
Beeping a Maximal Independent Set Fast∗

Stephan Holzer1 and Nancy Lynch2

1 MIT
holzer@mit.edu

2 MIT
lynch@csail.mit.edu

Abstract
We adapt a recent algorithm by Ghaffari [7] for computing a Maximal Independent Set in the
Local model, so that it works in the significantly weaker Beep model. For networks with
maximum degree ∆, our algorithm terminates locally within time O((log ∆+log(1/ε)) · log(1/ε)),
with probability at least 1− ε.1 The key idea of the modification is to replace explicit messages
about transmission probabilities with estimates based on the number of received messages.

After the successful introduction (and implicit use) of local analysis, e.g., in [2, 3, 7, 10], we
study this concept in the Beep model for the first time.

By doing so, we improve over local bounds that are implicitly derived from previous work (that
uses traditional global analysis) on computing a Maximal Independent Set in the Beep model
for a large range of values of the parameter ∆. At the same time, we show that our algorithm in
the Beep model only needs to pay a log(1/ε) factor in the runtime compared to the best known
MIS algorithm in the much more powerful Local model. We demonstrate that this overhead
is negligible, as communication via beeps can be implemented using significantly less resources
than communication in the Local model. In particular, when looking at implementing these
models [14], one round of the Local model needs at least O(∆) time units, while one round in
the Beep model needs O(log ∆) time units, an improvement that diminishes the loss of a log(1/ε)
factor in most settings.

1998 ACM Subject Classification Dummy classification – please refer to http://www.acm.org/
about/class/ccs98-html

Keywords and phrases Dummy keyword – please provide 1–5 keywords

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

Computing a Maximal Independent Set (MIS) is a widely studied problem in distributed
computing theory. One of the weakest models of communication in which this problem has
been studied is the Beep model, e.g., [1, 4, 22]. In this model, nodes can only send a beep

∗ Supported by: AFOSR Contract Number FA9550-13-1-0042, NSF Award 0939370-CCF, NSF Award
CCF-1217506, and NSF Award CCF-AF-1461559.

1 Errata note: In our brief announcement [13], we claimed as a side-effect of our local bound, the analysis
of [7] can be used to show that this algorithm terminates globally within time O(log2 ∆) + 2O(

√
log log n)

with high probability in n, the number of nodes in the network. While it is unknown whether this bound
can be achieved, it is not clear that it can be derived via the graph-scattering technique used in [7] in
combination with the deterministic algorithm of [19]. At least these techniques cannot be translated in
the desired time in the beeping model as we thought of. The main reason is that in [19] nodes exchange
more information than the Beep model can handle in the time we hoped to achieve. Studying local
complexity is of interest by itself as recently demonstrated by the papers cited in the abstract.

© S.Holzer and N. Lynch;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.acm.org/about/class/ccs98-html
http://www.acm.org/about/class/ccs98-html
http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Beeping a Maximal Independent Set Fast

or listen in order to communicate, i.e., no sender-collision detection is available. In the
version of this model with synchronized clocks, collision detection, and simultaneous wakeup,
the authors of [1] showed how to compute an MIS w.h.p. in time O(log2 n) by adapting a
classical MIS algorithm by Luby [16]2. Subsequently [22] showed how to improve this bound
to O(logn) by adapting an improved version of Luby’s algorithm and tuning the probabilities
of nodes joining the MIS over time.

Local analysis is a concept that was recently introduced or implicitly used, e.g., in [2, 3,
7, 10]. While traditional global complexity guarantees, that with high probability all nodes
terminate after a certain runtime (that typically depends on the size n of the network), local
complexity guarantees that each particular node v terminates with probability 1− ε after a
number of rounds, that typically depends only on the degree of the node (or network) and the
probability 1− ε that needs to be achieved. Local complexity is of interest in settings, where
nodes could immediately continue with other computations once they found their own part
of the solution to a problem. Constant probabilities often suffice, which results in speedups.
This was demonstrated, e.g., in [10] that uses iterated computations of MIS in the SINR
model, where only a very low local success probability is required that ultimately yielded an
improvement of global broadcast in the SINR model, as previous approaches always worked
with global w.h.p. guarantees. Further motivation on local analysis as an addition to global
analysis can be found in [7].

We study the concept of local analysis in the Beep model for the first time. This analysis
improves over the canonical local complexity that can be derived from state-of-the-art
algorithm and analysis [22] for a large range of values of the parameter ∆ by reducing the
runtime from O(logn) to O((log ∆ + log(1/ε)) · log(1/ε)) as we focus on local termination
and local correctness:

I Definition 1 (local (1 − ε)-correctness of MIS algorithms). Let ε > 0. Any node v can
produce output IN or OUT indicating v’s membership to the MIS. This output cannot be
revised once it is made.

Local independence: If a node v outputs IN, then 1) with probability 1, none of v’s
neighbors previously decided to be IN, and 2) with probability at least 1− ε none of v’s
neighbors decides IN at the same time, and 3) with probability 1 none of v’s neighbors
will output IN later.
Maximality: If a node outputs OUT, then at that moment some neighbor is already IN
the MIS. Each node will eventually make a decision with probability approaching 1.

I Theorem 2 (Local (1− ε)-correctness (safety property)). In our Algorithm of Section 3.2,
when a node v terminates, it has made its (locally (1− ε)-correct) decision whether it is in
the MIS or not.

Note that this safety property is conditioned on the termination of the algorithm and the
next Theorem states that the algorithm terminates in any specific node with probability
1− ε within the stated time bounds.

I Theorem 3 (Local termination complexity (liveness property)). Let ε > 0. In our Algorithm
of Section 3.2, for each node v, the probability that node v terminates within the first
O((log ∆ + log(1/ε)) · log(1/ε)) slots and makes a locally (1− ε)-correct decision is at least
1 − ε. This holds even if the outcome of the coin tosses outside N+

2 (v) := V \ N1(v) are
determined adversarially.

2 They also consider other settings and argue that the assumption that all nodes wake up at the same
time can be removed while keeping the same runtime.

S.Holzer and N. Lynch 23:3

We obtain this bound by adapting Ghaffari’s algorithm [7] for the Local model to work in
the Beep model. The key idea in the proof and algorithm of Theorem 3 is that, instead of
maintaining full information about its neighbors’ states, a node keeps a single binary estimate
for the aggregate state of its entire neighborhood. In particular, the agents in the Beep
algorithm in this paper estimate probabilities by observing their neighbors’ probabilistically-
generated transmission behavior. This results in improved runtimes and we show that the
performance of the algorithms is close to the case in which the agents have exact information.
If we shift our focus away from the pure notation of communication rounds or slots, it turns
out that in many cases our new algorithms in the Beep model are even more efficient than
the original Local model algorithm. The intuition for this is that it takes Ω(B∆) time units
to emulate one round of the Local model in the Beep model in case the message size is
B, whereas each time slot of the Beep model can be emulated by one round in the Local
model.

Our approach is partly inspired by recent research on biological distributed algorithms
such as [17], social networks, and other new forms of distributed algorithms. In such systems,
agents do not obtain precise information about other agents’ preferences and tendencies, and
estimate these from observing their behavior via sampling. It is interesting to understand how
to improve efficiency by using stochastic information that arises from sampling distributions,
rather than collecting exact information on these distributions.

I Remark. Note that this local bound is only a factor of O(log(1/ε)) larger than the
state-of-the-art O(log ∆ + log(1/ε)) bound in the Local model [7].

