
Availability Study of Dynamic Voting AlgorithmsbyKyle W. IngolsSubmitted to the Department of Electrical Engineering andComputer Sciencein partial ful�llment of the requirements for the degree ofMasters of Engineering in Electrical Engineering andComputer Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYJune 2000c Kyle W. Ingols, MM. All rights reserved.The author hereby grants to MIT permission to reproduce anddistribute publicly paper and electronic copies of this thesis documentin whole or in part.
Author .Department of Electrical Engineering andComputer ScienceMay 5, 2000Certi�ed by. .Idit KeidarPostdoctoral AssociateThesis SupervisorAccepted by .Arthur C. SmithChairman, Department Committee on Graduate Theses

Availability Study of Dynamic Voting AlgorithmsbyKyle W. IngolsSubmitted to the Department of Electrical Engineering andComputer Scienceon May 5, 2000, in partial ful�llment of therequirements for the degree ofMasters of Engineering in Electrical Engineering andComputer ScienceAbstractFault tolerant distributed systems often select a primary component to allow a subsetof the processes to function when failures occur. Several studies have examined algo-rithms for selecting primary components. However, these studies have assumed thatevery attempt made by the algorithm to form a new primary component terminatessuccessfully. Unfortunately, in real systems, this is not always the case: if a changein connectivity occurs while the algorithm is still running, algorithms typically blockuntil processes can resolve the outcome of the interrupted attempt.This thesis �rst presents a framework for the implementation of primary com-ponent algorithms. This framework is used to implement several algorithms basedon the dynamic voting principle. The thesis then shows, using simulations, that analgorithm's performance is highly a�ected by interruptions; availability degrades asmore connectivity changes occur, and as these changes become more frequent.Thesis Supervisor: Idit KeidarTitle: Postdoctoral Associate

2

AcknowledgmentsThere were so many people inconvenienced by the ever-present \thesisitis" hangingover my head that I couldn't hope to name all of them, even if I did expound uponeach individual's virtues in a vain e�ort to expand this document's length. That said,I shall try for an abridged version.First and foremost, I must thank my parents, Bill and Debra Ingols, for gettingme here. How they were able to put up with me for this long I will never know. Iowe them everything, and will try in vain to repay them.Thanks to Idit Keidar, my tireless thesis advisor, for providing the gentle (andsometimes less than subtle) kicks in the behind needed to keep me on track andworking. She is the most stringent, thorough, and proactive proofreader I have yetknown. Hopefully my prose will someday approach hers in clarity, though I suspectthat my writing abilities will \drastically degrade" as I age. . . ;)Thanks to Miss Christine for being patient with me when I spent every wakinghour working on this thing, and more than a few non-waking hours slumped over it!Last but not least, thanks to Alex Shvartsman for many helpful suggestions in thewriting of the paper from which this thesis is developed.That's all, folks. I'm going to bed now. . .

3

Contents
1 Introduction 62 Algorithm Implementation 102.1 The Algorithm-to-Application Interface 102.2 The Testing and Simulation System 133 Algorithm Descriptions 163.1 YKD . 173.2 Variants of YKD . 233.2.1 Unoptimized YKD . 233.2.2 DFLS: Unoptimized YKD with an Extra Round 243.2.3 1-pending: YKD with One Ambiguous Session 243.2.4 MR1p: Majority-Resilient 1-pending 253.3 Simple Majority: a Simple, Stateless Algorithm 283.4 Comparison of Algorithms . 284 Measurements and Results 304.1 Primary Component Availability Measurements 304.2 Measurements of Pending Ambiguous Sessions 355 Conclusions 405.1 Future Work . 41

4

List of Figures
2-1 Pseudocode of algorithm interface. 122-2 Pseudocode of application using interface. 133-1 Scenario illustrating inconsistencies in the naive approach. 173-2 Pseudocode for the main process of YKD. 203-3 The LEARN and RESOLVE procedures within YKD. 213-4 The COMPUTE, DECIDE, and SUBQUORUM procedures within YKD. . . . 224-1 System availability with 2 connectivity changes. 314-2 System availability with 6 connectivity changes. 324-3 System availability with 12 connectivity changes. 334-4 System availability with 2 cascading connectivity changes. 344-5 System availability with 6 cascading connectivity changes. 354-6 System availability with 12 cascading connectivity changes. 364-7 Ambiguous sessions with YKD, unoptimized YKD, and DFLS. 374-8 Ambiguous sessions with YKD, unoptimized YKD, and DFLS. 38

5

Chapter 1
Introduction
Distributed systems typically consist of a group of processes working on a commontask. Processes in the group multicast messages to each other. Problems arise whenconnectivity changes occur, and processes are partitioned into multiple disjoint net-work components1. In many distributed systems, at most one component is permittedto make progress in order to avoid inconsistencies.Many fault tolerant distributed systems use the primary component paradigm toallow a subset of the processes to function when failures and partitions occur. Exam-ples of such systems include group-based toolkits for building distributed applications,such as ISIS [4], Phoenix [9], and xAMp [11], and replicated database systems like [6].Typically, a majority (or quorum) of the processes is chosen to be the primary com-ponent. However, in highly dynamic and unreliable networks this is problematic:repeated failures along with processes voluntarily leaving the system may cause ma-jorities to further split up, leaving the system without a primary component. Toovercome this problem, the dynamic voting paradigm was suggested.The dynamic voting paradigm de�nes rules for selecting the primary componentadaptively: when a partition occurs, if a majority of the previous primary componentis connected, a new and possibly smaller primary is chosen. Thus, each newly formed1A component is sometimes called a partition. In our terminology, a partition splits the networkinto several components. 6

primary component must contain a majority of the previous one, but not necessarilya majority of the processes.An important bene�t of the dynamic voting paradigm is its exibility to supporta dynamically changing set of processes. With emerging world-wide communicationtechnology, new applications wish to allow users to freely join and leave. Usingdynamic voting, such systems can dynamically account for the changes in the set ofparticipants.Stochastic models analysis [7], simulations [10], and empirical results [3] havebeen used to show that dynamic voting is more available than any other paradigmfor maintaining a primary component.All of these studies have assumed that every attempt made by an algorithm to forma new primary component terminates successfully. Unfortunately, in real systems, thisis not always the case: if a change in connectivity occurs while an attempt to forma primary component is in progress, algorithms typically block until they can resolvethe outcome of the interrupted attempt. The analyses of the availability of dynamicvoting mentioned above did not take the possibility of blocking into consideration,and therefore, the actual system availability is lower than analyzed.In order to examine the algorithms' performance under stress, we �rst design asimple, general interface which can be used to communicate with the algorithm. ThisAPI is designed to be free of unnecessary dependencies on speci�c communicationservices, allowing the user to choose. We then use this interface to implement �vealgorithms for selecting a primary component. Once the algorithms are implementedand tested, we run simulations on them and examine the results.We use simulations to measure the e�ect of blocking on the availability of dynamicvoting algorithms. We examine cases in which a sequence of closely clustered changesin connectivity occur in the network, and then the network stabilizes to reach aquiescent state. Connectivity changes can be either network partitions, or mergingof previously disconnected components. We vary the number and frequency of theconnectivity changes. We study how gracefully di�erent dynamic voting algorithmsdegrade when the number and frequency of such changes increase.7

