
Fault Tolerant Video on Demand Services�

Tal Anker Danny Dolev Idit Keidar

Institute of Computer Science Laboratory for Computer Science
The Hebrew University of Jerusalem MIT

fanker,dolevg@cs.huji.ac.il idish@theory.lcs.mit.edu

Abstract

This paper describes a highly available distributed video
on demand (VoD) service which is inherently fault toler-
ant. The VoD service is provided by multiple servers that
reside at different sites. New servers may be brought up
“on the fly” to alleviate the load on other servers. When
a server crashes it is replaced by another server in a trans-
parent way; the clients are unaware of the change of service
provider. In test runs of our VoD service prototype, such
transitions are not noticeable to a human observer who uses
the service.

Our VoD service uses a sophisticated flow control mech-
anism and supports adjustment of the video quality to client
capabilities. It does not assume any proprietary network
technology: It uses commodity hardware and publicly avail-
able network technologies (e.g., TCP/IP, ATM). Our service
may run on any machine connected to the Internet. The ser-
vice exploits a group communication system as a building
block for high availability. The utilization of group commu-
nication greatly simplifies the service design.

1. Introduction

Video on demand (VoD) services are becoming pop-
ular today in hotels, luxury cruise boats, and even air-
planes. As high bandwidth communication infrastructure
(e.g., ATM backbone networks along with ADSL, the In-
ternet infrastructure, etc.) is being established in many
countries around the world, high bandwidth communica-
tion lines will reach millions of homes in the near future.
This increasing improvement in communication technology
will invite widespread utilization of VoD services in private
homes, provided by telecommunication companies, cable
TV providers, and via the Internet. In such an environment,
scalability and fault tolerance will be key issues.

�This work was supported in part by the Ministry of Science, Basic
Infrastructure Fund, Project 9762 and by Optibase Ltd.

In this paper we describe a highly available distributed
VoD service. The VoD service is provided by multiple
servers that may reside at different sites. The service sup-
ports smooth migration of clients from one server to an-
other. Thus, the number of servers providing a certain
service may change dynamically in order to account for
changes in the load. We use a group communication sys-
tem in the control plane of our service, in order to loosely
coordinate the participating servers to agree upon client mi-
gration and to allow one server to take over another server's
client. Our service uses a sophisticated flow control mecha-
nism and supports adjustment of the video quality to client
capabilities. We do not assume any dedicated hardware
or proprietary technology: Our service uses commodity
hardware and publicly available network technologies (e.g.,
TCP/IP, ATM). Our servers and clients may run on any ma-
chine connected to the Internet.

Current efforts in the area of VoD focus primarily on in-
creasing the throughput of a single server by using sophis-
ticated scheduling, caching, and file structuring. The fault
tolerance issues typically being addressed concern possible
disk and file failures [11, 14, 16, 18, 19, 20, 21], but do
not address server failures or network partitions (with the
exception of the Microsoft Tiger video server [12, 13], cf.
Section 7) . Furthermore, current methods rarely address
the issue of client migration and smooth provision of ser-
vice while migration occurs. Thus, the concept presented
in this paper complements the above techniques, in that it
allows extending such VoD services to be provided by a dy-
namically changing number of servers.

Video transmission requires relatively high bandwidth
with strict Quality of Service (QoS) properties (e.g., guar-
anteed bandwidth, bounded jitter and delays). Therefore, as
any application involving video transmission, our service
is best provided using QoS reservation mechanisms. How-
ever, if bandwidth is abundant and jitter rarely occurs, e.g.,
in a relatively not loaded LAN or small scale WAN, then
some buffer space and a flow control mechanism can ac-
count for jitter periods. We have tested our VoD service on

such networks with good results.

In our service architecture, each movie is replicated at a
subset of the servers. When a server crashes or disconnects
from its clients it is replaced by another server (holding the
same movie) in a transparent way. Clients are also migrated
from one server to another for load balancing purposes, e.g.,
when a new server is brought up. The main challenge we
address is designating an alternate server and making the
transition between servers smooth, so that the clients would
be unaware of the change in the service provider.

This is challenging, since when the client migrates to an-
other server, the video transmission may stop for a short
period, frames may arrive twice, or may arrive out of order.
We call periods at which such undesirable events occur ir-
regularity periods. The duration of the irregularity period
depends on the level of synchrony among the servers. Our
VoD service does not assume tight coupling of the servers;
in our prototype servers synchronization occurs every half
a second, and the overhead for server synchronization con-
sumes less than one thousandth of the total communication
bandwidth used by the VoD service.

