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Abstract. In a cognitive radio network, a Primary User (PU) may va-
cate a channel for intermissions of an unknown length. A substantial
amount of research has been devoted to minimizing the disturbance a
Secondary User (SU) may cause the PU. We take another step and opti-
mize the throughput of an SU, even when assuming that the disturbance
to the PU is indeed avoided using those other methods.

We suggest new optimization parameters the lengths of SU packets. That
is, the SU fills up the intermission with consecutive packets. Each packet
is associated with some fixed overhead. Hence, using a larger number of
smaller packets increases the overhead ratio for each SU packet. On the
other hand, it reduces the loss of throughput the SU suffers with the loss
of a packet in a collision at the end of the intermission.

As opposed to previous studies, we optimize also the case where the
distribution of the channel intermission is unknown. That is, we develop
optimal competitive protocols. Those seek to minimize the ratio of the
SU’s profit compared to a hypothetical optimal algorithm that knows the
intermission length in advance. We show how to compute the optimal
present packets’ sizes for the case that the distribution is known (for a
general distribution). Finally, we show several interesting properties of
the optimal solutions for several popular distributions.

1 Introduction

Cognitive Radio Networks (CRN) divide the users into Primary Users (PUs) and
Secondary Users (SUs) groups. PUs are the spectrum ”license holders” and have
the right to use their channel at will. Various techniques have been devised to
prevent SUs’ transmission from disturbing the PU’s transmission, e.g. by having
the SU sense the channel and avoid transmission whenever the PU transmits.
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However, collisions between the user groups not only impact the ownership
rights of the PUs but also affect the performance of the SUs, reducing the ef-
fective channel usage of the SUs even during an intermission in the PU’s trans-
missions. To see that, consider the extreme (rather likely) case that the PUs are
allowed a much higher transmission power. Hence, an SU packet transmitted at
the end of the PU intermission is likely to be lost when the packet level checksum
or a CRN integrity test is conducted at the receiver. That is, even the part of
the packet that was transmitted during the intermission is lost. Please observe
that this SU loss may happen even if the PU’s transmission is not disturbed at
all (e.g. thanks to the much higher power of the PU’s transmissions)!

While our work revisits one of the most basic questions in CRN, we opti-
mize it from a different angle. To highlight that, we stress that our results are
meaningful even if a negative impact on the PU is avoided (for example, avoided
by using the previous methods). Our main problem is: devise optimal access
algorithms that maximize the efficient usage of the channel by the SU, given the
possible loss at the end of the intermission. While the above question (and our
results) concentrates on the SU’s throughput, our model (and some of the re-
sults) are more general than that, and can also be used to minimize the negative
impact (also on the PU) caused by the collision at the end of the intermission.

Prudent Protocols Our objective function includes a penalty for conflicts
between an SU and the PUs. This penalty is traded off against a loss of SU
throughput as follows. We allow an SU to break the transmission of its data
to smaller packets; each packet is transmitted in a transmission interval that is
followed by a sensing period of a a fixed length and (in case the intermission does
not end) by the next interval. The fixed periods between the intervals are viewed
as representing the fixed overhead, that may include, beside fixed length sensing,
a preamble, headers, checksums, etc., associated with a packet transmission.4

The main optimization parameters are the lengths of the transmission inter-
vals. Intuitively, a good sequence is not “too daring” (having too long sequences)
on one hand, since we want to avoid the case that the last packet, the one that
is lost, is long. On the other hand, a good sequence is not “too hesitant” (having
too short messages). This is because a sequence of short packets will suffer from
a relatively high overhead per packet (since the overhead per packet is fixed).
Hence, we term protocols that achieve a good tradeoff-Prudent Optimistic pro-
tocols and the problem of finding good sequences– the problem of Dynamic
Interval Cover (DIC). The problem is defined formally below. We develop such
protocols both for the case that the intermission length is unknown, and for the
case that it is taken from a general distribution. We also highlight interesting
results for several specific distributions that were not addressed before.

4 We comment that in earlier work [4], the periods between the intervals were not fixed.
This is because they had a different purpose- that of minimizing the probability of a
collision at the end of the intermission. Recall that here, we want to emphasize the
optimization that is still required for the SU’s transmission, even if the collision at
the end of the intermission does not harm the PU.



The model The issues considered in this paper are manifested even in a system
with a single primary user and a single secondary user that share a single chan-
nel. Note that assuming multiple PUs would not change our results at all. (The
case of multiple SUs is beyond the scope of this paper; however, we hope in a
future work to fit multiple SUs into our model as follows: multiple SUs would co-
ordinate transmissions among themselves using more traditional methods; that
way, they would present the face of a single SU to the PU). The PU owns the
channel and transmits over it intermittently. The SU cannot start transmitting
until the PU stops. It is easy to show that optimizing for a sequence of multi-
ple intermissions can be reduced to optimizing the SU transmission over each
intermission separately. Hence, our analysis is performed per intermission.

We assume that the SU always has data. The data is divided by the SU into
(variable length) packets. As opposed to some previous studies, we do not assume
that the packet sizes are given ahead of time. W.L.O.G., the transmission of x
bits takes x time units. When an intermission of the PU starts, the SU starts
transmitting its data in packets p0, p1, p2, ... such that p0 is transmitted using
time interval ψ0, p1 using time interval ψ1, etc. The sequences of time intervals
ψ0, ψ1, ψ2, ... is thus, the output of the SU access control algorithms addressed in
the current paper. Optimizing this sequence is the DIC problem defined below.
A prudent protocol is an opportunistic access protocol that transmits a sequence
of packets whose lengths are the result of this optimization problem.

