
An Inheritance�Based Technique

for Building Simulation Proofs Incrementally

Idit Keidar� Roger Khazan� Nancy Lynch� Alex Shvartsman

MIT Lab for Computer Science University of Connecticut

��� Technology Sq�� Room ��� Computer Science and Engineering Dept�

Cambridge� MA �	
��� USA Storrs� CT ��	����
��� USA

fidish� roger� lynchg
theory�lcs�mit�edu aas
cse�uconn�edu

�
 �
� 	�� 
�		 �
 ��� ��� 	��	

ABSTRACT

This paper presents a technique for incrementally con�
structing safety speci�cations� abstract algorithm de�
scriptions� and simulation proofs showing that algo�
rithms meet their speci�cations�

The technique for building speci�cations �and algo�
rithms� allows a child speci�cation �or algorithm� to in�
herit from its parent by two forms of incremental mod�
i�cation� �a� interface extension� where new forms of
interaction are added to the parent�s interface� and �b�
specialization �subtyping�� where new data� restrictions�
and e�ects are added to the parent�s behavior descrip�
tion� The combination of interface extension and spe�
cialization constitutes a powerful and expressive incre�
mental modi�cation mechanism for describing changes
that do not override the behavior of the parent� although
it may introduce new behavior�

Consider the case when incremental modi�cation is ap�
plied to both a parent speci�cation S and a parent al�
gorithm A� A proof that the child algorithm A� imple�
ments the child speci�cation S� can be built incremen�
tally upon a simulation proof that algorithm A imple�
ments speci�cation S� The new work required involves
reasoning about the modi�cations� but does not require
repetition of the reasoning in the original simulation
proof�

The paper presents the technique mathematically� in
terms of automata� The technique has already been
used to model and validate a full��edged group commu�
nication system �see �	���� the methodology and results
of that experiment are summarized in this paper�

Keywords

System modeling�veri�cation� simulation� re�nement�
specialization by inheritance� interface extension�

� INTRODUCTION

Formal modeling and validation of software systems is
a major challenge� because of their size and complex�
ity� Among the factors that could increase widespread
usage of formal methods is improved cost�e�ectiveness
and scalability �cf� �	�� 		��� Current software engineer�
ing practice addresses problems of building complex sys�
tems by the use of incremental development techniques
based on an object�oriented approach� We believe that
successful e�orts in system modeling and validation will
also require incremental techniques� which will enable
reuse of models and proofs�

In this paper we provide a framework for reuse of
proofs analogous and complementary to the reuse pro�
vided by object�oriented software engineering method�
ologies� Speci�cally� we present a technique for incre�
mentally constructing safety speci�cations� abstract al�
gorithm descriptions� and simulation proofs that algo�
rithms meet their speci�cations� Simulation proofs are
one of the most important techniques for proving prop�
erties of complex systems� such proofs exhibit a simu�
lation relation �re�nement mapping� abstraction func�
tion� between a formal description of a system and its
speci�cation �
�� 	�� 	���

The technique presented in this paper has evolved with
our experience in the context of a large�scale model�
ing and validation project� we have successfully used
this technique for modeling and validating a complex
group communication system �	�� that is implemented
in C��� and that interacts with two other services de�
veloped by di�erent teams� The group communication
system acts as middleware in providing tools for build�
ing distributed applications� In order to be useful for
a variety of applications� the group communication sys�
tem provides services with diverse semantics that bear
many similarities� yet di�er in subtle ways� We have
modeled the diverse services of the system and vali�
dated the algorithms implementing each of these ser�
vices� Reuse of models and proofs was essential in or�
der to make this task feasible� For example� it has al�
lowed us to avoid repeating the �ve�page long correct�
ness proof of the algorithm that provides the most ba�



sic semantics when proving the correctness of algorithms
that provide the more sophisticated semantics� The cor�
rectness proof of the most sophisticated algorithm� by
comparison� was only two and a half pages long� �We
describe our experience in this project as well as the
methodology that evolved from it in Section ���

Our approach to the reuse of speci�cations and algo�
rithms through inheritance uses incremental modi�ca�
tion to derive a new component �speci�cation or algo�
rithm�� called child � from an existing component called
parent � Speci�cally� we present two constructions for
modifying existing components�


� We allow the child to specialize the parent by
reusing its state in a read�only fashion� by adding
new state components �read�write�� and by con�
straining the set of behaviors of the parent� This
corresponds to the subtyping view of inheritance ����
We will show that any observable behavior of the
child is subsumed �cf� �
�� by the possible behaviors
of the parent� making our specialization analogous
to the substitution inheritance ���� In particular�
the child can be used anywhere the parent can be
used� �Specialization is the subject of Section ���

	� A child can also be derived from a parent by means
of interface �signature� extension� In this case the
state of the parent is unchanged� but the child may
include new observable actions not found in the
parent and new parameters to actions that exist
at the parent� When such new actions and param�
eters are hidden� then any behavior of the child is
exactly as some behavior of the parent� �Interface
extension is presented in Section ���

When interface extension is combined with specializa�
tion� this corresponds to the subclassing for extension
form of inheritance ��� which provides a powerful mech�
anism for incrementally constructing speci�cations and
algorithms� Consider the following example� The par�
ent de�nes an unordered messaging service using the
send and recv primitives� To produce a totally ordered
messaging service we specialize the parent in such a way
that recv is only possible when the current message is
totally ordered� Next we introduce the safe primitive�
which informs the sender that its message was deliv�
ered� First we extend the service interface to include
safe primitives and then we specialize to enable safe ac�
tions just in case the message was actually delivered�

The specialization and extension constructs can be ap�
plied at both the speci�cation level and the algorithm
level in a way that preserves the relationship between
the speci�cation and the algorithm� The main technical
challenge addressed in this paper �in Section �� is the
provision of a formal framework for the reuse of simu�

lation proofs especially for the specialization construct�
Consider the example in Figure 
� Let S be a speci�ca�
tion� and A an abstract algorithm description� Assume
that we have proven that A implements S using a sim�
ulation relation Rp� Assume further that we specialize
the speci�cation S� yielding a new child speci�cation S��
At the same time� we specialize the algorithm A to con�
struct an algorithm A� which supports the additional
semantics required by S��

Figure � Algorithm A simulates speci�cation S with
Rp� Can Rp be reused for building a simulation Rc from
a child A� of A to a child S� of S�

S

A

S’

A’

simulation

simulation

Rp

Rc ?

inheritance

inheritance

When proving that A� implements S�� we would like
to rely on the fact that we have already proven that
A implements S� and to avoid the need to repeat the
same reasoning� We would like to reason only about
the new features introduced by S� and A�� The proof
extension theorem in Section � provides the means for
incrementally building simulation proofs in this manner�

Simulation proofs �
�� lend themselves naturally to be
supported by interactive theorem provers� Such proofs
typically break down into many simple cases based on
di�erent actions� These can be checked by hand or with
the help of interactive theorem provers� Our incremen�
tal simulation proofs break down in a similar fashion�

We present our incremental modi�cation constructs in
the context of the I�O automata model ���� �	� �the
basics of the model are reviewed in Section 	�� I�O
automata have been widely used in formulating formal
service de�nitions and abstract implementations� and
for reasoning about them� e�g�� ��� �� 

� 
	� 
�� 
�� 	
�
	�� 	�� �
��� An important feature of the I�O automa�
ton formalism is its strong support of composition� For
example� Hickey et al� �	�� used the compositional ap�
proach for modeling and veri�cation of certain modules
in Ensemble �
��� a large�scale� modularly structured�
group communication system� Introducing inheritance
into the I�O automaton model is vital in order to push
the limits of such projects from veri�cation of individ�
ual modules to veri�cation of entire systems� as we have
experienced in our work on such a project �	��� Further�
more� a programming and modeling language based on
I�O automata formalism� IOA �
�� 
�� has been de�ned�

	



We intend to exploit the IOA framework� to develop
IOA�based tools to support the techniques presented in
this paper both for validation and for code generation�

Stata and Guttag ���� have recognized the need for reuse
in a manner similar to that suggested in this paper�
which facilitates reasoning about correctness of a sub�
class given the correctness of the superclass is known�
They suggest a framework for de�ning programming
guidelines and supplement this framework with infor�
mal rules that may be used to facilitate such reason�
ing� However� they only address informal reasoning and
do not provide the mathematical foundation for formal
proofs� Furthermore� ���� is restricted to the context of
sequential programming and does not encompass reac�
tive components as we do in this paper�

Many other works� e�g�� �
� �� 
�� 	�� 	�� ���� have for�
mally dealt with inheritance and its semantics� Our dis�
tinguishing contribution is the provision of a mathemat�
ical framework for incremental construction of simula�
tion proofs by applying the formal notion of inheritance
at two levels� speci�cation and algorithm�

� TECHNICAL BACKGROUND

This section presents background on the I�O automaton
model� based on ����� Ch� �� In this model� a system
component is described as a state�machine� called an
I�O automaton� The transitions of the automaton are
associated with named actions� classi�ed as input� out�
put and internal� Input and output actions model the
component�s interaction with other components� while
internal actions are externally unobservable�

Formally� an I�O automaton A consists of� an interface
�or signature�� sig�A�� consisting of input� output and
internal actions� a set of states� states�A�� a set of start
states� start�A�� and a state�transition relation �a sub�
set of states�A� �sig�A� �states�A��� trans�A��

An action � is said to be enabled in a state s if the au�
tomaton has a transition of the form �s� �� s��� input ac�
tions are enabled in every state� An execution of an au�
tomaton is an alternating sequence of states and actions
that begins with a start state� and successive triples are
allowable transitions� A trace is a subsequence of an
execution consisting solely of the automaton�s external
actions� The I�O automaton model de�nes a compo�
sition operation which speci�es how automata interact
via their input and output actions�

I�O automata are conveniently presented using the
precondition�e�ect style� In this style� typed state vari�
ables with initial values specify the set of states and the
start states� Transitions are grouped by action name�
and are speci�ed using a pre� block with preconditions
on the states in which the action is enabled and an eff�
block which speci�es how the pre�state is modi�ed� The

e�ect is executed atomically to yield the post�state�

Simulation Relations

When reasoning about an automaton� we are only inter�
ested in its externally�observable behavior as re�ected in
its traces� A common way to specify the set of traces an
automaton is allowed to generate is using �abstract� I�O
automata that generate the legal sets of traces� An im�
plementation automaton satis�es a speci�cation if all of
its traces are also traces of the speci�cation automaton�
Simulation relations are a commonly used technique for
proving trace inclusion�

De�nition ��� Let A and S be two automata with the
same external interface� Then a relation R � states�A�
� states�S� is a simulation from A to S if it satis�es
the following two conditions	


� If t is any initial state of A� then there is an initial
state s of S such that s � R�t��

�� If t and s � R�t� are reachable states of A and
S respectively� and if �t� �� t�� is a step of A� then
there exists an execution fragment of S from s to
s� having the same trace� and with s� � R�t���

The following theorem emphasizes the signi�cance of
simulation relations� �It is proven in ����� Ch� ���

Theorem ��� If A and S are two automata with the
same external interface and if R is a simulation from A

to S then traces�A� � traces�S��

The simulation relation technique is complete� any ��
nite trace inclusion can be shown by using simulation
relations in conjunction with history and prophecy vari�
ables �	� ����

� SPECIALIZATION

Our specialization construct captures the notion of sub�
typing in I�O automata in the sense of trace inclusion�
it allows creating a child automaton which specializes
the parent automaton� The child can read the parent�s
state� add new �read�write� state components� and re�
strict the parent�s transitions� The specialize construct
de�ned below operates on a parent automaton� and ac�
cepts three additional parameters� a state extension �
the new state components� an initial state extension �
the initial values of the new state components� and a
transition restriction which speci�es the child�s addition
of new preconditions and e�ects �modifying new state
components only� to parent transitions� We de�ne the
specialization construct formally below�

De�nition ��� Let A be an automaton
 let N be a set
of states� called a state extension
 let N� be a non�
empty subset of N� called an initial state extension
 let

�



TR � �states�A� � N� � sig�A� � N be a relation�
called a transition restriction� For each action �� TR

speci�es the additional restrictions that a child places
on the states of A and N in which � is enabled and spec�
i�es how the new state components are modi�ed as a
result of a child taking a step involving ��

Then specialize�A��N� N�� TR� de�nes an automaton A�

as follows	

� sig�A�� � sig�A�


� states�A�� � states�A� � N


� start�A�� � start�A� � N�


� trans�A�� � f �htp� tni� �� ht
�

p� t
�

ni� j
�tp� �� t

�

p� � trans�A� � �htp� tni� �� t
�

n� � TR g

Notation ��� If A� � specialize�A��N� N�� TR� we use
the following notation	 Given t � states�A��� we write
tjp to denote its parent component and tjn to denote its
new component� If � is an execution sequence of A��
then �jp ��jn� denotes a sequence obtained by replacing
each state t in � with tjp �tjn�� We also extend
this notation to sets of states and to sets of execution
sequences�

We now exemplify the use of the specialization con�
struct� Figure 	 presents a simple algorithm automaton�
write through cache� implementing a sequentially�
consistent register x shared among a set of processes P�
Each process p � P has access to a local cachep� Regis�
ter x is initialized to some default value v�� A writep�v�
request propagates v to both x and cachep� A response
readp�v� to a read request returns the value v of p�s
local cachep without ensuring that it is current� Thus�
a process p responds to a read request with a value of x
which is at least as current as the last value previously
seen by p but not necessarily the most up�to�date one�

Figure � presents an atomic write�through cache au�
tomaton� atomic write through cache� as a spe�
cialization of write through cache� The special�
ized automaton maintains an additional boolean vari�
able synchedp for each process p in order to restrict
the behavior of the parent so that a response to a read
request returns the latest value of x� The traces of this
automaton are indistinguishable from those of a system
with a single shared register and no cache�

In general� the transition restriction denoted by this
type of precondition�e�ect code is the union of the fol�
lowing two sets�

� All triples of the form �t� �� tjn� for which � is
not mentioned in the code for A�� i�e�� A� does not

Figure � Write�through cache automaton�

automaton write through cache

Signature�

Input� writep�v�

read reqp��

Output� readp�v�

Internal� synchp��

State�
x � v�
�� p � P� cachep � x

�� p � P� reqp � �

Transitions�

INPUT writep�v�

eff� x � v

cachep � v

INTERNAL synchp��

eff� cachep � x

INPUT read reqp��

eff� reqp � reqp � �

OUTPUT readp�v�

pre� reqp � �

v � cachep
eff� reqp � reqp � �

Figure � Atomic write�through cache automaton�

automaton atomic write through cache

modifies write through cache

State Extension�

�� p � P� Bool synchedp� initially true

Transition Restriction�

INPUT writep�v�

eff� �� q � P� synchedq � false

INTERNAL synchp��

eff� synchedp � true

OUTPUT readp�v�

pre� synchedp � true

restrict transitions involving �� The read reqp ac�
tion of Figure 	 is an example of such a �� Note
that the new state component� tjn� is not changed�

� All triples �t� �� t�

n� in which state t satis�es new
preconditions on � placed by A� and in which state
t�

n is the result of applying ��s new e�ects to t�

Theorem ��
 below says that every trace of the spe�
cialized automaton is a trace of the parent automaton�
In Section �� we demonstrate how proving correctness
of automata presented using the specialization operator
can be done as incremental steps on top of the correct�
ness proofs of their parents�

Theorem ��� If A� is a child of an automaton A� then	


� execs�A��jp � execs�A��

�� traces�A�� � traces�A��

Proof ����


� Straightforward induction on the length of the ex�
ecution sequence� Basis� If t � start�A��� then

�



tjp � start�A� by the de�nition of start�A���
Inductive Step� If �t� �� t�� is a step of A�� then
�tjp� �� t

�jp� is a step of A� by the de�nition of
trans�A���

	� Follows from Part 
 and the fact that sig�A�� �
sig�A�� Alternatively� notice that trace inclusion
is implied by Theorem 	�
 and the fact that the
function that maps a state t � states�A�� to tjp
is a simulation mapping from A� to A�

� INCREMENTAL PROOFS

The formalism we have introduced allows not only for
code reuse� but also� as we show in this section� for proof
reuse by means of incremental proof construction� We
start with an example� then we prove a general theorem�

An Example of Proof Reuse

We now revisit the shared register example of Sec�
tion �� We present a parent speci�cation of a
sequentially�consistent shared register� and describe a
simulation that proves that it is implemented by the
write through cache automaton presented in the
previous section� We then derive a child speci�cation
of an atomic shared register by specializing the parent
speci�cation� Finally� we illustrate how a proof that au�
tomaton atomic write through cache implements
the child speci�cation can be constructed incrementally
from the parent�level simulation proof�

Figure � presents a standard speci�cation of a
sequentially�consistent shared register x� The interface
of seq consistent register is the same as that of
write through cache� The speci�cation maintains
a sequence hist�x of the values stored in x during an
execution� A writep�v� request appends v to the end
of hist�x� A response readp�v� to a read request is al�
lowed to return any value v that was stored in x since p
last accessed x� this nondeterminism is an innate part of
sequential consistency� The speci�cation keeps track of
these last accesses with an index lastp in the hist�x�

We argue that automaton write through cache

of Figure 	 satis�es this speci�cation by exhibit�
ing a simulation relation R� R relates a state
t of write through cache to a state s of
seq consistent register as follows�

�t� s� � R ��

last�s	hist�x� � t	x

� �� p � P� �� hip � Integer� such that

� � s	lastp � hip � 
s	hist�x


� s	hist�x�hip� � t	cachep
� �� p � P� s	reqp � t	reqp

Let �t� s� � R� A step of write through cache ini�
tiating from state t and involving readp�v� simulates a

Figure � Sequentially consistent shared register speci�
�cation automaton�
automaton seq consistent register

Signature�
Input� writep�v�

read reqp��

Output� readp�v�

State�
Seq hist�x � � v� �

�� p � P� lastp � �

�� p � P� reqp � �

Transitions�

INPUT writep�v�

eff� append v to hist�x

lastp � 
 hist�x 


INPUT read reqp��

eff� reqp � reqp � �

OUTPUT readp�v� choose i

pre� reqp � �

v � hist�x�i�

i 	 lastp
eff� lastp � i

reqp � reqp � �

step of seq consistent register which initiates from
s and involves readp�v� choose hip� where hip is the
number whose existence is implied by the simulation
relation R� Steps of write through cache involving
read reqp�� and writep�v� actions simulate steps of
seq consistent register with the respective actions�

It is straightforward to prove that R satis�es the two
conditions of a simulation relation �De�nition 	�
�� We
are not interested in the actual proof� but only in reusing
it� i�e�� avoiding the need to repeat it�

For the purpose of illustrating proof reuse� we present in
Figure � a speci�cation of an atomic shared register as a
specialization of seq consistent register� The child
restricts the allowed values returned by readp�v� to the
current value of x by restricting the non�deterministic
choice of i to be the index of the latest value in hist�x�

Figure 	 Atomic shared register speci�cation�

automaton atomic register

modifies seq consistent register

Transition Restriction�

OUTPUT readp�v� choose i

pre� i � 
 hist�x 


We want to reuse the simulation R to prove that au�
tomaton atomic write through cache implements
atomic register� Since atomic register does not
extend the states of seq consistent register� the
simulation relation does not need to be extended� and
it works as is� In general� one may need to extend the
parent�s simulation relation to capture how the imple�
mentation�s state relates to the new state added by the
speci�cation�s child�

To prove that R is also a simulation relation from
the child algorithm atomic write through cache

�



to the child speci�cation atomic register we have to
show two things�

First� we have to show that initial states of
atomic write through cache relate to the initial
states of atomic register� In general� as we prove
in Theorem ��
 below� we need to check the new vari�
ables added by the speci�cation child� We need to show
that� for any initial state of the implementation� there
exists a related assignment of initial values to these new
variables� In our example� since atomic register does
not add any new state� we get this property for free�

Second� we need to show that whenever R simulates
a step of seq consistent register� this step is still
a valid transition in atomic register� As implied
by Theorem ��
� we only have to check that the new
preconditions placed by atomic register on transi�
tions of seq consistent register are still satis�ed
and that the extension of the simulation relation is pre�
served� Since in our example atomic register does
not add any new state variables� we only need to show
the �rst condition� whenever readp�v� choose i is
simulated in atomic register� the new precondition
�i � �hist�x�� holds�

Recall that� when readp�v� choose i is simulated in
atomic register� i is chosen to be hip� For this
simulation to work� we need to prove that it is al�
ways possible to choose hip to be �hist�x�� This
follows immediately from the added precondition in
atomic write through cache� which requires that
readp�v� only occurs when synchedp � true� and
from the following simple invariant� �This invariant can
be proven by straightforward induction��

Invariant ��� In any reachable state t of atomic �

write through cache	

�� p � P� t	synchedp � true �� t	cachep � x

Proof Extension Theorem

We now present the theorem which lays the founda�
tion for incremental proof construction� Consider the
example illustrated in Figure 
� where a simulation re�
lation Rp from an algorithm A to a speci�cation S is
given� and we want to construct a simulation relation
Rc from a specialized version A� of an automaton A to
a specialized version S� of a speci�cation automaton S�
In Theorem ��
 we prove that such a relation Rc can be
constructed by supplementing Rp with a relation Rn that
relates the states of A� to the state extension introduced
by S�� Relation Rn has to relate every initial state of A

