
Two Applications of Equational Theories to Database Theory
Stavros S. Cosmadakis

MIT
Paris C. Kanellakis 1

MIT

Abstract

Databases and equational theorem proving are well developed and seemingly unrelated areas of Computer Science

Research. We provide two natural links between these fields and demonstrate how equational theorem proving can

provide useful and tools for a variety of database tasks.

Our first application is a novel way of formulating functional and inclusion dependencies (the most common database

constraints) using equations. The central computational problem of dependency implication is directly reduced to

equational reasoning. Mathematical techniques from universal algebra provide new proof procedures and better lower

bounds for dependency implication. The use of REVE, a general purpose transformer of equations into term rewriting

systems, is illustrated on nontrivial sets of functional and inclusion dependencies.

Our second application demonstrates that the uniform word problem for lattices is equivalent to implication of

dependencies expressing transitive closure, together with functional dependencies. This natural generalizatiQn of

functional dependencies, which is not expressible using conventional database theory formulations, has a natural

inference system and an efficient decision procedure.

1. Introduction

In order to deal formally with the problems of logical database desig, l and data processing, database theory models data

as sets of tables (relations). These relations are required to satisfy integrity constraints (dependencies), which intend to

capture the semantics of a particular application. Various kinds of dependencies have been proposed in the literature (see

[20,13] for reviews of the area). For example, a functional dependency (FD) is a formal statement of the form

EMPLOYEE--~SALARY, which intuitively states that every employee has a unique salary. An inchtsion dependency (IND) is

a statement of the form MANAGER([FaMPLOYEE, which intuitively states that every manager is an employee (the more

general IND MANAGER.MANAGER-SALARYCEMPLOYEF.EMPLOYEE-SALARY expresses also the fact that managers make

the .same salary as managers as they make as employecs). FD's and IND's are the most common database constraints.

A most general formulation of dependencies as sentences in first order logic (namely Horn clauses) was given in [13], To

handle the central computational problem of dependency hnplication a particular proof procedure was developed, the

chase (see [20] for its wide applicability). Proof procedures for general data dependencies also appear in [23, 2, 3]:l'he

chase was seen to be a special case of a classical theorem proving technique, namely resolution [2, 3].

1On leave from Brown Umversily: supported partly by NSF grant MCS-8210830 and partly by ONR-DARPA gr~nt N00014-83-K-0146, ARPA
Order No. 4786.

108

Alternative methods fi)r theorem proving have been developed in the context of equational theories, qhis is a fragment

of first order logic which has attracted a k)t of attention because of its wide applicability in areas such as applicative

languages, interpreters, and data types. See [15] for a survey of the area.

Given the fbrmulation of database constraints as first order sentences, one would expect database theory to have been

influenced by the developments in equational theories. However, not only did this never happen, but a constant effort has

been made to minimize the role of equality in data dependencies (multivalued dependencies, the most widely studied after

FD's, do not involve equality explicitly). This is even more impressive in view of the fact that the best algorithm for

losslessness of joins, a basic computational problem, was derived from an efficient algorithm for congruence closure[12].

Also the best algorithm for implication of FD's [1] can be seen directly as a special case of an algorithm of[17] for the

generator problem in finitely presented algebras; this last observation was made recently by the authors of this paper, and

seems to have escaped the notice of the database theory community.

The implication problem for FITs and IND's (i.e., given a set X of FD's and IND's and an FD or IND o, do all

databases satisfying X also satisfy (r) has been studied in some detail; [6, 10, 19, 7, 16, 9]. In this paper we will use the

FD,IND implication problem to illustrate a surprisingly close connection between dependency inference and equational

theorem proving.

We first present a transformation of FD and IND implication into equational implication ISl'heorem 1). T.bis not only

reveals the underlying computational structure (Corollaries 1.1, 1.2), but also leads to a proof procedure very different

from the standard technique (Theorem 2). We also demonstrate how database constraints can be compiled into rewrite

rules, which can then be used to make inferences (Section 3.2). The fidl theoretical t~'eatment of this transformation and

its use in deriving upper and lower bounds for the implication problem appears in [10].

Our second transformation (q~eorem 3) reveals the semilattice structure of FD's. The fidl treatment of this

transformation requires the development of special semantics for relational databases [ll]. We include it in our exposition

because, despite its very different nature, it also illustrates a direct connection between database theory and equational

theories. In fact, completing the semitattice into a lattice naturally provides transitive closure and partition dependencies to

our arsenal of possible dat:~base constraints. The elegant Armstrong rules for FD implication [20] can now be seen as a

special case of a proof system for equational implication in lattices (Theorem 4). This theorem also provides an efficient

algorithm for the uniform word problem for lattices.

In summary, the purpose of this paper is to collect from [10, 1l] the basic ideas which indicate that equational theorem

proving is the proper .~etting for <abase dependency implication. Some experimentation in this direction has also been

made, using the REVE system [14, 18]; the examples in Section 3.2 clearly dcmonstrate how a general-purpose equational

theorem prox er succcsfidly handles cases of nontrivial FD and INI) implication.

