
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/226055262

Fault-Tolerance and Efficiency in Massively Parallel Algorithms

Chapter · January 1994

DOI: 10.1007/978-0-585-27316-7_5

CITATIONS

5
READS

18

2 authors, including:

Some of the authors of this publication are also working on these related projects:

Voting Systems Security View project

Mobile Ad Hoc Network View project

Alexander A. Shvartsman

Augusta University

245 PUBLICATIONS 2,866 CITATIONS

SEE PROFILE

All content following this page was uploaded by Alexander A. Shvartsman on 22 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/226055262_Fault-Tolerance_and_Efficiency_in_Massively_Parallel_Algorithms?enrichId=rgreq-1478d5802b805916b91965a26775ded8-XXX&enrichSource=Y292ZXJQYWdlOzIyNjA1NTI2MjtBUzo5OTU2MDAyMjA4NTY1MEAxNDAwNzQ4MzY3Mzk5&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/226055262_Fault-Tolerance_and_Efficiency_in_Massively_Parallel_Algorithms?enrichId=rgreq-1478d5802b805916b91965a26775ded8-XXX&enrichSource=Y292ZXJQYWdlOzIyNjA1NTI2MjtBUzo5OTU2MDAyMjA4NTY1MEAxNDAwNzQ4MzY3Mzk5&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Voting-Systems-Security?enrichId=rgreq-1478d5802b805916b91965a26775ded8-XXX&enrichSource=Y292ZXJQYWdlOzIyNjA1NTI2MjtBUzo5OTU2MDAyMjA4NTY1MEAxNDAwNzQ4MzY3Mzk5&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Mobile-Ad-Hoc-Network-2?enrichId=rgreq-1478d5802b805916b91965a26775ded8-XXX&enrichSource=Y292ZXJQYWdlOzIyNjA1NTI2MjtBUzo5OTU2MDAyMjA4NTY1MEAxNDAwNzQ4MzY3Mzk5&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1478d5802b805916b91965a26775ded8-XXX&enrichSource=Y292ZXJQYWdlOzIyNjA1NTI2MjtBUzo5OTU2MDAyMjA4NTY1MEAxNDAwNzQ4MzY3Mzk5&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Shvartsman?enrichId=rgreq-1478d5802b805916b91965a26775ded8-XXX&enrichSource=Y292ZXJQYWdlOzIyNjA1NTI2MjtBUzo5OTU2MDAyMjA4NTY1MEAxNDAwNzQ4MzY3Mzk5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Shvartsman?enrichId=rgreq-1478d5802b805916b91965a26775ded8-XXX&enrichSource=Y292ZXJQYWdlOzIyNjA1NTI2MjtBUzo5OTU2MDAyMjA4NTY1MEAxNDAwNzQ4MzY3Mzk5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Georgia_Health_Sciences_University?enrichId=rgreq-1478d5802b805916b91965a26775ded8-XXX&enrichSource=Y292ZXJQYWdlOzIyNjA1NTI2MjtBUzo5OTU2MDAyMjA4NTY1MEAxNDAwNzQ4MzY3Mzk5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Shvartsman?enrichId=rgreq-1478d5802b805916b91965a26775ded8-XXX&enrichSource=Y292ZXJQYWdlOzIyNjA1NTI2MjtBUzo5OTU2MDAyMjA4NTY1MEAxNDAwNzQ4MzY3Mzk5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexander_Shvartsman?enrichId=rgreq-1478d5802b805916b91965a26775ded8-XXX&enrichSource=Y292ZXJQYWdlOzIyNjA1NTI2MjtBUzo5OTU2MDAyMjA4NTY1MEAxNDAwNzQ4MzY3Mzk5&el=1_x_10&_esc=publicationCoverPdf

SECTION 2.2

Fault-Tolerance and Efficiency in
Massively Parallel Algorithms

Paris C. Kanellakis1 and Alex A. Shvartsman2

Abstract

We present an overview of massively parallel deterministic algorithms which
combine high fault-tolerance and efficiency. This desirable combination (called
robustness here) is nontrivial, since increasing efficiency implies removing redun-
dancy whereas increasing fault-tolerance requires adding redundancy to compu-
tations. We study a spectrum of algorithmic models for which significant robust-
ness is achievable, from static fault, synchronous computation to dynamic fault,
asynchronous computation. In addition to various kinds of fail-stop processors,
these models handle arbitrarily initialized memory and restricted memory con-
currency. We survey both deterministic upper bounds for the basic Write-All
primitive, as well as lower bounds on its efficiency, and we identify some of the
key open questions. We also generalize the robust computing of functions to re-
lations; this new approach can model approximate computations. We show how
to compute approximate Write-All optimally. Finally, we synthesize the state-
of-the-art in a complexity classification, which extends with fault-tolerance the
traditional classification of efficient parallel algorithms.

2.2.1 Introduction

A basic problem of massively parallel computing is that the unreliability of
inexpensive processors and their interconnection may eliminate any potential
efficiency advantage of parallelism. Our research is an investigation of fault
models and parallel computation models under which it is possible to achieve
algorithmic efficiency (i.e., speed-ups close to linear in the number of processors)
despite the presence of faults. We would like to note that these models can also

1Computer Science Department, Brown University, PO Box 1910, Providence, RI 02912,
USA. Electronic mail: pck@cs.brown.edu. This research was supported by ONR grant
N00014-91-J-1613.

2Digital Equipment Corporation, Digital Consulting Technology Office, 30 Porter Road,
Littleton, MA 01460, USA. Electronic mail: alex@hydra.enet.dec.com.

Alexander Shvartsman
Gary M. Koob and Clifford G. Lau, Eds., Foundations of Dependable Computing,
Chapter 2.2, Kluwer Academic Publishers (The Springer International Series in
Engineering and Computer Science), September 30, 1994, ISBN 0792394852

Alexander Shvartsman

be used to explore common properties of a broad spectrum of fault-free models,
from synchronous parallel to asynchronous distributed computing. Here, our
presentation focuses on deterministic algorithms and complexity, as opposed to
algorithms that use randomization.

There is an intuitive trade-off between reliability and efficiency because re-
liability usually requires introducing redundancy in the computation in order
to detect errors and reassign resources, whereas gaining efficiency by massively
parallel computing requires removing redundancy from the computation to fully
utilize each processor. Thus, even allowing for some abstraction in the model of
parallel computation, it is not obvious that there are any non-trivial fault mod-
els that allow near-linear speed-ups. So it was somewhat surprising when in [17]
we demonstrated that it is possible to combine efficiency and fault-tolerance for
many basic algorithms expressed as concurrent-read concurrent-write parallel
random access machines (crcw prams [14]).

The [17] fault model allows any pattern of dynamic fail-stop no restart pro-
cessor errors, as long as one processor remains alive. The fault model was
applied to all crcw prams in [23, 40]. It was extended in [18] to include
processor restarts, and in [42] to include arbitrary static memory faults, i.e.,
arbitrary memory initialization, and in [16] to include restricted memory access
patterns through controlled memory access. Concurrency of reads and writes
is an essential feature that accounts for the necessary redundancy so it can be
restricted but not eliminated – see [17, 16] for an in-depth discussion of this
issue. Also, as shown in [17], it suffices to consider common crcw prams
(all concurrent writes are identical) in which the atomically written words need
only contain a constant number of bits.

The work we survey makes three key assumptions. Namely that:

1. Failure-inducing adversaries are worst-case for each model and algorithms
for coping with them are deterministic.

2. Processors can read and write memory concurrently – except that initial
faults can be handled without memory access concurrency.

3. Processor faults do not affect memory – except that initial memory can
be contaminated.

A central algorithmic primitive in our work is theWrite-All operation of [17].
Iterated Write-All is the basis for the algorithm simulation techniques of [23,
40] and for the memory initialization of [42]. Therefore, improved Write-All
solutions lead to improved simulations and memory clearing techniques.

The Write-All problem is: using P processors write 1s into all locations of
an array of size N , where P ≤ N . When P = N this operation captures the

computational progress that can be naturally accomplished in one time unit
by a pram. We say that Write-All completes at the global clock tick at which
all the processors that have not fail-stopped share the knowledge that 1’s have
been written into all N array locations. Requiring completion of a Write-All
algorithm is critical if one wishes to iterate it, as pointed out in [23] which uses
a certification bit to separate the various iterations of (Certified) Write-All .
Note that the Write-All completes when all processors halt in all algorithms
presented here.

