Group Communication®

Idit Keidar
MIT Laboratory for Computer Science

June 2000, revised April 2001

Traditional communication models and protocols like TCP (see Transmission Control Protocol -
Internet Protocol (TCP-IP)) support point to point communication. Such protocols were designed
for applications involving communication between no more than two processes at a time, usually
a client and a server. Many modern applications do not adhere to this communication model.
Consider for example an on-line game being played by several participants around the world; or a
multi-media conference in which users see each other, talk to each other and also write on a shared
white board. These applications involve more than two users exchanging information. They require
multi-point to multi-point communication.

Group communication is a means for providing multi-point to multi-point communication, by
organizing processes in groups [1, 2, 3, 4]. A process is an instance of an executing program at a
certain location. A group (or process group) is a set of processes which are members of the group. So,
for example, a group can consist of the users playing an on-line game with each other, in the same
virtual universe. Another group can consist of the participants in a multi-media conference. Each
group is associated with a logical name (or address). Processes communicate with group members
by sending a message targeted to the group name; the group communication service delivers the
message to the group members. Sending a message to multiple recipients in this way is called
multicast (see Multicast Communication Systems).

Groups are usually dynamic, in the sense that the set of group members continuously changes.
Processes may choose when they wish to join or leave a group. For example, users can independently
start or stop playing a game at any time.

Typical group communication services

In the early 1980s, many researchers began to develop replicated databases and file systems which
required the coordination of multiple copies of the data. These replicated systems used mechanisms
for multi-point to multi-point communication among groups of processes internally. However, such
mechanisms were not exported as separate group communication services. Group communication
services per se began to emerge in the late 1980s. Since then, a large variety of group communication
services have been developed.

Group multicast services range from best-effort unreliable multicast (see Best-effort) to reliable
multicast, which ensures that messages sent among non-faulty processes are not lost; from unordered
services that deliver messages in arbitrarily different orders to different group members, to totally
ordered services that deliver messages in the same order to all the group members. For example, if

*Chapter in the Encyclopedia of Distributed Computing, Joseph Urban and Partha Dasgupta, editors, Kluwer
Academic Publishers. To be published.



processes p and g both receive multicasts m and n, then with a totally ordered service, both receive
m before n, or n before m. A reliable totally ordered service that delivers all the messages in the
same order to all the group members is called Atomic Broadcast (see Atomic Broadcast).

Most group communication services feature a group membership service which tracks the list of
the processes belonging to the group as it evolves over time, and reports these changes to the group
members. Group communication systems that provide membership services often support semantics
called Virtual Synchrony (see Virtual Synchrony), which help processes remain synchronized when
failures occur. More details are presented in the section on group membership.

Historically, the evolution of group communication systems began at extreme ends of the spec-
trum. On the unreliable end, the basis for supporting multicast on the Internet was laid by Deering
around 1989 with the introduction of the IP multicast extensions [5]. (See Multicast Communica-
tion Systems). On the reliable end, the Isis Reliable Computing Toolkit project was developed in
1987 at Cornell University [2]. Isis provided group membership and Virtual Synchrony semantics,
as well as several reliable multicast services with different ordering guarantees, for example, atomic
broadcast.

Unreliable group multicast systems typically provide good scalability, up to tens of thousands
of nodes, but their semantics are generally too weak for application developers to depend upon.
Messages are subject to long and unpredictable transmission delays, message loss, and out of order
delivery. Processes may crash and network links may fail. Such failures are hard to detect when
the communication delays are unpredictable and messages can be lost. These problems make it
extremely difficult to build network applications that behave predictably when failures occur.