The realistic simulation of network connectivity changes is still a subject of muchdebate and research. The tests were therefore run under a wide variety of conditions,in an e�ort to cover most eventualities. However, we did not study cases with onlya single network failure. In such a scenario, simply choosing the component witha majority will always succeed. The dynamic voting algorithms come into play inthe event of multiple network connectivity changes. Closely clustered connectivitychanges mirror the often sporadic nature of network changes. This could simulatesituations as simple as a router failing and then returning to service, or multiple piecesof the network segmenting almost simultaneously, or any other transient turbulencein the network.When interrupted, dynamic voting algorithms di�er in the length of their block-ing period: some of the suggested algorithms (e.g., [7, 1]) may block until all themembers of the last primary become reconnected; others (e.g., [9, 12, 5, 8]) can makeprogress whenever a majority of the last primary becomes reconnected. Algorithmsalso di�er in how long it takes them to resolve the outcome of interrupted attemptsto form a primary component, and in their ability or inability to pipeline multiplesuch attempts.We focus on the dynamic voting algorithm of Yeger Lotem et al. [12], hereaftercalled YKD. We compare its availability with that of four variations on it { one whichremoves some memory-saving optimizations, a second variation due to De Prisco etal. [5], a third variation which is similar (although not identical) to the dynamicvoting algorithms suggested in [7, 1], and a fourth which is based on ideas presentedin [8, 9]. As a control, we also compare the algorithm with the simple (non-dynamic)majority rule for selecting a primary component.Our results show that the blocking period has a signi�cant e�ect on the avail-ability of dynamic voting algorithms in the face of multiple subsequent connectivitychanges. The number of processes that need be contacted in order to resolve pastattempts signi�cantly a�ects the degradation of availability as the number of connec-tivity changes rises, and as these changes become more frequent. Algorithms thatsometimes require a process to hear from all the members of a previous attempt be-8

fore progress can be made degrade drastically as the number of connectivity changesincreases. Furthermore, in lengthy executions with numerous connectivity changes,the availability of these algorithms degrades even further. In contrast, algorithmswhich allow progress whenever a majority of the members of the previous attemptreconnects degrade gracefully as the number of connectivity changes increases, anddo not degrade during lengthy executions with thousands of connectivity changes.The results emphasize the importance of considering the e�ect interruptions haveon the performance of these algorithms. Previous studies have overlooked the e�ectsof interruptions on the algorithms' availability, concentrating instead on examiningideal conditions. We show that interruptions have a tangible e�ect on the algorithms'availability, and that algorithms with few message rounds will therefore have an edgethat has not been previously acknowledged.Other algorithms designed to choose primary components may also demonstraterobust behavior when exposed to connectivity changes. We naturally cannot imple-ment and consider all of them here, nor can we hope to explore every interestingfailure scenario. We therefore present our testing framework and algorithm imple-mentations2 for the use of other researchers.In Chapter 2, we discuss the implementation of the algorithms and their test-ing system in more detail. The workings of the algorithms themselves are coveredin Chapter 3. We then examine the speci�c tests run and the results from themin Chapter 4. Chapter 5 concludes the thesis with a summary of our results, andthoughts about possible future work.

2Our testing framework code is publicly available from http://theory.lcs.mit.edu/�idish/test-env.html. 9

Chapter 2
Algorithm Implementation
The initial thrust of our work was the implementation of the algorithm of YegerLotem et al. [12] for real-world use. Henceforth we shall refer to the algorithm bythe abbreviation YKD. The intention was to integrate the YKD algorithm into acomplete system upon which an application developer could base a fault-tolerantdistributed application. To this end, YKD was initially paired with Transis [2], agroup communication service which provides noti�cation of connectivity changes.Once the algorithm was completed, we designed a testing system to help provethat the algorithm was implemented correctly. In addition, we expanded the testingsystem to collect detailed statistics for a variety of scenarios in order to analyze theactual performance of the algorithm.2.1 The Algorithm-to-Application InterfaceThe interface required by YKD is very simple. The algorithm requires only theability to broadcast messages, receive messages and reports of connectivity changes,and maintain state. Any interface which provides those services will enable YKDto function properly. The choice of Transis is arbitrary, but not restrictive; anygroup communication service which has reliable multicast and can report connectivitychanges will work. 10

Typically, group communication services such as [2, 4, 9, 11] report connectivitychanges as views. A view is nothing more than a list of all of the processes which arecurrently connected. The only artifact of the choice of Transis is that the interfaceuses the Transis view structure to represent the list of processes in a view. Thisdecision does not limit us to using only Transis; the Transis view structure is simpleand easily portable. It should therefore be simple to seamlessly translate other groupcommunication services' view structures to the Transis structure.The implemented dynamic voting algorithms are event-driven, i.e., the only timethe algorithm's state changes is when it sends or receives a message or view. Thismeans that there is no need to continually poll the algorithm, checking to see if itwishes to send a message. If the algorithm has no need to send a message now, theonly reason it would need to send one in the future is the arrival of further information(a message from somewhere else or a connectivity change).The interface is designed to \piggyback" information onto messages sent by theapplication { the application is required to pass all messages it wishes to send throughthe algorithm before transmission. When the algorithm has received new information(either a message or a new view), the application is expected to o�er to send amessage.Thus, we can model the interface to YKD, or any general algorithm designedto choose primary components, easily as a C++ class. Pseudocode for this class issuggested in Figure 2-1.The algorithm must be started with a list of all of the processes in the very�rst view { in other words, the initial view in which the processes begin together.The algorithm expects that every view after the �rst will contain only processeswhich were present in the �rst view1. Once the system is running, the application isexpected to pass each incoming message through the incomingMessage method beforelooking at it and to pass each outgoing message through the outgoingMessagePollmethod before transmission. This allows the algorithm to \piggyback" information1The YKD algorithm is actually capable of handling new processes which join the system afterthe initial view is established, but that ability is not studied or used here.11