Under dynamic failures, efficient deterministic solutions to Write-All , i.e.,
increasing the fault-free O(N) work by small polylog(N) factors, are non-
obvious. The first such solution was algorithm W of [17] which has (to date)
the best worst-case work bound O(N + P log2 N/ log logN) for 1 ≤ P ≤ N .
This bound was first shown in [22] for a different algorithm and in [29] the basic
argument was adapted to algorithm W.

Let us now describe the contents of this survey, with some pointers to the
literature, as well as our new contributions. In Section 2.2.2 we present a
synthesis of parallel computation and fault models. This synthesis is new and
includes most of the models proposed to date. It links the work on fail-stop no-
restart errors, to fail-stop errors with restarts (both detectable and undetectable
restarts).

The detectable restart case has been examined, using a slightly different
formalism in [8, 18]. The undetectable restart case is equivalent to the most
general general model of asynchrony that has received a fair amount of attention
in the literature. An elegant deterministic solution for Write-All in this case
appeared in [3]. The proof in [3] is existential, because it uses a counting
argument. It has recently been made constructive in [33].

For some important early work on asynchronous prams we refer to [9, 10, 15,
22, 23, 30, 32, 34]. In the last three years, randomized asynchronous computa-
tion has been examined in depth in [4, 5, 21]. These analyses involve randomness
in a central way. They are mostly about off-line or oblivious adversaries, which
cause faults during the computation but pick the times of these faults before
the computation. Although, we will not survey this interesting subject here we
would like to point-out that one very promising direction involves combining
techniques of randomized asynchronous computation with randomized infor-
mation dispersal [36]. The work on fault-tolerant and efficient parallel shared
memory models has also been applied to distributed message passing models;
for example see [1, 11, 12].

In Section 2.2.3 we examine an array of algorithms for the Write-All prob-
lem. These employ a variety of deterministic techniques and are extensible to

the computation of other functions (see Section 2.2.4). In particular, in Sec-
tion 2.2.4, we provide new bounds for fault-tolerant and efficient computation
of parallel prefixes. In Section 2.2.5 we introduce the problem of approximate
Write-All by computing relations instead of functions. One new contribution
that we make is to solve approximate Write-All optimally. In Section 2.2.6 we
survey the state-of-the-art in lower bounds. In Section 2.2.7 we present a new
complexity classification for fault-tolerant algorithms. We close with a discus-
sion of randomized vs deterministic techniques for fault-tolerant and efficient
parallel computation (see Section 2.2.8).

2.2.2 Fault-tolerant parallel computation models

In the first subsection we detail a hierarchy of fail-stop models of parallel com-
putation. We then explain the cost measures of available processor steps and
overhead ratio, which we use to characterize robust algorithms. The final three
subsections contain comments on variations of the processor, memory, and net-
work interconnect parts of our models.

2.2.2.1 Fail-Stop PRAMs

The parallel random access machine (pram) of Fortune and Wyllie [14] com-
bines the simplicity of a ram with the power of parallelism, and a wealth of
efficient algorithms exist for it; see surveys [13, 20] for the rationale behind
this model and the fundamental algorithms. We build our models of fail-stop
pram’s as extensions of pram’s.

1. There are Q shared memory cells, and the input of size N ≤ Q is stored in
the first N cells. Except for the cells holding the input, all other memory
is cleared, i.e., contains zeroes. Each memory cell can store Θ(logN) bits.
All processors can access shared memory. For convenience we assume they
“know” the input size N , i.e., the logN bits describing it can be part of
their finite state control. For convenience we assume that each processor
also has a constant size private memory, that only it can access.

2. There are P ≤ N initial processors with unique identifiers (pids) in the
range 1, . . . , P . Each processor “knows” its pid and the value of P , i.e.,
these can be part of its finite state control.

3. The processors that are active all execute synchronously as in the stan-
dard pram model [14]. Although processors proceed in synchrony and
an observer outside the pram can associate a “global time” with every
event, the processors do not have access to “global time”, i.e., processors

can try to keep local clocks by counting their steps and communicating
through shared memory but the pram does not provide a “global clock”.

4. Processors stop without affecting memory. They may also restart, de-
pending on the power of a fault-inducing adversary.

In the study of fail-stop prams, we consider four main types of failure-
inducing adversaries. These form a hierarchy, based on their power. Note that,
each adversary is more powerful than the preceding ones and that the last case
can be used to simulate fully asynchronous processors [3].

Initial faults: adversary causes processor failures only prior to the start of the
computation.

Fail-stop failures: adversary causes stop failures of the processors during the
computation; there are no restarts.

Fail-stop failures, detectable restarts: adversary causes stop failures; sub-
sequently to a failure, the adversary might restart a processor and a
restarted processor “knows” of the restart.

Fail-stop failures, undetectable restarts: adversary causes stop failures and
restarts; a restarted processor does not necessarily “know” of the restart.

Except for the initial failures case, the adversaries are dynamic. A major
characteristic of these adversary models is that they are worst-case. These have
full information about the structure and the dynamic behavior of the algorithms
whose execution they interfere with, while being completely unknown to the
algorithms.

Remark on (un)detectable restarts: One way of realizing detectable restarts
is by modifying the finite state control of the pram. Each instruction can have
two parts, a green and a red part. The green part gets executed under normal
conditions. If a processor fails then all memory remains intact, but in the sub-
sequent restart the next instruction red part is executed instead of the green
part. For example, the model used in [8, 18] can be realized this way, instead of
using “update cycles”. The undetectable restarts adversary can also be realized
in a similar way by making the algorithm weaker. For undetectable restarts al-
gorithms have to have identical red and green parts. For example, the fully
asynchronous model of [3] can be realized this way. !

We formalize failures as follows. A failure pattern F is syntactically defined
as a set of triples <tag, pid, t > where tag is either failure indicating processor
failure, or restart indicating a processor restart, pid is the processor identifier,
and t is the time indicating when the processor stops or restarts. This time

PID1

PIDP

.

.

.

MEM1

MEM2

MEMQ

.

.

.

C
O
M
B
I
N
I
N
G

N
E
T
W
O
R
K

Figure 2.1: An architecture for a fail-stop multiprocessor.

is a global time, that could be assigned by an observer (or adversary) outside
the machine. The size of the failure pattern F is defined as the cardinality |F |,
where |F | ≤ M for some parameter M .

The abstract model that we are studying can be realized in the architecture
in Fig. 2.1. This architecture is more abstract than, e.g., an implementation in
terms of hypercubes, but it is simpler to program in. Moreover, various fault-
tolerant technologies all contribute towards concrete realizations of its compo-
nents. There are P fail-stop processors [38]. There are Q shared memory cells.
These semiconductor memories can be manufactured with built-in fault toler-
ance using replication and coding techniques [37]. Processors and memory are
interconnected via a synchronous network [39]). A combining interconnection
network well suited for implementing synchronous concurrent reads and writes
is in [24] and can be made more reliable by employing redundancy [2].

2.2.2.2 Measures of Efficiency

We use a generalization of the standard Parallel-time×Processors product to
measure work of an algorithm when the number of processors performing work
fluctuates due to failures or delays [17, 18]. In the measure we account for the
available processor steps and we do not charge for time steps during which a
processor was unavailable due to a failure.

Definition 2.2.1 Consider a parallel computation with P initial processors
that terminates in time τ after completing its task on some input data I of
size N and in the presence of the fail-stop error pattern F . If Pi(I, F) ≤ P is
the number of processors completing an instruction at step i, then we define
S(I, F, P) as: S(I, F, P) =

∑τ
i=1 Pi(I, F). !

Definition 2.2.2 A P -processor pram algorithm on any input data I of size
|I| = N and in the presence of any pattern F of failures of size |F | ≤ M uses
available processor steps S = SN,M,P = maxI,F {S(I, F, P)} . !

The available steps measure S is used in turn to define the notion of algo-
rithm robustness that combines fault tolerance and efficiency:

Definition 2.2.3 Let T (N) be the best sequential (ram) time bound known
for N -size instances of a problem. We say that a parallel algorithm for this
problem is a robust parallel algorithm if: for any input I of size N and for any
number of initial processors P (1 ≤ P ≤ N) and for any failure pattern F
of size at most M with at least one surviving processor (M < N for fail-stop

model), the algorithm completes its task with S = SN,M,P ≤ c T (N) logc
′
N ,

for fixed c, c′. !

