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A b s t r a c t  

We propose a new method for the analysis of cooperative 
and antagonistic properties of communicating finite state 
processes (FSPs). This algebraic technique is based on a 
composition operator and the notion of "possibility 
equivalence" among FSPs. We demonstrate its utility by 
showing that  potential blocking, lockout, and termination 
can be efficiently decided for loosely connected networks 
of tree FSPs. If not all acyclic FSPs are trees, then the 
cooperative properties become NP-complete and the anta- 
gonistic ones PSPACE-complete.  For tightly coupled 
networks of tree FSPs, we also have NP-hardness. For 
the considerably harder cyclic case, we provide a natural  
extension of the method as well as a subcase reducible to 
integer programming with a constant number of vari- 
ables. 

1. I n t r o d u c t i o n  

There has been a great deal of interest in recent 
years in algebraic approaches to the specification and 
verification of concurrent systems [e.g. M, Br, HBR, H]. 
The motivation behind these approaches is to simplify 
the analysis of potential termination, blocking, deadlock, 
lockout, liveness and other properties of communicating 
processes. These static analysis tasks are central to both 
the areas of concurrent programming and network proto- 
col validation [e.g. BZ, CES, H, L, OL, RT, S, T]. Unfor- 
tunately,  if no use of the part icular problem structure is 
made, the general computational problems are usually 
intractable_~L, T, G J, RT]. 
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We demonstrate the use of an algebraic method 
which indeed exploits the particular structure of the 
given problem. We present efficient techniques for the 
analysis of many properties of a system of communicat- 
ing finite state processes. These properties refer both to 
cooperating and to antagonistic processes. 

Our model is a network of finite state processes. A 
non-empty transition (action) of a process represents an 
instruction for this process to exchange a "handshake" 
with another specified process. An empty transition (r- 
move) represents an internal change of the process 
undetectable by the outside world. 

Two processes P ,  Q can be composed into a com- 
bined process P ] l  Q,  which represents their behavior 
with respect to the rest of the world and partially hides 
the interaction between them from the rest of the world. 
The composition of all processes in a network results in 
one global process with only v-moves. Analysis of the 
reachability properties of the global process is a standard, 
albeit inefficient, way of studying the behavior of the net- 
work. 

It is reasonable to assume that  the global process 
will change state if possible. This continuity rule (such as 
the one in [L]) forces system evolution to take place. Let 
N -~- {Pl ,  P2, " " " , Pro} be our network of processes, 
P ~ P1 the process in the network we wish to study, 
and Q - - - - P 2 ] I P 3 ] I  " ' "  I IPm the rest of the network 
which P views as a process. (Note that  intentionally II 
is devised to be associative and commutative.) 

Process P ,  due to branching actions in its state 
diagram and to r-moves, can make choices that  affect the 
behavior of the system. How must P schedule its choices 
so that it evolves in a "desirable fashion"? By desirable 
fashion we mean "reaches an accept s tate" for an acyclic 
(finite) process and "never s tops" for a cyclic (infinite) 
process. We study three related questions which appear 
to be fundamental: 

(a) Can P make its choices randomly? That  is, is it 
guaranteed to evolve desirably no matter  what its 
choices are? We call this property unavoidable suc- 
cess. Its negation is sometimes known as potential 
blocking. 
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(b) Can P make its choices intelligently and locally? 
That  is, can it schedule its choices based only on its 
part ial  information about the system and still evolve 
desirably no matter  how antagonistic the other 
processes are? We call this property success in 
adversity. This is a simple and yet complete version 
of the no-lockout problem posed in [L]. 

(c) It is even possible for P to evolve desirably? That  
is, can P and the rest of the network collaborate to 
achieve the desired evolution of P ?  We call this 
property success with collaboration. It is the weak- 
est of the three notions and does not correspond to 
any realistic scheduling strategy. I t  is sometimes 
known as potential termination. 

A reasonable assumption about many networks N is 
that  processes arc "loosely interconnected". That  is, the 
graph representing which pairs of processes can 
handshake has a low degree of connectivity. This C N 
could be a tree, a ring, or more generally what we call a 
k-tree. The sparsity of C N is the problem structure we 
would like to take advantage of using our algebraic 
method. For simplicity, let us think of C N as a tree with 
P ,  the distinguished process, determining its center. 

Two critical choices in our method of analyzing P ' s  
behavior in context Q are: 

(l)  the choice of composition operator, 

(2) the choice of equivalence notion among processes. 

The composition operator must be associative, com- 
mutative and have the following property: If in a compo- 
sition operation R i l I R 2  we replace R2 with an 
equivalent R21 , the new composition R i I I R 2 1  is 
equivalent to R i l l  R 2. Also, the equivalence notion 
must be sufficient to characterize unavoidable success, 
success in adversity, and success with collaboration. 

We define the appropriate operator ]l for acyclic 
processes in Section 2.2, and a technical variant of it for 
cyclic processes in Section 4. The right notion of 
equivalence is a refinement of the [HBR] failure 
equivalence, and is based on the possibilities Poss(R) of a 
process R .  A possibility ( s ,  Z)  of a process is a pair 
consisting of (1) a string of transitions s bringing the 
process to a state it cannot change silently and (2) a set 
Z of all possible next transitions at this state. 

Using II , we combine processes from the leaves of 
C N towards the center, always making sure that  possibil- 
ities are preserved. We believe that  this is the natural  
organized analysis of our generally hard combinatorial 
questions. We show that  I I and Poss ( .  ) are the 
appropriate choices because of the efficiency in solving 
the finite case, and the small modification necessary to 
extend the finite case to the harder infinite case. 