class PrimaryComponentAlgorithm{ constructor(transisView initialView);// specific algorithms may need other initial information which// could be provided to the constructor heredestructor();Message *incomingMessage(Message m, int senderID);// returns the same message, with the algorithm's// information stripped from itMessage *outgoingMessagePoll(Message *tobesent);// returns NULL if no modification to the message is made,// else returns the new message to send insteadviewChanged(transisView newView);int inPrimary();Figure 2-1: Pseudocode of algorithm interface.onto messages sent by the application, and to remove that information from receivedmessages before they are passed on to the application. The application never sees theextra information exchanged by the algorithm.In addition, each time a message is received, the application should immediatelyquery the outgoingMessagePoll function, even if the application itself has nothingit wants to send. This gives the algorithm an opportunity to communicate even if theapplication using it is idle.The application can then use the inPrimary call at its leisure to determine whetheror not it is in a primary component. As with the other methods, there is never aneed to poll inPrimary; this state can only change if and when new informationarrives (a message or connectivity change). Therefore, the application need onlycheck inPrimary after a new message has arrived.By implementing the algorithm as an independent entity with no inherent com-munication abilities of its own, we free the algorithm from dependence on any one12

void applicationSendMessage(Message *m){ Message *m2 = myDynVotingObject->outgoingMessagePoll(m);if(m2 != NULL)BroadcastMessageOnNetwork(m2);elseBroadcastMessageOnNetwork(m);}Message *applicationReceiveMessage(Message *m){ Message *m2 = myDynVotingObject->incomingMessage(m);Message *mEmpty = new Empty Message;Message *m3 = myDynVotingObject->outgoingMessagePoll(mEmpty);if(m3 != NULL)BroadcastMessageOnNetwork(m3);return m2;} Figure 2-2: Pseudocode of application using interface.communication service. Instead, the burden is placed on the application developerto integrate the two. This integration is extremely simple, and is demonstrated inFigure 2-2.2.2 The Testing and Simulation SystemImplementing the algorithm this way also makes testing simple. The testing systemeasily simulates an arbitrary number of processes by creating multiple instances ofthe algorithm. It requires no actual networking abilities at all { the system takesadvantage of the fact that the algorithm does not possess any inherent communicationability.The testing environment consists of a driver loop implemented in C. The driverloop routes all messages among the multiple instances of the algorithm without using13

the network or any communication system. It does this by polling individual processesfor messages to send, and then immediately delivering those messages to the otherprocesses. The driver loop also supports fault injection and statistics gathering duringthe simulation.The user speci�es two simulation parameters: the number of connectivity changesto inject in each run, and the frequency of these changes. The frequency of changes isspeci�ed as the mean number of message rounds which are successfully be executedbetween two subsequent connectivity changes. The mean is obtained using an appro-priate uniform probability p, so that a connectivity change is injected at each stepwith probability p.A connectivity change is either a network partition, where processes in one net-work component are divided into two smaller components, or a merge, where twocomponents are uni�ed to produce one. The driver loop has an equal likelihood ofgenerating either of these changes2. Partitions do not necessarily happen evenly {the percentage of processes which are moved to the new component is determined atrandom each time.The testing system begins each simulation with all the processes mutually con-nected. The processes are then allowed to exchange messages while the driver loopinjects connectivity changes with the appropriate probability. Once the desired num-ber of changes have been introduced, the driver loop allows the processes to exchangemessages without further interruptions until the system reaches a stable state. Thedriver loop then prints out �nal statistics, the most relevant of which is the presenceor absence of a primary component.These tests also served as a very extensive trial-by-�re of the algorithm's im-plementation. Each of the algorithms was subjected to over 1,310,000 connectivitychanges, and none of them demonstrated an inconsistency, leaked memory, or crashed.2Given that such a change is possible, of course { one cannot perform a merge unless there areat least two components present, and one cannot perform a partition unless there is a componentwith at least two processes.
14

Every process in a view agreed on whether or not that view was a primary, and atall times there was at most one primary component declared.Due to the CPU-intensive nature of these tests, the system ran on multiple ma-chines and submitted results over the Internet to a central machine for collection andanalysis. After receipt, the data passed through a series of Perl scripts for tabula-tion and summarizing. Matlab was then used to perform the �nal plots and simplemanipulation of the data.

15

Chapter 3
Algorithm Descriptions
We study several algorithms that use dynamic linear voting [7] to determine when aset of processes can become the next primary component in the system. Dynamicvoting allows a majority of the previous primary component to form a new primarycomponent. Dynamic linear voting also admits a group of processes containing ex-actly half of the members of the previous primary component if the group contains adesignated process (the one with the lowest process-id).In order to form a new primary component, processes need to agree to form it.Lacking such agreement, subsequent failures may lead to concurrent existence of twodisjoint primary components, as demonstrated by the scenario shown in Figure 3-1.In order to avoid such inconsistencies, dynamic voting algorithms have the pro-cesses agree on the primary component being formed. If connectivity changes occurwhile the algorithm is trying to reach such agreement, some dynamic voting algo-rithms (e.g., [7, 1]) may block until they hear from all the members of the last primarycomponent, and do not attempt to form new primary components in the mean time.We study �ve algorithms based on the dynamic voting principle. The �rst, YKD,is the main algorithm of study. We also explore four variations of the YKD algorithm,three of which are similar to other algorithms suggested in the literature.In addition, we implemented and tested the simple majority algorithm in orderto provide a baseline from which the performance of the other algorithms can be16

� The system consists of �ve processes: a; b; c; d and e. The system partitions intotwo components: a; b; c and d; e.� a; b and c attempt to form a new primary component. To this end, they exchangemessages.� a and b form the primary component fa; b; cg, assuming that process c does sotoo. However, c detaches before receiving the last message, and therefore is notaware of this primary component. a and b remain connected, while c connectswith d and e.� a and b notice that c detached and form a new primary fa; bg (a majority offa; b; cg).� Concurrently, c, d and e form the primary component fc; d; eg (a majority offa; b; c; d; eg).� The system now contains two live primary components, which may lead toinconsistencies.Figure 3-1: Scenario illustrating inconsistencies in the naive approach.measured. This algorithm declares a primary component whenever a majority of theoriginal processes are present.3.1 YKDThe algorithm of principal study is the dynamic voting algorithm of [12]. This algo-rithm overcomes the di�culty demonstrated in the scenario in Figure 3-1 by keepingtrack of pending ambiguous sessions to form new primaries. In the example above,the YKD algorithm guarantees that if a and b succeed in forming fa; b; cg, then cis aware of this possibility. From c's point of view, the primary component fa; b; cgis ambiguous: it might have or might have not been formed by a and b. Unlikepreviously suggested dynamic voting algorithms, the YKD algorithm does initiatenew attempts to form primary components while there are pending attempts. Everyprocess records, along with the last primary component it formed, later primary com-ponents that it attempted to form but detached before actually forming them. These17

