
JOURNAL OF COMPUTER AND SYSTEM SCIENCFS 33, 203-233 (1986)

Partition Semantics for Relations

STAVROS S. COSMADAKIS* AND PARIS C. KANELLAKIS~

MIT, Cambridge, Massachusetts

AND

NICOLAS SPYRATOS

Universitt! de Paris Sud, Paris, France

Received May 1, 1986

We use set-theoretic partitions to assign semantics to relation schemes, relations, and
dependencies. This approach leads to a natural extension of functional dependencies, the most
common database constraints, which is based on the duality between product and sum of par-
titions. These more general constraints, which we call parWon dependencies (PDs), have the
power to express both functional determination and connectivity in undirected graphs. We
show that the implication problem for PDs is the uniform word problem for lattices, and we
give a polynomial time algorithm for this implication problem. Our decision procedure for the
uniform word problem for lattices improves upon previous exponential decision procedures.
The algebraic techniques we use are new to database theory. We investigate the expressive
power of PDs, and show that partition semantics justify a number of variants of an
assumption commonly used in database theory, namely the weak instance assumption.
Finally, we provide a polynomial time test for consistency of a set of relations with a set of
PDs. 0 1986 Academic Press, Inc.

1. INTRODUCTION

It is customary in database theory to consider the database scheme and database
constraints as sentences from predicate calculus, and the relations of the database
as interpretations for these sentences. These interpretations either satisfy or falsify
the scheme and constraints. An interesting body of theory has developed around
this approach, particularly with respect to special types of sentences about relations
called dependencies (see [30, 241 for surveys of the area). Here we investigate a dif-
ferent view, first proposed in [29], in which database scheme, constraints, and the
database are strings of uninterpreted symbols. Interpretations for these symbols are

* Present address: IBM Thomas J. Watson Research Center, Yorktown Heights, N.Y.
t On leave from Brown University; supported partly by NSF Grant MCS-8210830 and partly by

ONR-DARPA Grant NOOO14-83-K-0146, ARPA Order 4786.
203

0022~0000/86 $3.00

571!33/2-6
Copyright 0 1986 by Academic Press, Inc.

All rights of reproduction in any form reserved

204 COSMADAKIS, KANELLAKIS, AND SPYRATOS

provided using partitions, that is, families of nonempty, disjoint sets whose union is
a population of objects. This approach, which we call partition semantics, allows us
to better understand and generalize such basic database concepts as functional
dependencies and weak instances [19,321.

Partition semantics reveal the algebraic nature of the most common database
dependency, the functional dependency (FD). Using partition semantics we
demonstrate that the implication problem for FDs is a problem of infering an
equation between algebraic expressions from other such equations. In more
mathematical terms, FD implication is equivalent to the uniform word problem for
idempotent commutative semigroups. This is a restricted form of the uniform word
problem for lattices [10, 231. Our algebraic approach to dependency implication is
similar in spirit to the approach of [35], although much closer in its details to stan-
dard equational theories [21]. Another (different) use of algebraic methods is made
in [9].

Let *, + be two operators satisfying the lattice axioms [lo] (see also Sect. 2.2)
and let the attributes of the database scheme be considered as constants. Partition
semantics allow us, without any loss of generality, to treat an FD, such as
AB + CD (where + is conventional FD notation [30]), as the equation A . B =
A * B * C* D. Interestingly enough, partition semantics allow us to complete the
analogy. An equation A = B+ C, where + is the natural dual of. in a lattice of par-
titions, is a dependency expressing a connectivity condition. In general a partition
dependency (PD) is an equation e = e’, where e, e’ are algebraic expressions using *,
+, and the attributes. Connectivity cannot be expressed and transitive closure can-
not be computed using relational algebra [16, 11. Since, as we show, PDs cannot
express multivalued dependencies (another popular database constraint), the
expressive power of PDs is orthogonal to that of other generalizations of FDs
[35, 154, 5, 28, 7, 9-J

We show that the implication problem for PDs can be solved in polynomial time.
For this we solve efficiently the uniform word problem for lattices. The decidability
of the uniform word problem for lattices follows from the finite controlability of a
more general class of sentences [14, 13,251. Our decision procedure is new and
runs in polynomial time. A straightforward implementation of our algorithm takes
time O(n4). In addition to its use in the implication problem, we also use this
algorithm to efficiently reduce the problem of testing consistency of a set of relations
with a set of PDs, to that of testing consistency with a set of FDs [191.

The question of consistency (i.e., whether there exists a partition interpretation
satisfying a given database and a given set of PDs), is very much related to the
problem of testing consistency of a database and a set of dependencies under the
weak instance assumption. We demonstrate that these are equivalent problems. The
weak instance assumption is a popular assumption used to model incomplete infor-
mation and to model databases with many relations, together with a set of FDs.
The weak instance assumption states that the relations in the database are con-
tained in the projections of a universal relation (i.e., relation over all the attributes),
which represents the “real” world.

PARTITION SEMANTICS FOR RELATIONS 205

The exact variant of the weak instance assumption we will be dealing with will
depend on whether we assume an open or a form of closed world interpretation
[27]. If we assume a domain closure axiom [27], which is formalized in partition
semantics by the complete atomic data assumption (CAD) [29], then testing con-
sistency of a database with a set of FDs becomes N&complete. If we assume an
open world interpretation, testing consistency of a database with a set of FDs can
be done using the efficient weak satisfaction test of [191. We generalize this test to
a set of PDs.

We use the standard relational terminology from [30,24], as well as the concept
of a weak instance for a database and a set of FDs [19,321. A useful survey of
equational theories can be found in [21]. Computational aspects of these theories
are explored in [23, 6, 221.

In order to make this paper self-contained, we provide some necessary delinitions
in Section 2. Section 2.1 contains useful facts from relational database theory and
Section 2.2 from lattice theory [lo].

Partition semantics are the subject of Section 3. The formal definitions of par-
tition semantics (in particular the notions of partition interpretation and satisfac-
tion) are in Section 3.1. The definition of partition dependencies and examples,
illustrating functional determination and connectivity, follow in Section 3.2. This
section also explains other possible restrictions on interpretations, such as CAD.

The expressive power of partition dependencies is the topic of Section 4. The
correspondence between FDs and a restricted form of PDs, called functional par-
tition dependencies (FPDs), is investigated in Section 4.1. We show that PDs can
express FDs without loss of generality; this is .accomplished using a canonical par-
tition interpretation. In Section 4.2 we show, using undirected graph connectivity,
that the expressive power of PDs differs from that of first-order sentences. This
result is similar to results in [16, 1] and holds even if we restrict attention to finite
interpretations. We also show that PDs cannot express multivalued dependencies.
In Section 4.3 we demonstrate the connection between consistency under the weak
instance assumption and consistency of a set of relations and a set of PDs.

A solution to the PD impliation problem is contained in Section 5. We first
present, in Section 5.1, a new algebraic view of FD implication and PD implication
as uniform word problems in lattices. The decidability of this word problem follows
from 1125, 14, 133. The decision procedure of [25] requires exponential time. A new
polynomial-time inference algorithm for PDs and the uniform word problem for
lattices is given in Section 5.2. The proofs in these sections use new techniques for
database theory, which derive from universal algebra and the theory of lattices
[10,23, 183. The uniform word problem for lattices is complete in polynomial time.
This distinguishes it from the problem of recognizing lattice identities (or
equivalently recognizing the PDs which are always true), which is solvable in
logarithmic space, as we show in Section 5.3. This logspace bound improves upon
polynomial time results in [22, 6). In Section 5.3 we also compare our lattice
theoretic analysis to the database theory of FDs.

In Section 6 we investigate the complexity of testing a database and database

206 COSMADAKIS, KANELLAKIS, AND SPYRATOS

constraints for consistency, i.e., testing whether there is a partition interpretation
satisfying these syntactic objects. If we assume complete atomic data and FDs our
task in N&complete; Section 6.1. However, if we do not assume complete atomic
data (Sect. 6.2), then there is a polynomial time test for consistency of a set of
relations with a set of PDs. This test combines the test of [19] with the efficient
inference algorithm for PDs. Section 7 contains conclusions and open questions.

The material in Section 3 is the contribution of the third author. The material in
Sections 4, 5, 6 is the contribution of the first two authors.

2. BASIC CONCEPTS

2.1. Relations

Let Q be a finite set of attributes {A, B, C ,..., A,, B,, CI ,..., Q}, and 9 a coun-
tably infinite set of symbols {a, b, c ,..., a,, b,, c1 ,... }, such that % n 9 = 0. A
relation scheme is an object R[U], where R is the name of the relation scheme and
U E @!. A tuple t over U is a function from U to 9. If t[Ai] = ai, where
U= {AI,..., Ak}, then we denote tuple t as ala*,..., ak, and the restriction of t on a
subset X of U as t[X]. A relation r over U is a set of tuples over U. The restriction
of r on a subset X of U is called the projection of r on X and denoted as r[X]. We
assume that, in general, there are both finite and infinite relations. A database
scheme is a finite set of relation schemes D = (R, [U,],..., R, [U,] } and a database
d= {r,,..., r,} associates each relation scheme Ri [Vi] in D with a relation ri over
Ui.

A database is represented, in the natural fashion, by a set of tables with the
relation schemes as headers and the tuples as rows. Each column is headed by an
attribute. We use d[A] to denote the set of symbols appearing in database d under
all columns headed by attribute A.

Let d be a database over database scheme D (as above). Let the union of all
attributes in D be U. A relation w, over U, is a weak instance for d iff every tuple of
relation ri (over Vi) of d appears in w[U,]. In other words, the projection of w on
Ui must contain ri.

Assume R[U] is a relation scheme and X, Y are nonempty subsets of U. We call
R: X -+ Y a functional dependency (FD). A relation r, with relation scheme R[U],
satisfies R: X+ Y iff: whenever t, h are tuples in r with t[X] = h[X], then
t[Y] = h[Y]. We use X + Y if R[U] is clear from the context. FDs have a number
of interesting computational properties (e.g., [2, 3, 191).

