
Optimal competitiveness for the Rectilinear

Steiner Arborescence problem

Erez Kantor1⋆ and Shay Kutten2⋆⋆

1 MIT CSAIL, Cambridge, MA erezk@csail.mit.edu,
2 Technion, Haifa 32000, Israel. kutten@ie.technion.ac.il

Abstract. We present optimal online algorithms for two related known
problems involving Steiner Arborescence, improving both the lower and
the upper bounds. One of them is the well studied continuous problem of
the Rectilinear Steiner Arborescence (RSA). We improve the lower bound
and the upper bound on the competitive ratio for RSA from O(logN)
and Ω(

√
logN) to Θ(logN

log logN
), where N is the number of Steiner points.

This separates the competitive ratios of RSA and the Symetric-RSA

(SRSA), two problems for which the bounds of Berman and Coulston
is STOC 1997 were identical. The second problem is one of the Multi-
media Content Distribution problems presented by Papadimitriou et al.
in several papers and Charikar et al. SODA 1998. It can be viewed as
the discrete counterparts (or a network counterpart) of RSA. For this
second problem we present tight bounds also in terms of the network
size, in addition to presenting tight bounds in terms of the number of
Steiner points (the latter are similar to those we derived for RSA).

1 Introduction

Steiner trees, in general, have many applications, see e.g. [12] for a rather early
survey that already included hundreds of items. In particular, Steiner Arbores-
cences3 are useful for describing the evolution of processes in time. Intuitively,
directed edges represent the passing of time. Since there is no way to go back in
time in such processes, all the directed edges are directed away from the initial
state of the problem (the root), resulting in an arborescence. Various examples
are given in the literature such as processes in constructing a Very Large Scale
Integrated electronic circuits (VLSI), optimization problems computed in itera-
tions (where it was not feasible to return to results of earlier iterations), dynamic
programming, and problems involving DNA, see, e.g. [4, 6, 13, 3]. Papadimitriou
at al. [19, 20] and Charikar et al. [5] presented the discrete version, in the context
of Multimedia Content Delivery (MCD) to model locating and moving caches

⋆ Supported in a part by NSF Awards 0939370-CCF, CCF-1217506 and CCF-AF-
0937274 and AFOSR FA9550-13-1-0042.

⋆⋆ Supported in part by the ISF, Israeli ministry of science and by the Technion Gordon
Center.

3 A Steiner arborescence is a Steiner tree directed away from the root.

for titles on a path graph. The formal definition of (one of the known versions)
of this problem, Directed-MCD, appears in Section 2.

We present new tight lower and upper bounds for two known interrelated
problems involving Steiner Arborescences:Rectilinear Steiner Arborescence (RSA)
and Directed-MCD (DMCD). We also deal indirectly with a third known ar-
borescence problem: the Symmetric-RSA (SRSA) problem by separating its
competitive ratio from that of RSA. That is, when the competitive ratios of
RSA and SRSA were discussed originally by Berman and Coulston [4], the
same lower and upper bounds were presented for both problems.

The RSA problem: This is a rather heavily studied problem, described also
e.g. in [17, 22, 4, 18, 9]. A rectilinear line segment in the plane is either horizontal
or vertical. A rectilinear path contains only rectilinear line segments. This path is
also y-monotone (respectively, x-monotone) if during the traversal, the y (resp.,
x) coordinates of the successive points are never decreasing. The input is a set
of requests R = {r1 = (x1, y1), ..., rN = (xN , yN)} called Steiner terminals (or
points) in the positive quadrant of the plane. A feasible solution to the problem
is a set of rectilinear segments connecting all the N terminals to the origin
r0 = (0, 0), where the path from the origin to each terminal is both x-monotone
and y-monotone (rectilinear shortest path). The goal is to find a feasible solution
in which the sum of lengths of all the segments is the minimum possible. The
above mentioned third problem, SRSA was defined in the same way, except that
the above paths were not required to be x-monotone (only y-monotone).

Directed-MCD defined in Section 2 is very related to RSA. Informally, one
difference is that it is discrete (Steiner points arrive only at discrete points)
whiling RSA is continuous. In addition, in DMCD each “X coordinates” rep-
resents a network nodes. Hence, the number of X coordinates is bounded from
above by the network size. This resemblance turned out to be very useful for us,
both for solving RSA and for solving DMCD.