�

to some initial state extension of S� and it has to satisfy
a step condition similar to the one in De�nition 	�
� but
only involving the transition restriction relation of S��

Theorem ��� Let automaton A� be a child of automa�
ton A� Let automaton S� be a child of automaton S such
that S� � specialize�S��N� N�� TR�� Let relation Rp be a
simulation from A to S� Let Rn � states�A�� � N�

A relation Rc � states�A�� � states�S��� de�ned in
terms of Rp and Rn as

fht� si � htjp� sjpi � Rp � ht� sjni � Rng�

is a simulation from A� to S� if Rc satis�es the following
two conditions	


� For any t � start�A��� there exists a state sjn �
Rn�t� such that sjn � N��

�� If t is a reachable state of A�� s is a reachable state
of S� such that sjp � Rp�tjp� and sjn � Rn�t�� and
�t� �� t�� is a step of A�� then there exists a �nite
sequence � of alternating states and actions of S��
beginning from s and ending at some state s�� and
satisfying the following conditions	

�a� �jp is an execution sequence of S�

�b� � �si� �� si��� � �� �si� �� si��jn� � TR�

�c� s�jp � Rp�t
�jp��

�d� s�jn � Rn�t
���

�e� � has the same trace as �t� �� t���

Proof ���� We show that Rc satis�es the two conditions
of De�nition 	�
�


� Consider an initial state t of A�� By the fact that
Rp is a simulation� there must exist a state sjp �
Rp�tjp� such that sjp � start�S�� By property 
�
there must exist a state sjn � Rn�t� such that
sjn � N�� Consider state s � hsjp� sjni� State s
is in Rc�t� by de�nition� Also� s � hsjp� sjni �
start�S� � N� � start�S��� where we use the fact
that start�S�� � start�S� � N� �Def� ��
��

	� First� notice that the assumption on state s and
relation Rc imply that s � Rc�t� and that proper�
ties 	c and 	d imply that s� � Rc�t

���

Next� we show that � is an execution sequence of
S� with the right trace� Indeed� every step of � is
consistent with trans�S� �by 	a� and is consis�
tent with TR �by 	b�� Therefore� by de�nition of
trans�S�� �Def� ��
�� every step of � is consistent
with trans�S��� In other words� � is an execution
sequence of S� which starts with state Rc�t�� ends
with state Rc�t

�� �by 	d�� and has the same trace
as �t� �� t�� �by 	e��

�



In practice� one would exploit this theorem as follows�
The simulation proof between the parent automata al�
ready provides a corresponding execution sequence of
the parent speci�cation for every step of the parent al�
gorithm� It is typically the case that the same execution
sequence� padded with new state variables� corresponds
to the same step at the child algorithm� Thus� condi�
tions 	a� 	c� and 	e of Theorem ��
 hold for this se�
quence� The only conditions that have to be checked
are 	b� and 	d� i�e�� that every step of this execution
sequence is consistent with the transition restriction TR
placed on S by S� and that the values of the new state
variables of S� in the �nal state of this execution are
related to the post�state of the child algorithm�

Note that� we can state a specialized version of Theo�
rem ��
 for the case of three automata� A� S� and S�� by
letting A� be the same as A� This version would be useful
when we know that algorithm A simulates speci�cation
S� and we would like to prove that A can also simulate a
child S� of S� The statement and the proof of this spe�
cialized version are the same as those of Theorem ��
�
except there is no child A� of A �A� � A�� so A must be
substituted for A� and t for tjp� In fact� given this spe�
cialized version� Theorem ��
 then follows from it as a
corollary because the relation fht� si � htjp� si � Rpg is
a simulation relation from A� to S� and the specialized
theorem applies to automata A�� S� and S��

	 INTERFACE EXTENSION

Interface extension is a formal construct for altering the
interface of an automaton and for extending it with new
forms of interaction�

For technical reasons� it is convenient to assume that the
interface of every automaton contains an empty action
� and that its state�transition relation contains empty�
transitions� i�e�� if A is an automaton� then

�s� �� s�� � trans�A� 	 s � s��

An interface extension of an automaton is de�ned using
an interface mapping function that translates the new
�child� interface to the original �parent� interface� New
actions added by the child are mapped to the empty
action � at the parent� The child�s states and start
states are the same as those of the parent� The state�
transition of the child consists of all the parent�s transi�
tions� renamed according to the interface mapping� In
particular� the state�transition includes steps that do
not change state but involve the new actions �those that
map to ���

De�nition 	�� Automaton A� is an interface�
extension of an automaton A if states�A�� �
states�A�� start�A�� � start�A�� and if there exists

a function f� called interface�mapping�� such that


� f is a function from sig�A�� onto sig�A�� Note
that f can map non�� actions of A� to � �these are
the new actions added by A�� and is also allowed to
be many�to�one�

�� f preserves the classi�cation of actions as �input��
�output�� and �internal�� That is� if � � sig�A��� �
is an input action� and f��� 
� �� then f��� is also
an input action
 likewise� for output and internal
actions�

�� �s� �� s�� � trans�A�� 	 �s� f���� s�� � trans�A��

Notation 	�� Let A� be an interface�extension of A

with an interface�mapping f�

If � is an execution sequence of A�� then �jf denotes a
sequence obtained by replacing each action � in alpha

with f���� and then collapsing every transition of the
form �s� �� s� to s�

Likewise� if � is a trace of A�� then �jf denotes a
sequence obtained by replacing each action � in � to
f���� and by subsequently removing all the occurrences
of ��

The following theorem formalizes the intuition that the
sets of executions and traces of an interface�extended
automaton are equivalent to the respective sets of
the parent automaton� modulo the interface�mapping�
The proof is straightforward by induction using De�ni�
tion ��
 and Notation ��	�

Theorem 	�� Let automaton A� be an interface exten�
sion of A with an interface�mapping f�

Let � be a sequence of alternating states and actions of
A� and let � be a sequence of external actions of A��
Then	


� � � execs�A�� 	 �jf � execs�A��

�� � � traces�A�� 	 �jf � traces�A��

When interface extension is followed by the special�
ization modi�cation� the resulting combination corre�
sponds to the notion of modi�cation by subclassing for
extension ���� The resulting child specializes the parent�s
behavior and introduces new functionality� Speci�cally�
a specialization of an interface�extended automaton may
add transitions involving new state components and new
interface� The generalized de�nition of the parent�child
relationship is then as follows�

�Interface�mapping is similar to strong correspondence of �����

�



De�nition 	�� Automaton A� is a child of an automa�
ton A if A� is a specialization of an interface extension
of A�

Theorem ��
 enables the use of the proof extension theo�
rem �Theorem ��
� for this parent�child de�nition� once
the child�s actions are translated to the parent�s actions
using the interface mapping of De�nition ��
�


 PRACTICAL EXPERIENCE WITH IN�

CREMENTAL PROOFS

In this section we describe our experience designing
and modeling a complex group communications service
�see �	���� and how the framework presented in this pa�
per was exploited� We then describe an interesting mod�
eling methodology that has evolved with our experience
in this project�

Group communication systems �GCSs� ��� ��� are pow�
erful building blocks that facilitate the development of
fault�tolerant distributed applications� GCSs typically
provide reliable multicast and group membership ser�
vices� The task of the membership service is to maintain
a listing of the currently active and connected processes
and to deliver this information to the application when�
ever it changes� The output of the membership service
is called a view� The reliable multicast services deliver
messages to the current view members�

Traditionally� GCS developers have concentrated pri�
marily on making their systems useful for real�
world distributed applications such as data replication
�e�g�� �
���� highly available servers �e�g�� ���� and col�
laborative computing �e�g�� ����� Formal speci�cations
and correctness proofs were seldom provided� Many
suggested speci�cations were complicated and di cult
to understand� and some were shown to be ambiguous
in ���� Only recently� the challenging task of specify�
ing the semantics and services of GCSs has become an
active research area�

The I�O automaton formalism has been recently ex�
ploited for specifying and reasoning about GCSs �e�g��
in ��� 

� 
	� 
�� 	�� 	���� However� all of these sug�
gested I�O automaton�style speci�cations of GCSs used
a single abstract automaton to represent multiple prop�
erties of the same system component and presented a
single algorithm automaton that implements all of these
properties� Thus� no means were provided for reasoning
about a subset of the properties� and it was often dif�
�cult to follow which part of the algorithm implements
which part of the speci�cation� Each of these papers
dealt with proving correctness of an individual service
layer and not with a full��edged system�

In �	��� we modeled a full��edged example spanning
the entire virtually synchronous reliable group multi�
cast service� We provided speci�cations� formal algo�

rithm descriptions corresponding to our actual C��
implementation� and also simulation proofs from the al�
gorithms to the speci�cations� We employed a client�
server approach� We presented a virtually synchronous
group multicast client that interacts with an external
membership server� Our virtually synchronous group
multicast client was implemented using approximately
���� lines of C�� code� The server �	�� was developed
by another development team also using roughly ����
lines of C�� code� Our group multicast service also
exploits a reliable multicast engine which was imple�
mented by a third team ���� using 	��� lines of C��
code�

We sought to model the new group multicast service in
a manner that would match the actual implementation
on one hand� and would allow us to verify that the algo�
rithms meet their speci�cations on the other hand� In
order to manage the complexity of the project at hand
we found a need for employing an object�oriented ap�
proach that would allow for reuse of models and proofs�
and would also correspond to the implementation� which
in turn� would reuse code and data structures�

In �	��� we used the I�O automaton formalism with the
inheritance�based incremental modi�cation constructs
presented in this paper to specify the safety properties
of our group communication service� We speci�ed four
abstract speci�cation automata which capture di�erent
GCS properties� We began by specifying a simple GCS
that provides reliable fifo multicast within views� We
next used the new inheritance�based modi�cation con�
struct to specialize the speci�cation to require also that
processes moving together from one view to another de�
liver the same set of messages in the former� We then
specialized the speci�cation again to also capture the
Self Delivery property which requires processes to de�
liver their own messages� The fourth automaton speci�
�ed a stand�alone property �without inheritance� which
augments each view delivery with special information
called transitional set �����

We then proceeded to formalize the algorithms imple�
menting these speci�cations� We �rst presented an al�
gorithm for within�view reliable fifo multicast and pro�
vided a �ve page long formal simulation proof showing
that the algorithm implements the �rst speci�cation�
Next� we presented a second algorithm as an extension
and a specialization of the �rst one� In the second al�
gorithm� we restricted the parent�s behavior according
to the second speci�cation� i�e�� we added the restric�
tion that processes moving together from one view to
another deliver the same set of messages in the former�
Additionally� in the second algorithm� we extended the
service interface to convey transitional sets� and added
the new functionality for providing clients with transi�
tional sets as per the fourth speci�cation� By exploiting