For arbitrary failures and restarts, the completed work measure S depends
on the size N of the input I, the number of processors P , and the size of the
failure pattern F . The ultimate performance goal is to perform the required
computation at a work cost as close as possible to the work performed by the
best sequential algorithm known. Unfortunately, this goal is not attainable
when an adversary succeeds in causing too many processor failures during a
computation.

Example: Consider a Write-All solution, where it takes a processor one in-
struction to recover from a failure. If an adversary has a failure pattern F with
|F | = Ω(N1+ε) for ε > 0, then work will be Ω(N1+ε) regardless of how efficient
the algorithm is otherwise.

This illustrates the need for a measure of efficiency that is sensitive to both
the size of the input N , and the size of the failure pattern |F | ≤ M . We thus
also introduce the overhead ratio σ that amortizes work of the essential work
and failures:

Definition 2.2.4 A P -processor pram algorithm on any input data I of size
|I| = N and in the presence of any pattern F of failures and restarts of size

|F | ≤ M has overhead ratio σ = σN,M,P = maxI,F
{

S(I,F,P)
|I|+|F |

}
. !

When M = O(P) as in the case of the stop failures without restarts, S

properly describes the algorithm efficiency, and σ = O(SN,M,P

N). When F can
be large relative toN and P with restarts enabled, σ better reflects the efficiency
of fault-tolerant algorithms. We can generalize the definition of σ in Def. 2.2.4
in terms of the ratio S(I,F,P)

T (I)+|F | , where T (I) is the time complexity of the best
known sequential solution for a particular problem.

2.2.2.3 Processor issues: survivability

We have chosen to consider only the failure models where the processors do not
write any erroneous or maliciously incorrect values to shared memory. While
malicious processor behavior is often considered in conjunction with message
passing systems, it makes less sense to consider malicious behavior in tightly
coupled shared memory systems. This is because even a single faulty processor
has the potential of invalidating the results of a computation in unit time, and
because in a parallel system all processors are normally “trusted” agents, and
so the issues of security are not applicable.

The fail-stop model with undetectable restarts and dynamic adversaries is
the most general fault model we deal with. It can be viewed as a model of
parallel computation with arbitrary asynchrony.

Remark on stronger survivability assumption: The default assumption
we make is that throughout the computation one processor is fault-free. This
assumption can be made stronger, i.e., a constant fraction of the processors are
fault-free. We always list the stronger assumption explicitly when used (e.g., in
the complexity classification). !
Remark on weaker survivability assumption and restarts: For the mod-
els with restarts one can use the weaker survivability assumption that at each
global clock tick one processor step executes. In [18] this was stated using
“update cycles”, but it can be stated using our green-red instruction imple-
mentation – remark on (un)detectable restarts.!

2.2.2.4 Memory issues: words vs bits and initialization

In our models we assume that logN -bit word parallel writes are performed
atomically in unit time. The algorithms in such models can be modified so that
this restriction is relaxed.

The sufficient definition of atomicity is: (1) logN -size words are written
using logN bit write cycles, and (2) the adversary can cause arbitrary fail-stop
errors either before or after the single bit write cycle of the pram, but not
during the bit write cycle.

The algorithms that assume word atomicity can be mechanically compiled
into algorithms that assume only the bit atomicity as stated above.

A much more important assumption in many Write-All solutions was the
initial state of additional auxiliary memory used (typically of Ω(P) size). The
basic assumption has been that: The Ω(P) auxiliary shared memory is cleared
or initialized to some known value.

While this is consistent with definitions of pram such as [14], it is never-
theless a requirement that fault-tolerant systems ought to be able to do with-
out. Interestingly there is an efficient deterministic procedure that solves the
Write-All problem even when the shared memory is contaminated, i.e., contains
arbitrary values.

2.2.2.5 Interconnect issues: concurrency vs redundancy

The choice of crcw (concurrent read, concurrent write) model used here is
justified because of a lower bound [17] that shows that the crew (concurrent
read, exclusive write) model does not admit fault-tolerant efficient algorithms.
However we still would like control memory access concurrency. We define
measures that gauge the concurrent memory accesses of a computation.

Definition 2.2.5 Consider a parallel computation with P initial processors
that terminates in time τ after completing its task on some input data I of size
N in the presence of fail-stop error pattern F . If at time i (1 ≤ i ≤ τ), PR

i

processors perform reads from NR
i shared memory locations and PW

i processors
perform writes to NW

i locations, then we define:

(i) the read concurrency ρ as: ρ = ρI,F,P =
∑τ

i=1

(
PR
i −NR

i

)
, and

(ii) the write concurrency ω as: ω = ωI,F,P =
∑τ

i=1

(
PW
i −NW

i

)
. !

For a single read to (write from) a particular memory location, the read
(write) concurrency ρ (ω) for that location is simply the number of readers
(writers) minus one. For example, if only one processor reads to (writes from)
a location, then ρ (ω) is 0, i.e., no concurrency is involved. Also note that the
concurrency measures ρ and ω are cumulative over a computation.

For the algorithms in the erew model, ρ = ω = 0, while for the crew
model, ω = 0. Thus our measures capture one of the key distinctions among
the erew, crew and crcw memory access disciplines.

2.2.3 Robust parallel assignment and Write-All

2.2.3.1 Write-All and initial faults

We first consider the weak model of initial (static) faults in which failures can
only occur prior to the start of an algorithm. We assume that the size of the
Write-All instances is N and that we have P processors, P ′ ≤ P of which
are alive at the beginning of the algorithm. Our erew algorithm E (Fig. 2.2)

01 forall processors PID=1..P parbegin
02 Phase E1: Use non-oblivious parallel prefix to compute rankPID and P ′

03 Phase E2: Set x[(rankPID − 1) ∗ N
P ′ . . . (rankPID ∗ N

P ′)− 1] to 1
04 parend

Figure 2.2: A high level view of algorithm E.

consists of phases E1 and E2. In phase E1, processors enumerate themselves and
compute the total number of live processors. The details of this non-oblivious
counting are in [16]. In phase E2, the processors partition the input array so
that each processor is responsible for setting to 1 all the entries in its partition.

Theorem 2.2.1 The Write-All problem with initial processor and memory
faults can be solved in place with S = O(N + P ′ logP) on an erew pram,
where 1 ≤ P ≤ N and P − P ′ is the number of initial faults.

With the result of [7] it can be shown that this algorithm is optimal, without
memory access concurrency.

2.2.3.2 Dynamic faults and algorithm W

A more sophisticated approach is necessary to obtain an efficient parallel algo-
rithm when the failures are dynamically determined by an on-line adversary.
Algorithm W of [17] is an efficient fail-stop Write-All solution (Fig. 2.3). It
uses full binary trees for processor counting, processor allocation, and progress
measurement. Active processors synchronously iterate through the following
four phases:

W1: Processor enumeration. All the processors traverse bottom-up the pro-
cessor enumeration tree. A version of parallel prefix algorithm is used
resulting in an overestimate of the number of live processors.

W2: Processor allocation. All the processors traverse the progress measure-
ment tree top-down using a divide-and-conquer approach based on pro-
cessor enumeration and are allocated to un-written input cells.

W3: Work phase. Processors work at the leaves reached in phase W2.

W4: Progress measurement. All the processors traverse bottom-up the progress
tree using a version of parallel prefix and compute an underestimate of
the progress of the algorithm.

Algorithm W achieves optimality when parameterized using a progress tree
with N/ logN leaves and logN input data associated with each of its leaves.

01 forall processors PID=1..N parbegin
02 Phase W3: Visit leaves based on PID to work on the input data
03 Phase W4: Traverse the progress tree bottom up to measure progress
04 while the root of the progress tree is not N do
05 Phase W1: Traverse counting tree bottom up to enumerate processors
06 Phase W2: Traverse the progress tree top down to reschedule work
07 Phase W3: Perform rescheduled work on the input data
08 Phase W4: Traverse the progress tree bottom up to measure progress
09 od
10 parend

Figure 2.3: A high level view of algorithm W .