If the PU resumes transmitting at the time that the SU is transmitting its
jth packets, then the SU ceases transmission, and the jth packet is lost (an
unsuccessful transmission). In the other case (a successful transmission), the
SU starts and completes a packet’s transmission during the intermission. The
SU’s benefit of such a single PU intermission is a profit for the j − 1 successful
transmissions of the first j−1 packets. There is also a penalty for the unsuccessful
transmission of the j’th packet. Different benefits and different penalties define
different profit models. In this paper, we use the following profit model.

The α-cost profit model: Consider a constant α ≥ 0 (representing the
above mentioned fixed overhead per packet). The SU’s profit for a successful
transmission of a single packet of time length ψ (a packet with ψ bits) is ψ−α,
i.e., the SU earns ψ and pays a fixed cost of α, for every time length ψ > 0. For
simplicity, we ignore the cost of the last transmission. That is, for an unsuccessful
transmission of a single packet, the SU earns nothing and pays nothing5.

Definition 1. Dynamic Interval Cover (DIC) is the optimization problem of
generating a sequence of intervals according to the profit model described above.

Our results A part of the novelty in this paper is the fact that we deal with case
that the intermission length may be unknown at all. That is, we develop optimal(
1 +

√
4α−3α2+α
2(1−α)

)
-competitive protocols (these protocols are 2.62-competitive,

5 Note that alternative penalty assumptions, e.g., a double loss in the case of a collision,
to account also for the PU’s loss, can be analyzed using this framework but are left
for future research.



since α ≤ 1/2). Protocols that seek to minimize the ratio of the SU’s profit
compared to an optimal hypothetical algorithm that does know the intermission
length in advance. We also show that the competitive ratio for the bounded
intermission model is better than the one for the unbounded case, however, it is
only slightly better.

For the case where the distribution of the intermission is known, we address
the case of a general distribution. Previous studies assumed some specific distri-
bution for the length of the intermission. Most assumed the exponential distribu-
tion, see e.g., [4, 10, 11]. Others [1, 5, 12], extend this assumption to distributions
derived from specific Markovian system models. For a general distribution, we
present (Section 3) an efficient (polynomial) algorithm to compute the optimal
length of each transmission interval for the realistic case that the interval length
must be discrete, and a fully polynomial-time approximation scheme (FPTAS)
for computing a sequence that approximates the optimal solution.

Interestingly, one difference resulting from the general distributions we ad-
dress, is that (unlike those known studies of memory-less distributions) we show
that the length of the optimal intervals in a sequence is not always constant.
(Our method can be used also in the case that a constant length is required.)
Finally, we also found some interesting properties of an optimal solution under
some popular specific distributions.

Some related work A dual problem of DIC is the buffer management problem.
In that problem, the packets arrive with different sizes. The online algorithm
needs to decide which packets to drop while the size of each packet is fixed. The
objective is to minimize the total value of lost packets, subject to the buffer space.
Lotker and Patt-Shamir [6] studies this problem and present a 1.3-competitive
algorithm.

The problem of cognitive access in a network of PUs and SUs was studied
intensively. We refer to two surveys [2] and [7]. The problem of designing of
sensing and transmission that maximized the throughput of the SU is studied in
[4, 5, 7, 8, 10–12] under a model with collision constraints. Recall that our length
optimization can be made after, and on top of, the optimizations performed by
previous papers, since we optimize different parameters. Hence, a direct com-
parison of the the performance would not be meaningful.

Preliminaries Consider an output Ψ : N+ → R of an SU access control al-
gorithm that defines a sequence of time intervals Ψ = ⟨ψ0, ψ1, ψ2, ... ⟩. That
is, ψ0 = Ψ(0), ψ1 = Ψ(1), ψ2 = Ψ(2), ... . Denote by Ψinf = {Ψ ∈ RN |
Ψ is an infinite sequence} the family of infinite sequences (of time intervals).
Ψfin = {Ψ ∈ RM | M ∈ N, Ψ is a finite sequence} is the family of finite se-
quences. Denote by ΨM = {Ψ ∈ Ψfin | |Ψ | =M} (for every M ∈ N+) the family

of M -size sequences. Let S(Ψ, k) =
∑k
i=0 ψi , and S(Ψ) = S(Ψ, |Ψ |), for every

Ψ ∈ Ψfin. Let K⟨Ψ,t⟩ be the number of packets that SU transmitted successfully.
The profit of a sequence Ψ , with respect to an intermission of duration t, is the



sum of the profits of the SU for the time intervals in the sequence Ψ :

Pfit⟨α⟩(Ψ, t) =

K⟨Ψ,t⟩∑
i=0

(ψi − α). (1)

2 Unknown PU intermission length

We begin with a difficult case in which even the distribution of the intermission
length t′ ∈ R+ is unknown to the SU. As is common in analyzing competitive
algorithms [3], we measure the quality of the SU protocol by comparing the
profit it obtains to the profit obtained by a hypothetical optimal algorithm (the
”offline” algorithm) that knows the intermission length in advance. Moreover,
we make this comparison in the worst case. Informally, one may envision an
”adversary” who knows in advance the sequence Ψ of transmission intervals
chosen by the SU and chooses an intermission length for which the profit of the
SU from Ψ is minimized relatively to the profit of the optimal offline algorithm.
Formal definitions are given below, following standard notations.

It is easy to verify that if the intermission can be shorter than α, then no
online protocol can achieve a positive profit. We normalize the lengths and also
α such that the minimum intermission length is 1 and 0 < α < 1/2 (this im-
plies that the first packet is of length 1 in any optimal sequence and an optimal
sequence has a positive profit). Let Ψα = {Ψ ∈ Ψfin ∪ Ψinf | ψ0 = 1 and ψi ≥
α for every i ≥ 1}. This family of sequences has a positive profit for any inter-
mission time length. Moreover, it has a nonnegative profit from each interval. It
is easy to make the following observation.

Observation 1 An optimal sequence must belong to Ψα.