Let d be a given database over database scheme D. Let the union of all attributes
in D be the set U and let Z be a given set of FDs on relation scheme R[U]. We say
that d is consistent with Z under the weak instance assumption iff there exists a
weak instance w for d which satisfies the set of FDs Z. An efficient test for con-
sistency is contained in [19].

Functional dependencies are database constraints expressed using sentences of

PARTITION SEMANTICS FOR RELATIONS 207

first-order predicate calculus with equality. This is also true for other dependencies
investigated in the literature [35, 15,4, 5,28,7]. In this framework dependencies
are syntactic objects, and the database is a semantic object satisfying or falsifying
the dependencies. Let r be a relation, 2 a set of dependencies, and D a dependency.
We denote satisfaction of o by r as r + 6. We also say that Z (finitely) implies 0, if
every (finite) relation which satisfies the dependencies in Z, also satisfies the depen-
dency 0. We denote implication and finite implication as Z b re, o and Z b re, an cr,
respectively. We use the subscript re, to stress that this is implication over relations.

2.2. Lattices

Let L be a nonempty set with two binary operations *, +. Set L is a lattice [lo]
if the following axioms hold for all its elements x, y, z:

LA Axioms
associativity:(x*y)*z=x*(y-z), (x+y)+z=x+(y+z)
commutativity: x - y = y * x, x + y = y + x
idempotence: x * x = x, x + x = x
absorption: x + (x * y) = x, x - (x + y) = x.

Let us define a relation x < y between elements x, y of lattice L such that x 6 y iff
x = x * y iffy = y + x. This relation is a partial order, the natural partial order of the
lattice.

A sublattice of lattice L is a subset of L closed under the * and + operations.
Consider the set of attributes +P of Section 2.1, and let U be a subset of %. We

will say that L is a lattice with constants over U if we have a function g mapping
each element of U to an element of the lattice, (i.e., if for each attribute A in U there
is exactly one element in L named A). Note that an element in L could have more
than one name. When U and g are obvious from the context we will refer to lattice
L, with constants over U, as lattice L.

Let W(U) denote the set of tinite expressions built using the elements of U as
generators and *, + as binary operators, (i.e., these are uninterpreted strings formed
using the symbols in U, *, +, (,) and representing ground terms [23]). If L is a
lattice with constants over U, each of these expressions can be interpreted (in the
obvious fashion) as a name for exactly one element in L. Let e and e’ be expressions
in W(U). We will say that lattice L with constants over U satisfies e= e’ if the
elements in L with names e and e’ are identical. We denote this satisfaction by
L b e = e’.

For 6 an equation e = e’ as above, and E a set of such equations, we say that
E u LA implies 6, or E k,lat 8, if every lattice L with constants over U which
satisfies each equation in E also satisfies 6. We use the subscript lat to stress that this
is implication over lattices. This implication problem is known as the uniform word
problem for lattices. If we restrict attention to only finite lattices we have finite
implication, E k ,at.fin 6.

208 COSMADAKIS, KANELLAKIS, AND SPYRATOS

3. PARTITION SEMANTICS

3.1. Partition Interpretations

The syntactic objects of “conventional” database theory are relation schemes,
database schemes, and database constraints. To all of these syntactic objects we
assign partition semantics. We also assign partition semantics to the symbols in 9,
tuples, relations, and databases. The interpretations of these objects are defined
starting from an interpretation for the attributes, which we call a partition inter-
pretation.

DEFINITION 1. A partition interpretation X, over attributes Q, is a set of triples
{(PAY = A, fA) 1 A E %}, where for each attribute A:

1. pA is a nonempty set, the population of A,
2. z4 is a partition of pA, the atomic partition of A,

3. fA is a function from 9 to znA u { 0), such that,

nA = {fAtx) 1 x E 9~ fAcx) f 0) and ifx#y thenf,(x)nf,(y)=ja.

Note that in the above definition 7cA is a partition in the mathematical sense, i.e.,
a family of nonempty, disjoint subsets of pA whose union is pA. Also fA maps a
unique symbol from 9 to each distinct member of rcA, and maps the rest of 9
to 0.

There are two natural operations on partitions. Given a partition rc of set (or
population) p and a partition 7~’ of set (or population) p’, their product * is defined
as

x-7?= (xl x=ynz#@, yE7c,ZE?T}.
Their sum + is defined as

rc + 71’ = {x) two elements p, v in p u p’ are in set x if and only if there is a
chain of sets x1, x2 ,..., xq from 71 u 7~’ such that ~UEX,, VEX~, and
xinxi+,#fZI for all i, 1 di<q- l}.

Note that II * n’ is a partition of the population p n p’ and rc + z’ is a partition of
the population pup’. It is easy to verify that both *, + are associative, com-
mutative, and idempofent. It is standard terminology to refer to members of par-
titions as blocks. Also if p = p’ then * produces the coarsest common refinement of n
and 7~’ and + produces their finest common generalization. The choice of letters *
and + is not arbitrary, since as we shall see below, they are lattice operations.

The attributes in 9 and the uninterpreted operator symbols *, + can be used to
build finite expressions. We call such expressions partition expressions, over @:
every attribute is a partition expression and if e, e’ are partition expressions then so
are (e *e’) and (e + e’). We use W(e) for the set of partition expressions. When % is

PARTITION SEMANTICSFOR RELATIONS 209

obvious from the context we refer to partition expressions over @ and partition
interpretations over % simply as partition expressions and partition interpretations.

Given a partition interpretation 9, the semantics (meaning) of a partition
expression is defined using structural induction and interpreting the *, + symbols as
partition product and sum, respectively. If partition expressions e, e’, in partition
interpretation 9, have meanings the partitions rc, z’ of populations p, p’ respec-
tively, then:

1. The meaning of attribute A is partition 7cA of population pa.
2. The meaning of (e * e’) is partition n * rc’ of population p n p’.
3. The meaning of (e + e’) is partition rc + z’ of population p up’.

Given a partition interpretation Y, the meaning of a relation scheme R[V],
u= {A,, A*,..., -A}, is defined to be the same as the meaning of the partition
expression A,*A,. *** *A,. This meaning is well defined because of the
associativity, commutativity, and idempotence of . . For example, the meaning of
R[ABC] in $ is the (composite) partition ?T~ * 7~~. n=. Note that a relation scheme
R, [ABC], with a different relation name but over the same attributes, has the
same meaning as R[ABC]. Thus attributes play the critical role in determining par-
tition semantics for many relation schemes.

A partition interpretation 9 can also be used to define the meaning of a tuple t in
relation r whose scheme is R[U]. The meaning of symbol t[A] (the symbol of t in
the A column) is fA(t[A]). This meaning is either 0 or a block of the atomic par-
tition 7rA. The meaning of tuple t is n AE Uf,,,(t[A]). This meaning is either Iz(or a
block of the composite partition, which is the semantics of R[U]. For example, let
tuple xyz be in a relation of database d whose scheme is R[ABC]. Also suppose
that in 9 we have &(x) = a, fs(y) = 6, fc(z) = c, where a, b, c are blocks from
partitions rcA, rcB, q, respectively. Then the meaning of t[A] in 9 is a and the
meaning of t is a n b n c. In a different partiton interpretation Y’, which is identical
with 9 with the exception that f’(x)= 0, the meaning of t[A] is Iz, and that of r
is also 0.

Starting from a partition interpretation Y we have assigned partition semantics
to attributes, partition expressions, relation schemes, database schemes. For this we
have used the population and atomic partition parts of 9. Using also the (naming)
functions fA we then assigned sematics to symbols in tuples, relations, and
databases. This strict separation of semantics from syntax allows us to define when
a partition interpretation satisfies a given database.

DEFINITION 2. Let d be a database and Y a partition interpretation. 9 satisfies
d (notation: 9 b d), iff:

Vr Ed, Vt EI. n fJf[A])#@, where R[U] is the relation scheme of relation r.
AEU

Intuitively a partition interpretation 9 satisfies database d if every tuple in every

210 COSMADAKIS, KANELLAKIS, AND SPYRATOS

relation of d represents a nonempty set (i.e., there is a set of “objects” corresponding
to this tuple). Note that it is possible to have nonempty sets defined by the under-
lying populations which do not correspond to any tuple in d.

3.2. Partition Dependencies

In this section we explain various means of expressing restrictions on partition
interpretations, other than the restriction of satisfying database d.

DEFINITION 3. A partition dependency (PD) is an equation e = e’, where e, e’ are
partition expressions. A partition interpretation 9 satisfies e = e’ (notation:
9 t= e=e’), iff:

R = 71’ and p = p’, where partitions n, rr’ of populations p, p’ are the respec-
tive meanings of e, e’ in 9.

Using elementary properties of partitions one can easily derive some important
properties of PDs. Let x, y, z be any partition expressions over %. The following
PDs are true in any partition interpretation over 9:

associativity: (x. y)*z=x*(y*z), (x+ y)+z=x+(y+z)
commutativity: x * y = y * x, x + y = y + x
idempotence: x * x = x, x + x = x
absorption: x + (x * y) = x, x * (x + y) = x.

The above properties show that, given a partition interpretation 9 over 4, the
set of partitions produced by closing 9’s atomic partitions under product and sum
is a lattice. Every A in C&! is mapped on the atomic partition of A, which is an
element of this lattice, therefore we have a lattice with constants over 4%. We denote
this lattice as L(9). Each attribute A in @ will be the name of an element of L(j)),
i.e., of partition ncA. Thus,

THEOREM 1. Let 9 be a partition interpretation over @ and e = e’ be a PD. The
set of partitions L(j) produced by closing 9’s atomic partitions under product and
sum is a lattice, with constants over %. Also, 9 + e = e’ zff L(9) + e = e’.