We first show that  if we have straight-line processes 
all the questions of success become one that  can be 
answered easily by a causality argument (Proposition 1). 
If we have small tree processes interconnected in a tight 
fashion, unavoidable success is co-NP-complete and suc- 
cess with collaboration is NP-complete (Theorem 1). 

These are improvements on bounds derived in [T] for a 
different process model. For success in adversity of 
loosely interconnected acyclic processes, where the dis- 
tinguished process describes an exponential number of 
paths, we show PSPACE-completeness (Theorem 2). 
This demonstrates the harder game nature of antagonism 
versus collaboration (which is in NP) in a simpler fashion 
than was done in [L]. The NP-hardness bounds of the 
acyclic case become PSPACE-hardness bounds in the 
cyclic case. Exponential bounds, similar to ILl, can be 
shown for success in adversity (Proposition 2). 

These intractabil i ty results provide the setting for 
our main concern, which is the choice of I I and Poss ( . ) 
and their use in showing that  all three notions of success 
can be efficiently decided for loosely interconnected net- 
works of tree processes (Theorem 3). Lemmas 2 (for acy- 
clic processes) and 2 ~ (for cyclic processes) are critical to 
the analysis. Lemmas 3,4,5 express the notions of success 
in terms of possibilities and analyze success in adversity 
as a game of part ial  information [R] between P and Q.  
Theorem 3 demonstrates that  possibilities provide an 
efficient da ta  structure in this case. 

Their are two indications that  our approach can pro- 
vide a practical heuristic for the harder case of loosely 
interconnected cyclic processes. One is the simple 
modification of composition (Section 4), which preserves 
most of the algebraic properties of the acyclic case. The 
notion of possibilities is not modified at all, however it 
can no longer provide an efficient da ta  structure in the 
worst case [KS]. The second indication is that  using the 
weaker "language equivalence" notion, our method 
efficiently solves a special case of the 
success-with-collaboration question; i.e. in tree networks 
of small processes using only one type of handshake. 
Despites this problem's restricted nature, we have had to 
use the powerful technique in [Le] to maintain efficiency. 

Section 2 contains our model, Section 3 the analysis 
of the acyclic case, and Section 4 the extensions and 
analysis for the cyclic case. 

2. T h e  M o d e l  

2.1.  N e t w o r k s  o f  P r o c e s s e s  

The finite s tate process, the basic building block of 
our model, closely resembles the nondeterministie finite 
s ta te  automaton (NFA) of the classical t h e o r y o f  compu- 
tation. 

Def in i t ion  1: A Finite State Process (FSP) is a quadru- 
ple < K ,  p ,  ~, ~ > ,  where: 

1) K is a finite set of states; 
2) p E K is the start state; 

3) E is a set of symbols called actions, and v ~ ~ is a 
special symbol called the unobservable action; 

4) ~ C K X ( E U  {r}) X K is a relation called the 
transition relation. 
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We also assume that  every state in K is reachable 
from the start  state p using some sequence of tran- 
sactions. 

An FSP can be represented as a directed graph, 
whose nodes are the states and, for each (p ,  X, p '  ) in ~ ,  
there is an arc from state p to state p~ labeled by X. 
This syntax is identical to that  of NFAs with empty tran- 
sitions when all states are accepting states. We will use 
capital letters P , Q ,  ' ' '  to denote FSPs and small 
letters p , q ,  • • • to denote states. 

Let s C Z  * and p,  p~ be states of an FSP. If 
s = e (i.e. s is the empty string), we say that  

s >  , 
p p when there is a sequence of k arcs in the 
graph of t h e F S P  from p t o  p~ with labels ~ ,  k > 0 .  
(Obviously always p --~ p.)  If s = s i s :  • ' '  st, 
si E E ,  1 < i < l ,  we say that  p ---~> p~ , when there 
is a sequence of k o +  k t  + . . "  + k t + l arcs in the 
graph of the FSP from p to p~ with labels 
rk°s~rk~s2 ' '  • s tr  k', k0, k~, . . . ,  k t >_ O. We distin- 
guish between r and e because' the unobservable action r 
plays a special role in distributed computation [M]. 

Since there is no distinction between "accept" and 
"reject" states, the only feature that  distinguishes FSP 
states is the absence of certain transitions. Let p be a 
state and s G ~ * .  We say that  p-~.~> dead, when 

8 ~ . there is no p t such that  p = >  p . Thin concept is 
formalized in [HBR] as the failures of state p (or 
Fail (p )). 

Fai l (p)  = { ( s , Z )  [ s ~ ~*, Z _C ~ s u c h  that: 
~ p '  (p ~ >  , p ) and( \ - / z  G Z,  p '  . z >  dead)} 

Let < K ,  p ,  E, A >  be an FSP and let G be the 
directed graph representing it. If G is a path we have a 
linear FSP; if it is a tree (rooted at p)  we have a tree 
FSP; and if it is a directed acyclic graph with single root 
p,  we have an acyclic FSP. A state of the FSP with no 
transitions leaving it is called a leaf. 

The meaning of the actions of an FSP is messages 
exchanged with other FSPs. For example, if 
z ~ E  I N E  2 then z is a message that  FSP l could 
exchange with FSP 2. As will be clear from the definition 
of composition (given in the following subsection), the 
message exchange is in the form of a "handshake" 
between the two processes. Intuitively, no distinction is 
made between send and receive. A message can only be 
exchanged between two processes, i.e. communication is 
point-to-point. The meaning of a r is a step inside the 
FSP invisible to the outside world. 