For a sequence Ψ ∈ Ψα and an intermission length t ≥ 1, the competitive ratio is

c-ratio(Ψ, α, t) =
t− α

Pfit⟨α⟩(Ψ, t)
. (2)

The numerator in this ratio is the optimal (maximum) profit that could have
been made by the SU had it known the intermission time length t (that is, a
profit of t− α for the sequence ⟨t⟩). The denominator is the actual profit of the
SU who selected sequence Ψ . The competitive ratio of Ψ is the maximum (over
all t ≥ 1) of the competitive ratio of Ψ with respect to t. That is,

opt-ratio(Ψ, α) = max
t≥1

c-ratio(Ψ, α, t).

The goal of the online algorithm is to generate a sequence Ψ that minimizes the
competitive ratio. We consider both infinite and finite sequence models as well as
the bounded and unbounded intermission time models. Denote the optimal com-
petitive ratio for an infinite sequence model under the unbounded intermission
time model (for punishment α) by

opt-ratio(α) = min
Ψ∈Ψα

c-ratio(Ψ, α). (3)



We present an optimal competitive ratio sequence and establish the following.

Theorem 1. opt-ratio(α) = 1 +
√
4α−3α2+α
2(1−α) ≤ 2.62.

For proving the theorem, it is convenient to define also the competitive ratio
under a certain strategy of the adversary. Specifically, f⟨α,Ψ⟩(k) is computed as
if the intermission ends just before the (k + 1)’th interval in Ψ ends. I.e., the

intermission length is t′ =
∑k+1
i=0 ψi − ϵ, where ϵ > 0 is negligible. Let

f⟨α,Ψ⟩(k) = lim
ϵ→0+

c-ratio(Ψ, α,S(Ψ, k + 1)− ϵ) =

∑k+1
i=0 ψi − α∑k

i=0 ψi − (k + 1)α
(4)

= 1 +
ψk+1 + kα

ψ0 + ...+ ψk − (k + 1)α
,

for every i ∈ N. The usefulness of f⟨α,Ψ⟩ becomes evident given the following.

Observation 2 The competitive ratio of Ψ ∈ Ψα is

c-ratio(α, Ψ) = sup{f⟨α,Ψ⟩(k) | k ∈ N}.

By Eq.(3), the observation implies that the optimal competitive ratio is

opt-ratio(α) = min
Ψ∈Ψα

sup{f⟨α,Ψ⟩(k) | k ∈ N}.

Claim 1 There exists an optimal sequence Ψ for DIC such that f⟨α,Ψ⟩(k) is
some constant for every k ∈ N.

Proof: Consider any optimal sequence Ψ∗. Let λ = sup{f⟨α,Ψ∗⟩(k) | k ∈ N}
and let Ψ ′ be a sequence obtained from Ψ∗ as follows: ψ′

0 = 1 and ψ′
i+1 =

(λ − 1)
(∑i

j=0 ψ
′
j − (i+ 1)α

)
− iα. By induction on i and by Eq. (4) we know

that ψ′
i ≥ ψi and f⟨α,Ψ ′⟩(k) = λ, for every k ∈ N. It remains to prove that

Ψ ′ ∈ Ψα, so that Observation 2 can be used. For that, we prove by induction,
that ψ′

k ≥ ψ∗
k. By Observation 1, ψ′

0 = ψ∗
0 = 1. Assume that ψ∗

i ≤ ψ′
i, for every

i = 0, ..., k. On the one hand, we have

λ ≥ f⟨α,ψ∗⟩(k + 1) = 1 +
ψ∗
k+1 + kα∑k

i=0 ψ
∗
i − (k + 1)α

≥ 1 +
ψ∗
k+1 + kα∑k

i=0 ψ
′
i − (k + 1)α

,

where the left hand equality holds since sup{f⟨α,Ψ∗⟩(k) | k ∈ N} = λ and right

hand inequality holds since
∑k
i=0 ψ

∗
i ≤

∑k
i=0 ψ

′
i, by the inductive assumption.

On the other hand, we established above
ψ′

k+1+kα∑k
i=0 ψ

′
i−(k+1)α

= f⟨α,ψ′⟩(k + 1)− 1 =

λ− 1, By the above inequality, λ− 1 ≥ ψ∗
k+1+kα∑k

i=0 ψ
′
i−(k+1)α

. Thus, ψ′
k+1 ≥ ψ∗

k+1, as

required. Since Ψ∗ ∈ Ψα, also Ψ
′ ∈ Ψα. The claim follows.



By Eq. (4), Claim 1 implies that, for an optimal solution Ψ ,

ψk + (k − 1)α

ψ0 + ...+ ψk−1 − kα
=

ψk+1 + kα

ψ0 + ...+ ψk − (k + 1)α
,

hence, for every k = 1, 2, 3, ...

ψk+1 = ψk +
(ψk − α)(ψk + (k − 1)α)

ψ0 + ...+ ψk−1 − kα
− α. (5)

This means that for every Ψ for which f⟨α,Ψ⟩(k) is some constant, ψ1 determines
Ψ uniquely (since ψ0 = 1). In other words, every such Ψ can be characterized as
Ψ(x) = ⟨ψ0(x), ψ1(x), ψ2(x), ...⟩ such that ψ0(x) = 1, ψ1(x) = x and ψk+1(x) =
(ψk(x)−α)(ψk(x)+(k−1)α)
ψ0(x)+...+ψk−1(x)−kα + ψk(x)− α, for every k = 1, 2, ... .

The construction of Ψ(x) implies that, if ψi(x) ≥ α for every i ≤ k, then

f⟨α,Ψ(x)⟩(j) = 1 +
x

1− α
, for every j = 0, ..., k. (6)

Thus, f⟨α,Ψ(x)⟩(k) is smaller for smaller values of x. Unfortunately, it might be
that Ψ(x) ̸∈ Ψα. By Observation 1 and by Claim 1, the optimum is,

opt-ratio(α) = min
x∈[α,∞)

{c-ratio(α, Ψ(x)) | Ψ(x) ∈ Ψα}.