By optimality we mean that for a range of processors the work is O(N). A
complete description of the algorithm can be found in [17]. Martel [29] gave a
tight analysis of algorithm W .

Theorem 2.2.2 [17, 29] Algorithm W is a robust parallel Write-All algorithm
with S = O(N + P log2 N/ log logN), where N is the input array size and the
initial number of processors P is between 1 and N .

Note that the above bound is tight for algorithm W. This upper bound was
first shown in [22] for a different algorithm. The data structuring technique [22]
might lead to even better bounds for Write-All .

2.2.3.3 Dynamic faults, detected restarts, and algorithm V

Algorithm W has efficient work when subjected to arbitrary failure patterns
without restarts and it can be extended to handle restarts. However, since ac-
curate processor enumeration is impossible if processors can be restarted at any
time, the work of the algorithm becomes inefficient even for some simple adver-
saries. On the other hand, the second phase of algorithm W does implement
efficient top-down divide-and-conquer processor assignment in O(logN) time
when permanent processor PIDs are used. Therefore we produce a modified
version of algorithm W , that we call V . To avoid a restatement of the details,
the reader is referred to [18].

V uses the optimized algorithm W data structures for progress estimation
and processor allocation. The processors iterate through the following three
phases based on the phases W2, W3 and W4 of algorithm W :

V1: Processors are allocated as in the phase W2, but using the permanent
pids. This assures load balancing in O(logN) time.

V2: Processors perform work, as in the phase W3, at the leaves they reached
in phase V1 (there are logN array elements per leaf).

V3: Processors continue from the phase V2 progress tree leaves and update
the progress tree bottom up as in phase W4 in O(logN) time.

The model assumes re-synchronization on the instruction level, and a wrap-
around counter based on the pram clock implements synchronization with re-
spect to the phases after detected failures [18]. The work and the overhead
ratio of the algorithm are as follows:

Theorem 2.2.3 [18] Algorithm V using P ≤ N processors subject to an arbi-
trary failure and restart pattern F of sizeM has the work S = O(N+P log2 N+
M logN), and its overhead ratio is: σ = O(log2 N).

Algorithm V achieves optimality for a non-trivial set of parameters:

Corollary 2.2.4 Algorithm V with P ≤ N/ log2 N processors subject to an
arbitrary failure and restart pattern of size M ≤ N/ logN has S = O(N).

One problem with the above approach is that there could be a large number
of restarts and a large amount of work. Algorithm V can be combined with
algorithm X of the next section or with the asymptotically better algorithm of
[3] to provide better bounds on work.

2.2.3.4 Dynamic faults, undetected restarts, and algorithm X

When the failures cannot be detected, it is still possible to achieve sub-quadratic
upper bound for any dynamic failure/restart pattern. We present Write-All
algorithm X with S = O(N · P log 3

2) = N · P 0.59. This simple algorithm can
be improved to S = O(N · P ε) using the method in [3]. We present X for its
simplicity and in the next section a (possible) deterministic version of [3].

Algorithm X utilizes a progress tree of size N that is traversed by the
processors independently, not in synchronized phases. This reflects the local
nature of the processor assignment as opposed to the global assignments used
in algorithms V and W . Each processor searches for work in the smallest
subtree that has work that needs to be done. It performs the work, and moves
to the next subtree.

01 forall processors PID=0..P − 1 parbegin
02 Perform initial processor assignment to the leaves of the progress tree
03 while there is still work left in the tree do
04 if subtree rooted at current node u is done then move one level up
05 elseif u is a leaf then perform the work at the leaf
06 elseif u is an interior tree node then
07 Let uL and uR be the left and right children of u respectively
08 if the subtrees rooted at uL and uR are done then update u
09 elseif only one is done then go to the one that is not done
10 else move to uL or uR according to PID bit values
11 fi fi
12 od
13 parend

Figure 2.4: A high level view of the algorithm X.

The algorithm is given in Fig. 2.4. Initially the P processors are assigned
to the leaves of the progress tree (line 02). The loop (lines 03-12) consists of
a multi-way decision (lines 04-11). If the current node u is marked done, the
processor moves up the tree (line 04). If the processor is at a leaf, it performs
work (line 05). If the current node is an unmarked interior node and both of
its subtrees are done, the interior node is marked by changing its value from
0 to 1 (line 08). If a single subtree is not done, the processor moves down
appropriately (line 09). For the final case (line 10), the processors move down
when neither child is done. Here the processor pid is used at depth h of the
tree node: based on the value of the hth most significant bit of the binary
representation of pid, bit 0 will send the processor to the left, and bit 1 to the
right.

The performance of algorithm X is characterized as follows:

Theorem 2.2.5 Algorithm X with P processors solves the Write-All problem
of sizeN (P ≤ N) in the fail-stop restartable model with work S = O(N ·P log 3

2).
In addition, there is an adversary that forces algorithm X to perform S =
Ω(N · P log 3

2) work.

The algorithm views undetected restarts as delays, and it can be used in the
asynchronous model where it has the same work [8]. Algorithm X could also
be useful for the case without restarts, even though its worst-case performance
without restarts is no better than algorithm W .

Open Problem: A major open problem for the model with undetectable
restarts is whether there is robust Write-All solution, i.e., where the work is
Npolylog(N). Also, whether there is a solution with σ = polylog(N).

01 forall processors PID = 1..
√
N parbegin

02 Divide the N array elements into
√
N work groups of

√
N elements

03 Each processor obtains a private permutation πPID of {1, 2, . . . ,
√
N}

04 for i = 1..
√
N do

05 if πPID [i]th group is not finished
06 then perform sequential work on the

√
N elements of the group

07 and mark the group as finished fi
09 od
10 parend

Figure 2.5: A high level view of the algorithm Y .

2.2.3.5 Dynamic faults, undetected restarts, and algorithm Y

A family of randomized Write-All algorithms was presented by Anderson and
Woll [3]. The main technique in these algorithms is abstracted in Fig. 2.5. The
basic algorithm in [3] is obtained by randomly choosing the permutation in line
03. In this case the expected work of the algorithm is O(N logN), for P =

√
N

(assume N is a square).

We propose the following way of determinizing the algorithm (see [19]):
Given P =

√
N , we choose the smallest prime m such that P < m. Primes are

sufficiently dense, so that there is at least one prime between P and 2P , so that
the complexity of the algorithms is not distorted when P is not a prime. We
then construct the multiplication table for the numbers 1, 2, . . .m−1 modulom.
Each row of this table is a permutation and this structure is a group. Processor
with PID i uses the ith permutation as its schedule.

This table need not be pre-computed, as any item can be computed di-
rectly by any processor with the knowledge of its PID, and the number of work
elements w it has processed thus far as (PID · w) mod m.

Conjecture: We conjecture that the worst case work of this deterministic
algorithm is no worse than the expected work of the randomized algorithm.
Experimental analysis supports the conjecture. Formal analysis can be reduced
to the open problem below that contains an interesting group-theoretic aspect
of the multi-processor scheduling problem [41]. In order to show that the worst
case work of Y is O(N logN), it is sufficient to show that:

Given a prime m, consider the group G = 〈{1, 2, . . . ,m − 1}, • (mod m)〉.
The multiplication table for G, when the rows of the table are interpreted as

permutations of {1, . . . ,m − 1}, is a group K of order m− 1 (a subgroup of

all permutations). Show that, for each left coset of K (with respect to all

permutations) the sum of the number of left-to-right maxima of all elements

of the coset is O(m logm).

01 forall processors PID=1..P parbegin −−P processors clear N locations
02 Clear the initial block of N0 = G0 elements sequentially using P processors
03 i := 0 −−Iteration counter
04 while Ni < N do
05 Use Write-All solution with data structures of size Ni and Gi+1 elements
06 at the leaves to clear memory of size Ni+1 = Ni ·Gi+1; i := i+ 1
07 od
08 parend

Figure 2.6: A high level view of algorithm Z.

2.2.3.6 Bootstrapping and algorithm Z

The Write-All algorithms and simulations (e.g., [17, 22, 23, 40]) or the algo-
rithms that can serve as Write-All solutions (e.g., the algorithms in [9, 32])
invariably assume that a linear portion of shared memory is either cleared or
is initialized to known values. Starting with a non-contaminated portion of
memory, these algorithms perform their computation by “consuming” the clear
memory, and concurrently or subsequently clearing segments of memory needed
for future iterations. We define an efficient Write-All solution that requires no
clear shared memory [42].

