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Abstract

Databases and equational theorem proving are well developed and secmingly unrefated areas of Computer Science
Rescarch, We provide two natural links between these ficlds and demonstrate how equational theorem proving can
provide useful and tools for a variety of database tasks.
Our first application is a novel way of formulating functional and inclusion dependencics (the most common database
constraints) using equations. The central computational problem of dependency implication is directly reduced to
equational reasoning. Mathematical techniques from universal algebra provide new proof procedures and better lower
bounds for dependency implication. The use of REVE, a gencral purpose transformer of equations into term rewriting
systems, is illustrated on nontrivial sets of functional and inclusion dcpendencies.
Our second application demonstrates that the uniform word problem for lautices is equivalent to implication of
dependencies expressing transitive closure, together with functional dependencies. This natural generalization of
functional dependencies, which is not expressible using conventional database theory formulations, has a natural

inference system and an efficient decision procedure.

1. Introduction

In order to deal formally with the problems of logical database desig.« and data processing, database theory models data
as sets of tables (relations). These relations are required to satisfy integrity constraints (dependencies), which intend to
capturc the semantics of a particular application. Various kinds of dependencies have been proposed in the literature (see
120,13} for reviews of the area). For example, a functional dependency (FD) is a formal statement of the form
EMPLOYLEE—SALARY, which intuitively states that every employee has a unique salary. An inclusion dependency (IND}) is
a statement of the form MANAGERC EMPLOYEE, which intuitively states that every manager is an employee (the more
general IND MANAGER MANAGER-SALARYC EMPLOYEE EMPLOYEE-SALARY expresses also the fact that managers make
the same salary as managers as they make as employecs). FD's and IND's are the most common database constraints.
A most gencral formulation of dependencics as sentences in first order logic (namely Horn clauses) was given in [13]}. To
handle the cential computational problem of dependency implication a particular proof procedure was developed, the
chase (see [20] for its wide applicability). Proof procedures for gencral data dependencics also appear in [23,2, 3. The

chase was secn to be a special casc of a classical theorem proving technique, namely resolution [2, 3],

1(}n teave from Brown Umversity; supported partly by NSF grant MUS-8210830 and panly by ONR-DARPA grant NOO014-83-K-0146, ARPA
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Alternative incthods for theorem proving have been developed in the context of equational theories. This is a fragment
of first order Jogic which has attracted a lot of atiention because of its wide applicability in arcas such as applicative

languages, interpreters, and data types. Sec {15] for a survey of the area.

Given the formulation of database constraints as first order sentences, one would expect databasc theory to have been
influenced by the developments in cquational theories, However, not only did this never happen, but a constant effort has
been made to minimize the role of equality in data dependencics (multivalued dependencies, the most widcly studied after
FD's, do not involve cquality explicitly). This is even more impressive in view of the fact that the best algorithm for
losslessniess of joins, a basic computational problem, was derived from an efficient algorithm for congruence closure [12).
Also the best algorithm for implication of FI’s [1] can be seen directly as a special case of an algorithm of [17] for the
generaior problem in finitely presented algebras; this last observation was made rccently by the authors of this paper, and

seems to have escaped the notice of the database theory community.

The implication problem for FI)'s and IND's (i.e., given a set Z of FD)'s and IND’s and an FIJ or IND o, do all
databases sausfying % also satisfy o) has been studied in some detail; [6, 10, 19, 7, 16, 9. In this paper we will use the
FD,IND implication problem to illustrate a surprisingly close connection between dependency inference and equational

theorem proving.

We first present a transformation of FD and IND implication into equational implication (Theorem 1}. This not only
reveals the underlying computational structure (Corollaries 1.1, 1.2), but also leads to a proof procedure very different
from the standard technique (Theorem 2). We also demonstrate how databasc constraints can be compiled into rewrite
rules, which can then be used to make inferences (Section 3.2). The full theorctical treatment of this transformation and

its use in deriving upper and lower bounds for the implication problem appears in [10].

