
Optimal competitiveness for Symmetric
Rectilinear Steiner Arborescence

and related problems

Erez Kantor1? and Shay Kutten2??

1 MIT CSAIL, Cambridge, MA erezk@csail.mit.edu,
2 Technion, Haifa 32000, Israel. kutten@ie.technion.ac.il

Abstract. We present optimal competitive algorithms for two interre-
lated known problems involving Steiner Arborescence. One is the contin-
uous problem of the Symmetric Rectilinear Steiner Arborescence (SRSA),
whose online version was studied by Berman and Coulston as a sym-
metric version of the known Rectilinear Steiner Arborescence (RSA)
problem. A very related, but discrete problem (studied separately in the
past) is the online Multimedia Content Delivery (MCD) problem on
line networks, presented originally by Papadimitriou, Ramanathan, and
Rangan. An efficient content delivery was modeled as a low cost Steiner
arborescence in a grid of network×time they defined. We study here
the version studied by Charikar, Halperin, and Motwani (who used the
same problem definitions, but removed some constraints on the inputs).
The bounds on the competitive ratios introduced separately in the above
papers were similar for the two problems: O(logN) for the continuous
problem and O(logn) for the network problem, where N was the num-
ber of terminals to serve, and n was the size of the network. The lower
bounds were Ω(

√
logN) and Ω(

√
logn) correspondingly.

Berman and Coulston conjectured that both the upper bound and
the lower bound could be improved. We disprove this conjecture and
close these quadratic gaps for both problems. We present determinis-
tic algorithms that are competitive optimal: O(

√
logN) for SRSA and

O(min{
√

logn,
√

logN}) for MCD, matching the lower bounds for these
two online problems. We also present a Ω(3

√
logn) lower bound on the

competitiveness of any randomized algorithm that solves the online MCD
problem.

1 Introduction
We present optimal online algorithms for two known interrelated problems in-
volving Steiner Arborescences. The continuous one is the Symmetric Rectilinear
Steiner Arborescence (SRSA) problem [3, 5]. The online Steiner arborescence
problems are useful in modeling the time dimension in a process. Intuitively
(see, e.g. Papadimitriou at al., [11]), directed edges represent the passing of

? Supported by NSF grants Nos. CCF-1217506, CCF-0939370 and CCF-AF-0937274.
?? Supported in part by the ISF and by the Technion Gordon Center.

time. Since there is no way to go back in time in such processes, all the di-
rected edges are directed away from the initial state of the problem, resulting in
an arborescence. Additional examples given in the literature included processes
in constructing a Very Large Scale Integrated electronic circuits (VLSI), opti-
mization problems computed in iterations (where it was not feasible to return
to results of earlier iterations), dynamic programming, and problems involving
DNA, see, e.g. [3, 5, 8, 2].

The SRSA problem: A rectilinear line segment in the plane is either horizontal
or vertical. A rectilinear path contains only rectilinear line segments. This path is
also y-monotone if during the traversal, the y coordinates of the successive points
are never decreasing. The input is a set of requests R = {(x1, y1), ..., (xN , yN)}
called Steiner terminals (or points) in the positive quadrant of the plane. A
feasible solution to the problem is a set of rectilinear segments connecting all
the N terminals to the origin, where the path from the origin to each terminal
is a rectilinear y-monotone path. The goal is to find a feasible solution in which
the sum of lengths of all the segments is the minimum possible. If we also had
require the path connecting the origin to any point to be some shortest path
(both x-monotone and y-monotone), then the problem would have been referred
to as the Rectilinear Steiner Arborescence (RSA) problem [9, 14, 3, 10, 6].

Online model: In the online version of SRSA [3], the given points are pre-
sented to the algorithm with nondecreasing y-coordinates. After receiving a new
given point (terminal), the on-line SRSA algorithm must extend the existing
arborescence solution to incorporate the new point. There are two limitations:
(1) a line, once drawn, cannot be deleted, and (2) lines can only be drawn in the
region between the previous given point y-coordinates and upwards.

A very related, but discrete problem is the online Multimedia Content De-
livery (MCD) problem on line networks, presented originally by Papadimitriou,
Ramanathan, and Rangan [11]. (The formal definitions appear in Section 2). The
MCD problem considered a movie residing initially at some origin node and a
set of requests, each arriving at some node at some time. Serving a request at a
node v at time t meant delivering a movie copy to the requesting node v from
some node u which has a copy at time t; or delivering a copy to v at some time
t′ < t from u (which has a copy at time t′) and then storing the copy at v from
time t′ until time t.