The online version of RSA [4]: the given requests (terminals) are presented
to the algorithm with nondecreasing y-coordinates. After receiving the i’th re-
quest ri = (xi, yi) (for i = 1, ..., N), the on-line RSA algorithm must extend the
existing arborescence solution to incorporate ri. There are two additional con-
straints: (1) a line, once drawn (added to the solution), cannot be deleted, and
(2) a segment added when handling a request ri, can only be drawn in the re-
gion between yi−1 (the y-coordinates of the previous request ri−1) and upwards
(grater y-coordinates). If an algorithm obeys constraint (1) but not constraint
(2), then we term it a pseudo online algorithm. Note that quite a few algorithms
known as “online”, or as “greedy offline” fit this definition of “pseudo online”.

Additional Related works. Online algorithms for RSA and SRSA were pre-
sented by Berman and Coulston [4]. The online algorithms in [4] were O(logN)
competitive (where N was the number of the Steiner points) both for RSA and
SRSA. Berman and Coulston also presented Ω(

√
logN) lower bounds for both

continuous problems. Note that the upper bounds for both problems were equal,
and were the squares of the lower bounds. A similar gap for MCD arose from
results of Halperinet al. [11], who gave a similar competitive ratio of O(logN),

while Charikaret al. [5] presented a lower bound of Ω(
√
logn) for various variants

of MCD, where n was the network size. Their upper bound was again the square
of the lower bound. Berman and Coulston also conjectured that to close these
gaps, both the upper bound and the lower bound for both problems could be
improved. This conjecture was disproved in the cases of SRSA and of MCD on
undirected line networks [15]. The latter paper closed the gap by presenting an
optimal competitive ratio of O(

√
logN) for SRSA and O(min{√n,

√
logN}) for

MCD on the undirected line network with n nodes. They left the conjecture of
Berman and Coulston open for RSA and for MCD on directed line networks. In
the current paper, we prove this conjecture (for RSA and for Directed-MCD),
thus separating RSA and SRSA in terms of their competitive ratios.

Charikar et al. [5] also studied the the offline case for MCD, for which they
gave a constant approximation. The offline version of RSA is heavily studied. It
was attributed to [18] who gave an exponential integer programming solution and
to [9] who gave an exponential time dynamic programming algorithm. An exact
and polynomial algorithm was proposed in [24], which seemed surprising, since
many Steiner problems are NP-Hard. Indeed, difficulties in that solution were
noted by Rao et al. [22], who also presented an approximation algorithm. Effi-
cient algorithms are claimed in [7] for VLSI applications. However, the problem
was proven NP-Hard in [23]. (The rectilinear Steiner tree problem was proven
NP-Hard in [10]). Heuristics that are fast “in practice” were presented in [8]. A
PTAS was presented by [17].

An optimal logarithmic competitive ratio forMCD on general undirected net-
works was presented in [2]. They also present a constant off-line approximation
for MCD on grid networks.

On the relation between this paper and [15]. An additional contribution
of the current paper is the further development of the approach of developing
(fully) online algorithms in two stages: (a) develop a pseudo online algorithm;
and (b) convert the pseudo online into an online algorithm. As opposed to the
problem studied in [15] where a pseudo online algorithm was known, here the
main technical difficulty was to develop such an algorithm. From [15] we also
borrowed an interesting twist on the rather common idea to translate between
instances of a discrete and a continuous problems: we translate in both directions,
the discrete solutions helps in optimizing the continuous one and vice versa.

Our Contributions. We improve both the upper and the lower bounds of RSA

to show that the competitive ratio is Θ(logN
log logN

). This proves the conjecture for

RSA of Berman and Coulston [4] and also separates the competitive ratios of
RSA and SRSA. We also provide tight upper and lower bound for Directed-
MCD, the network version of RSA (both in terms of n and of N). The main
technical innovation is the specific pseudo online algorithm we developed here,
in order to convert it later to an online algorithm. The previously known offline
algorithms for RSA and for DMCD where not pseudo online, so we could not
use them. In addition to the usefulness of the new algorithm in generating the
online algorithm, this pseudo online algorithm may be interesting in itself: It
is O(1)-competitive for DMCD and for RSA (via the transformation) for a

different (but rather common) online model (where each request must be served
before the next one arrives, but no time passes between requests).
Paper Structure. Definitions are given in Section 2. The pseudo online algo-
rithm Square for DMCD is presented and analyzed in Section 3. In Section
4, we transform Square to a (fully) online algorithm D-Line

on for DMCD.
Then, Section 5 describes the transformation of the online DMCD algorithm
D-Line

on to become an optimal online algorithm for RSA, as well as a trans-
formation back from RSA to DMCD to make the DMCD online algorithm also
optimal in terms of n (not just N). These last two transformations are taken
from [15]. Finally, a lower bound is given in Section 6.

