
O n t h e A n a l y s i s o f C o o p e r a t i o n a n d A n t a g o n i s m
i n N e t w o r k s o f C o m m u n i c a t i n g P r o c e s s e s

P a r i s C . K a n e l l a k i s t
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02138

U.S.A.

S c o t t A . S m o l k a :~
Department of Computer Science

SUNY at Stony Brook
Stony Brook, N Y 11794

U.S.A.

A b s t r a c t

We propose a new method for the analysis of cooperative
and antagonistic properties of communicating finite state
processes (FSPs). This algebraic technique is based on a
composition operator and the notion of "possibility
equivalence" among FSPs. We demonstrate its utility by
showing that potential blocking, lockout, and termination
can be efficiently decided for loosely connected networks
of tree FSPs. If not all acyclic FSPs are trees, then the
cooperative properties become NP-complete and the anta-
gonistic ones PSPACE-complete. For tightly coupled
networks of tree FSPs, we also have NP-hardness. For
the considerably harder cyclic case, we provide a natural
extension of the method as well as a subcase reducible to
integer programming with a constant number of vari-
ables.

1. I n t r o d u c t i o n

There has been a great deal of interest in recent
years in algebraic approaches to the specification and
verification of concurrent systems [e.g. M, Br, HBR, H].
The motivation behind these approaches is to simplify
the analysis of potential termination, blocking, deadlock,
lockout, liveness and other properties of communicating
processes. These static analysis tasks are central to both
the areas of concurrent programming and network proto-
col validation [e.g. BZ, CES, H, L, OL, RT, S, T]. Unfor-
tunately, if no use of the part icular problem structure is
made, the general computational problems are usually
intractable_~L, T, G J, RT].

TOn leave from Brown University. Supported by NSF grant
DCR-8302391, ONR-DARPA grant N00014-83-K-0146, and by the
Office of Army Research under Contract DAAG29-84-K-0058.

:~Supported by NSF grant DCR-8319966.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01985 ACM0-89791-167-9/1985/0800-0023 $00.75

We demonstrate the use of an algebraic method
which indeed exploits the particular structure of the
given problem. We present efficient techniques for the
analysis of many properties of a system of communicat-
ing finite state processes. These properties refer both to
cooperating and to antagonistic processes.

Our model is a network of finite state processes. A
non-empty transition (action) of a process represents an
instruction for this process to exchange a "handshake"
with another specified process. An empty transition (r-
move) represents an internal change of the process
undetectable by the outside world.

Two processes P , Q can be composed into a com-
bined process P] l Q, which represents their behavior
with respect to the rest of the world and partially hides
the interaction between them from the rest of the world.
The composition of all processes in a network results in
one global process with only v-moves. Analysis of the
reachability properties of the global process is a standard,
albeit inefficient, way of studying the behavior of the net-
work.

It is reasonable to assume that the global process
will change state if possible. This continuity rule (such as
the one in [L]) forces system evolution to take place. Let
N -~- {Pl , P2, " " " , Pro} be our network of processes,
P ~ P1 the process in the network we wish to study,
and Q - - - - P 2] I P 3] I " ' " I IPm the rest of the network
which P views as a process. (Note that intentionally II
is devised to be associative and commutative.)

Process P , due to branching actions in its state
diagram and to r-moves, can make choices that affect the
behavior of the system. How must P schedule its choices
so that it evolves in a "desirable fashion"? By desirable
fashion we mean "reaches an accept s tate" for an acyclic
(finite) process and "never s tops" for a cyclic (infinite)
process. We study three related questions which appear
to be fundamental:

(a) Can P make its choices randomly? That is, is it
guaranteed to evolve desirably no matter what its
choices are? We call this property unavoidable suc-
cess. Its negation is sometimes known as potential
blocking.

23

(b) Can P make its choices intelligently and locally?
That is, can it schedule its choices based only on its
part ial information about the system and still evolve
desirably no matter how antagonistic the other
processes are? We call this property success in
adversity. This is a simple and yet complete version
of the no-lockout problem posed in [L].

(c) It is even possible for P to evolve desirably? That
is, can P and the rest of the network collaborate to
achieve the desired evolution of P ? We call this
property success with collaboration. It is the weak-
est of the three notions and does not correspond to
any realistic scheduling strategy. I t is sometimes
known as potential termination.

A reasonable assumption about many networks N is
that processes arc "loosely interconnected". That is, the
graph representing which pairs of processes can
handshake has a low degree of connectivity. This C N
could be a tree, a ring, or more generally what we call a
k-tree. The sparsity of C N is the problem structure we
would like to take advantage of using our algebraic
method. For simplicity, let us think of C N as a tree with
P , the distinguished process, determining its center.

Two critical choices in our method of analyzing P ' s
behavior in context Q are:

(l) the choice of composition operator,

(2) the choice of equivalence notion among processes.

The composition operator must be associative, com-
mutative and have the following property: If in a compo-
sition operation R i l I R 2 we replace R2 with an
equivalent R21 , the new composition R i I I R 2 1 is
equivalent to R i l l R 2. Also, the equivalence notion
must be sufficient to characterize unavoidable success,
success in adversity, and success with collaboration.

We define the appropriate operator]l for acyclic
processes in Section 2.2, and a technical variant of it for
cyclic processes in Section 4. The right notion of
equivalence is a refinement of the [HBR] failure
equivalence, and is based on the possibilities Poss(R) of a
process R . A possibility (s , Z) of a process is a pair
consisting of (1) a string of transitions s bringing the
process to a state it cannot change silently and (2) a set
Z of all possible next transitions at this state.