Moreover, the fact that f⟨α,Ψ(x)⟩ is monotonically increasing as a function of
x ∈ [α,∞), implies that, for x∗ = min{x | Ψ(x) ∈ Ψα},

opt-ratio(α) = f⟨α,Ψ(x∗)⟩(0). (7)

We found that the optimal competitive ratio is achieved for some x∗ ∈ [α,∞),
such that Ψ(x∗) ∈ Ψα and x∗ = ψ1(x

∗) = ψ2(x
∗) = ψ3(x

∗), ... . Let x∗ =
α+

√
4α−3α2

2 . We prove that Ψ(x∗) ∈ Ψα is optimal and ψi(x
∗) = x∗, for every

i = 1, 2, ... . (It is easy to verify that x∗ ≥ α for every choice of 0 < α < 1.) We
begin with the following claim.

Claim 2 ψi(x
∗) = x∗, for every i = 1, 2, 3, ... .

Proof: We prove by induction. For i = 1, by definition of Ψ(x), it follows
that ψ1(x

∗) = x∗, hence, the base of the induction holds. Now, assume that
the claim holds for every i ∈ {1, ..., k}. By Eq. (5), it suffices to prove that
(ψk(x

∗)−α)(ψk(x
∗)+(k−1)α)

ψ0(x∗)+...+ψk−1(x∗)−kα − α = 0. By assigning x∗ for ψi(x
∗) (for every i =

1, ..., k, using the induction hypothesis) and ψ0(x
∗) = 1, we get

(ψk(x
∗)−α)(ψk(x

∗)+(k−1)α)
ψ0(x∗)+...+ψk−1(x∗)−kα −α = (x∗−α)(x∗+(k−1)α)

1+(k−1)x∗−kα −α = (x∗)2+(k−2)αx∗−(k−1)α2

1+(k−1)x∗−kα −
α = 0, which implies that

(x∗)2 − αx∗ + α2 − α = 0.

This implies that x∗ = α+
√
4α−3α2

2 is the solution to the above quadratic equa-
tion under the assumption that x∗ ≥ α. The claim follows.



We now show that the sequence Ψ(x) is monotonically decreasing.

Claim 3 If ψi(x) ≥ α for every i ≤ k, then ψk+1(x) < ψk(x) for every x ∈
[α, x∗) and every k = 1, 2, 3, ... .

(Throughout, due to lack of space, some of the proofs are deferred to the full
version of this paper.)

Claim 4 Ψ(x) ̸∈ Ψα, for every x < x∗.

Proof: If x < α, then ψ1(x) = x < α, and the claim holds. Consider α ≤ x < x∗,
and assume by the way of contradiction that Ψ(x) ∈ Ψα. By claim 3, it follows
that ψi+1(x) < ψi(x) < x, for every i > 1. Hence, limi→∞ ψi(x) = x′, for some
x′ ∈ [α, x). Therefore, by Eq. (2), we get that if x′ > α, then

lim
t→∞

c-ratio(Ψ(x), α, t) = lim
t→∞

t− α

Pfit⟨α⟩(Ψ(x), t)
=

x′

x′ − α
,

but x′

x′−α > x∗

x∗−α = f⟨α,Ψ(x∗)⟩(0) > f⟨α,Ψ(x)⟩(0), since α ≤ x′ < x∗, (that
is the competitive ratio of Ψ(x) is not f⟨α,Ψ(x)⟩(0)), which is contradiction to
Observation 2. Hence Ψ(x) ̸∈ Ψα. If x

′ = α, then limt→∞ c-ratio(Ψ(x), α, t) =
∞, which leads to a contradiction as well.

We are ready to prove that Ψ(x∗) is an optimal sequence. It is easy to verify
that f⟨α,Ψ(x∗)⟩(0) > f⟨α,Ψ(x)⟩(0), for every x > x∗. Thus, by Observation 2,
c-ratio(α, Ψ(x)) > c-ratio(α, Ψ(x∗)), hence Ψ(x) is not optimal. On the other
hand, by Claim 4, Ψ(x) ̸∈ Ψα for every x < x∗. Thus, by Eq. (7), we get
that Ψ(x∗) is an optimal sequence. Recall that c-ratio(α, Ψ(x∗)) = 1 + x∗

1−α =

1 +
√
4α−3α2+α
2(1−α) . This yields Theorem 1.

The bounded intermission time model Above, we have shown that for
α < x < x∗, the sequence Ψ(x) is monotonically decreasing. (Actually, it can be
proven that the sequence is decreasing also for x ≤ α; recall, x∗ > α). Informally,
the intervals in the infinite suffix of a decreasing sequence that are ”short”, ”pull”
the competitive ratio down. Hence, intuitively, if we can stop the decrease, then
we can improve the competitive ratio of a sequences Ψ(x) for α < x < x∗. In
fact, the decrease of Ψ(x) does stop when the intermission length is bounded.
In other words, a bound on the length causes the above mentioned suffix of the
sequence Ψ(x) to become smaller (at least, it is finite). This allows us to choose
x smaller than x∗ and still not get a sequence Ψ(x) with a tail of intervals that
are ”too small”. As a result, we show that we can improve the competitive ratio
to 1+ x′

1−α for the bounded intermission model by choosing a sequence Ψ(x′), for
some α < x′ < x∗. (It should be said, though, that the value of x′ is, still, close
to x∗, since the sequence Ψ(x) decreases very fast when x is much smaller than
x∗). Still informally, the more we reduce x, the faster the intervals at the suffix
of Ψ(x) drop to a length that is not useful. Hence, the value of x (or “how much
can x be smaller than x∗”) depends on the bound we are given on the interval.
This is illustrated in Figure 1.
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Fig. 1. In both parts of the figure, α = 0.4. On the left, T = 15, and x ≈ x∗ − 0.110,
a negligible improvement. On the right, T = 5 and x ≈ x∗ − 0.13, allowing a somewhat
larger improvement.