Because of space considerations, some of the proofs are omitted. However, all
the proofs are given in the full version [16]. Moreover, the best way to understand
the algorithms in this paper may be from a geometric point of view. Hence, in
[16], we added multiple drawings to illustrate both the algorithms and the proofs.

2 Preliminaries

The network×time grid (Papadimitriou et. al, [20]). A directed line network
L(n) = (Vn, En) is a network whose node set is Vn = {1, ..., n} and its edge set is
En = {(i, i+1) | i = 1, ..., n−1}. Given a directed line network L(n) = (Vn, En),
construct ”time-line” graph L(n) = (Vn, En), intuitively, by “layering” multiple
replicas of L(n), one per time unit, where in addition, each node in each replica
is connected to the same node in the next replica. Formally, the node set Vn

contains a node replica (sometimes called just a replica) (v, t) of every v ∈ Vn,
coresponding to each time step t ∈ N. That is, Vn = {(v, t) | v ∈ Vn, t ∈ N}.
The set of directed edges En = Hn ∪An contains horizontal directed edges Hn =
{((u, t), (v, t)) | (u, v) ∈ En, t ∈ N}, connecting network nodes in every time step
(round), and directed vertical edges, called arcs, An = {((v, t), (v, t + 1)) | v ∈
Vn, t ∈ N}, connecting different copies of Vn. When n is clear from the context,
we may write just X rather than Xn, for every X ∈ {V,E,V ,H,A}. Notice that
L(n) can be viewed geometrically as a grid of n by ∞ whose grid points are the
replicas. We consider the time as if it proceeds upward. We use such geometric
presentations also in the text, to help clarifying the description.

The DMCD problem. We are given a directed line network L(n), an origin
node v0 ∈ V , and a set of requests R ⊆ V . A feasible solution is a subset of
directed edges F ⊆ E such that for every request r ∈ R, there exists a path in F
from the origin (v0, 0) to r. Intuitively a directed horizontal edge ((u, t), (v, t))
is for delivering a copy of a multimedia title from node u to node v at time t.

A directed vertical edge (arc) ((v, t), (v, t + 1)) is for storing a copy of the
title at node v from time t to time t+ 1. For convenience, the endpoints VF of
edges in F are also considered parts of the solution. For a given algorithm A,
let FA be the solution of A, and let cost(A,R), (the cost of algorithm A), be
|FA|. (We assume that each storage cost and each delivery cost is 1.) The goal
is to find a minimum cost feasible solution. Let opt be the set of edges in some
optimal solution whose cost is |opt|.

Online DMCD. In the online versions of the problem, the algorithm receives
as input a sequence of events. One type of events is a request in the (ordered)
set R of requests R = {r1, r2, ..., rN}, where the requests times are in a non-
decreasing order, i.e., t1 ≤ t2 ≤ ... ≤ tN (as in RSA). A second type of events is
a time event (this event does not exists in RSA), where we assume a clock that
tells the algorithm that no additional requests for time t are about to arrive (or
that there are no requests for some time t at all). The algorithm then still has
the opportunity to complete its calculation for time t (e.g., add arcs from some
replica (v, t) to (v, t+ 1)). Then time t+ 1 arrives.

When handling an event ev, the algorithm only knows the following: (a) all
the previous requests r1, ..., ri; (b) time t; and (c) the solution arborescence Fev

it constructed so far (originally containing only the origin). In each event, the
algorithm may need to make decisions of two types, before seeing future events:

(1.DMCD) If the event is the arrival of a request ri = (vi, ti), then from which current
(time ti) cache (a point already in the solution arborescence Fev when ri
arrives) to serve ri by adding horizontal directed edges to Fev.

(2.DMCD) If this is the time event for time t, then at which nodes to store a copy for
time t + 1, for future use: select some replica (or replicas) (v, t) already in
the solution Fev and add to Fev an edge directed from (v, t) to (v, t+ 1).

Note that at time t, the online algorithm cannot add nor delete any edge with
an endpoint that corresponds to previous times. Similarly to e.g. [2, 19, 21, 20,
5], at least one copy must remain in the network at all times.