Let U be a set of attributes {A, ,..., A,}. With a slight abuse of notation, in the
context of a PD we use U for the partition expression A, - * *. * A,. This is con-
sistent with the definition of the meaning of a relation scheme. We can now present
a special important class of partition dependencies. Let X, Y be nonempty sets of
attributes. A functional partition dependency (FPD) is a partition dependency of the
form X=X* Y. It follows from Definition 3 above and a simple induction that:

THEOREM 2. If 9 is a partition interpretation and ifpartitions z, n’ of populations
p, p’ are the meanings of sets of attributes X, Y in 9, then f /= X = X - Y iff

PARTITION SEMANTICS FOR RELATIONS 211

1. VXEX, 3yE7c’ xsy
2. psp’.

Because of the duality of * and of + in the lattice L(9) [lo] the FPD X= X. Y
is equivalent to the PD Y = Y + X. For this FPD we can use the notation X< Y,
because the 6 may be interpreted using the natural partial order (Sect. 2.2) of the
lattice L(9). Thus, for X, Y nonempty sets of attributes from 4! we have encoun-
tered three ways of expressing an FPD: X= X. Y, Y = Y + X, or X< Y. We will see
that these are very much related to the FD X+ Y, in a relation scheme with
attributes %!.

Definitions 1, 2 (Sect. 3.1) and Definition 3 above, as well as Theorems 1 and 2
above are illustrated in Fig. 1. Observe from Fig. 1 that L(9) need not be dis-
tributiue [lo].

EXAMPLE a. Assume we have two attributes A for employee-number and B for
manager-number and we wish to express the fact that: each employee can be
associated with only one manager. This is analogous to the familiar functional

A B C

a b c

a2 bl c

‘2 bl Cl
A=A*B

“1 b Cl

Database d and E

B+C

PA = PB = PC = {1,2.3,4}

rA = { {l},(4). (2.3))

rB = {{1,4).{2.3}}

4 = { {1,2) {3,4) 1

--AL c fA f

a (11 b (1.4) c {I,21

L ({) is not distributive

B* (Att) # (BOA) + (B*C)

al{41 +‘J) ~(3.4)

a2{2,31 *$ *B

else fl -

<= d, E. CAD, EAP

FIGURE 1

212 COSMADAKIS, KANELLAKIS, AND SPYRATOS

dependency for relations A + B. We express this constraint as the FPD A = A * B.
Intuitively the above FPD guarantees that two individuals of the population of A in
the same block of nA (e.g., all unlucky individuals whose employee number is 13)
are also in the same block of xB (e.g., the set of individuals whose manager has
manager number 7). A line point is that in each interpretation satisfying this FPD
we have pA &pe. Therefore, by Theorem 2, B is uniquely determined for any
possible A. Note that the semantics in this case allows interpretations in which a
manager manages individuals who do not have employee numbers, although every
individual with an employee number must be managed by a manager. An
equivalent way to express this functional determination is to use the PD A + B = B
or A < B.

EXAMPLE b. PDs have certain similarities with ISA relationships such as: every
car (attribute C) is a vehicle (attribute B). A surprising fact about partition inter-
pretations is that distinctions between expressing functional determination and this
type of relationship seem to disappear (at first sight). This is because ISA
relationships implicitly define a function from subset to superset. In this example
the natural FPD constraint is: C= C. B. In any satisfying interpretation of this
FPD we have pc c pe, and a car block functionally determines a vehicle block. The
precise expression of ISA relationships using PDs and other statements is still a
matter or research [29]. We would like to stress here that the treatment of ISA
relationships in conventional database theory is quite different. Inclusion dependen-
cies [7] are the database constraints used. The algebraic properties of inclusion
dependencies are very different from the properties of PDs [9, 81.

EXAMPLE c. Let p be a population of cars and p’ a population of bicycles, and
let p n p’ = 0. We wish to express that: every vehicle is either a car or a bicyle. Let
C, car registration number, be interpreted as a partition n of p, and B, bicycle
registration number, be interpreted as a partition 7~’ of p’; intuitively the database
cannot distinguish between cars with the same car registration or between bicycles
with the same bicycle registration. Since the two populations are distinct rr + 7~’ =
‘IL u 7t’, that is + produces the union of two families of blocks. In this case one may
use the PD: A = C+ B, where A is vehicle registration number and C and B have
disjoint populations (as an additional restriction).

EXAMPLE d. Suppose we wish to keep a relation of cars C, which are complex
objects with characteristics registration number A and factory serial number B. We
can express it as a composite partition using the semantics of relation schemes:
C=A-B.

EXAMPLE e. Consider a database d with only one relation r representing an
undirected graph. This relation has three attributes: A head, B tail, and C com-
ponent. For every edge {a, 6) in the graph we have in the relation tuples abc, bat,

PARTITION SEMANTICS FOR RELATIONS 213

uac, bbc, where c is a number with could vary with a and b. These are the only
tuples in r. Note that by the way r was constructed from the graph we may, without
loss of generality, restrict our attention to interpretations satisfying d with pa = pB.
We would like to express that: C is the connected component in which the arc
(A, B) belongs. We can do this by restricting partition interpretations to: 9 l= (d
and C = A + B). This last example illustrates how by regarding both d and a PD as
syntactic objects we can express “essential” aspects of undirected connectivity, (see
Theorem 4, Sect. 4).

As some of the above examples indicate, there are other natural restrictions that
can be imposed on partition interpretations.

DEFINITION 4. Assuming 9 satisfies database d and a set of PDs, we say that:

1. Y satisfies the complete atomic data assumption (CAD) iff:

VAEQ,VXE~ (x E 4Al WA(x) Z 0).

2. 9 satisfies the equal atomic populations assumption (EAP) iff VA, BE %.
PA = PB.

The CAD assumption is analogous to a domain closure axiom [27]. It says that
the only true atomic facts about attribute A are the ones in database d in the
columns headed by A. As in Definition 2 (Sect. 3.1), true is equivalent to having
nonempty meaning. The EAP assumption restricts attention to attributes with com-
mon populations. An interesting fact is that, in contrast to CAD which turns out to
be quite restrictive from a complexity point of view, EAP has no significant effect
on our analysis. Another (additional) assumption which would allow us to use +
in order to express u, as in Example c above, would be that: “two attributes have
disjoint populations.”

4. EXPREMIVE POWER

In Sections 4.1 and 4.2 we will restrict attention to databases consisting of a
single relation r. We want to study what kinds of things can be said about r by sets
of PDs. To do this, however, we first have to define what it means for r to satisfy a
PD 6, or r + 6. This will complement our definitions of satisfaction of a “conven-
tional” dependency by a relation (Sect. 2.1), and of satisfaction of a PD by a lattice
and a partition interpretation (Sect. 2.2 and 3.2). Relations will then provide the
common ground for comparison of PDs with other dependencies.

In Section 4.3 we will study the case of many relation schemes. The emphasis of
partition semantics on attributes is the reason for the strong relationship between
partition interpretations and weak instances.

214 COSMADAKIS, KANELLAKIS, AND SPYRATOS

4.1. Relations and Partitions

Given a relation r we can define a canonical partition interpretation Z(r)
corresponding to r.

DEFINITION 5. Let r be a relation over %‘; Z(r) is the following partition inter-
pretation over %:

1. for each A in %!, pa = {it 1 t is a tuple of r} (if t is tuple of r, let i, be a
positive integer unique to t);

2. for each x in 9, fA(x)= {it 1 t[A] =x};

3. for each A in %, rcA is the partition induced by fA on pA.

Note that Z(r) satisfies EAP. Also Z(r) k r for any relation r. We also define, given a
partition interpretation X, a canonical relation 9?(y) that corresponds to it.

DEFINITION 6. Let 9 be a partition interpretation over @, and p the union of its
populations UA E a pA. a(9) is a relation. For each i in p there is a tuple ti in W(9)
such that: ti[A] =x if iE fA(x), and ti [A] = i, if t # pA; (i, is a symbol unique to i
and A in the relation constructed).

Observe that because Z(r) satisfies EAP one can easily argue that &?(Z(r)) = r. But
Z(W(9)) is not necessarily 9, because 9 is not required to satisfy the EAP restric-
tion. If EAP holds in 9 then Z(@(s)) is very similar to X. The only possible dif-
ference is if two elements i, j of p (the common population) are in the same blocks
for all atomic partitions of y, then ti and tj are copies of the same tuple in W(X),
thus I(&?($)) contains only one of elements i, j (by Definition 6 and 7). One can
argue however that: if EAP holds in f then L(Z(W(9)))=L(9).

THEOREM 3. a. ZfX b X=X- Y then W(9) k X+ Y.

b. r k X-t Y iffZ(r) k X=X* Y.

Proof. a. Let ti, tj be distinct tuples of a(9), such that t,[X] = tj[X]. Then for
each A in X, ti[A] = tj [A], which means i, Jo a for some a E nnA (where a = fA(x)
for some x). But X k X=X* Y, and thus for each B in Y, i, jE b for some b E n,,
i.e., ti[B] = tj[B]. Thus, g(9) k X+ Y.

b. The “if” direction follows from part (a) of this proposition, by observing
that @Z(r)) = r. The argument for the “only if” direction is as follows: Let i,, ih be
elements (of the population over which Z(r) is defined) such that, for each A in X,
iI,ihEa for some aEn,. This means t[X] = h[X], and since r t= X-+ Y,
t[B] = h[B] for each B in Y. But then for each B in Y, i,, i,,E b for some bEnB.
and thus Z(r) + X=X- Y (recall Theorem 2, Sect. 3.2). l

If 9 satisfied EAP then the converse of Theorem 3a would hold; in general,
however, it does not. Theorem 3a supports the claim (see Ex. a, Sect. 3.2) that the

PARTITION SEMANTICS FOR RELATIONS 215

FPD X=X* Y is the correct counterpart of the FD X+ Y. It motivates our final
definition.

DEFINITION 7. A relation r satisfies a PD 6 (notation: r l= 6) iff Z(r) k 6.