Definition 2: A network N of processes is a set of m 
FSPs, N = {PI,  P2, " ' ' , P r o } ,  where we let Pi 
denote < K i ,  pl,  ~ i ,  ~ i  > ,  and 

1) the K i ' s  are distinct sets of states, 1 < i < m ; 

2) each x E ~ E i  belongs to exactly two process sets of 

actions. 

Therefore a network N is a closed system of com- 
municating processes. Since each action symbol belongs 
to exactly two processes, we can describe the potential  to 
communicate using a labeled undirected graph C N. The 
nodes of C N correspond to the processes in N and there 
is an edge {i ,  j }  between nodes i and j iff 
Ei f ' lE  i ~d0. The label of the edge {i ,  ] }  is E i N E  i 
(i.e. process Pi can communicate with process Pi using 
any x E E l  N E j ) .  If C y is a t r e e  (ring), we say that 
network N is a tree (ring). 

Let N be a network of processes with 
C N ---- ( V ,  E) ,  and ~r a given partition 
(Vl,  V2, • • • , Vi) of V into disjoint sets. We will call 
N a k-tree if: 

(a) IV,. t --< k , ( i  = 1 , 2 , ' ' ' , l )  

(b) the g raphon  nodes {1,2, - ' ' , l }  and edges {(i,  j )  
] where E contains an edge with endpoints in V i 
and Vj } is a tree. 

Note that  a tree network is a 1-tree, a ring network 
a 2-tree, and if the largest biconnected component of C N 
has size k we have a k-tree.  

2.2. Process Composit ion: Algebraie Properties 

We can now describe the interaction of processes in 
a network using the algebraic operation of composition 

(11). 

Definition 3: Let N be a network of FSPs and 
P l  : < K 1 ,  Pl,  El, A I > ,  P2 ~- < K 2 ,  P2, ~]2, ~2 > 
two distinct processes in N .  Let: 

P i X  

where the 

if (q 1, X, r 

i fk E 

i fg  E 

i f k  = 

P2 = < K  l X K 2, (Pl, P2), (El  U E2), A >  

new transition relation ~ is defined as follows: 

1) E Al  and (q2, P, r2) E A2 then 

(~1 O {r}) - ~2 then 
((ql, q2), X, ( r i ,  q2)) E 

(~2 U {r}) - ~1 then 
((ql, q2), I t, (ql,  r2)) E 

# E El f') E2 then ((ql,  q2), X, ( r l ,  r2) ) E 

I 

The FSP P i N P 2  is P t  X P2 restricted to states 
reachable from the s tar t  state (p 1, P2)' 

The FSP P i l l  P2 is P l  f ' lP2  with all actions in 
~1 N ~2 replaced by the unobservable action r. P 1 II P2 
is the composition of P I  and P2 '  

Let N be the network o f F S P s  {PI ,  P2, " ' ' , P r o } .  
The transitions of P1 X P2 are either the moves of P !  
with respect to Ps ,  " ' ' , P r o ,  or moves of P2 with 
respect to Pa,  " " " , P ~ ,  or simultaneous moves occur- 
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ring whenever P !  and P2 can "handshake".  P l  f"l P2 
restricts P1 × P2 to the relevant moves, i.e. those reach- 
able from the s tar t  state. In P I  r'l P2 we have the infor- 
mation of which were the "handshakes" of P l  and P2. 
P i I I P o  hides these "handshakes" from the other 
processes. 

Example: In Figure l a  we have an example of a tree net- 
work (CN) of three processes {PI, P2, P3}, where P !  is 
a tree process, P2 an acyclic process, and P3 cyclic. 
P1 X P2 is illustrated in Figure lb,  P l  M P2 is the part 
of P1 X P2 reachable from state ( l ,  1). Finally, the com- 
position P I ]] P2 is in Figure le; this operation 
transforms C N into CN, . 

By performing a sequence of compositions on the 
processes of a network N,  we can produce new processes 
whose states are, in essence, tuples of states of the 
processes in N .  

L e m m a  1: Let P;, Pj ,  Pk be three distinct FSPs of a 
network N.  Then P; I I PS -~ PJ l[ P~ and 
(P; I I P i ) l l  Pk = r~ I I(Pi  II Pk). I 

Since the states of the processes PI, P2, " " " , Pm 
of N are distinct, we may, without loss of generality, 
disregard the order of states in tuples. For example, if 
qi E Ki, qj E K i and qk E Kk, then composite state 
(qi, qi) is the same as (qi, qi), and (ql, (q i ,  qk )) is the 
same as ((qi, q]), qk). If we follow this convention in 
naming composite states, Lemma l says that  ]l is com- 
mutative and associative. 

A consequence of Lemma 1 is that  the process 
P ; , I I P i : I I  " ' "  liP;,, 1 _ < i 1 < i 2 <  " ' "  < i k  
m, is well-defined. A state of this new process is a tuple 
composed of states from Pi,, Pc~, " " " , P,). 

The associativity of [] is a direct consequence of 
our assumption that  action symbols are shared by exactly 
two processes in the network, and would otherwise not be 
true [M]. 

P o s s i b i l i t i e s  o f  a n  a c y c l i e  F S P  

The operation of composition (1 [ )  in a network of 
processes has a number of interesting properties. In par- 
ticular it matches well with the notion of possibilities, 
which will be a powerful tool in analyzing FSPs. 

Def in i t ion  4: Let P ~ < K ,  p ,  E, A) be an acyelic 
FSP. The language of P and the possibilities of P are 
given as: 

Lang(p ) ~- {s I s E E*, such that:  
3 q , p  ~ > q } .  

Poss(p)---- { ( s , Z )  I s E ~ * ,  Z C ~, such that:  
q, P _=s> q and 

(q has no outgoing r-moves) and 

(q has outgoing set of actions exactly Z)  }. 