Qur sccond transformation (Theorem 3) reveals the semilattice structure of FD's. The full treatment of this
transformation requires the development of special semantics for relational databases [11]. We include it in our exposition
because, despite its very different natute, it also illustrates a direct connection between database theory and equational
theories. In fact, completing the semilattice into a lattice paturally provides transitive closure and partition dependencies to
our arsenal of possible database constraints. The clegant Armstrong rules for FI implication [20] can now be scen as a
special case of a proof system for equational implication in lattices (Theorem 4). This theorem also provides an efficient

algorithm for the uniform word problem for lattices.

In summary, the purpose of this paper is to collect from {10, 11} the basic ideas which indicate that equational theorem
proving is the proper setting for database dependency implication. Some experimentation in this direction has also been
made, using the REVE system [14, 18]; the examples in Section 3.2 clearly demonstrate how a gencral-purpose equational

theorem prover succesfuily handles cases of nontrivial FID and INID implication.
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2. Definitions

2.1. Equational Theories
l.ct M be a set of symbols and ARITY a function from M to the nonnegative integers N. The sct of {inite strings over M

is M*, Partition M into two sets:

G={gEM| ARITY(g)=0} the generators,
Q={FEM| ARITY(8)>0 } the operators.

The set of terms over M, FM), is the smallest subset of M* such that,

1yeverygin Gisaterm,
pif Ty FE tEFMS and § is in O with ARITY{@)=m, then ﬂ'rl...fm is a term.,

A subterm of 7 is a substring of 7, which is also a term. Let V= {x,xl,xz,...} be a sct of variables. Then the set of terms over
operators O and generators GUV will be denoted by 9 (M). For terms T ey 1D g (M) we can define the substitution
p={ (1) | 1<i<k } to be a function from T¥(M) to I¥(M). We use g(r) or (%) /7 X, /7] for the result of

replacing all occurences of variables X in term 7 by term 7, (1<i<k), where these changes are made simultancously.

An equation ¢ is a string of the form 7=, where 7,7 are in 7 (M). We use the symbol E for a set of equations. We will
be dealing with models for sets of equations, i.e., algebras. We consider each equation € as a sentence of first-order
predicate calculus (with equality), with all variables universally quantified.

An algebra A=(AF)is a pair, where A is a nonempty set and F a set of functions, Each fin F is a function from 4" to 4,

for some n in N which we call the type()).

Examples: (@) A semigroup (4{+}) is an algebra with one associative binary operator, e, for all x,yz in 4
(x+y)+z=x+(y+z). An cxample of a semigroup is the algebra of the set of functions from N to X, together with the
composition operation. In semigroups we usc ab instead of a+b and w.L.o.g. omit parentheses.

(b) Ay, isan algebra with A=J(M). For each § in O we define a function @ in Fwith gpe(§)= ARITY(#); here we use the
same symbol for the syntactic object 8 and its interpretation, The function § maps terms Ty from H{M) to the term
07,7, (e, 8077 V=070 ). We will refer to Ay, as the free algebra on M. From this example it is clcar that we
can without ambiguity use both fr,..7  and 0(11,...,7 ) to denote the same term. One can similarly define an algebra

with domain 9% (M).

fmplication: Let ¢ be an equation and A an algebra. A satisfies e, or is a model for ¢, if ¢ becomes true when its
operators and nonvariable generators are interpreted as the functions of A and its variables take any values in A’s
domain. The class of all algebras which are models for a st of cquations E is called a variety or an equational class. We
say that E implies ¢ (EF=c) if cquation e is true in every model of E. An equational theory is a set of equalitics E (of terms

over 9t (M), closed under implication.
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We write Eb-c, if there exists a finite proof of e starting from E and using only the following five rules:
T=1,
Sfrom =1, deduce =1
Sfrom ST, and T,=7y deduce =Ty
Sfrom = 'ri' (1<i<m} deduce 071...rm= Hfi.,,q-r’n (ARITY(§)=m),

Srom v, =1, deduce V’(’l) =glr,){yp isany substitution).
Propesition 1: [§] EEr=1"iff El7=7]1

A binary relation = on FM) or T+ (M) is a congruence provided that,

1) 2= is an equivalence relation,
2) if ARITY(§)=m and 77, (1<i<m) then f7,..7 mzofi...«;n.