Using II , we combine processes from the leaves of
C N towards the center, always making sure that possibil-
ities are preserved. We believe that this is the natural
organized analysis of our generally hard combinatorial
questions. We show that I I and Poss (.) are the
appropriate choices because of the efficiency in solving
the finite case, and the small modification necessary to
extend the finite case to the harder infinite case.

We first show that if we have straight-line processes
all the questions of success become one that can be
answered easily by a causality argument (Proposition 1).
If we have small tree processes interconnected in a tight
fashion, unavoidable success is co-NP-complete and suc-
cess with collaboration is NP-complete (Theorem 1).

These are improvements on bounds derived in [T] for a
different process model. For success in adversity of
loosely interconnected acyclic processes, where the dis-
tinguished process describes an exponential number of
paths, we show PSPACE-completeness (Theorem 2).
This demonstrates the harder game nature of antagonism
versus collaboration (which is in NP) in a simpler fashion
than was done in [L]. The NP-hardness bounds of the
acyclic case become PSPACE-hardness bounds in the
cyclic case. Exponential bounds, similar to ILl, can be
shown for success in adversity (Proposition 2).

These intractabil i ty results provide the setting for
our main concern, which is the choice of I I and Poss (.)
and their use in showing that all three notions of success
can be efficiently decided for loosely interconnected net-
works of tree processes (Theorem 3). Lemmas 2 (for acy-
clic processes) and 2 ~ (for cyclic processes) are critical to
the analysis. Lemmas 3,4,5 express the notions of success
in terms of possibilities and analyze success in adversity
as a game of part ial information [R] between P and Q.
Theorem 3 demonstrates that possibilities provide an
efficient da ta structure in this case.

Their are two indications that our approach can pro-
vide a practical heuristic for the harder case of loosely
interconnected cyclic processes. One is the simple
modification of composition (Section 4), which preserves
most of the algebraic properties of the acyclic case. The
notion of possibilities is not modified at all, however it
can no longer provide an efficient da ta structure in the
worst case [KS]. The second indication is that using the
weaker "language equivalence" notion, our method
efficiently solves a special case of the
success-with-collaboration question; i.e. in tree networks
of small processes using only one type of handshake.
Despites this problem's restricted nature, we have had to
use the powerful technique in [Le] to maintain efficiency.

Section 2 contains our model, Section 3 the analysis
of the acyclic case, and Section 4 the extensions and
analysis for the cyclic case.

2. T h e M o d e l

2.1. N e t w o r k s o f P r o c e s s e s

The finite s tate process, the basic building block of
our model, closely resembles the nondeterministie finite
s ta te automaton (NFA) of the classical t h e o r y o f compu-
tation.

Def in i t ion 1: A Finite State Process (FSP) is a quadru-
ple < K , p , ~, ~ > , where:

1) K is a finite set of states;
2) p E K is the start state;

3) E is a set of symbols called actions, and v ~ ~ is a
special symbol called the unobservable action;

4) ~ C K X (E U {r}) X K is a relation called the
transition relation.

24

We also assume that every state in K is reachable
from the start state p using some sequence of tran-
sactions.

An FSP can be represented as a directed graph,
whose nodes are the states and, for each (p , X, p ') in ~ ,
there is an arc from state p to state p~ labeled by X.
This syntax is identical to that of NFAs with empty tran-
sitions when all states are accepting states. We will use
capital letters P , Q , ' ' ' to denote FSPs and small
letters p , q , • • • to denote states.

Let s C Z * and p, p~ be states of an FSP. If
s = e (i.e. s is the empty string), we say that

s > ,
p p when there is a sequence of k arcs in the
graph of t h e F S P from p t o p~ with labels ~ , k > 0 .
(Obviously always p --~ p.) If s = s i s : • ' ' st,
si E E , 1 < i < l , we say that p ---~> p~ , when there
is a sequence of k o + k t + . . " + k t + l arcs in the
graph of the FSP from p to p~ with labels
rk°s~rk~s2 ' ' • s tr k', k0, k~, . . . , k t >_ O. We distin-
guish between r and e because' the unobservable action r
plays a special role in distributed computation [M].

Since there is no distinction between "accept" and
"reject" states, the only feature that distinguishes FSP
states is the absence of certain transitions. Let p be a
state and s G ~ * . We say that p-~.~> dead, when

8 ~ . there is no p t such that p = > p . Thin concept is
formalized in [HBR] as the failures of state p (or
Fail (p)).

Fai l (p) = { (s , Z) [s ~ ~*, Z _C ~ s u c h that:
~ p ' (p ~ > , p) and(\ - / z G Z, p ' . z > dead)}

Let < K , p , E, A > be an FSP and let G be the
directed graph representing it. If G is a path we have a
linear FSP; if it is a tree (rooted at p) we have a tree
FSP; and if it is a directed acyclic graph with single root
p, we have an acyclic FSP. A state of the FSP with no
transitions leaving it is called a leaf.

The meaning of the actions of an FSP is messages
exchanged with other FSPs. For example, if
z ~ E I N E 2 then z is a message that FSP l could
exchange with FSP 2. As will be clear from the definition
of composition (given in the following subsection), the
message exchange is in the form of a "handshake"
between the two processes. Intuitively, no distinction is
made between send and receive. A message can only be
exchanged between two processes, i.e. communication is
point-to-point. The meaning of a r is a step inside the
FSP invisible to the outside world.

Definition 2: A network N of processes is a set of m
FSPs, N = {PI, P2, " ' ' , P r o } , where we let Pi
denote < K i , pl, ~ i , ~ i > , and

1) the K i ' s are distinct sets of states, 1 < i < m ;

2) each x E ~ E i belongs to exactly two process sets of

actions.