General definitions and notations. Consider an interval J = {v, v+1, ..., v+
ρ} ⊆ V and two integers s, t ∈ N, s.t. s ≤ t. Let J [s, t] be the “rectangle subgraph”
of L(n) corresponding to vertex set J and time interval [s, t]. This rectangle
consists of the replicas and edges of the nodes of J corresponding to every time
in the interval [s, t]. For a given subsets V ′ ⊆ V , H′ ⊆ H and A′ ⊆ A, denote
by (1) V ′[s, t] replicas of V ′ corresponding to times s, ..., t. Define similarly (2)
H′[s, t] for horizontal edges of H′; and (3) A′[s, t] arcs of A′. (When s = t, we
may write X [t] = X [s, t], for X ∈ {J,V ′,H′}.) Consider also two nodes v, u ∈ V

s.t. u ≤ v. Let PH[(u, t), (v, t)] be the set of horizontal directed edges of the path
from (u, t) to (v, t). Let PA[(v, s), (v, t)] be the set of arcs of the path from (v, s)
to (v, t). Let dist→∞((u, s), (v, t)) be the “directed” distance from (u, s) to (v, t) in
L∞ norm. Formally, dist→∞((u, s), (v, t)) = max{t− s, v − u}, if s ≤ t and u ≤ v

and dist→∞((u, s), (v, t)) = ∞, otherwise.

3 Algorithm Square, a pseudo online algorithm

This section describes a pseudo online algorithm named Square for the DMCD

problem. Developing Square was the main technical difficulty of this paper.
Consider a requests set R = {r0 = (0, 0), r1 = (v1, t1), ..., rN = (vN , tN)} such
that 0 ≤ t1 ≤ t2 ≤ ... ≤ tN . When Algorithm Square starts, the solution
includes just r0 = (0, 0). Then, Square handles, first, request r1, then, request

r2, etc... In handling a request ri, the algorithm may add some edges to the
solution. (It never deletes any edge from the solution.) After handling ri, the
solution is an arborescence rooted at r0 that spans the request replicas r1, ..., ri.
Denote by Square(i) the solution of Square after handling the i’th request.
For a given replica r = (v, t) ∈ V and a positive integer ρ, let

S[r, ρ] = [v − ρ, v]× [t− ρ, t]

denotes the rectangle subgraph (of the layered graph) whose top right corner is
r induced by the set of replicas that contains every replica q such that (1) there
is a directed path in the layer graph from q to r; and (2) the distance from q to
r in L∞ is at most ρ. For each request ri ∈ R, for i = 1, ..., N , Square performs
the following.

(SQ1) Add the vertical path from (0, ti−1) to (0, ti).

(SQ2) Let replica qclosei = (uclosei , sclosei) be such that qclosei is already in the solu-

tion Square(i−1) and (1) the distance in L∞ norm from qclosei to ri is min-
imum (over the replicas already in the solution); and (2) over those replicas

choose the latest, that is, sclosei = max{t ≤ ti | (uclosei , t) ∈ Square(i− 1)}.
Define the radius of ri as ρ

SQ(i) = dist→∞(qclosei , ri) = max{|vi−uclosei |, |ti−
sclosei |}. Call qclosei the closest replica of the i’th request.

(SQ3) Choose a replica qservei = (uservei , sservei) ∈ S[ri, 5 · ρSQ(i)] such that qservei

is already in the solution Square(i−1) and uservei is the leftmost node (over

the nodes corresponding to replicas of S[ri, 5 ·ρSQ(i)] that are already in the
solution). Call qservei the serving replica of the i’th request.

(SQ4) Deliver a copy from qservei to ri via (uservei , ti). This is done by storing a
copy in node uservei from time sservei to time ti, and then delivering a copy
from (uservei , ti) to (vi, ti) .

(SQ5) Store a copy in uservei from time ti to time ti + 4 · ρSQ(i) .

Intuitively, steps SQ1–SQ4 utilize previous replicas in the solution, while step
SQ5 prepares the contribution of ri to serve later requests. Note that Square is
not an online algorithm, since in step SQ4, it may add to the solution some arcs
corresponding to previous times. Such an action cannot be preformed by an on-
line algorithm. Denote by FSQ = HSQ∪ASQ the feasible solution Square(N) of
Square. Let Base(i) = {(u, ti) | uservei ≤ u ≤ vi} and let Base = ∪N

i=1Base(i)

(notice thatBase ⊆ FSQ because of step SQ4). Similarly, let tail(i) = {(uservei , t) |
ti ≤ t ≤ ti + 4ρSQ(i)} be the nodes of the path PA[(u

serve
i , ti), (u

serve
i , ti + 4 ·

ρSQ(i))] (added to the solution in step SQ5) and let tail = ∪N
i=1tail(i). Note

that FSQ is indeed an arborescence rooted at (0, 0).