In order to guarantee smooth video display at such irreg-
ularity periods the client maintains a buffer of forthcoming
frames. The buffer size is subject to fine tuning, depending
on the expected irregularity period duration. In our experi-
ments with a 1.4 Mbps video stream, the clients have allo-
cated buffer space of approximately 1.7 Mbit in software in
addition to 1.7 Mbit in a hardware MPEG [17] decoder.

We have designed a flow control mechanism which en-
deavors to keep enough frames in the buffer to account
for irregularity periods and jitter, but without causing the
buffers to overflow. It was challenging to tune the flow
control algorithm to re-fill the client's buffers quickly (but
without causing overflow) at irregularity periods. Our flow
control mechanism is presented in Section 4. We tested our
service both on a 10 Mbps switched Ethernet and on a small
scale WAN. Our results are encouraging: The video display
at times of migration (due to either server crash or load bal-
ancing) is smooth to the human observer.

Our VoD service implementation exploits the Tran-
sis [2, 15] group communication system for synchronization
among the servers, for connection establishment and for ex-
changing control messages, following the concepts we sug-
gested in [6]: In [6] we described the benefits of using group
communication for highly available VoD services. As a
“proof of concept”, we presented a preliminary VoD ser-
vice prototype transmitting low bandwidth video material
to clients that use software decoders. In Section 5 we de-
scribe how we exploit group communication in our current
VoD service to simplify the service design. The concepts
demonstrated in this work are general, and may be exploited
to construct a variety of highly available servers.

2. The Environment

Our VoD service tolerates server failures and network
partitions. It exploits commodity hardware and pub-
licly available network technologies (e.g., TCP/IP, ATM);
servers and clients may run on any machine connected to the
Internet. As any video transmission application, our VoD
service is best provided if a QoS reservation mechanism is
available, e.g., when using an ATM network. However, this
is not mandatory. In networks with abundant bandwidth and
limited jitter, e.g., a relatively not loaded fast/switched Eth-
ernet, or if only “soft” reservation is available (e.g., with
RSVP [22]) our buffer space and flow control mechanism
can account for jitter periods.

The video material is stored and transmitted in the stan-
dard MPEG [17] format. Clients use hardware MPEG de-
coders in order to process high bandwidth video. An MPEG
encoding of a movie consists of a sequence of frames of
different types: I (Intra) frames represent full images; other
frame types are incremental and cannot be decoded without
the corresponding I frames. The movie is transmitted frame
by frame – a single frame is transmitted in a single message.

The communication channels used for transmitting the
video material may be unreliable, in the sense that messages
may be lost or arrive out of order. Our VoD service does
not recover lost frames. Therefore, if the communication
channel suffers message loss then a degradation occurs in
the quality of the displayed movie. The VoD service uses
client buffers to re-order frames that arrive out of order (i.e.,
insert these frames in the right place in the video stream).

Our VoD service requires a (possibly unreliable) fail-
ure detection mechanism in order to detect server failures.
It also requires a reliable multicast mechanism for low-
bandwidth communication among the servers, for connec-
tion establishment and for control messages. In our pro-
totype implementation we used the Transis [2, 15] group
communication system for these tasks (cf. Section 5).

3. The Service Overview

In this section we describe the overall design of the VoD
service. More details of our specific algorithms appear in
the following sections.

Each movie is replicated at a subset of the servers�.
Clients connect to the video on demand service and request
a movie to watch from a list of offered movies. One of
the servers that hold this movie forms a two-way connec-
tion with the client: The server transmits video material,
and the client sends control messages for flow control pur-
poses as well as for speed control and for random access
within the movie. The clients have full VCR like control

�We assume a separate mechanism for replicating the video material.

server
server

 VoD
 Service

Client C1

Client C2

server

(a) Before the server failure.

server
server

 VoD
 Service

Client C1

Client C2

server

(b) Recovery from the server failure.

Figure 1. Transparent VoD services.

over the transmitted material, e.g., pause, restart, and arbi-
trary random access, in accordance with the ATM Forum
VoD specs [10].

Each server periodically sends information about its
clients to the other servers (for details, please see Section 5).
When a server crashes or detaches, the remaining servers
take over the clients of the crashed server, so that each client
is served by exactly one server. The client is oblivious to
the change, as shown in Figure 1. A similar process occurs
when the servers decide to migrate clients because the load
is poorly distributed, e.g., when a new server is brought up
to alleviate the load. The client migration process is de-
scribed in detail in Section 5.

The client maintains two buffers of forthcoming frames:
one in the hardware decoder and one in software (cf. Sec-
tion 4.2 for a discussion of buffer sizes). Received video
frames are first stored in the software buffer and then
streamed into the hardware decoder. In case of buffer over-
flow, frames need to be discarded: If a frame arrives when
the buffer is full, we discard one of the frames in the buffer
to make space for the new frame. When possible we discard
an incremental frame and not an I (full image) frame.

The buffers allow smooth video display at migration
times. The software buffer is also used for re-ordering of
video frames that arrive out of order. Our-of-order frames
can be inserted to the right place in the video stream only if
they arrive before they should be streamed into the hardware
decoder. We discard frames that arrive after the hardware
decoder consumed frames that follow them. The flow con-
trol mechanism's task is to keep enough frames in the buffer
to account for irregularity periods and for re-ordering, while
avoiding buffer overflow. The flow control mechanism is
described in Section 4.

4. Flow Control

Our VoD service uses a loosely-coupled feedback-based
flow control mechanism: The client sends flow control mes-
sages to the server in order to dynamically adjust the trans-
mission rate. The server maintains the current rate per
client, and adjusts it according to the client's flow control
requests. Clients may request to either increase or decrease
the transmission rate by a certain �. In our prototype im-
plementation this � is one frame per second. If, for exam-
ple, the server transmits 25 frames per second to a certain
client, and an increase request arrives from this client, then
the server changes the rate to 26 frames per second.

The client's flow control module endeavors to keep
enough frames in the buffers to account for irregularity pe-
riods, and also to allow for re-ordering of frames that arrive
out of order. Albeit, it must be careful not to increase the
transmission rate too much and not to cause buffer overflow.

The client does not try to deduce at which rate the server
is transmitting the video, it only keeps track of the buffers'
occupancy (i.e., the number of frames in the buffers). The
flow control mechanism attempts to keep the number of
frames in the buffer between the low water mark and the
high water mark thresholds. If the number of frames falls
below the low water mark, then the transmission rate is in-
creased, and if the buffer is full above the high water mark,
the transmission rate is decreased.

Due to network delay, the transmission rate does not
change instantaneously. Therefore, after increasing the
transmission rate sufficiently to surpass the low water mark,
the client must start requesting to slow the transmission rate
down before the occupancy surpasses the high water mark.
Likewise, the client must request to increase the transmis-
sion rate before the occupancy falls below the low water
mark. Thus, when the number of frames in the buffer is

Value of Buffer Occupancy Check Frequency Request to send
from to and

0 critical threshold�� f urgent emergency
critical threshold low water mark�� f urgent increase
low water mark high water mark�� � previous occupancy f normal increase
low water mark high water mark�� � previous occupancy f normal decrease
high water mark full f urgent decrease

Figure 2. The Client's Flow Control Policy

between the low and high water marks, the client adjusts
the transmission rate according to the change in the buffers'
occupancy: If the buffers contain more frames than they
had contained when the previous flow control request was
sent, the client requests to decrease the transmission rate,
and vice versa. If the buffer occupancy is the same, no re-
quest is emitted.

When the buffer occupancy is between the high and low
water marks, flow control messages are sent at a relatively
small frequency, f normal. When the buffer occupancy is
not between the high and low water marks, the flow control
messages are more urgent, and are therefore sent at a higher
frequency, f urgent. In our prototype, when the occupancy
is between the low and high water marks flow control mes-
sages are sent every 8 received frames, and otherwise the
frequency is doubled. In addition, when the client's buffer
occupancy falls below a certain critical threshold, the client
sends an emergency request. The handling of emergency
requests (by the server) is described in Section 4.1. The
client's flow control policy is summarized in Figure 2.

4.1. Handling Emergency Situations

When the buffer occupancy falls below a critical thresh-
old, the emergency mechanism kicks in. Such a situation
typically occurs when the client migrates to another server
(due to a server failure or load balancing) and also at startup
time and when the client requests random access to a differ-
ent part of the movie.

In such cases, the client sends an emergency request to
the server. The server responds by temporarily increasing
the transmission rate in order to re-fill the clients' buffers
very quickly. In order to avoid overflowing the clients'
buffers, the server does not persist with the high transmis-
sion rate for a long period. Instead, the additional transmit-
ted bandwidth decays with time.

The number of frames per second transmitted to a client
is the sum of the latest known transmission rate� plus an
emergency quantity. The emergency quantity decays by
a certain percentage every second. While the emergency
quantity is greater than zero, the server ignores all flow con-
trol requests from the client.

�A default transmission rate is used at startup.

The base emergency quantity q and the decay factor
f � ��� �� are chosen so that the total number of additional
frames desired is the sum of the decaying sequence (of val-
ues truncated to integers):

P
i
q � f i. There is a tradeoff

involved in the selection of these parameters: When start-
ing with a high base quantity q, the buffers fill up faster to
allow coping with message re-ordering and additional emer-
gencies smoothly. However, the risk of overflow is greater
and for a few seconds additional transmission bandwidth
consumption is very high. If QoS reservation mechanisms
are used, this can be costly.

We experimented with different such sequences. In our
prototype, we chose to increase the bandwidth consumption
at emergency periods by no more than 40% of the mean
bandwidth. Thus, for transmitting a 30 frames per second
movie, we set the base emergency quantity q to 12. We use
a decay factor f of 0.8, so the resulting sequence sum is
43 frames. Note that if the service were to use QoS reser-
vation, e.g., over an ATM network, then it would need to
reserve an additional variable bit rate (VBR) channel for
emergency periods, varying to at most 40% of the constant
bit rate (CBR) channel reserved for normal periods.

We further elaborated the emergency recovery mecha-
nism to transmit a smaller emergency quantity at less seri-
ous emergency situations. We set two critical thresholds:
If the client's buffer occupancy falls below 15%, the base
emergency quantity is 12 frames, as explained above. If the
buffer occupancy falls below 30% but not below 15%, the
base quantity is set to 6 frames, and the resulting sequence
sums up to 15 additional frames.

4.2. Choosing Buffer Sizes and Thresholds

The buffer size is chosen to account for irregularity pe-
riods occurring at emergency situations (migration due to
server failure or load balancing). The flow control mecha-
nism endeavors to keep the buffer occupancy always above
the low water mark. Therefore, the low water mark should
reflect the number of frames needed to account for irregu-
larity periods. The duration of the irregularity period is at
most the sum of the server synchronization skew and the
take over time. In our prototype implementation, the server
synchronization skew is half a second in the worst case. The

take over time is affected by the failure detection time-out
and by the time required for information exchange among
the servers. In our tests on a local area network, the take
over time was half a second on the average. Additional de-
lay may be introduced by process scheduling since we do
not use a real-time operating system.

We have chosen the buffer sizes to contain approxi-
mately 2.4 seconds of video, the low water mark to be 73%
of the total buffer space and the high water mark to be 88%
of the buffer space. Thus, when the buffers are full up to the
low water mark, they account for an irregularity period of
approximately 1.7 seconds. We tuned the gap between the
low and high water marks to be large enough to allow the
flow control algorithm to keep the buffer occupancy in this
range, yet not larger than needed in order not to consume
excess buffer space. Likewise, the margin between the high
water mark and the top of the buffer is essential in order to
avoid buffer overflow. Using a sophisticated mechanism for
handling emergency requests allowed us to make this mar-
gin very small. All of these values are subject to fine tuning
according to the specific run-time environment.

Note that our buffer sizes account for a single emer-
gency situation. A second emergency situation can be han-
dled smoothly only after the buffers are re-filled to contain
sufficient frames. In order to guarantee smoothly coping
with additional emergency situations occurring before the
buffers start to re-fill, the buffer size should be enlarged. If
there is not enough video material in the buffers to account
for the duration of the irregularity period, the situation can-
not be handled smoothly, i.e., some video material is de-
layed or skipped and a human observer can notice the jitter
(usually during no more than a second).

4.3. Adjusting the Quality of the Video Material

Some clients' communication or computation capabil-
ities may not allow for processing of high quality video,
e.g., if they use a slow modem to communicate or if they do
not have hardware video decoders. In such cases, the client
may request lower quality video consisting of less frames
per second. When such a request arrives, the server starts
skipping frames, and transmits only the number of frames
per second which suits the client's capabilities. This is done
by transmitting all the I (full image) frames, and some of
the other frames, as the capabilities allow.

5. Exploiting Group Communication

Our VoD service exploits a group communication sys-
tem (GCS) [1]. The use of group communication simplifies
achieving fault tolerance and dynamic load balancing and
provides a convenient framework for the overall service de-
sign.

Group communication introduces the notion of group ab-
straction which allows processes to be easily arranged into
multicast groups. Thus, a set of processes is handled as
a single logical connection identified by a logical name.
Within each group, the GCS provides reliable multicast and
membership services. The reliable multicast services de-
liver messages to all the current members of the group. The
membership of a group is the set of currently live and con-
nected processes in the group. The task of the membership
service is to maintain the membership of each group and to
deliver the membership to the group members whenever it
changes.

5.1. The Service Group Layout

Our service creates the following three kinds of multicast
groups, as shown in Figure 3.

Session groups

Server

Server group

Server

Server

Server

Server

Client

Client

Movie group

Figure 3. The group layout of the VoD service.

Server group consists of all the VoD servers. The client
uses this group at startup in order to connect to the VoD
service. The client communicates with the abstract
server group and is therefore completely unaware of
particular VoD server identities.

Movie group (per movie) consists of those VoD servers
that have a copy of a particular movie. This group is
used by the servers to consistently share information
about clients that are currently watching this movie,
for fault tolerance purposes (cf. Section 5.2 below).

Session group (per client) consists of the client watching a
movie and the server that is currently communicating
that movie to the client. The client uses this group to
send control information to the VoD server.

5.2. Fault Tolerance and Dynamic Load Balancing

Let us consider what happens within a single movie
group G�M � corresponding to a movie M . Each member
of G�M � uses the reliable multicast service to periodically
multicast to the other members of G�M � information about
its clients who are watching M . This information includes
the offsets of its clients in the movie M and their current
transmission rates: a total of a few dozens of bytes.

In our prototype implementation the servers multicast
this information every half a second. Thus, the servers are
kept synchronized within half a second with respect to the
clients' positions in the movie, while the storage space and
bandwidth required for this information is negligible w.r.t.
the buffer space and bandwidth required for the video trans-
mission.

Whenever the membership of G�M � changes (e.g., as a
result of a server crash or join), the members of G�M � re-
ceive a notification of the new membership. Upon receiving
this notification, the servers evenly re-distribute the clients
among them. If the notification reflects a server failure, each
remaining server in G�M � uses its knowledge about all the
clients in order to deterministically decide which clients it
now has to serve. When new servers join, the servers first
exchange information about clients, and then use it to de-
duce which clients each of them will serve.

In order to take over a client, a server simply joins the
client's session group and resumes the video transmission
starting from the offset and transmission rate that were last
heard from the previous server.

5.3. The Benefits of Using Group Communication

The use of group communication greatly simplifies the
service design. In particular, it provides the following ad-
vantages:

1. The group abstraction simplifies connection estab-
lishment and allows for transparent migration of
clients while maintaining a simple client design. The
clients are oblivious to the number and identities of the
servers providing the service.

2. The membership service detects conditions for client
migration, both for re-distributing the load, and for
achieving fault tolerance.

3. The reliable group multicast semantics facilitates in-
formation sharing among the servers, in order to allow
them to consistently agree about client migration.

4. Using reliable multicast, we guarantee that client con-
trol messages will reach the servers.

Our VoD service prototype was implemented using the
Transis group communication system. The server was im-
plemented in C++, using only around 2500 lines of code.
The client was implemented in C, using only around 4000
lines of code (excluding the GUI and the video display
module). Without the Transis services, such an application
would have been far more complicated, and the code size
would have turned out significantly larger.

6. Performance Measurements

We implemented the VoD service using UDP/IP for
video transmission. We used the Transis [2, 15] group
communication system (running over UDP/IP) for member-
ship and reliable messages. The servers run on PCs run-
ning BSDI UNIX. The video is stored and transmitted in
MPEG [17] format. The clients run on Windows 95/NT;
the video is decoded by the clients using Optibase hard-
ware decoders. The performance measurements shown be-
low were obtained with the following parameters: Approx-
imately 1.4 Mbps, 30 frames per second MPEG movie; al-
located software buffers for 37 frames; 204 KB hardware
buffers (approximately 1.2 seconds of video); the servers
synchronize their states every 1/2 second.

6.1. Performance Measurements in a LAN

Below, we present typical performance measurements
obtained while testing the VoD service on a 10 Mbps
switched Ethernet. The measurements were collected by a
VoD client watching a movie in the following scenario: Ap-
proximately 38 seconds after the movie began, the server
transmitting this movie was terminated and the client was
migrated to another server. Approximately 24 seconds later,
a new server was brought up and the client was migrated to
it for load balancing purposes.

6.1.1. Overcoming the Irregularity of Video Transmission

Figure 4(a) depicts the cumulative number of frames that
were skipped (i.e., not displayed to the user) as a function
of time. Running on a LAN, we did not encounter message
loss, and frames were discarded only due to buffer overflow
occurring during recovery from emergency situations�. Fig-
ure 4(a) shows that no more than six frames were skipped
following each emergency period (at startup, server failure,
and migration due to load balancing). Due to our policy not
to discard I (full image) frames in cases of buffer overflow,
none of the skipped frames was an I frame. The frame loss
caused a slight transient degradation of the video image that

�Note the correlation between skipped frames and the peak software
buffer occupancy (depicted in Figure 4(c)).

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120

S
ki

pp
ed

 fr
am

es
 (

cu
m

ul
at

iv
e)

Time (seconds)

Server Crash

Load Balance

(a) Skipped frames.

0

5

10

15

20

25

0 20 40 60 80 100 120

La
te

 fr
am

es
 (

cu
m

ul
at

iv
e)

Time (seconds)

Server Crash

Load Balance

(b) Late frames.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120

S
of

tw
ar

e
bu

ffe
r

oc
cu

pa
nc

y
(f

ra
m

es
)

Time (seconds)

Server Crash

Load Balance

High water mark

Low water mark

(c) Software buffers occupancy.

0

50000

100000

150000

200000

250000

0 20 40 60 80 100 120

H
ar

dw
ar

e
bu

ffe
r

oc
cu

pa
nc

y
(b

yt
es

)

Time (seconds)

Server Crash

Load Balance

(d) Hardware buffers occupancy.

Figure 4. Overcoming the irregularity of video transmission in a LAN.

lasted less than a second; this degradation was not notice-
able to a human observer.

Figure 4(b) shows the cumulative number of late frames
(i.e., frames that were discarded because they arrived af-
ter they should have been displayed). Running on a LAN,
messages do not arrive out of order, and the only late arriv-
ing frames are those that arrive twice� at migration times.
Since the servers are not perfectly synchronized, when a
client migrates from one server to another certain frames
may be transmitted by both servers. This occurs since we
take a conservative (pessimistic) approach, preferring du-
plicate transmission of frames over missed frames.

Note that a different behavior occurs in case of a server
failure than in case of migration due to load balancing.
When a server fails, there is a longer intermission in the
transmission since failure detection takes time. Therefore,
at such times, buffer occupancy drops lower (please see be-
low). At load balance time, on the other hand, the new
server starts transmitting video material approximately at

�A duplicate frame is considered late.

the same time that the old server stops transmitting. Due to
discrepancy between the servers, some frames are transmit-
ted twice, as observed in the late frames graph (Figure 4(b)).

6.1.2. Buffer Occupancy

The occupancy of the client's buffers as a function of
time is displayed in Figures 4(c) and 4(d). Figure 4(c)
shows that the software buffers reach their mean occupancy
(around 23 frames) after approximately 14 seconds. While
no emergency events occur, the buffer occupancy oscillates
between the low and high water marks. The software buffer
occupancy drops to zero when the client is migrated due
to a server failure, and drops to approximately ��� of its
capacity when the client is migrated for load balancing pur-
poses. The buffers are re-filled quickly, and therefore buffer
overflow occurs following recovery from emergency peri-
ods. Figure 4(d) shows that the hardware buffers fill up ap-
proximately 10 seconds after the first frame of the movie
arrives the client. The hardware buffer occupancy drops to
approximately ��� of its capacity following server crash.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

S
ki

pp
ed

 fr
am

es
 (

cu
m

ul
at

iv
e)

Time (seconds)

Server CrashLoad Balance

(a) Total number of skipped frames.

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80

F
ra

m
es

 d
is

ca
rd

ed
 d

ue
 to

 o
ve

rf
lo

w

Time (seconds)

Server CrashLoad Balance

(b) Frames discarded due to buffer overflow.

Figure 5. Skipped frames in a WAN.

6.2. Measurements in a Small Scale WAN

We have tested our VoD service between the Hebrew
and Tel Aviv Universities, which are seven hops apart on
the Internet. We used UDP/IP without any QoS reservation
mechanisms. The measurements below were collected by
a VoD client watching a movie. Approximately 25 seconds
after the movie began, a new server was brought up and
the client was migrated to it for load balancing purposes.
Approximately 22 seconds later, the server transmitting this
movie was terminated and the client was migrated to an-
other server.

Figure 5(a) depicts the cumulative number of frames that
were skipped (i.e., not displayed to the user) as a function
of time. As one can observe, when running on the Internet
without reservation mechanisms, a certain percentage of the
messages are lost. Therefore, the quality of displayed video
is inferior to the quality observed on a LAN. At irregularity
periods additional frames are skipped due to buffer over-
flow. This is demonstrated in Figure 5(b), which depicts
the cumulative number of frames that were discarded due to
buffer overflow.

The client's buffer occupancy and number of late frames
observed on a WAN exhibit similar behavior to that ob-
served on a LAN. Due to lack of space, we do not include
the graphs here.

7. Related Work

Current research in the area of VoD often focuses ei-
ther on improving the performance of a single server [11,
14, 19, 20, 21], or on parallel servers with dedicated hard-
ware [16, 18]. The improved performance of a single server
is achieved by techniques such as sophisticated file orga-
nization [11, 19, 20], novel QoS aware disk scheduling
algorithms [14, 20, 21], data fault tolerance [11, 19, 20]

and admission control and resource (e.g., buffers) reserva-
tions [14, 19, 20] ([14] deals also with network QoS).

Current research rarely addresses the issue of smooth
provision of service in the presence of server and commu-
nication failures. The only exception that we are aware of
is the Microsoft Tiger [12, 13] video file service which is
highly scalable. Tiger uses striping of movies across sev-
eral servers.

The Tiger architecture differs from ours in that it as-
sumes that the set of servers is tightly coupled and con-
nected via a fast communication network. In their archi-
tecture, multiple servers serve the same clients. A sophisti-
cated scheduler is utilized to synchronize the servers. In our
architecture, each client is served by one server at a given
time and the servers can be geographically apart.

Using Tiger, a special reconfiguration process needs to
be executed when a new server or a new movie is added,
in order to re-stripe the movies. With our service, a new
server can be brought up without any special preparations,
and new movies can be added “on the fly” by storing them
on machines where servers are running.

The Tiger system smoothly tolerates the failure of one
server, but not necessarily two failures even if the failures
are not concurrent, and even if the total number of servers
is very large. In contrast, our VoD service does not set a
hard limit on the number of server failures tolerated. If a
movie is replicated k times, then up to k � � failures are
tolerated.

8. Conclusions and Future Work

We have presented a fault tolerant video on demand ser-
vice which is provided by multiple servers. When a server
crashes it is replaced by another server in a transparent
way. The clients are unaware of the change in the service
provider. New servers may be brought up “on the fly” to

alleviate the load on other servers. In test runs of our im-
plementation, such transitions are not noticeable to a human
observer who uses the service. The concepts demonstrated
in this work are general, and may be exploited to construct
a variety of highly available servers.

In our current implementation, the video material is
transmitted using UDP/IP. Connection establishment, con-
trol and sharing of state among the servers are performed
using the services of the Transis group communication sys-
tem, which also runs over UDP/IP. The use of group com-
munication greatly simplifies the service design.

We intend to port and test the VoD service over ATM
networks: The video material will be transmitted via native
ATM UNI 3.1 [8] or UNI 4.0 [9] connections. We intend to
continue using group communication for connection estab-
lishment, control, and sharing of state. We will use a GCS
geared to WAN, based on the ideas in [3, 4, 5]. This GCS
will either run over classical UDP/IP with LAN emulation
over ATM (LANE) [7], or directly over native ATM.

Acknowledgments

We thank Gregory Chockler for his contribution to the
preliminary version of the VoD service, and for his helpful
comments and suggestions regarding the presentation style
of this paper.

References

[1] ACM. Commun. ACM 39(4), special issue on Group Com-
munications Systems, April 1996.

[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A com-
munication sub-system for high availability. In 22nd IEEE
Fault-Tolerant Computing Symposium (FTCS), July 1992.

[3] T. Anker, D. Breitgand, D. Dolev, and Z. Levy.
CONGRESS: CONnection-oriented Group-address RES-
olution Service. Tech. Report CS96-23, Institute of
Computer Science, The Hebrew University of Jerusalem,
Jerusalem, Israel, December 1996. Available from:
http://www.cs.huji.ac.il/�transis.

[4] T. Anker, D. Breitgand, D. Dolev, and Z. Levy. CONGRESS:
Connection-oriented group-address resolution service. In
Proceedings of SPIE on Broadband Networking Technolo-
gies, November 2-3 1997.

[5] T. Anker, G. Chockler, D. Dolev, and I. Keidar. Scal-
able group membership services for novel applications. In
M. Mavronicolas, M. Merritt, and N. Shavit, editors, Net-
works in Distributed Computing (DIMACS workshop), vol-
ume 45 of DIMACS, pages 23–42. American Mathematical
Society, 1998.

[6] T. Anker, G. Chockler, I. Keidar, M. Rozman, and J. Wexler.
Exploiting group communication for highly available video-
on-demand services. In Proceedings of the IEEE 13th Inter-
national Conference on Advanced Science and Technology

(ICAST 97) and the 2nd International Conference on Mul-
timedia Information Systems (ICMIS 97), pages 265–270,
April 1997.

[7] The ATM Forum. LAN Emulation Over ATM Specification -
Version 1.0, February 1995.

[8] The ATM Forum Technical Committee. ATM User Network
Interface (UNI) Specification Version 3.1, June 1995. ISBN
0-13-393828-X.

[9] The ATM Forum Technical Committee. ATM User-Network
Interface (UNI) Signalling Specification Version 4.0, af-sig-
0061.000, July 1996.

[10] The ATM Forum Technical Committee. Audiovisual Multi-
media Services: Video on Demand Specification 1.0, af-saa-
0049.000, January 1996.

[11] S. Berson, L. Golubchik, and R. R. Muntz. Fault tolerant de-
sign of multimedia servers. In ACM SIGMOD International
Symposium on Management of Data, pages 364–375, May
1995.

[12] W. J. Bolosky, J. S. Barrera, R. P. Draves, R. P. Fitzgerald,
G. A. Gibson, M. B. Jones, S. P. Levi, N. P. Myhrvold, and
R. F. Rashid. The Tiger video fileserver. In Proceedings
of the Sixth Inernational Workshop on Network and Operat-
ing System Support for Digital Audio and Video (NOSSDAV),
April 1996.

[13] W. J. Bolosky, R. P. Fitzgerald, and J. R. Douceur. Dis-
tributed schedule management in the Tiger video fileserver.
In ACM SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), pages 212–223, October 1997.

[14] T. cker Chiueh, C. Venkatramani, and M. Vernick. Design
and implementation of the stony brook video server. In Soft-
ware Practice and Experience. To Appear.

[15] D. Dolev and D. Malkhi. The Transis approach to high avail-
ability cluster communication. Commun. ACM, 39(4), April
1996.

[16] R. Haskin and F. Schmuck. The Tiger Shark file system. In
Proceedings of IEEE Spring COMPCON, Feb. 1996.

[17] ISO/IEC 13818 and ISO/IEC 11172. The MPEG Specifica-
tion. http://www.mpeg2.de/.

[18] J. Y. B. Lee. Parallel video servers: A tutorial. IEEE Multi-
Media special issue on Video Based Application, 5(2), April
– June 1998.

[19] C. Martin, P. S. Narayan, B. Ozden, R. Rastogi, and A. Sil-
berschatz. The Fellini Multimedia Storage and Management.
Kluwer Academic. To appear.

[20] P. Shenoy, P. Goyal, S. Rao, and H. Vin. Design and imple-
mentation of symphony: An integrated multimedia file sys-
tem. In ACM/SPIE Multimedia Computing and Networking
(MMCN'98), pages 124–138, January 1998.

[21] F. Tobagi, J. Pang, R. Baird, and M. Gang. Streaming RAID-
a disk array management system for video files. In ACM
Multimedia, pages 393–400, August 2–6 1993.

[22] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zap-
pala. RSVP: A new resource reservation protocol. In IEEE
Network, September 1993. The RSVP Project home page:
http://www.isi.edu/div7/rsvp/rsvp.html.