The possibility (s,  Z)  is illustrated in Figure 2a. It 
is a pair consisting of a string s and a set 2' of actions. 
The string s takes the process from the s tar t  state p to a 
state q with 11o outgoing r's and with exactly the set of 
actions in Z as outgoing actions. 

Note that  (s, Z ) E Poss (P) implies that  
s E i a n g ( P ) ,  and ( s , ~ - Z ) E F a i l ( P ) .  The sets 
Fail( .  ) and Poss( .  ) are illustrated in Figure 2b, where 
it is also demonstrated that  Fail (P) ---- Fail(Q ) does not 
imply Poss (P) = Poss ( Q ). 

For acy.clic FSPs we have that  if s E Lang(P),  
there is always at least one (s ,  Z)  E Poss (P); otherwise, 
the transition diagram of the FSP would contain a cycle 
of r-moves. This last implication is not necessarily true 
for FSPs With cycles of r-moves. 

For acyclic FSPs it is also easy to show that  
Poss (P) ---- Poss (Q ) implies (.hat Fail (P) = Fail (Q). 
Thus the equivalence relation on acyclic FSPs induced by 
the possibilities is a refinement of the [HBR] failure 
equivalence. 

The set i = {s ] ( s , O ) ~  Poss(P))  is the 
language of strings accepted by the leaves of the acyclie 
process P .  

We now show that  possibility equivalence is a 
congruence with respect to composition. 

L e m m a  2: Let P ,  P t ,  P2 be acyclic FSPs. Then: 

Poss (P1) ~ Poss (P2) implies 
Poss(P [[ P 0  : Poss(P I[ P2), and 

Lang (PI)  = Lang (P2) implies 
Lang(P ]I P l ) =  i ang (P  I P2). 

Pro@ If Poss(PO---- Poss(P2) then Lang(PO---- 
Lang (P2)' By ignoring (without loss of generality) sym- 
bols not present in the transition diagrams of P I  and P2, 
we must have that  El ~ H2- Let 
(s,  Z ) E Poss (P I I P 0; we will show that  
(s , Z ) E Poss (P I [ P2). By symmetry this will suffice. 

The string s is over the alphabet Z G H i  -~- 
(H U El) - (H MHt) and Z is a subset of this alphabet.  
There exists a state in (pl  , p l l  ) in P II P l  such that  
(P, P 1) s >  (p0 , p i t  ), (pr , p l ,  ) has no outgoing r- 
moves, and exactly the z ' s  in Z serve as outgoing actions 
from this s tate in P [[ P l -  By tracing the path that  
serves as a witness to the fact that  (p ,  P l) goes to 

! I ~a¢ (p , p~ ), we can construct two strings t E and 
r E El  -. These two strings are subsequences of s with 
additional matching symbols from ~ f3 E 1 such that  
p ~ >  p t  and P l ~ >  Plt in FSPs  P and P I ,  respec- 
tively. Therefore the possibilities ( t ,  Y ) E  Poss(P)  and 
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(r, Yl} E Poss (PI} are well-defined. For these possibili- 
ties we must have that Y f'l YI ~ 0 and 
(Y U Y I ) -  ( s2 N X~l) -~- Z (recall P [[ Pl 'S construction 
and that there are no r-moves from (pr , pl  t )). Since 
Poss (P I) ~- Poss (P~), we have that 
(r, Yl)GsPoss(P2). Thus in P [I P2 we can show that 
(P, P2) ~ (P , P2 ) by simulating the previous 
decomposition of s into t and r ,  where p2 t is a state in 
P2 witnessing the fact that  (r, Y l )E  Poss(P2). The 
transitions out of ( p r ,  p2r ) in P l I P 2  are exactly 
labeled by the symbols in Z,  since Y N YI----0, 
(Y U Y I ) - ( ~ N ~ 2 )  : ( Y U Y I ) - ( ~ C I ~ I )  -~- Z,  and 
no r-meves leave pt or p2 r in P and P2, respectively. 

That  Lanq(PO----Lang(P:) implies Lang(Pl[ 
PI )  ~ Lang(P 1] P~) also follows from an argument 
similar to the one above. 

no outgoing ~-moves from q 
( s , { z l ,  z2, " ' ' , z  kl)  E P o s s ( P )  

(a) 

e l  P2 

Faii(P~) = F a i l ( P 2 ) =  (~, a, b} × ~{~,b) 
Poss(P2) ----- {~, a ,  b} X {~} Poss(Pl) = Poss(P2) U {(e, {a,  b})} 

(b) 

Figure 2 
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3. Acyc l i c  Processes 
Let N = {Pt ,  P2, ' " ' , P r o }  be a network of 

FSPs, let P -~- P~ be the distinguished process, and let 
Q be its con tez tP211P3l ]  • "" I l P m .  The globalFSP 
G - ~ - P t l I P 2 1 1  " ' "  I [Pm,  which has only z-moves, 
captures all possible state changes in the system. 

We wish to study the behavior of P in its context 
Q; therefore we must assume that  the global FSP G 
changes state if there is a possibility to do so. 

Continuity Rule: Let G be in state (ql, q2, " ' ' ,  qm) 
and let A be the set of transitions (i.e. r-moves to other 
global states) possible from this state. Unless zh = I~, one 
of the transitions in ~ must take place. 

In the case o facyc l i cFSPs ,  P = P l, P2, " " ", Pro, 
Q, G are all acyclic and G changes state because of the 
continuity rule until it reaches one of its leaves. 