Formally, the competitive ratio of Ψ with respect to time bound T is

c-ratio⟨α,T ⟩(Ψ) = max
T≥t≥1

c-ratio⟨α,T ⟩(Ψ, t),

where c-ratio⟨α,T ⟩(Ψ, t) = c-ratio(Ψ, α, t). For a given sequence Ψ , such that
ψ0 = 1, and a real number x, denote by prex(Ψ) the longest prefix of Ψ such that
all intervals are of length at least x. That is, prex(Ψ) = ⟨ψ0, ψ1, ..., ψk⟩, where
ψi ≥ x, for every 0 ≤ i ≤ k and if the |Ψ | > k + 1, then ψk+1 < x. (Note that,
for x = α, preα(Ψ) ∈ Ψα.)

Similarly to Observation 2, the maximum competitive ratio of preα(Ψ) is
obtained even for a specific strategy of the adversary. In that strategy, the ad-
versary chooses the intermission t to end just before the k’th interval, (for some
k), or, alternatively, at t = T .

Observation 3 The competitive ratio of preα(Ψ) ∈ Ψα is,

max
(
c-ratio⟨α,T ⟩(Ψ, t = T ),max{limϵ→0+ c-ratio⟨α,T ⟩(Ψ,

∑k
i=0 ψi − ϵ) | k =

1, ..., |preα(Ψ)| − 1}
)
.

Now, we prove four claims that help us find an optimal solution.

Claim 5 Consider any x′ > x′′ and an index i ≥ 1. Assume that ⟨ψ0(x
′′), ...,

ψi−1(x
′′)⟩ ∈ Ψα and ψi(x

′′) ≥ 0. Then, ψj(x
′) > ψj(x

′′), for every 1 ≤ j ≤ i.

Claim 6 There exists a sequence x1, x2, x3, ... ∈ R , such that
(P1) |pre0(Ψ(x))| = i+ 2, for every x ∈ [xi, xi+1);
(P2) ψi(xi) = α, ψi+1(xi) = 0;

(P3) x1 = α < x2 < x3 < ... , and x1, x2, x3, ... ∈ [α, α+
√
4α−3α2

2 ); and
(P4) For every i ≤ k+1, ψi(x) is continuous and strictly increasing in the range

[xk,
α+

√
4α−3α2

2 ].

Proof: We prove properties (P2), (P3) and (P4) by induction on i. The base of

the induction holds, since ψ1(α) = α, and by Eq. (5), ψ2(x) = x+ (x−α)x)
1+x−α − α.

thus, ψ2(α) = 0. Hence, properties (P2) and (P3) hold. In addition, ψ2(x) is
continuous in [α,∞], since 1 + x − 2α > 0, for every x > α, and by Claim 5,

ψ2(x) is strictly increasing in [α, α+
√
4α−3α2

2 ], hence (P4) holds as well.



Assume that (P2), (P3), and (P4) holds for every i ≤ k. For every i =

1, ..., k and every x ∈ [xk,
α+

√
4α−3α2

2 ], Properties (P3) and (P4) of the induction

assumption imply that ψi(x) ≥ ψi(xk) ≥ α. Thus,
∑k
i=0 ψi(x) − (k + 1)α ≥

1−α > 0. Therefore, by Eq. (5), ψk+1(x) is continuous, and by Claim 5, ψk+1(x)

is strictly increasing in the range [xk,
α+

√
4α−3α2

2 ]. Hence, Property (P4) holds.
In addition, by (P2) of the induction assumption, ψk+1(xk) = 0, and by

Claim 2, ψk+1(
α+

√
4α−3α2

2 ) = α+
√
4α−3α2

2 > α. Hence, there exists a real number

xx+1 ∈ (xk,
α+

√
4α−3α2

2 ), such that ψk+1(xk+1) = α, and by Eq. (5), ψk+2(xk+1) =
0. Thus, (P2) and (P3) holds.

Finally, consider (P1). On one hand, by (P2), (P3) and (P4), ψi(x) ≥ α, for

every i = 0, 1, ..., k, and every x ∈ [xk,
α+

√
4α−3α2

2 ]. On the other hand, by (P2),
ψk+1(xk) = 0, ψk+1(xk+1) = α; by (P3) xk < xk+1; and by (P4) ψk+1(x) is

strictly increasing in the range [xk,
α+

√
4α−3α2

2 ]. Hence, 0 < ψk+1(x) < α, which
implies, together with Eq. (5), that ψk+2(x) < 0, for every x ∈ [xk, xk+1).

Claim 7 S(pre0(Ψ(x))) is continuous and is strictly increasing in the range

x ∈ [α, α+
√
4α−3α2

2 ).

Proof: Let xi be a real number such that ψi(xi) = α. (By property (P2)
of Claim 6, there exists such a number.) For every k ≥ 1, by property (P1)

of Claim 6, S(pre0(Ψ(x))) =
∑k+1
i=0 ψi(x) in the range [xk, xk+1). By prop-

erty (P4) of Claim 6,
∑k+1
i=0 ψi(x) is continuous and strictly increasing in the

range [xk,
α+

√
4α−3α2

2 ). Combining this together with property (P3) of Claim
6, we get that S(pre0(Ψ(x))) is continuous and strictly increasing in the ranges
[0, x1), [x1, x2), [x2, x3), ... .

It remains to prove that limϵ→0+ S(pre0(Ψ(xk−ϵ))) = S(pre0(Ψ(xk))). (This
also proves that S(pre0(Ψ(x))) is strictly increasing.) We have

lim
ϵ→0+

S(pre0(Ψ(xk − ϵ))) =
k∑
i=0

ψi(xk − ϵ) =
k+1∑
i=0

ψi(xk) = S(pre0(Ψ(xk))).

where the second equality holds, since ψk+1(xk) = 0 by property (P2) of Claim
6. The claim follows.