Therefore a network N is a closed system of com-
municating processes. Since each action symbol belongs
to exactly two processes, we can describe the potential to
communicate using a labeled undirected graph C N. The
nodes of C N correspond to the processes in N and there
is an edge {i , j } between nodes i and j iff
Ei f ' lE i ~d0. The label of the edge {i ,] } is E i N E i
(i.e. process Pi can communicate with process Pi using
any x E E l N E j) . If C y is a t r e e (ring), we say that
network N is a tree (ring).

Let N be a network of processes with
C N ---- (V , E) , and ~r a given partition
(Vl, V2, • • • , Vi) of V into disjoint sets. We will call
N a k-tree if:

(a) IV,. t --< k , (i = 1 , 2 , ' ' ' , l)

(b) the g raphon nodes {1,2, - ' ' , l } and edges {(i, j)
] where E contains an edge with endpoints in V i
and Vj } is a tree.

Note that a tree network is a 1-tree, a ring network
a 2-tree, and if the largest biconnected component of C N
has size k we have a k-tree.

2.2. Process Composit ion: Algebraie Properties

We can now describe the interaction of processes in
a network using the algebraic operation of composition

(11).

Definition 3: Let N be a network of FSPs and
P l : < K 1 , Pl, El, A I > , P2 ~- < K 2 , P2, ~]2, ~2 >
two distinct processes in N . Let:

P i X

where the

if (q 1, X, r

i fk E

i fg E

i f k =

P2 = < K l X K 2, (Pl, P2), (El U E2), A >

new transition relation ~ is defined as follows:

1) E Al and (q2, P, r2) E A2 then

(~1 O {r}) - ~2 then
((ql, q2), X, (r i , q2)) E

(~2 U {r}) - ~1 then
((ql, q2), I t, (ql, r2)) E

E El f') E2 then ((ql, q2), X, (r l , r2)) E

I

The FSP P i N P 2 is P t X P2 restricted to states
reachable from the s tar t state (p 1, P2)'

The FSP P i l l P2 is P l f ' lP2 with all actions in
~1 N ~2 replaced by the unobservable action r. P 1 II P2
is the composition of P I and P2 '

Let N be the network o f F S P s {PI , P2, " ' ' , P r o } .
The transitions of P1 X P2 are either the moves of P !
with respect to Ps , " ' ' , P r o , or moves of P2 with
respect to Pa, " " " , P ~ , or simultaneous moves occur-

25

ring whenever P ! and P2 can "handshake". P l f"l P2
restricts P1 × P2 to the relevant moves, i.e. those reach-
able from the s tar t state. In P I r'l P2 we have the infor-
mation of which were the "handshakes" of P l and P2.
P i I I P o hides these "handshakes" from the other
processes.

Example: In Figure l a we have an example of a tree net-
work (CN) of three processes {PI, P2, P3}, where P ! is
a tree process, P2 an acyclic process, and P3 cyclic.
P1 X P2 is illustrated in Figure lb, P l M P2 is the part
of P1 X P2 reachable from state (l , 1). Finally, the com-
position P I]] P2 is in Figure le; this operation
transforms C N into CN, .

By performing a sequence of compositions on the
processes of a network N, we can produce new processes
whose states are, in essence, tuples of states of the
processes in N .

L e m m a 1: Let P;, Pj , Pk be three distinct FSPs of a
network N. Then P; I I PS -~ PJ l[P~ and
(P; I I P i) l l Pk = r~ I I(Pi II Pk). I

Since the states of the processes PI, P2, " " " , Pm
of N are distinct, we may, without loss of generality,
disregard the order of states in tuples. For example, if
qi E Ki, qj E K i and qk E Kk, then composite state
(qi, qi) is the same as (qi, qi), and (ql, (q i , qk)) is the
same as ((qi, q]), qk). If we follow this convention in
naming composite states, Lemma l says that]l is com-
mutative and associative.

A consequence of Lemma 1 is that the process
P ; , I I P i : I I " ' " liP;,, 1 _ < i 1 < i 2 < " ' " < i k
m, is well-defined. A state of this new process is a tuple
composed of states from Pi,, Pc~, " " " , P,).

The associativity of [] is a direct consequence of
our assumption that action symbols are shared by exactly
two processes in the network, and would otherwise not be
true [M].

P o s s i b i l i t i e s o f a n a c y c l i e F S P

The operation of composition (1 [) in a network of
processes has a number of interesting properties. In par-
ticular it matches well with the notion of possibilities,
which will be a powerful tool in analyzing FSPs.

Def in i t ion 4: Let P ~ < K , p , E, A) be an acyelic
FSP. The language of P and the possibilities of P are
given as:

Lang(p) ~- {s I s E E*, such that:
3 q , p ~ > q } .

Poss(p)---- { (s , Z) I s E ~ * , Z C ~, such that:
q, P _=s> q and

(q has no outgoing r-moves) and

(q has outgoing set of actions exactly Z) }.

The possibility (s, Z) is illustrated in Figure 2a. It
is a pair consisting of a string s and a set 2' of actions.
The string s takes the process from the s tar t state p to a
state q with 11o outgoing r's and with exactly the set of
actions in Z as outgoing actions.

Note that (s, Z) E Poss (P) implies that
s E i a n g (P) , and (s , ~ - Z) E F a i l (P) . The sets
Fail(.) and Poss(.) are illustrated in Figure 2b, where
it is also demonstrated that Fail (P) ---- Fail(Q) does not
imply Poss (P) = Poss (Q).

For acy.clic FSPs we have that if s E Lang(P),
there is always at least one (s , Z) E Poss (P); otherwise,
the transition diagram of the FSP would contain a cycle
of r-moves. This last implication is not necessarily true
for FSPs With cycles of r-moves.