1.1 Motivation, Related Work and Our Contribution

As pointed out above, communication in the Local model and Beep networks and their true
implementation cost differ significantly. This requires us to be very careful when translating
Local algorithms into Beep networks in order to not lose the strength of the techniques
behind them and to obtain algorithms that are in many settings even more efficient due
to the simpler nature of the Beep model. The key difference between the models is, that
within one communication round in the Local model, a node can exchange arbitrarily large
and different messages with all of its neighbors at the same time, while in Beep networks a
node can beep or not beep (this conveys less information than a conventional 1-bit message,
where one has the option to send 0/1, or not send at all) and can only send or receive one
message in the same slot. In the Beep model, this message is restricted to contain one beep
of information and therefore each round in the Beep model needs much less resources than
a round in the Local model.

A straightforward and unfortunately inefficient way to emulate the behavior of one round
in the Local model in the Beep model by performing a local broadcast of each node’s
message that it would send in the Local model. This takes Θ(B∆ + ∆ · poly log(∆/εack))
time slots, where B denotes the size of the message in the Local model, and the local
broadcast is guaranteed to succeed with probability 1− εack (ack stands for acknowledged
broadcast).

However, this simple technique of translating algorithms from the Local model into the
Beep model is highly inefficient for algorithms that have small Local runtimes, as ∆ is a
factor in the Beep runtime. In particular, this is much higher than the (local termination)
complexity of O((log ∆ + log(1/ε)) · log(1/ε)) that we achieve (note that ε is often a constant
when using local complexity), which can be exponentially faster than the factor ∆ lost by
applying the simple transfer technique described above.

CVIT 2016

23:4 Beeping a Maximal Independent Set Fast

Finally, we remark that readers familiar with the O(log∗ n) MIS algorithm of Schneider
and Wattenhofer [21] in the Local model for Bounded Growth Graphs might wonder why we
did not translate their algorithm, as Bounded Growth Graphs capture most wireless network
topologies in which the Beep model is used. We show in Theorem 18 that their algorithm
cannot be translated to the Beep model without major modifications without paying a ∆
factor in the runtime and would therefore be exponentially worse than our solution.

Local complexity:

model time probability reference
Beep O((log ∆ + log(1/ε)) log(1/ε)) 1− ε Thm. 3
Local O(log ∆ + log(1/ε)) 1− ε [7]

Global complexity:

model time probability reference
Beep O(log n) w.h.p. [22]

O(log2 n) w.h.p. [1]

O(log ∆) + 2O(
√

log log n) w.h.p. [7]
Local O(log n) w.h.p. [16]

2O(
√

log n) 1 [19]

Table 1 Overview of Results and Previous Work: Comparison of our results in the Beep model
with results in the Local model and with previous work in the Beep and Local models. We
include global bounds for completeness. While these global bounds yield w.h.p. guarantees, we
want to stress that the key use of local analysis is when the success probability 1− ε is small, e.g.
constant. As demonstrated in [10], w.h.p. improvements on global broadcast can be achieved using
local bounds on MIS computations that are locally successful with very low probability. Also our
Ω(∆) lower bound in Theorem 18 on translating the Schneider Wattenhofer algorithm for Bounded
Growth Graphs applies to global and local complexity, as this algorithm is deterministic, in which
case these measures are the same.

2 Models and Definitions

Local and Beep Models: In both models, the network is abstracted as an undirected
graph G = (V,E) where |V | = n. All nodes wake up simultaneously. Communication occurs
in synchronous rounds. In the Local model (e.g., [7, 20]), each node knows its graph
neighbors. Nodes communicate reliably, where in each round nodes can exchange an arbitrary
amount of information with their immediate graph neighbors. On the other hand, in the
Beep model (e.g., [1, 4]), nodes do not know their neighbors. Nodes communicate reliably
and a node can choose to either beep or listen. If a node v listens in slot3 t it can only
distinguish between silence (no neighbor beeps in slot t) or the presence of one or more beeps
(at least one neighbor beeps in in slot t).

Graph-related Definitions: We denote the set of h-hop neighbors of node v in G by
Nh(v) = {u ∈ V | d(u, v) ≤ h}, where d(u, v) indicates the hop-distance between two nodes
in a graph. By ∆ := maxv∈V |N1(v)| − 1 we denote the maximum degree of G. A set of

3 To disambiguate, we refer to the rounds of the Beep model as slots.

S.Holzer and N. Lynch 23:5

vertices I ⊆ V is an independent set of G if no two nodes in I are neighbors in G. An
independent set I ⊆ V is a maximal independent set (MIS) of G if, for all v ∈ V \ I, the set
I ∪ {v} is not independent. An event occurs with high probability (w.h.p.), if it occurs with
probability at least 1− n−c for some constant c ≥ 1.

3 Algorithm

We first review the MIS Algorithm of [7] for the Local model and then describe our
modification for the Beep model.

3.1 Algorithm of [7] in the Local Model
The MIS algorithm of [7] runs for

R := β
(

log ∆ + log(2/ε)
)

= O
(

log ∆ + log(1/ε)
)

rounds, where β = 1300. In each round t, each node v has a desire-level pt(v) for joining the
MIS, which initially is set to p0(v) = 1/2.

I Definition 4 (Effective Degree, Ghaffari [7]). The sum of the desire-levels of neighbors of v
is called its effective-degree dt(v), i.e., dt(v) =

∑
u∈N(v) pt(u).

The desire-levels change over time:

pt+1(v) =
{
pt(v)/2, if dt(v) ≥ 2,
min{2pt(v), 1/2}, if dt(v) < 2 .

The desire-levels are used as follows: In each round, node v gets marked with probability
pt(v). If v is marked, and no neighbor of v is marked, v joins the MIS and gets removed along
with its neighbors. Using the power of the Local model, in each round t, nodes exchange
exact values of pt(u) with all their neighbors.

3.2 Our Algorithm in the Beep Model
In emulating the MIS algorithm of Section 3.1 in the Beep model, we do not require that a
node v learn the exact values of pt(u) for all neighbors u in order to compute dt(v). Instead,
we allow node v to decide, based on how many beeps v receives within a certain number of
rounds, whether dt(v) is more likely to be larger than 1/10 or smaller than 22. To estimate
which of these two scenarios applies, node v beeps with probability pt(v) for a certain number
of times and counts how often it received a beep when it is not sending. The number of
received beeps serves as an indicator to estimate whether dt(v) might be smaller than 22 or
larger than 1/10. To perform this estimation, we define time intervals in the Beep model.
Eventually, an sequence of two intervals and one additional time slot is used to emulate each
round of the Local algorithm [7] in the Beep model.

I Definition 5 (Interval of slots). We define an interval to consist of

I := 2000
(

ln(1500) + ln(2/ε)
)

= O
(

log(1/ε)
)

slots in the Beep model.

CVIT 2016

23:6 Beeping a Maximal Independent Set Fast

During the first interval, the algorithm computes the ratio of the number of beeps
received (bt(v)) to the total number of slots in which v listened during the interval (ct(v)) as
follows: in each interval t, every node v maintains two counters ct(v) and bt(v). Counter ct(v)
counts the number of slots that v is listening to the channel during interval t. Counter bt(v)
counts the number of beeps v receives during interval t. Both counters ct(v) and bt(v) are
initialized to 0 at the beginning of interval t. In each of the I slots of interval t, every node v
decides randomly to beep with probability pt(v) ≤ 1/2. In each slot where v decides not to
send, node v listens to the channel and increases ct(v) by one. If v receives a signal in this
particular slot, node v increases its counter bt(v) by one. After all I time steps of interval t,
node v compares ct(v) and bt(v). In case ct(v) ≤ I/3 we assume node v did not listen often
enough to make an informed decision and let v randomly choose whether bt(v)/ct(v) > 1

5 or
not with probability 1/2 for each choice – this is particular important when ct(v) = 0, as
this avoids a division by 0. If ct(v) > I/3, node v decides to update its desire-level:

pt+1(v) =
{

pt(v)/2, if bt(v)/ct(v) > 1
5

min{2pt(v), 1/2}, if bt(v)/ct(v) ≤ 1
5

. (1)

Thus, we replace the condition dt(v) ≥ 2 in the algorithm of [7] by the condition bt(v)/ct(v) >
1
5 . The ratio is chosen to be 1/5, as in the analysis it turns out that this is a good ratio in
order to decide whether the effective degree dt(v) is larger than 1/10 or smaller than 22.

Notice that 1) these two ranges overlap, as we trade the uncertainty in making this
decision for a shorter runtime while guaranteeing strong probabilities on correct decisions,
and 2), that the overlap range [1/10, 22] is chosen to capture a safety-distance around 2 that
yields simple calculations in the proof.

For the sake of readability we replace β used in the definition of the number of rounds R
in the Local algorithm in Section 3.1 by γ, which is the analogous to constant β used in [7]
and above when we analyze the Beep algorithm. For the sake of simpler analysis, we set
γ := 80β = 104000.

While in Ghaffari’s algorithm, in each round t, nodes exchange exact values of pt(u) with
all their neighbors, we show how nodes estimate the value of pt(u).

During the second interval, a node decides whether to join a set M . Note that in
Theorem 3 we state thatM is locally an MIS with probability at least 1−ε. At the beginning
of this second interval, a node v gets marked with probability pt(v) and does not change
whether it is marked during the interval. If a node is marked in an interval, it selects half of
the time slots in the interval uniformly at random and beeps in these time slots and listens in
the others. If v is marked, and does not receive a beep in those time slots where v decides to
listen, node v concludes that none of its neighbors is beeping and thus none of its neighbors
is marked marked, and v joins M .

During the final time slot that completes the emulation of a round of the Local
algorithm, v beeps to indicate it joined M . In this time slot, each node that beeps or
receives a beep gets removed, which corresponds to removing all nodes in M along with their
neighbors in Ghaffari’s MIS algorithm.

4 Local Complexity of our MIS Algorithm

We demonstrate that for each node v, the accuracy of deciding whether v’s effective degree
is high or low is good enough for the translated algorithm of [7] to work correctly and fast
in the Beep model, i.e., our algorithm does not require v to learn exact desire-values of its
neighbors. In Section 4.1 we define good nodes as those nodes that estimate the effective

S.Holzer and N. Lynch 23:7

degree (see Definition 4) accurately enough for our purposes, and bound the probability for
a node being a good node in Lemma 7. In Section 4.2 we show that most of the time most
nodes adjust their desire-values correctly in correspondence with the effective degree even
they do not know its exact value. These Lemmas provide the tools for our modified analysis
of [7] in Section 4.3.

4.1 For Most Nodes, Effective Degrees are Classified Correctly
We introduce the notion of good nodes in Definition 6, which are essentially nodes that
correctly classify whether their effective degree is high or low. We show that if node v is
good in interval r, node v (i) draws correct conclusions about whether its effective degree is
high or low, and (ii) adjusts its desire-values in the same way as in the algorithm of [7]. The
first statement follows directly from Definition 6 and the second materializes in the proof
of Theorem 3. In Section 4.3, these insights will allow us to modify the analysis of [7] to
obtain statements about good nodes. In order to apply this for a large part of the graph, we
show that most nodes are good, which we use in Section 4.3 to obtain the desired statements
about local complexity and correctness.

I Definition 6 (Good node). A node v is a good node in an interval t, if at the end of the
interval the following three conditions are satisfied:
1. ct(v) > I/3, and
2. If bt(v)/ct(v) > 1

5 , then dt(v) ≥ 1/10, and

3. If bt(u)/ct(v) ≤ 1
5 , then dt(v) ≤ 22.

The main result of this section is that many nodes are good, which is formalized as
follows:

I Lemma 7. For any node v and interval t, the probability that v is a good node is at least
1− 2e−I/100.

We prove Lemma 7 at the end of this Subsection. To prepare for the proof, we introduce
two sub-Lemmas, Lemma 8 and 9, to bound the probability that bt(v)/ct(v) reflects whether
the effective degree is high or low based on the condition bt(v)/ct(v) > 1

5 that we use rather
than dt(v) ≥ 2 that is used by [7]. This differs from [7], as in the Local model, full information
on neighbor’s effective degrees can be obtained within one round of communication, while
we can only operate with beeps. These Lemmas use the Chernoff Bound stated in Lemma 20
in the Appendix for completeness.

The following Lemma states that for any node v, most of the time property 1. in
Definition 6 is satisfied, such that v listens often enough to make an informed decision.

I Lemma 8. For any node v and interval t, Pr(ct(v) > I/3) > 1− e−I/36.

Proof. In each of the first I slots of interval t, the probability that v is not listening is
pt(v), which is upper bounded by 1/2 in the definition of our algorithm and we conclude
E[ct(v)] ≥ I/2. We apply Chernoff Bound 2. of Lemma 20 (see Appendix) for X = ct(v)
with δ := 1/3 and obtain that Pr(ct(v) ≤ I/3) ≤ e−I/36. J

The next Lemma states that for any node v, most of the time property 2. or 3. in
Definition 6 are satisfied.

I Lemma 9. Assume ct(v) > I/3 and let bt(v)/ct(v) be the ratio computed by node v in an
interval.

CVIT 2016

23:8 Beeping a Maximal Independent Set Fast

1. If bt(v)/ct(v) > 1
5 , then Pr(dt(v) ≥ 1/10) ≥ 1− e−I/100, and

2. if bt(v)/ct(v) ≤ 1
5 , then Pr(dt(v) ≤ 22) ≥ 1− e−I/100.

Notice that although dt(v) changes its value over time, we can bound dt(v) at time t with
the probabilities stated in this Lemma independent of the history of dt(v).

Proof. For each time slot i of interval t, let qt(v) be the probability that at least one of the
neighbors of node v beeps during slot i of interval t. Note that for each time slot i, the
probability qt(v) is the same and choices are made for each i independently. In the following,
for each t, we consider ct(v) to be fixed evaluations of the random variable describing them.
Define independent random variables X1, . . . , Xct(v) for each of the ct(v) time slots in interval
t during which v was listening, where Xi = 0 or 1 indicates whether v received a Beep during
the i’th slot in which v listened. Define X :=

∑ct(v)
i=1 Xi, the random variable that indicates

how many beeps v receives during interval t. We conclude that E[X] = qt(v) · ct(v). Now
observe that bt(v) is the sum of ct(v) evaluated random variables Xi, and thus an evaluation
of X.

Proof of Statement 1: Assume bt(v)/ct(v) > 1
5 . We first show that in this case Pr[qt(v) ≥

1/5] ≥ 1 − e−I/66 and then derive the claimed statement on dt(v). Observe that the
Bernoulli distribution X is defined using qt(v) and qt(v) only, and Pr[X/ct(v) ≤ 1/5] is a
monotonically increasing function of qt(v) and vice versa. This allows us to turn the analysis
around and analyze the probability that an evaluation of X is larger than ct(v)/5 given
qt(v), and draw conclusions on qt(v) from the event X is larger than ct(v)/5. Therefore,
we now assume for this part of the proof that qt(v) ≤ 1/10. In this case we know that
Pr[X/ct(v) ≥ 1/5] = Pr[X/ct(v) ≥ (1 + (1

5qt(v) − 1))qt(v)ct(v)]. We apply Chernoff Bound
1. of Lemma 20 (see Appendix) with δ = 1

5qt(v) − 1, which we can do due to the assumption
of qt(v) ≤ 1/10, and obtain that

Pr

[
X/ct(v) ≥

(
1 +

(
1

5qt(v) − 1
))

qt(v)ct(v)
]

= Pr
[
X ≤ (1 + δ)E[X]

]

≤ e−
δ2

2+δ E[X] = e

−

(
1

5qt(v)−1
)2

2+
(

1
5qt(v)−1

) qt(v)ct(v)

= e
−

(
1
5−2qt(v)+5qt(v)2

)
1+5qt(v) ct(v) ≤ e−

c
22 ≤ e−I/66

due to assuming qt(v) ≤ 1/10 and ct(v) > I/3 (see statement of the Lemma). From this we
derive that if X ≥ ct(v)/5, then Pr[qt(v) ≥ 1/10] ≥ 1− e−I/60. Now we lower bound dt(v)
based on qt(v). We know that qt(v) = 1−

∏
u∈N(v)(1− pt(u)) and dt(u) =

∑
u ∈ N(v)pt(u).

As the dt(v) is minimized when the whole probability mass of qt(v) is aggregated in one
node, we conclude that Pr[dt(v) ≥ 1/10] ≥ 1− e−I/66 ≥ 1− e−I/60.

Proof of Statement 2: Assume bt(v)/ct(v) ≤ 1
5 . In the following proof, for each time slot

of interval t, we lower bound the probability that the distribution-probability qt(v) is smaller
than 1/2. Then we upper bound dt(v) based on qt(v). To be more specific, we first show
that in case an evaluation of X is smaller than ct(v)/5 it is Pr[qt(v) ≤ 1/2] ≥ 1− e−I/100.

As argued above, we can turn the analysis around and assume qt(v) > 1/2 and show
in the text below, that under this assumption, Pr[X/ct(v) > 1

5] ≥ 1 − e−I/90 and in turn
draw conclusions on the probability of qt(v) > 1/2 when X/ct(v) > 1

5 is given. Assuming
qt(v) > 1/2, we derive Pr[X/ct(v) > 1

5] = Pr[X ≤ ct(v)/5] ≤ Pr[X ≤ 2/5qt(v)ct(v)] =
when Pr[X ≤ 2/5E[X]], as E[X] = qt(v)ct(v). We apply Chernoff Bound 1. of Lemma 20
(see Appendix) to upper bound the probability that an evaluation of the random variable X

S.Holzer and N. Lynch 23:9

is larger than 2 times its expectation, which we achieve with δ = 3/5

Pr
[
X ≤ 2/5E[X]

]
= Pr

[
X ≤ (1− δ)E[X]

]
≤ e−

δ2

2+δ E[X] = e−
9
65 ·qt(v)ct(v)

Using the assumption that qt(v) > 1/2 and the assumption that ct(v) > I/3 (see Lemma
statement), we can bound this further by e−3I/130 ≤ e−I/100. Now we know that if qt(v) > 1/2,
then Pr[X/ct(v) ≤ 1/5] ≤ e−I/100. We conclude that if X/ct(v) ≤ 1/5, then Pr[qt(v) >
1/2] ≤ e−I/100, as X is defined using qt(v) and qt(v) only, and defined in a way that the
implied Bernoulli distribution monotonically increases when qt(x) increases. From this we
derive that if X/ct(v) ≤ 1/5, then Pr[qt(v) ≤ 1/2] ≥ 1− e−I/100

Next, we know that qt(v) = 1−
∏
u∈N(v)(1− pt(u)) and dt(u) =

∑
u∈N(v) pt(u). As the

whole probability mass of qt(v) could be distributed evenly among v’s neighbors, the worst
case is qt(v) = 1− (1− pt)∆ ≥ 1− e−∆/pt with pt(u) = pt for any u ∈ N(v). From this we
conclude that 1/2 ≥ 1− e−∆/pt , which in turn yields pt ≤ −∆/ log(1/2) ≤ 5∆ < 22∆.

Due to qt(v) ≤ 1/2 with probability 1−e−I/100, we conclude pt/∆ ≤ 22. The definition of
dt(v) yields dt(v) ≤ 22. From this we conclude Pr[dt(v) ≤ 22] ≥ 1− e−I ≥ 1− e−I/100. J

Now we are ready to prove Lemma 7, which follows from combining Lemma 8 and
Lemma 9 to cover all properties of Definition 6 and multiplying the probabilities of the
related events stated in the Lemmas we use. We state the full proof in the full version of the
paper, see Appendix, Lemma 7.

Proof. (of Lemma 7). Due to Lemma 8, we know that Pr(ct(u) > I/3) > 1 − e−I/36,
such that property (1) of a good node (Definition 6) is satisfied. Now we can assume
ct(u) > I/3 with probability 1 − e−I/36, then the probability that properties (2) and (3)
of a good node are satisfied is at least 1 − e−I/100 each due to Lemma 9. We conclude
that all three conditions are satisfied for node u in an interval with probability larger than(
1− e−I/36) (1− e−I/100) > 1 − 2e−I/100. Finally, notice that bt(v) is a realization of the
random variable X. J

4.2 Changes of Effective Degrees Based on Neighbor’s Behavior
We show in Lemma 10 that in any interval, the effective degree of a node v (see Definition 4),
that is contributed by a set of neighbors with high effective degree in that interval, shrinks
by almost a factor of 2 with significant probability. This is a key part in the modification of
the analysis of [7] in Section 4.3. This is stated in a formal way in Lemma 10 and proven
using Lemma 7.

The following Lemma is a key Lemma. It allows us to bound the amount of dt+1(v) that
is contributed by neighbors of v with high effective degree based on the amount of dt(v) that
is contributed by neighbors of v with high effective degree. A similar bound is used in [7],
where it is obtained in a straight forward way thanks to the power of the Local model. We
need to (and already did) work a bit harder to obtain a similarly useful bound. This Lemma
shows that the precise way of increasing/reducing the desire value of a node based on dt(v),
which requires full knowledge of all these values of neighbors of v in [7], can be replaced by
estimating dt(v) using beeps. Of course the bound is less strong as in [7], we obtain only a
decrease of 51/100 vs. 1/2 in [7]. Also, as we operate probabilistically, we can only claim
this bound with a certain probability. Fortunately this probability is sufficiently high and
the ratio 51/100 strong enough to allow us to modify the analysis of [7] correspondingly, as
we do in the rest of this section.

CVIT 2016

23:10 Beeping a Maximal Independent Set Fast

I Lemma 10. For any interval t and node v, it is the case that dt+1(v|N≥22
1,t (v)) ≤

51
100dt(v|N

≥22
1,t (v)) with probability at least 1− 300e−I/2000.

The proof of this Lemma splits up the amount of dt(v) that is contributed by nodes with
high effective degree into two parts. One part is contributed by good nodes, the other one
by bad nodes. We mainly need to work to keep the contribution of bad nodes in check, as
they may increase their desire values when they shouldn’t (but they don’t know). This can
be done using Lemma 7 and a Chernoff Bound. However, problems arise when the set of
high effective degree neighbors is small, smaller than 100I to be precise. In this case the
probabilities that we obtain we Chernoff are not strong enough to modify the analysis of [7],
i.e., not negatively exponential in I, and we treat this case of less than 100I nodes separately.
The following notation helps us to formalizes some of the above:

I Definition 11 (N≥22
1,t (v), N̄≥22

1,t (v) and dt(v|S)). Denote by N≥22
1,t (v) = {u ∈ N1(v)|dt(u) ≥

22} the neighbors of v with dt(u) ≥ 22. Denote by N̄≥22
1,t (v) = {u ∈ N≥22

1,t (v)|u is not good}
the set of nodes in N≥22

1,t (v) that are not good. Let S ⊆ N1(v) be a set of nodes, then we
denote by dt(v|S) =

∑
u∈S pt(u) the amount of dt(v) contributed by nodes in S.

Proof. (of Lemma 10). Based on how node v adjusts its value pt(v) when executing the al-
gorithm (see Equation 1 that depends on the bt(v)/ct(v) ratio), we can bound dt+1(v|N≥22

1,t (v))
to be smaller than 1

2dt(v|N
≥22
1,t (v) \ N̄≥22

1,t (v)) + 2dt(v|N̄≥22
1,t (v)) and this is derived directly

from the definition of the algorithm and in correspondence to how we modify the Algorithm
of Ghaffari. Now we can write 1

2dt(v|N
≥22
1,t (v) \ N̄≥22

1,t (v)) as 1
2dt(v|N

≥22
1,t (v))− 1

2dt(N̄
≥22
1,t (v))

and when applied to the previous bound derive that dt+1(v|N≥22
1,t (v)) ≤ 1

2dt(v|N
≥22
1,t (v)) +

3
2dt(v|N̄

≥22
1,t (v)). To analyze the probability, that this is at most 51

100dt(v|N
≥22
1,t (v)), we dis-

tinguish two cases. In case 1, we consider |N≥22
1,t (v)| < 100I and in case 2 we consider

|N≥22
1,t (v)| ≥ 100I.
Case 1, |N≥22

1,t (v)| < 100I: The probability that no node in N≥22
1,t (v) is bad, i.e.,

N̄≥22
1,t (v) = ∅ is (1 − 2e−I/100)|N

≥22
1,t (v)|, due to Lemma 7. By the assumption of case

1, that there are at most I neighbors u of v with dt(u) ≥ 22, this can be bounded by
≥ (1−2e−I/100)100I , which in turn is larger than 1−100I ·2e−I/100 = 1−200e−I/100+log(I) ≥
1− 300e−I/100 ≥ 1− 300e−I/2000 due to the choice of I.

Case 2, |N≥22
1,t (v)| ≥ 100I: We bound the probability that at most a 1/150 fraction of

the nodes in N≥22
1,t (v) is bad, i.e., |N̄≥22

1,t (v)| ≤ |N≥22
1,t (v)|/150. To do so, we apply Chernoff

Bound 2 of Lemma 20 , see Appendix, for Xi = node vi ∈ {v1, . . . , v|N≥22
1,t (v)|} = N≥22

1,t (v) is

good. Based on Lemma 7, we can conclude that E[X] ≥ (1− 2e−I/100) · |N≥22
1,t (v)|. Choosing

δ = 1/300, we can bound

Pr
[
X ≤ (1− 1/150) · |N≥22

1,t (v)|
]
≤ Pr

[
X ≤ (1− 1/300)(1− 2e−I/100) · |N≥22

1,t (v)|
]

= Pr
[
X ≤ (1− δ)E[X]

]
= e−

δ2

2 E[X] = e−
1

180000E[X] ≤ e−
1

180000 (1−2e−I/100)·|N≥22
1,t (v)|

Now we use the assumption dt(v|N≥22
1,t (v)) and the definition of I to derive that this is

smaller than e−
1

180000 (1−2e−I/100)·100I ≤ e−I/2000 ≤ 300e−I/2000. From this we conclude that
Pr[|N̄≥22

1,t (v)| ≤ |N≥22
1,t (v)|/150] ≥ 1− 300e−I/2000.

When combining both cases 1 and 2, we obtain that with probability at least 1 −
300e−I/2000, the value of dt+1(v|N≥22

1,t (v)) is smaller than

50
100dt

(
v|N≥22

1,t (v)
)

+ 3
2

1
150dt

(
v|N≥22

1,t (v)
)

= 51
100dt

(
v|N≥22

1,t (v)
)
. J

S.Holzer and N. Lynch 23:11

4.3 Proof of Theorem 3
Now we are prepared to follow the analysis of [7] and adapt it to our modifications of the
algorithm. Using the notation used in the last two sections, Theorem 2 and 3 are derived
from:

I Theorem 12. For each node v, the probability that v makes a (locally (1 − ε)-correct)
decision within the first R intervals is at least 1 − ε. Furthermore, this holds even if the
outcome of the coin tosses outside N+

2 (v) are determined adversarially.

The rest of this Section is devoted to proving Theorem 12. First we define two kinds of
golden intervals for a node v, by analogy with the definition of golden rounds in [7], then
we show that it is likely that there are many golden intervals in case a node does not join
M (Lemma 15). Then we argue that, if there are that many golden intervals, then it is
likely that a node gets removed due to either joining M or having a neighbor that joins M
(Lemma 16). To prove Lemma 15 we use Lemma 10; to prove Lemma 16 we use Lemma 7.

I Definition 13. A node v has likely-low effective degree if bt(v)/ct(v) ≤ 1
5 , and has likely-high

effective degree if bt(v)/ct(v) > 1
5 .

I Definition 14 (Golden intervals). Interval t is a golden interval of type 1, if bt(v)/ct(v) ≤ 1
5

and pt(v) = 1/2. Interval t is a golden interval of type 2 if bt(v)/ct(v) > 1
5 and at least

dt(v)/11 of dt(v) is contributed by neighbors u with dt(u) ≤ 22 (nodes of low effective degree).

These are called golden intervals because, as we will see, in the first type, v has a constant
chance of joining M and in the second type, there is a constant chance that one of those
neighbors of v with low effective degree joins M and thus v gets removed.

The following lemma and proof follow along the lines of a similar proof in [7], for Theorem
3.1, and is modified to our setting using the Lemmas proven so far.

I Lemma 15. By the end of interval R, with probability at least 1 − 1500e−I/2000, either
v has joined, or has a neighbor in M , or at least one of its golden interval counts reached
R/13.

Proof. (Note that we only prove claims about nodes joining M , not claims about nodes who
join M being independent. An analysis of independence is performed as part of the proof of
Theorem 12 at the end of this section). Let g1 and g2 respectively be the number of golden
intervals of types 1 and 2 for v during this period. We assume, that by the end of interval R,
node v is not removed and g1 ≤ R/13. Otherwise the statement of the Lemma would already
be satisfied. Based on this assumption, we lower bound in the remaining part of this proof
the number g2 of golden intervals of type-2 while taking into account that any node u’s ratio
bt(u)/ct(u) might not always correctly represent whether dt(u) ≥ 2/5 or dt(u) ≤ 22.