Let = be a congruence on H{M). Congruence guarantees that the operations in O are well-defined on = -equivalence
{or congruence) classes, Thus we can form a quotient algebra FIMY/ = with domain {{7] | » in 9M), [7] is the
~-congruence class of 7} and with functions corresponding to O's operators,
Let I be a sct of equations over terms in 9{M) (i.e., containing no variables). Cousider the equational theory consisting of
all =7 such that "'E=r =+ By Proposition 1 this theory induces a congruence =, on (M), where 7= (7 MEr=1"
From the remark above we sec that this congruence naturally defines an algebra M)/ = r If T is a finite set M)/ = r is

known as a finitely presented algebra [17).

These are the only definitions nceded to make our exposition self-contained. For an extended survey of the area,

definitions of term rewriting systems and more general definitions, see {15},

2.2, Relational Database Theory

Let Al be a finite set of attributes and S a countably infinite set of values, such that UNF=@. A relation scheme is an
object R[U], where R is the nante of the relation scheme and UCU. A tuple t over U is a function from Uto 9. Let A; be
an attribute in U and a, a value, where 1<i<{UY; if L{/\ijxai then we represent tuple t over U as Ay We represent
the restriction of tuple t on attributes AlAj of Uas A 1..,/‘\ “]. A relation v over U (named R) is a (possibly infinite)
noncmpty set of tuples over U. A database scheme 1) is a finite set of relation schemes {RI[U ]],....R q[U q}} and a database
d={r ,,...rq} associates each relation scheme Ri{Ui] in d with a refation r; over U,. A database is finite if all of its relations
are finite. A database can be visualized as a set of tables. one for each relation, whose headers are the relation schemes

{cach column headed by an attribute), and whose rows are the tuples.

The logical constraints, which determine the set of legal databascs, are called database dependencies. We will be
cxamining two very common types of dependoncies. These are sentences over relotion names and attributes, which are
cither satisfied or falsified by relations.

D R:Al..,An—m is a functional dependency.

Relation r (named R) satisfies this FI) if, for tuples t,, ¢, in , {1[A1...An}=t2[/\}.“/\ ] implics HIAl=L]AL If a=1 we call
the dependency a unary functional dependency (uFD).
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It is quite common in the databasc literature to use the notation R:Al...An—-aAB for R:A 1,.J\n—a;\ and R:AI...An-oB

(i.e., for more than onc FD with the same left-hand side).

IND 8:C,..C_CR:B,..B_isan inclusion dependency.
Relations s,r (named 8,R respectively) sarisfy this IND if. for cach tuple tin s, there is a tuple t; in r with t l{BJ: t[Ci} for
1<i<m. Ifm=1 we call the dependency a unary inclusion dependency (sIND).

Equality of two columns headed by attributes A, B in a relation named R can be expressed as a special case of IND’s:

use R:ABCR:AA. These dependencies are particularly illustrative of our analysis; we will use A=B to denote them.

Implication: We say that the set of dependencies Z implies dependency o (Z¥0) if. whencver a database d over
scheme D satisfies Z, it also satisfies o. If we restrict ourselves to finite databases we have 2k ¢. Clearly if o
(implication} then Zk=, o (finite implication), but the converse is not always true. Deciding implication of dependencies
is a central problem i database theory. Since dependencies are sentences in fusi-order predicate caleulus with equality,
we have proof procedures for the implication problem (we denote proofs as £—a). A proof procedure is sound if when
2o then k=g and complete if it is sound and when Zk=¢ then 2k~ (similarly for finite implication). The standard
complete proof procedure for database dependencies is the chase. We now present the chase for FD's and IND’s.

Chase: Given a set of dependencies Z over scheme D) and a dependency o, construct a set of tables T with I's relation
schemes as headers. These tables are originally empty and will be filled with symbols from the countably infinite set 9.
Whenever we insert a new row of symbols from % in a table of T and we do not specify sume of the entrics of this row,
then we assume that distinct symbols from <, which have not yet appeared clsewhere in T, are uscd to fill these entries,
Weuse t;' for the ith row of table R and t;[X] for this row’s entrics in the columns of attributes X.