For acyclic FSPs it is also easy to show that
Poss (P) ---- Poss (Q) implies (.hat Fail (P) = Fail (Q).
Thus the equivalence relation on acyclic FSPs induced by
the possibilities is a refinement of the [HBR] failure
equivalence.

The set i = {s] (s , O) ~ Poss(P)) is the
language of strings accepted by the leaves of the acyclie
process P .

We now show that possibility equivalence is a
congruence with respect to composition.

L e m m a 2: Let P , P t , P2 be acyclic FSPs. Then:

Poss (P1) ~ Poss (P2) implies
Poss(P [[P 0 : Poss(P I[P2), and

Lang (PI) = Lang (P2) implies
Lang(P]I P l) = i ang (P I P2).

Pro@ If Poss(PO---- Poss(P2) then Lang(PO----
Lang (P2)' By ignoring (without loss of generality) sym-
bols not present in the transition diagrams of P I and P2,
we must have that El ~ H2- Let
(s, Z) E Poss (P I I P 0; we will show that
(s , Z) E Poss (P I [P2). By symmetry this will suffice.

The string s is over the alphabet Z G H i -~-
(H U El) - (H MHt) and Z is a subset of this alphabet.
There exists a state in (pl , p l l) in P II P l such that
(P, P 1) s > (p0 , p i t), (pr , p l ,) has no outgoing r-
moves, and exactly the z ' s in Z serve as outgoing actions
from this s tate in P [[P l - By tracing the path that
serves as a witness to the fact that (p , P l) goes to

! I ~a¢ (p , p~), we can construct two strings t E and
r E El -. These two strings are subsequences of s with
additional matching symbols from ~ f3 E 1 such that
p ~ > p t and P l ~ > Plt in FSPs P and P I , respec-
tively. Therefore the possibilities (t , Y) E Poss(P) and

26

c

F~
m

r~a(p2) = ({~ }

C

X 2 (b 'c}) u ({b } X 2{b'cJ) U({~) X 2 (c)) C.

• v •

F ,: ,~ u.'r e ~.
T

27

(r, Yl} E Poss (PI} are well-defined. For these possibili-
ties we must have that Y f'l YI ~ 0 and
(Y U Y I) - (s2 N X~l) -~- Z (recall P [[Pl 'S construction
and that there are no r-moves from (pr , pl t)). Since
Poss (P I) ~- Poss (P~), we have that
(r, Yl)GsPoss(P2). Thus in P [I P2 we can show that
(P, P2) ~ (P , P2) by simulating the previous
decomposition of s into t and r , where p2 t is a state in
P2 witnessing the fact that (r, Y l)E Poss(P2). The
transitions out of (p r , p2r) in P l I P 2 are exactly
labeled by the symbols in Z, since Y N YI----0,
(Y U Y I) - (~ N ~ 2) : (Y U Y I) - (~ C I ~ I) -~- Z, and
no r-meves leave pt or p2 r in P and P2, respectively.

That Lanq(PO----Lang(P:) implies Lang(Pl[
PI) ~ Lang(P 1] P~) also follows from an argument
similar to the one above.

no outgoing ~-moves from q
(s , { z l , z2, " ' ' , z kl) E P o s s (P)

(a)

e l P2

Faii(P~) = F a i l (P 2) = (~, a, b} × ~{~,b)
Poss(P2) ----- {~, a , b} X {~} Poss(Pl) = Poss(P2) U {(e, {a, b})}

(b)

Figure 2

28

3. Acyc l i c Processes
Let N = {Pt , P2, ' " ' , P r o } be a network of

FSPs, let P -~- P~ be the distinguished process, and let
Q be its con tez tP211P3l] • "" I l P m . The globalFSP
G - ~ - P t l I P 2 1 1 " ' " I [Pm, which has only z-moves,
captures all possible state changes in the system.

We wish to study the behavior of P in its context
Q; therefore we must assume that the global FSP G
changes state if there is a possibility to do so.

Continuity Rule: Let G be in state (ql, q2, " ' ' , qm)
and let A be the set of transitions (i.e. r-moves to other
global states) possible from this state. Unless zh = I~, one
of the transitions in ~ must take place.

In the case o facyc l i cFSPs , P = P l, P2, " " ", Pro,
Q, G are all acyclic and G changes state because of the
continuity rule until it reaches one of its leaves.

Choices are possible in a network of FSPs. In the
simple example of Figure 3, process Q can choose to
remain in state l in which case, because of the continuity
rule, the global FSP must evolve from (1,1) to (2,2) using
an "a -handshake" between P and Q. Alternatively,
process Q can choose to go to state 3 in which case the
global FSP evolves from (1,1) to (3,1).

We will investigate the existence of sequences of
choices that lead to "desirable" behavior of G .

3.1. T h r e e P r o b l e m s o f Success

Let N = {PI , Pc, " ' ' , P r o } be a n e t w o r k of acy,
cli¢ FSPs, P ---- P l the distinguished process, Q its con-
tezt and G the global FSP. We will analyze the possible
choices in P so that, under the continuity rule:

(a) P has to reach one of its leaves;

(b) P can reach one of its leaves even if Q is antagonis-
tic;

(c) P can reach one of its leaves if Q collaborates with
it.

More formally:

0

b

q

Vp'

S. (P , Q) = true (unavoidable success)
when

, q ' [(p' , q ') l e a / o f G] = > [p' leaf_of P].

S~ (P , Q) = true (success in a d v e r s i t y)

when

P has a winning strategy in Game (P , Q)

(see Figure 4).

S¢ (P , Q) = true (success w i t h c o l l a b o r a t i o n)

when

J p ' , q ' . [(p ' , q ') l e a f o / G] h [p ' leaf_o/P].