Claim 8 There exists an optimal sequence Ψ for DIC with a bound T on inter-
mission time, such that f⟨α,Ψ⟩(k) is some constant for every k = 0, ..., |Ψ | − 2.
(Similarly to Claim 1.)

Proof: Consider an optimal solution Ψ∗ for DIC with time bound T . Let λ =
max{f⟨α,Ψ∗⟩(k) | k ∈ {0, ..., |Ψ∗| − 1}} and let Ψ ′ be a sequence obtained from
Ψ∗ as follows: ψ′

0 = 1 and for every 1 ≤ i ≤ |Ψ∗| − 2,

ψ′
i+1 = (λ− 1)

 i∑
j=0

ψ′
j − (i+ 1)α

− iα.



Note that, |Ψ∗| = |Ψ ′|, and by induction on i and by Eq. (4) we know that
ψ′
i ≥ ψ∗

i and f⟨α,Ψ ′⟩(k) = λ. Thus, S(Ψ ′) ≥ S(Ψ∗), with equality if and only
if Ψ∗ = Ψ ′. If Ψ∗ = Ψ ′, then the claim follows. Assume by the way of con-
tradiction that Ψ∗ ̸= Ψ ′, thus S(Ψ ′) > S(Ψ∗). This implies that, if S(Ψ ′) ≤
T , then the profit of Ψ ′ is grater than the profit of Ψ∗ for time T , hence
c-ratio(Ψ ′, α, T ) ≤ c-ratio(Ψ∗, α, T ). Otherwise, S(Ψ ′) > T , and then it fol-
lows that c-ratio(Ψ ′, α, T ) ≤ λ.

In both cases, c-ratio(Ψ ′, α, T ) ≤ max{λ,c-ratio(Ψ∗, α, T )}. This implies
that

c-ratio⟨α,T ⟩(Ψ
′) ≤ max{λ,c-ratio⟨α,T ⟩(Ψ

∗, t = T )} = c-ratio⟨α,T ⟩(Ψ
∗).

Therefore, Ψ ′ is also optimal. In addition f⟨α,Ψ ′⟩(k) = λ, for every 0 ≤ k <
|Ψ ′| − 1.

Let x⟨T,α⟩ be real such that S(pre0(Ψ(x⟨T,α⟩))) = T . (There exists such real,
since by Claim 7 pre0(Ψ(x)) is continuous, S(pre0(Ψ(0))) = 1 and

limϵ→0+ S(pre0(Ψ(
α+

√
4α−3α2

2 − ϵ))) = ∞.)

Theorem 2. Let Ψ ⟨T,α⟩ = preα(Ψ(x⟨T,α⟩)). The sequence Ψ ⟨T,α⟩ is optimal.

The competitive ratio of any access protocol using it is 1 +
x⟨T,α⟩
1−α .

Proof: First, we prove that

|Ψ ⟨T,α⟩| = |pre0(Ψ(x⟨T,α⟩))| − 1. (8)

Let last = |preα(Ψ(x⟨T,α⟩))| − 1. By Eq. (5),

if ψi(x) ≥ α, then ψi+1(x) ≥ 0, and

if ψi(x) ∈ [0, α), then ψi+1(x) < 0.

Hence, ψlast(x⟨T,α⟩) ∈ [0, α) and ψlast−1(x⟨T,α⟩) ≥ α, implying Eq. (8). It is easy
to verify that

c-ratioT (Ψ
⟨T,α⟩, α) = 1 +

x⟨T,α⟩

1− α
. (9)

Let Ψ∗ be an optimal solution assuming the conditions of Claim 8. That is,
f⟨α,Ψ∗⟩(k) is a constant. Let x∗ = ψ∗

1 . It follows that ψi(x
∗) = ψ∗

i , for every
i = 0, 1, ..., |Ψ∗| − 1. If x∗ > x⟨T,α⟩, then limϵ→0+ c-ratioT (Ψ

∗, α, 1 + ψ∗
1 −

ϵ) = 1 + x∗

1−α . This implies that, c-ratioT (Ψ
∗, α) ≥ 1 + x∗

1−α , and 1 + x∗

1−α >

1 +
x⟨T,α⟩
1−α = c-ratioT (Ψ

⟨T,α⟩, α). This, is contradiction to the fact that Ψ∗ is
optimal. If x∗ < x⟨T,α⟩, then S(pre0(Ψ(x

∗))) < T and Ψ∗ = preα(Ψ(x
∗)). Hence,

c-ratio⟨α,T ⟩(Ψ(x
∗), t = T ) > f⟨Ψ(x∗),α⟩ and S(Ψ∗) < S(preα(Ψ(x⟨T,α⟩))). Thus,

c-ratio⟨α,T ⟩(Ψ
∗, t = T ) > c-ratio⟨α,T ⟩

(
preα(Ψ(x⟨T,α⟩)), t = T

)
= 1 +

x⟨T,α⟩

1− α
,

which is contradiction to the selection of Ψ∗ as the optimal. Therefore, x∗ =
x⟨T,α⟩. The theorem follows.



3 Probabilistic intermission length

We now turn to the case that the intermission time length is taken from a gen-
eral probability distribution. To be able to deal with any probability distribution
P , we assume that P is given as a black box that gets a value x and returns
P (x). (It is easy to generate this black box when the distribution follows some
known function, e.g., poisson, uniform etc.). We present a polynomial algorithm
for DIC for the discrete case, that approximates (as good as we want) the op-
timal solution for the continuous case. As in the previous case, it is enough to
optimize the protocol for each intermission separately (because of the linearity
of expectations). Hence, we concentrate on one intermission.