The initial configuration of T depends on o as follows;

()1 o=RiA A ~A, insert rows t}, t;, with the only restriction that tfA J=t]A ], where 1<i<n.

(i) If6=5:C,..C_CR:B,..B,, insert t

Every dependency in X produces a nide. If £is an FD in 2 the corresponding FDrule is:

<Consider T a database over symbols in 9. If T docs not satisfy f, because two symbols x and y are different then replace
ybyxin T,

fi=8:XCR:Y is an IND in 2 the corresponding IND-rule is:

<Consider T a database over symbols in 9. If T does not satisfy i, because some t'1X] docs not appear in the table R as

some tTY], then insert ¥ in R with (]¥]=X}>

We will say that 2k, o, if there is a finite sequence of applications of the FD-rules and IND-rules produced by =
that transforms T's initial configuration to a final configuration satisfying:
(i) Ifo=R:A,..A —A, then t{[/\]:t;[A]

(i) [f¢=5:C,..C_CR:B..B . then ti[Ci] = tj'[Bi]. where 1<i<m, for some j.

Proposition 2: k-, o iff Zk=¢g.
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3. Functional and Inclusion Dependencies as Equations

3.1. Basic Transformation

Let = be a set of FD's and IND's over a database scheme D and ¢ an FD or IND. We will transform Z into two sets of
equations E}: and 82 such that the following holds: Z=g iff E):¥=ET iff 825=€,, for sets of equations EY,ST whose form
depends on Z and 0. We assume that D only contains one relation scheme; this simplifies notation, and there is no loss

of generality.

Transformation' From the dependencies in £ construct the following sets of symbols,

{£ | for each FD with an n attribute left-hand side include one operator £, of ARITY n},
M = 1Iﬁ for each IND inclide one operator i, of ARITY i},
M. = M {akl for cach attribute A, include one operator a, of ARITY 1},
= {aki for each attribute A include one generator ak}

Now let M=MUMUM UM _and V:{x,xl,xz,...} be a set of variables. ﬂ“’(Mf) (‘J*(Mi)) are the sets of terms

constructed using operators in M r(Mi) and generators in V.

The set E, consists of the following equations
1) one cquation for each o= Al...A n—+A: fkalx...a“x =ax,
2) m equations for each o, = Bl...Bmg ApAg aix= bxand..anda =Dk

The set 8 consists of the following equations:
3) one equation for each asz A A f L&, = a
4) m equations for each 0, =B,..B CA.A ¢ La)= B,and..andija = B

5) for each pair of symbols fp inM;andi 3 in M the equation fpqu1 1qxn—| f XXy (ARITY(f p)=n).

The transfonmation is illustrated in Figure 1. Note that in 82 only equations 5) contain variables. Equations 5) are
commutativity conditions between f and i operators. The transformation can also be thought of as the Skolemization of the
definitions from Section 2.2. We now present Theprem 1, which is central to our approach. A slightly more general

version of the Theorem is presented in {101,

Theorem 1: In each of the following three cascs, (i).(i),(iii) are equivalent.

= Case:

) Zk= A=B

i) E2 = ax=bx

iif) 8y F a=8.
FD Case:

DZEALA A

ii) By b= 7{x,/a,x,....x /a x]=ax, for some 7 in M

iii) 8 b= 7[x,/ay,...x /a 1= a, for some 7 in M.
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IND Case:
DIEB..B CALA_
i) Eg b= a7 =bxand...and a_r=b_x, for some 7 in 9" (M)
jii) 8= 7[x/a;]= B, and .. and rfx/a_]= B, for some 7 in I (M,).