109

2. Definitions

2.1. Equational Theories

l,et M be a set of symbols and ARITY a function from M to the nonnegative integers ~ The set of finite strings over M

is M*. Partition M into two sets:

G = {g£M[ARITY(g)= 0 } the generators,
O = { 0£ MI ^rnY(0)>0 } the operators.

The set of terms over M, ~M), is the smallest subset of M* such that,

1) every g in G is a term,
2) if ~'l,...:r m are terms and 0 is in O with ARITY(0)= m, then 0~l...r m is a term.

A subtenn of~" is a substring o f , , which is also a term. Let V= {x,xl,x2,... } be a set of variables. Then the set of terms over

operators O and generators GUV will be denoted by ~I'~(M). For terms ~'l,..,,~'k in ~J~(M) we can define the substitution

¢p={ (xi~-'ri) [l<_i<k } to be a function from ff~(M) to ff'+(M). We use q~(~-) or ~'[Xl/~'l,...,xk/~'k] for the restdt of

replacing all occurences of variables x i in term 1- by term 'r i (l< i<k) , where these changes are made simultaneously.

An equation e is a string of the form ~" = ~'; where r,,r'are in if'+ (M). We use the symbol E for a set of equations. We will

be dealing with models for sets of equations, i.e., algebras. We consider each equation e as a sentence of first-order

predicate calculus (with equality), with all variables universally quantified.

An algebra at = (A,b) is a pair, where A is a nonempty set and F a set of functions. Each f in F is a function from A n to A,

for some n in JCwhich we call the type(/).

Examples: (a) A semigroup (A,{+}) is an algebra with one associative binary operator, i.e., for all x,y,z in A

(x + y)+ z = x + (y+ z). An example of a semigroup is the algebra of the set of functions from 3f to N together with the

composition operation. In semigroups we use ab instead ofa +b and w.l.o.g, omit parentheses.

(b) A M is an algebra with A =°J'(M). For each 0 in O we define a function 0 in Fwith 0Te(0)= ARITY(0); here we use the

same symbol for the syntactic object 0 and its interpretation. The function 0 maps terms rl,...,rm from if(M) to the term

0"rl...r m, (i.e., 0('rl,...,'rm)= 0'rl...'rm). We will refer to "AM as the Jhee algebra on M. From this exalnple it is clear that we

can without ambiguity use both 0rl...r m and 0(~-l,...,z m) to denote the same term. One can similarly define an algebra

with domain ff~'(M).

Implication: Let e be an equation and at an algebra, at satisfies e, or is a model for e, if e becomes true when its

operators and nonvariable generators are interpreted as the lhnctions of at and its variables take any values in at's

domain. The class of all algebras which are models for a set of equations E is called a variety or an equational class. We

say that E implies e (EI==c) if'equatiorl e is true in every model of E. An equational theory is a set of equalities E (of terms

over ~r ~ (M)), closed under implication.

110

We write El-e, if there exists a finite proofofe starting from E and using only the following five rules:

T ='1",

from 'rl =,r 2 deduce "t2 ='r 1.

from 'r I = 'r 2 and "t 2 = r 3 deduce r 1 = ,r 3"

from T i = , ; (l < i < m) deduce arl. . .r = 0,[...~ ~ (AruTY(O)=m),

fi'om ~'1 = r2 deduce ~o(T 1) = ~(r 2) (~ is any substitution).

Proposition 1: [4] El=r=~,'iff El--~=~r: I

A binary relation ~ on ~M) or ~ (M) is a congruence provided that,

1) ~ is an equivalence relation,
2) ifARH~'(O)= m and ri~ri'(l<_i__m) then O'r 1..'rm~O~'~.,,'r~a,

Let ~, be a congruence on ~M). Congruence guarantees that the operations in O are wel]-defined on ~-equivalence

.(or congruence) clasps. Thus we can form a quotient algebra ~ M) / , ~ with domain {[~] I • in ~M), [~r] is the

~-congruence class of ~} and with functions corresponding to O's operators.

Let F be a set of equations over temas in if(M) (i.e., containing no variables). Consider the equational theory consisting of

all ~, = ¢~ such that Fl=~- = ~-: By Proposition 1 this theory induce~ a congruence = l" on -~M), where ¢ = l.,r" iff Fl='r = ~".

From the remark above we see that this congruence naturally defines an algebra ~ M) / = r ' If F is a finite set ~ M) / = r is

known as a finitely presented algebra [171.