Consider the on-line game example, a group of players can use group communication to inform
each other of their actions, as illustrated in Figure 1. Assume that some player, Alice, shoots at
another player, Bob. If the information about the shooting is sent in a message, what would happen
if the message did not reach Bob at all? To avoid this, we could use a reliable multicast service
that ensures that a message from a correct process reach all the correct participants. But then
what would happen if Alice failed shortly after shooting at Bob, and Bob did not receive Alice’s
last message, while another player, Carol, did? And assume Alice wishes to re-join the game (by
running the program again after its failure). How would Alice learn about the others’ current
locations when she re-joined? Or even in absence of failures, what would happen if Bob thought
that he has moved away before the shot but Alice thought that he attempted to move only after
the shot? These problems illustrate the difficulty of building reliable distributed applications, and
the need for a more powerful form of group communication.

Carol

Communication
System

Figure 1: Using group communication in an on-line game.



Reliable group communication systems that support Virtual Synchrony semantics greatly facil-
itate the development of fault-tolerant distributed applications. These systems serve as building
blocks, or “middleware” for reliable distributed applications. They abstract away some of the diffi-
culties of the network, such as those illustrated above. They create the illusion (or abstraction) of
an idealized network, where messages are never lost and never arrive out-of-order; where there is a
simple way to detect failures; and where failures are observed as happening “at the same time” by
all the non-faulty participants. This abstraction is especially useful for applications that maintain
replicated state of some sort (see the section on state machine replication), like the same picture of
a game in the example above. The main drawback of group communication systems that provide
such semantics is that they do not scale well beyond a few hundreds of processes.

In recent years, we have been witnessing increasing convergence of the two approaches. It is
clear that both scalability and reliability are important considerations, and current research focuses
on balancing the two. Scalable reliable multicast services for the Internet environment have been
developed, and improving such services is a very active research area (see Multicast Communication
Systems). At the same time, research on group communication systems that support Virtual
Synchrony focuses on scalability, on deployment in the Internet environment, and also on provision
of a wide range of multicast services with different semantics, including services that preserve the
quality of service (QoS) (see Quality of Service) of the underlying network.

Group membership

The task of a group membership service is to maintain a list of the currently active and connected
processes in the group. When this list changes (with new members joining and old ones departing
or failing), the group membership service reports the change to the group members. The output of
the membership service is called a view, consisting of the list of the currently active and connected
members in the group and a unique identifier. The membership service strives to deliver the same
view (consisting of the same member list and the same identifier) to mutually connected members.

When communication links fail, the network may partition into multiple mutually disconnected
network components. Different group membership services handle such situations in different ways.
Primary component membership services allow only one network component, called the primary
component, to continue running the service, whereas processes in other network components are
considered faulty. A partitionable membership service allows processes in all components to continue
running the service. With primary component membership, each non-faulty member observes the
same sequence of membership views, starting with the membership of the group at the time it joined,
and continuing until it leaves the group, crashes, or disconnects from the primary component. In
contrast, partitionable membership services allow multiple disjoint views of the same group to exist
concurrently in different network components.

The Isis group communication service supports primary component membership. Partitionable
membership was first introduced as part of the Hebrew University of Jerusalem’s Transis project
(see Transis), and was later supported by other group communication systems like the University
of California Santa Barbara’s Totem project (see The Totem System), The University of Bologna’s
Relacs project, as well as by Isis’ successors at Cornell: Horus and Ensemble. See related papers
in [1]; for a survey, see [4].

Group membership lies at the core of the Virtual Synchrony execution model (see Virtual
Synchrony). A key property of this model is “virtually synchronous delivery” [3, 4] (see Virtually
Synchronous Delivery); this property specifies that if the two views are delivered consecutively to
several processes, then exactly the same multicast messages are delivered to these processes between



these two views. Assume for example that the group communication service delivers to Bob the
view ({Alice, Bob, Carol}, 1) (recall that a view consists of a list of members and an identifier),
then a multicast message “Alice shoots”, and then the view ({Bob, Carol},2). Assume further that
the group communication service also delivers to Carol the view ({Alice, Bob, Carol}, 1) followed
by the view ({Bob, Carol},2). Then, the service must also deliver to Carol the message “Alice
shoots” between these two views.