Choices are possible in a network of FSPs. In the 
simple example of Figure 3, process Q can choose to 
remain in state l in which case, because of the continuity 
rule, the global FSP must evolve from (1,1) to (2,2) using 
an "a -handshake"  between P and Q.  Alternatively, 
process Q can choose to go to state 3 in which case the 
global FSP evolves from (1,1) to (3,1). 

We will investigate the existence of sequences of 
choices that  lead to "desirable" behavior of G .  

3.1. T h r e e  P r o b l e m s  o f  Success  

Let N = {PI ,  Pc, " ' ' , P r o }  be a n e t w o r k  of acy, 
cli¢ FSPs, P ---- P l  the distinguished process, Q its con- 
tezt and G the global FSP. We will analyze the possible 
choices in P so that,  under the continuity rule: 

(a) P has to reach one of its leaves; 

(b) P can reach one of its leaves even if Q is antagonis- 
tic; 

(c) P can reach one of its leaves if Q collaborates with 
it. 

More formally: 

0 

b 

q 

Vp' 

S. (P  , Q ) = true (unavoidable success) 
when 

, q '  [(p'  , q '  ) l e a / o f  G] = >  [p' leaf_of P]. 

S~ (P ,  Q ) = true (success  in a d v e r s i t y )  

when 

P has a winning strategy in Game (P ,  Q ) 

(see Figure 4). 

S¢ ( P , Q ) = true (success w i t h  c o l l a b o r a t i o n )  

when 

J p '  , q '  . [(p '  , q '  ) l e a f o / G ] h [ p '  leaf_o/P]. 

Obviously, St, ( P ,  Q ) = > S a ( P ,  Q ) = > S c ( P ,  
Q). However, even in very simple cases, such as Figure 
3, So(P,  Q)  =4> S~(P,  Q). 

We will be using the term potential blocking for 
- ,Su(P,  Q ) =  true. It  is easy to see that  potential  
blocking corresponds to: 

~ P '  , qt  • I(P' , q'  ) l e a f _ / G ]  h 
~[p ' leaf_o/P]. 

For success in adversity we assume that P, the dis- 
tinguished process, has no z-moves. This is to simplify 
the rules of the Game of Figure 4, which captures the 
evolution of the system. In Game, player Q is forced to 
move if it can (continuity rule) and player P is forced to 
respond to Q's message. Player Q has a strong adverse 
role since it knows the global state and selects the next 
legal action. Player P knows only it local state and can 
estimate the global state from messages received and Q's 
structure. Whereas player Q chooses qi+l and a; (its 
next local state and the next action), player P only 
chooses Pl +l (its next local state). This is a game of par- 
tial information for P and total information for Q [R]. 
Since the FSPs  are acyelic, the game is 'a  finite one. 

P GG- Q tP 

( ,0 

Figure 3 
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G a m e ( P ,  Q )  

Initial Position: Network of FSPs {P ,  Q }, E is common alphabet. 

Pl  ~- start s t a t e  _ o f  P 

q l ~- start s t a t e  _ o f  Q .  

Round i (i ----1, 2, - " " , n ): 

Player-Q: Sets a i ~-- a, qi+l ~-- q,  where 
=a> =a> , a E E, qi q , a n d ~ p r  . p i  P 

Player-P: Sets Pi+l ~- P,  where Pi -~ai> P.  

Information: Q knows everything. P knows initial position and 
sequence of a i 's. 

Goal: Player-P wins iff Pi is l e a f _ o f P .  

Assumptions: PRayers have to play if they can. 
The FSP P has no r-moves. 

Figure 4 

3.2. C o m p l e x i t y  

In this section we will examine the complexity of 
deciding the predicates S~ (P ,  Q), S , ( P ,  Q), and 
S c (P ,  Q ), where we are given a network 
N : {PI ,  P2, " ' ' , P r o }  o f a c y c l i c F S P s ; P  - - - - P l a n d  
Q = P 2 [ I P a l l  " ' '  [ [Pm-  N i s o f s i z e  n.  

For arbitrari ly connected networks of linear FSPs 
there are no significant choices to be made and we can 
make the following observation: 

Proposit ion 1: If all processes in N are linear, then: 

S u ( P ,  Q)  : S a ( P ,  Q ) :  s e (P  Q)  and can be decided 
in O (n)  time. 

Proof." To see this, first construct a directed graph H 
consisting of m linear orders. The nodes of H are all the 
non-r transitions of the processes, each node labeled by 
its action symbol. If transition 5 is the first non-r transi- 
tion of Pi before the non-r transition 6 * of P i ,  insert the 
are (6, 6r ) in H .  Now match the nodes of H in pairs. 
That  is, match the first node with label a in Pi  with the 
first node with label a in P i  (a E E i  f'l E i ) ,  etc. Delete 
all unmatched nodes and their successors from H until 
the only remaining nodes are all matched in pairs (the 
deleted actions have no hope of ever being executed). If a 
node of P t has been deleted, we can now say 
S¢ ( P  , Q )  = false. Otherwise, create the directed graph 

H I by merging each matched pair into one node and 
keeping only the matched pairs that  are predecessors of 
some matched pair with a node in P1. H~ is acyclic iff 
S c ( P ,  Q )  = true ,  and H '  is cyclic iff -~S u ( P ,  Q ) - ~  
t rue .  

I 
For the case of aeyclic FSPs  both S~(P ,  Q)  and 

--,S~ (P ,  Q ) are in NP. This is because the desired "wit- 
ness" in each case, which we use to verify success with 
collaboration and potential blocking respectively, is an 
O (m • n )  sequence of moves from the initial global s tate 
(i.e. the length of the maximum path in the global 
machine G ). 