Obviously, St, (P , Q) = > S a (P , Q) = > S c (P ,
Q). However, even in very simple cases, such as Figure
3, So(P, Q) =4> S~(P, Q).

We will be using the term potential blocking for
- ,Su(P, Q) = true. It is easy to see that potential
blocking corresponds to:

~ P ' , qt • I(P' , q') l e a f _ / G] h
~[p ' leaf_o/P].

For success in adversity we assume that P, the dis-
tinguished process, has no z-moves. This is to simplify
the rules of the Game of Figure 4, which captures the
evolution of the system. In Game, player Q is forced to
move if it can (continuity rule) and player P is forced to
respond to Q's message. Player Q has a strong adverse
role since it knows the global state and selects the next
legal action. Player P knows only it local state and can
estimate the global state from messages received and Q's
structure. Whereas player Q chooses qi+l and a; (its
next local state and the next action), player P only
chooses Pl +l (its next local state). This is a game of par-
tial information for P and total information for Q [R].
Since the FSPs are acyelic, the game is 'a finite one.

P GG- Q tP

(,0

Figure 3

29

, , , .': ~ ' ; . ~ £ • ; " . . 7 ,

G a m e (P , Q)

Initial Position: Network of FSPs {P , Q }, E is common alphabet.

Pl ~- start s t a t e _ o f P

q l ~- start s t a t e _ o f Q .

Round i (i ----1, 2, - " " , n):

Player-Q: Sets a i ~-- a, qi+l ~-- q, where
=a> =a> , a E E, qi q , a n d ~ p r . p i P

Player-P: Sets Pi+l ~- P, where Pi -~ai> P.

Information: Q knows everything. P knows initial position and
sequence of a i 's.

Goal: Player-P wins iff Pi is l e a f _ o f P .

Assumptions: PRayers have to play if they can.
The FSP P has no r-moves.

Figure 4

3.2. C o m p l e x i t y

In this section we will examine the complexity of
deciding the predicates S~ (P , Q), S , (P , Q), and
S c (P , Q), where we are given a network
N : {PI , P2, " ' ' , P r o } o f a c y c l i c F S P s ; P - - - - P l a n d
Q = P 2 [I P a l l " ' ' [[Pm- N i s o f s i z e n.

For arbitrari ly connected networks of linear FSPs
there are no significant choices to be made and we can
make the following observation:

Proposit ion 1: If all processes in N are linear, then:

S u (P , Q) : S a (P , Q) : s e (P Q) and can be decided
in O (n) time.

Proof." To see this, first construct a directed graph H
consisting of m linear orders. The nodes of H are all the
non-r transitions of the processes, each node labeled by
its action symbol. If transition 5 is the first non-r transi-
tion of Pi before the non-r transition 6 * of P i , insert the
are (6, 6r) in H . Now match the nodes of H in pairs.
That is, match the first node with label a in Pi with the
first node with label a in P i (a E E i f'l E i) , etc. Delete
all unmatched nodes and their successors from H until
the only remaining nodes are all matched in pairs (the
deleted actions have no hope of ever being executed). If a
node of P t has been deleted, we can now say
S¢ (P , Q) = false. Otherwise, create the directed graph

H I by merging each matched pair into one node and
keeping only the matched pairs that are predecessors of
some matched pair with a node in P1. H~ is acyclic iff
S c (P , Q) = true , and H ' is cyclic iff -~S u (P , Q) - ~
t rue .

I
For the case of aeyclic FSPs both S~(P , Q) and

--,S~ (P , Q) are in NP. This is because the desired "wit-
ness" in each case, which we use to verify success with
collaboration and potential blocking respectively, is an
O (m • n) sequence of moves from the initial global s tate
(i.e. the length of the maximum path in the global
machine G).

For S a (P , Q) , however, we have a finite game of
hnear t ime bounded alternation (i.e. the length of the
maximum path (i.e. the length of the maximum path in
the distinguished machine P) . Thus S a (P , Q} is in
PSPACE.

Unfortunately, even simple choices can lead to a
combinatorial explosion.

Theorem 1: Let the processes in N be acyclic and such
that I E i f ' lE i I _< I for 1 < i~Aj < m. S c (P , Q)
and -~S~, (P , Q) are NP-complete even if either

(1) C N is a tree and all FSPs but one are O(1) linear
FSPs, or

(2) each P~, 1 < i < m, is an O(1) tree FSP. [

3O

In case (1), the result holds both if P l is the only
acyctic but non-linear FSP or if P1 is linear. Note that
communication between two processes in Theorem 1 is
restricted to repetitions of just one symbol.

The reductions are from 3SAT, where each variable
is restricted to appear once negated and once or twice
unnegated, a well-known NP-complete problem. They
are illustrated in Figure 5 for case (1) and Figure 6 for
case (2) using the formula {zl \ / ~ 2 \ / x 3) h
(zl \/x2 V ~3).

Theorem 2: Let the processes in N be acyclic. Even if
C N is a tree and all processes except P are tree FSPs,

S 4 (P , Q) is PSPACE-complete.

The reduction is from QBF [G J] and is illustrated in
Figure 7 using the formula
~Zl ~g2 ~X3 (Xl V ~'2 V .,~3) A (X I V x 2 V x'3).

3.3. Efficient Tests for Tree Processes

The computational complexity indicated by
Theorems 1 and 2 depertds on two factors. One is high
connectivity in C N (Theorem 1, case 2). The other is the
fact that an acyclic process can succinctly describe many
sequences of events (Theorem l, case 1 and Theorem 2).
In a loosely connected network, for example whenever
C N is a k- t ree for some fixed k, the second factor is crit-
ical.