Given this definition, one easily sees the following for attributes A, B, C:

(I) r k C=A*Bifffor any tuples t,h~r, t[C]=h[C] iff (t[A]=h[A] and
t[B] =h[B]).

(II) r l= C= A+ B iff for any tuples t, her, t[C] = h[C] iff (3n>O, to,..., t,
tuples of r: t = to, t,=h, and for i=O ,..., n-l, ti[A]=ti+l[A] or t,[B]=
Ii+ 1 [Bl).

(III) r k C= A- B iff for any tuples t, h E r, t[C] = [C] iff (3n >O, t,,,..., t,
tuples of r: t = t,, t,=h, and for i=O ,..., n-l, ti[A]=ti+,[A] and ti[B]=
ti+ I CBI).

We have now reduced our interpretations to relations, in order to be able to
compare PDs with other dependencies. It becomes evident from Theorem 3b and
Definition 7 that r k X=X* Y iff r + X+ Y. From (II) it is clear that the relation
of Example e (Sect. 3.2) correctly represents the connected components of an
undirected graph iff it satisfies C = A + B. Finally, (III) right above is trivially
equivalent to (I), and it illustrates an and/or duality between ./ + .

4.2. Expressive Power of PDs

We now want to compare the expressive power of PDs to that of previously
studied database constraints. The majority of these database constraints can be
described by sets of sentences of first-order predicate calculus with equality and one
relation symbol R.

We will say that a database dependency cr is expressed by a set E of PDs when
for any relation r, r k CT iff r k E. Also we will say that a PD 6 is expressed by a set
of sentences C when for any relation r, r + 6 iff r k C. If we restrict the above
definitions to finite relations r, then we have expressibility over finite relations
Cl% 11.

EXAMPLE f. Let X, Y be sets of attributes. From the algebraic properties of *,
the PD 6: X= Y-Z is equivalent to X=X* Y-Z and Y*Z=X* Y-Z. For one
direction of the equivalence note that the right-hand sides in these two equalities
are the same strings. For the other direction use the idempotence of a. Therefore, 6
is expressed by the set {X+ YZ, YZ -+ X}.

Because of Example e (Sect. 3.2), it should come as no surprise [16, l] that the
PD C = A + B cannot be expressed by any set of first-order sentences with a single
ternary relation symbol. The following theorem is based on a direct compactness
argument. The theorem also holds for expressibility over finite relations (in that
case the proof follows directly from [16, 11).

216 COSMADAKIS, KANELLAKIS, AND SPYRATOS

THEOREM 4. Let %! = ABC; the PD C = A + B cannot be expressed by any set of
first-order sentences, with a single ternary relation symbol R as the only non-logical
symbol,

ProoJ: Our proof will be by contradiction. Let C be a set of first-order sentences
(with a single ternary relation symbol R as the only non-logical symbol), which
expresses C = A + B.

For each k 3 1, let (Pi be the following first-order formula, with free variables t, h:
“t[C] = h[C] and there is no sequence to,..., t, such that t = t,,, tk = h, and for
j= O,..., k - 1, tj[A] = tj+ i [A] or tj[B] = tj+ 1 [B].” (One can easily write each (Pi
as a first-order formula with R as the only non-logical symbol.)

Now let i be even and consider the relation ri= (1.2.0,3.2.0,3.4.0,5.4.0 ,...,
i-l.i.O,i+l.i.O,i+l.i+2.0}(a.b.cisthetuplewithaintheA,bintheB,and
c in the C column). Let tuple ti= 1.2.0 and tuple hi=i+ l.i+2.0.

Observe that relation ri and tuples ti, hi form a satisfying interpretation for
Cu{cp,,k<i-1}, because rit=C=A+B so rikZ, and clearly rikqcp,,
k < i - 1 (the only possible sequence of tuples is of length i). Thus, any finite subset
of Z’ = Z u {(P& : k 2 1) has a satisfying interpretation, and thus by the compactness
theorem [12] 2’ has one as well. Let us call this interpretation r’, and the two of its
distinct tuples interpreting the two free variables tuples t’, h’. But this is a contradic-
tion; since r’ satisfies Z; r’ satisfies C= A + B. On the other hand, this inter-
pretation satisfies (Pi for all k > 1, so the tuples t’, h’ have equal C entries but
violate (II) in Section 4.1 (the equivalent way of describing satisfaction of
C = A + B); thus, r’ does not satisfy C = A + B. 1

The above proof can actually be used to show a slightly stronger statement.
From the lattice axioms, by trivial algebraic manipulation C = A + B is equivalent
to C = C * (A + B) and A + B = (A + B) * C. As we will see from the identities in a
lattice (Sect. 5), A + B = (A + B) . C is equivalent to A = A . C and B = B * C, both
FPDs. And if we use the lattice partial order notation, C = C * (A + B) is equivalent
to C < A + B. The proof of Theorem 4 above works for the PD C 6 A + B. The non-
first order character of C< A + B indicates why PDs are a nontrivial extension of
FDs:

r b C<A+Biffforanytuplest,hEr,

t[C] = h[C] implies (3n > 0 and to,..., t, tuples of r: t = to, t, = h,
andfori=O,...,n-l,ti[A]=ti+,[A]orti[B]=ti+l[B]).

Unfortunately, a dependency as simple as the simplest multivalued dependency
(MVD), cannot be expressed by PDs. Let cp be the following multivalued depen-
dency, in predicate logic notation:

q = Vxyzuu. [R(xyu) A R(xoz)] * R(xyz).

THEOREM 5. Let Or? = ABC; the MVD cp cannot by expressed by any set of PDs.

PARTITION SEMANTICS FOR RELATIONS 217

Proof: Let E be a set of PDs which expresses cp. Referring to Fig. 2, relation rl
satisfies cp, so Z(r,) + E, and L(Z(r,)) (the lattice obtained from Z(r,) by closing
under sums and products) satisfies E (Theorem 1, Sect. 3.2). On the other hand, r2
does not satisfy q, so Z(r2) does not satify E, and again by Theorem 1, L(Z(r,)) does
not satisfy E. But this is a contradiction, because L(Z(r,)), L(Z(r,)) are isomorphic,
and thus they must satisfy exactly the same PDs. 1

The proof of Theorem 5 extends with no modification to expressibility over finite
relations.

I-1 : 1 (l-1): a
n R r _’

1: a bl cl

2: a bl ‘2

3: a b2 cl

4: a b2 ‘2

L(I (r1) 1 : “A

a
B

0

*C

A 0 = 1 Iill lizI (is) ii41 I

l-2 :
ABC

1: a bl cl

2: a b2 ‘2

3: a bl c2

1 (r2):

FIGURE 2

218 COSMADAKIS, KANELLAKIS, AND SPYRATOS

4.3. Partitions and Weak Instances
Given a database d such that the union of all its attributes is Q, and a set E of

FPDs over Q, let EF= {X + Y 1 X=X* Y is in E}. We ask the following two
natural questions:

Is there a partition interpretation 9 such that 9 t= d, E?
Is there a partition interpretation 4 such that X l= d, E and f satisfies CAD

and EAP?

Recall that a relation w is a weak instance for a database d iff every tuple of
relation r (of schema Ri [Vi]) of d appears in the projection of w on Ui [19,321.

THEOREM 6. Let d be a database and E a set of FPDs:

a. There is an 9 such that Y k d, E iff there is a weak instance for d satisfying
EP

b. There is an 9 such that 9 k d, E and 3 k CAD, EAP ifs there is a weak
instance w for d which satisfies E, and w[A] = d[A], for A in 92.

Proof: a. (a) Suppose f k d, E and let w be B(s) (Definition 6, Sect. 4.1). It
is easy to see that w is a weak instance for d: if xyz is a tuple appearing in relation
R[ABC] of d, then a= fA(x), etc. and an bn c#@, so there is an i such that
ieaEnA, iEbEzs, iEcExc, and therefore ti [ABC] = xyz. Furthermore, by
Theorem 3a, Section 4.1, w k EF.

(t) Let w be a weak instance for d, w k E,. Define X to be Z(w)
(Definition 5, Sect. 4.1); note that 3 satisfies EAP. To see that 9 k d, let xyz be a
tuple in relation R[ABC] of d: there is a tuple t in w with t [ABC] = xyz, and
thus i, E f.,(x) n fB(y) n f&z) = a n b n c, i.e., a n b n c # @. Furthermore, by
Theorem 3b, Section 4.1, 9 + E.

b. Same as (a): all we need to observe is that, if X satisfies CAD and EAP,
then W(y) has w[n] = d[A] for each A in a. Conversely, if w[A] = d[A] for each
A in a, then 9 = Z(w) satisfies CAD (it always satisfies EAP). 1

Thus, given d, E we can test in polynomial time whether there is an 9 such that
9 + d, E, since we can test whether d has a weak instance satisfying E, [19].

We remark that, since the partition interpretation 9 defined from the weak
instance w satisfies EAP, introducing EAP as a requirement does not change
anything; i.e., there is an 3 is an 9 such that 9 k d, E, EAP iff there is a weak
instance for d satisfying EF. Observe also that, if d consists of a single relation, the
two conditions of Theorem 6 collapse into one: d k E,.

Introducing CAD, even if we have EAP (and thus less possibilities), complicates
things. As we will show in Section 6.1, testing for the condition of Theorem 4b is
NP-complete.

PARTITION SEMANTICS FOR RELATIONS 219

We may now address a more general question. Given a database d and a set of
PDs E, we want to know if there is a partition interpretation 3 such that 9 k d, E.

THEOREM 7. Let d be a database and E a set of PDs. There is an X such that
3 + d, E iff there is a weak instance w for d satisfying E.

ProoJ: Let w be a weak instance for d satisfying E. It is then easy to see (as in
the proof of Theorem 6a) that Z(w) l= d, and of course by Definition 7, Section 4.1,
Z(w) I= E.