Tl~cse are the only definitions needed to make our exposition self-contained. For an extended survey of the area,

definitions of tern1 rewriting systems and more general definitions, see [15],

2.2, Relational Database Theory

Let ~ be a finite set of attributes and ~ a countably infinite set of values, such that q.trl~2 = ~. A relation scheme is an

object R[U], where R is the name of the relation scheme and UC_%. A tuple t over U is a function from U to ~J. Let A i be

an attribute in U and a i a value, where l<_i<[U[; if t[Ai]= a i then we represent tuple t over U as aia2...alL T We represent

the restriction of tupte t on attributes AI...A n of U as t[Al...An]. A relation r over U (named R) is a (possibly infinite)

noncmpty set oftuples over U. A database scheme D is a finite set of relation schemes {RI[UI],...,P,q[Uq] } and a database

d= {rl,_.,r q} associates each relation scheme Ri[Ui] in d with a relation r i over U i. A database is finite if at! of its relations

are finite. A database can be visualized as a set of tables, one for each relation, whose headers arc the relation schemes

(each column headed by an attribute), and whose rows are the tuples.

]'he logical constraints, which determine the set of legal databases, are called database dependencies. We will be

examining two very common types of dependeucies. These are sentences over rcl,~tion names and attributes, which are

either satisfied or falsified by relations.

FI) R:AI...An---~A is afimctional dependeno:

Relation r (named R) satisfies this FI) if, for tuples t 1, t 2 in r, tl[A1...An]= t2[A1...An] implies tl[A]=t2[A 1. I f n = l we call

the dependency a unary functional dependency (uFD).

111

It is quite common in the database literature to use the notation R:A1...An~AB for R:AI...An~A and R:AI_.An-*B

(i.e., for more than one FD with the same left-hand side).

IND S:C1...CmCR:B1...Bm is an hlcIus:on dependency.

Relations s,r (named S,R respectively) satisfy this IND if. for each tuple t in s, there is a tuple t 1 in r with tl[Bi]= t[Ci] for

I<_i<_m. l f m = l we call the dependency a unary inclusion dependency(ulND).

Equality of two columns headed by attributea A, B in a relation named R can be expre~ed as a special case of IND's:

use R:ABCR:AA. These dependencies are particularly illustrative of our analysis; we will use A--B to denote them.

Implication: We say that the set of dependencies)2 implies dependency o (El=a) if. whenever a database d over

scheme D satisfies)2, it also satisfies tr. If we restrict ourselves to finite databases we have)2l=fina. Clearly if)2l=a

(implication) then)2l=fina (finite implication), but dae converse is not always true. Deciding implication of dependencies

is a central problem i~ database dleoJ~. Sint:e dep~:~dencies a~e ~e~tcuces in fi~st-o~de~ predicate calculu~ with equality,

we have proof procedures for the implication problem (we denote proofs as XI--~r). A proof procedure is sound if when

ZI---tr then El=a; and complete if it is sound and when " ~ t r then El'--a (similarly for finite implication). The standard

complete proof procedure for database dependencies is the chase. We now present the chase for FD's and IND's.

Chase: Given a set of dependencies Y. over scheme D and a dependency o, construct a set of tables T with D's relation

schemes as headers. These tables arc originally empty and will be filled with symbols frem the countably infinite set ~.

Whenever we insert a new row of symbols from ~ in a table o f t and we do not specify some of the entries of this row,

then we assume that distinct symbols from 4, which have not yet appeared elsewhere in T. are used to fill these entries.

We use t~ for the ith row of table R and t~lX] for this row's entries in the columns of attributes X.

The initial configz,ration ofT depends on tr as follows:

(i) If a = R:AF..An--~A, insert rows t~, t~ with the only restriction that trj[Ai]= t~A], where l_<i_<n.

(ii) t f a = S:CI...CmC_:_ R:Bt...Bm, insert t].

Every dependency in)2 produces a rule. If f is an FD in)2 l~e corrcsponding FD-rule is:

<Consider T a database over symbols in ~k. IfT does not satisfy f, because two symbols x and y are different then replace

yby xinT>.

t f i = S:XCR:Y is an tND in E the corresponding IND-rule is:

<Consider T a database over symbols in ~. If T does not satisfy i, because ~ m e ts[X] does not appear in the table R as

some tr[Y], then insert t r in R with tr[¥] = ts[X].>

We will say that El-~asea, if there is a finite sequence of applications of the FD-rules and INl)-rules produced by Y.

that transforms "Fs initial con figuration to a final configuration satisfying:

(i) If a = R:A1...An~A, then trltA] = ~A]

(ii) Iftr =S:Cr..CmCR:BI...Bm , then t][Ci]= t~[Bi], where l_<i_<m, for some j.

Proposition 2:)21"-'chasea iff)2l=a. I

112

3. Funct ional and Inclusion Dependencies as Equat ions

3.1. Basic Transformation

Let Z be a set of FD's and IND's over a database scheme D and o an FD or IND. We will transform E into two sets of

equations E x and 8~ such that the following holds: El=o iff E~I=E iffl~l=:8 , for sets of equations E r,Sr whose form

depends on Z and tr. We assume that D only contains one relation scheme; this simplifies notation, and there is no loss

of generality.

Transformation: From the dependencies in Y. construct the following sets of symbols,

Mr= {fkt for each FD with an n attribute left-hand side include one operator fk ofARITY n},
M i = {ik] for each IND include one operator i k of ARITY 1},
Ma= {ak{ for each attribute A k include one operator a k Of ARITY 1},
M a = {akl for each attribute A t include one generator ak}.