For S a ( P  , Q) ,  however, we have a finite game of 
hnear t ime bounded alternation (i.e. the length of the 
maximum path (i.e. the length of the maximum path in 
the distinguished machine P ) .  Thus S a ( P ,  Q} is in 
PSPACE. 

Unfortunately, even simple choices can lead to a 
combinatorial explosion. 

Theorem 1: Let the processes in N be acyclic and such 
that  I E i  f ' lE  i I _< I for 1 < i~Aj  < m.  S c ( P , Q )  
and -~S~, ( P ,  Q ) are NP-complete even if either 

(1) C N is a tree and all FSPs  but one are O(1) linear 
FSPs, or 

(2) each P~, 1 < i < m,  is an O(1) tree FSP. [ 
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In case (1), the result holds both if P l  is the only 
acyctic but  non-linear FSP or if P1 is linear. Note that  
communication between two processes in Theorem 1 is 
restricted to repetitions of just  one symbol. 

The reductions are from 3SAT, where each variable 
is restricted to appear once negated and once or twice 
unnegated, a well-known NP-complete problem. They 
are illustrated in Figure 5 for case (1) and Figure 6 for 
case (2) using the formula {zl \ / ~ 2  \ / x 3 )  h 
(zl \/x2 V ~3 ). 

Theorem 2: Let the processes in N be acyclic. Even if 
C N is a tree and all processes except P are tree FSPs, 

S 4 (P ,  Q ) is PSPACE-complete.  

The reduction is from QBF [G J] and is illustrated in 
Figure 7 using the formula 
~Zl  ~g2 ~X3 (Xl V ~'2 V .,~3) A (X I V x 2 V x'3). 

3.3. Efficient Tests  for Tree Processes 

The computational  complexity indicated by 
Theorems 1 and 2 depertds on two factors. One is high 
connectivity in C N (Theorem 1, case 2). The other is the 
fact that  an acyclic process can succinctly describe many 
sequences of events (Theorem l,  case 1 and Theorem 2). 
In a loosely connected network, for example whenever 
C N is a k- t ree  for some fixed k,  the second factor is crit- 
ical. 

Using the algebraic properties of composition and the 
notion of possibilities we can show the following: 

T h e o r e m  3: Let N be a network of tree processes of 
size n and let C N be a k-tree.  Then, S~(P,  Q), 
Sa(P , Q), Sc(P , Q)  can be decided in O(n  k ) time. 

We first have to express the various properties of 
interest using the notions of Lang ( • ) and Poss ( ) .  

? p' 

"_\ .,"" "X L" 

Figure 5 

for S~ ( . )  use P l = P 

for --~S~ ( - )  u s e P l  ~ P '  
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L e m m a  
true iff 

3: (success with collaboration) S¢ ( P ,  Q)  = 

s • Lang(Q)  and (s,0) C Poss(P) .  I 

L e m m a  4: (potential blocking) -~S~ (P ,  Q ) : true iff 

~ _ s , X ,  Y. ( s , X ) E  Poss (P)  and 
(s,  Y )  E Poss (Q)  and 

X ~ 0  and X N Y-~.-O. I 

Both lemmas are simple consequences of the 
definitions in Section 3.1. The more interesting notion is 
blocking, which is very much related to possibilities. 

L e m m a  5: (success in adversity) 

Ross (Q ) = Poss (Q'  ) implies 
S,(R, Q ) =  so(P, Q' ). I 

As will be made clear by the analysis of an optimal 
strategy for player P ,  no distinction can be made 
between Q and Q W . This is because player P uses only 
partial  information, whereas Q ( Q t )  has total informa- 
tion. 

Proof of Lemma 5: Let us assume we are player P at 
round i ,  that  string s : a laz"  • • a i has been 
exchanged, and that  we are in state p;. We wish to 
decide if it is a winning choice to use a i and go to state 
Pi+l (we call this situation < s ,  P;, P/+ l> ) .  We examine 
the immediate descendants of P;+I for all of which we 
have inductively solved the question. That  is, we know if 
situation < s a ,  Pi-~l, pta: > w is a winning one or not, 
w h e r e a E E  and Pi+l--~> P . The basis of this induc- 
tion are the leaves of the FSP P and all paths leading to 
them; these are winning situations for us. Let the outgo- 
ing actions a to winning situations form set W and to 
loosing situations form set L .  

If there is a possibility ( s ,  Z ) E  Poss (Q)  such that  
Z ( ' ) (W U L ) - ~ - O ,  player Q can block us and the 
situation is a loosing one. If there is a string 
s a E Lang(Q)  such that  a E L - W ,  then player Q can 
force us into a loosing position and thus the situation is 
again a loosing one. Otherwise, because of the continuity 
rule, player Q must give us an action for which we have 
a winning choice. 

Finally, it is clear that  player P need only examine 
situations with s in Lang (Q). Recall that  
Ross (Q)  = Ross (Q'  ) impl ies  Lang(Q)  = Lang(Q'  ). 

I 

Proof of Theorem ~. We can assume, without loss of gen- 
erality, that C N is a tree. This  is because the processes 
in a given parti t ion of a k- t ree  can be composed directly 
to produce 0 (n k) size processes. Since [ I is associative 
and commutative, there is no restriction on how it is 
applied. (For example,  a ring network can be 

transformed into a path of O(n  ~) size processes - see 
Figure 8a.) We thus modify C g to obtain C N, so that  
in the tree C N, the distinguished process P is at the 
root and the processes, whose product is Q,  form a forest 
of trees: {T i ,  Tz, . - . ,  Tt} , where Piy is the j t h  pro- 
cess in tree T i and Qi -~- 1YIPij, and Q = I ] Q i .  

y i 
We will now further reduce the tree C N, to a star 

configuration with R at the center by replacing each Q; 
{and tree T i of FSPs) with a Qi I (a single FSP), such 
that  Poss (Qi) -~ Poss (Q;' ). By Lemma 2, 
Poss(Q ) = Poss(lr~Q; ) = Ross(l~iQi I ). By Lemmas 

i i 
3, 4, and 5 (.here is no change in the various success 
predicates. 