ambiguous attempts are taken into account in later attempts to form a primary com-ponent. Once a primary component is successfully formed, all ambiguous attemptsare deleted.In order to operate successfully, a process p using YKD must maintain a fairlyextensive amount of local state. The state makes frequent use of a construct that wewill call a session. A session is nothing more than a view with a number attachedto it, corresponding to an session to form a primary component. These numbers areused by YKD to determine the order in which views occurred.The state which a process p running YKD retains is as follows:� The initial view of the process { all of the processes present when the algorithmbegan. This initial view is the same for all participating processes. We willdenote it as W.� The last primary component the process successfully formed. Denoted simplyas lastPrimary.� The last primary component the process formed with a given process. Thisinformation is kept as a collection of sessions. We denote lastFormed(q) toindicate the last primary component p formed which included q. Initially, all ofthese entries equal W.� The process's ambiguous sessions. This is a list of all of the process's ambiguoussessions. This will be denoted (obviously enough) as AmbiguousSessions.� A session number, initially zero, which is used to number new sessions. This isdenoted as sessionNumber.� A simple boolean ag stating whether or not I am presently in a primary com-ponent. This is denoted inPrimary.Whenever a connectivity change occurs, the processes in the new view participatein two message rounds. In the �rst round, the processes exchange all of their internalstate { sending each other their ambiguous sessions, last primary components, and soon. If the processes decide to attempt to make the new view a primary component,a second round of messages is sent. If this second round is successfully received byall processes, then the primary component is completed. If the second round is not18

received (due to another connectivity change), then the attempted primary becomesambiguous.The algorithm is able to perform its work in only two message rounds becauseeach process receives the information of all of the other processes. Therefore, eachprocess in the view is working with the same knowledge in a deterministic fashion. Aprocess can be con�dent that if it decides to attempt a primary, all other processesin the view will make the same decision.The pseudocode for YKD is presented in Figure 3-2. In this and all other pseu-docodes, we denote the process doing these tasks as process p. The main block ofpseudocode uses four primitive operations, shown in Figure 3-3 on page 21 and Fig-ure 3-4 on page 22.The resolution rules embodied by the procedures in Figure 3-3 on page 21 allowthe process to update its internal state with respect to the activities of other processes.For example, if process p su�ers a connectivity change and is isolated, it can use theseresolution rules to update its internal state when it is able to merge back with otherprocesses again. Process p is thus able to learn about the sessions which occurred inits absence.Once YKD is �nished reconciling its state with the state information of all of theother processes, the algorithm must then decide whether or not to attempt a newprimary component with the current view. It does this by COMPUTEing additionalinformation from all of the received info. With this combined information, the processcan DECIDE conclusively whether or not it is safe to declare the current view a primarycomponent. These procedures are shown in Figure 3-4 on page 22.The decision relies heavily on the dynamic voting principle; it only proceeds if thenew session is a SUBQUORUM of the previous primary component and of all ambiguoussessions { that is, the new session has a majority of the processes which were inthe previous primary component, and which were in every other potential primarycomponent. The SUBQUORUM procedure is de�ned in Figure 3-4 on page 22.If the previous primary splits precisely in half, then the side which contains the\lexically smallest" process of the previous primary may remain the primary. \Lexi-19

if a new view V is received,isPrimary = FALSEsend state (sessionNumber, ambiguousSessions, lastPrimary,and lastFormed) to everyone in Vonce everyone else's state arrives,LEARN about the ambiguousSessions, if possibleRESOLVE the up-to-date information from other processes, if possibleCOMPUTE maxSession, maxPrimary, and maxAmbiguousSessionsif p DECIDEs to form a primary,sessionNumber = maxSession + 1ambiguousSessions = ambiguousSessions +new session(V and sessionNumber)send attempt message to everyone in Vif p gets attempt messages from everyone in V,lastPrimary = new session(V and sessionNumber)ambiguousSessions = NONEisPrimary = TRUEfor every q in V,lastFormed(q) = new session(V and sessionNumber)Figure 3-2: Pseudocode for the main process of YKD.cally smallest" can be de�ned in any convenient way; one potential method is to sortbased on numeric IP address and process ID. This provides an unambiguous way todecide between the two equal-sized views.

20

to LEARN about the ambiguousSessions:for a session S,if q is in V, andS.Number < V.Number, andq is in S, andp is in S, and // we are in S ourselves!p attempted to form S,thenif lastFormed(q).Number = S.Number,thenp learns that q formed Sif lastFormed(q).Number < S.Number,thenp learns that q did not form Sto RESOLVE the up-to-date information from other processes:ACCEPT rule:for a given session S,if p is in S, andS.Number > lastPrimary.Number, andS was formed by one of its members (some other processlists S as its lastPrimary or one of its lastFormed)thenlastPrimary = Sfor every q in S,lastFormed(q) = SDELETE rule:for a given ambiguous session S,if no member of p formed S, orthere exists some other session F, such thatp is in F, andF.Number > S.Number, andF was formed by one of its members,thenremove S from the ambiguousSessionsFigure 3-3: The LEARN and RESOLVE procedures within YKD.21

to COMPUTE maxSession, maxPrimary, and maxAmbiguousSessions:maxSession = the largest sessionNumber of any processmaxPrimary = the lastPrimary which has the highest Number.maxAmbiguousSessions =all of the combined ambiguous sessions from the all processes,given that the session's Number is greater thanmaxPrimary's Number.to DECIDE whether or not the current view V can be a primary:if V is a SUBQUORUM of maxPrimary, andV is also a SUBQUORUM of every session in maxAmbiguousSessions,thenYOU MAY FORM A PRIMARYelseYOU MAY NOT FORM A PRIMARYto determine if X is a SUBQUORUM of Y:if more than half the processes in Y are also in X,then TRUE.if exactly half of the processes in Y are also in X, andthe lexically smallest process is also in X,thenTRUE.elseFALSE.Figure 3-4: The COMPUTE, DECIDE, and SUBQUORUM procedures within YKD.
22