Now let M=MfUMiUMaUM a and V={x,XrX2,...} be a set of variables. ~J~(Mf) (9"t(Mi)) are the sets of terms

constructed using operators in Mf (Mi) and generators in V.

The set E:~ consists of the following equations

1) one cquation for each ak= Ar..An~A: fkalx...anx = ax,

2) m equations for each ak=B1...BmCA1...Am: alikx= blX and ... and amikX=brnX.

The set ~z consists of the following equations:

3) one equation for each Ok=A1...An--*A: fkal...an=a,

4) m equations for each o k = Br.BmCAr..Am: ika 1 =flz and ... and ika m =tim'

5) for each pair of symbols fp in Mf and iq in Mi the equation fpiqXr..iqXn = iq fpXr..Xn (ARITV(fp) = n).

The transformation is illustrated in Figure 1. Note that in Ig:~ only equations 5) contain variables. FXluations 5) are

commutativity conditions between f and i operators. The transformation can also bc thought of as the Skolemization of the

definitions from Section 2.2. We now present Theorem 1, which is central to our approach. A slightly more general

version of the Theorem is presented in [10].

Theorem I: In each of the following three cases, (i),(ii),(iii) are equivalent.

=__ Case:

i) Z I~ A=B

ii) E z ~ ax = bx

iii) ~): I= a =ft.

FD Case:

i) Y. I = Ar..An-+A

ii) E~: I= ~[xl/alx,...!xn/anx] = ax, for some ¢ in ~ (M f)

iii) ~:~ ~ r[xl/ar...,Xn/an] = a, for some • in ~(Mf) .

113

tND Case:

i) 2 t= B1...BmCAI._A m

ii) E2 I= air =blx and ... and am~r = bmX, for some ¢ in ff~(Mi)

iii) 8~:1= ~-[x/al] =,8 1 and ... and ~'[X/am] =,8 m, for some ~- in ~(Mi) .

Proof Sketch: We use E r (g) to denote the set of equations corresponding to term ~ in (ii),(iii).

(i i)~(i) Suppose ExI=E~., and let relation r mtisfy Z; we will show that r satisfies (r. Relation r is, by definition,

nonempty and its entries can be w.l.o.g, positive integers. Number its tuples 1,2,... etc., (it could contain a countably

infinite number of tuples). Define A(.):~'--~.J~ such that, if x is the number of a tuple in r, then A(x) is the entry in tuple x

at attribute A, else A(x) is 0 (2f are the nonnegadve integers). If f is the FD C1...Ct--+C in Z define F(...):A't~3f, such

that, i fx is the number o fa tuple in r, then F(Cl(x),...,Ck(x))=C(x), else F is 0. This is a well defined function since r

satisfies f. If i is the IND Dt...DkCC1...C ~ in X define t (.) : N ~ such that, if x is the number ofa tuple in r and x'is the

number of the first tuple in r where tx[D1...Dt]=tx.[C1...Ck], then I(x)=x', else I(x) is 0. This is also a well defined

function since r satisfies i. We have constructed an algebra with domain Xand functions A(.),...,F(...),...,I(.),..., which, as is

easy to verify, is a model for E x. Let a be an IND. By interpreting each symbol in ~ as an I(.), we see that when x is a

tupte number ~,(x) is another tuple number. Since ExI==E ~, we must have Ai('r)=Bi(x) l i r a , which means that r

satisfies a. The case of an FD is similar.

(iii)~(ii) Suppose 8~1==8, and let At, be a model of E:~; we will show that At, satisfies E . From At, we will construct

a model vt(Ab) for ~ . The algebra ./,(At,) will have domain all functions from At, to At,, i.e., ..4~.h[,. In A(.A) the

interpretation of a will be the function a(x), which is the interpretation of a(.) in ~o. The interpretation of i(.) will be the

fimction ~.h.h(i(x)), where i(x) is the interpretation of i(.) in At, (this is a function from ~ 1 , to Abe .A) . The

interpretation of f(...) will be the function hhl..hn.)~hl(x),...,hn(X)), where/(xt,...,x n) is the interpretation of t~...) in .Ah

(this is a function from (.A~Ab) n to .Ah~.Ah). It is straightforward to check that equations 3),4) hold in .A(,/d,), because

A1, is a model for E>:. Also equations 5) hold in .,((At,): For example, if n = i the interpretation of f(i(h)) in .A.(.A't,) is

./[h(i(x)), which is also the interpretation of i(f(h)) (h is any clement of .A~o~.A~-). Thus Jt(Ah) is a model for 8~. Since

8~21==8 , .A(Ab) satisfies 8 , and it easily follows that At, satisfies E .