Analysis of Square. First, bound the cost of Square as a function of the
radii (defined in SQ2).

Observation 1 cost(Square,R) ≤ 14
∑N

i=1 ρ
SQ(i).

(For lack of space, some of the proofs are omitted. Still, Observation 1 is obvious
from the description of Square.) It is left to bound from below the cost of the
optimal solution as a function of the radii.

Quarter balls. Our analysis is based on the following notion. A quarter-ball,
or a Q-ball, of radius ρ ∈ N centered at a replica q = (v, t) ∈ V contains every
replica from which there exists a path of length ρ to q 4 . For every request
ri ∈ R, denote by Q-ballsq(ri, ρ

SQ(i)) 5 (also Q-ballsq(i) for short) the

quarter-ball centered at ri with radius ρSQ(i).
Intuitively, for every request ri ∈ R′ (where R′ obey the observation’s con-

dition below), opt’s solution starts outside of Q-ballsq(i), and must reach ri

with a cost of ρSQ(i) at least.

Observation 2 Consider some subset R′ ⊆ R of requests. If the Q-balls,
Q-ballsq(i) and Q-ballsq(j), of every two requests ri, rj ∈ R′ are edges dis-

joint, then |opt| ≥ ∑
ri∈R′ ρ

SQ(i).

Covered and uncovered requests. Consider some request ri = (vi, ti) and its
serving replica qservei = (uservei , sservei) (see step SQ3). We say that ri is covered,

if vi − uservei ≥ ρSQ(i) (see SQ2 and SQ3). Intuitively, this means the solution

FSQ is augmented by the whole top of the square Square[ri, ρ
SQ(i)].Otherwise,

we say that ri is uncovered. Let cover = {i | ri is a covered request} and let
uncover = {i | ri is an uncovered request}. Given Observation 2, the following
lemma implies that

|opt| ≥
∑

i∈cover

ρSQ(i). (1)

Lemma 1. Consider two covered requests ri and rj . The quarter balls
Q-ballsq(i) and Q-ballsq(j) are edge disjoint.

The lemma follows easily from geometric considerations, see figures 5–6 and the
proof in [16]. By observations 1, 2, and Inequality (1), we have:

Observation 3 Square’s cost for covered requests is no more than 14 · opt.

It is left to bound the cost of Square for the uncovered requests.

Overview of the analysis of the cost of uncovered requests. Unfortu-
nately, unlike the case of covered requests, balls of two uncovered requests may
not be disjoint. Still, we managed to have a somewhat similar argument that we
now sketch. The formal analysis appears in [16]. Below, we partition the balls

4 This is, actually, the definition of the geometric place “ball”. We term them “quarter
ball” to emphasize that we deal with directed edges. That is, it is not possible to
reach (v, t) from above nor from the right.

5 Note that Q-ballsq(ri, ρ
SQ(i)) is different from S [ri, ρSQ(i)], since the first ball

considers distances in L2 norm and the last considers distances in L∞ norm.

of uncovered requests into disjoint subsets. Each has a representative request, a
root. We show that the Q-ball of roots are edge disjoint. This implies by Obser-
vation 1 and Observation 2 that the cost Square pays for the roots is smaller
than 14 times the total cost of an optimal solution. Finally, we show that the
cost of Square for all the requests in each subset is at most twice the cost of
Square for the root of the subset. Hence, the total cost of Square for the
uncovered requests is also just a constant times the total cost of the optimum.

To construct the above partition, we define the following relation: ball
Q-ballsq(j) is the child of Q-ballsq(i) (for two uncovered requests ri and
rj) intuitively, if the Q-ballsq(i) is the first ball (of a request later then rj)
such that Q-ballsq(i) and Q-ballsq(j) are not edge disjoint. Clearly, this
parent-child relation induces a forest on the Q-balls of uncovered requests. The
following observation follows immediately from the definition of a root.

Observation 4 The quarter balls of every two root requests are edge disjoint.

The above observation together with Observation 2, implies the following.

Observation 5 The cost of Square for the roots is 14 · |opt| at most.