Proof Sketch: We use E1r (87) to denote the set of equations corresponding to term r in (if),(iii).
{iy=>(i) Suppose E;FE,, and let refation r satisfy Z; we will show that r satisfies 0. Relation 1 is, by definition,
nonempty and its cntries can be w.lo.g. positive integers. Number its tuples 1,2,... etc,, (it could contain a countably
infinite number of tuples), Define A{): N— N, such that, if x is the number of a tuple in r, then A(x) is the entry in tuple x
at attribute A, clse A(x) is 0 (X arc the nonnegative integers). If fis the FD Cl...Ck—-»C in Z define F(...):.Nk—df, such
that, if x is the number of a tuple in 1, then F(Cy(x),...C (x))=C(x), else F is 0. This is a well defined function since r
satisfics £, Ifiis the IND Dr"DkgCr"Ck in 2 define I{.}: N— X such that, if x is the number of a tuple in rand x"is the
number of the first tuple in r where tX[Dl...Dk]-—tx.[Cl...Ck], then I(x)=x", else I(x) is 0. This is also a well defined
function since r satisfies . We have constructed an algebra with domain N and functions A()....,F(...),.... }(),..., which, as is
easy to verify, is a model for Ey. Let ¢ be an IND. By interpreting each symbol in  as an I(.), we see that when x is a
tuple number 7{x) is another tuple number. Since EXF=ET, we must have Ai(f)=Bi(X) 1<i<m, which means that r

satisfies o. The case of an FD is similar.

(iii)=»(ii) Suppose 82#'-'-81, and let b be a medel of Eg; we will show that b satisfies ET. From Ab we will construct
a model (M) for S):. The algebra A(Ab) will have domain all functions from b to M, e, So— M. In A(Ab) the
interpretation of a will be the function a(x), which is the interpretation of a() in Ab. The interpretation of i(.) will be the
function Ah.h(i(x}), where i(x) is the interpretation of i(.} in Ab (this is a function from Ab—UM to M-+ Mb), The
interpretation of f{...) will be the function )\hl...hn.j(h1(x),...,hn(x)), where flx;..x ) is the interpretation of f...) in Ab
(this is a function from (M- )" to M— ). 1t is straightforward to check that equations 3),4) hold in A(b), because
b is a model for Ey. Also equations 5) hold in A{Ab): For example, if n=1 the interpretation of fi(h)) in A(Ab) is
Ah(i(x)), which is also the interpretation of {fh)) ¢h is any clement of A— AL). Thus A(A) is a model for Sz. Since

82F=87, A(Ab) satisfies BT. and it casily follows that Ab satisfics E,r.
(i)=>(iii} By induction on the number of steps of a chase proof of ¢ from Z (see [8]). |

A proof procedure for IND's and FID's which is different from the chase is given in [19], We can show that each of the
rules in (19] can be simulated using the equational reasoning of Proposition 1, and thus give an alternate proof of the
{i)=>(iii) step. et us illustrate this with an example: From A—B and CDCAB the pullback rule of [19] derives C—D. In
equational language fa= 8, ia=v, i#=¢ and fix=ifx imply fy =fia=ifa=if =8.

Corollary 1.1: Let 2 be a sct of FD's and ¢ an FD. The implication problem ZF=o is equivalent to a generater problem
Jora finitely presented algebra[17).
Proof: 8 is now a finite set of equations with no variables. If = is the congruence induced by 85 on M) then FM)/ 2=
is a finitely presented algebra. The equational implication in Theorem 1 is known, in this case, as a generator problem for

the finitely presented algebra M)/ <. k
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Using Corollary 1.1, one can observe that the linear time algorithm of [1] for FD inference can be derived in a

straightforward way from the general algorithm of [17] for the generator problem.

For the special case of uFD’s and IND's, the equations resulting from our transformation can be viewed as string

equations.

Semigroup Transformation: Let Z be a set of IND's and wFD's. Produce the set of symbols M_ from M as follows: for
each £ () in M, add one gencrator £, in M; for each ik(.) in I\/Ii add one generator i, in M; for cach ak(.) inM " add one
generator a, in Ms; add one binary operator + in M .

E consists of the associative axiom for + and the following word (string) equations (we omit + and parentheses):
1) one equation for each uFD o, =A,—A: fa =a

2) m cquations for each IND 0, =B,.B_CA,..A : aji, =b, and..and 2 ol =P

Corollary 1.2: Let % be aset of uFD’s and IND’s
Z=A=BiffEge a=b
SkA AT ER wa, =a, for some string w in M
2F=B,.B CA..A_ iffEck=aw=b, and .. anda_w=b_, for some string w in ME 1

Note that the first case is an instance of the uniform word problem for semigroups. The other two cases gre known as
Eg-unification problems [15]. Corollary 1.2 is used in [10} to study the computational complexity of the inference problem
for FD's and IND’s.