Let h be the number of intervals where bt(v)/ct(v) > 1
5 . Notice that the changes in pt(v)

are governed by the condition bt(v)/ct(v) > 1
5 and intervals with bt(v)/ct(v) > 1

5 are exactly
the ones in which pt(v) decreases by a 2 factor. Since the number of 2 factor increases in
pt(v) can be at most equal to the number of 2 factor decreases in it, we get that there are at
least R− 2h intervals in which pt(v) = 1/2.

Now out of these g1 > R− 2h intervals, at most h of them can be when bt(v)/ct(v) > 1
5 .

Hence, g1 ≥ R − 3h. As we have assumed g1 ≤ R/13, we get that R − 3h ≤ R/13, and
conclude that h ≥ R · 4/13.

Let us consider the changes in the effective-degree dt(v) of v over time. Note that dt(v)
reflects all changes of each neighbor u’s value pt(u) based on whether bt′(v)/ct′(v) > 1

5 in

CVIT 2016

23:12 Beeping a Maximal Independent Set Fast

previous intervals t′ < t. This is independent of the actual value of dt′(v) at that time and
thus dt(v) takes all previously made errors into account.

If bt(v)/ct(v) > 1
5 and this is not a golden interval of type-2, then we know that at

most 1
11dt(v) of dt(v) is contributed by neighbors u with low effective degree dt(u) ≤ 22,

such that the fraction of dt(v) contributed by those nodes doubles at most. On the other
hand, at most all dt(v) of dt(v) is contributed by neighbors u with high effective degree
dt(u) ≥ 22, i.e., dt(v|N≥22

1,t (v)) ≤ dt(v). Due to Lemma 10 we know that dt+1(v|N≥22
1,t (v)) ≤

51
100dt(v|N

≥22
1,t (v)) ≤ 51

100dt(v) with probability at least 1−300e−I/2000. From this we conclude
that with probability at least 1 − 300e−I/2000, dt+1(v) ≤ 2 1

11dt(v) + dt+1(v|N≥22
1,t (v)) ≤

765
1100dt(v) < 7

10dt(v). There are g2 golden intervals of type-2. We just showed that for all
intervals with bt(v)/ct(v) > 1

5 , that are not among these g2 golden intervals, the effective-
degree dt(v) shrinks by at least a 7/10 factor with probability at least 1 − 300e−I/2000

and this is independent of whether bt(v)/ct(v) > 1
5 indicates the correct range of dt(v).

Now let g be the number of intervals with bt(v)/ct(v) > 1
5 , that are not among these

g2 golden intervals. We show that with probability at least 1 − 1500e−I/2000 in at least
4g/5 of these intervals the effective-degree dt(v) shrinks by at least a 7/10 factor. Let
k be the number of intervals in which the effective-degree dt(v) does not shrink by at
least a 7/10 factor, then E[k] ≤ 300e−I/2000g. Using Markov’s Inequality yields that
Pr(k ≥ g/5) ≤ E[k]

g/5 ≤
300e−I/2000g

g/5 ≤ 1500e−I/2000

In the g2 golden intervals of type-2 and the g/5 intervals in which bt(v)/ct(v) > 1
5 that

are not golden intervals of type-2 and in which the effective-degree dt(v) does not shrink
by at least a 7/10 factor, the value of dt(v) increases by at most a 2 factor. Each of these
g2 + g/5 intervals cancels the effect of at most 2 shrinkage intervals, as (7/10)2×2 < 1. Thus,
ignoring the total of at most 3(g2 + g/26) ≤ 3(g2 +R/26) intervals lost due to type-2 golden
intervals and their cancellation effects, every other interval with bt(v)/ct(v) > 1

5 pushes the
effective-degree of v down by a 2/3 factor. This cannot (continue to) happen more than
log3/2 ∆ times, as that would lead the effective degree to exit the dt(v) ≥ 1/10 region for any
node. Hence, the number of intervals in which bt(v)/ct(v) > 1

5 is at most log3/2 ∆+3(g2+g/5)
with probability at least 1−1500e−I/2000. That is, h ≤ log3/2 ∆+3(g2 +g/5) with probability
at least 1 − 1500e−I/2000. Since h ≥ R4/13, we get g2 > R/26 with probability at least
1− 1500e−I/2000 due to the definition of R. J

The following Lemma is adapted from a proof of Lemma 3.3 of [7] based on the new
values and thresholds used in the modified algorithm and the corresponding definitions we
introduced in this paper, and takes the error source and probabilistic behavior into account,
which we generate due to not communicating effective degrees explicitly when (compared to
what Ghaffari [7] does in the Local model).

I Lemma 16. In each type-1 (resp., type-2) golden interval, with probability at least 1/2000,
v joins M (resp., one of v’s neighbors joins M). If R/13 intervals are golden, then the
probability that v has not decided whether it is in M during the first R intervals is at most
ε/2. These statements hold even if the coin tosses in N+

2 (v) are determined adversarially.

Proof. In each type-1 golden interval, node v gets marked with probability 1/2. In such an
interval it is the case that bt(v)/ct(v) ≤ 1

5 and therefore dt(v) ≤ 3 with probability at least
1− 2e−I/100 by Lemma 7. We conclude that the probability that no neighbor of v is marked

S.Holzer and N. Lynch 23:13

is (
1− 2e−I/100

)
·
∏

u∈N(v)

(1− pt(u)) ≥
(

1− 2e−I/100
)
· 4−

∑
u∈N(v)

pt(v)

=
(

1− 2e−I/100
)
· 4−dt(v) ≥

(
1− 2e−I/100

)
· 4−3 > 1/100.

Hence, v joins M with probability at least 1/100 · 1/2 > 1/2000.
Now consider a type-2 golden interval. In such an interval it is bt(v)/ct(v) > 1

5 and due
to Lemma 7 we know that dt(v) ≥ 1/10 with probability at least (1 − 2e−I/100). For the
sake of analyis, suppose we walk over the set L of low effective degree neighbors of v one
by one and expose their randomness until we reach a node that is marked. We will find a
marked node with probability at least(

1− 2e−I/100
)
·

(
1−

∏
u∈L

(
1− pu(t)

))
≥
(

1− 2e−I/100
)
·
(

1− e−
∑

u∈L
pu(t)

)
≥
(

1− 2e−I/100
)
·
(

1− e−dt(v)/11
)
≥
(

1− 2e−I/100
)
·
(

1− e−1/110
)

>
(

1− 2e−I/100
)
· 0.009 > 0.008,

where the last bound is due to choice of I ≥ 2000 · log 1500. When we reach the first low
effective degree neighbor u that 1) satisfies the condition dt(u) ≤ 22 of v’s type-2 golden
interval, and 2) that is marked, then the probability that no neighbor of u gets marked is at
least ∏

w∈N(u)

(
1− pt(w)

)
≥ 4−

∑
w∈N(u)

pt(w) ≥ 4−dt(u) ≥ 1/64.

Hence, with probability at least 0.008/64 = 1/8000, one of the neighbors of v joins M .
We now know that in each golden interval, v gets removed with probability at least

1/8000, due to joining M or having a neighbor join M . Thus, using Lemma 15, we get that
the probability that v does not get removed is at most

(1− 1/8000)R/13 = (1− 1/8000)8000(log ∆+log(2/ε)) ≤ ε/(2∆) ≤ ε/2

due to the choice of γ = 104000 in the definition of R at the end of Section 3.2. J

Finally we are ready to prove Theorem 12.

Proof. (of Theorem 12). Due to Lemma 15, by the end of interval R, with probability at
least 1 − 1500e−I/2000, either v has joined, or has a neighbor in M , or at least one of its
golden interval counts reached R/13. In the latter case, we know due to Lemma 16, that
with probability at least 1− ε/2, a node v terminates within R intervals and decides whether
it is in M . Therefore, the probability that a node terminates within R intervals and decides
whether it is in M is at least 1− ε/2, as we chose I = 2000(ln(1500) + ln(2/ε)).

Finally we need to prove local (1− ε)-correctness of the computation, which is handled
in the second intervals of each emulated rounds of the Local algorithm. The analysis above
based on Lemma 15 argues that a node joins M with a certain probability or gets removed
due to a neighbor joining M . This satisfies the maximality condition of an MIS - at any
given point in time, no node that has already decided OUT could decide IN, i.e., be added to
M , without violating independence among the nodes that have decided IN or OUT. Now we
argue that independence is guaranteed locally with probability at least 1− ε 2−1000

∆ , i.e., no

CVIT 2016

23:14 Beeping a Maximal Independent Set Fast

two neighboring nodes join M with probability at least 1− ε 2−1000

∆ . As neighbors of a node
v that joins the M are getting removed, we only analyze the probability that two neighbors
join M in the same round (in which case the MIS condition is violated locally). This can
only happen if: given a node v, a subset U of v’s neighbors marked themselves and all of
them chose the same subset of time slots in the second interval to beep as v did, such that
none of them recognizes that the other node marked itself as well. Furthermore, to ensure
that there is a neighbor u of v that indeed joins M , node u must not have neighbors besides
v that marked themselves, or all of u’s neighbors that marked themselves also chose a set of
time slots to beep that is a subset of those slots that u (and thus as v) chose, and therefore u
would not discover any of its neighbors that are marked - and thus u and v would both join
M . The probability that this event happens is maximized if exactly one pair of neighbors
v and u marked themselves and they have no further neighbors that marked themselves.
Now the probability that both v and u choose the same subset of half of the time slots of
the second interval that has I time slots in total is 1/

(
I/2I≤1/(I/2)I/2

)
. Due to the choice of

I = 2−2000(log ∆+log(2/ε)), we conclude that this is smaller than 2−1000(log ∆+log(2/ε)) = ε 2−1000

∆ .
Combining this with the termination probability of the first paragraph of the proof yields
that a node terminates and (locally) correctly decides whether it belongs to the MIS with
probability (1− ε/2) ·

(
1− ε 2−1000

∆

)
≥ 1− ε. J

Finally we are ready to prove Theorem 12 and Theorem 2.

Proof. (of Theorem 3 and Theorem 2). We use Theorem 12 and multiply the number of
intervals R by the number I of time steps in each of the two intervals and add the final time
slot that completes the emulation. We obtain that the total runtime is R · (2I + 1)O((log ∆ +
log(1/ε)) · log(1/ε)). Correctness follows from Theorem 12 as well. J

References
1 Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Haeupler, and

Fabian Kuhn. Beeping a Maximal Independent Set. Distributed Computing, 26(4):195–208,
2013.

2 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality of
distributed symmetry breaking. Journal of the ACM (JACM), 63(3):20, 2016.

3 Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the lovász local
lemma and graph coloring. In Proceedings of the 2014 ACM symposium on Principles of
distributed computing, pages 134–143. ACM, 2014.

4 Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In Interna-
tional Symposium on Distributed Computing, pages 148–162. Springer, 2010.

5 Alejandro Cornejo, Nancy Lynch, Saira Viqar, and Jennifer L Welch. Neighbor discovery
in mobile ad hoc networks using an abstract mac layer. In Communication, Control, and
Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on, pages 1460–1467.
IEEE, 2009.

6 Alejandro Cornejo, Saira Viqar, and Jennifer L Welch. Reliable neighbor discovery for
mobile ad hoc networks. Ad Hoc Networks, 12:259–277, 2014.

7 Mohsen Ghaffari. An improved distributed algorithm for Maximal Independent Set. In
Proceedings of the 2015 ACM-SIAM Symposium on Discrete Algorithms, pages 270–277,
2016.

8 Mohsen Ghaffari, Erez Kantor, Nancy Lynch, and Calvin Newport. Multi-message broad-
cast with abstract MAC layers and unreliable links. In Proceedings of the 33rd Annual ACM

S.Holzer and N. Lynch 23:15

Symposium on Principles of Distributed Computing, PODC 2014, Paris, France, July 15-
18, 2014, pages 56–65, extended version available at http://arxiv.org/abs/1405.1671, 2014.

9 Michel Goemans. Chernoff bounds, and some applications. In MIT course 18.310 lecture
notes: http://math.mit.edu/ goemans/18310S15/chernoff-notes.pdf.

10 Magnus M Halldorsson, Stephan Holzer, and Nancy Lynch. A local broadcast layer for
the sinr network model. In Proceedings of the 34th Annual ACM Symposium on Principles
of Distributed Computing, PODC 2014, Donostia-San Sebastián, Spain, July 21-23, 2015,
page tba, 2015.

11 Magnus M Halldorsson, Stephan Holzer, and Nancy Lynch. A local broadcast layer for the
sinr network model. arXiv preprint arXiv:1505.04514, 2015.

12 Magnus M Halldorsson, Stephan Holzer, and Nancy Lynch. A local broadcast layer for
the sinr network model. In Proceedings of the 34th Annual ACM Symposium on Principles
of Distributed Computing, PODC 2015, Donostia-San Sebastián, Spain, July 21-23, 2015,
pages 129–138, 2015.

13 Stephan Holzer and Nancy Lynch. Brief announcement: Beeping a maximal independent
set fast. In Proceedings of the 30th International Symposium on Distributed Computing,
DISC 2016, Austin, TX, USA, October 12-15, 2014, page tba, 2016.

14 Majid Khabbazian, Dariusz R. Kowalski, Fabian Kuhn, and Nancy A. Lynch. Decomposing
broadcast algorithms using abstract MAC layers. Ad Hoc Networks, 12:219–242, 2014.

15 Fabian Kuhn, Nancy A. Lynch, and Calvin C. Newport. The abstract MAC layer. Distrib-
uted Computing, 24(3-4):187–206, 2011.

16 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
Journal on Computing, 15(4):1036–1053, 1986.

17 Cameron Musco, Hsin-Hao Su, and Nancy Lynch. Ant-inspired density estimation via
random walks. In Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing, page tbd, 2016.

18 Calvin C. Newport. Consensus with an abstract MAC layer. In Magnús M. Halldórsson and
Shlomi Dolev, editors, ACM Symposium on Principles of Distributed Computing, PODC
’14, Paris, France, July 15-18, 2014, pages 66–75, 2014.

19 Alessandro Panconesi and Aravind Srinivasan. Improved distributed algorithms for coloring
and network decomposition problems. In S. Rao Kosaraju, Mike Fellows, Avi Wigderson,
and John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium on Theory of
Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pages 581–592, 1992.