3.2 Variants of YKDIn addition to studying YKD, several variants of the algorithm were also studiedin order to examine the importance of various pieces of the YKD algorithm. The�rst, unoptimized YKD, explores the bene�ts of YKD's complex learning system.The algorithm is no more or less available than YKD, but it does not try to resolveambiguous sessions while running. The second, DFLS, keeps ambiguous sessions foran additional round, allowing us to measure the relative importance of keeping thenumber of required message rounds minimal. The third and fourth, 1-pending andMR1p, examine the e�ects of requiring the algorithm to retain at most one ambiguoussession at a time. The algorithms di�er in their worst-case resolution: 1-pending mayrequire all of the processes from the ambiguous session to reconnect before the sessioncan be resolved, while MR1p requires only a majority of them.3.2.1 Unoptimized YKDThe YKD algorithm employs an optimization (a part of RESOLVE and LEARN fromFigure 3-3 on page 21) that reduces the number of ambiguous sessions processesstore and send to each other. The optimization reduces the worst-case number ofambiguous sessions retained from exponential in the number of processes to linear.This optimization does not provide additional information { it merely helps removeredundant information. Therefore optimization does not a�ect the availability of thealgorithm, only the amount of storage utilized and the size of exchanged messages.In practice, however, the number of sessions retained is very small. In our ex-periments we observe that very few ambiguous sessions are actually retained. Evenin highly unstable runs, with 64 processes participating, the number of ambiguoussessions retained by the YKD algorithm was dominantly zero, and never exceededfour. The unoptimized YKD also dominantly retained zero, and never exceeded nine(cf. Section 4.2).
23

3.2.2 DFLS: Unoptimized YKD with an Extra RoundThe algorithm of [5], henceforward DFLS, is a variation on the YKD algorithm whichdoes not implement the optimization, and also does not delete ambiguous sessionsimmediately when a new primary is formed. Instead, it waits for another messageexchange round to occur in the new formed primary before deleting them. This delayin deleting ambiguous sessions limits the system availability, since these sessions actas constraints that limit future primary component choices. In our experiments, weobserved that in approximately 3% of the runs, the YKD algorithm succeeds in form-ing a primary component when the DFLS algorithm does not (cf. Section 4.1). Bothalgorithms degrade gracefully as the number and frequency of connectivity changesincrease. Furthermore, we show that the YKD and DFLS algorithms can run forextensive periods of time, experiencing thousands of connectivity changes, and stillshow no degradation in availability.3.2.3 1-pending: YKD with One Ambiguous SessionWe also study a variant of the YKD algorithm which does not attempt to form anew primary component while there is a pending attempt. We call this algorithm1-pending. In this respect, 1-pending blocks whenever there is a pending ambiguoussession; it tries to resolve the pending ambiguous session before attempting to form anew primary. YKD, on the other hand, is sometimes able to make process even if itcannot resolve the previous ambiguous session at the time. A pending session can beresolved by a process by learning the outcome of that session from other processes. Inthe worst case, a process needs to hear from all the members of the pending sessionin order to resolve its outcome. 1-pending is very similar to the algorithms suggestedin [7, 1]. Our experiments show that the 1-pending algorithm is signi�cantly lessavailable than the YKD and DFLS algorithms. We also show that if 1-pending is runfor extensive periods of time, its availability further degrades (cf. Section 4.1).
24

3.2.4 MR1p: Majority-Resilient 1-pendingIn the worst case, 1-pending needs to hear from every process in the <ambiguoussession before the session can be resolved. A dynamic voting algorithm extremelysimilar to the algorithms presented in [8, 9] is able to resolve such an ambiguoussession with only a majority of the ambiguous session's members in the worst case.We refer to this algorithm as Majority-Resilient 1-pending, or MR1p. It, like 1-pending, can retain at most one ambiguous session. However, it is able to resolve itsambiguous session more quickly than 1-pending can.A process p running the MR1p algorithm retains the following state:� The primary component the process p most recently formed. This will be de-noted as cur primary.� The process's ambiguous session. MR1p retains at most one ambiguous ses-sion. This is a view that it attempted to declare as a primary, but was un-able to form before the algorithm was interrupted. This will be denoted asambiguousSession.� A number, initially zero, which is used to number certain status messages. Thisis denoted as num.� A simple boolean ag stating whether or not p is presently in a primary com-ponent. This is denoted inPrimary.� A status ag indicating which stage of the algorithm p is presently in. Thisis used to inform other processes how far p progressed in its e�orts to forma primary component from its pending view. This ag is denoted simply asstatus.� Every formed primary component the algorithm has ever successfully made.This can be optimized to contain only a reasonable, bounded number of thesecomponents. We denote this list of components as formedViews.Running MR1p requires �ve message rounds when a pending ambiguous sessionis present, and two rounds (numbers 4 and 5) when no pending ambiguous sessionmust be resolved. They are as follows:1. Send to everyone your single ambiguousSession.25

2. Send to everyone what you know about everyone else's ambiguousSession.3. Send to everyone your call on how your ambiguousSession should be resolved.Resolve it if a majority agrees with you.4. If the new view is a SUBQUORUM of the cur primary, send to everyone a requestto declare the current view to be a primary component.5. If all processes have sent a message in step 4, send everyone an attempt mes-sage. Declare the new view to be a primary component when a majority of theprocesses in it have sent a message in step 5.When the algorithm begins running, it has experienced only the initial view(all processes together). Therefore, formedViews contains only the initial view,cur primary is set to the initial view, and isPrimary is true. The numeric statusvariable num is initially set to zero. The status ag is set to none.The pseudocode for the algorithm is presented below. Notice that the MR1palgorithm utilizes the SUBQUORUM primitive which was previously de�ned in the YKDcode in Figure 3-4 on page 22.Upon view Vis_primary = falseif ambiguousSessionsend <ambiguousSession, num, status> to allelse (ambiguousSession = null)try_newUpon receipt of <V, 1> from all members of Vstatus = attempt; num = 2Send <attempt, V> to allUpon receipt of <attempt, V> from majority of Vcur_primary = V; is_primary = trueambiguousSession = null; num = 0; status = noneadd V to formedViewsUpon receipt of <V, n, s> from some processif V is the same as ambiguousSessionsend <V, status>// status is either 'sent,' 'attempt,' or 'try_fail'if V is in formedViews, and p is in V26

send <V, formed>if V is not in formedViews, p is in Vsend <V, aborted>otherwisedo nothingUpon receipt of <V, formed> from some processcur_primary = V; is_primary = trueadd V to formedViewstry_newUpon receipt of <V, aborted> from some processtry_newUpon receipt of <ambiguousSession, ?, ?>from majority of ambiguousSessionlet num be (the maximum number in all such messages) + 1let status be the status associated with one of the maximaif status = sent then status = try_failsend <status, V>Upon receipt of <try_fail, V> from majority of Vtry_newSubroutine try_newif SUBQUORUM(cur_primary, V)send <V, 1> to allambiguousSession = V; num = 1; status = sentelseambiguousSession = null; num = 0; status = noneThe basic algorithm does not include any optimizations for the removal of entriesfrom formedViews. This unfortunately leaves the size of this collection of viewsunbounded, making the simple implementation highly unsuited to continuous usage.One simple optimization can be made, however: whenever a new primary is formedwhich is the same as the original view, all other formedViews can be discarded.Further optimizations could be made to more tightly bind the number of formedViewswhich the algorithm can be forced to retain, but this simple optimization is su�cientto make the long-term simulation of the algorithm feasible.
27

