� Communications of the ACM� ������

��

�

Malki� D� ����	�� Multicast Communication for High Avalaibility� PhD
thesis� Institute of Computer Science� The Hebrew University of Jerusalem�

Malloth� C� P�� Felber� P�� Schiper� A�� and Wilhelm� U� ����
�� Phoenix�
A toolkit for building fault�tolerant� distributed applications in large
scale� InWorkshop on Parallel and Distributed Platforms in Industrial
Products�

Mann� T�� Hisgen� A�� and Swart� G� ������� An Algorithm for Data
Replication� Technical Report 	
� DEC Systems Research Center�

Moser� L� E�� Amir� Y�� Melliar�Smith� P� M�� and Agarwal� D� A� ����	��
Extended virtual synchrony� In �
th International Conference on Dis�
tributed Computing Systems �ICDCS�� pages

�

� Full version� tech�
nical report ECE������ Department of Electrical and Computer En�
gineering� University of California� Santa Barbara� CA�

Moser� L� E�� Melliar�Smith� P� M�� Agarwal� D� A�� Budhia� R� K�� and
Lingley�Papadopoulos� C� A� ����
�� Totem� A fault�tolerant mul�

ticast group communication system� Communications of the ACM�
���	��

Moser� L� E�� Melliar�Smith� P� M�� and Agrawala� V� ������� Asyn�
chronous fault�tolerant total ordering algorithms� SIAM Journal on
Computing� ���	�������
��

Peleg� D� and Wool� A� ����
�� Availability of quorum systems� Inform�
Comput�� ���������������

Powell� D� ������� Delta�

 A Generic Architecture for Dependable Dis�
tributed Computing� Springer Verlag�

Pu� C� and Le�� A� ������� Replica control in distributed systems� An
asynchronous approach� In ACM SIGMOD International Symposium
on Management of Data�

Schneider� F� B� ������� Implementing fault tolerant services using the
state machine approach� A tutorial�ACM Computing Surveys� ���	������
����

Skeen� D� ������� A quorum�based commit protocol� In �th Berkeley
Workshop on Distributed Data Management and Computer Networks�
pages
�����

van Renesse� R�� Birman� K� P�� and Ma�eis� S� ����
�� Horus� A �exible
group communication system� Communications of the ACM� ���	��

Whetten� B�� Montgomery� T�� and Kaplan� S� ����
�� A high perfomance
totally ordered multicast protocol� In Birman� K� P�� Mattern� F�� and
Schipper� A�� editors� Theory and Practice in Distributed Systems

International Workshop� pages ���
�� Springer Verlag� LNCS ����

Yeger Lotem� E�� Keidar� I�� and Dolev� D� ������� Dynamic voting for
consistent primary components� In ��th ACM Symposium on Princi�
ples of Distributed Computing �PODC�� pages
�����

