
Challenges in Evaluating Distributed AlgorithmsIdit KeidarThe Te
hnion and MITE-mail: idish�ee.te
hnion.a
.ilApril 29, 20021 Introdu
tionTheoreti
al evaluation of performan
e, availability, and reliability of distributed algorithms is always basedon models and metri
s that make some simplifying assumptions. Making su
h assumptions is ne
essary inorder to have simple abstra
tions for reasoning about algorithms. However, su
h assumptions often lead tomodels, metri
s, and analyses that fail to 
apture important aspe
ts of a
tual system behavior. Formulatingrealisti
 system models and metri
s is important, sin
e distributed algorithms and systems are often designedto optimize over su
h metri
s.One example is time 
omplexity metri
s. The typi
al theoreti
al metri
 used to analyze the running timeof distributed algorithms is the number of 
ommuni
ation rounds the algorithm performs, or the number ofmessage ex
hange steps in 
ase of a non-syn
hronous system (e.g., [20, 14, 15℄). In Se
tion 3, we illustratethe weakness of this metri
.Another example is reliability metri
s. In [13℄, we highlight the fa
t that fault tolerant algorithms areoften designed under the assumption that no more than t out of n pro
esses or 
omponents 
an fail. This
hara
terization of failures impli
itly assumes that the probability of a 
omponent failing while a proto
ol isin progress is independent of the duration of the proto
ol; that all 
omponents that 
an fail have an identi
alprobability of failure; and that failure probabilities of di�erent 
omponents are mutually independent. Theseassumptions do not adequately re
e
t the nature of real-world network environments. In pra
ti
e, thelikelihood of t failures o

urring while a proto
ol is running is highly dependent on the proto
ol's duration.Thus, while 
onsensus proto
ols that exe
ute more rounds 
an tolerate more faults, the o

urren
e of morefaults with su
h proto
ols is also more likely, whi
h 
an lead to redu
ed system availability or reliability, asobserved, e.g., in [3, 11℄.2 Resear
h GoalsOur goal in the Dalgeval (distributed algorithm evaluation) proje
t is to develop realisti
 ways to evaluatedistributed algorithms. We hope that fo
using on the \right" metri
s will lead to the design of moree�e
tive distributed algorithms and systems. Our resear
h approa
h 
ombines a range of resear
h te
hniques:gathering of data [4℄, empiri
al evaluation [4, 15℄, and simulation [11, 17℄, as well as theoreti
al modeling andanalysis [5, 6℄. We believe that these te
hniques 
omplement ea
h other, and when used together 
an leadto more e�e
tive results. E.g., obtaining data on how real environments behave 
an lead to more realisti
theoreti
al system models and more a

urate simulations. However, the transition from data to models isnot easy; having gathered data about real systems, it is still 
hallenging to �nd ways to model this data soit will be easy to reason about.Another important resear
h e�ort fo
uses on obtaining data about how distributed algorithms behave inrealisti
 environments, and then analyzing the data to identify the fa
tors that a�e
t distributed algorithms'performan
e and availability, and how these fa
tors 
ome into play. Su
h experiments 
an tea
h us whi
haspe
ts of system behavior are important and ought to be 
aptured in a theoreti
al system model or metri
,and whi
h aspe
ts have little impa
t and therefore 
an be simpli�ed out. We give one example of su
h aresear
h e�ort in the Se
tion 3. 1



3 Example: Evaluating the Running Time of a Communi
ationRound over the InternetIt is 
hallenging to predi
t the end-to-end performan
e a distributed algorithm would a
hieve when run overTCP/IP in a wide-area setting. It is also not obvious to determine whi
h algorithm would work best in a givensetting. E.g., would a de
entralized algorithm outperform a leader-based one? Answering su
h questionsis diÆ
ult for a number of reasons. Firstly, performan
e predi
tion is diÆ
ult be
ause end-to-end Internetperforman
e itself is extremely hard to analyze, predi
t, and simulate [8℄. Se
ondly, end-to-end performan
eobserved on the Internet exhibits great diversity [18, 22℄, and thus di�erent algorithms 
an prove moree�e
tive for di�erent topologies, and also for di�erent time periods on the same topology. Finally, di�erentperforman
e metri
s 
an be 
onsidered.In [4℄, we look at the running time of a 
ommuni
ation round over the Internet. We 
onsider a �xed set ofhosts engaged in a distributed algorithm. A 
ommuni
ation round is essentially a bla
k box that propagatesinformation from potentially every host to every other host. Every round is initiated at some host, 
alledthe initiator. We 
onsider the following four 
ommon implementations of a 
ommuni
ation round:� all-to-all , where the initiator sends a message to all other hosts, and ea
h host that learns that thealgorithm has been initiated sends messages to all the other hosts. This algorithm is stru
tured likede
entralized two-phase 
ommit, some group membership algorithms (e.g., [15℄), and the �rst phasesin de
entralized three-phase 
ommit algorithms, (e.g., [21, 10℄).� leader , where the initiator a
ts as the leader. In this algorithm, the initiator sends a message toall hosts, and all other hosts respond by sending messages to the leader. The leader aggregates theinformation from all the hosts, and sends a message summarizing all the inputs to all the hosts. Thisalgorithm is stru
tured like two-phase 
ommit [9℄, and like the �rst two of three 
ommuni
ation phasesin three-phase 
ommit algorithms, e.g., [21, 12℄.� se
ondary leader , where a designated host (di�erent from the initiator) a
ts as the leader. The initiatorsends a message to the leader, whi
h then initiates the leader-based algorithm. This algorithm stru
tureis essentially a spanning tree of depth one, with the se
ondary leader being the root and all other hostsbeing leaves.� logi
al ring , where messages propagate along the edges of a logi
al ring. This algorithm stru
tureo

urs in several group 
ommuni
ation systems, e.g., [1℄.Using the typi
al theoreti
al metri
 that 
ounts message ex
hange steps, we get the following overall runningtimes: 2 
ommuni
ation steps for the all-to-all algorithm; 3 for the leader algorithm; 4 for se
ondary leader;and 2n� 1 steps for the ring algorithm in a system with n hosts.In [4℄ we evaluate these four algorithms over the Internet. Our experiments span ten hosts, at geograph-i
ally disperse lo
ations { in Korea, Taiwan, the Netherlands, and several hosts a
ross the US, some ata
ademi
 institutions and others on 
ommer
ial ISP networks. The hosts 
ommuni
ate using TCP/IP. In
ontrast to what the 
ommuni
ation step metri
 suggests, we observe that in 
ertain settings the se
ondaryleader algorithm a
hieves the best overall running time, while all-to-all often has the worst performan
e.The running time of ring was usually less than double the running times of the other algorithms.Why does the 
ommuni
ation step metri
 fail to 
apture the a
tual algorithm behavior over the Internet?Firstly, not all 
ommuni
ation steps have the same 
ost, e.g., a message from MIT to Cornell 
an arrivewithin 20 ms., while a message from MIT to Taiwan may take 125 ms. Se
ondly, the laten
y on TCP linksdepends not only on the underlying message laten
y, but also on the loss rate. If a message sent over aTCP link is lost, the message is retransmitted after a timeout whi
h is larger than the average round-triptime on the link. Therefore, if one message sent by an algorithm is lost, the algorithm's overall running time
an be more than doubled. Sin
e algorithms that ex
hange less messages are less sus
eptible to messageloss, they are more likely to perform well when loss rates are high. This explains why the overall runningtime of all-to-all is miserable in the presen
e of lossy links. Additionally, message laten
ies and loss rateson di�erent 
ommuni
ation paths on the Internet often do not preserve the triangle inequality [19, 15, 2℄,be
ause routing poli
ies at Internet routers often do not 
hoose the best possible path between two sites.2



This explains why se
ondary leader 
an a
hieve better performan
e by refraining from sending messages onvery lossy or slow paths.One general lesson from our study is that some 
ommuni
ation steps are more 
ostly than others. E.g.,it is evident that propagating information from only one host to all other hosts is faster than propagatinginformation from every host to ea
h of the other hosts.We suggest to re�ne the 
ommuni
ation step metri
 as to en
ompass di�erent kinds of steps. One 
ostparameter, �1, 
an be asso
iated with the overall running time of a step that propagates information fromall hosts to all hosts. This step 
an be implemented using the most appropriate algorithm for the parti
ularsetting where the algorithm is deployed; the results of the study in [4℄ 
an help 
hoose the most appropriatealgorithm. A di�erent (assumed smaller) 
ost parameter, �2, 
an be asso
iated with a step that propagatesinformation from one host to all other hosts. Another 
ost parameter, �3 
an be asso
iated with propagatinginformation from a quorum of the hosts to all the hosts1, et
.This more re�ned metri
 
an then be used to revisit known lower and upper bound results. E.g., [14℄presents a tight lower bound of two 
ommuni
ation steps for failure-free exe
utions of 
onsensus in pra
ti
almodels. Under the more re�ned metri
, the lower bound is 2�1, whereas known algorithms (e.g., [16, 7℄)a
hieve running times of �2 +�3.4 Con
lusionsGathering data about Internet 
hara
teristi
s in general, and the behavior of distributed algorithms over theInternet in parti
ular, is extremely important. Su
h data 
an be at the basis of more realisti
 theoreti
al
omplexity metri
s, and 
an lead to more e�e
tive design of distributed algorithms and systems. We havedes
ribed a resear
h e�ort that studies one aspe
t of distributed algorithm behavior over the Internet; othersare yet to be explored.Referen
es[1℄ D. A. Agarwal, L. E. Moser, P. M. Melliar-Smith, and R. K. Budhia. The Totem multiple-ring orderingand topology maintenan
e proto
ol. ACM Trans. Comput. Syst., 16(2):93{132, May 1998.[2℄ D. G. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay networks. In SOSP,O
t. 2001.[3℄ �O. Babao�glu. On the reliability of 
onsensus-based fault-tolerant distributed 
omputing systems. ACMTrans. Comput. Syst., 5(4):394{416, 1987.[4℄ O. Bakr and I. Keidar. Evaluating the running time of a 
ommuni
ation round over the Internet. InACM Symposium on Prin
iples of Distributed Computing (PODC), July 2002. To appear.[5℄ Z. Bar-Joseph, I. Keidar, T. Anker, and N. Lyn
h. QoS preserving totally ordered multi
ast. InF. Butelle, editor, 5th International Conferen
e On Prin
iples Of DIstributed Systems (OPODIS), pages143{162, De
ember 2000. Spe
ial issue of Studia Informati
a Universalis.[6℄ Z. Bar-Joseph, I. Keidar, and N. Lyn
h. Ealy-delivery dynami
 atomi
 broad
ast. Te
hni
al ReportMIT-LCS-TR-840, MIT Laboratory for Computer S
ien
e, April 2002.[7℄ T. D. Chandra and S. Toueg. Unreliable failure dete
tors for reliable distributed systems. J. ACM,43(2):225{267, Mar. 1996.[8℄ S. Floyd and V. Paxson. DiÆ
ulties in simulating the internet. IEEE/ACM Transa
tions on Networking,9(4):392{403, August 2001. An earlier version appeared in Pro
eedings of the 1997 Winter SimulationConferen
e, De
ember 1997.1In future experiments we intend to evaluate a primitive that waits for responses from a quorum of hosts.3



[9℄ J. N. Gray. Notes on database operating systems. In Operating Systems: An Advan
ed Course, Le
tureNotes in Computer S
ien
e, volume 60, pages 393{481. Springer Verlag, Berlin, 1978.[10℄ R. Guerraoui and A. S
hiper. The de
entralized non-blo
king atomi
 
ommitment proto
ol. In IEEEInternational Symposium on Parallel and Distributed Pro
essing (SPDP), O
tober 1995.[11℄ K. W. Ingols and I. Keidar. Availability study of dynami
 voting algorithms. In 21st InternationalConferen
e on Distributed Computing Systems (ICDCS), pages 247{254, April 2001.[12℄ I. Keidar and D. Dolev. In
reasing the resilien
e of distributed and repli
ated database systems. J. Com-put. Syst. S
i. spe
ial issue with sele
ted papers from ACM SIGACT-SIGMOD Symposium on Prin
iplesof Database Systems (PODS) 1995, 57(3):309{324, De
. 1998.[13℄ I. Keidar and K. Marzullo. The need for realisti
 failure models in proto
ol design. In 4th InternationalSurvivability Workshop (ISW) 2001/2002, Mar
h 2002.[14℄ I. Keidar and S. Rajsbaum. On the 
ost of fault-tolerant 
onsensus when there are no faults { a tutorial.Te
hni
al Report MIT-LCS-TR-821, MIT Laboratory for Computer S
ien
e, May 2001. Preliminaryversion in SIGACT News 32(2), pages 45{63, June 2001 (published May 15th 2001).[15℄ I. Keidar, J. Sussman, K. Marzullo, and D. Dolev. Moshe: A group membership servi
e for WANs.ACM Trans. Comput. Syst., 2002. To appear.[16℄ L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133{169, May 1998.[17℄ C. Livadas, I. Keidar, and N. Lyn
h. The 
ase for exploiting pa
ket loss lo
ality in multi
ast lossre
overy. In preparation, 2002.[18℄ V. Paxson. End-to-end Internet pa
ket dynami
s. In ACM SIGCOMM, September 1997.[19℄ S. Savage, A. Collins, E. Ho�man, J. Snell, and T. Anderson. The end-to-end e�e
ts of Internet pathsele
tion. In ACM SIGCOMM, pages 289{299, September 1999.[20℄ A. S
hiper. Early 
onsensus in an asyn
hronous system with a weak failure dete
tor. DistributedComputing, 10(3):149{157, 1997.[21℄ D. Skeen. Nonblo
king 
ommit proto
ols. In ACM SIGMOD International Symposium on Managementof Data, pages 133{142, 1981.[22℄ Y. Zhang, N. DuÆeld, V. Paxson, and S. Shenker. On the 
onstan
y of internet path properties. InACM SIGCOMM Internet Measurement Workshop, November 2001.

4