There are two types of costs, the delivery cost associated with the cost of
sending a movie copy over the network edges and the storage cost associated
with the cost of storing a copies at the nodes. MCD captured the tradeoff
between the storage and the delivery costs. The goal is to serve all the requests
with minimal costs. An example of an algorithm would be to store, always, a
movie copy at the origin and serve every request by delivering a copy from the
origin at the time of the request. Such an algorithm would incur a high delivery
cost. Alternatively, a copy already delivered to some nodes, could be stored there,
and delivered later from there. This could reduce delivery costs, but incur storage
costs. Papadimitriou et al. defined a grid of network×time (detailed in Section
2), were a request at a node u at time t was translated into a grid point (u, t). A

copy stored at a node u they modeled as an edge along the “time dimension” in
the above grid (from grid point (u, t) to grid point (u, t+ 1)), while the delivery
they modeled as edges along the “network dimension”. A solution (an efficient
content delivery plan), was modeled as a low cost Steiner arborescence leading
from the origin (node 0 at time 0) to all the requests (the Steiner points). Since
time is irreversible, their Steiner tree was (semi) directed away from the origin.

Papadimitriou et al. assumed some constraints on the input. Those con-
straints were lifted in the paper of Charikar, Halperin and Motwani [4]. The
upper bound (in Charikar et al.) on the competitive ratio was O(log n) for the
network problem (where n was the size of the network) and the lower bound was
Ω(
√

log n). The bounds of Berman and Coulston for SRSA were very similar.
The upper bound was O(logN), where N was the number of terminals3. The
lower bound was Ω(

√
logN). Clearly, these upper bounds were quadratic in the

lower bounds. Berman and Coulston conjectured that both the upper bound and
the lower bound could be improved.

Our results. In this paper, we disprove the above conjecture and close these
quadratic gaps for both problems. We first present an O(

√
log n) deterministic

competitive algorithm for MCD on the line. We then translate the online algo-
rithm to become a competitive optimal algorithm srsaon for SRSA. The com-
petitive ratio is O(

√
logN). Finally, we translate srsaon back to solve the MCD

problem. This reverse translation improves the upper bound to O(min{
√

log n,√
logN}). That is, this final algorithm is competitive optimal for MCD even

in the case that the number of requests is small. Intuitively, the “reverse trans-
lation” gets rid of the dependance on the network size, using the fact that in
the definition of SRSA, there is no network. (This last trick may be a useful
twist on the common idea of a translation between continuous and discrete prob-
lems). We also present an Ω(3

√
log n) lower bound on the competitiveness of any

randomized algorithm that solves the online MCD problem.

Some additional related work. As pointed out in [4], MCD also motivated
as a variant of a problem that is useful for data structures for the maintenance
of kinematic structures, with numerous applications. Of course, Steiner trees,
in general, have many applications, see e.g. [7] for a rather early survey that
already included hundreds of items. SRSA is a variant of the Rectilinear Steiner
Arborescence (continuous) problem RSA. The offline version of RSA was studied
e.g. by Rao, Sadayappan, Hwang, and Shor [14]. RSA was attributed to [10, 6]
who gave two different exponential time algorithms. PTAS for RSA and SRSA
were presented by [9] and [5], respectively. A generalization of the logarithmic
upper bound of online MCD to general networks appears in [1].

Paper structure. Section 3 contains an optimal upper bound on the competi-
tive ratio for MCD as a function of the network size. In Section 4, the above is
translated to a tight upper bound for SRSA. In Section 5, we use the solution of

3 In fact, the parameter they used was p, the normalized size of the network. For
simplicity, we present results for n, the size of the network. However, the same
results for p follow easily from Sections 4 and 5.

SRSA in order to improve the solution of MCD (to be optimal also as a func-
tion of the number of terminals). Finally, Section 6 includes the lower bound for
randomized algorithms. Because of space considerations, most of the details in
the last three sections were moved and will appear in the full version.

2 Preliminaries

The SRSA problem and its online version was given in the introduction. This
section contains formal definitions and notations for the network×time grid, as
well as the MCD problem and its online version on that grid. Finally, it contains
the offline algorithm of [4] for MCD, which we use later as a tool.
The network×time grid A line network L(n) = (Vn, En) is a network whose
vertex set is Vn = {1, ..., n} and its edge set is En = {(i, i+ 1) | i = 1, ..., n− 1}.
Given a line network L(n) = (Vn, En), construct ”time-line” graph L(n) =
(Vn, En), intuitively, by “layering” multiple replicas of L(n), one per time unit,
where in addition, each node in each replica is connected to the same node in
the next replica . Formally, the node set Vn contains a node replica (sometimes
called just a replica) (v, t) of every v ∈ Vn, for every time step t ∈ N. That
is, Vn = {(v, t) | v ∈ Vn, t ∈ N}. The set of edges En = Hn ∪ An contains
horizontal edges Hn = {((u, t), (v, t)) | (u, v) ∈ En, t ∈ N}, connecting network
edges in every time step (round), and directed vertical edges, called arcs, An =
{((v, t), (v, t + 1)) | v ∈ Vn, t ∈ N}, connecting different copies of Vn. When it
is clear from the context, we may omit n from Xn and write just X, for every
X ∈ {V,E,V,H,A}. Notice that L(n) can be viewed geometrically as a grid of
n by ∞ whose grid points are the replicas. Let d((u, s), (v, t)) be the distance
from (u, s) to (v, t). Formally, d((u, s), (v, t)) = t−s+ |v−u| (if s ≤ t, otherwise,
∞).