The Virtual Synchrony (see Virtual Synchrony) execution model was first presented in the con-
text of a primary component membership service (in Isis). Several variations on Virtual Synchrony
semantics for both primary component and partitionable membership have been suggested. Brevity
precludes detailed discussion of the various semantics; for a comprehensive survey see [4].

State machine replication

One of the original motivations for group communication systems like Isis and for the Virtual
Synchrony model was supporting replication using the state machine approach. This motivation
encompasses a vast class of applications. In fact, replication occurs in most distributed systems.

Distributed systems typically maintain shared state of some sort. In some cases, the shared
state can be large, like a database or a file system. In other cases, the shared state can be small
— consisting, for example, of only the list of participants in a video conference, or the current
locations of players in an on-line game. Shared states are usually replicated among a group of
processes. Distributed systems employ replicated services to achieve fault-tolerance and to improve
performance by placing replicas close to where service is needed.

When the replicated state is being updated, all the replicas must be modified in a consistent
manner. To this end, a replication management protocol is employed. State machine replication [6,
7] (or active replication) is a common paradigm for replication management that has no centralized
control. This paradigm models services as deterministic state machines.

Deterministic state machines provide a general model for defining services and their semantics.
In this model, a service is defined as a state machine consisting of state variables, which encode its
state, and actions, (or commands), which modify its state and/or produce output. Each action is
implemented by a deterministic program which is executed atomically with respect to other actions.
The state machine specifies the computation semantics of the service: outputs of a state machine
are completely determined by the sequence of actions it executes.

With state machine replication, replicas are represented as identical deterministic state ma-
chines. The main idea behind state machine replication is as follows: if all replicas execute the
same sequence of actions, then all replicas remain in a consistent state, and produce identical se-
quences of outputs. In the presence of faults, the above requirement is imposed on all non-faulty
replicas.

Atomic broadcast along with Virtual Synchrony provide a convenient framework for state ma-
chine replication: replicas are organized as a group, and actions are invoked in response to the
delivery of multicast messages and views. Since messages and views are delivered in the same order
to all non-faulty replicas, consistency is preserved.

Let us re-visit the on-line game example above. If Alice shoots at Bob, and at the same time,
Bob moves away, then atomic broadcast ensures that Alice’s shot and Bob’s movement away from
the shot are reported to all the participants in the same order. Assume the movement is reported
first, then for every player, the state machine implementing the game executes the “move” action
before executing the “shoot” action. If the machine has a state variable representing the fact that
Bob is alive, then this variable remains set to true for all instances of the state machine.



Using group membership, Bob and Carol observe Alice’s failure by delivering a view that ex-
cludes her. The key property of Virtual Synchrony guarantees that either both Bob and Carol learn
of Alice’s shot before detecting her failure, or else neither one of them does. Group communication
systems often provide a state transfer service (see State Transfer), which facilitates the process of
bringing Alice up-to-date when she re-joins.

This article illustrates the power of group communication, and its utility for building distributed
applications. Brevity precludes discussion of the full spectrum of group communication services,
applications, and implementations. More information can be found in [1, 3, 4].

References

1. Communications of the ACM 39(4), special issue on Group Communications Systems, April 1996.

2. K. Birman, The Process Group Approach to Reliable Distributed Computing, Communications
of the ACM, 36 (12), 37-53, 1993.

3. K. Birman, Building Secure and Reliable Network Applications, Manning Publishing and Pren-
tice Hall, 1997.

4. G. V. Chockler, I. Keidar, and R. Vitenberg, Group Communication Specifications: A Compre-
hensive Study, ACM Computing Surveys, to appear.

5. S. Deering, Host Extensions for IP Multicasting, RFC 1112, August 1989.

6. L. Lamport, Time, Clocks, and the Ordering of Events in a Distributed System, Communica-
tions of the ACM 21(7), 558-565, July 1978.

7. F. B. Schneider, Implementing Fault Tolerant Services Using The State Machine Approach: A
Tutorial, ACM Computing Surveys 22(4), 299-319, December, 1990.