The solution uses a bootstrap approach: In stage 1 all P processors clear
an initial segment of N0 locations in the auxiliary memory. In stage i the P
processors clear Ni+1 = Ni ·Gi+1 memory locations using Ni memory locations
that were cleared in stage i− 1.

Using algorithm W and tuning the parameters Ni and Gi we obtain a so-
lution (algorithm Z, see Fig. 2.6) that for any failure pattern F (|F | < P) has

work O(N + P log3 N
(log logN)2) without any initialization assumption.

A similar algorithm that inverts the bootstrap procedure can be used to clear
the contaminated shared memory if the output must contain only the results
of the intended computation. The complexity of algorithm Z−1 is identical to
the complexity of algorithm Z. For algorithm simulation and for transformed
algorithms, the complexity cost is additive in both cases.

2.2.3.7 Minimizing concurrency: processor priority trees

Among the key lower bound results is the fact that no efficient fault-tolerant
crew pram Write-All algorithms exist [17] – if the adversary is dynamic then
any P -processor solution for theWrite-All problem of size N will have (de-
terministic) work Ω(N · P). Thus memory access concurrency is necessary to
combine efficiency and fault-tolerance. However, while most known solutions

for the Write-All problem indeed make heavy use of concurrency, the goal of
minimizing concurrent access to shared memory is attainable.

We gave a Write-All algorithm in [16] in which we bound the total amount
of concurrency used in terms of the number of dynamic processor faults of the
actual run of the algorithm.

When there are no faults our algorithm executes as an erew pram and when
there are faults the algorithm differs from erew in the amount of concurrency
proportional to the number of faults. The algorithm is based on a conservative
policy: concurrent reads or writes occur only when the presence of failures
can be inferred and then concurrency is allowed in proportion to the failures
detected.

The robust crcw algorithm WCR/W in [16] is based on algorithm W and it
uses processor identifiers to construct mergeable processor priority trees (PPT),
which control concurrent access to memory. During the execution, the PPTs
are compacted and merged to remove faulty processors and to determine when
concurrent access to memory is warranted.

By taking advantage of parallel slackness and by clustering the input data
into groups of size logN logP , we obtain an algorithm that has a range of
optimality and that controls its memory access concurrency:

Theorem 2.2.6 Algorithm WCR/W of [16] with input clustering is a robust

Write-All algorithm with S = O(N+P log2 N log2 P
log logN), write concurrency ω ≤ |F |,

and read concurrency ρ ≤ 7 |F | logN , where 1 ≤ P ≤ N .

The basic algorithm can be extended to handle arbitrary initial memory
contents [16] and also to use some pipelining. Finally, [16] shows that there
is no robust algorithm whose total write concurrency is bounded by |F |ε for
0 ≤ ε < 1.

2.2.4 Computing functions robustly

In this section we will work our way from the simplest to the most complicated
functions with robust solutions.

2.2.4.1 Constants, booleans and Write-All

Solving a Write-All problem of size N can be viewed as computing a con-
stant vector function. Constant scalar functions are the simplest possible func-
tions (e.g., simpler than boolean or and and). At the same time, it appears

that Write-All problem is a more difficult (vector) task than computing scalar
boolean functions such as multiple input or and and. In the lower bounds dis-
cussion we consider a model with memory snapshots, i.e., processors can read
and process the entire shared memory in unit time. For the snapshot model
there is a sharp separation between Write-All and boolean functions. Clearly
any boolean can be computed in constant time in the snapshot model, while
we have a lower bound result for any Write-All solution in the snapshot model
requiring work Ω(N logN

log logN).

Solving a Write-All problem is no more difficult than computing any other
vector function, e.g., parallel prefix. In the next subsection we also show that
the best (as of this writing) Write-All solution can be used to derive a robust
parallel prefix algorithm that has the same work complexity.

2.2.4.2 Parallel prefix and Write-All

Solutions for the Write-All problem can be used as building blocks for cus-
tom transformations of efficient parallel algorithms into robust algorithms [17].
Transformations are of interest because in some cases it is possible to improve
on the work of oblivious simulation such as [23, 32, 40]. These improvements
are most significant for fast algorithms when a full range of processors is used,
i.e., when N processors are used to simulate N processors, because in this case
parallel slack cannot be taken advantage of.

One immediate result that improves on the available general simulations fol-
lows from the fact that algorithms V , W and X, by their definition, implement
an associative operation on N values.

Theorem 2.2.7 Given any associative operation ⊕ on integers, and an integer
array x[1..N], it is possible to robustly compute

⊕N
i=1 x[i] using P fail-stop

processors at a cost of a single application of any of the algorithms V , W or X.

This saves a full logN factor for all simulations. The savings are also pos-
sible for the important prefix sums and pointer doubling algorithms. Efficient
parallel algorithms and circuits for computing prefix sums were given by Lad-
ner and Fischer in [26], where the prefix problem is defined as follows: Given an
associative operation ⊕ on a domain D, and x1, . . . , xn ∈ D, compute, for each
k, (1 ≤ k ≤ n) the sum

⊕k
i=1 xi.

In order to compute the prefix sums of N values using N processors, at least
logN/ log logN parallel steps are required [6, 27], and the known algorithms
require at least logN steps. Therefore an oblivious simulation of a known prefix
algorithm will require simulating at least logN steps. When using P = N

processors with algorithm W (the most efficient as of this writing Write-All

solution) whose work is Sw = O(N log2N
log logN), the work of the simulation will be

O(Sw · logN).

We can extend Theorem 2.2.7 to show a robust prefix algorithm whose work

is the same as that of algorithm W : O(Sw) = O(N log2 N
log logN). In the fail-stop

model we have the following result that uses as the basis an iterative version of
the recursive algorithm of [26]:

Theorem 2.2.8 Parallel prefix for N values can be computed using N fail-stop

processors using O(N) clear memory with S = O(N log2 N
log logN).

2.2.4.3 List ranking

Another important improvement for the fail-stop case is for the pointer dou-
bling operation that is used in many parallel algorithms. The robust algorithm
is implemented using a variation of algorithm W and the standard pointer
doubling algorithm. We associate each list element with a progress tree leaf.
In the work phase of algorithm W we double pointers and update distances.
The logN pointer doubling operations in the work phase make logN/ log logN
overall iterations sufficient with each iteration performing the same work Sw as
algorithm W .

Theorem 2.2.9 There is a robust list ranking algorithm for the fail-stop model
with S∗ = O(logN

log logN Sw(P,N)), where N is the input list size and Sw(N,P)
is the complexity of algorithm W for the initial number of processors P : 1 ≤
P ≤ N .

This improvement can be used with several algorithms based on pointer dou-
bling, e.g., algorithms for computing the tree functions of Tarjan and Vishkin [43].
Note also that by preceding the algorithm with logN pointer doubling oper-
ations with O(N logN) additive overhead, we obtain a solution that has no
asymptotic degradation in the absence of failures.

2.2.4.4 General Parallel Assignment

Consider computing and storing in an array x[1..N] the values of a function
f that depend on PIDs and the initial values of the array x. Assume f can
be computed in O(1) sequential time. This is the general parallel assignment
problem. In [17] it was shown that this quite general operation is equivalent to
one Write-All .

forall processors PID = 1..N
parbegin

shared integer array x[1..N];
x[PID] := f(PID, x[1..N])

parend

We modify the assignment so that it remains correct when processors fail
and when multiple attempts are made to execute the assignment (assuming the
surviving processors can be reassigned to the tasks of faulty processors). This
is done using binary version numbers and two generations of the array:

forall processors PID = 1..N
parbegin

shared integer array x[0..1][1..N];
bit integer v;
x[v + 1][PID] := f(PID, x[v][1..N]);
v := v + 1

parend

Here, bit v is the current version number or tag (mod 2), so that x[v][1 . . . N]
is the array of current values. Function f will use only these values of x as its
input. The values of f are stored in x[v+1][1 . . . N] creating the next generation
of array x. After all the assignments are performed, the binary version number
is incremented (mod 2).