MCD: We are given a line network L(n), an origin node v0 ∈ V , and a set of
requests R ⊆ V. A feasible solution is a subset of edges F ⊆ E such that for every
request r ∈ R, there exists a path in F from the origin (v0, 0) to r. A horizontal
edge ((v, t), (v + 1, t)) ∈ F ∩H stands for sending a copy of the movie (or copy,
for short) from node v to node v + 1, or from node v + 1 to node v at time t,
while a vertical (directed) edge ((v, t), (v, t+ 1)) ∈ F ∩A stands for keeping the
movie in v’s cache at time step t for time t+ 1. For convenience, the endpoints
VF of edges in F are also considered parts of the solution. For a given algorithm
A, let FA be the solution of A, and let cost(A,R), (the cost of algorithm A), be
|FA|. The goal is to find a minimum cost feasible solution. In our analysis, opt
is the set of edges in some optimal solution whose cost is |opt|.
Online model In the online versions of the problem, the algorithm receives as
input a sequence of events. One type of events is a request in the (ordered) set
R of requests R = {r1, r2, ..., rN} (like in SRSA). A second type of events is a
time event (this event does not exists in SRSA), where we assume a clock that
tells the algorithm that no additional requests for time t are about to arrive (or
that there are no requests for some time t at all). The algorithm then still has
the opportunity to complete its calculation for time t (e.g., add arcs from some
replica (v, t) to (v, t+ 1)). Then time t+ 1 arrives.

When handling an event ev, the algorithm only knows the following: (a) all
the previous requests r1, ..., ri; (b) time t; and (c) the solution arborescence Fev
it constructed so far (originally containing only the origin). In each event, the
algorithm may need to make decisions of two types, before seeing future events:

(1.MCD) If the event is the arrival of a request ri = (vi, ti), then from which current
(time ti) cache (a point already in the solution arborescence Fev when ri
arrives) to serve ri by adding horizontal edges to Fev.

(2.MCD) If this is the time event for time t, then at which nodes to store a copy for
time t + 1, for future use: select some replica (or replicas) (v, t) already in
the solution Fev and add to Fev an edge directed from (v, t) to (v, t+ 1).

Note that, at time t, the online algorithm cannot add nor delete any edge with
an endpoint that corresponds to previous times. Similarly to e.g. [1, 11, 13, 12,
4], we assume that at least one copy must remain in the network at all times4.

A tool: the offline algorithm Triangle of Charikar et al. Consider a
request set R = {r0 = (v0, 0), r1 = (v1, t1), ..., rN = (vN , tN)} such that 0 ≤
t1 ≤ t2 ≤ ... ≤ tN . When Algorithm Triangle starts, the solution includes
just r0 = (v0, 0) (intuitively, a “pseudo request”). Then, Triangle handles,
first, request r1, then request r2, etc... In handling a request ri, the algorithm
may add some (possibly “past”) edges to the solution. (It never deletes any edge
from the solution.) After handling ri, the solution is an arborescence rooted at r0
that spans the request replicas r1, ..., ri. For each such request ri ∈ R, Triangle
performs the following.

(T1) Choose a replica qti = (uti , s
t
i) s.t. qti is already in the solution and the

distance from qti to ri is minimum (over the replicas already in the solution).
Call qti the serving replica of ri.

(T2) Define the radius ρti of ri as ρti = d(qti , ri). Also define the base5 Base(i)
of ri as the set of replicas at time ti of distance at most ρti from ri. That is,
Base(i) = {q = (v, ti) ∈ V | d(ri, q) ≤ ρti }. Similarly, the edge base of ri is
BaseH(i) = {(r, q) ∈ H | r, q ∈ Base(i)}.

(T3) Deliver a copy to each replica in Base(i). That is, node uti stores a copy from
time sti to time ti. More formally, add the arcs of PA[(uti , s

t
i), (uti , ti)] =

{((uti , z), (uti , z + 1)) | sti ≤ z < ti} to the solution.
(T4) Deliver a copy to all replicas in Base(i). That is, add all the edges of

BaseH(i) to the solution, except the ones that close circle6 (if such exists).