It is left to bound the cost that Square pays for the balls in each tree (in the for-
est of Q-balls) as a constant function of the cost it pays for the tree root. Specifi-
cally, we show that the sum of the radii of the Q-balls in the tree (including that
of the root) is at most twice the radius of the root. This implies the claim for the
costs by Observation 1 and Observation 2. To show that, given any non leaf ball
Q-ballsq(i) (not just a root), we first analyze only Q-ballsq(i)’s “latest child”
Q-ballsq(j). That is, j = maxk{Q-ballsq(k) is a child of Q-ballsq(i)}. We
show that the radius of the latest child is, at most, a quarter of the radius of
Q-ballsq(i). Second, we show that the sum of the radii of the rest of the chil-
dren (all but the latest child) is, at most, a quarter of the radius of Q-ballsq(i)
too. Hence, the radius of a parent ball is at least twice as the sum of its children
radii. This implies that the sum of the radii of all the Q-balls in a tree is at
most twice the radius of the root.

The hardest technical part here is in the following lemma that, intuitively,
states that “a lot of time” (proportional to the request’s radius) passes between
the time one child ball ends and the time the next child ball starts, see Fig. 1.

Lemma 2. Consider some uncovered request ri which has at least two children.
Let Q-ballsq(j), Q-ballsq(k) some two children of Q-ballsq(i), such that

k < j. Then, tj − ρSQ(j) ≥ tk + 4ρSQ(k).

Intuitively, the radius of a parent Q-ball is covered by the radii of its children
Q-balls, plus the tails (see step SQ5) between them. Restating the lemma, the
time of the earliest replica in Q-ballsq(j) is not before the time of the latest
replica in tail(k). Intuitively, recall that the tail length of a request is much
grater than the radius of the request’s Q-ball. Hence, the fact that the radius
of a latest child is at most a quarter of the radius of its parent, together with

tail(k)

i

kr

rj

ρSQ(k)

4ρSQ(k)

ρSQ(j)

ρSQ(i)

Q-ballSQ(i)

r

Fig. 1. Geometric look on a parent Q-ballsq(i) (note that a Q-ball is a triangle) and
its children Q-ballsq(j) and Q-ballsq(k).

Lemma 2, imply that the sum of the childrens radii is less than half of the
radius of the parent Q-ball . The full proof of Lemma 2 (appears in [16]) uses
geometric considerations. Outlining the proof, we first establish an additional
lemma. Given any two requests rj and rℓ such that j > ℓ, the following lemma
formalizes the following: Suppose that the node vj of request rj is “close in
space (or in the network)” to the node vℓ of another request rℓ. Then, the whole
Q-ball of rj is “far in time” (and later) from rj .

Lemma 3. Suppose that, j > ℓ and vj − ρSQ(j) + 1 ≤ userveℓ ≤ vj. Then, the
time of the earliest replica in Q-ballsq(j) is not before the time of the latest

replica in tail(ℓ), i.e., tj − ρSQ(j) ≥ tℓ + 4ρSQ(ℓ).

Intuitively, Lemma 3 follows thanks to the tail left in step SQ5 of Square, as
well as to the action taken in SQ3 for moving userve further left of uclose. In
the proof of Lemma 2, we show that in the case that two requests rk and rj are
siblings, either (1) they satisfy the conditions of Lemma 3, or (2) there exists
some request rℓ such that k < ℓ < j such that rℓ and rj satisfy the conditions
of Lemma 3. Moreover, the time of the last replica in tail(ℓ) is even later then
the time of the last replica in tail(k). In both cases, we apply Lemma 3 to show
that the time of the earliest replica in Q-ballsq(j) is not before the time of the
latest replica in tail(k) as needed for the lemma.

To summarize, we show (1) For covered requests the cost of Square is O(1)
of |opt|; see Observation 3. (2) For uncovered requests, we prove in [16] (as
overviewed above) two facts: (2.a) the Q-balls of the root requests are edges
disjoint, and hence by Observation 5, the sum of their radii is O(1) of |opt| too.
(2.b) On the other hand, the sum of root’s radii is at least half of the sum of the
radii of all the uncovered requests. This establishes Theorem 6.

Theorem 6. Algorithm Square is O(1)-competitive for DMCD under the pseudo
online model.

4 Algorithm D-Lineon - the “real” online algorithm

In this section, we transform the pseudo online algorithm Square of Section 3
into a (fully) online algorithm D-Line

on for DMCD. The full details as well as
the formal proof of this transformation appears in [16]6. Let us nevertheless give
some intuition here.