3.3 Simple Majority: a Simple, Stateless Algo-rithmAdditionally, as a control, we tested the simple majority-based primary componentalgorithm which does not involve message exchange. This algorithm declares a pri-mary whenever a majority of the processes are present. If the processes happen tosplit into two groups of identical size, the lexical ordering technique used by YKD(see the end of Section 3.1) may also be used to decide between them.This simple algorithm requires almost no state other than that required to do thelexical ordering, sends no messages, and is very fast. The dynamic voting principleand the algorithms based on it were created in an e�ort to improve upon this simpleidea. We therefore present the simple majority as a baseline from which we cancompare the performance of the other studied algorithms.3.4 Comparison of AlgorithmsThe YKD algorithm is a fairly complex one, requiring the transfer and managementof the list of ambiguous sessions. An ambiguous session is roughly 2n bits in length,where n is the number of processes in the system. Theoretically, each process can keepup to O(n) ambiguous sessions in the worst case. In practice, however, the numberretained is dominantly zero or one. In fact, the highest observed number in over600,000 64-process runs was four, and it occurred only twice (cf. Section 4.2). Duringthe information exchange, each process receives all the information from every otherprocess and must iterate through all of it. The total amount of information whichmust be transmitted does not exceed two kilobytes during these 64-process trials.Unoptimized YKD and DFLS, which lack the optimizations from YKD, tend toretain more ambiguous sessions, and therefore take longer to run. The maximumobserved number of ambiguous sessions retained was nine, and that occurred onlynine times in over 600,000 runs of the algorithm. The optimization pays o� for YKDbecause it has fewer ambiguous sessions which it must transmit across the network28

and analyze upon receipt. The relationship between the number of ambiguous sessionsretained by the three algorithms is explored in Section 4.2.The number of message rounds each algorithm requires to run is also of criticalimportance. Algorithms which require many message rounds are more likely to beinterrupted by further connectivity changes. YKD, unoptimized YKD, and 1-pendingrequire only two message rounds. DFLS requires three, due to the extra round beforeambiguous sessions are removed. MR1p requires only two rounds when no pendingview is present, but requires �ve rounds if a pending view must also be resolved.The availability of the algorithms di�ers as well. The algorithms which do notpipeline attempts to form a primary, 1-pending and MR1p, are less available thanthose capable of handling multiple ambiguous sessions at once, such as DFLS andYKD. DFLS and YKD improve upon MR1p's performance by considering ways toproceed even if an ambiguous session cannot be resolved. The results of the availabil-ity studies are presented in the next section.

29

Chapter 4
Measurements and Results
4.1 Primary Component Availability MeasurementsWe compare the availability of �ve algorithms: YKD, DFLS, 1-pending, MR1p, andsimple majority. We also ran the tests for unoptimized YKD, that is, YKD withoutthe optimization that reduces the number of ambiguous sessions retained. The avail-ability of unoptimized YKD was identical to that of YKD, as expected. Therefore,we do not plot the availability of the unoptimized YKD separately.We chose to simulate 64 processes. We also ran the same tests with 32 and 48processes to see if the availability is a�ected by scaling the number of processes. Theresults obtained with 32 and 48 processes were almost identical to those obtainedwith 64. Therefore, we do not present them here.We simulated three di�erent numbers of network connectivity changes per run:two, six, and twelve. For each of these, we ran each of the algorithms with connec-tivity change rates varying from nearly zero to twelve mean message rounds betweenchanges.Each case (speci�ed by the algorithm, the number of connectivity changes andthe rate), was simulated in 1000 runs. The runs were di�erent due to the use ofrandomization. The same random sequence was used to test each of the algorithms.The results for each case were then summarized as a percentage, showing how many30

of the runs resulted in the successful formation of a primary component at the endof the run.We ran two types of tests: \fresh start" tests, where each run begins from thesame initial state, and \cascading" tests, where each run starts in the state at whichthe previous run ends. The \fresh start" results are presented in Figures 4-1, 4-2,and 4-3. The \cascading" results are presented in Figures 4-4, 4-5, and 4-6.

0 2 4 6 8 10 12
40

50

60

70

80

90

100

S
ys

te
m

 A
va

ila
bi

lit
y

pe
rc

en
ta

ge
s

System Availability −− 2 Changes

Mean Message Rounds between Connectivity Changes

YKD
DFLS
1−pending
MR1p
Simple MajorityFigure 4-1: System availability with 2 connectivity changes.\Fresh Start" { each run begins brand-new in the original state.With both tests, on the extreme left side of the graphs, the connectivity changesare so tightly spaced the algorithms are often unable to exchange any additionalinformation. On the extreme right side of the graphs, the connectivity changes are sowidely spaced that the algorithms are rarely interrupted. As expected, the availabilityimproves as the conditions become more stable.In all cases, the algorithms are shown to be about as available as the simplemajority algorithm when the connectivity changes occur rapidly. This is simply dueto the fact that rapid changes do not allow the algorithms any time to exchange31

0 2 4 6 8 10 12
40

50

60

70

80

90

100

S
ys

te
m

 A
va

ila
bi

lit
y

pe
rc

en
ta

ge
s

System Availability −− 6 Changes

Mean Message Rounds between Connectivity Changes

YKD
DFLS
1−pending
MR1p
Simple MajorityFigure 4-2: System availability with 6 connectivity changes.\Fresh Start" { each run begins brand-new in the original state.information between connectivity changes, and they have no additional knowledgewith which to decide on a primary component.For a moderate to high mean time between changes, YKD is more available thanDFLS; in approximately 3% of the runs, YKD succeeds in forming a primary whereasDFLS does not. This di�erence stems from the additional round of messages re-quired by DFLS before an ambiguous session can be deleted. As long as the am-biguous session is not deleted, it imposes extra constraints which limit the system'schoice of future primary components. Both algorithms degrade gracefully as the num-ber of connectivity changes increases, that is, their availability is almost una�ected.These results illustrate the importance of minimizing the number of required messagerounds. By running quickly, an algorithm is less likely to be interrupted during itsexecution.The 1-pending and MR1p algorithms are signi�cantly less available than YKDand DFLS. Furthermore, their availability degrades drastically as the number of con-32