At this point, a simple transformation of any Write-All algorithm, with
the general parallel assignment replacing the trivial “x[i] = 1” assignment, will
yield a robust N -processor algorithm:

Theorem 2.2.10 The asymptotic work complexities of solving the general par-
allel assignment problem and the Write-All problem are equal.

2.2.4.5 Any PRAM steps

The original motivation for studying theWrite-All problem was that it captured
the essence of a single pram step computation. It was shown in [23, 40] how to
use the Write-All paradigm in implementing general pram simulations. The
generality of this result is somewhat surprising.

Fail-stop faults: An approach to such simulations is given in Fig. 2.7. The
simulations are implemented by robustly executing each of the cycles of the
pram step: instruction fetch, read, compute, and write cycles, and next in-
struction address computation. This is done using two generations of shared

01 forall processors PID=1..P parbegin −−Simulate N fault-prone processors
02 The PRAM program for N processors is in shared memory (read-only)
03 Shared memory has two generations: current and future;
04 Initialize N simulated instruction counters to start at the first instruction
05 while there is a simulated processor that has not halted do
06 −−Tentative computation: Fetch instruction; Copy registers to scratchpad
07 Perform read cycle using current memory
08 Perform the compute cycle using scratchpad
09 Perform write cycle into future memory
10 Compute next instruction address
11 −−Reconcile memory and registers: Copy future locations to current
12 od
13 parend

Figure 2.7: Simulations using Write-All primitive.

memory, “current” and “future”, and by executing each of these cycles in the
general parallel assignment style, e.g., using algorithm W .

Using such techniques it was shown in [23, 40] that if Sw(N,P) is the ef-
ficiency of solving a Write-All instance of size N using P processors, and if a
linear amount of clear memory is available, then anyN -processor pram step can
be deterministically simulated using P fail-stop processors and work Sw(N,P).
If the Parallel-time×Processors of an original N -processor algorithm is τ · N ,
then the work of the fault-tolerant simulation will be O(τ · Sw(N,P)).

The simulation in the fail-stop model is optimal for a wide range of proces-
sors [40]. The following theorem might have some practical significance, given
the constant overhead.

Theorem 2.2.11 Any N -processor pram algorithm can be optimally simu-
lated (with constant overhead) on a fail-stop P -processor crcw pram, when
P ≤ N/ log2 N . Erew, crew, and weak and common crcw pram algo-
rithms are simulated on fail-stop common crcw prams; Arbitrary, prior-
ity and strong crcw prams are simulated on fail-stop prams of the same
type.

When the full range of simulating processors is used (N = P) optimality
is not achievable. In this cases, our customized parallel prefix and list ranking
algorithms improve on the oblivious simulations.

Initial faults: Algorithm E can be used for simulations of erew pram algo-
rithms on fail-stop erew prams [16]. Simulations are much simpler for this case
as compared to the dynamic failures case. The computational overhead of such
simulations is additive. This simulation is optimal when P · τ = Ω(P ′ logP).

Theorem 2.2.12 Any P -processor, τ parallel time erew pram algorithm can
be robustly simulated on a fail-stop erew pram that is subject to static initial
processor and memory faults. The work of the simulation is P ·τ +O(P ′ logP),
where P ′ is the number of live processors.

Fail-stop faults with detectable restarts: There is broad range of parameters
for the work performed in executing a parallel algorithm on a faulty pram is
asymptotically equal to the Parallel-time×Processors product for that algo-
rithm.

Theorem 2.2.13 Any N -processor pram algorithm can be executed on a fail-
stop P -processor crcw pram with detectable restarts, with P ≤ N . Each N -
processor PRAM step is executed in the presence of any pattern F of failures
and restarts of size M with: S = O(min{N +P log2 N +M logN, N ·P log 3

2 }),
and overhead ratio: σ = O(log2 N). Erew, crew, and weak and common
crcw pram algorithms are simulated on fail-stop common crcw prams; Ar-
bitrary and strong crcw prams are simulated on fail-stop prams of the
same type.

Fail-stop faults with undetectable restarts: When the failures are undetectable,
deterministic simulations become difficult due to the possibility of processors
delayed due to failures writing stale values to shared memory. Fortunately,
for fast polylogarithmic time parallel algorithms we can solve this problem by
using polylogarithmically more memory. We simply provide as many “future”
generations of memory as there are pram steps to simulate. Processor registers
are stored in shared memory along with each generation of shared memory.

Prior to starting a parallel step simulation, a processor uses binary search
to find the newest simulated step. When reading, a processor linearly searches
past generations of memory to find the latest written value. In the result below
we use the existential algorithm [3].

Theorem 2.2.14 Any N -processor, logO(1) N -time, M -memory pram algo-
rithm can be deterministically executed on a fail-stop P -processor crcw pram
(P ≤ N) with undetectable restarts, and using shared memory M · logO(1) N .
Each N -processor PRAM step is executed in the presence of any pattern F of
failures and undetected restarts with S = O(Nε).

2.2.5 Computing relations and approximate Write-All

Here we show that computing some relations robustly is easier than computing
functions robustly.

Consider the majority relation M: Given an array x[1..N], x ∈ M when
|{x[i] : x[i] = 1}| > 1

2N . C. Dwork observed that the Ω(N logN) lower bound
[22] on solvingWrite-All usingN processors also applies to producing a member
of M in the presence of failures. It turns out that O(N logN) work is also
sufficient to compute a member of the majority relation.

Let’s parameterize the majority problem in terms of the approximate Write-
All problem by using a quantity ε such that 0 < ε < 1

2 , thus we would like to
initialize at least (1−ε)N array locations to 1. We call this problem the AWA(ε).
Surprisingly, algorithm W has the desired property:

Theorem 2.2.15 Given any constant ε such that 0 < ε < 1
2 , algorithm W

solves the AWA(ε) problem with S = O(N logN) using N processors.

If we choose ε = 1/2k (k = const) and then iterate this Write-All algo-
rithm log logN times, the number of unvisited leaves will be Nε(log logN) =
N(logN)log ε = N(logN)−k = N/ logk N . Thus we can get even closer to
solving the Write-All problem:

Theorem 2.2.16 For each k = const, there is a robust AWA(1
logk N

) algorithm

that has work S = O(N logN log logN).

2.2.6 Lower bounds

The strongest known lower bound for Write-All was derived by Kedem, Palem,
Ragunathan and Spirakis in [22].

Theorem 2.2.17 [22] Given any P -processor crcw pram algorithm for the
Write-All problem of size N , an adversary can force fail-stop (no restart) errors
that result in N + Ω(P logN) (where P ≤ N) steps being performed.

Recently, Martel and Subramonian [31] have extended the Kedem et al.
deterministic lower bound [22] to randomized algorithms against oblivious ad-
versaries. It is open whether this lower bound applies to the static fault case.

It was shown in [17] that no optimal solutions for the Write-All problem
exist that use the range of processor 1 ≤ P ≤ N even when the processors can
take instant memory snapshots, i.e., processors can read and locally process the
entire shared memory at unit cost. The lower bound below applies to fail-stop,
deterministic or randomized, prams and it is the strongest possible bound under
the memory snapshots assumption, i.e., there is a matching upper bound.

Theorem 2.2.18 [17] Given any N -processor crcw pram algorithm for the
Write-All problem of size N , an adversary can force fail-stop errors that result
in Ω(N logN

log logN) steps being performed, even if the processors can read and
locally process all shared memory at unit cost.

When restarts are introduced, we show the following result that also is the
strongest possible result under the snapshot assumption [8]:

Theorem 2.2.19 Given any P -processor crcw pram algorithm that solves
the Write-All problem of size N (P ≤ N), an adversary (that can cause
arbitrary processor failures and restarts) can force the algorithm to perform
N + Ω(P logP) work steps.

The next result shows that crcw is necessary to achieve efficient solutions
to the Write-All problem. In the absence of failures, any P -processor crew
(concurrent read exclusive write) or erew (exclusive read exclusive write) pram
can simulate a P -processor crcw pram with only a factor of O(logP) more
parallel work [20]. However a more severe difference exists between crcw and
crew prams (and thus also erew prams) when the processors are subject to
failures.

Theorem 2.2.20 Given any deterministic or randomized N -processor crew
pram algorithm for the Write-All problem, the adversary can force fail-stop
errors that result in Ω(N2) steps being performed, even if the processors can
read and locally process all shared memory at unit cost.