The reason Algorithm Square is not online, is one of the the actions it takes
at step SQ4. There, it stores a copy at the serving replica uservei for request
ri from time sservei to time ti. This requires “going back in time” in the case
that the time sservei < ti. A (full) online algorithm cannot perform such an
action. Intuitively, Algorithm D-Line

on “simulates” the impossible action by
(1) storing additional copies (beyond those stored by Square); and (2) shifting
the delivery to request ri (step SQ4 of Square) from an early time to time ti
of ri. It may happen that the serving node uservei of ri does not have a copy (in
Square) at ti. In that case, Algorithm D-Line

on also (3) delivers first a copy
to (uservei , ti) from some node w on the left of uservei . Simulation step (1) above
(that we term the storage phase) is the one responsible for ensuring that such a
node w exists, and is “not too far” from uservei .

For the storage phase, AlgorithmD-Line
on covers the network by “intervals”

of various lengthes (pathes that are subgraphs of the network graph). There
are overlaps in this cover, so that each node is covered by intervals of various
lengthes. Let the length of some interval I be length(I). Intuitively, given an
interval I and a time t, if Square kept a copy in a node of interval I “recently”
(“recent” is proportional to length(I)), then D-Line

on makes sure that a copy
is kept at the left most node of this interval, or “nearby” (in some node in the
interval just left to I).

Theorem 7. D-Line
on is O(logn

log logn
)-competitive for DMCD problem.

5 Optimal algorithm for RSA and for DMCD

Algorithm D-Line
on in Section 4 solves DMCD. To solve also RSA, we trans-

form Algorithm D-Line
on to an algorithm rsaon that solves RSA. First, let

us view the reasons why the solution for DMCD (Section 4) does not yet solve
RSA. In DMCD, the X coordinate of every request (in the set R) is taken from
a known set of size n (the network nodes {1, 2, ..., n}). On the other hand, in
RSA, the X coordinate of a point is arbitrary. (A lesser obstacle is that the Y

coordinate is a real number, rather than an integer.) The main idea is to make
successive guesses of the number of Steinr points and of the largest X coordi-
nate and solve under is proven wrong (e.g. a point with a larger X coordinate

6 We comment that it bears similarities to the transformation of the pseudo online
algorithm Triangle to a (full) online algorithm for undirected MCD in [15]. The
transformation here is harder, since there the algorithm sometimes delivered a copy
to a node v from some node on v’s right, which we had to avoid here (since the
network is directed to the right).

arrives) then readjust the guess for future request. Fortunately, the transforma-
tion is exactly the same as the one used in [14, 15] to transform the algorithm
for undirected MCD to solve SRSA.

Theorem 8. Algorithm rsaon is optimal and is O(logN
log logN

)-competitive.

5.1 Optimizing DMCD for a small number of requests

AlgorithmD-Line
on was optimal only as the function of the network size. Recall

that our solution for RSA was optimal as a function of the number of requests.
We obtain this property for the solution of DMCD too, by transforming our
RSA algorithm back to solve DMCD, and obtain the promised competitiveness,
O(min{ logN

log logN
, log n
log logn

}), see [16].

6 Lower Bound for RSA

In this section, we prove the following theorem, establishing a tight lower bound
for RSA and for DMCD on directed line networks. Interestingly, this lower
bound is not far from the one proven by Alon and Azar for undirected Euclidian
Steiner trees [1]. Unfortunately, the lower bound of [1] does not apply to our case
since their construct uses edges directed in what would be the wrong direction
in our case (from a high Y value to a low one).

Theorem 9. The competitive ratio of any deterministic online algorithm for
DMCD in directed line networks is Ω(log n

log logn
), implying also an Ω(logN

log logN
)

lower bound for RSA.

Proof: We first outline the proof. Informally, given a deterministic online
algorithm onalgmcd, we construct an adversarial input sequence. Initially, the
request set includes the set diag = {(k, k) | 0 ≤ k ≤ n}. That is, at each time
step t, the request (t, t) is made. In addition, if the algorithm leaves “many
copies” then the lower bound is easy. Otherwise, the algorithm leaves “too few
copies” from some time t − 1 until time t. For each such time, the adversary
makes another request at (t− k, t) for some k defined later. The idea is that the
adversary can serve this additional request from the diagonal copy at (t−k, t−k)
paying the cost of k. On the other hand, the algorithm is not allowed at time t

to decide to serve from (t−k, t−k). It must serve from a copy it did leave. Since
the algorithm left only “few” copies to serve time t the replica, (t, t − k) can
be chosen at least at distance k(logn) from any copy the algorithm did leave.
Hence, the algorithm’s cost for such a time t is Ω(logn) times greater than that
of the adversary. The full proof appears in [16].