It is easy to verify [4] that the cost of Triangle for serving ri is at most
3ρti . Denote by Ft = Ht ∪ At the feasible solution of Triangle, where
Ht ⊆ ∪Ni=1BaseH(i) andAt = ∪Ni=1PA[(uti , s

t
i), (uti , ti)]. Note that Ft is an ar-

borescence rooted at (v0, 0) spanning the base replicas of Base = ∪Ni=1Base(i).
Rewording the theorem of [4], somewhat,

4 Alternatively, the system (not the algorithm) can have the option to delete the movie
altogether, this decision must then be made known to the algorithm. At least one of
these natural assumptions is also necessary for having a competitive algorithm.

5 The word “base” comes from the notation used in [4] for Algorithm Triangle.
There, Base(i) is a base of the triangle.

6 For convenience of the analysis we want the solution to be a tree.

Theorem 21 [4] Ft is a 3-approximate solution. Also,
∑N
i=1 ρ

t
i ≤ |opt|.

3 Optimal online algorithm for MCD

Algorithm LINEon. Like Algorithm Triangle, Algorithm Lineon handles
requests one by one, according to the order of arrival. However, in step (T3),
Triangle may perform an operation that no online algorithm can perform (if
sti < ti). Serving a request ri must be performed from some replica qon

i =
(uon
i , ti) ∈ V[ti] that holds a copy at time ti in the execution of the online

algorithm on R. Thus (in addition to selecting from which nodes to deliver
copies), algorithm Lineon at time ti − 1 had to also select the nodes that store
copies for the consecutive time ti (so that qon

i mentioned above would be one of
them). Let us start with some definitions.

General definitions and notations. Consider an interval J = {v, v+1, ..., v+
ρ} ⊆ V and two integers s, t ∈ N, s.t. s ≤ t. Let J [s, t] be the “rectangle
subgraph” of L(n) corresponding to vertex set J and time interval [s, t]. This
rectangle consists of the replicas and edges of the nodes of J corresponding to
time interval [s, t]. For a given subsets V ′ ⊆ V, H′ ⊆ H and A′ ⊆ A, denote
by (1) V ′[s, t] replicas of V ′ corresponding to times s, ..., t. Define similarly (2)
H′[s, t] for horizontal edges ofH′; and (3)A′[s, t] arcs ofA′. (When s = t, we may
write X [t] = X [s, t], for X ∈ {J,V ′,H′}.) Consider also two nodes v, u ∈ V . Let
PH[(v, t), (u, t)] = PH[(u, t), (v, t)] be the set of horizontal edges of the shortest
path from (v, t) to (u, t).

Partitions of [1, n] into intervals. Define m = n/∆ for some positive integer
∆ to be chosen later. For convenience, we assume that m = n/∆ is a power of 2.
(It is trivial to generalize it). Define logm+ 1 levels of partitions of the interval
[1, n]. In level l, partition [1, n] into m/2l = n/∆2l intervals, I l1, I l2,...,I lm/2l , each

of size ∆2l. I lj = {∆(j − 1) · 2l + k | k = 1, ...,∆2l}, for every 1 ≤ j ≤ m/2l and
every 0 ≤ l ≤ logm. Let I be the set of all such intervals. Let `(I) be the level
of an interval I ∈ I, i.e., `(I lj) = l. We say that I is a level `(I) interval. Denote

by I l(v) (for every node v ∈ V and every level l = 0, ..., logm) the interval in
level l that contains v. That is, I l(v) = I lk, where k =

⌊
v
∆2l

⌋
+ 1.

For a given interval I lj ∈ I, denote by NR(I lj), for 1 ≤ j < m/2l (respectively,

NL(I lj), for 1 < j ≤ m/2l) the neighbor interval of level l that is on the right

(resp., left) of I lj . That is, NL(I lj) = I lj−1 and NR(I lj) = I lj+1. Define that

NL(Ii1) = ∅ and NR(Iim/2l) = ∅. Let N(I) = NL(I) ∪ I ∪NR(I). We say that

N(I) is the neighborhood of I.

Active intervals. An interval I ∈ I is called active at time t, if Base ∩ I[t−
2`(I), t] 6= ∅. Intuitively, Triangle kept a movie copy in, at least, one of the
nodes of I, at least once, and “not too long” before time t. We say that I
stays-active, intuitively, if I is not “just about to stop being active”, that is, if
Base ∩ I[t− 2`(I) + 1, t] 6= ∅.