3.1 General probabilistic distribution

Consider a probability distribution P : N → [0, 1] that represents the inter-
mission time length, i.e., Pr[intermission timelength ≥ t] = P (t). Sometimes,
we assume that a priori upper bound T is known for the intermission time
length. Denote by PT a bounded probability distribution with bound T ; That
is, P (t) = 0, for every t > T .

Consider a finite sequence Ψ = ⟨ψ1, ψ2, ..., ψm⟩ ∈ Ψfin and a probability
distribution PT . By Eq. (1), the expected profit of Ψ with respect to PT is

Epro⟨PT ,α⟩(Ψ) =
∑|Ψ |
k=1(ψk − α) · PT (S(Ψ, k)).

We want to compute the maximal (optimal) expected profit of a sequence with
respect to PT , denoted by- opt(PT ) = max{Epro⟨PT ,α⟩(Ψ) | Ψ is a sequence}.

Bounded discrete domain First, consider the model where the intermission
length is discrete, (consists of t′ time slots) and is bounded from above by T .
Before addressing the whole intermission, let us consider just its part that starts
at T − ℓ (for some ℓ) and ends no later than T (note that T − ℓ may be empty
if t′ ≤ T − ℓ). Let MAXTAIL

⟨PT ⟩ (ℓ) (for every 0 ≤ ℓ ≤ T ) be the expected maximal
profit that any sequence may have from this part. That is,

MAXTAIL
⟨PT ⟩ (ℓ) = max

Ψ∈Ψfin
{
|Ψ |∑
k=1

(ψk − α) · PT
(
T − ℓ+ S(Ψ, k)

)
}.

In particular, opt(PT ) = MAXTAIL
⟨PT ⟩ (T ) = MAXTAIL

⟨PT ⟩ (T − 0). The recur-

sive presentation of MAXTAIL
⟨PT ⟩ is MAXTAIL

⟨PT ⟩ (0) = 0 and MAXTAIL
⟨PT ⟩ (ℓ) =

maxi∈{0,1,...,ℓ−1}{PT (T−i)·(ℓ−i−α)+MAXTAIL
⟨PT ⟩ (i)}. Using dynamic program-

ming, we can compute MAXTAIL
⟨PT ⟩ (T ) = opt(PT ) and find an optimal sequence

with time complexity O(T 2). Thus, finding an optimal sequence is a polynomial
problem in the value of T .6

6 It is reasonable to assume that the time length T is polynomial in the size of the
input. Had we assumed that T was say, exponential in the size of the input, this
would have meant an intermission whose duration is so long, that in practice, it
seems as being infinity, making the whole problem mute.



Bounded continuous domain Let us now consider the case where the proba-
bility distribution PT is continuous. We present a fully polynomial-time approx-
imation scheme (FPTAS) [9] for the case that the optimal solution provides at
least some constant profit. We argue that in the other case, where the profit
is of a vanishing value, a solution to the problem is useless anyhow. (Still, for
completeness, we derived some result for that case: we have shown that if the
profit in the optimal case is ”too small”, then it cannot be approximated at all.)

Consider a real number δ > 0 such that µ ≡ T/δ is an integer. Let Ψδ = {Ψ |
ψi/δ is an integer, for every i}. Let MAXTAIL

⟨δ,PT ⟩(ℓ) (for every integer 0 ≤ ℓ ≤ µ)
be the expected maximum profit over sequences Ψ ∈ Ψδ from the time period
[T − ℓ · δ, T ]. That is,

MAXTAIL
⟨δ,PT ⟩(ℓ) = max

Ψ∈Ψδ


|Ψ |∑
k=1

(ψk − α) · PT (T − ℓ · δ + S(Ψ, k))

 .

We show that the function MAXTAIL
⟨δ,PT ⟩ approximates the value of opt(PT ). In

particular, we show that for any optimization parameter ϵ > 0, there exists a
δ > 0 such that MAXTAIL

⟨δ,PT ⟩(T ) ≥ (1 − ϵ)opt(PT ). Intuitively, we first show
that a large fraction of the expected profit of an optimal sequence Ψ∗ is made
from intervals whose lengths are ”sufficient greater” than α. (A long interval
can be approximated well by dividing it into smaller intervals, whose lengths are
multipliers of δ; dividing a short interval is not profitable because of α.)

Consider an optimal sequence Ψ∗ = ⟨ψ∗
1 , ..., ψ

∗
|Ψ∗|⟩. Let Pfit

TAIL
δ (i) =

∑|Ψ∗|
j=i[

(ψ∗
j − α) · PT (S(Ψ∗, j))

]
be the expected profit gained from the intervals ψ∗

i , ...,
ψ∗
|Ψ∗| under probability distribution PT , for every i ∈ {1, ..., |Ψ∗|}.

Claim 9 For any λ > 0, if PfitTAILδ (i) ≥ λ, then ψ∗
i ≥ α+min{ λ

2T , λ/2}.

We are ready to show that MAXTAIL
⟨δ,PT ⟩(T ) approximates opt(PT ). Assume

first that we know some constant λ such that opt(PT ) ≥ λ. (We do not need to
know how close is λ to opt(PT ) ≥ λ.)

Lemma 1. Consider 0 < λ ≤ opt(PT ) and an optimization parameter ϵ > 0.

Let µλ = max
{⌈

16T 2

λϵ2

⌉
,
⌈

16
λϵ2

⌉}
and δλ = min{T/µλ, 1/µλ}. Then,

MAXTAIL
⟨δλ,PT ⟩(T ) ≥ (1 − ϵ) · opt(PT ). (For simplicity, we may omit λ from δλ

and µλ.)