For the crew prams, Martel and Subramonian [31] show a randomized
algorithm with expected work of only O(N logN) for P = N .

2.2.7 A Complexity classification

2.2.7.1 Efficient parallel computation

Many efficient parallel algorithms can be used to show problem membership in
the class NC (of polylog time and polynomial number of processors [35]). The
inverse is not necessarily true. This is because the algorithms in NC allow for
polynomial inefficiency in work [25] – the algorithms are fast (polylogarithmic
time), but the computational agent can be large (polynomial) relative to the
size of a problem [35].

A characterization of parallel algorithm efficiency that takes into account
both the parallel time and the size of the computational resource is defined by

Vitter and Simmons [44] and expanded on by Kruskal et al. [25]. The complexity
classes in [25] are defined with respect to the time complexity T (N) of the best
sequential algorithm for a problem of size N – this is analogous to the definition
of robustness. Each class is characterized in terms of parallel time τ(N) and,
parallel work τ(N) · P (N). We give these class definitions below, but instead
of failure-free work, we use the overhead ratio σ that for the failure-free case is
simply τ(N) · P (N)/T (N):

Let A be a problem with sequential (ram) time complexity T (N). A parallel
algorithm that solves an N -size instance of A using P (N) processors in τ(N)
time belongs to the class:

ENC: if τ(N) = logO(1)(T (N)) and σ = O(1).

EP : if τ(N) ≤ T (N)ε (const ε < 1) and σ = O(1).

ANC: if τ(N) = logO(1)(T (N)) and σ = logO(1)(T (N)).

AP : if τ(N) ≤ T (N)ε (const ε < 1) and σ = logO(1)(T (N)).

SNC: if τ(N) = logO(1)(T (N)) and σ = T (N)O(1).

SP : if τ(N) ≤ T (N)ε (const ε < 1) and σ = T (N)O(1).

2.2.7.2 Closures under failures

We now define criteria for evaluating whether algorithm transformation pre-
serves the efficiency of the algorithms for each of the classes above.

To use time complexity in comparisons, we need to introduce a measure of
time for the fault-tolerant algorithms. In a fault-prone environment, a time
metric is meaningful provided that a significant number of processors still are
active. Here we use the worst case time provided a linear number of processors
are active during the computation. This is our weak survivability assumption.
Without this assumption, all one can conclude about the running time is that
it is no better than the time of the best sequential algorithm, since the number
of active processors might become quite small.

We assuming P is a polynomial in N (note that until now we generally
assumed P ≤ N). Then logP = O(logN). We now state the definition:

Definition 2.2.6 Let Cτ,w be a class with parallel time in the complexity class
τ and parallel work in the complexity class w. We say that Cτ,w is closed with
respect to a fault-tolerant transformation φ if for any algorithm A in Cτ,w:
(1) overhead σ of φ(A) is such that σ · τ · P is in w, and (2) when the number
of active processors at any point of the computation is at least cP for constant
c > 0, then the running time t is in τ . !

Complexity Time with ≥ cP processors Overhead σ Closed
Class O(τ(N) log2 N/ log logN) O(logO(1) N) under ξ?

ENC = O(logO(1)(T (N))) > O(1) No

EP = O(T (N)ε) > O(1) No

ANC = logO(1)(T (N)) = logO(1)(T (N)) Yes

AP = O(T (N)ε) = logO(1)(T (N)) Yes

SNC = logO(1)(T (N)) = T (N)O(1) Yes

SP = O(T (N)ε) = T (N)O(1) Yes

Table 2.1: Closure under the fail-stop transformation ξ.

In the fail-stop model without restarts, given any algorithm A, let ξ(A) be
the fault-tolerant algorithm that can be constructed as either a simulation or a
transformation.

Using, for example, algorithm W as the basis for transforming non-fault-
tolerant algorithms, we have the following:

(1) The multiplicative overhead in work is O(logN2/ log logN), and so the
worst case overhead σ is O(logN2/ log logN) = logO(1) N and the worst case
work of the fault-tolerant version ξ(A) is σ · τ(N) · P .

(2) Algorithm W terminates in Sw/cP = O(log2 N/ log logN) time when at
least cP processors are active, therefore if the parallel time of algorithm A
is τ(N), then the parallel time of execution for ξ(A) using at least cP active
processors is O(τ(N) log2 N/ log logN).

The resulting closure properties of the classes in [25] under our fail-stop
transformation is summarized in Table 2.1.

In the fail-stop model with detectable restarts, for any algorithm A, let
ρ(A) be the fault-tolerant algorithm constructed using any of our techniques.
In this model we provide existential closure properties by taking advantage of
the existential result by Anderson and Woll [3], who showed that for every
ε > 0, there exists a deterministic algorithm for P processors that simulates P
instructions with O(P 1+ε) work. Given the algorithm [3], we interleave it with
algorithm V , for example, so that the overhead σ of the combined algorithm is
O(log2 N). Table 2.2 gives the closure properties under the restartable fail-stop
transformation. Note that due to the lower bounds for the Write-All problem,
the entries that are marked “No” mean non-closure, while the “Unknown” result
means that closure is not achieved with the known results.

Complexity Time with ≥ cP processors Overhead σ Closed
Class O(·τ(N) · P ε) O(log2 N) under ρ?

ENC > logO(1)(T (N)) > O(1) No

EP = O(T (N)ε) > O(1) No

ANC > logO(1)(T (N)) = logO(1)(T (N)) Unknown

AP = O(T (N)ε) = logO(1)(T (N)) Yes

SNC > logO(1)(T (N)) = T (N)O(1) Unknown

SP O(T (N)ε) = T (N)O(1) Yes

Table 2.2: Closure under the restartable fail-stop transformation ρ.

2.2.8 Discussion: on randomization and approximation

We have presented an overview of the theory of efficient and fault-tolerant par-
allel algorithms. Our focus has been deterministic algorithms, partly because
our work has concentrated on this topic, but also because many deterministic
techniques exist for the problems of interest.

We close our exposition with an observation (by D. Michailidis) that illus-
trates the power of randomization (vs determinism). As we described above
deterministic write-all solutions require logarithmic time. This is true even for
approximate write-all. However:

Theorem 2.2.21 The approximate Write-All problem (AWA) of size N where
the number of locations to be written is N ′ = αN and the number of surviving
processors is at least βN , for some constants 0 < α,β < 1 can be solved
probabilistically (error is Monte Carlo) on a CRCWPRAMwith O(N) expected
work in O(1) parallel steps.

Randomization is an important algorithmic tool which has had extensive
and fruitful application to fault-tolerance, e.g., [36]. Probabilistic techniques
have played a key role in the analysis of asynchronous parallel computing – see
for example, [4, 5, 9, 10, 15, 22, 23, 21, 30, 32, 34]. Note however, that it is
often hard to compare the analytical bounds of deterministic vs randomized
algorithms, since much of the randomized analysis is done using an oblivious
adversary assumption.

Randomized algorithms often achieve better practical performance than de-
terministic ones, even when their analytical bounds are similar. Future devel-
opments in asynchronous parallel computation will employ randomization as
well as the array of deterministic techniques surveyed here.

Bibliography

[1] M. Ajtai, J. Aspnes, C. Dwork, O. Waarts, “The Competitive Analysis of
Wait-Free Algorithms and its Application to the Cooperative Collect Problem”,
manuscript 1993.

[2] G. B. Adams III, D. P. Agrawal, H. J. Seigel, “A Survey and Comparison of
Fault-tolerant Multistage Interconnection Networks”, IEEE Computer, 20, 6,
pp. 14-29, 1987.

[3] R. Anderson, H. Woll, “Wait-Free Parallel Algorithms for the Union-Find Prob-
lem”, Proc. of the 23rd ACM Symp. on Theory of Computing, pp. 370-380, 1991.

[4] Y. Aumann and M.O. Rabin, “Clock Construction in Fully Asynchronous Par-
allel Systems and PRAM Simulation”, in Proc. of the 33rd IEEE Symposium
on Foundations of Computer Science, pp. 147-156, 1992.

[5] Y. Aumann, Z.M. Kedem, K.V. Palem, M.O. Rabin, “Highly Efficient Asyn-
chronous Execution of Large-Grained Parallel Programs”, in Proc. of the 34th
IEEE Symposium on Foundations of Computer Science, pp. 271-280, 1993.