Denote by Ct+1 the set of replicas corresponding to the nodes that store
copies from time t to time t+ 1 in a Lineon execution. Also, C0 = {r0 = (v0, 0)}

(we choose to store a copy in v0 always). To help us later in the analysis, we also
added an auxiliary set commit ⊆ {〈I, t〉 | I ∈ I, t ∈ N}. Initially, commit← ∅.
For each time t = 0, 1, 2, ..., consider first the case that there exists at least
one request corresponding to time t, i.e., R[t] = {rj , ..., rk} 6= ∅. Then, for each
request ri ∈ R[t], Lineon simulates Triangle to find the radius ρti and the
set of base replicas Base(i) of ri. Next, Lineon delivers a copy to every such
base replica r ∈ Base(i) (this is called the “delivery phase”). That is, for each
i = j, ..., k do:

(D1) choose a closest (to ri) replica qon
i = (uon

i , t) of time t already in the solution;
(D2) add the path Hon(i) = PH[qon

i , ri] ∪BaseH(i) to the solution.

Let Von(i) = {r | (r, q) ∈ Hon(i)}. (Note that rj is served from Ct, after that,
rj+1 is served from Ct∪Von(j), etc.) Clearly, the delivery phase of time t ensures
that (at least) the nodes of Ct ∪ Base[t] have copies at the end of that phase.
It is left to decide which of the above copies to store for time t + 1. That is
(the “storage phase”), Lineon chooses the set Ct+1 ⊆ Ct ∪ Base[t]. Initially,
Ct+1 ← {(v0, t + 1)} (as we choose to store a copy at v0). Then, for each level
l = 0, ..., logm, in an increasing order, select as follows.

(S1) While there exists a level l interval I ∈ I that is (i) stays-active at t; but (ii)
no replica has been selected in I’s neighborhood (i.e., Ct+1∩N(I)[t+1] = ∅),
then perform steps (S1.1-S1.3) below.

(S1.1) Add the tuple 〈I, t〉 to the set commit (we say that I commits at time t).
(S1.2) Select some replica (v, t) ∈ Base[t]∪Ct such that v ∈ N(I) (by Observation

1 below, such a replica does exist).
(S1.3) Add (v, t+ 1) to Ct+1 and add the arc ((v, t), (v, t+ 1)) to the solution.

The pseudo code of Lineon and an example for an execution of Lineon are given
in the full version. The solution constructed by Lineon is denoted Fon = Hon∪
Aon, where Hon = ∪Ni=1Hon(i) represents the horizontal edges added in the
delivery phases and Aon = {((v, t), (v, t+1)) | (v, t+1) ∈ Ct+1 and t = 0, ..., tN}
represents the arcs added in the storage phase. Before the main analysis, we
make some easy-to-prove but crucial observations. For completeness, their proofs
appear in full version (however, they are pretty clear from step S1). Recall that
the notation of active (including stays-active) refer to the fact that the nodes of
some base replicas belong to some interval I in the (“recent”) past. Observations
1 and 2 state, intuitively, that Lineon leaves a copy in the neighborhood N(I)
of I as long as I is active.

Observation 1 (“Well defined”). If an interval I ∈ I is stays-active at time
t, then there exists a replica (v, t) ∈ Ct ∪Base[t] such that v ∈ N(I).

Observation 2 (“An active interval has a nearby copy”). If an interval
I is active at time t, then, either (i) there is some base replica in I’s neighborhood
at t (Base∩N(I)[t] 6= ∅), or (ii) at least one of the nodes of N(I) stores a copy
for time t (N(I)[t] ∩ Ct 6= ∅).

Observation 3 (“Bound from above on |Aon|”). |Aon| ≤ |commit|+ tN .

3.1 Analysis of LINEon

We, actually, prove that cost(Lineon
,R)

cost(Triangle,R)
= O(

√
log n). This implies the de-

sired competitive ratio of O(
√

log n) by Theorem 21. We first show, that the num-
ber of horizontal edges in Hon (“delivery cost”) is O (∆ · cost(Triangle,R)).
Then, we show, that the the number of arcs in Aon (“storage cost”) is O(logn

∆ ·
cost(Triangle,R)). Optimizing ∆, we get a competitiveness of O(

√
log n).