Conversely, let 3 be a partition interpretation satisfying d, E. Consider the
relation 3(Y). As in the Proof of Theorem 6, W(9) is a weak instance for d,
and thus it remains to show that it satisfies E, i.e., that I(%?($)) k E. Now this
partition interpretation Z(W(Y)) may be different from 3, since it satisfies EAP
while 9 in general does not. If Y = { (pA, nA, fA) 1 A E%}, then define
Z={(p,n:,,f2IAE@}, where p=UAEQpA and 4=~4u{{~}I~~~-~PA}.
Now the correspondence rr> c) 7cA, A E a!, establishes a homomorphism from L(Y)
to L(Z). This is because d-G=(~~-~~)u {{x> I XEP-(P,~P,)}, and
n> + & = (zA + 7~~) u ({x} 1 x E p - (pA up,)}. Since L(Z) is the image of L(9) it
satisfies all the PDs that L(Y) does. Now note that L(Z(B?(9))) and L(Z) are
isomorphic. Therefore, Z(a(Y)) l= E since 9 k E. 1

At this point in our exposition we have defined partition semantics and have used
relations to measure the expressive power of PDs vs other database dependencies.
The connection with weak instance satisfaction, provided by Theorems 6 and 7,
indicates that partition semantics handle many relation schemes in an elegant
fashion. We will devote the rest of our exposition to issues of complexity. We first
examine the complexity of PD implication and then the complexity of testing con-
sistency.

5. IMPLICATION

5.1. PD Implication and the Uniform World Problem for Lattices

Given a finite set E of PDs and a PD 6, over attributes 9, we want to know if
E k re, 6, i.e., if 6 holds in every relation that satisfies E. We also want to know if
E I= reuin 6, i.e., if 6 holds in every finite relation that satisfies E (recall implication
notation from Sects. 2.1,2.2).

We first observe that these questions can be approached as implication problems
for a certain class of algebraic structures, namely lattices with constants over B.

LEMMA 8.1. a. E k re, 6 iff E k ,at 6

b. E I= rain 6 iff E I= ~at,,in 6.

ProoJ a. (-=) Suppose E k iat 6, and let r be a relation that satisfies E. Then
Z(r) k E (Definition 7, Sect. 4.1), and thus the lattice L(Z(r)) obtained by Z(r) by

571/33/2-7

220 COSMADAKIS, KANELLAKIS, AND SPYRATOS

closing under sums and products satisfies E (Theorem 1, Sect. 3.2). But then 6 holds
in Z(r), and thus r satisfies 6.

(=z-) Suppose E k re, 6, and let L be a lattice satisfying E. We will show that
L /= 6. L is isomorphic to a sublattice of the lattice of partitions of some set p
[10,343. Translated into our terminology, this means that we can find a partition
interpretation 9, satisfying EAP, such that L is isomorphic to L(9). Thus, 9 k E.
Now consider the relation W(9): since Y k EAP, we have that
L(Z(W(9))) = L(Y), therefore W(Y) t= E (Definition 7, Sect. 4.1, and Theorem 1).
By the hypothesis that E kre, 6 we have therefore that W(Y) /= 6, which means
Z(W(9)) t= 6. Thus L(Y) b 6, and 6 holds in L.

b. (6) Observe, in the proof of the “if’ direction of (a), that if r is finite then
Z(r) and L(Z(r)) are also$nite.

(a) Observe, in the proof of the “only if’ direction of (a), that if L is finite
then L is isomorphic to a sublattice of the lattice of partitions of some finite set p
[26]. Thus we can find afinite partition interpretation 9, satisfying EAP, such that
L is isomorphic to L(f). Since 9 is finite, W(Y) is also finite. 1

Lemma 8.lb is the critical lemma for relating finite implication over relations to
finite implication over lattices. The theorem from [26] that is used in the proof,
namely: “each finite lattice is isomorphic to a sublattice of the lattice of partitions of
some finite set” is nontrivial, and was an important open conjecture for some time
in lattice theory [lo].

E k,,, 6 is the uniform word problem for lattices. In Theorem 8 we will argue
from first principles that klat,fin is equivalent to I= ,at. So klat,fin is also the uniform
word problem for lattices. This equality of finite and unrestricted implication
actually follows from a more general theorem in [25], see also [14, 133.

We now present a complete and sound inference system [121 for the (finite)
implication problem for PDs. Suppose we are given a set E of PDs, and a
PD e = e’: we want to test if E k ,at e = e’(E k lat,fin e = e’).

Consider the set W(q) of partition expressions over %‘, +, -. We define live
binary relations on IV(%): Gid, =id, ++E, d E, and = E.

I. Define i id (identically less-than-or-equal) inductively as follows. Here
p, q, s are partition expressions over %!, and +, - are meant as uninterpreted
operations on partition expressions, which return another expression. ID ruks:

1. A GidA, Ain4;

2. ifp <,sandq <,sthenp+q Q~~S;

3. if p < id s or q Gid s then p * q Gid s;
4. ifs <,pands <,qthens didp.4;
5. ifs didpors <,qthens Gidp+q.

PARTITION SEMANTICS FOR RELATIONS 221

The relation <id is reflexive and transitive [10, 333. Also if p1 < id ql, p2 6 id q2,

then p1 + p2 G id 41-b q2, Pl ’ P2 6 id 41’ q2 Cl07 331.

II. Define = id as: p = id q iff (p < id q and q < id p). The relation = id is an

equivalence relation, and in particular it is a congruence: i.e., if p, = id ql, p2 = id q2,
then p1 + p2 = id q1 + q2 and p, - p2 = id q1 * q2. SO let [p]id denote the equivalence

Class of p in = id. Lid is the Set of equivalence classes of = id with two operations
+;I [p]id+[q]id=[p+q]id, [p]id*[q]id=[p’q]id- These operations are well
defined because = id is a congruence.

LEMMA 8.2 [10, 331. a. The PD p = q holds in all lattices with constants over %!
iff P = id 4.

b. Lid is a lattice.

This lemma is one of the basic facts from lattice theory. In our case it provides a
complete and sound inference system for PD identities.

A simple observation transforms the definition of < id, above, into a polynomial-
time test [6]. Namely, from the structure of the five rules defining 6 id, a proof of
p < id q need only involve subexpressions of p and q. There is only a linear number
of such subexpressions. Now apply the live ID rules repeatedly between all triples of
these subexpressions, until no rule is applicable; this is a polynomial-time process.

III. We now wish to capture the effect of the equalities E. Define relation
-+-+E on W(%!) as follows: p ++E q iff (there is some n > 0 and a sequence so,..., s,
of expressions such that s,, = p, s, = q, and for 0 < i < n - 1, si+ , is obtained by an
E-substitution on si). A E-substitution on expression si is a replacement of an
occurence of a subexpression z of si by expression v, where z = v or v = z is in E.

It is clear that -+--tE is reflexive, symmetric, and transitive. Thus it is an
equivalence relation. One can also easily see that if p, --tdE ql, p2 --)+ E q2, then
Pl+P2 ++Eq1+q2, p1*p2 +qlqI*q2. Therefore, +jE is a congruence.

The -++E congruence is the one used in [23] in order to provide a polynomial-
time solution to the uniform word problem for finitely presented algebras.

IV. Our fourth step is to combine 6 id and +--) E. Define Q E as the sum of
did, + + E: p < E q iff (there is some n > 0 a sequence of expressions so,..., s, such
that p=s,-,, s,=q, and for i=O,...,n-1, si didsi+i or si++Esi+l).

It is easy to see that <E is reflexive and transitive. Also if p1 < Eqlr p2 <E q2,
then p1+p2 GEq1+q2, pl-p2 GEqI-q2, because both did and ++E have this
property; this argument is quite common in universal algebra [18].

V. Define =E as follows: p =Eq iff (p <:Eq and q asp).
From its definition and the properties of -C ’ , E, tt follows that: the relation = E is

an equivalence relation and a congruence. Since = E is a congruence, the operations
*, + are well defined on the equivalence classes of = E. If p is a partition expression

222 COSMADAKIS,KANELLAKIS, ANDSPYRATOS

let [plE denote its equivalence class in = E. Let L, be the set of equivalence classes
of =E, with the operations [pIE+ [qlE= [p+qlE and [plE* [qlE= [p*qlE.

LEMMA 8.3. L, is a lattice.

Proof Just check the LA from Section 2.2; e.g., [plE+ [plE = [p + plE =
[P]~, because p + p = id p (Lemma 8.2b), and therefore p + p = E p. In general if
p = id q then p = E q, and this makes the check of LA straightforward, given that
L,, is a lattice [lo, 331. 1

We now show that the relation = E captures the PDs (finitely) implied by E. The
equivalence of Theorem 8b and c follows from [25]:

THEOREM 8. The following statements are equivalent:

a. e =Ee’
b. E b,late=e’

c. E I= lat,fin e = e’
d. E kre,e=e’

e. E I= re~,~n e = e’.
ProoJ: Observe that, from the way <Id and 6 E were defined, if e 6 E e’ then

e < e’ in every lattice satisfying E (where < is the partial order of the lattice). Thus,
(a) 3 (W.

To prove (b) * (a), we claim that L, satisfies a PD p = q iff p = E q. From Lem-
mas 8.2 and 8.3 we have that L, is a lattice over constants in a, because constant
or attribute A is the name of [A]., etc. If p =Eq then [pJe= [qlE; in other
words, the partition expressions p, q are names for the same element of L, and thus
L, k p = q. If p ZE q then, because [.I E are equivalence classes, [plE # [qlE; in
other words, partition expressions p, q are names for different elements of L, and
thus LE does not satisfy p = q. If e ZE e’ then L, does not satisfy e = e’, whereas it
satisfies E; i.e., L, is a counterexample to E b ,at e = e’. This completes (b) * (a).