[6] P. Beame and J. Hastad, “Optimal bounds for decision problems on the CRCW
PRAM,” Journal of the ACM, vol. 36, no. 3, pp. 643-670, 1989.

[7] P. Beame, M. Kik and M. Kutylowski, “Information broadcasting by Exclusive
Read PRAMs”, manuscript 1992.

[8] J. Buss, P.C. Kanellakis, P. Ragde, A.A. Shvartsman, “Parallel algorithms with
processor failures and delays”, Brown Univ. TR CS-91-54, August 1991.

[9] R. Cole and O. Zajicek, “The APRAM: Incorporating Asynchrony into the
PRAM Model,” in Proc. of the 1989 ACM Symp. on Parallel Algorithms and
Architectures, pp. 170-178, 1989.

[10] R. Cole and O. Zajicek, “The Expected Advantage of Asynchrony,” in Proc.
2nd ACM Symp. on Parallel Algorithms and Architectures, pp. 85-94, 1990.

[11] R. DePrisco, A. Mayer, M. Young, “Time-Optimal Message-Optimal Work per-
formance in the Presence of Faults” manuscript, 1994.

27

[12] C. Dwork, J. Halpern, O. Waarts, “Accomplishing Work in the Presence of Fail-
ures” in Proc. 11th ACM Symposium on Principles of Distributed Computing,
pp. 91-102, 1992.

[13] D. Eppstein and Z. Galil, “Parallel Techniques for Combinatorial Computa-
tion”, Annual Computer Science Review, 3 (1988), pp. 233-83.

[14] S. Fortune and J. Wyllie, “Parallelism in Random Access Machines”, Proc. the
10th ACM Symposium on Theory of Computing, pp. 114-118, 1978.

[15] P. Gibbons, “A More Practical PRAM Model,” in Proc. of the 1989 ACM
Symposium on Parallel Algorithms and Architectures, pp. 158-168, 1989.

[16] P. C. Kanellakis, D. Michailidis, A. A. Shvartsman, “Controlling Memory Ac-
cess Concurrency in Efficient Fault-Tolerant Parallel Algorithms”, 7th Int-l
Workshop on Distributed Algorithms, pp. 99-114, 1993.

[17] P. C. Kanellakis and A. A. Shvartsman, “Efficient Parallel Algorithms Can Be
Made Robust”, Distributed Computing, vol. 5, no. 4, pp. 201-217, 1992; prelim.
vers. in Proc. of the 8th ACM PODC, pp. 211-222, 1989.

[18] P. C. Kanellakis and A. A. Shvartsman, “Efficient Parallel Algorithms On
Restartable Fail-Stop Processors”, in Proc. of the 10th ACM Symposium on
Principles of Distributed Computing, 1991.

[19] P. C. Kanellakis and A. A. Shvartsman, “Robust Computing with Fail-Stop
Processors”, in Proc. of the Second Annual Review and Workshop on Ultrade-
pendable Multicomputers, Office of Naval Research, pp. 55-60, 1991.

[20] R. M. Karp and V. Ramachandran, “A Survey of Parallel Algorithms for
Shared-Memory Machines”, in Handbook of Theoretical Computer Science (ed.
J. van Leeuwen), vol. 1, North-Holland, 1990.

[21] Z. M. Kedem, K. V. Palem, M. O. Rabin, A. Raghunathan, “Efficient Pro-
gram Transformations for Resilient Parallel Computation via Randomization,”
in Proc. 24th ACM Symp. on Theory of Comp., pp. 306-318, 1992.

[22] Z. M. Kedem, K. V. Palem, A. Raghunathan, and P. Spirakis, “Combining
Tentative and Definite Executions for Dependable Parallel Computing,” in Proc
23d ACM. Symposium on Theory of Computing, pp. 381-390, 1991.

[23] Z. M. Kedem, K. V. Palem, and P. Spirakis, “Efficient Robust Parallel Compu-
tations,” Proc. 22nd ACM Symp. on Theory of Computing, pp. 138-148, 1990.

[24] C. P. Kruskal, L. Rudolph, M. Snir, “Efficient Synchronization on Multipro-
cessors with Shared Memory,” in ACM Trans. on Programming Languages and
Systems, vol. 10, no. 4, pp. 579-601 1988.

[25] C. P. Kruskal, L. Rudolph, M. Snir, “A Complexity Theory of Efficient Parallel
Algorithms,” Theoretical Computer Science 71, pp. 95-132, 1990.

[26] L. E. Ladner, M. J. Fischer, “Parallel Prefix Computation”, Journal of the
ACM, vol. 27, no. 4, pp. 831-838, 1980.

[27] M. Li and Y. Yesha, “New Lower Bounds for Parallel Computation,” Journal
of the ACM, vol. 36, no. 3, pp. 671-680, 1989.

[28] A. López-Ortiz, “Algorithm X takes work Ω(n log2 n/ log log n) in a syn-
chronous fail-stop (no restart) PRAM”, unpublished manuscript, 1992.

[29] C. Martel, personal communication, March, 1991.

[30] C. Martel, A. Park, and R. Subramonian, “Work-optimal Asynchronous Algo-
rithms for Shared Memory Parallel Computers,” SIAM Journal on Computing,
vol. 21, pp. 1070-1099, 1992

[31] C. Martel and R. Subramonian, “On the Complexity of Certified Write-All
Algorithms”, to appear in Journal of Algorithms (a prel. version in the Proc.
of the 12th Conference on Foundations of Software Technology and Theoretical
Computer Science, New Delhi, India, December 1992).

[32] C. Martel, R. Subramonian, and A. Park, “Asynchronous PRAMs are (Almost)
as Good as Synchronous PRAMs,” in Proc. 32d IEEE Symposium on Founda-
tions of Computer Science, pp. 590-599, 1990.

[33] J. Naor, R.M. Roth, “Constructions of Permutation Arrays for Ceratin Schedul-
ing Cost Measures”, manuscript, 1993.

[34] N. Nishimura, “Asynchronous Shared Memory Parallel Computation,” in Proc.
3rd ACM Symp. on Parallel Algor. and Architect., pp. 76-84, 1990.

[35] N. Pippinger, “On Simultaneous Resource Bounds”, in Proc. of 20th IEEE
Symposium on Foundations of Computer Science, pp. 307-311, 1979.

[36] M.O. Rabin, “Efficient Dispersal of Information for Security, Load Balancing
and Fault Tolerance”, J. of ACM, vol. 36, no. 2, pp. 335-348, 1989.

[37] D. B. Sarrazin and M. Malek, “Fault-Tolerant Semiconductor Memories”, IEEE
Computer, vol. 17, no. 8, pp. 49-56, 1984.

[38] R. D. Schlichting and F. B. Schneider, “Fail-Stop Processors: an Approach
to Designing Fault-tolerant Computing Systems”, ACM Transactions on Com-
puter Systems, vol. 1, no. 3, pp. 222-238, 1983.

[39] J. T. Schwartz, “Ultracomputers”, ACM Transactions on Programming Lan-
guages and Systems, vol. 2, no. 4, pp. 484-521, 1980.

[40] A. A. Shvartsman, “Achieving Optimal CRCW PRAM Fault-Tolerance”, In-
formation Processing Letters, vol. 39, no. 2, pp. 59-66, 1991.

[41] A. A. Shvartsman, “Fault-Tolerant and Efficient Parallel Computation”, PhD
dissertation, Brown University, Tech. Rep. CS-92-23, 1992.

[42] A. A. Shvartsman, “Efficient Write-All Algorithm for Fail-Stop PRAM Without
Initialized Memory”, Information Processing Letters, vol. 44, no. 6, pp. 223-231,
1992.

[43] R.E. Tarjan, U. Vishkin, “Finding biconnected components and computing tree
functions in logarithmic parallel time”, in Proc. of the 25th IEEE FOCS, pp.
12-22, 1984.

[44] J. S. Vitter, R. A. Simmons, “New Classes for Parallel Complexity: A Study
of Unification and Other Complete Problems for P,” IEEE Trans. Comput.,
vol. 35, no. 5, 1986.

View publication statsView publication stats

https://www.researchgate.net/publication/226055262