Delivery cost analysis. For each request ri ∈ R, the delivery phase (step
(D2)) adds Hon(i) = PH[qon

i , ri] ∪ BaseH(i) to the solution. Define the online
radius of ri as ρon

i = d(qon
i , ri). Since |BaseH(i)| ≤ 2ρti , it follows that,

|Hon| ≤
N∑
i=1

(
ρon
i + 2ρti

)
. (1)

It remains to bound ρon
i as a function of ρti from above. Intuitively, ρti includes

the distance from some base replica qi = (ui, si) ∈ Base to ri = (vi, ti). That is,
ρti includes the distance from vi to ui and the time difference between si and ti.
Restating Observation 2 somewhat differently (Claim 4 below), we can use the
distance |vi − ui| ≤ ρti and the time difference ti − si ≤ ρti for bounding ρon

i .
That is, we show that Lineon has a copy at time ti (of ri) at a distance at most
4∆ρti from ui (of qi). Since, |vi, ui| ≤ ρti , Lineon has a copy at distance at most
(4∆ + 1)ρti from vi (of ri). Throughout, since lack of space some of the proofs
are omitted.

Lemma 4 Consider some base replica (v, t) ∈ Base and some ρ > 0, such that,
t+ρ ≤ tN . Then, there exists a replica (w, t+ρ) ∈ Ct+ρ such that |v−w| ≤ 4∆ρ.

Lemma 5 ρon
i ≤ (4∆+ 1) · ρti .

The following corollary follows from the above lemma, Ineq. (1) and Theorem
21.

Corollary 1. |Hon| ≤ (4∆+ 3) · |opt|.

Storage cost analysis. By Observation 3, it remains to bound the size of
|commit| from above. Let commit(I, t) = 1 if 〈I, t〉 ∈ commit (otherwise 0).
Hence, |commit| =

∑
I∈I

∑∞
t=0 commit(I, t). We begin by bounding the number

of commitments in Lineon made by level l = 0 intervals.

Observation 6
∑
I∈{J∈I|`(J)=0} commit(I, t) ≤

∣∣Base
∣∣.

The following is our main lemma;

Lemma 7 |commit| ≤ 3
∣∣At∣∣+ 6 logn

∆

∣∣Ht
∣∣+ |Base|.

Proof sketch. The |Base| term in the statement of the lemma follows from
Observation 6 for level l = 0 intervals. The rest of the proof deals with commit-
ments in intervals I ∈ I whose level `(I) > 0. We now group the commitments
of each such an interval into “bins”. Later, we shall “charge” the commitments
in each bin on certain costs of the offline algorithm Triangle.

Consider an input R and some interval I ∈ I of level `(I) > 0. We say
that I is a committed-interval if I commits at least once in the execution of
Lineon on R. For each committed-interval I (of level `(I) > 0), we define
(almost) non-overlapping “sessions” (one session may end at the same time
the next session starts; hence, two consecutive sessions may overlap on their
boundaries). The first session of I does not contain any commitments (and is
termed an uncommitted-session); it begins at time 0 and ends at the first time
that I contains some base replica. Every other session (of I) contains at least
one commitment (and is termed a committed-session).

Each commitment (in Lineon) of I belongs to some committed session. Given
a commitment 〈I, t〉 ∈ commit that I makes at time t, let us identify 〈I, t〉’s
session. Let t− < t be the last time (before t) there was a base replica in I.
Similarly, let t+ > t be the next time (after t) there will be a base replica in
I (if such a time does exist; otherwise, t+ = ∞). The session of commitment
〈I, t〉 starts at t− and ends at t+. Similarly, when talking about the i’s session
of interval I, we say that the session starts at t−i (I) and ends at t+i (I). When I
is clear from the context, we may omit (I) and write t−i , t+i . A bin is a couple
(I, i) of a commitment-interval and the ith commitment-session of I. Clearly, we
assigned all the commitments (of level l > 0 intervals) into bins.

Observation 8 The bins do not overlap (except, perhaps, on their boundaries).

Let us now point at costs of algorithm Triangle on which we shall “charge”
the set of commitments commit(I, i) in bin (I, i). We now consider only a bin
(I, i) whose committed session is not the last. Note that the bin corresponds to
a rectangle of |I| by t+i − t

−
i replicas. Expand the bin by |I| replicas left and |I|

replicas right, if such exist (to I’s neighborhood N(I)). This yields the payer of
bin (I, i); that is the payer is a rectangle subgraph of |N(I)| by t+i − t

−
i replicas.

We point at specific costs Triangle had in this payer.
Recall that every session of I, except may the last, must ends with a base

replica in I. Let (v, t+i) ∈ Base∩I[t+i] be some base replica in I at the ending time
of the session. The solution of Triangle must contain a route (Triangle route)
that starts at the root and reaches (v, t+i) by the definition of a base replica. For
the charging, we use some (detailed below) of the edges in the intersection of
the Triangle route and the payer rectangle.