We construct Q t using the processes in the tree 
Ti; we proceed from ~/].'s leaves. Let us start  with a 
node P /  in 7]. which communicates with leaves 
{Pc [ Pc is leaf_of T i and child of Pi  }, and with one 
other process in T¢, say Pg (see Figure 8b). If 
Poss (Pc) = Ross (P~,), i.e. P ~  is a normal form of R c 
with respect to possibilities~ we have by Lemma 2 that  
Poss ((FIP¢)[I P!  ) = Poss ((1-IP~n)11 P!  ). The criti- 
cal step now is to compute a normal form Pf,~ such that 
Poss (Pf n ) = Poss ((]~IPcn) I] P /  ). For tree processes 
this is possible with P in  having size no greater than P !  
and using linear time in the size of Pf  and the Pc,  's. 

Reduction Step: 

Let (s ,  Z)  E Poss( ([ IP¢~) l l  P!  ). Then s is a string 
over ~ f  N ~ g  and Z C ~ I  N ~g ( ~ ! ,  ~ ¢ , a n d  ~e are 
the alphabets of P !  , Pg,  and Pe )- Moreover, there is a 
"witness" string r to this fact, which is a string in 
Lan.g(P[ ). The symbols in r from ~ f  0 Eg form s ,  
the symbols in r from each Ef  0 ~3c form s e. The wit- 
ness string r takes P[ from the start  s tate to some state 
p '  with no outgoing r-moves in PI , exactly Z as outgo- 
ing actions in ~ I  N ~ g ,  and outgoing actions W e from 
each E!  N E e  which are "appropria te" .  By appropriate 
we mean that  for each Pc there is a possibility (s c , X¢ ) 
such that  (X e N We) ---- 0. 

I t  is now clear that  if PI  is a tree and the Pea's are 
(inductively) of size no greater than the size of Pc, then 

the possibilities ( s ,  Z )  forming P I ,  can be computed in 
linear time and will be a set of no greater size than P!  
(Figure 9 presents an example). 

Final Step: 

We have reduced the three decision questions of interest 
to decision questions for a star network of tree processes 
with P at the center, Q i l ' s  as leaves, and each tree pro- 
cess of size O ( n k ). 

Using Lemmas 3, 4 and the proof of Lemma 5, as 
well as the "small" size of Ross (P)  (recall that  P is a 
tree), we can decide ,.~ ( P ,  [ I Q ;  # ), S a ( P ,  1]Q,"  ), and 
S¢ (P ,  l~IQi w ) in O(n k) time. This is because, although 
[ I Q ;  t might be large, there is no interaction between 
the small Q; '  
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(a, ¢) 

Figure 9 

S~ (P ,  Q ) = false (P4 makes r-move; P !eft branches on a ) 
S~ (P  , Q ) = true (P right branches on a ) 
S¢ ( P , Q)  = true 
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4. Cyc l i c  P r o c e s s e s  
In this section we will extend most of the theory of 

Section 3 to cyclic processes. We will assume throughout 
that  N = {PI ,  P2, " ' ' , P r o }  is the given network of 
processes of size n ,  P = P l  is the distinguished process, 
and Q = P 2 I ] P 3 [ ]  " ' "  I ]Pm its context. We will 
also assume that  each P; in N has no r-moves and no 
leaves. These assumptions simplify our arguments, 
without loss of generality. Note that  even if 
P2, " ' ' ,  Pm have no leaves and no r-moves, Q very 
well could have such features. Once again the continuity 
rule (Section 3) forces the evolution of the system. 

The goals of success of the distinguished process P 
in context Q become: 

(a) P cannot stop moving; 

(b) P can keep moving forever even if Q is antagonis- 
tic; 

(c) P can keep moving forever if Q collaborates with it. 

This is a natural  generalization of Section 3 if process P 
is thought of as an infinite tree whose leaves are at 
infinity. 

4.1.  Succes s  and Poss ib i l i t i e s  

The technical problem of the generalization from 
finite to infinite trees is the presence inside a process, say 
process Q,  of a cycle of r-moves. Intuitively, such a 
cycle means that  if Q can reach this cycle, it can make 
choices that  will keep it there forever. The behavior of 
such a temperamental  Q would then be similar to going, 
via a r-move, to a new leaf. There is a simple solution to 
this problem through a modification of the composition 
operator I I • 

Composition for Cyclic Processes Q~ and Q2: As 
in Section 2.2, we first construct Ql  × Q2, then keep 
only the reachable part  Q l f'l Q2, and then hide the com- 
mon symbols in Q l i I  Q2. The addition is that  it 
(ql t , q2 t ) is a state in Q l i ]  Q2 from which, using r- 
moves, we can enter a loop of r-moves, then we add a 
new leaf q,,e,o to the state space and a new r-move 
((ql  I , q2* ), r, qnew ) to the transitions of Q t [ I  Q2. 

Consider two cyclic processes R l, R2 produced from 
N using the above composition. A first consequence of 
the new definition is that  Poss (R l) = Poss (R 2) implies 
Lung (R l) ---- Lung (R2). Thus we have already overcome 
one difficulty mentioned in Section 2.2. 

Let us assume that  we use the above composition 
operator I] to produce processes from our network N .  
Let us then use Definition 4 for Lung( • ) and Poss ( • ) of 
these processes. Note that  the new [I is still associative 
and commutative. 