20 David Peleg. Distributed computing. SIAM Monographs on discrete mathematics and
applications, 5, 2000.

21 Johannes Schneider and Roger Wattenhofer. A log-star distributed maximal independent
set algorithm for growth-bounded graphs. In Rida A. Bazzi and Boaz Patt-Shamir, editors,
Proceedings of the Twenty-Seventh Annual ACM Symposium on Principles of Distributed
Computing, PODC 2008, Toronto, Canada, August 18-21, 2008, pages 35–44, 2008.

22 Alex Scott, Peter Jeavons, and Lei Xu. Feedback from nature: an optimal distributed
algorithm for Maximal Independent Set selection. In Proceedings of the 2013 ACM Sym-
posium on Principles of Distributed Computing, pages 147–156, 2013.

A Lower Bound on Translating the Schneider and Wattenhofer
Algorithm for Bounded Growth Graphs

Schneider and Wattenhofer presented an algorithm running in time O(log∗N) on a restricted
class of graphs, see Definition 17, that captures a variety of wireless network topologies.
Here, [1, N] indicates the ID space of the n nodes in the network. Theorem 18 claims that
this algorithm cannot be translated to the Beep model without losing its efficiency in the

CVIT 2016

23:16 Beeping a Maximal Independent Set Fast

following sense: direct translation of the algorithm fails. Major new techniques in the Beep
and Local model would need to be developed and the algorithm be modified correspondingly.

I Definition 17 (Bounded growth graphs). A graph G = (V,E) is (polynomial) growth-
bounded if there is a polynomial bounding function f(r) such that for each node v ∈ V , the
number of nodes in the r-neighborhood NG,r(v) of v in G that are in any independent set of
G is at most f(r) for all r ≥ 0.

I Theorem 18. A straightforward implementation of the MIS algorithm of [21] takes Ω(∆)
time slots in the Beep model.

We provide some intuition behind Theorem 18 by reviewing how the algorithm of Schneider
and Wattenhofer [21] works and argue that it cannot be translated into the Beep model
without losing a ∆ factor, such that its efficiency can not be translated to the Beep model
without major modifications. To do so, we construct a network in the plane, in such a way,
that the minimum value stored in the neighbors of a node v is different for most nodes v and
argue that identifying this value for each node cannot be done fast in the Beep model. This
is a key ingredient of the Algorithm by Schneider and Wattenhofer, which therefore does not
run fast in the Beep model without major new insights.

Review of algorithm and result of [21]: In the Local model, when applied on Bounded
Growth Graphs, the algorithm runs in deterministic time O(log∗N), where nodes have IDs
in the range of [N], which is likely [poly n]. Recall that in the algorithm of [21], each node is
in one of 5 states at any time and stores a value that changes over time. A node v changes
its state and value based on the minimum value of v’s neighbors. The state change involves
a bit by bit comparison between the node’s current value and the minimum value around it.
Therefore this minimum value needs to be known precisely and cannot be approximated.

Already Schneider and Wattenhofer [21] point out that the Local model assumes perfect
transmission of all messages in each round and therefore their algorithm is less appropriate
for wireless networks. We show that this algorithm can not be emulated in the Beep model
using less than Ω(∆) slots.

Proof. (Proof sketch of Theorem 18) Consider a graph derived as follows: ∆ nodes u1, . . . , u∆
located equidistantly on a line in ascending order with distance 1 to each. Let the transmission
range be ∆/2 and assume nodes are connected to each other when they are within transmission
range. Assume each node ui has value 2(i− 1) + 1 or 2i, which is determined by an adversary.

In this graph, the minimum value in the neighborhood of node u∆/2+i is 2(i− 1) + 1 or
2i. Node u∆/2+i can only determine this value by communicating with node ui. This is true
for all nodes u∆/2+1, . . . , u∆ and only one pair of nodes can communicate at the same time,
such that at least ∆/2 value need to be exchanged. This takes at least Ω(∆) slots. J

B Discussion and Implications for the Abstract MAC Layer

We describe a close connection between the Beep model and abstract MAC layers (a.k.a
Local Broadcast Layers) that were introduced by Kuhn et al. [15] and recently got increased
attention, e.g., in [5, 6, 8, 11, 12, 14, 15, 18]. We show how our MIS algorithm can be
translated to this model. Abstract MAC layers were proposed as a model that provides an
alternative approach to the various graph-based models with the goal of abstracting away
low level issues with message contention. In this model one can express guarantees for local
broadcast while hiding the complexities of managing message contention. These guarantees
include message delivery latency bounds: an acknowledgment bound fack on the time for a

S.Holzer and N. Lynch 23:17

sender’s message to be received by all neighbors, and a progress bound fprog on the time for
a receiver to receive some message when at least one neighbor is sending.

Of particular interest with respect to the Beep model is the progress bound. More
formally, the progress bound guarantee is as follows: fix some (u, v) ∈ E and interval of
length fprog throughout which node u is broadcasting a message m; during this interval node
v must receive some message (though not necessarily m, but a message that some location is
currently working on). We consider an enhanced definition of the abstract MAC layer [15],
which provides nodes an abort interface that allows them to abort a broadcast in progress.
This is useful, as we can stop a broadcast after time fprog and know that each node that
should receive a message has indeed received one.

We now provide a high-level idea of how to translate our result from the Beep model to
the abstract MAC layer. We emulate each slot of the Beep model using fprog time in the
abstract MAC layer. For each round t and for any node u that wants to send a beep in slot t,
we inject bcstv(“beep”) into the MAC layer interface at time (t− 1) · fprog + 1 and an abortv
command at time t · fprog to stop the broadcast. Based on the definition of progress, each
node v that has a neighbor that sends a message in slot t of the Beep algorithm, received
a message “beep” in the abstract MAC layer algorithm at time tfprog at the latest. Using
Theorems 2 and 3 we conclude:

I Theorem 19. Given an abstract MAC layer that supports aborts and executes the algorithm
described above, when a node v terminates, it has made its (locally (1− ε)-correct) decision
whether it is in the MIS or not, and the probability that node v terminates within the first
O((log ∆ + log(1/ε)) · log(1/ε) · fprog) slots is at least 1− ε. This holds even if the outcome
of the coin tosses outside N+

2 (v) are determined adversarially.

Thus the cost of our MIS algorithm over abstract MAC depends on the progress bound
only, not the acknowledgment bound. Given that, for radio networks at least, acknowledgment
bounds are much bigger than progress bounds, this produces an efficient MIS algorithm for
the radio network model.

C Basic Chernoff Bounds Used in the Proofs

I Lemma 20 (Chernoff Bounds [9]). Let X =
∑n
i=1Xi, where Xi = 1 with probability pi and

Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E[X] =
∑n
i=1 pi. Then

1. Pr
(
X ≥ (1 + δ)E[X]

)
≤ e−

δ2

2+δ E[X], for all δ > 0, and

2. Pr
(
X ≤ (1− δ)E[X]

)
≤ e−

δ2

2 E[X], for all 0 < δ < 1.

CVIT 2016

	Introduction
	Motivation, Related Work and Our Contribution

	Models and Definitions
	Algorithm
	Algorithm of G16 in the Local Model
	Our Algorithm in the Beep Model

	Local Complexity of our MIS Algorithm
	For Most Nodes, Effective Degrees are Classified Correctly
	Changes of Effective Degrees Based on Neighbor's Behavior
	Proof of Theorem 3

	Lower Bound on Translating the Schneider and Wattenhofer Algorithm for Bounded Growth Graphs
	Discussion and Implications for the Abstract MAC Layer
	Basic Chernoff Bounds Used in the Proofs