The approach of Theorem 1 can in fact be cxtended to more general databasc dependency statements {10, 8. What we
present here is the application of this transformation to the most practical database constraints, in order to illustrate the

basic ideas involved.

3.2. Dependency Inference

In this section we will be dealing with the inference problem for IND's and uFI's. As demonstrated in {19, 7, 10] this is
an undecidable problem, with a number of interesting decidable subcases [10]. We will first present a proof procedure for
IND's and uFD’s, which differs from the chase becausc it is based on equational reasoning. This procedure also differs

from that of {19}, because of the simplicity and symmetry of its rules. We use the graph notation developed in [9, 10},

Graph Notation: Let Z be a set of IND's and uFD's over relation scheme R (it is very simple to generalize both the
notation and the proof procedure to handle several relation schemes). We construct a labeled directed graph Gy, which
has exactly one node a for each attribute Ai inR. Leti= Bl...B mgAl...A m be an IND in X. Then Gz contains m black
arcs (al,bl),...,(am,bm), each arc labeled by the name i of the IND. Let f=A—BbeauFDin 2, Then Gz contains one red
arc {a,b) labeled by the name fof the uFD.

The graph notation is illustrated in the two examples of Figure 2.
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The Proof Procedure G: Given a set 2 of uFD’s and IND)'s construct their graphical representation G. Each attribute
in 2 is associated with one of the nodes of Gy
Rules: Apply some finite sequence of the graph manipulation rules 1,2,3 and 4 of Figure 3 on Gz' Rules 1 and 2
introduce new unnamed nodes. Rules 3 and 4 identify two existing nodes; the node resulting from this identification is
associated with the union of the two sets of attribute names, that were associated with each of the identified nodes. Note
that rules 1,2 w.Lo.g. need be applied at most once to every left-hand side configuration.
Let G be the resulting graph.

We say that EI—-Go' when:
o is A=B and A,B are associated with the same node;
o is auFD) A— B and there is a path of red arcs in G starting at A and ending at B;
o is an IND Br"Bmg-Ar"A 1 20d there are m black dirccted paths in G, all with the same sequence of labels, path i
starting at A, and ending at B,

Theorem 2: Zk=¢ iff Z!—Go.

Preof Sketch: We outline the proof for ¢ being A=B.
(=): Rulcs 3,4 are obviously sound. Rules 1 and 2 are sound in the sense of the artribute introduction rule of [19], which
we illustrate as rule 5 of Figure 3.
(=>): We assume that we cannot prove ¢, and construct a model for 8, in which a#8; then by Theorem 1 2 docs not
imply . If o is not provable, then there is a (possibly infinite) graph G which represents Z. is closed under the rules, and
in which the names A and B correspond to different nodes. We add one special node L to G. The labels of G are
symbols corresponding to INDs (i symbols) or uFDs (f symbols) of Z. If a node in GU{ L} has no outgoing arc labeled
with some i, add one going to L. Repcat for the f symbols. The resulting graph represents functions interpreting the
operators and generators in 8 This is because closure with respect to rules 3 and 4 and the padding of G we performed,
_ guarantees functionality. The node A (B) is the interpretation of a {8). Now closure with respect to rules 1 and 2
guarantees the commutativity conditions of 82, and the fact that G represents £ guarantees equations 3),4) of 82. Thus
there is 2 model of 8, in which a#8. I

A different (heuristic) approach to dependency inference could proceed as follows: We first translate the dependencies
into equations using the Semigroup Transformation of Section 3.1, We then try to compile them into a (confluent and
noetherian) rewrite rule system using some generalized Knuth-Bendix type procedure. If we succeed, the resulting rewrite

rule system would be very useful in making many of the desired inferences.