We now show the equivalence of (b), (c). The direction (b) 3 (c) is obvious. To
prove the converse, we adapt an argument of [111 (see also [lo]), originally given
for the special case E = @. Suppose E does not imply e = e’; we will show that there
is a finite lattice which satisfies E but violates e = e.’ Let {A i 1 i = l,..., n} be the set
of attributes appearing in E, e, e’. Let H be the set of all partition expressions (over
the Ais) of complexity at most as high as the maximum complexity of e, e’ and the
expressions in E, where by complexity we mean the number of instances of +, *.
Note that H is finite, since E is finite. Consider now the subset L, of L, consisting
of all finite products of the equivalence classes (under = E) of elements of H,
together with the equivalence class of A r + . . . + A,. It is not hard to verify that L,
is a sublattice of LE. The verification of this is identical with that of [111.

But by the equivalence of (a), (b), e ZE e’, so L, satisfies E and violates e = e’.

PARTITION SEMANTICS FOR RELATIONS 223

Note also that LH is finite, because the number of its elements is at most as large as
the number of subsets of H (by the properties of *). This completes (c) =- (b).

The equivalence of (d), (e) with (a), (b), (c) follows from Lemma 8.1. 1

Our definition of = E, based on d id and -++ E, has provided us with a complete
and sound inference system for the uniform word problem for lattices (Theorem 8).
Note that we also have that: /= ,at is equivalent to k lat fin. This equivalence of finite
and unrestricted implication demonstrates that the uniform word problem for lat-
tices is decidable. However, the decision algorithm in [25, 14, 131 runs in exponen-
tial time. We now modify our inference system to produce a polynomial time
decision procedure.

5.2. An Efficient Algorithm for PD Implication

In order to test PD implication in polynomial time it clearly is sufficient to test in
polynomial time, given E, e, e’, whether e <E e’. Let V be the set of all sub-
expressions of e, e’ and the expressions appearing in E. We construct a set r of
directed arcs, over V, using the following algorithm:

ALGORITHM ALG.

begin
r+-0
repeat until no new arcs are added

1. Add (A, A), A E %
2. if (p,.s)Ef and (q,s)Erand p+qE V

then add (p+q,s) to r
3. if ((p, s) E r or (q, s) E r) and p * q E V

then add (p-q, s) to f
4. if (,s,p)Ef and (s,q)Erand p-qE V

then add (s, p - q) to f
5. if ((s, p)Ef or (s,q)EI’) and p+qE I/

then add (s, p + q) to f
6. if p = q in E then add (p, q) and (q, p) to f
7. if (p, s) E r and (s, q) E r

then add (p, q) to f
end

end
Observe that steps l-5 in the Algorithm ALG mirror the definition of < ,d, i.e.,

the ID rules restricted to subexpressions of E, e, and e’.

Claim. For r defined by ALG and p, q E V, p d E q iff (p, q) E K
Clearly, proving this claim will demonstrate that testing PD (finite) implication

can be done in polynomial time. Because, to test if e $ E e’, construct the digraph
(I’, r) and see if it has an arc from e to e’. This can be done in O(n4) time. To
prove the claim we study a set of rewrite rules [21] for <E.

224 COSMADAKIS,KANELLAKIS, ANDSPYRATOS

Rewrite Rules (RR). Take the union, over all pairs of partiton expressions x, y
over %, of the following rules:

1. x+x+-+x
2. x’y4-x

3. y-x+-+x

4. x++x’x

5. x-+-+x+y

6. x+--t y+x

7. z ++ v, where z = u or v = z is in E.

We say that p ++ q, when q is obtained from p by replacing an occurence of a
subexpression s of p, which is the right-hand of a rule s ++ s’ in RR, by the
expression s’, which is the left-hand side of this rule. We say that partition
expression p can be rewritten by RR as partition expression q (notation:
p -P+~~ q), when there is some n > 0 and a sequence of expressions so,..., s, such
that p=s,, s,=q, and for i=O,...,n- 1 we have S, -+-+ si+i.

Note that -+jRR is the reflexive, transitive closure of ++ on W(a). Also +-+E
(defined in the previous section) is the reflexive, transitive closure of -++ restricted
to rules of type 7. Also note that in RR of types 5 and 6 above the right-hand side
have subexpression y, which does not appear in the left-hand side.

LEMMA 9.1. If p d E q, then p ++ RR q.

Proof An easy induction shows that, if p Gid q, then p can be rewritten by RR
as q, using rules l-6. To see this consider

ID rule 1: trivial.
ID rule 2: if p and q can be rewritten by RR as S, then p + q can be rewritten

by RR as s + S, and s + s can be rewritten by an RR of type 1 as S.
ID rule 3: if p or q can be rewritten by RR as s, then by RR of types 2, 3, p * q

can be rewritten as p or q, and then rewritten as S.
ID rule 4: if s can be rewritten by RR as p and q, then by an RR of type 4, s

can be rewritten as s * S, and then rewritten as p * q.

ID rule 5: if s can be rewritten by RR as p or q, then by also using RR of types
5, 6, s can be rewritten to p + q.

Note that ++E is really produced by rewriting with RR of type 7. It is now clear
that by the definition of Go, if p d Eq then there is a sequence of expressions
SO,..., s,suchthatp=s,,s,=q,andfori=O,...,n-1 we haves,++si+l. 1

We can now prove our previous claim. This is a central lemma in our exposition.

LEMMA 9.2. Let r be defined by ALG and p, q E V. Then p < E q iff (p, q) E IY

PARTITION SEMANTICS FOR RELATIONS 225

Proof. It is straightforward to see that every arc added by ALG corresponds to
a sound inference. Thus if (p, q) E r then p < E q. If p 6 E q then, by Lemma 9.1,
there is a sequence of expressions so,..., s, such that p =s,,, s, = q, and for
i = o,..., n - 1 we have si -+-+ si+ r. We call such a sequence a proof that p < E q. We
wish to show: for p, qE V if p GE q then (p, q) E K By Lemma 9.1 it suffices to
show that for p, q E V, if there is a proof of p d E q then (p, q) E IY

Now we define a relation < on pairs of expressions: (pl, ql) 4 (p2, q2) iff
pI \Eql, p2 dEq2, and either <

(i) the shortest length proof that p, 6 E q1 is shorter than the shortest length
proof that pz 6 E q2, or

(ii) the shortest proofs that p, < E ql, p2 < E q2 have the same length, and p,
is a proper subexpression of p2, and q, is a proper subexpression of qr.

Clearly < is a well-founded partial order (no infinite descending chains). We
proceed by induction on <:

Basis. There is a proof that p d E q of length 0. Then p = q, and (p, q) E r.

Induction step. Let p, q E V, and assume that the claim holds for p’, q’ E V
whenever (p’, q’) < (p, q). We will show that the claim holds for (p, q). Let so,..., s,,
n > 0, be a shortest length proof that p < E q.

Case 1. For each i = 0 ,..., n - 1. si+ , is obtained from s, by replacing a proper
subexpression of s, according to RR l-7. Then p = p1 8p2, q = q, Bq, (0 E { +, *}),
where pi d E qi via proofs at most as long as the proof that p 6 E q, and pi (qi) is a
proper subexpression of p (q). Thus (pi, qi) < (p, q), and furthermore pi, qi E V, so
by the induction hypothesis (p,, qi) E r. It then easily follows that (p, q) E r.

Case 2. For some i, 0 < id n - 1, si is rewritten into s,, 1 according to one of the
RR 1 - 7 (i.e., si --+--+ si+ , and the left-hand side of the RR used is si and not one of
its proper subexpressions). Let us call this set of i’s the index set I. There are two
possibilities:

Case 2a. For some i in I the RR used is of type 7. This means p is rewritten
as z, z = u (u = z) is in E, and u is rewritten as q. Then clearly (p, z) 4 (p, q) and
since z E V, by the induction hypothesis (p, z) E r. Similarly (u, q) E K It follows
that (p, q)EK

Case 2b. For all i in Z, the RR used is of the type l-6. We consider the
smalZest such i (let us call it min) and the largest such i (let us call it max). We dis-
tinguish six subcases according to which type of rule was used to rewrite s, as sit,,
for these special i’s in I. We then show that these six subcases exhaust Case 2b:

Rule used for min is of type 1. This means that there exists an s such that
p = p, + p2, p1 is rewritten as s, p2 is rewritten as s, and s is rewritten as q. Then
pi <E q via proofs shorter than the proof that p <E q, so (pi, q) < (p, q). Also
pi E V, so by the induction hypothesis (pi, q) E r. It follows that (p, q) E r.

226 COSMADAKIS, KANELLAKIS, AND SPYRATOS

Rule used for min is of type 2. This means that there exists an s such that
p = p1 * p2, p, is rewritten as s, s is rewritten as q. Then p1 6 E q via a proof shorter
than the proof that p 6 E q, so (p,, q) < (p, q). Also p, E V, so by the induction
hypothesis (p,, q) E r. It follows that (p, q) E F.

Rule usedfor min is of type 3. Similar to previous subcase.
Rule usedfor max is of type 4. This means that there exists an s such that

q = ql. q2, s is rewritten as ql, s is rewritten as q2, and p is rewritten as s. Then
p < E qi via shorter than the proof that p 6 E q, so (p, qi) < (p, q). Also qi E V, so
by the induction hypothesis (p, qi) E l’. It follows that (p, q) E I’.

Rule usedfor max is of type 5. This means that there exists an s such that
q = q1 + q2, s is rewritten as q1 I p is rewritten as s. Then p < E q, via a proof shor-
ter than the proof that p d E q, so (p, q,) < (p, q). Also q, E V, so by the induction
hypothesis (p, qi) E r. It follows that (p, q) E F.

Rule used for max is of type 6. Similar to previous subcase.