Proof: Let fleft(i) be the leftmost point s.t. (1) fleft(i)/δ is an integer, and
(2) profit is at least, as large as the sum of all the elements ψ∗

1 , ..., ψ
∗
i−1. That is,

fleft(1) = 0 and fleft(i) = min{j · δ | j · δ ≥
∑i−1
j=1 ψ

∗
j }. Similarly, fright(i) is the

rightmost point such that (1) fright(i)/δ is an integer, and (2) is at most, the
sum of all element ψ∗

1 , ..., ψ
∗
i . It follows that fright(i)− fleft(i) > ψ∗

i − 2δ. Thus,

fright(i)− fleft(i)− α

ψ∗
i − α

>
ψ∗
i − 2δ − α

ψ∗
i − α

= 1− 2δ

ψ∗
i − α

.



Let i∗ = max{i | PfitTAILδ (i) ≥ λϵ/2}. Combining the above inequality together

with Claim 9 and the fact that δ ≤ min{ λϵ
2

16T ,
λϵ2

16 }, we get that

fright(i)− fleft(i)− α

ψ∗
i − α

> 1−max

{
8Tδ

λϵ
,
8δ

λϵ

}
≥ 1− ϵ/2,

for every i = 1, ..., i∗. In addition, it follows that, if i∗ = |Ψ∗|, then
∑i∗

i=1

(
(ψ∗
i −

α) · PT (S(Ψ∗, i))
)

= opt(PT ). Otherwise,
∑i∗

i=1

(
(ψ∗
i − α) · PT (S(Ψ∗, i))

)
=

opt(PT )−PfitTAILδ (i∗ + 1) > opt(PT )− λϵ/2. In both cases, we get that

i∗∑
i=1

(
(ψ∗
i − α)PT (S(Ψ

∗, i))
)
> opt(PT )(1− ϵ/2). (10)

Therefore,

i∗∑
i=1

(
fright(i)− fleft(i)− α

)
· PT (S(Ψ, i)) ≥ (1− ϵ/2) ·

(
i∗∑
i=1

(ψ∗
i − α) · PT (S(Ψ, i))

)
≥ (1− ϵ/2) · opt(PT )(1− ϵ/2)

≥ (1− ϵ)opt(PT ).

For the first inequality see Ineq. (10); for the second one see Ineq. (10). Clearly,

MAXTAIL
⟨δ,PT ⟩(T ) ≥

∑i∗

i=1 [(fright(i)− fleft(i)− α) · PT (S(Ψ, i))].

Let us compute MAXTAIL
⟨δ,PT ⟩ (which, we have shown, approximates the opti-

mal sequence). The recursive presentation of MAXTAIL
⟨δ,PT ⟩ is MAXTAIL

⟨δ,PT ⟩(0) = 0

andMAXTAIL
⟨δ,PT ⟩(ℓ) = maxi∈{0,1,...,ℓ−1}{PT (T−i·δ)·((ℓ−i)δ−α)+MAXTAIL

⟨PT ⟩ (i)}.
The MAXTAIL

⟨δ,PT ⟩, as well as the sequence attaining it (observed in the lemma)
can now be computed using dynamic programming. The time complexity is

O((T/δ)2) and T/δ = O(T
2

ϵ2 ); thus, it is polynomial in 1/ϵ, 1/λ and T .
Now, let us get rid of the assumption that λ is known. Let λi = 2−i. We

compute MAXTAIL
⟨δλ0

,PT ⟩, then MAXTAIL
⟨δλ1

,PT ⟩,..., as long as MAXTAIL
⟨δλi

,PT ⟩ < λi.

When MAXTAIL
⟨δλk

,PT ⟩ ≥ λk, the algorithm stops and returns a sequence attain-

ing it. (Note that MAXTAIL
⟨δλk

,PT ⟩ ≥ λk implies that opt(PT ) ≥ λk.) The time

complexity remains the same as 1/λ is a constant.

Theorem 3. There exists a FPTAS for DIC for continuous distribution (for
every instance of the problem for which the optimal solution obtains at least
some constant positive profit).

Theorem 4. If there is no assumption on the minimum value of opt(PT ), i.e.,
it can be negligible, then no approximation algorithm for the DIC problem exists.

Proof: Consider an algorithm ALG for the DIC problem. An adversary can
select PT after the execution of ALG, such that opt(P ) > 0 and A(PT ) = 0



(the expected profit of the sequence that made by ALG). Recall that algorithm
ALG must produce a sequence ΨALG of intervals. While producing the sequence,
ALG may query the distribution. Let x1, x2, ..., xz be sequence of queries ALG
made while producing ΨALG, and let PT (x1), PT (x2), ..., PT (xz) be the answers.
Let X>α = {xi > α | i = 1, ..., z}. In the execution of ALG the black box
(representing the distribution) return 0, for every x > α and returns 1, for every
x ≤ α. That is, if xi > α, then PT (xi) = 0, otherwise PT (xi) = 0, for every
i = 1, ..., z.

At the end of the execution ALG returns a sequence ⟨ψALG1 , ...⟩. It is clear
that ψALG1 ≥ α (otherwise, it might have a negative profit). If ψALG1 > α, then
let x′ = min{ψALG1 , xi | xi ∈ X>α}. Chose ϵ = x′ − α and PT (x) = 1, for
every x ≤ α + ϵ/2. Otherwise, PT = 0. We get that opt(PT ) = ϵ/2 > 0 and
ALG(PT ) = 0 as required. If ψA1 = α, then chose x′ = min{1.5α, xi | xi ∈ X>α}.
Set PT = 1, for every x ≤ x′ and otherwise PT = 0. Thus clearly, A(PT ) ≤ 0
and opt(PT ) = x′ − α > 0. The Theorem follows.

Finally, we describe some interesting observations on specific distributions (due
to lack of space, this section is deferred to the full version).
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systems. Annales des Télécommunications, 64(7-8), 2009.

12. Q. Zhao, L. Tong, A. Swami, and Y. Chen. Decentralized cognitive mac for op-
portunistic spectrum access in ad hoc networks: A pomdp framework. IEEE J. on
Selected Areas in Comm., 2007.