We demonstrate this general approach on three examples. Each example illustrates some of the inherent difficulties of
the FD and IND implication problem. The REVE system [14, 18] has been used in all cases. See [15] for rewrite rule

notations and definitions.
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Example 1: Consider the uFD's and uIND’s in Figure 2a. As shown in [16], uFD and uIND statements can be handled
independently (i.e.. they do not interact). However, implication is still non-trivial because it differs from finite implication
(which, nonethcless, can also be decided in polynomial time {16]). The instances which differentiate between finite and
unrestricted implication are exactly those containing mixed cycles of uIND's and uFD’s, such as the one in Figure 2a. We

translated these statements into equations and compiled them into the following rewrite rule systein;-using REVE:

Rules:
(fa) =+ b ((xf)a) — (xb)
(bi) = ¢ (b)) - (xc)
(gc) — & ((xg)k) — (xd)
(b —a ((xb)j) — (xa)
x(yo) — ((xy)2)

As expected, the rules clearly show that the uIND and FD statements decouple.

Example 2: Consider the dependencics f=C—D, i=ABCCD, j=BACCD, k=BCA. This is the example used in
[19] to illustrate the necessity of the atfribute introduction rule. REVE succeeded in compiling the dependencics into the

following rewrite rule system:

Rules:

(fo) —~ d ((xf)c) — (xd)
(ci) — a ((xc)i) — (xa)
{d)— b ((xd)i) — (xb)
d)—a {(xd)j) - (xa)
(ci)— b ((xc}j) — (xb)
(ak)— b ((xa)k) — (xb)
(xyz)) = ((xy)2)

{fa) = b ({(xDa)— (xb)
(fo) — a ((xf)b) — (xa)
(bk) = a ((xb)k) — (xa)

The non-trivial inference made in this case is that ABC BA follows from the dependencies in Figure 2b: observe the

“inferred” rule (bk) — a.
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Example 3: The dependencies in Figure 2b correspond to the base case of the proof in [9] that certain restricted proof
procedures cannot exist for FD’s and IND’s (the argument uses the chase procedure in a structured fashion), REVE

compiled these dependencies into the following rewrite rule system:

Rules:
(fa)— ¢, ((xDa) = (xc))
(8c) = by ((x)cy) = (xb,)
(hd)) — b, ((xh)d,) — (xb)
(e, ~¢; ((xei) — (xc))
(d,) = d; ((xd)i}— (xd))
(@) — a; ((xa)j) — (xa;)
(dy) — d; ((xdi) — (xdy)
(dk) = d; ((xd k) — (xd,)
(bykY = by ((xbyk) — (xby)
(xy2) = (xy)2)

(hd;)— b, ((xh)d;)— (xb,)
(b)) = (hd,) ((xb,)i) — ((xh)d,)
() = (fag) (e ) — ((xDhay)
(ge) — (hd)) ((xg)ey) — ((xh)d,)
(ghay) — by (xg)ay) — (xby)

The non-trivial infercnce here is that A;— B, follows from the dependenies of Figure 2c: observe the "inferred” rule
(ghay) — b,

4, Functional Dependencies, Transitive Closure and Lattices

4.1, Functional Dependency Inference Revisited

The implication problem for functional dependencics was one of the first computational problems identified as central
to database theory [1}. As we saw in Corollary 1.1, it is directly related to the generator problem for finitely presented
algebras, In this scction we will reformulate it as a word problem in a lattice, which will reveal much more of its algebraic

structure.
Let +,¢ be two operators satisfying the lattice axioms (LA).
1. x+x=x, x*x=x (idempotency)
2. x-+y=y+x, x*y=y*x (commutativity)
3 x+(y+2)=(x+Yy)+2 x+(y*z)=(x*y)*z (associativity)

4, x+(x°y)=x, x*(x+y)=x (absorption)
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Let us assume, again for simplicity, that we have one relation scheme R{U] with attributes U. For every attribute A in
U, introduce a constant symbol A, Using these constants and the operators +,* we can form expressions, which we call
partition expressions. An equation p=q involving two partition expressions is a partition dependency (PD). For example,
A=A'B,A+B=Carc PD's.

In [11] we develop the semantics of PD’s and show that they are a proper generalization of FD's, Let E be a set-of PIV'
andea PD: El= e iffeis implied from EULA.