At this point all we have to do to complete the induction is to argue that: in a
shortest proof of p < E q of the Case 2b form, it is impossible to have type 4, 5, or 6
used for min and type 1, 2, or 3 used for max. For suppose that this were so, then
there would be j, k in I (two consecutive indices in I), such that

p is rewritten as s,,
si is rewritten as sj+ , using a rule (rlj) of type 4, 5, or 6,

sj+ 1 is rewritten as sk as in Case 1,
sk is rewritten as sk + , using a rule (rlk) of type 1, 2, or 3,
sk+ , is rewritten as q.

Because of the operator symbol at the top, the only possibilities are: (1) rlj is of
type 4 and rl, of type 2 or 3, (2) rl, is of type 5 or 6 and rl, of type 1. For each one
of these possibilities one can easily shorten the (assumed to be shortest) proof of
p d E q by one step. This is the desired contradiction, which completes Case 2b and
the proof of this lemma. i

The proof of this lemma, which privdes an efficient algorithm for the uniform
word problem for lattices, is an extension of the proof of Theorem 1 in [23], which
provides an efficient algorithm for the uniform word problem for finitely presented
algebras. Lemmas 9.1 and 9.2 demonstrate that ALG can be used as an O(n4)
algorithm for PD implication. Therefore we have shown

THEOREM 9. There is a polynomial time algorithm for the (finite) implication
problem for PDs.

5.3. Special PDs: FPDs and PD Identities

Let 6, be the FPD corresponding to an FD c (i.e., 6, is X= X. Y if D is X + Y).
Also, let Ez be the set of FPDs corresponding to a set of FDs C. Since r k o iff

PARTITION SEMANTICS FOR RELATIONS 227

r b 6, we have Z l= rc, (r iff E, k re, 6,. Therefore, the implication problem for FDs
can be reduced, in a straightforward way, to the uniform word problem for idem-
potent commutative semigroups (structures with a single operator *, which is
associative, commutative, and idempotent). On the other hand, since X= Y is
equivalent to X=X* Y and Y = Y* X (see Example f, Sect. 4.2), the uniform word
problem for idempotent commutative semigroups can be reduced directly of FD
implication.

The complete inference system of [2] and the efficient algorithms in [3] (for FD
implication) are therefore, directly applicable to the uniform word problem for
idempotent commutative semigroups.

Since inference of FDs can be seen as a special case of inference of PDs, the
problem of PD implication is actually polynomiaf-time complete [31]. However, in
the special case where E is empty [10, 331 it can be solved in logarithmic space
[20], as we now outline.

THEOREM 10. The problem of recognizing PD identities is solvable in logarithmic
space.

Proof Clearly it suffices to describe how to recognize < ,d in logarithmic space.
First, observe:

1. A 6 ,d A’ iff (A is identical to A’, A, A’ in %).
2. A < ,,, p’ - q’ iff (A 6 id p’ and A < ,d q’, A in Q).
3. A < Id p’ + 4’ iff (A < id p’ or A < id q’, A in %!I).
4. p-q Gid A’ iff (p GId A’ or q Gid A’, A’ in %).
5. p-9 did p’*q’ iff (p-4 did p’ and p*q <,dq’).
6. p*q6,dp’+q’ iff(pgidp’+q’ or qdldp’+q’ or p*q6,dp’ or

p-4 6x4 4’).
7. p+ q <,,, e’ iff (p <id e’ and q <id e’).

In each of the above cases, the “if” direction is trivial. The “only if” direction
follows in case 5 because p’ * q’ did p’ and p’ * q’ < ,,, q’, and in case 7 because
p < id p + q, q <id p + q. In the remaining cases, the “only if” direction follows by
the definition of < id.

The above observation gives a recursive algorithm to test, given e, e’, whether
e <id e’. We now describe how to implement this recursion using only logarithmic
auxiliary space.

First, note that the results of intermediate recursive calls need not be stored. For
example, consider case 7: if the recursive call for p did e’ returns false, then we
immediately return false; otherwise, we return the result of the recursive call for
q <id e’.

We will also argue that we do not need to store the arguments of previous recur-
sive calls. Thus, all we need to have in storage at any particular point is the

228 COSMADAKIS, KANELLAKIS, AND SPYRATOS

arguments of the recursive call which is being evaluated. Since the arguments are
subexpressions of e, e’, we can just have two pointers to the appropriate places in
the input, and this only takes logarithmic space.

We will now describe how, given two pointers to two subexpressions p, p’ of
e, e’, respectively, we can find the next recursive call to be evaluated using only
logarithmic additional space. We assume that e, e’ are represented (in the standard
way) as binary trees, so that, given a pointer to a node u, we can find a pointer to
the father (right son, left son) of u.

We use two auxiliary pointers ~1, CI’, initialized to the root of e, e’, respectively.
Let q(e, e’) be the set of recursive calls generated from the call e <id e’ (U(e, e’)
contains either two or four members, depending on which of cases 2-7 is the
relevant one). We will show that we can determine which member of V(e, e’) even-
tually gives rise to the call p d id p’, using only logarithmic additional space. If this
member of %‘(e, e’) turns out to be the call e, <id e’, , we set the pointers ~1, a’ to the
expressions e,, e; respectively and we repeat with w(e, , e’,). Continuing in this way,
we will eventually find ei, e,! such that the call p 6 id p’ is in V(ei, e,!). We can then
easily determine the next call to be evaluated.

Finally, note that, to determine which member of %?(e, e’) eventually gives rise to
the call p d id p’, we only need to know whether p (p’) is in the left or in the right
subtree of e (e’). This can be found by walking the tree representing e in a depth-
first fashion, until we encounter p. This walk can be done using only logarithmic
additional space, because all we need to remember is the node u which is currently
visited and the node z which was visited immediately before u: if z is the father of u,
we next visit the left son of u; if z is the left son of u, we next visit the right son of u;
if z is the right son of u, we next visit the father of u. 1

6. TESTING CONSISTENCY

6.1. The Complete Atomic Data Assumption

Let d be a database over attributes %‘, and E a set of FPDs. We will demonstrate
that any consistency test in the presence of CAD and EAP is unlikely to be efficient.
Because of Theorem 6b, Section 4.3, this test is equivalent to testing whether there
exists a weak instance w satisfying E and with w[A] = d[A] for each A in %.

THEOREM 11. Given a database d and a set of FPDs E, it is NP-complete to test
whether there is an 9 such that Y + d, E and f k CAD, EAP.

Proof: Membership in NP follows from Theorem 6b; just guess an appropriate
weak instance w. Since E consists only of FPDs (i.e., of FDs) w need only contain
one tuple for each tuple of d. NP-hardness is shown by a reduction from NOT-
ALL-EQUAL-3SAT [17]; given a 3CNF Boolean formula cp over variables
X 1 ,..., x, with clauses c, ,..., c,, test whether there is a truth assignment under which
each clause ci has one true and one false literal.

PARTITION SEMANTICS FOR RELATIONS 229

From cp construct d, E as follows: d has a relation R, [AA, .‘. A,] with two
tuples au, “.u,, au, . ..u.,andforeachclauseofcp,sayc,=x, vx2v (lx,),dhas
a relation R, [AA4”..4,B, . ..B.], with a single tuple by4... y, u,u~~~z~...z,.
Note that the scheme R, does not have attributes A,, AZ, A,, corresponding to the
variables of the clause cr. Also the structure of the single tuple depends on which
variables appear negated and which not in cr (in this case . . . a,u,b,...).

E contains B,= Bi* Ai, i= l,..., n, and for clause c1 it contains B, * B, - B, =
B, * B, * B, * A (and similar FPDs for other clauses). Thus, E, (the FDs equivalent
to the FPDs E) consists of Bi + A,, i = l,..., n, and B, B,B, -+ A for clause cl, etc.
Figure 3 shows an example for n = 4.

We now show that cp is satisfiable (by an assignment leaving one literal of each
clause false) iff relation R[AA,...A,B,... B,] (see Fig. 3) can be filled in so that
no new symbols are introduced in any column, and the FDs in E, are satisfied (by
Theorem 6b, this is equivalent to existence of an 4 such that .f + d, E,
CAD, EAP).

Observe that for each i, tr [Bi] # t, [B;], because of the FD Bi + Aj. We can also
make sure that for each variable xi there is a clause of cp which does not contain xi
(just add a clause x, + , v (lx, + r), where x, + , is a new variable). This does not
affect the NP-completeness of the original question on cp. However it forces
t, [Bi]#zi, tz[Bi] #zj (again because of the FD B,-+A, and because ui, vi, yj are
distinct). Thus {t, [Bi], f2 [Bi] } = {ai, bi}. Make variable xi true if t, [Bi] = a,,
fake if t, [Bi] = b,. Because of the FD B, B, B, + A and the tuple t,, we will only be
able to fill in the rest of the values iff the above truth assignment makes one literal

R. : Rl :

A Al A2 A3 A4 A A4 Bl Bz B3 B4

a “1 “2 “3 “4

a “1 “2 “3 “4
b y4 a1 a2 b3 z4

R:

A Al A2 A3 A4 % B2 B3 B4

tl: a u1 u2 u3 u4

t2: a v1 v2 v3 v4

t3: b y4 a1 a2 b3 *4

EF : Bi-Ai, i = I,..., 4

El B2 B3-'A

Cl = x1 " x2 v (1 x3)

FIGURE 3

230 COSMADAKIS, KANELLAKIS, AND SPYRATOS

of c, true and one false. This is because we are free to till in the Aj columns, but in
the B, columns of t, and t, we are appropriately constrained. [

6.2. An Efficient Consistency Test

Our final goal is: given a database d over attributes % and a set of PDs E, to test
whether there exists a satisfying partition interpretation 9. By Theorem 7, Sec-
tion 4.3, this is equivalent to testing whether there exists a weak instance for d
satisfying E.

First, we replace E by a set E’ of PDs of the form C = A - B or C = A + B, where
A, B, C are attributes from a universe a!’ containing a’; this is done by (recursively)
replacing X= Y-2 or X= Y+Z by the PDsX=C, Y=A, Z=B, C=A-B, or
C= A + B, where A, B, C are new attribute names. It is easy to check that there is a
weak instance for d satisfying E iff there is a weak instance for d satisfying E’.