The easiest case (EB, for Entrance from Below) is that the Triangle route
enters the payer at the payer’s bottom (t−i) and stays in the payer until t+i . Then,
each time (t−i < t < t+i) there is a commitment in the bin, there is also an arc at
in the Triangle route (from time t to time t+ 1). We charge that commitment
on that arc at. Intuitively, the same arc at may be charged also for one bin on the
left of (I, i) and one bin on its right, since the payer rectangles are 3 times wider
than the bins. Note that arc at may also belong to additional O(log n) payers (of

bins of intervals that contain I or are contained in I). The crucial point is that
at is not charged for those additional bins. That is, we claim that there are no
commitments for those other bins. Intuitively, Lineon was designed such that
if I commits at time t, Lineon also stores a copy in I’s neighborhood for time
t+ 1. Hence, an interval J whose neighborhood contains the neighborhood of I,
does not need to commit (and the test fails in (S1) in Lineon). Thus, an arc of
the Triangle route is charged only by 3 commitments at most.

In the remaining case (SE, for Side Entrance), the Triangle route enters
the payer from either the left or the right side of the payer. (That is, Triangle
delivers a copy from some other node u outside I’s neighborhood, rather than
stores copies at I’s neighborhood from some earlier time. Therefore, the route
must “cross” either the left neighbor interval of I or the right neighbor interval
in that payer. Thus, there exists at least |I| = ∆2`(I) horizontal edges in the
intersection between the payer (payer(I, i)), of (I, i) and the Triangle route.
On the other hand, the number of commitments in bin (I, i) is 2`(I) at most.
(To commit, an interval must be active; to be active, it needs a base replica
in the last 2`(i) times; a new base replica would end the session.) That is, we
charged the payer ∆ times more horizontal edges than there are commitments in
the bin. On the other hand, each horizontal edge participates in O(log n) payers
(payers of 3 intervals at most in each level; and payers of 2 bins of each interval
at most, since two consecutive sessions may intersect only at their boundaries).
This leads to the term 6 logn

∆ before the |Ht| in the statement of the lemma.
For each interval I, it is left to account for commitments in I’s last session.

That is, we now handle the bin (I, i′) where I has i′ commitment-sessions. This
session may not end with a base replica in I, so we cannot apply the argument
above that Triangle must have a route reaching a replica in I at t+i′ . On the
other hand, the first session of I (the uncommitted-session) does end with a base
replica in I, but has no commitments. Intuitively, we use the payer of the first
session of I to pay for the commitments of the last session of I. Specifically, in
the first session, the Triangle route must enter the neighborhood of I from the
side; (Note that the Triangle route still starts outside I; this because the origin
v0 who holds a copy, is not in I’s neighborhood; otherwise, I would not have
been a committed interval.) Hence, we apply the argument of case SE above.
(End of Proof sketch.)

We now optimize a tradeoff between the storage coast and the delivery cost of
Lineon. On the one hand, Lemma 7 shows that a large ∆ reduces the number of
commitments. By Observation 3, this means a large ∆ reduces the storage cost of
Lineon. On the other hand, corollary 1 shows that a small ∆ reduces the delivery
cost. To balance this tradeoff, we need to “manipulate” Lemma 7 somewhat,
since it uses variables that are different from those used in corollary 1. We use
the following observation (1) tN ≤ |opt| ≤ cost(Triangle,R); (2) |At| +
|Ht| = cost(Triangle,R); and (3) |Base| ≤ cost(Triangle,R). Substituting
the above (1)–(3) in Observation 3 and Lemma 7,

|Aon| ≤
(

5 +
3 log n

∆

)
· cost(Triangle,R). (2)

To optimize the tradeoff, fix ∆ =
√

10 log n. Corollary 1, and inequality (2) imply
that cost(Lineon,R) = |Aon| + |Hon| ≤ (8 +

√
10 log n) · cost(Triangle,R).

Thus, by Theorem 21, the following holds.

Theorem 31 Lineon is O(
√

log n)-competitive for MCD on the line network.

4 Optimal online algorithm for SRSA

Note that our solution for MCD (Section 3) does not yet solve SRSA. In MCD,
the X coordinate of every request (in the set R) is taken from a known set of
size n (the network nodes {1, 2, ..., n}). On the other hand, in SRSA, the X
coordinate of a point is arbitrary. Let us now transform, in three concenptual
stages Lineon into an optimal algorithm for the online problem of SRSA:

1. Given an instance of SRSA, assume temporarily (and remove the assump-
tion later) that the number N of points is known, as well as M , the maximum
X coordinate any request may have. Then, simulate a network where n ≥ N
and n = O(

√
logN), and the n nodes are spaced evenly on the interval be-

tween 0 and M . Transform each SRSA request to the nearest grid point.
Solve the resulting MCD problem.