0 2 4 6 8 10 12
40

50

60

70

80

90

100

S
ys

te
m

 A
va

ila
bi

lit
y

pe
rc

en
ta

ge
s

System Availability −− 12 Changes

Mean Message Rounds between Connectivity Changes

YKD
DFLS
1−pending
MR1p
Simple MajorityFigure 4-3: System availability with 12 connectivity changes.\Fresh Start" { each run begins brand-new in the original state.nectivity changes increases. This degradation is due to the fact that these algorithmscannot make any progress whenever they cannot resolve an ambiguous session. Inthe worst case, 1-pending requires hearing the outcome of its ambiguous session fromall of its members. Thus, permanent absence of some member of the latest ambigu-ous session may cause eternal blocking. Although MR1p requires only a majority,it requires �ve message rounds to complete, making it more prone to interruption.This emphasizes the value of YKD's ability to make progress even when some of thealgorithm's prior ambiguous sessions cannot be resolved.In the \fresh start" tests with two connectivity changes, we observe that MR1p isalmost as available as to YKD. This is due to the fact that there can be at most oneambiguous session to resolve between the two connectivity changes, and that YKDand MR1p are equally powerful at resolving a single ambiguous session.However, as the connectivity changes increase in number and frequency, MR1pis less available than all other algorithms studied. Although it is able to resolve33

0 2 4 6 8 10 12
40

50

60

70

80

90

100
System Availability −− 2 Cascading Changes

S
ys

te
m

 A
va

ila
bi

lit
y

pe
rc

en
ta

ge
s

Mean Message Rounds between Connectivity Changes

YKD
DFLS
1−pending
MR1p
Simple MajorityFigure 4-4: System availability with 2 cascading connectivity changes.\Cascading" { each run begins where the previous ends.ambiguous sessions more often than 1-pending, it requires a very large number ofmessage rounds to execute. The algorithm is interrupted so frequently compared tothe others that it is unable to readily make progress.YKD and DFLS provide almost identical availability in tests with cascading fail-ures as in tests with a fresh start. These results indicate that even if the algorithmsare run for extensive periods of time, their availability does not degrade. Note thatfor the two, six and twelve connectivity change cases, these results are computed overa running period with 2,000, 6,000, and 12,000 connectivity changes, respectively.In contrast, the availability of the 1-pending algorithm dramatically degrades inthe cascading situation. In cases with numerous frequent connectivity changes, thealgorithm is often even less available than the simple majority. This shows that if the1-pending algorithm is run for extensive periods of time, its availability continues todecrease. This makes the algorithm inappropriate for use in systems with lengthy lifeperiods. 34

0 2 4 6 8 10 12
40

50

60

70

80

90

100
System Availability −− 6 Cascading Changes

S
ys

te
m

 A
va

ila
bi

lit
y

pe
rc

en
ta

ge
s

Mean Message Rounds between Connectivity Changes

YKD
DFLS
1−pending
MR1p
Simple MajorityFigure 4-5: System availability with 6 cascading connectivity changes.\Cascading" { each run begins where the previous ends.The MR1p algorithm has further di�culties when the failures are allowed to cas-cade. Although it is able to resolve its single ambiguous session more quickly than1-pending can, it is still hampered by the large number of message rounds it requiresin order to form a primary. In addition, YKD is sometimes able to make progresseven when one or more ambiguous sessions are present. MR1p does not have thisluxury.4.2 Measurements of Pending Ambiguous SessionsThe number of ambiguous sessions retained by an algorithm a�ects not only thememory consumption but also the size of messages being exchanged, as the algorithmsexchange information about ambiguous sessions. The message size a�ects systemperformance in a way that was not accounted for in the availability tests above.

35

0 2 4 6 8 10 12
40

50

60

70

80

90

100
System Availability −− 12 Cascading Changes

S
ys

te
m

 A
va

ila
bi

lit
y

pe
rc

en
ta

ge
s

Mean Message Rounds between Connectivity Changes

YKD
DFLS
1−pending
MR1p
Simple MajorityFigure 4-6: System availability with 12 cascading connectivity changes.\Cascading" { each run begins where the previous ends.In this section we study the number of ambiguous sessions retained by threealgorithms: YKD, the unoptimized version of YKD, and DFLS. We do not study thenumber of ambiguous sessions retained by 1-pending or MR1p as it is at most one.The statistics were collected by one of the processes during the fresh start testsdescribed above. The cascading tests exhibit similar behavior. For each run, theprocess reported both the number of ambiguous sessions stored when the networksituation stabilized at the end of the run and the number of ambiguous sessions presenteach time a connectivity change occurred. The results were then summarized foreach 1000-run case, (a case is speci�ed by the algorithm, the number of connectivitychanges and the rate).In Figure 4-7, we show the percentage of runs for which the algorithm retainedambiguous sessions for each case. Figure 4-8 shows the percentage of connectivitychanges at which the algorithm retained ambiguous sessions for each case. Each data-point is comprised of three bars. In order from left to right, the bars represent YKD,36

0 2 4 6 8 10 12 14
0

20

40

Ambiguous Sessions Retained when Stable −− 2, 6, 12 connectivity changes

2 Changes
1 Ambiguous Session
2 Ambiguous Sessions
3 Ambiguous Sessions
4+ Ambiguous Sessions

0 2 4 6 8 10 12 14
0

20

40

P
er

ce
nt

ag
e

of
 T

im
e

R
et

ai
ni

ng
 S

es
si

on
s

6 Changes

0 2 4 6 8 10 12 14
0

20

40

Mean Message Rounds between Failures

12 Changes

Figure 4-7: Ambiguous sessions with YKD, unoptimized YKD, and DFLS.\Stable State" { measuring how many ambiguous sessions are retained when thealgorithm has completed a run.unoptimized YKD, and DFLS. The total height of the bar indicates the percentageof the time in which ambiguous sessions were retained. The bar is further dividedinto blocks, which indicate the actual number of ambiguous sessions retained. Thebottom block represents a single retained ambiguous session, the second { two andso forth.The most striking phenomenon observed is how few ambiguous sessions are re-tained. The theoretical worst-case number of ambiguous sessions that could be re-tained by DFLS and the unoptimized YKD is exponential in the number of processes,and for YKD it is linear. However, in all of our runs, including the highly unsta-ble cascading ones, the number of ambiguous sessions retained never exceeded 9 for37