Now let us replace certain PDs in E’ with equivalent PDs. A PD C = A - B in E
can be replaced by the FPDsC<A-B, A-B<C. A PDC=A+B in E’can be
replaced by the PDs A + B 6 C and C ,< A + B. Furthermore, the PD A + B d C can
be replaced by the FPDs A d C, Bd C. We now have transformed E’ into an
equivalent form consisting of FPDs and of PDs of the form C 6 A + B. After this
transformation we also have that: there is a weak instance for d satisfying E iff there
is a weak instance for d satisfying E’.

Now compute (using the algorithm of the previous section) all consequences of E
of the form A <B, A, B in @‘, and add them to E’. Call this closure E+. Notice that
if E+ contains A < B and C < A + B (C < B + A) it must also contain C 6 B: in this
case delete C6 A + B (C< B+ A) from E+. The E+ we have thus constructed con-
sists of a set of FPDs and a set of PDs of the form C < A + B, where neither A d B
nor B<A are in Et.

It is easy to see that after all these transformations, there is a weak instance for d
satisfying E iff there is a weak instance for d satisfying E+. Let F be the set of FPDs
in E+. The crucial fact is given in the following.

LEMMA 12.1. There is a weak instance for d satisfying E + iff there is a weak
instance for d satisfying F.

Proof: The “only if” direction is obvious. For the converse, let w be a weak
instance for d satisfying F. Suppose some PD C < A + B in E+ is violated by tuples
t,, t, of w, where t, [ABC] =a,b,c, t,[ABC] =azbzc, a, #a,, 6, fb,. We can
remedy this violation by adding to w a new tuple such that t[AB] = a, b,. To make
sure that the relation w, obtained still satisfies F, let A + = {X 1 F k A < X>, B+ =
{X 1 F k B<X}: we make t[A+] = t, [A+], t[B+] = t2[B+], and fill in the rest
of the attributes of t with distinct new values (not appearing in w). To argue that
this is indeed possible, observe first that B is no in A + and A is not in B+
(otherwise C < A + B would not appear in E+). We also have to make sure that, if
QEA+ and QEB’, then t, [Q] = t, [Q]. But if Q appears in both A+ and B+ we
have F/= A<Q, Fk BdQ, so since C<A+B is in Ei we have E+ k C<Q,

PARTITION SEMANTICS FOR RELATIONS 231

and therefore Cd Q is in F. This implies that t, [Q] = t2 [Q], since t, [C] = t2 [C]
and w satisfies F.

We now repeat the above argument, starting with wi, to obtain relations w2, w)
and so on. The relation w, obtained after an infinite number of steps is a weak
instance for d satisfying E+, because any violation of some PD C < A + B appear-
ing at any stage has been taken care of at some later stage. 1

We can now prove

THEOREM 12. There is a polynomial-time algorithm to test whether a given
database d is consistent with a set E of PDs.

Proof: Using the polynomial-time algorithm for inference of PDs given in Sec-
tion 5, we can construct the set F. By Lemma 12.1, we can then use the chase
algorithm of [193 to test if d is consistent with F. 1

7. CONCLUSIONS

We have shown that: (1) the inference problem for PDs and (2) the problem of
testing consistency of a set of relations with a set of PDs are in polynomial time.
Both proofs use algebraic techniques and make use of finite and infinite relations. If
we restrict ourselves to finite relations then (1) is still in polynomial time (by the
same algorithm), but (2) remains open.

We would like to point out that the FD implication problem can be formulated,
in a straightforward fashion, as a special case of the generator problem for finitely
presented algebras [23,9]. In fact, there are many similarities between the efficient
algorithm for FD implication of [3] and the algorithm of [23] for this generator
problem. Our analysis here reveals much more of this problem’s algebraic nature.
PD implication is the uniform word problem for lattices, and FD implication the
uniform word problem for idempotent commutative semigroups.

Finally, we would like to emphasize that even if we assign partition semantics to
the relational data model, we still can use all the familiar algebraic operations on
relations (selection, projection, Cartesian product, union, difference, etc.). After all
these operations are syntactic manipulations of syntactic objects. What we gain, on
the other hand, is a more meaningful treatment of databases over many relation
schemes.

ACKNOWLEDGMENTS

We would like to thank Richard Hull and Moshe Vardi for their many helpful comments.

232 COSMADAKIS, KANELLAKIS, AND SPYRATOS

REFERENCES

1. A. V. AHO AND J. D. ULLMAN, Universality of data retrieval languages, in “Proceedings, 6th ACM
Symp. Principles of Programming Languages,” 1979, pp. 11@120.

2. W. W. ARMSTRONG, Dependency structure of database relationships, in “Proceedings, IFIP-74,”
Amsterdam, 1974, pp. 58&583.

3. C. BEERI AND P. A. BERNSTEIN, Computational problems related to the design of normal form
relational schemas, ACM Trans. Database Sysfems 4, No. 1 (1979) 3@59.

4. C. BEERI AND M. Y. VARDI, Formal systems for tuple and equality generating dependencies, SIAM
J. Comput. 13, No. 1 (1984), 76-98.

5. C. BEERI AND M. Y. VARDI, A proof procedure for data dependencies, J. Assoc. Comput. Mach. 31,
No. 4 (1984) 718-741.

6. P. A. BLONIARZ, H. B. HUNT, III, AND D. J. ROSENKRANTZ, Algebraic structures with hard
equivalence and minimization problems. J. Assoc. Compuf. Match. 31, No. 4 (1984) 8799904.

7. M. A. CASANOVA, R. FAGIN, AND C. H. PAPADIMITRIOU, Inclusion dependencies and their interac-
tion with functional dependencies, J. Comput. System Sci. 28, No. 1 (1984), 29-59.

8. S. S. COSMADAKIS, “Equational Theories and Database Constraints,” Ph. D. thesis MIT, 1985.
9. S. S. COSMADAKIS AND P. C. KANELLAKIS, Equational theories and database constraints, in

“Proceedings, 17th ACM Sympos. Theory of Computing,” May, 1984, pp. 273-284.
10. P. CRAWLEY AND R. P. DILWORTX. “Algebraic Theory of Lattices,” Prentice-Hall, Englewood Cliffs,

N.J., 1973.
11. R. A. DEAN, Component subsets of the free lattice on n generators, Proc. Amer. Math. Sot. 7 (1956),

220-226).
12. H. B. ENDERTON, “A Mathematical Introduction to Logic,” Academic Press, New York/London,

1972.
13. T. EVANS, The word problem for abstract algebras, J. London Math. Sot. 26 (1951) 6471.
14. T. EVANS, Word problems, Bull. Amer. Mafh. Sot. 84 (1978). 789-802.
15. R. FAGIN, Horn clauses and database dependencies, J. Assoc. Compur. Mach. 29, No. 4 (1982),

952-985.
16. R. FAGIN, Generalized first-order spectra and polynomial-time recognizable sets, SIAM-AMS Proc.

7, No. I (1974) 43-73.
17. M. R. GAREY AND D. S. JOHNSON, “Computers and Intractability: A Guide to the Theory of NP-

Completeness,” Freeman, San Francisco, 1979.
18. G. GRKTZER, “Universal Algebra,” Springer-Verlag, New York, 1979.
19. P. HONEYMAN, Testing satisfaction of functional dependencies, J. Assoc. Compuf. Mach. 29, No. 3

(1982), 668-677.
20. J. E. HOPCROFT AND J. D. ULLMAN, “Introduction to Automata Theory, Languages, and Com-

putation,” Addison-Wesley, Reading, Mass., 1979.
21. G. HUET AND D. OPPEN, Equations and rewrite rules: A survey, in “Formal Languages: Perspectives

and Open Problems” (R. Book, Ed.), pp. 349403, Academic Press, New York/London, 1980.
22. H. B. HUNT, III, D. J. ROSENKRANTZ, AND P. A. BLONIARZ, “On the Computational Complexity of

Algebra on Lattices 1,” State University of New York at Albany, 1984.
23. D. KOZEN, Complexity of finitely presented algebras, in “Proceedings, 9th ACM Symposium on

Theory of Computing, May, 1977, pp. 164177.
24. D. MAIER, “The Theory of Relational Databases,” Computer Sci. Press, Rockville, Md., 1983.
25. J. C. C. MCKINSEY, The decision problem for some classes of sentences, J. Symbolic Logic 8 (1943)

61-76.
26. P. PUDLAK AND J. TUMA, Every finite lattice can be embedded in a finite partition lattice. Algebra

Universalis 10, No. 1 (1980) 7495.
27. R. REITER, On closed world databases, in “Logic and Databases” (H. Gallaire and J. Minker, Eds.),

pp. 55-76, Plenum, New York, 1978.

PARTITION SEMANTICS FOR RELATIONS 233

28. F. SADRI AND J. D. ULLMAN, Template dependencies: A large class of dependencies in relational
databases and its complete axiomatization, J. Assoc. Comput. Much. 29, No. 2 (1982), 363-372.

29. N. SPYRATOS, “The Partition Model: A Deductive Database Model,” INRIA No. 286, April, 1984,
Inst. Nat. Recherche Inform. Automat., France.

30. J. D. ULLMAN, “Principles of Database Systems,” Computer Sci. Press, Rockville, Md., 1983.
31. M. Y. VARDI, personal communication, 1984.
32. Y. VASSILIOU, “A Formal Treatment of Imperfect Information in Database Management,” Ph. D.

thesis, University of Toronto, 1980.
33. P. M. WHITMAN, Free lattices, An. of Math. 42 (1941), 325-330.
34. P. M. WHITMAN, Lattices, equivalence relations and subgroups, Bull. Amer. Math. Sot. 52 (1946),

507-522.
35. M. YANNAKAKIS AND C. H. PAPADIMITRIOU, Algebraic dependencies, J. Compul. System Sci. 21

(1982), 2-41.