(i)~(iii) By induction on the number of steps of a chase proof of a from Z (see [8]). II

A proof procedure for IND's and FlYs which is different from the chase is given in [19]. We can show that each of the

rules in [19] can be simulated using the equational reasoning of Proposition 1, and thus give an alternate proof of the

(i)~(iii) step. Let us illustrate this with an example: From A ~ B and CDCAB the pullback rule of[19] derives C ~ D . In

equational language fa=fl, ia =,/, i f l=~ and fix =ifx imply f7 = fia =ifa = i t = 8.

Corollary 1.1: Let ~ be a set of FD's and a an FD. The implication problem Ek=a is equivalent to a generator problem

for a finilely presented algebra [17].

Proof: 8~: is now a finite set of equations with no variables. I f ~ is the congruence induced by 8~ on ~M) then ~M)/, .~

is a finitely presented algebra. The equational implication in Theorem 1 is known, in this ease, as a generator problem for

the finitely presented algebra ~ M) / ~ . |

114

Using Corollary 1.1, one can observe that the linear time algorithm of[t] for FD inference can be derived in a

straightfoi~vard way from the general algorithm of[17] for the generator problem.

For the special case of uFD's and IND's, the equations resulting from our transformation can be viewed as string

equations:

Semigroup Trattsformation: Let £ be a set of IND's and uFD's. Produce the set of symbols M s from M as follows: for

each fk(.) in Mf add one generator fk in Ms; for each ik(,) in M i add one generator i k in Ms; for each ak(.) in M a add one

generator a k in Ms; add one binary operator + in M s.

E s consists of the associative axiom for + and the following word (string) equations (we omit + and parentheses):

1) one equation for each uFD trk= At---+A: fkal = a

2) m equations for each tND a t = B1.,BmC_ A 1..,Am: ali k = b 1 and ... and ami k = bra.

Corollary 1.2: Let Y, be a set ofuFD's and IND's

ZI=A----B iffEsl= a = b

Y,I=A1---~A iffEsl= wal=a, for some string w in Ms

YJ=B1...BmC A1...A m iff ES~= alW=b 1 and ... and amW =bra, for some string w in M s. I

Note that the first case is an instance of the uniform word problem for semigroups. The other txvo cases ~re known as

Es-unification problems [t5]. Corollary 1.2 is used in [10] to study the computational complexity &the inference problem

for b-l)'s and IND's.

The approach of Theorem 1 can in fact be extended to more general database dependency statements [10, 8]. What we

present here is the application of this transformation to the most practical database constraints, in order to illustrate the

basic ideas involved.

3.2. Dependency Inference

In this section we will be dealing with the inference problem for INl)'s and uFtYs. As demonstrated in [19. 7, 10] this is

an undecidable problem, with a number of interesting decidable subcases [10]. We will first present a pr~n~f procedure for

IND's and uFD's, which differs from the chase because it is based on equational reasoning. This procedure also differs

from that of[D], because of the simplicity and symmetry of its rules. We use the graph notation developed in [9, 10].

Graph Notation: Let Z be a set of IND's and uFD's over relation scheme R (it is very simple to generalize both the

notation and the proof procedure to handle several relation schemes). We construct a labeled directed graph Gx, which

has exactly one node a i for each attribute A i in R. Let i= BI...BmCA1...Am be an IND in X. Then G x contains m black

arcs (al,bl),...,(ara,bm), each arc labeled by the name i of the IND. Let f = A ~ B be a uFD in Y.. Then G x contains one red

arc (a,b) labeled by the name fof the uFD.

The graph notation is illustrated in the two examples of Figure 2.

115

The Proof Procedure G: Given a set Y. of uFD's and IND's construct their graphical representation G z. Each attribute

in • is associated with one of the nodes orGy.

Rules: Apply some fnite sequence of the graph manipulation rules 1,2,3 and 4 of Figure 3 on Gz. Rules 1 and 2

introduce new unnamed nodes. Rules 3 and 4 identify two existing nodes; the node resulting from this identification is

associated with the union of the two sets of attribute names, that were associated with each of the identified nodes. Note

that rules 1,2 w.l.o.g, need be applied at most once to every left-hand side configuration.

Let G be the resulting graph.

We say that EI--G~r when:

a is A - B and A,B are associated with the same node;

o is a uFD A ~ B and there is a path of red arcs in G starting at A and ending at B;

a is an IND B1...BraCAr..A m and there are m black directed paths in G, all with the same sequence of labels, path i

starting at A i and ending at B r

Theorem 2: Z ~ o iffZF'-Go.

Proof Sketch: We outline the proof for o being A--B.

(¢=): Rules 3,4 are obviously sound. Rules 1 and 2 are sound in the sense of the attribute introduction ride of[19], which

we illustrate as rule 5 of Figure 3.