References

1. N. Alon and Y. Azar. On-line Steine trees in the euclidean plane. Discrete &
Computational Geometry, 10:113–121, 1993.

2. R. Bar-Yehuda, E. Kantor, S. Kutten, and D. Rawitz. Growing half-balls: Mini-
mizing storage and communication costs in CDNs. ICALP, pp 416–427, 2012.

3. W. Bein, M. Golin, L. Larmore, and Y. Zhang. The Knuth-Yao quadrangle-
inequality speedup is a consequence of total monotonicity. ACM Transactions
on Algorithms, 6(1), 2009.

4. P. Berman and C. Coulston. On-line algorrithms for Steiner tree problems. In
STOC, pages 344–353, 1997.

5. M. Charikar, D. Halperin, and R. Motwani. The dynamic servers problem. In 9th
Annual Symposium on Discrete Algorithms (SODA), pages 410–419, 1998.

6. X. Cheng, B. Dasgupta, and B. Lu. Polynomial time approximation scheme for
symmetric rectilinear Steiner arborescence problem. J. Global Optim., 21(4) , 2001.

7. J. D. Cho. A min-cost flow based min-cost rectilinear Steiner distance-preserving
tree construction. In ISPD, pages 82–87, 1997.

8. J. Cong, A. B. Kahng, and K. S. Leung. Efficient algorithms for the minimum
shortest path Steiner arborescence problem with applications to vlsi physical de-
sign. IEEE Trans. on CAD of Integrated Circuits and Systems, 17(1):24–39, 1998.

9. R. R. Ladeira de Matos. A rectilinear arborescence problem. Dissertation, Uni-
versity of Alabama, 1979.

10. M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-
complete. SIAM J. Appl. Math., 32(4):826–834, 1977.

11. D. Halperin, J. C. Latombe, and R. Motwani. Dynamic maintenance of kinematic
structures. In J.P. Laumond and M. Overmars, editors, Algorithmic Foundations
of Robotics. A.K. Peters Publishing, pages 155–170, 1997.

12. F. K. Hwang and D. S. Richards. Steiner tree problems. Networks, 22(1):55–897,
1992.

13. A. Kahng and G. Robins. On optimal interconnects for vlsi. Kluwer Academic
Publishers, 1995.

14. E. Kantor and S. Kutten. Optimal competitiveness for symmetric rectilinear
Steiner arborescence and related problems. CoRR, abs/1307.3080, 2013.

15. E. Kantor and S. Kutten. Optimal competitiveness for symmetric rectilinear
Steiner arborescence and related problems. In ICALP(2), pages 520–531, 2014.

16. E. Kantor and S. Kutten. Optimal competitiveness for the rectilinear steiner ar-
borescence problem. CoRR, arxiv.org/abs/1504.08265, 2015.

17. B. Lu and L. Ruan. Polynomial time approximation scheme for rectilinear Steiner
arborescence problem. Combinatorial Optimization, 4(3):357–363, 2000.

18. L. Nastansky, S. M. Selkow, and N. F. Stewart. Cost minimum trees in directed
acyclic graphs. Z. Oper. Res., 18:59–67, 1974.

19. C.H. Papadimitriou, S. Ramanathan, and P.V. Rangan. Information caching for
delivery of personalized video programs for home entertainment channels. In IEEE
International Conf. on Multimedia Computing and Systems, pages 214–223, 1994.

20. C.H. Papadimitriou, S. Ramanathan, and P.V. Rangan. Optimal information de-
livery. In 6th ISAAC, pages 181–187, 1995.

21. C.H. Papadimitriou, S. Ramanathan, P.V. Rangan, and S. Sampathkumar. Multi-
media information caching for personalized video-on demand. Computer Commu-
nications, 18(3):204–216, 1995.

22. S. Rao, P. Sadayappan, F. Hwang, and P. Shor. The Rectilinear Steiner Arbores-
cence problem. Algorithmica, pages 277–288, 1992.

23. W. Shi and C. Su. The rectilinear Steiner arborescence problem is NP-complete.
In SODA, pages 780–787, 2000.

24. V.A. Trubin. Subclass of the Steiner problems on a plane with rectilinear metric.
Cybernetics and Systems Analysis, 21(3):320–324, 1985.