Using the algebraic properties of composition and the
notion of possibilities we can show the following:

T h e o r e m 3: Let N be a network of tree processes of
size n and let C N be a k-tree. Then, S~(P, Q),
Sa(P , Q), Sc(P , Q) can be decided in O(n k) time.

We first have to express the various properties of
interest using the notions of Lang (•) and Poss () .

? p'

"_\ .,"" "X L"

Figure 5

for S~ (.) use P l = P

for --~S~ (-) u s e P l ~ P '

31

a

¢

~t I e I:
~ f'~ e,.

I F i g u r e 6

for S¢ (•) use P l • P

for - S ~ (•) use P l = P '

J

P2 Ps .Ps

q

F i g u r e 7

b

'3

2

32

L e m m a
true iff

3: (success with collaboration) S¢ (P , Q) =

s • Lang(Q) and (s,0) C Poss(P) . I

L e m m a 4: (potential blocking) -~S~ (P , Q) : true iff

~ _ s , X , Y. (s , X) E Poss (P) and
(s, Y) E Poss (Q) and

X ~ 0 and X N Y-~.-O. I

Both lemmas are simple consequences of the
definitions in Section 3.1. The more interesting notion is
blocking, which is very much related to possibilities.

L e m m a 5: (success in adversity)

Ross (Q) = Poss (Q') implies
S,(R, Q) = so(P, Q'). I

As will be made clear by the analysis of an optimal
strategy for player P , no distinction can be made
between Q and Q W . This is because player P uses only
partial information, whereas Q (Q t) has total informa-
tion.

Proof of Lemma 5: Let us assume we are player P at
round i , that string s : a laz" • • a i has been
exchanged, and that we are in state p;. We wish to
decide if it is a winning choice to use a i and go to state
Pi+l (we call this situation < s , P;, P/+ l>) . We examine
the immediate descendants of P;+I for all of which we
have inductively solved the question. That is, we know if
situation < s a , Pi-~l, pta: > w is a winning one or not,
w h e r e a E E and Pi+l--~> P . The basis of this induc-
tion are the leaves of the FSP P and all paths leading to
them; these are winning situations for us. Let the outgo-
ing actions a to winning situations form set W and to
loosing situations form set L .

If there is a possibility (s , Z) E Poss (Q) such that
Z (') (W U L) - ~ - O , player Q can block us and the
situation is a loosing one. If there is a string
s a E Lang(Q) such that a E L - W , then player Q can
force us into a loosing position and thus the situation is
again a loosing one. Otherwise, because of the continuity
rule, player Q must give us an action for which we have
a winning choice.

Finally, it is clear that player P need only examine
situations with s in Lang (Q). Recall that
Ross (Q) = Ross (Q') impl ies Lang(Q) = Lang(Q').

I

Proof of Theorem ~. We can assume, without loss of gen-
erality, that C N is a tree. This is because the processes
in a given parti t ion of a k- t ree can be composed directly
to produce 0 (n k) size processes. Since [I is associative
and commutative, there is no restriction on how it is
applied. (For example, a ring network can be

transformed into a path of O(n ~) size processes - see
Figure 8a.) We thus modify C g to obtain C N, so that
in the tree C N, the distinguished process P is at the
root and the processes, whose product is Q, form a forest
of trees: {T i , Tz, . - . , Tt} , where Piy is the j t h pro-
cess in tree T i and Qi -~- 1YIPij, and Q = I] Q i .

y i
We will now further reduce the tree C N, to a star

configuration with R at the center by replacing each Q;
{and tree T i of FSPs) with a Qi I (a single FSP), such
that Poss (Qi) -~ Poss (Q;'). By Lemma 2,
Poss(Q) = Poss(lr~Q;) = Ross(l~iQi I). By Lemmas

i i
3, 4, and 5 (.here is no change in the various success
predicates.

We construct Q t using the processes in the tree
Ti; we proceed from ~/].'s leaves. Let us start with a
node P / in 7]. which communicates with leaves
{Pc [Pc is leaf_of T i and child of Pi }, and with one
other process in T¢, say Pg (see Figure 8b). If
Poss (Pc) = Ross (P~,), i.e. P ~ is a normal form of R c
with respect to possibilities~ we have by Lemma 2 that
Poss ((FIP¢)[I P!) = Poss ((1-IP~n)11 P!). The criti-
cal step now is to compute a normal form Pf,~ such that
Poss (Pf n) = Poss ((]~IPcn) I] P /). For tree processes
this is possible with P in having size no greater than P !
and using linear time in the size of Pf and the Pc, 's.

Reduction Step:

Let (s , Z) E Poss(([IP¢~) l l P!). Then s is a string
over ~ f N ~ g and Z C ~ I N ~g (~ ! , ~ ¢ , a n d ~e are
the alphabets of P ! , Pg, and Pe)- Moreover, there is a
"witness" string r to this fact, which is a string in
Lan.g(P[). The symbols in r from ~ f 0 Eg form s ,
the symbols in r from each Ef 0 ~3c form s e. The wit-
ness string r takes P[from the start s tate to some state
p ' with no outgoing r-moves in PI , exactly Z as outgo-
ing actions in ~ I N ~ g , and outgoing actions W e from
each E! N E e which are "appropria te" . By appropriate
we mean that for each Pc there is a possibility (s c , X¢)
such that (X e N We) ---- 0.

I t is now clear that if PI is a tree and the Pea's are
(inductively) of size no greater than the size of Pc, then

the possibilities (s , Z) forming P I , can be computed in
linear time and will be a set of no greater size than P!
(Figure 9 presents an example).

Final Step:

We have reduced the three decision questions of interest
to decision questions for a star network of tree processes
with P at the center, Q i l ' s as leaves, and each tree pro-
cess of size O (n k).