(~) : We assume that we cannot prove o, and construct a model for Sz in which a~fl; then by Theorem 1 ~1 does not

imply o. I fo is not provable, then there is a (possibly infinite) graph G which represents Z, is closed under the rules, and

in which ~ e names A and B correspond to different nodes. We add one special node 2. to G. The labels of G are

symbols corresponding to INDs (i symbols) or uFDs (fsymbols) of Z. I f a node in G O { I } has no outgoing arc labeled

with some i, add one going to 2-. Repeat for the f symbols. The resulting graph represents functions interpreting the

operators and generators in 8~: This is because closure with respect to rules 3 and 4 and the padding of G we performed,

guarantees functionality. The node A (B) is the interpretation of a (,8). Now closure with respect to rules 1 and 2

guarantees the commutativity conditions o r s z, and the fact that G represents Z guarantees equations 3),4) o r s z. Thus

there is a model ofg x in which a~fl. I

A different (heuristic) approach to dependency inference could proceed as follows: We first translate the dependencies

into equations using the Semigroup Transformation of Section 3.1. We then try to compile them into a (confluent and

noetherian) rewrite rule system using some generalized Knuth-Bendix type procedure. If we succeed, the resulting rewrite

rule system would be very useful in making many of the desired inferences.

We demonstrate this general approach on three examples. Each example illustrates some of the inherent difficulties of

the FD and IND implication problem. The REVE system [14, 18] has been used in all cases. See [15] for rewrite rule

notations and definitions.

116

Example 1: Consider the uFD's and ulND's in Figure 2a. As shown in [16], uFD and ulND statements can be handled

independently (i.e.. they do not interact). However, implication is still non-trivial because it differs from finite implication

(which, nonetheless, can also be decided in polynomial time [16]). The instances which differentiate between finite and

unrestricted implication are exactly those containing mixed cycles of ulND's and uFD's, such as the one in Figure 2a. We

translated these statements into equations and compiled them into the following rewrite rule systeha; trsirrg rtEW:

Rules:

(fa) --* b ((xOa) --=) (xb)

(bO- - , c ((xb)i) -4 (xc)

(gc) - , d ((xg)c) - , (xd)

(bj) ~ a ((xb)j) -4 (xa)

(x(yz)) ~ ((xy)z)

As expected, the rules clearly show that the ulND and FD statements decouple.

Example 2: Consider the dependencies f = C ~ D , i=ABCCD, j=BAC_CD, k=BCA. This is the example used in

[19] to illustrate the necessity of the attribute #aroduction rule. REVE succeeded in compiling the dependencies into the

following rewrite rule system:

Rules:

(fc) - . d ((x0c) --. (xd)

(ci) - , a ((xc)i) .--, (xa)

(di) --.* b ((xd)i) ---* (xb)

(dj) ~ a ((xd)j) ~ (xa)

(cj) --. b ((xc)j) -~ (xh)

(ak) --. b ((xa)10--, (xb)

(x(yz)) - . ((xy)z)

(fa) --, b ((x0a) - - , (xb)

(Co) --. a ((x0b) --, (xa)

(hk) --, a ((xb)k) --, (xa)

The non-trivial inference made in this case is that ABCBA follows from the dependencies in Figure 2b: observe the

"inferred" rule (bk) ---* a.

117

Example 3: The dependencies in Figure 2b correspond to the base case of the proof in [9] that certain restricted proof

procedures cannot exist for FD's and IND's (the argument uses the chase procedure in a structured fashion). REVE

compiled these dependencies into the following rewrite rule system:

Rules:

(fal) --+ c 1 ((xOa 1) ~ (xc I)

(gc2) --* b 2 ((xg)c 2) --* (xb2)

(hd2) ---* b E ((xh)d 2) -'4 (xb2)

(c2i) ~ C I ((xe2)i) --~ (XCl)

(d2i) ~ d I ((xd2)i) ---* (xdt)

(alj) -~ a 3 ((xal)J) ~ (xa 3)

(dlj) --, 0 3 ((xdl)J) ~ (xd3)

(d2k) -* d 3 ((xd2)k) -~ (xd3)

(b2k) ~ b 3 ((xb2)k) ---, (xb3)

(x(yz)) - , ((xy)z)

(hd3) ~ b 3 ((xh)d 3) --~ (xb3)

(b2i) ~ (hd 1) ((xb2)i) ~ ((xh)dl)

(clJ) --* (fa3) ((xcl)J) --* ((x0a3)

(gcl) --~ (hdl) ((xg)c 1) --4 ((xh)dl)

((gt)a 3) ~ b 3 (((xg)f)a 3) ~ (xb 3)

The non-trivial inference here is that A3~B 3 follows fi'om the dependenies of Figure 2c: obselwe the "inferred" rule

((g0a3) ~ by

4. Functional Dependencies, Transitive Closure and Lattices

4.1.Functional Dependency Inference Revisited
The implication problem for functional dependencies was one of the first computational problems identified as central

to database theory [1]. As we saw in Corollary 1.1, it is directly related to the generator problem for finitely presented

algebras. In this section we will reformulate it as a word problem in a lattice, which will reveal much more of its algebraic

structure.