2. Translate these results to results of the original SRSA instance.
3. Get rid of the assumptions.

% The first stage is easy. It turns out that “getting rid of the assumptions” is
also relatively easy. To simulate the assumption that M is known, guess that
M is some Mj . Whenever a guess fails, (a request ri = (xi, ti) arrives, where
xi > Mj), continue with an increased guess Mj+1. A similar trick is used for
guessing N . In implementing this idea, our algorithm turned out paying a cost
of ΣMj (Mj for a failed guess), while an algorithm that knew M could pay M
only once. IF Mj+1 is “sufficiently” larger than Mj , then ΣMj = O(M). The
“sufficiently larger” part turned out somewhat trickier for guessing N than for
guessing M .

The second stage above (translate the results) proved to be more difficult,
even in the case that N and M are known (and even equal). Intuitively, following
the first stage, each request ri = (xi, ti) is in some grid square, where the corners
of the square are points of the simulated MCD problem. If we normalize M to be
N , then the left bottom left corner of that square is (bxic, btic)). Had we wanted
an offline algorithm, we could have solved an instance of MCD, where the
points are (bx1c, bt1c), (bx2c, bt2c), (bx3c, bt3c), Then, translating the results
of MCD would have meant just augmenting with segments connecting each
(bxic, btic) to (xi, ti). Unfortunately, this is not possible in an online algorithm,
since (xi, ti) is not yet known at (btic). Similarly, we cannot use the upper left
corner of the square (for example) that way, since at time dtie, the algorithm
may no longer be allowed to add segments reaching the earlier time ti. Because
of the lack of space, we moved the rest of this proof.

Theorem 41 Algorithm srsaon is optimal and is O(
√

logN)-competitive.

5 Optimizing MCD for a small number of requests
Algorithm Lineon was optimal only as the function of the network size (Theorem
31). Recall that our solution for SRSA was optimal as a function of the number
of requests. We transform that algorithm back to solve MCD, and obtain the
promised competitiveness, O(min{

√
log n,

√
logN}).

6 Randomized Lower Bound for Line Networks

Our lower bound on the competitive ratio of randomized algorithms then follows
from Yaos min-max principle [15] appears in the full version.

Theorem 61 The competitive ratio of any randomized online algorithm for
MCD on line networks Ω(3

√
log n).

Acknowledgment We would like to thank to Reuven Bar-Yehuda and Dror
Rawitz for insights and helpful dissections.

References

1. R. Bar-Yehuda, E. Kantor, S. Kutten, and D. Rawitz. Growing half-balls: Mini-
mizing storage and communication costs in cdns. In ICALP, pages 416–427, 2012.

2. W. Bein, M. Golin, L. Larmore, and Y. Zhang. The knuth-yao quadrangle-
inequality speedup is a consequence of total monotonicity. TOPLAS, 6(1), 2009.

3. P. Berman and C. Coulston. On-line algorrithms for steiner tree problems. In
STOC’97, pages 344–353, 1997.

4. M. Charikar, D. Halperin, and R. Motwani. The dynamic servers problem. In
SODA’98, pages 410–419, 1998.

5. X. Cheng, B. Dasgupta, and B. Lu. Polynomial time approximation scheme for
symmetric rectilinear steiner arborescence problem. J. Global Optim., 21(4):385–
396, 2001.

6. R. R. Ladeira de Matos. A rectilinear arborescence problem. Dissertation, Uni-
versity of Alabama, 1979.

7. D.S. Richards F.K. Hwang. Steiner tree problems. Networks, 22(1):55–897, 1992.
8. A. Kahng and G. Robins. On optimal interconnects for vlsi. Kluwer, 1995.
9. B. Lu and L. Ruan. Polynomial time approximation scheme for rectilinear steiner

arborescence problem. Combinatorial Optimization, 4(3):357–363, 2000.
10. L. Nastansky, S. M. Selkow, and N. F. Stewart. Cost minimum trees in directed

acyclic graphs. Z. Oper. Res., 18:59–67, 1974.
11. C.H. Papadimitriou, S. Ramanathan, and P.V. Rangan. Information caching for

delivery of personalized video programs for home entertainment channels. In IEEE
International Conf. on Multimedia Computing and Systems, pages 214–223, 1994.

12. C.H. Papadimitriou, S. Ramanathan, and P.V. Rangan. Optimal information de-
livery. In 6th ISAAC, pages 181–187, 1995.

13. C.H. Papadimitriou, S. Ramanathan, P.V. Rangan, and S. Sampathkumar. Multi-
media information caching for personalized video-on demand. Computer Commu-
nications, 18(3):204–216, 1995.

14. S. Rao, P. Sadayappan, F. Hwang, and P. Shor. The rectilinear steiner arborescence
problem. Algorithmica, pages 277–288, 1992.

15. Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of
complexity. In FOCS’77, pages 222–227, 1977.