Using Lemmas 3, 4 and the proof of Lemma 5, as
well as the "small" size of Ross (P) (recall that P is a
tree), we can decide ,.~ (P , [I Q ; #), S a (P , 1]Q,"), and
S¢ (P , l~IQi w) in O(n k) time. This is because, although
[I Q ; t might be large, there is no interaction between
the small Q; '

33

f

=CN'

®

Cb)
Fi.,~u.re 8

34f

• CE, i ~) .

I

(a, ¢)

Figure 9

S~ (P , Q) = false (P4 makes r-move; P !eft branches on a)
S~ (P , Q) = true (P right branches on a)
S¢ (P , Q) = true

35

4. Cyc l i c P r o c e s s e s
In this section we will extend most of the theory of

Section 3 to cyclic processes. We will assume throughout
that N = {PI , P2, " ' ' , P r o } is the given network of
processes of size n , P = P l is the distinguished process,
and Q = P 2 I] P 3 [] " ' " I]Pm its context. We will
also assume that each P; in N has no r-moves and no
leaves. These assumptions simplify our arguments,
without loss of generality. Note that even if
P2, " ' ' , Pm have no leaves and no r-moves, Q very
well could have such features. Once again the continuity
rule (Section 3) forces the evolution of the system.

The goals of success of the distinguished process P
in context Q become:

(a) P cannot stop moving;

(b) P can keep moving forever even if Q is antagonis-
tic;

(c) P can keep moving forever if Q collaborates with it.

This is a natural generalization of Section 3 if process P
is thought of as an infinite tree whose leaves are at
infinity.

4.1. Succes s and Poss ib i l i t i e s

The technical problem of the generalization from
finite to infinite trees is the presence inside a process, say
process Q, of a cycle of r-moves. Intuitively, such a
cycle means that if Q can reach this cycle, it can make
choices that will keep it there forever. The behavior of
such a temperamental Q would then be similar to going,
via a r-move, to a new leaf. There is a simple solution to
this problem through a modification of the composition
operator I I •

Composition for Cyclic Processes Q~ and Q2: As
in Section 2.2, we first construct Ql × Q2, then keep
only the reachable part Q l f'l Q2, and then hide the com-
mon symbols in Q l i I Q2. The addition is that it
(ql t , q2 t) is a state in Q l i] Q2 from which, using r-
moves, we can enter a loop of r-moves, then we add a
new leaf q,,e,o to the state space and a new r-move
((ql I , q2*), r, qnew) to the transitions of Q t [I Q2.

Consider two cyclic processes R l, R2 produced from
N using the above composition. A first consequence of
the new definition is that Poss (R l) = Poss (R 2) implies
Lung (R l) ---- Lung (R2). Thus we have already overcome
one difficulty mentioned in Section 2.2.

Let us assume that we use the above composition
operator I] to produce processes from our network N .
Let us then use Definition 4 for Lung(•) and Poss (•) of
these processes. Note that the new [I is still associative
and commutative.

L e m m a 2 t :

P o s s (R !) : P o 8 8 (R 2) implies
Poss (R [I R l) = Poss(R I I R2), and

Lang(R t) =Lang (R2) implies
Lang(R I I R i) = Lang(R II R2).

Sketch of Proof." The proof is similar to that of Lemma 2
except for one case. This is for (s , 0) E Poss(R]1 Rl)
that was produced because of a new r-loop reachable
using s in R II R1. This possibility (s , 0) is present
because the new I I operator forces us to make a r-move
to a new leaf in R I I R l .

Let s = e (without loss of generality). Then this
particular possibility (e, 0) implies that there is an infinite
set of strings in Lang(R)M Lang(Rl), and also in
Lang(R) A Lang(R2). Using this infinite set, the finite-
s tate R2, and the pigeon-hole principle, we can argue
that (e, 0) E Poss (R [I R2).]

We can now define reasonable generalizations of the
success predicates.

-~Su (P , Q) ---- true (po ten t ia l b lock ing)

iff
~ s , X , Y. (s , X) E Poss(P) and

(s, Y) E P o s s (Q) and X N Y = 0 .

Sc (P , Q) : true (success w i th co l labora t ion)
iff

iang (P) fD iang (Q) is infinite.

Sa (P , Q) = true (success in a d v e r s i t y) I

I iff

P has a winning strategy, in Game (P, ~).

Game (P , Q) for cyclic processes has the same rules
as the game in Figure 4. The only difference is that if the
game stops Q is the winner. P wins if it can force the
game to go on forever. Since we have modified composi-
tion such that if Q has the option to get in a r-loop for-
ever, it now has the option to reach a leaf and win, we
have lost no generality.

As with Game, potential blocking and success
collaboration are natural generalizations of Lemmas 3 and
4. Again the new I[handles v-loops.

4.2. C o m p l e x i t y

A reasonable assumption about a network N of
FSPs is that C N is a k-tree. It is also reasonable to
assume that the processes are cyclic processes "small" in
comparison to the size of the network. Under these
assumptions, the methodology of Theorem 3 could be
used, where Poss(.) and Lang(.) supply the normal
form notions. Unfortunately, in the worst case, the
reduction step and final step (see proof of Theorem 3) are
no longer efficient. This is because testing possibility
equivalence of cyclic processes is PSPACFE-complete [KS].

36

I~--~,. ~ < ~ 5 ~ ~ ~ ± : ~ 4 ~ ; ~ ~ ,k~ ̧ : ~ : -. "

P r o p o s i t i o n 2: Su (P , Q) and S c (P , Q) are PSPACE-
complete, even if N consists strictly of constant size
cyclic processes and C N is a tree. Sa(P, Q) can be
decided in deterministic time d ~ for some d > 1, and
cannot be solved in deterministic time c,POa ~ for some
c > ~ . I

The reductions are from LBA acceptance [GJ] and
alternating linear space Turing machine acceptance. We
use techniques similar to [RT] and [L]. Binary communi-
cation alphabets are needed. These worst case bounds
arc not. surprising, however, using the powerful combina-
torial result in [Le] we can show that:

T h e o r e m 4: Let N = {P~, Pc, " " " ,Pm } be a net-
work of 0 (1) size cyclic processes such that C N is a tree.
Also let [E i ["3 E i [< 1 for 1 _< i ~ j < m. Then:

S c (P , Q) can be decided in O (m k) time for some
constant k.

Sketch of Proof." The method is similar to that of
Theorem 3. Since S¢ (P , Q) depends only on Lang (•),
we need a normal form weaker than the one preserving
Poss (•). A normal form preserving Lang (•) in the case
of a unary communication alphabet is just a number: if
we have a finite prefix-closed language, it is the length of
the longest string; else it is everything. Note that this
number must be coded in binary, for it is easy to con-
struct a chain of multiply-by-2 processes.

Reduction Step: PI is now a constant size machine to
which we present a constant number of O(m) bit
integers. Pfn will be an O(m) bit integer (see Theorem
3 and Figure 8b). Because Pf is a finite state machine,
we can formulate the computation of P f , as an inte jer
programming problem with a constant number of vari-
ables and use the [Le] polynomial time algorithm. (The
argument for the final step is similar).].

5. Discussion and Open Problems
We have demonstrated the use of a new algebraic

method for analyzing communicating finite state sequen-
tial processes. The basis of the method is the introduc-
tion of an appropriate composition operator (e.g. [[)
with the right normal form (e.g. Poss(•)). This interac-
tion allows us to use the structure of a system of
processes in order to decide nontrivial properties about
the system behavior. These properties are both about
cooperating and antagonistic processes.

Our approach leads to efficient time bounds for all
properties in the finite tree case. We also extend the
approach in a natural fashion to the more practical cyclic
case. We believe that despite the worst case complexity
of the cyclic case, the technique can be useful in practice.

An interesting generalization of these problems
involves introducing more symmetry between the dis-
tinguished process and the other processes in the net-
work. For this, let N ~ {PI , P2, " " , P 2 m } b e a n e t -
work parti t ioned into P -~ P 1 I t P21 I " " • [I Pm and
Q = P ~ + l l [" "" [[P2m" Deciding success for tree
processes in this case is an open question.

Acknowledgements: The authors are indebted to Steve
Brookes, Ed Clarke, and Ashfaq Munshi for helpful dis-
cussions.

References

[Br] S.D. Brookes, "On the Relationship of CCS and
CSP", Proceedings of lOth ICALP, Barcelona, Spain, pp.
83-96 (July 1983).

{BZ] D. Brand, P. Zafiropoulo, "On Communicating
Finite-State Machines", Journal ACM, Vol. 30, No. 2, pp.
323-342 (1983).

ICES] E.M. Clarke, E.A. Emerson, A.P. Sistla,
"Automatic Verification of Finite State Concurrent Sys-
tems Using Temporal Logic Specifications: A Practical
Approach", Proceedings of the lOth ACM Symposium on
Principles of Programming Languages, Austin, TX (April
1983).

[GJ] M.R. Garey, D.S. Johrtson, Computers and Intracta-
bility." A Guide to the Theory of NP.Compleleness, W.H.
Freeman and Company, San Francisco (1979).

[H] G.J. Holzmann, "A Theory for Protocol Validation",
IEEE Transaclions on Computers, Vol. C-31, No. 8, pp.
730-738 (Aug. 1982).

[HBR] C.A.R. Hoare, S.D. Brookes, A.W. Roscoe, "A
Theory of Communicating Sequential Processes", Journal
ACM, Vol. 31, No. 3, pp. 560-599 (July 1984).

[KS] P.C. Kanellakis, S.A. Smolka, "CCS Expressions,
Finite State Processes, and Three Problems of
Equivalence", Proceedings of 2nd AC?¢I Symposium on the
Principles of Distributed Computing, Montreal, Canada,
pp. 228-240 (Aug. 1983).

ILl R. Ladner, "The Complexity of Problems in Systems
of Communicating Sequential Processes", Journal of
Comput. Systems Science 21, No. 2, pp. 179-194 (1980).

[Le] H.W. Lenstra, Jr., "Integer Programming with a
Fixed Number of Variables", Mathematics Department
Report 81-03, University of Amsterdam (1981).

[M] R. Milner, "A Calculus of Communicating Systems",
Lecture Notes in Computer Science 92, Springer-Verlag
(1080).

37

[OL] S.S. Owicki, L. Lamport, "Proving Liveness Proper-
ties of Concurrent Programs", ACM Transactions on
Programming Languages and Systems, Vol. 4, No. 3, pp.
455-495 (July 1982).

[R] J.H. Reif, "Universal Games of Incomplete Informa-
tion", Proceedings of 11th ACM Syrup. on Theory of
Computing, pp. 288-308 (1979).

[RT] T. Raeuchle, S. Toueg, "Exposure to Deadlock for
Communicating Processes is Hard to Detect", Depart-
ment of Computer Science, Technical Report No. TR 83-
555, Cornell University, Ithaca, NY (May 1983).

IS] S.A. Smolka, "Analysis of Communicating Finite-
State Processes", Depa.rtment of Computer Science, TR
No. CS-84-05, Brown University, Providence, RI (Feb.
1984).

IT] R.N. Taylor, "Complexity of Analyzing the Synchron-
ization Structure of Concurrent Programs", Acta lnfor-
matiea 19, pp. 57-84 (1984).

38