Let + , . be two operators satisfying the lattice axioms(LA):

1. x + x = x , x . x = x (idempotency)

2. x + y = y+x, x.y-- y°x (commutativity)

3. x + (y + z) = (x + y) + z, x • (y. z) = (x • y) • z (associativity)

4. x + (x. y) -- x, x • (x + y) = x (absorption)

118

Let us assume, again for simplicity, that we have one relation scheme R[U] with attributes U. For every attribute A in

U, introduce a constant symbol A. Using these constants and the operators + , . we can form expressions, which we call

partition expressions. An equation p = q involving two partition expressions is a partition dependency (PD). For example,

A=A,B, A + B = C are PD's.

In [11] we develop the semantics of PD's and show that they are.a proper generalization of FD's Let E be a setof PD's

and e a PD: E~late l ife is implied from EIALA.

ALl-Transformation: Given a set of FD's F we transform them into a set of equations E F as follows:

f=A1A2..An~A is transformed into el: AI"A2°....An=A°AI°A2°...°An, where ° is associative, commutative and

idempotent.

Theorem 3 [ll l : F ~ f iff EFl=tate f I

In fact, this is a more useful approach than the generator formulation of Corollary 1.1. The implication problem for

FD's can thus be reduced, in this straightforward way, to the (uniform) word problem for semilattices (structures with a

single associative, commutative and idempotent operator). On the other band, since X = Y is equivalent to X = X . Y and

Y=Y.X, we can also reduce the above word problem to the implication problem for FD's.

In order to complete our exposition we would like to comment on the semantics o fa PD which contains the + operator

(for FD's we have been using • only).

From [11], it follows that a relation r satisfies the PD C = A + B when, for any tuples t,s£r,

tiC] = siC] i ff there are tuples s0,...,s a of r with t = s 0, s a = s, and for i = 0,...,n- 1 si[A] = s i + I[A] or si[B] = s i + liB].

Example: Consider a database d with only one relation r representing an undirected graph. This relation has three

attributes: HEAD, TAIL and COMPONENT. For every edge {a,b} in the graph we have in the relation tuples abe, bac,

aac, bbc, where c is a number which could vary with a and b. These are the only tuples in r. We would like to express

that: component is the connected component in which the arc (head, tail) belongs. We can do this by enforcing the PD

COMPONENT = HEAD + TAIL.

4.2. On the Uniform Word Problem for Lattices

We have seen how FD implication is equivalent to the uniform word problem for semilattices (idempotent

commutative scmigroups). We have also motivated a larger class of dependencies, partition dependencies, which can

naturally express transitive closure. The problem of partition dependency implication is equivalent to the uniform word

problem for lattices. This problem is studied in [11]. From the analysis in [11] it follows that there is a polynomial-time

algorithm for this word problem, and therefore for PD implication: Specifically, one has the following proof procedure

for hnp!ication:

119

Theorem 4 [11]: El=la t p=q iffp_Eq mad q<Ep can be proved using the following rules:

1. A-<EA, A in q.t.

2. Z<_EW, w<Ez for z=w in E.

3. fronz p <Eq, q<--E r derive p-<E r-

4.from p__.i~r, q<E r derive p +q-<~.

5. J)'om p_<lr derive p,q_<Er.

6. from r<_Ep, r_<.Fq derive r~Ep'q.

7. from r_<Ep derive r_<Ep + q. I

The above proof procedure directly leads to a polynomial-time algorithm for PD implication: Observe that, if there is a

proof that p-<E q, then this proof need only mention subexpressions of p, q, and of the expressions appearing in E. Thus,

we can just write down these expressions (say, as in [17]) and repeatedly apply the rules, until no new inference can be

made.

IfE is empty we obtain a special case of the uniform word problem, namely that of recognizing identities. It had been

shown [22] that rules 1, 4-7 above form a complete inference system for identities. We also remark that the proof

procedure of Theorem 4 is a generalization of the Armstrong rules for FD's [20].

Since inference of FD's can be seen as a special case of inference of PD's, the problem is actually logspace complete for

FYIME [21]. However, in the special case where E is empty (i.e. the identities) it can be solved in logarithmic space as

follows: we first rewrite p=q as a Boolean tree with leaves of the form A_<B, A,B in %. We then replace A-<A by true

and A-<B by false ifA~B, and evaluate the resulting tree.

Example: A+ B =C.D is (rocursively) rewritten as

A+B_<C-D A C.D-<A+B

(A+B-<C A A+ B<D) A (C.D<A V C.D<B)

((A<C A B-<C) A (A_<D A B_D)) A ((C_<A V D_<A) V (C<B V D_<B))

5. Conclusions

We have shown how the problem of FD, IND implication can be transformed to an equational implication problem

(Theorem 1). Our approach can in fact be generalized to handle the implication problem for the most general

dependencies of[D] (see [8]). We have solved the uniform word problem for lattices in polynomial time; for distributive

lattices, this problem becomes NP-hard [5],

120

We have experimented with REVE on FD and IND implication. We believe that an cquational theorem prover based on

ACl-unification could be usefid for the problems outlined in Section 4.

A shortcoming of our approach is that it cannot directly handle finite implication. A number of positive results in that

area are contained in [10, 16].