0 2 4 6 8 10 12 14
0

20

40

Ambiguous Sessions Sent over Network −− 2, 6, 12 connectivity changes

2 Changes
1 Ambiguous Session
2 Ambiguous Sessions
3 Ambiguous Sessions
4+ Ambiguous Sessions

0 2 4 6 8 10 12 14
0

20

40

P
er

ce
nt

ag
e

of
 T

im
e

R
et

ai
ni

ng
 S

es
si

on
s

6 Changes

0 2 4 6 8 10 12 14
0

20

40

Mean Message Rounds between Failures

12 Changes

Figure 4-8: Ambiguous sessions with YKD, unoptimized YKD, and DFLS.\In Progress" { measuring how many ambiguous sessions are retained during thealgorithm's run, hence how many it must transmit across the network.DFLS, and never exceeded 4 for YKD. The number of retained ambiguous sessionswas dominantly zero. This demonstrates how unlikely the worst-case scenarios trulyare.This is primarily relevant to message size. Figure 4-8 is indicative of the numberof ambiguous sessions retained at times when the algorithm must broadcast thoseambiguous sessions to the other processes in the new view. The size of that broadcastmessage is directly related to the number of ambiguous sessions. The fact that thenumber of ambiguous sessions retained is generally quite low means that the broadcastmessage size is also fairly stable.
38

Please note that at the conclusion of a successful run, none of the algorithmsretains any ambiguous sessions at all. Therefore, the bars are higher for DFLS simplydue to the fact that succeeds less often, that is, it is less available. The bars for YKDand unoptimized YKD are identical in height since these algorithms have identicalavailability. However, the unoptimized YKD retains a higher number of ambiguoussessions, on average.

39

Chapter 5
Conclusions
We have compared the availability of four1 dynamic voting algorithms. Our measure-ments show that the blocking period has a signi�cant e�ect on the availability of dy-namic voting algorithms in the face of multiple subsequent connectivity changes. Thise�ect was overlooked by previous availability analyses of such algorithms (e.g., [7, 10]).We have shown that the number of processes that need be contacted and thenumber of message rounds required in order to resolve past ambiguous attempts sig-ni�cantly a�ect the availability. This is especially true as there are more connectivitychanges, and as these changes become more frequent. The 1-pending and MR1p al-gorithms degrade drastically as the number and frequency of connectivity changesincrease. In highly unstable runs with cascading connectivity changes, they are evenless available than the simple majority algorithm. For 1-pending, this is because itsometimes requires a process to hear from all the members of its retained ambiguoussession before progress can be made. MR1p does not have such a strong restriction,but the number of message rounds it requires to resolve an ambiguous session andform a primary is prohibitively high.In contrast, the YKD algorithm [12] degrades gracefully as the number and fre-quency of connectivity changes increase. It is nearly as available in runs with cas-cading connectivity changes as it is in runs with a fresh start. This feature makes1Again, we do not consider unoptimized YKD here, since its availability is equal to that of YKD.40

the algorithm highly appropriate for deployment in real systems with extensive lifespans.The DFLS algorithm [5] degrades as gracefully as the YKD algorithm. However,it is less available than YKD for all failure patterns. This illustrates the e�ect of thespeed at which attempts are resolved on the availability.We have also measured the number of ambiguous sessions typically retained byYKD, unoptimized YKD, and DFLS. All of them retain surprisingly few ambiguoussessions during their operation, especially considering that the worst-case performancefor DFLS and unoptimized YKD is exponential in the number of processes. Thismeans that the amount of memory required to run the algorithm and the size of themessages which must be broadcast can both be constrained well in normal operation {in runs with 64 processes, message sizes can typically be constrained to two kilobytesor less.5.1 Future WorkThe set of algorithms we study is representative, but not comprehensive. We can-not study every algorithm ever suggested, nor can we be sure to implement everyalgorithm in a manner faithful with the authors' intent. We invite other researchersto use our framework2 in order to study additional algorithms and to compare themwith those studied here.We also recognize that other failure models and probability functions can be ex-plored as well. For example, we have not demonstrated algorithms' availability if oneof the processes from the original view crashes, nor did we use anything other thana uniform probability distribution. We also did not take message size into accountwhen computing availability. Researchers may also wish to use our implementation ofYKD and its variants as a basis for developing and running other tests on the existingalgorithms.2Our testing framework code is publicly available from http://theory.lcs.mit.edu/�idish/test-env.html. 41

Bibliography
[1] Y. Amir. Replication Using Group Communication Over a Partitioned Network.PhD thesis, Institute of Computer Science, The Hebrew University of Jerusalem,Jerusalem, Israel, 1995.[2] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication sub-system for high availability. In 22nd IEEE Fault-Tolerant Computing Symposium(FTCS), July 1992.[3] Y. Amir and A. Wool. Evaluating quorum systems over the internet. In IEEEFault-Tolerant Computing Symposium (FTCS), pages 26{35, June 1996.[4] K. Birman and R. van Renesse. Reliable Distributed Computing with the IsisToolkit. IEEE Computer Society Press, 1994.[5] R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman. A dynamic view-orientedgroup communication service. In 17th ACM Symposium on Principles of Dis-tributed Computing (PODC), pages 227{236, June 1998.[6] A. El Abbadi and S. Toueg. Maintaining availability in partitioned replicateddatabases. ACM Transactions on Database Systems, 14(2):264{290, June 1989.[7] S. Jajodia and D. Mutchler. Dynamic voting algorithms for maintaining theconsistency of a replicated database. ACM Transactions on Database Systems,15(2):230{280, 1990.

42

[8] L. Lamport. The part-time parliament. ACM Transactions on Computer Sys-tems, 16(2):133{169, May 1998. Also Research Report 49, Digital EquipmentCorporation Systems Research Center, Palo Alto, CA, September 1989.[9] C. Malloth and A. Schiper. View synchronous communication in large scalenetworks. In 2nd Open Workshop of the ESPRIT project BROADCAST (Number6360), July 1995.[10] J.F. Paris and D.D.E. Long. E�cient dynamic voting algorithms. In 13th Inter-national Conference on Very Large Data Bases (VLDB), pages 268{275, 1988.[11] L. Rodrigues and P. Verissimo. xAMp, a protocol suite for group communication.RT /43-92, INESC, January 1992.[12] E. Yeger Lotem, I. Keidar, and D. Dolev. Dynamic voting for consistent primarycomponents. In 16th ACM Symposium on Principles of Distributed Computing(PODC), pages 63{71, August 1997.

43