L e m m a  2 t : 

P o s s  ( R  ! )  : P o 8 8  ( R 2 )  implies 
Poss (R [I R l )  = Poss(R I I R2), and 

Lang(R t) =Lang  (R2) implies 
Lang(R I I R i )  = Lang(R II R2). 

Sketch of Proof." The proof is similar to that  of Lemma 2 
except for one case. This is for ( s ,  0 ) E  Poss(R ]1 Rl)  
that  was produced because of a new r-loop reachable 
using s in R II R1. This possibility (s ,  0) is present 
because the new I I operator forces us to make a r-move 
to a new leaf in R I I R l .  

Let s = e (without loss of generality). Then this 
particular possibility (e, 0) implies that  there is an infinite 
set of strings in Lang(R)M Lang(Rl), and also in 
Lang(R) A Lang(R2). Using this infinite set, the finite- 
s tate R2, and the pigeon-hole principle, we can argue 
that  (e, 0) E Poss (R [I R2). ] 

We can now define reasonable generalizations of the 
success predicates. 

-~Su (P  , Q ) ---- true (po ten t ia l  b lock ing)  

iff 
~ s , X ,  Y. ( s , X )  E Poss(P) and 

(s, Y ) E P o s s ( Q )  and X N  Y = 0 .  

Sc (P ,  Q ) : true (success  w i th  co l labora t ion)  
iff 

iang ( P ) fD iang ( Q ) is infinite. 

Sa (P , Q ) = true (success  in a d v e r s i t y )  I 

I iff 

P has a winning strategy, in Game (P, ~). 

Game ( P ,  Q ) for cyclic processes has the same rules 
as the game in Figure 4. The only difference is that  if the 
game stops Q is the winner. P wins if it can force the 
game to go on forever. Since we have modified composi- 
tion such that  if Q has the option to get in a r-loop for- 
ever, it now has the option to reach a leaf and win, we 
have lost no generality. 

As with Game, potential  blocking and success 
collaboration are natural  generalizations of Lemmas 3 and 
4. Again the new I[ handles v-loops. 

4.2.  C o m p l e x i t y  

A reasonable assumption about a network N of 
FSPs is that  C N is a k-tree.  It is also reasonable to 
assume that  the processes are cyclic processes "small"  in 
comparison to the size of the network. Under these 
assumptions, the methodology of Theorem 3 could be 
used, where Poss(.  ) and Lang( . )  supply the normal 
form notions. Unfortunately, in the worst case, the 
reduction step and final step (see proof of Theorem 3) are 
no longer efficient. This is because testing possibility 
equivalence of cyclic processes is PSPACFE-complete [KS]. 
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P r o p o s i t i o n  2: Su (P ,  Q)  and S c (P ,  Q) are PSPACE- 
complete, even if N consists strictly of constant size 
cyclic processes and C N is a tree. Sa(P, Q) can be 
decided in deterministic time d ~ for some d > 1, and 
cannot be solved in deterministic time c,POa ~ for some 
c > ~ .  I 

The reductions are from LBA acceptance [GJ] and 
alternating linear space Turing machine acceptance. We 
use techniques similar to [RT] and [L]. Binary communi- 
cation alphabets are needed. These worst case bounds 
arc not. surprising, however, using the powerful combina- 
torial result in [Le] we can show that:  

T h e o r e m  4: Let N = {P~, Pc,  " " " ,Pm } be a net- 
work of 0 (1) size cyclic processes such that  C N is a tree. 
Also let [E i ["3 E i [ < 1 for 1 _< i ~ j  < m. Then: 

S c (P ,  Q) can be decided in O (m k) time for some 
constant k. 

Sketch of Proof." The method is similar to that  of 
Theorem 3. Since S¢ (P ,  Q)  depends only on Lang ( • ), 
we need a normal form weaker than the one preserving 
Poss ( • ). A normal form preserving Lang ( • ) in the case 
of a unary communication alphabet is just a number: if 
we have a finite prefix-closed language, it is the length of 
the longest string; else it is everything. Note that  this 
number must be coded in binary, for it is easy to con- 
struct a chain of multiply-by-2 processes. 

Reduction Step: PI is now a constant size machine to 
which we present a constant number of O(m )  bit 
integers. Pfn will be an O(m)  bit integer (see Theorem 
3 and Figure 8b). Because Pf is a finite state machine, 
we can formulate the computation of P f ,  as an inte jer  
programming problem with a constant number of vari- 
ables and use the [Le] polynomial time algorithm. (The 
argument for the final step is similar). ]. 

5. Discussion and Open Problems 
We have demonstrated the use of a new algebraic 

method for analyzing communicating finite state sequen- 
tial processes. The basis of the method is the introduc- 
tion of an appropriate composition operator (e.g. [[ ) 
with the right normal form (e.g. Poss( • )). This interac- 
tion allows us to use the structure of a system of 
processes in order to decide nontrivial properties about 
the system behavior. These properties are both about 
cooperating and antagonistic processes. 

Our approach leads to efficient time bounds for all 
properties in the finite tree case. We also extend the 
approach in a natural fashion to the more practical cyclic 
case. We believe that  despite the worst case complexity 
of the cyclic case, the technique can be useful in practice. 

An interesting generalization of these problems 
involves introducing more symmetry between the dis- 
tinguished process and the other processes in the net- 
work. For this, let N ~ {PI ,  P2, " " , P 2 m }  b e a n e t -  
work parti t ioned into P -~ P 1 I t P21 I " " • [ I Pm and 
Q = P ~ + l l [  " "" [[P2m" Deciding success for tree 
processes in this case is an open question. 
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