Acknowledgement

We would like to thank the REVE group at M.I.T., and in particular John Guttag, Kathy Yclick and Dave Deflefs.

References

1. Beeri, C. and Bernstein, P.A. "Computational Problems Related to the Design of Normal Form Relational Schemas".
ACM Transactions on Database Systems 4,1 (March 1979), 30-59.,

2. Beeri, C. and Vardi, M.Y, "Formal Systems for Tuple and Equality Generating Dependencies". SIAM Journal of
Computing 13,1 (February 1984), 76-98..

3. Beeri, C. and Vardi, M.Y. "A Proof Procedure for Data Dependencies". Journal of the Association for Computing
Machinery 31, 4 (October 1984), 718-741.,

4, Birkhoff, G. "On the Structure of Abstract Algebras". Proceedings of the Cambridge Philosophical Society 31, (1935).

5. Bloniarz, P.A., Hunt, H.B. III and Rosenkrantz, D.J. "Algebraic Structures with Hard Fxluivalence and Minimization
Problems". Journal Of The ACM 31, 4 (October 1984), 879-904.,

6. Casanova, M.A., Fagin, R. and Papadimitriou, C.H. "Inclusion Dependencies and Their Interaction with Functional
Dependencies". Journal of Computer and System Sciences 28, 1 (February 1984), 29-59..

7. Chandra, A.K, and Vardi, M.Y. The Implication Problem for Functional and Inclusion Dependencies is Undecidable.
IBM Tech. Rep. RC 9980,,, 1983.

8. Cosmadakis, S.S. Equational Theories and Database Constraints. Ph.D. Th., Massachusetts Institute of Technology,

1985.

9. Cosmadakis. S.S. and Kanellakis, P.C. "Functional and Inclusion Dependencies: A Graph Theoretic Approach".
Proceedings of the 3 ~ ACM Symposium on Principles of Database Systems (April 1984), 24-37.

10, Cosmadakis. S.S. and Kanellakis, P.C. "Equational Theories and Database Constraints". Proceedings of the 17th
Annual ACM Symposium on Theory of Computing (May 1984),.

11, Cosmadakis, S.S., Kancltakis, P.C. and Spyratos, N. "Partition Semantics for Relations". Proceedings of the 4 th ACM
Sympos&m on Principles of Database Systems (March 1985),,

12. Downey, P.J., Sethi, R. and Tarjan, R.E. "Variations on the Common Subexpression Problem". Journal of the
Association for Computing Machinery 27, 4 (October 1980), 758-771..

13. Fagin, R. "Horn Clauses and Database Dependencies". Journal of the ACM 29, 4 (October 1982), 952-985..

14. Forgaard, R. and Guttag, J.V. "REVE: A Term Rewriting System Generator with Failure Resistant Knuth-Bendix".
Proceedings of an NSF Workshop on the Rewrite Rule Laboratory (April 1984), 5-31.

15, Huet, G. and Oppen, D. FXluations and Rewrite Rules: a Survey. In Formal Languages: Perspectives and Open
ProbIem~, Eds., Academic Press,, 1980.

121

16. Kanellakis, EC., Cosmadakis, S.S. and Vardi, M.Y. "Unary Inclusion Dependencies ttave Polynomial Time
Inference Problems". Proceedings of the 15 th Annual ACM Symposium on Theory of Computing (1983).

17. Kozen, D. "Complexity of Finitely Presented Algebras", Proceedings of the Ninth Annual ACM Symposium on
Theory of Computing ACM SIGACT (May 1977),.

18. Lescanne, P. "Computer Experiments with the REVE Term Rewriting System Generator". Proceedings of the IO th
ACM ,5),mposium on Principles of Programming Languages (January 1983), 99-108.

19. Mitchell, J.C. "The Implication Problem for Functional and Inclusion Dependencies". Information and Contro156,
3 (March 1983), 154-173..

20. Ullman, J.D.. Principles of Database Systems~ Computer Science Press, Inc.,, 1983.

21. Vardi, M.Y. "Personal Communication". (),

22. Whitman, P.M. "Free Lattices", Annals of Mathematics 42, (1941),

23. Yannakakis, M. and Papadimitriou C,H. "Algebraic Dependencies". J. Comput. Systems ScL 21, 1 (August 1982),
2-41..

122

A ~ B) C, -"' D

CO ~, AB

K~,'-,. c.'

0_'~, X : C.X

bi .X = &~
,:F~Ex ~x = C~x

~j . : ~{.} ~(.) }'(.,.)

J~, : -Z{,}

kt~. : a.c-} b{-) ¢C.) ,~ c-)
~£c.3 ~co dc.)

J:~=
~., ~' ~'

~.i~io.. ~ 1o% A-~B
cc__B

' k %

{b)

bOo, ok.

123

f.

I--

l,
'i

i,

I--

i,

f,

R.~,t¢ H

~ E 5

Z

,.F i~,o-~ :5

C) : rtEuo ~o~P..