ACI-Transformation: Given a set of FD's F we transform them into a set of equations E; as follows:
f: =M)A. A n—+A is transformed into e A1'A2""'An= A'Al'Az"“'A " where * is associative, commutative and

idempotent.

Theorem 3 [} FI=fIffE =, e, ¥

e

In fact, this is a more useful approach than the generator formulation of Corollary 1.1, The implication problem for
FD's can thus be reduced, in this straightforward way, to the (uniform) word problem for semilattices {structures with a
single associative, commutative and idempotent operator). On the other hand, since X=Y is equivalent to X=X*Y and
Y=7Y+X, we can also reduce the above word problem to the implication problem for FD's,

In order to complete our exposition we would like to comment on the semantics of a PD which contains the + operator
{for FD's we have been using * only).
From [11), it follows that a relation r satisfies the PD C=A -+ B when, for any tuples t,s€r,
{C]=s[C]ff there are tuples s,...s, of r with t=s,, s =s, and for i=0,....n-15[A]=s,  |[A] ors[B]=5, ,[B].

Example: Consider a database d with only one relation r representing an undirected graph. This relation has three
attributes; HEAD, TAIL and COMPONENT. For every edge {a,b} in the graph we have in the relation tuples abe, bac,
aac, bbce, where ¢ is a pumber which could vary with a and b. These are the only tuples in r. We would like to express
that: component is the connected component in which the arc (head, tail) belongs. We can do this by enforcing the PD
‘COMPONENT = HEAD + TAIL.

4.2. On the Uniform Word Problem for Lattices

We have seen how FD implication is equivalent to the uniform word problem for semilattices (idempotent
commutative scmigroups). We have also motivated a larger class of dependencies, partition dependencies, which can
naturally express transitive closure. The problem of partition dependency implication is equivalent to the uniform word
problem for lattices. This problem is studied in [11]. From the analysis in [11] it follows that there is a polynomial-time
algorithm for this word problem, and therefore for PD implication: Specifically, one has the following proof procedure

for implication:
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Theorem 4 {11]: EF= p=qiff p< g and g < p can be proved using the following rules:
LASA AR
228w, w2 forz=winE,
3. from p<pq, QK pf derive pLot.
4. from pL 1, Q< pr derive p+q ST
5. from p< 1 derive prQ&yr.
6. from 1< P, 1< q derive rsE;vq.

1. from 1< p deriver<pp+q. 1

The above proof procedure directly leads to a polynomial-time algotithm for PD implication: Observe that, if there isa
proof that p<:a, then this proof nced only mention subexpressions of p, q, and of the expressions appearing in E, Thus,
we can just write down these expressions (say, as in [17]) and repeatedly apply the rules, until no new inference can be

made.

If E is empty we obtain a special casc of the uniform word problem, namely that of recognizing identities. It had been
shown [22] that rules 1, 4-7 above form a complete inference system for identities. We also remark that the proof

procedure of Theorem 4 is a generalization of the Armstrong rules for FD's [20].

Since inference of FD's can be seen as a special case of inference of PD's, the problem is actually Jogspace complete for
PTIME [21]. However, in the special case where E is empty (i.c. the identitics) it can be solved in logarithmic space as
follows: we first rewrite p=q as a Boolean tree with leaves of the form A<B, A,B in AU. We then replace A<A by true
and A<B by false if A#B, and evaluate the resulting tree,

Example: A+B=C-D is (recursively) rewritten as
A+BLCDACD<SA+B
(A+B<C A A+BLD)A(C*D<LA V CD<LB)

(ASCABLSOAALDABLD)Y ACLAV DLA) VCLB Y DLB)Y)

5. Conclusions
We have shown how the problem of FD,IND implication can be transformed to an equational implication problem

{Theorem 1), Our approach can in fact be generalized to handle the implication problem for the most general
dependencies of [13] (see [8]). We have solved the uniform word problem for lattices in polynomial time; for distributive

lattices, this problem becomes NP-hard {5].
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We have experimented with REVE on FD and IND implication. We believe that an cquational theorem prover based on
AC!-unification could be useful for the problems outlined in Section 4.

A shortcoming of our approach is that it cannot directly handle finife implication. A number of positive results in that
area are contained in [10, 16},
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