�



Theorem ��
� we were able to prove that the second al�
gorithm implements the second speci�cation �and there�
fore also the �rst one� in under two pages without need�
ing to repeat the arguments made in the previous �ve
page proof� We separately proved that the algorithm
meets the fourth speci�cation� Finally� we extended and
specialized the second algorithm to support the third
property� Again� we exploited Theorem ��
 in order to
prove that the �nal algorithm meets the third speci�ca�
tion �and hence all four speci�cations� in a merely two
and a half page long proof�

We are currently continuing our work on group commu�
nication� We are incrementally extending the system
described in �	�� with new services and semantics using
the same techniques�

A Modeling Methodology

Specialization does not allow children to introduce be�
haviors that are not permitted by their parents and does
not allow them to change state variables of their par�
ents� However� when we modeled the algorithms in �	���
in one case we saw the need for a child algorithm to
modify a parent�s variable� We dealt with this case by
introducing a certain level of non�determinism at the
parent� thereby allowing the child to resolve �specialize�
this nondeterminism later�

In particular� the algorithm that implemented the sec�
ond speci�cation described above sometimes needed to
forward messages to other processes� although such for�
warding was not needed at the parent� The forwarded
messages would have to be stored at the same bu�ers
as other messages� However� these message bu�ers were
variables of the parent� so the child was not allowed
to modify them� We solved this problem by adding a
forwarding action which would forward arbitrary mes�
sages to the parent automaton� the parent stored the
forwarded messages in the appropriate message bu�ers�
The child then restricted this arbitrary message for�
warding according to its algorithm�

We liken this methodology to the use of abstract meth�
ods or pure virtual methods in object�oriented methodol�
ogy� since the non�determinism is left at the parent as a
�hook� for prospective children to specify any forward�
ing policy they might need� In our experience� using
this methodology did not make the proofs more compli�
cated�

� DISCUSSION

We described a formal approach to incrementally de�n�
ing speci�cations and algorithms� and incorporated an
inheritance�based methodology for incrementally con�
structing simulation proofs between algorithms and
speci�cations� This technique eliminates the need to
repeat arguments about the original system while prov�
ing correctness of a new system�

We have successfully used our methodology in specifying
and proving correct a complex group communication
service �	��� We are planning to experiment with our
methodology in order to prove other complex systems�

We have presented the technique mathematically� in
terms of I�O automata� Furthermore� the formalism
presented in this paper and the syntax of incremental
modi�cation is consistent with the continued evolution
of the IOA programming and modeling language� Since
IOA is being developed as a practical programming
framework for distributed systems� one of our goals is
to incorporate our inheritance�based modi�cation tech�
nique and approach to proof reuse into the IOA pro�
gramming language toolset �
�� 
���

Future plans also include extending our proof�reuse
methodology to a construct that allows a child to mod�
ify the state variables of its parent� Other future plans
include adding the ability to deal with multiple inher�
itance� In all of our work� we aim to formulate and
extend formal speci�cation techniques that would be
useful for practical software development�

ACKNOWLEDGMENTS

We thank Paul Attie� Steve Garland� Victor Luchangco
and Jens Palsberg for their helpful comments and sug�
gestions�

REFERENCES

��� M� Abadi and L� Cardelli� A Theory of Objects�
Springer�Verlag� ���	�

�
� M� Abadi and L� Lamport� The existence of re�nement
mappings� Theoretical Computer Science� �


��
���

��� May �����

��� ACM� Commun� ACM ������ special issue on Group
Communications Systems� April ���	�

��� E� Anceaume� B� Charron�Bost� P� Minet� and S� Toueg�
On the formal speci�cation of group membership ser�
vices� Comp� Sci� TR �������� Cornell Univ�� Aug� �����

��� T� Anker� D� Dolev� and I� Keidar� Fault tolerant video�
on�demand services� 	�th Intern� Conference on Distr�
Computing Systems �ICDCS�� pp� 
���
�
� June �����

�	� M� Bickford and J� Hickey� An object�oriented ap�
proach to verifying group communication systems�
http���www�cs�cornell�edu�jyh�papers�cav�� ooioa��

��� K� Birman� R� Friedman� M� Hayden� and I� Rhee� Mid�
dleware support for distributed multimedia and collab�
orative computing� Multimedia Computing and Net

working �MMCN���� �����

��� T� Budd� An Introduction to Object
Oriented Program

ming� �nd Edition� Addison Wesley Longman� ���	�

��� G� V� Chockler� An Adaptive Totally Ordered Multi�
cast Protocol that Tolerates Partitions� Master�s thesis�
Institute of Computer Science� The Hebrew University
of Jerusalem� Jerusalem� Israel� �����

�



���� W� Cook and J� Palsberg� A denotational semantics of
inheritance and its correctness� Information and Com

putation� ���

���
������ ����� Also OOPSLA����

���� R� De Prisco� A� Fekete� N� Lynch� and A� Shvarts�
man� A dynamic view�oriented group communication
service� 	
th ACM Symposium on Principles of Dis

tributed Computing �PODC�� pp� 

��
�	� June �����

��
� R� De Prisco� A� Fekete� N� Lynch� and A� Shvartsman�
A dynamic primary con�guration group communication
service� 	�th International Symposium on DIStributed
Computing �DISC�� pp� 	����� �����

���� W� P� de Roever and K� Engelhardt� Data Re�nement
Model
Oriented Proof Methods and their Comparison�
Cambridge University Press� Dec� �����

���� A� Fekete� D� Gupta� V� Luchangco� N� Lynch� and
A� Shvartsman� Eventually�serializable data services�
Theoretical Computer Science� special issue on Dis

tributed Algorithms� 

�� �����

���� A� Fekete� N� Lynch� and A� Shvartsman� Specify�
ing and using a partionable group communication ser�
vice� 	�th ACM Symposium on Principles of Distributed
Computing �PODC�� pp� ���	
� August �����

��	� R� Friedman and A� Vaysburg� Fast replicated state ma�
chines over partitionable networks� 	�th IEEE Intern�
Symp� on Reliable Distrib� Systems� October �����

���� S� J� Garland and N� A� Lynch� Foundations of Compo

nent Based Systems� chapter Using I�O Automata for
Developing Distributed Systems� Cambridge University
Press� USA� ����� To appear�

���� S� J� Garland� N� A� Lynch� and M� Vaziri� IOA�
A Language for Specifying� Programming and Vali

dating Distributed Systems� MIT LCS� Dec� �����
http���sds�lcs�mit�edu�
garland�ioaLanguage�html�

���� M� Hayden and R� van Renesse� Optimizing Layered
Communication Protocols� TR�	��	��� Dept� of Com�
puter Science� Cornell University� November ���	�

�
�� M� P� Heimdahl and C� L� Heitmeyer� Formal methods
for developing high assurance computer systems� Work�
ing group report� Second IEEE Workshop on Industrial

Strength Formal Techniques� Oct� �����

�
�� C� Heitmeyer and N� Lynch� The generalized railroad
crossing� A case study in formal veri�cation of real�time
systems� Real Time Systems Symposium� Dec� �����
Full version� MR��	��� Naval Research Laboratory�

�

� C� L� Heitmeyer� On the need for �practical� for�
mal methods� Formal Techniques in Real
Time Fault

Tolerant Systems� �th Intern� Symposium� pp� ���
	�
Sept� ����� LNCS ���	 
invited paper��

�
�� A� V� Hense� Wrapper semantics of an object�oriented
programming language with state� T� Ito and A� R�
Meyer� editors� Proceedings of Theoretical Aspects of
Computer Software� pp� �����	�� LNCS �
	� �����

�
�� J� Hickey� N� Lynch� and R� van Renesse� Speci�cations
and proofs for ensemble layers� �th International Con

ference on Tools and Algorithms for the Construction
and Analysis of Systems �TACAS�� LNCS� Mar� �����

�
�� S� Kamin� Inheritance in Smalltalk���� A denotational
de�nition� 	�th Symp� on Principles of Programming
Languages� pp� ������ �����

�
	� I� Keidar and R� Khazan� A client�server approach
to virtually synchronous group multicast� Speci�ca�
tions� algorithms and proofs� TR ���� MIT Lab� for
Comp� Science� Nov� ����� To appear in ICDCS 
����
http���theory�lcs�mit�edu�
idish�Abstracts�vs�html�

�
�� I� Keidar� J� Sussman� K� Marzullo� and D� Dolev�
A Client�Server Oriented Algorithm for Virtually Syn�
chronous Group Membership in WANs� TR CS���	
��
Comp� Sci�� Univ� of California� San Diego� June �����

�
�� R� Khazan� A� Fekete� and N� Lynch� Multicast group
communication as a base for a load�balancing replicated
data service� 	�th International Symposium on DIS

tributed Computing �DISC�� pp� 
���
�
� Sept� �����

�
�� B� Lampson� Generalizing Abstraction Functions� MIT�
Laboratory for Computer Science� Principles of Com�
puter Systems� Handout �� ����� ftp���theory�lcs�mit
�edu�pub�classes�	��
	�www�	��
	�top�html�

���� N� Lynch� Distributed Algorithms� Morgan Kaufmann
Publishers� ���	�

���� N� Lynch and A� Shvartsman� Robust emulation of
shared memory using dynamic quorum�acknowledged
broadcasts� �
th IEEE Fault
Tolerant Computing Sym

posium �FTCS�� pp� 
�
�
��� �����

��
� N� Lynch and M� Tuttle� An introduction to In�
put�Output Automata� CWI Quart�� 

���
���
�	� ����

���� U� S� Reddy� Objects as closures� Abstract semantics of
object�oriented languages� Proc� of ACM Conference on
Lisp and Functional Programming� pp� 
���
��� �����

���� I� Shnaiderman� Implementation of Reliable Data�
gram Service in the LAN environment� Lab project�
The Hebrew University of Jerusalem� January �����
http���www�cs�huji�ac�il�
transis�publications�html�

���� A� P� Sistla� Proving correctness with respect to nonde�
terministic safety speci�cations� Information Processing
Letters� ��
��������� July �����

��	� R� Stata and J� V� Guttag� Modular reasoning in the
presence of subclassing� 	�th Conf� on Object
Oriented
Progrgamming Systems� Lang�� and Appl� �OOPSLA��
vol� �� of ACM SIGPLAN� pp� 
���
��� Oct� �����

���� R� Vitenberg� I� Keidar� G� V� Chockler� and D� Dolev�
Group Communication Speci�cations� A Comprehen�
sive Study� TR CS������ Institute of Comp� Science�
The Hebrew University of Jerusalem� Israel� Sept� �����

���� D� Yates� N� Lynch� V� Luchangco� and M� Seltzer� I�O
automaton model of operating system primitives� Mas�
ter�s thesis� Harvard University and MIT� May �����


�


