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Abstract. We study a fundamental measure for wireless interference in the SINR model known
as (weighted) inductive independence. This measure characterizes the effectiveness of using
oblivious power — when the power used by a transmitter only depends on the distance to the
receiver — as a mechanism for improving wireless capacity.

We prove optimal bounds for inductive independence, implying a number of algorithmic ap-
plications. An algorithm is provided that achieves — due to existing lower bounds — capacity
that is asymptotically best possible using oblivious power assignments. Improved approximation
algorithms are provided for a number of problems for oblivious power and for power control, in-
cluding distributed scheduling, connectivity, secondary spectrum auctions, and dynamic packet
scheduling.

1. Introduction

One of the strongest weapons for increasing the capacity of a wireless network is power
control. Higher power increases the bandwidth of a single transmission link, while causing more
interference to other simultaneously transmitting links. Given this tension, intelligent power
control is crucial in increasing the spatial reuse of the available bandwidth. Thus it is not
surprising that most contemporary wireless protocols use some form of power control. More
recently, this phenomenon has also been studied theoretically; it was shown in a series of works
that power control may improve the capacity of a wireless network in an exponential [38, 18] or
even unbounded [8] way.

Unrestricted power control is, however, a double-edged sword. In order to achieve the theo-
retically best results, one must solve complex optimization problems, where transmission power
of one node potentially depends on the transmission powers of all other nodes [30]. In real
wireless networks, where communication demands change over time, this may not be an option.
In practical protocols, the transmission power should be independent of other concurrent trans-
missions, which leaves it to only depend on the distance between transmitter and receiver. This
is known as oblivious power control.

Many questions immediately rise in the wake of the previous assertion: What is the price
of restricting power control to oblivious powers? Which of the infinitely many oblivious power
schemes are good choices? Once an oblivious power scheme is chosen, what algorithmic results
can be achieved?

In this work, we look at these questions in the context of the physical or SINR model of
interference, a realistic model gaining increasing attention (see Section 1.2 for historical back-
ground and motivation and Section 2 for precise definitions). In this setting, our work answers
a number of these questions optimally, completing an extensive line of work in the algorithmic
study of the SINR model.

The specific problem at the center of our work is capacity maximization: Given a set of
transmission links (each a transmitter-receiver pair), find the largest subset of links that can
transmit simultaneously.
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Before the present work, the state-of-the-art was as follows. The mean power assignment,
where a link of length ` is assigned power (proportional to) `α/2 (α being a small physical
constant), had emerged as the “star” among oblivious power assignments. It was shown that
using mean power, one can approximate capacity maximization with respect to arbitrary power
control within a factor of O(log n · log log ∆) [18] and O(log n + log log ∆) [22], where ∆ is the
ratio between the maximum and minimum transmission distance and n is the number of links
in the system. This showed that the somewhat earlier lower bound of Ω(n) [8] applied only
when ∆ was doubly exponential. In terms of ∆, it was shown that one must pay an Ω(log log ∆)
factor [18]. The best upper bounds were, as mentioned, either dependent on the size of the input
[18, 22] and as such unbounded (in relation to ∆), or exponentially worse (O(log ∆)) [1, 13].

1.1. Our Contributions. In this paper, we study all power assignments of the form `p·α for
all fixed 0 < p < 1 (setting p = 1

2 results in mean power). Our first result shows that the lower
bound of Ω(log log ∆) is tight. That is, we give a simple algorithm that uses any oblivious power
scheme from the above class, achieving a solution quality within an O(log log ∆)-factor of the
optimum with unrestricted power control. This is an asymptotically optimal solution quality
for this class of schemes according to [18]. For small to moderate values of ∆, e.g., when ∆ is
at most polynomial in n (which presumably includes most real-world settings), our bound is an
exponential improvement over all previous bounds, including the O(log ∆)-bound of [1] (see also
[13]).

This result extends the “star status” from mean power to a large class of assignments. This
class has been studied implicitly before in a wide array of work [22, 21, 27, 33] on “length-
monotone, sub-linear” power assignments, but its relation to arbitrary power was not under-
stood.

Our second main contribution is to improve a number of algorithmic results that use these
power assignments. We shave a logarithmic approximation factor off a variety of problems,
including distributed scheduling [33], secondary spectrum auctions [27], wireless connectivity
[23, 24, 38], and dynamic packet scheduling [2, 32]. Using the capacity relation between oblivious
and arbitrary power (our first result), we strengthen the bounds for these problems in the power
control setting as well.

Though we have presented our work above in terms of algorithmic implications, what we
actually prove are two structural results, from which this host of algorithmic applications follow
essentially immediately. These results are important in their own right, e.g., implying tight
bounds on certain efficiently computable measures of interference.

To provide an intuitive understanding of our results, it is useful to recall the graph theoretic
notion of inductive independence [45]. A graph G has inductive independence number d if there is
an ordering of the vertices v1, v2, . . . , vn such that each vi has at most d edges to any independent
set I ⊆ {vi+1, vi+2, . . . , vn}. An example is provided in Figure 1. The inductive independence
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Figure 1. The graph on the left has inductive independence number 1, the
graph on the right has inductive independence number 2.

property is found in many graph classes (e.g., intersection graphs of convex planar objects are
3-inductive independent [45]), and it has powerful algorithmic implications [19, 27, 45]. For
example, a simple d-approximation algorithm for the maximum independent set problem in
such a graph is as follows: Process the vertices in the prescribed order, adding each vertex to
the solution if it has no edges to nodes already in the solution. By the inductive independence

2



property, the addition of a single vertex disqualifies at most d vertices of the optimal solution
from being added in the future, which implies the claimed approximation factor.

In this paper, we deal with an interference measure that is a natural analog of inductive
independence, applied to certain weighted graphs that model the SINR interference scenario. In
this context, links are vertices, and the edge weights represent the extent of interference between
links. The relevant ordering of the links is the ascending order by length, and “independent sets”
are represented by feasible sets of links (links that can transmit simultaneously).

When feasibility is with respect to arbitrary power assignment, we show that the measure is
bounded by O(log log ∆) (Theorem 3), implying our first capacity result (and its applications).
Technically, this is done by carefully extending the analysis of [18]. When feasibility is with
respect to oblivious power from the above mentioned class, the measure can be bounded by a
constant (Theorem 4), implying the second set of algorithmic results. This involves a potentially
novel contradiction technique (at least in the context of SINR analysis).

Our results hold for general metric spaces and all constants α > 0. Apart from the specific
applications pinpointed here, we expect any number of future algorithmic questions in the SINR
model to directly benefit from these bounds.

1.2. Related Work. Gupta and Kumar [17] were among the first to provide analytical results
for wireless scheduling in the physical (SINR) model. Those early results analyzed special
settings using e.g. certain node distributions, traffic patterns, transport layers etc. In reality,
however, networks often differ from these specialized models and no algorithms were provided to
optimize the capacity. On the other hand, graph-based models yielded algorithms like [34, 41]
but such models do not capture the nature of wireless communication well, as demonstrated in
[16, 36, 39]. Seven years ago, Moscibroda and Wattenhofer [38] started combining the best of
both worlds, studying algorithms for scheduling in arbitrary networks. Since then, the problems
studied in this setting have reflected the diversity of the application areas underlying it – topology
control [10, 29, 40], sensor networks [37], combined scheduling and routing [5], ultra-wideband
[28], and analog network coding [15].

In spite of this diversity, certain canonical problems have emerged, the study of which has
resulted in improvements for other problems as well. The capacity problem is one such problem.
After it was quickly shown to be NP-complete [13], a constant factor approximation algorithm
for uniform power was achieved in [11, 25], and eventually extended to essentially all interesting
oblivious power schemes in [22]. In [30, 31], a constant approximation to the capacity problem
for arbitrary powers was obtained. The relation between capacity using oblivious power and
capacity using arbitrary power was first studied in [18].

Linear power has turned out to be the easiest among fixed power assignments, being the
only one with a constant factor approximation for scheduling [9, 44] and a constant-bounded
interference measure [9]. Whereas there are instances for which linear and uniform power are
arbitrarily bad in comparison with mean power [38], a maximum feasible subset under mean
power is known to be always within a constant factor of subsets feasible under linear or uniform
power [43]. Recently it was shown in [6] that algorithms for capacity-maximization in the SINR
model can be transferred to a model that takes Rayleigh-fading into account, losing only an
O(log∗ n) factor in the approximation ratio. This overview is far from being complete, surveys
can be found in e.g. [14].

Technically, the idea of looking at the interaction between a feasible set and a link was studied
before. The works of Halldórsson [18] and Kesselheim and Vöcking [33] are particularly relevant
– the first in the context of oblivious-arbitrary comparison, and the second in the context of
oblivious power. Our results improve the bounds in those papers to the best possible up to a
constant factor.

1.3. Outline of the Paper. Section 2 lays down the basic setting, including a formal de-
scription of the SINR model. In Section 3, we introduce the interference measure and our two
structural results. We follow this in Section 4 by illustrating two applications of these results,
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one for each of the main theorems. Section 5 contains the proofs of the structural results, and
Section 6 contains a medley of further applications.

2. Model and Definitions

Given is a set L = {l1, l2, . . . , ln} of links, where each link lv represents a unit-size communica-
tion request from a transmitter sv to a receiver rv, both of which are points in an arbitrary metric
space. The distance between two points x and y is denoted d(x, y). We write dvw = d(sv, rw)
for short, and denote by `v the length of link lv. Let ∆ = ∆(L) denote the ratio between the
maximum and minimum length of a link in L.

Let Pv denote the power assigned to link lv, or, in other words, sv transmits with power Pv.
In the physical model (or SINR model) of interference, a transmission on link lv is successful if
and only if

(1)
Pv/`

α
v∑

lw∈S\{lv} Pw/d
α
wv +N

≥ β ,

where N is a universal constant denoting the ambient noise, β denotes the minimum SINR
(signal-to-interference-noise-ratio) required for a message to be successfully received, α > 0 is
the so-called path-loss constant, and S ⊆ L is the set of links scheduled concurrently with lv.

We focus on power assignments Pp, where Pv = `p·αv . This includes all the specific assignments
of major interest: uniform (P0), mean (P1/2), and linear power (P1).

We say that S is P-feasible, if Eqn. 1 is satisfied for each link in S when using power assignment
P. We say that S is power control feasible (PC-feasible for short) if there exists a power
assignment P for which S is P-feasible. We frequently write simply feasible when we refer to
PC-feasible.

Let PC-Capacity denote the problem of finding a maximum cardinality subset of the links in
L that is PC-feasible (that is we maximize the capacity of the channel used). Let OPTP(L)
denote the optimal capacity (i.e., size of the largest P-feasible subset) of a linkset L under power
assignment P, and OPT (L) denote the optimal capacity under any arbitrary power assignment
(i.e., size of the largest PC-feasible subset).

Affectance We use the notion of affectance, introduced in [11] and refined in [25] and [33].
The affectance aPw(v) of link lv caused by another link lw, with a given power assignment P, is
the interference of lw on lv relative to the power received, or

aPw(v) := min

(
1, cv

Pw/d
α
wv

Pv/`αv

)
= min

(
1, cv

Pw
Pv
·
(
`v
dwv

)α)
,

where the factor cv := β/(1 − βN`αv /Pv) depends only on properties of the link lv and on

universal constants. We let apv(w) denote a
Pp
v (w). We frequently drop the power assignment

reference P, which means then that we assume Pp. Conventionally, we define av(v) := 0, since v
does not interfere with itself. For sets S and T of links and a link lv, let av(S) :=

∑
w∈S av(w),

aS(v) :=
∑

w∈S aw(v), and aS(T ) :=
∑

w∈S aw(T ). Using this notation, Eqn. 1 can be rewritten

as aPS (v) ≤ 1 (except for the near-trivial case of S containing only two links).
We introduce two more affectance notations. Let bv(w) := bw(v) := av(w) + aw(v) be the

symmetric version of affectance. Let âv(w) (and b̂v(w)) be the length-ordered version, defined to
be av(w) (and bv(w)) if `v ≤ `w and 0 otherwise, respectively. (This assumes that link-lengths
form a total order.) These are extended in similar ways to affectances to and from sets as defined

for av(w). Notice that aS(S) = b̂S(S) = bS(S)/2.

(Non)-weak links A link is said to be non-weak if cv ≤ 2β. This is equivalent to Pv
`αv
≥ 2βN .

Intuitively, this means that the link uses at least slightly more power than the absolute minimum
needed to overcome ambient noise (the constant 2 can be replaced with any fixed constant larger
than 1). Our theorems often assume links to be non-weak. This reasonable and often-used
assumption [1, 7, 12, 33] can be achieved, if necessary, by scaling the powers.
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Length classes A length class is any set R of links with ∆(R) ≤ 2 (i.e., link lengths vary by
a factor no more than 2). Clearly, any link set L can be partitioned into log ∆(L) length classes.
We also refer to this as nearly-equilength class.

Independence We refer to links lv and lw as q-independent if they satisfy dvw ·dwv ≥ q2 ·`w`v.
A set of mutually q-independent links is said to be q-independent. An example of 1-independence
is given in Figure 2.

      
          

r3

r2

r1s1

s2

s3

Figure 2. Links l1 and l2 are 1.92-independent. Set {l1, l2, l3} is 1.43-independent.

Independence is a pairwise property, and thus weaker than feasibility. The condition is
equivalent to aPv (u) · aPv (u) ≤ cvcw

q2α
, independent of the power assignment P. A feasible set is

necessarily β1/α-independent [18], but there is no good relationship in the opposite direction.
In this paper we provide an independence-strengthening result with better tradeoffs than the

so-called “signal-strengthening” result of [25]. The proof is in Appendix A.

Lemma 1. Any feasible set of links can be partitioned into 2qα/β + 1 or fewer q-independent
sets.

3. Structural Properties

We start by defining the interference measure at the center of this work.

Definition 2. Let L be a set of links, P,Q be two power assignments of L, and let FQ(L) be
the collection of subsets of L that are Q-feasible. Then,

IPQ(L) := max
S∈FQ(L)

max
lv∈L

b̂Pv (S) .

When Pp is used as one (or both) of the assignments, we use p instead of Pp in the sub(super)-

scripts – thus e.g. Ipp (L) instead of I
Pp
Pp (L).

As mentioned in the introduction, this definition is analogous to the inductive independence
number of a graph. In our setting, the weighted graph is formed on the links, that is L is the
set of nodes in the graph. The weight of the (undirected) edge between links lu and lv is bu(v)
= bv(u) (computed according to power assignment P). The ordering is the ascending order of
length. Then, IPQ(L) is an upper bound on how much weight/interference (when using power P)
a link can have into a Q-feasible set containing longer links, just as the inductive independence
number is an upper bound on how many edges a vertex can have to an independent set consisting
of higher-ranked vertices.

When using different power assignments IPQ(L) gives us a handle on comparing the utility of
these power assignments. We primarily use it in the setting where P = Pp, for some p ∈ (0, 1],
and Q is (an) optimal arbitrary power assignment (that maximizes the capacity with respect to
L), allowing us to relate oblivious power to arbitrary power.
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Here we give two structural results that characterize the utility of oblivious power assign-
ments. Both of these are best possible and answer important open questions. The first charac-
terizes the price of oblivious power, i.e., the quality of solutions using oblivious power assignment
relative to those achievable by unrestricted power assignments. The second is a constant upper
bound on the function when both P and Q are the same assignment (specifically, Pp for some
p ∈ (0, 1]).

Theorem 3. For any set L of non-weak links, any 0 < p < 1, and any power assignment Q,
IpQ(L) = O(log log ∆).

Theorem 4. Fix a power assignment Pp for any 0 < p ≤ 1. Then any set L of non-weak links
is O(1)-inductively independent under Pp, i.e., Ipp (L) = O(1).

Both theorems will be proven in Section 5. Theorem 3 improves upon the O(log log ∆ +
log n) bound that is stated implicitly in [22] (and extends it to many more power assignments).
Theorem 4 improves upon the O(log n) bound proven in [33]. Both of these new theorems are
optimal (up to constant factors).

4. Applications

Before embarking upon the rather technical proofs of Theorems 3 and 4, we highlight two
applications, one for each theorem. Further implications are provided in Section 6.

4.1. Capacity Approximation. Using the characterization described above, it is possible to
derive a simple single-pass algorithm for maximizing capacity. This is, in fact, the same algorithm
as used in [22] to maximize fixed power capacity within a constant factor. It is a type of a greedy
algorithm that falls under the notion of “fixed priority”, as defined by Borodin et al. [4]. Recall
the d-approximation to the max-independent set problem described in the introduction. We
added vertices to the solution set in order, and vertices with edges to the solution set so far were
disqualified. Our algorithm below is the natural weighted version of it – each vertex is assigned
a budget of 1/2, and is disqualified from being in the solution if the weight of the edges to it
from the solution so far exceeds the budget (Lines 4 and 5). We ensure that the final set of links
is indeed Pp-feasible in Line 8.

Algorithm 1 Gr(Set L = {l1, l2, . . . , ln} of links in increasing order of length)

1: R0 ← ∅
2: for i = 1 to n do
3: Ri ← Ri−1

4: if b̂pRi−1
(li) < 1/2 then

5: Ri ← Ri ∪ {li}
6: end if
7: end for
8: return X := {lv ∈ Rn : apRn(v) ≤ 1}

Theorem 5. Let L be a set of links. For any Pp for which L is non-weak, Gr chooses a Pp-
feasible set X such that |X| ≥ |S|

2·(2IpQ(L)+1)
for any power assignment Q and any set S ∈ FQ(L).

Proof. The structure of the proof is inspired by that of, e.g., [30]. Let R := Rn and X be the
sets computed by Algorithm Gr on input L. First, we show that the size of S is not much larger
than the size of R, and then relate the size of X to R to conclude the statement.

Consider any power assignment Q and feasible set S as specified by the statement of the
theorem. Let S′ be S′ := S \ R. By definition of IpQ(L), we know that b̂pi (S) ≤ IpQ(L), for each
li ∈ R. Thus,

(2) b̂pR(S) ≤ IpQ(L) · |R| ,
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Now, Algorithm Gr chose none of the links in S′. Using the acceptance criteria of Line 4 and
the definition of b̂p yields that b̂pR(lj) ≥ b̂pRj−1

(lj) ≥ 1/2, for each lj ∈ S′, implying that

(3) b̂pR(S′) ≥ |S′|/2 .

Combining Eqn. 2 and Eqn. 3,

|S′| ≤ 2 · b̂pR(S′) ≤ 2 · b̂pR(S) ≤ 2IpQ(L) · |R| .

Thus,

(4) |S| ≤ |S′|+ |R| ≤ (2IpQ(L) + 1)|R| .

Also, the definition of Gr ensures that the average affectance of links in R is small (at most
half). To see this, observe that the sum of in-affectances is bounded by∑

li∈R
aR(li) =

∑
li∈R

∑
lj∈R

aj(i)

1
=
∑
li∈R

∑
lj∈R:j<i

(aj(i) + ai(j))

2
=
∑
li∈R

∑
lj∈R:j<i

b̂j(i)

3
=
∑
li∈R

b̂Ri−1(i)

4
≤ 1

2
|R| ,

with the numbered transformation explained as follows:

(1) By rearrangement. Here j < i refers to the indices of the links as sorted by Algorithm
Gr. We also use that by the definition of affectance,

∑
li∈R ai(i) = 0.

(2) From the way Gr iterates over the links, j < i implies that `j ≤ `i. Thus b̂j(i) =

aj(i) + ai(j), by definition of b̂.
(3) Since Ri−1 = {lj : lj ∈ R, j < i} as specified by Gr.
(4) By the acceptance criteria of Line 4 of the algorithm.

This implies that the average in-affectance is 1
|R|aR(R) ≤ 1

2 .

At least half the links have at most double the average affectance, or

(5) |X| = |{lv ∈ R|aR(v) ≤ 1}| ≥ 1

2
|R| .

Combining Eqn. 4 and Eqn. 5 yields the statement of the theorem. �

Theorem 6. For any Pp, there is an O(log log ∆)-approximation algorithm for PC-Capacity
that uses Pp.

Proof. By Thm. 5, Gr uses Pp in producing a solution with capacity at most O(1 + IpQ(L))-
factor smaller than the optimum for PC-Capacity. By Thm. 3 this amounts to a O(log log ∆)
factor. �

1

When there is a maximum power level and most links are weak, we can still attain the same
approximation ratio, as done in [22], by solving the problem separately for the weak links using
maximum power.

1SH: Why O(1 + IpQ(L)), not O(IpQ(L))? Because the interference measure can be much smaller than 1.
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4.2. Distributed Scheduling. A fundamental problem in wireless algorithms is to schedule
a given set of links in a minimum number of slots. For Pp (0 ≤ p ≤ 1), O(log n)-approximate
centralized algorithms are known [22]. In [33], the first distributed algorithm was given, with an
O(log2 n)-approximation ratio. Since it is distributed, the algorithm includes an acknowledg-
ment mechanism (via packets sent from receivers to transmitters) to enable links to know when
they have succeeded (and subsequently stop running the algorithm). Assuming “free” acknowl-
edgments, [21] improved the bound to O(log n) (using the same algorithm), but [33] remained
the best result when acknowledgments have to be implemented explicitly.

Here we show that,

Theorem 7. There is a randomized distributed O(log n)-approximate algorithm for Pp-Scheduling
which implements explicit acknowledgments, for any 0 ≤ p ≤ 1.

The cases of p = 0 and p = 1 was shown in [21]; thus, we only need to focus on p ∈ (0, 1). To
explain this result, we introduce another complexity measure.

Definition 8. [33] The maximum average affectance Ap(L) of a link set L is Ap(L) := maxS⊆L
apS(S)

|S| .

It is easily verified that Ap(L) = O(maxQ I
p
Q(L) · χ(L)), where χ(L) denotes the minimum

number of slots in a feasible schedule of L (using arbitrary power). Similarly Ap(L) = O(Ipp (L) ·
χp(L)) where χp(L) denotes the minimum number of slots in a Pp-feasible schedule of L.

Corollary 9. For any set L of links, Ap(L) = O(log log ∆ · χ(L)) and Ap(L) = O(χp(L)).

It was shown in [33] that the distributed scheduling algorithm completes in O(Ap(L) log n)
rounds. Thus, the second bound in Corollary 9 immediately gives us theO(log n)-approximation.
The approximation bound in [33] was worse because it only showed that Ap(L) = O(χp(L) log n).

For comparison with arbitrary power, we can similarly use Corollary 9 to achieve an O(log n ·
log log ∆)-approximation including acknowledgments, improving on theO(log n·(log n+log log ∆))-
factor implied by [33] and [22]. Let PC-Scheduling be the power-control version of the problem.

Corollary 10. There is a randomized distributed algorithm for PC-Scheduling that is O(log log ∆·
log n)-approximate with respect to arbitrary power control optima. It can use any Pp power as-
signment, 0 < p < 1.

5. Proofs of the Structural Results

5.1. Proof of Theorem 3. We need two lemmas (Lemma 11 and 14) to bound affectances of
a link to and from a set of links. Denote p̂ := 1

min(1−p,p) for the rest of this section.

The first lemma handles the set of long links that have relatively high affectance. It originates
in [18] (Lemma 4.4), but is generalized here in two ways: To any power assignment Pp, and to
sets with the weaker property of 2-independence. The proof is given in Appendix B.

Lemma 11. Let p be a constant, 0 < p < 1, τ be a parameter, τ ≥ 1, and Λ = (4(2βτ)1/α)p̂. Let
lv be a link and let Q be a 2-independent set of non-weak links in an arbitrary metric space, where
each link lw ∈ Q satisfies max(aPv (w), aPw(v)) ≥ 1/τ and `w ≥ Λ · `v. Then, |Q| = O(log log ∆).

Lemma 11 bounds the number of longer links that affect a given link by a significant amount.
For affectances below that threshold, we bound their contributions for each length class sepa-
rately.

We first need the following geometric argument. Intuitively, we want to convert statements
involving the link lv into statements about appropriate links within the 2-independent set S.

Proposition 12. Let lv be a link. Let S be a 2-independent set of nearly-equilength links and
let lu be the link in S with duv minimum. Then, dwv ≥ dwu/6, for any lw in S.

The reader may find Figure 3 helpful when reading the proof of Proposition 12.
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Proof. Let D = dwv and note that by definition duv ≤ D. By the triangular inequality and the
definition of lu,

dwu ≤ dwv + duv + duu

= dwv + duv + `u ≤ 2D + `u .(6)

Similarly,

(7) duw ≤ duv + dwv + `w ≤ 2D + `w .

Applying 2-independence, on one hand, and multiplying Eqn. 6 and Eqn. 7, on the other hand,
we have that

4`u`w ≤ dwu · duw ≤ (2D + `u) · (2D + `w) .

This implies that D must be at least min(`u, `w)/2 which in turn is at least max(`u, `w)/4,
using that the links are nearly-equilength. Thus we can bound lu ≤ 4D in Eqn. 6 and obtain
dwu ≤ 6D. �

      
          

dwv

rv

rw

su

sv

sw

ru

dwu

duw

duv

Figure 3. Displays links lu, lw and lw as used in the proofs of Propositions
12 and 13. The distances dwv and dwu that are related to each other in the
Proposition’s statement are represented by red dotted lines. The gray dashed
lines mark distances duw and duv that are used in the proofs as well.

Proposition 13. Let lv be a link. Let S be a 2-independent set of nearly-equilength links and
let lu be the link in S with duv minimum. Then, dvw ≥ dwu/6, for any lw in S.

Proof. The proof is essentially the same as the proof of Proposition 13 with the roles of senders
and receivers switched. For completeness, the proof can be found in Appendix B. �

This leads to the second lemma of this section.

Lemma 14. Let q be a positive real value and lv be a link. Let S be a 2-independent and feasible
set of non-weak links belonging to a single length-class of minimum length at least qp̂/α ·`v. Then,

bpv(S) ≤ max
{lw,lw′}⊆S

bpv({w,w′}) +O(1/q).

Proof. Consider the link lu in S with duv minimum. Since `v ≤ `u, it holds that cv ≤ cu. Then,
we have that

apw(v) = cv

(
`1−pv `pw
dwv

)α
≤ cu

(
(`u/q

p̂/α)1−p`pw
dwu/6

)α
,

using Proposition 12. Continuing from above, The above equals

apw(v) ≤ 6α

qp̂·(1−p)
· cu

`pαw
`pαu
·
(
`u
dwu

)α
=

6α

qp̂·(1−p)
apw(u) ≤ 6α

q
apw(u) ,

where the last inequality follows from our choice of p̂ = 1
min(1−p,p) .
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For any subset S′ ⊆ S \ {lu}, this extends to

(8) apS′(v) ≤ 6α

q
apS′(u) = O(1/q),

as S′ is feasible.
Now consider the link lu′ in S with dvu′ minimum. Since links in S are non-weak, cw ≤ 2cu′ .

Thus,

apv(w) = cw

(
`pv`

1−p
w

dvw

)α
≤ 2cu′

(
(`w/q

p̂/α)p`1−pw

dwu′/6

)α
,

using Proposition 13 and the assumed bound on link lengths. Since lu′ and lw are nearly-
equilength, this is bounded by

apv(w) ≤ 2cu′

(
(`w/q

p̂/α)p(2`u′)
1−p

dwu′/6

)α
,

Rearranging, we get that

apv(w) ≤ 21+α · 6α

qp̂·p
· cu′

`pαw
`pαu′
·
(
`u′

dwu′

)α
≤ 21+α · 6α

q
· apw

(
u′
)
.

For any subset S′ ⊆ S \ {lu′} this extends to

(9) apv
(
S′
)
≤ 21+α · 6α

q
apS′
(
u′
)

= O(1/q),

since S′ is feasible. Combining (8) and (9) yields

bpv(S)− bpv
({
u, u′

})
= apS\{u,u′}(v) + apv

(
S \

{
u, u′

})
= O(1/q),

from which we conclude that

bpv(S) ≤ max
{lw,lw′}⊆S

bpv
({
w,w′

})
+O(1/q).

�

We are now ready to prove the core result, Theorem 3.

Proof. [of Theorem 3] Choose any lv ∈ L and any Q-feasible subset S ⊆ L. We shall show that

b̂pv(S) = O(log log ∆). By the definition of b̂, we can assume that all links in S are larger than

lv, since b̂ is defined in such a way that all shorter links do not contribute to its value. With
this assumption, b̂p(S) = bp(S). We use the independence-strengthening lemma (Lemma 1) to

partition S into at most 21+α

β + 1 different 2-independent feasible sets. Let S′ be one of these
sets.

Let D := log ∆(L) and let Λ = (4(4βD)1/α)p̂. We say that a link lw in S is short if `v ≤ `w <
Λ · `v and long if `w ≥ Λ · `v. We partition S′ into three sets:

S1: Long links lw with bv(w) ≥ 1/D,
S2: Long links lw with bv(w) < 1/D, and
S3: Short links.

We bound the affectance bv(Si) of each set Si separately.
As S1 ⊆ S is 2-independent, since its superset S is 2-independent, we can apply Lemma 11

with τ = 2D. This implies that |S1| = O(log log ∆(S1)) and thus

bv(S1) ≤ 2|S1| = O(log log ∆(S)) = O(log log ∆(L)).

Next we observe that due to the choice of D, the set S (and thus S2) can be partitioned into
O(D) length classes X1, X2, . . . . Each such class Xi satisfies the hypothesis of Lemma 14 with
q := D ≥ 1. Since bv(w) < 1/D, for each lw ∈ Xi, by assumption, Lemma 14 gives that

bv(Xi) = O(1/D) and bv(S2) = O(D) · bv(Xi) = O(1).
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The set S3 can be partitioned into log Λ = O(D) length classes Y1, . . . , Ylog Λ as well. For
each such length class Yi, we apply Lemma 14 with q = 1, giving that bv(Yi) = O(1), for a total
of bv(S3) = O(D) = O(log log ∆). Thus,

bv(S
′) = bv(S1) + bv(S2) + bv(S3) = O(log log ∆),

and

bv(S) ≤
(

2α

β
+ 1

)
bv(S

′) = O(log log ∆).

�

To provide more intuition behind this proof, consider Figure 4, where ∆ is a small constant.
ThereforeTODO: MMH: ?? the set S3 contains only links of similar length to lv. Since S3 is
feasible for some power assignment, these links are not too close to each other and can thus be
scheduled within a few time slots using Pp. Since all long links in this example are of roughly
the same length, they can be partitioned in S1 and S2 using a disc around lv. Note that in
general, the radius of the disc that is used to decide whether a link is in S1 or S2 depends on the
link’s length relative to lv. Now we see that lv hardly interferes with a set of feasible links far
away from lv. There can also not be too much interference with long links that are close to lv
since there can’t be too many of them within the disc as they also need to be feasible for some
power assignment.

      
          

S

S2 S2S1

S3

Figure 4. The top part of the figure displays a set S of links that is (assumed
to be) feasible under some power assignment. Let lv in the proof of Theorem 3
be the red bold link. The center part displays long links of S partitioned (in this
particular example) into S1 and S2 using a disc around lv, the lower part displays
S3 consisting of short links.

5.2. Proof of Theorem 4. The following lemma is the crucial element in the proof.

Lemma 15. Let L be a Pp-feasible set of non-weak links and lv be a link (not necessarily in L).
Then, âv(L) = O(1).

11



Proof. Let L(n) be the set of all Pp-feasible sets of non-weak links of size n. Define g(n) (a
function of n) to be the “optimum upper bound” on â, that is, g(n) := supL∈L(n) suplv âv(L).

Such a function exists, since âv(L) ≤ n for any set L of size n and any lv. We claim that g(n)
is indeed O(1), which implies the lemma. For contradiction, assume g(n) = ω(1).

Since g(n) = ω(1), we can choose a large enough n0 such that all of the following hold:

(a) There exists L ∈ L(n0) and lv such that:

(10) âv(L) ≥ 1

2
g(n0) .

Observe that such an L and lv always exist independent of n0, by the definition of g.

(b) Define f(n) := 1
22

1
4c3

g(n)
, where c3 is a fixed constant to be specified later. Then,

(11) f(n0) ≥ (8 · 3α)1/(pα) .

(c) Lastly,

(12) g(n0) ≥ 16 · (4α + 1)

We prove our lemma by deriving a contradiction to Eqn. 10. To prove this, we partition the
link set L into L1 and L2 where L1 := {lw : `w ≤ f(n0) · `v} and L2 := L \ L1 .

Claim 1. âv(L1) < 1
4g(n0).

Proof. By definition of â, we can ignore links in L1 smaller than lv. Since the maximum length
in L1 is at most f(n0) · `v, the remaining links in L1 can be divided into log f(n0) length classes.

Consider any such length class C. By Lemma 1, C can be partitioned into 2α+1

β + 1 sets that

are feasible and 2-independent. For any such set C ′, we can invoke Lemma 14 to show that
av(C

′) = O(1) and thus av(C) = (21+α/β + 1)O(1) = O(1). By setting c3 to be this constant,
we get that

âv(L1) ≤ c3 log f(n0) = c3

(
1

4c3
g(n0)− 1

)
<

1

4
g(n0) ,

where we used the definition of f(n) in the equality. �

Claim 2. âv(L2) ≤ 1
4g(n0),

Proof. Consider lw ∈ L2 such that D := d(sv, sw) is minimized. Let L3 be the set of links in L2

with receivers within the ball B(sv, D/2) of radius D/2 around sv, and set L4 := L2 \ L3.
Let us first handle affectances to L3 using the following (proof in Appendix B):

Proposition 16. |L3| ≤ 2 · 4α + 1.

Using this proposition, we get that

âv(L3 ∪ {lw}) ≤ |L3|+ 1 ≤ 2 · (4α + 1) ≤ 1

8
g(n0) ,

2 where the last inequality follows from Eqn. 12.
Now consider any lu ∈ L4 \ {lw}. Using that ru is at least D/2 away from sv (due to being

in L4) and the fact that we chose D := d(sv, sw), the triangle inequality yields d(sv, ru) ≥
1
3d(sw, ru). Thus,

(13) av(L4 \ {`w}) ≤
∑

`u∈L4\{`w}

cu ·
Pv

d(sv, ru)α
`αu
Pu
≤ 3α

∑
u

Pv
Pw

Pw
d(sw, ru)α

`αu
Pu

= 3α
Pv
Pw

aw(L4) .

Since the power function Pp is non-decreasing and `w ≥ f(n0) · `v, due to the choice of
L2 ⊇ L4,

Pw ≥ Pp(f(n0) · `v) = f(n0)pαPv.

2SH: Why can we assume av(w) ≤ 1? There is no restriction on lv nor its location. MMH: Definition of
affectance.
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DD=2
rv

rw

sxrxsu

sv sw

ru

Figure 5. Nodes sv, sw and ru play the role described in the proof. Here,
L2 := {lu, lw, lx}, L3 := {lx} and L4 := {lu, lw}. The red dotted lines indicate the
relevant distances in the triangle inequality yielding d(sv, ru) ≥ 1

3d(sw, ru).

Thus, Pv
Pw
≤ 1

f(n0)pα ≤
1

16·3αβ using Eqn. 11. Combining this insight with Inequality 13 and using

that aw(L4) ≤ g(n0) due to the definition of g(n), we conclude that

âv(L4 \ {lw}) ≤ 3α
1

8 · 3α
g(n0) =

1

8
g(n0) .

3 This completes the proof of Claim 2. �

Combining Claims 1 and 2, we get that âv(L) < 1
2g(n0), contradicting Eqn. 10. This com-

pletes the proof of Lemma 15. �

We can now complete the proof of Theorem 4, which we recall states that Ipp (L) = O(1), for any
p ∈ (0, 1) and any set L of links. TODO: MMH: Restate the theorem?

Proof. Consider any S ∈ FPp(L) and any lv ∈ L. Starting with the definition of b̂,

b̂v(S) = âv(S) + âS(v) = O(1) +O(1) = O(1) ,

where we apply Lemma 15 on the first term and Lemma 7 of [33] on the second term. �

We remark that the bound in neither theorem remains true when there are weak links.

6. Further Applications

Both of our structural results have a number of further applications, improving the approx-
imation ratio for many fundamental and important problems in wireless algorithms. All our
improvements come from noticing that many existing approximation algorithms have bounds
that are implicitly based on IpQ(L) or Ipp (L) (or both). Plugging in our improved bounds for
these thus gives the (poly)-logarithmic improvements for a variety of applications. Here we often
omit proofs of our claims, as they are all of the same flavor.

Connectivity. Wireless connectivity — the problem of efficiently connecting a set of wireless
nodes in an interference aware manner — is one of the central problems in wireless network
research [24]. Such a structure may underlie a multi-hop wireless network, or provide the
underlying backbone for synchronized operation of an ad-hoc network. In a wireless sensor
network, the structure can function as an information aggregation mechanism.

Recent results have shown that any set of wireless nodes can be strongly connected in O(log n·
(log n+log log ∆)) slots using mean power in both centralized [24] and distributed [23] algorithms.
These results are directly improved by Theorem 6:

Theorem 17. Any set of links can be strongly connected in O(log n · log log ∆) slots using
power assignment Pp. This can be computed by either a poly-time centralized algorithm or an
O(poly(log n) log ∆)-time distributed algorithm.

3MMH: What was the meaning of this statement here: “Therefore the assumption g(n) = ω(1) is wrong”?
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Results for variations of connectivity such as minimum-latency aggregation scheduling and
applications of connectivity such as maximizing the aggregation rate in a sensor network benefit
from similar improvements. We refer the reader to [24] for a discussion of these problems and
their numerous applications.

Spectrum Sharing Auctions. In light of recent regulatory changes by the Federal Communica-
tions Commission (FCC) opening up the possibility of dynamic white space networks (see, for
example, [3]), the problem of dynamic allocation of channels to bidders (these are the wireless
devices) via an auction has attracted much attention [46, 47].

The combinatorial auction problem in the SINR model is as follows: Given k identical chan-
nels and n users (links), with each user having a valuation for each of the 2k possible subset of
channels, find an allocation of the users to channels so that each channel is assigned a feasible
set and the social welfare is maximized.

For the SINR model, recent work [27, 26] has established a number of results depending
on different valuation functions. Since these results are based on the inductive independence
number, Theorem 4 improves virtually all of them by a log n factor. For instance, an algorithm
was given in [27] for general valuations that achieves an O(

√
k log n · Ipp (L)) = O(

√
k log2 n)-

approximation. We achieve an improved result by simply plugging in Theorem 4.

Corollary 18. Consider the combinatorial auction problem in the SINR setting, for any fixed
power assignment Pp with 0 < p ≤ 1. There exist algorithms that achieve an O(

√
k log n)-factor

for general valuations [27], a O(log n + log k)-approximation for symmetric valuations and an
O(log n)-approximation for Rank-matroid valuations [26].

Dynamic Packet Scheduling. Dynamic packet scheduling to achieve network stability is one of
the fundamental problems in (wireless) network queuing theory [42]. In spite of its long history,
this fundamental problem has been considered only recently in the SINR model (see [35, 32, 2]).
The problem calls for an algorithm that can keep queue sizes bounded in a wireless network under
stochastic arrivals of packets at transmitters. A measure called efficiency between 0 and 1 is
used to capture how well a given algorithm performs compared to a hypothetical best algorithm.
We refer the reader to the aforementioned papers for exact definitions and motivations related
to this problem.

The state-of-the-art results for this problem have been achieved very recently and simulta-
neously in [2] and [32]. In spite of differences in the algorithm and assumptions made, both are
based on the scheduling algorithm of [33] and achieve a similar result. Recall that the maximum

average affectance is Ap(L) = maxS⊆L
apS(S)

|S| and χp(L) is the minimum number of slots in a

Pp-feasible schedule of L. Let φ(L) = Ap(L)
χp(L) .

The result in [32, 2] can be succinctly expressed as follows.

Theorem 19. [32, 2] There exists a distributed algorithm that achieves Ω
(

1
logn·(1+φ(L))

)
-efficiency

for any link set L.

Since the best bound on φ(L) known was O(log n) [33], both papers claimed Ω( 1
log2 n

)-

efficiency. Results in this paper show that φ(L) = O(1) (see second part of Corollary 9),
which gives the following improved result:

Corollary 20. There exists a distributed algorithm that achieves Ω
(

1
logn

)
-efficiency for any

power assignment Pp (0 < p ≤ 1).

Since Corollary 9 also shows that φ(L) = Ap(L)

χ(L)
= O(log n·log log ∆), we also get the following

improved bound for power control:

Corollary 21. There is a distributed algorithm with Ω
(

1
logn·log log ∆

)
-efficiency, with respect to

power control optima.
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[9] A. Fanghänel, T. Kesselheim, and B. Vöcking. Improved algorithms for latency minimization in wireless
networks. In Proceedings of the 36th International Colloquium on Automata, Languages and Programming
(ICALP), pages 447–458, 2009.

[10] Y. Gao, J. C. Hou, and H. Nguyen. Topology control for maintaining network connectivity and maximizing
network capacity under the physical model. In Proc. 27th IEEE Conference on Computer Communications
(INFOCOM), pages 1013–1021, 2008.
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Appendix A. Missing Proof from Section 2: Independence Strengthening

Lemma 1 Any feasible set of links can be partitioned into b2qα

β c + 1 or fewer q-independent
sets.

Proof. Let S be a feasible set and P a power assignment such that S is feasible for P. We form
a graph G on linkset S, such that two links lv and lw are adjacent if bPv (w) ≥ β/qα. Let Z be
Z := b2qα/βc.

We first show that G is Z-inductive (a.k.a. Z-degenerate, or Szekeres-Wilf number Z), which
means that there is an ordering of the vertices so that each vertex has at most Z neighbors that
appear later in the ordering.

Since S is feasible, aPS (v) ≤ 1, for any lv in S. Thus,

bPS (S)/2 = aPS (S) ≤ |S|,
implying that some link lu satisfies

bPu (w) ≤ 2 .

It is then clear that for at most Z = b2qα/βc links lw it is true that bPu (w) ≥ β/qα. We then
form a Z-inductive ordering of S by placing lu first, followed by the inductively constructed
ordering for S \ {lu}.

Since G is Z-inductive, it is (Z + 1)-colorable. Consider a color class (a stable set) C. It
holds by definition for any pair lv, lw of links in C that

aPw(v) · aPv (w) ≤ β

qα
· β
qα
≤ cvcw

q2α
,

which implies that lv and lw are q-independent. Quantifying over all pairs in C, it follows that
C is q-independent. �

Appendix B. Missing proofs from Section 5

Proposition 13 Let lv be a link. Let S be a 2-independent set of nearly-equilength links and
lu be the link in S with dvu minimum. Then dvw ≥ dwu/6.

The reader might find it useful to use Figure 6 while reading the proof of Proposition 13.

Proof. Let D = dvw and note that by definition dvu ≤ D. By the triangular inequality and the
definition of lu,

duw ≤ duu + dvu + dvw

= `u + dvu + dvw ≤ 2D + `u .(14)

Similarly,

(15) dwu ≤ dvu + dvw + `w ≤ 2D + `w .

Applying 2-independence, on one hand, and multiplying Eqn. 15 and Eqn. 14, on the other
hand, we have that

4`u`w ≤ duw · dwu ≤ (2D + `u) · (2D + `w) .

This implies that D must be at least min(`u, `w)/2, which in turn is at least max(`u, `w)/4,
since the links are nearly-equilength. Thus we can bound `w ≤ 4D in Eqn. 15 to obtain that
dwu ≤ 6D. �

4

Definition 22. We say that links lv and lw are t-close under power assignment P if,

max(aPv (w), aPw(v)) ≥ t.

4MMH: Add an intuition here on the idea behind the lemma below?
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rv

rw

su

sv

sw

ru

dvw

dwuduw

dvu

Figure 6. Links lu, lw and lw as used in the proofs of Propositions 12 and 13.
The distances dvw and dwu that are related to each other in the Proposition’s
statement are represented by red dotted lines. The gray dashed lines mark dis-
tances duw and dvu that are used in the proofs as well.

For the rest of this section, denote p̂ := 1
min(1−p,p) .

Lemma 11 Let p be a constant, 0 < p < 1, τ be a parameter, τ ≥ 1, and Λ = (4(2βτ)1/α)p̂.
Let lv be a link and let Q be a 2-independent set of non-weak links in an arbitrary metric space,
that are both 1

τ -close to lv under power assignment Pp and at least a Λ-factor longer than lv.
Then, |Q| = O(log log ∆).

Proof. The set Q consists of links that have at least one of the following properties:

(1) a link can affect lv by at least 1
τ under power assignment Pp

(2) the link itself can be affected by lv by that amount

We consider first the links with the first property. Consider a pair lw, lw′ in Q that affect lv
by at least 1/τ under Pp, and suppose without loss of generality that `w ≥ `w′ . Let l1 be the
shortest link in Q. The affectance of lw on lv implies that

cv

(
`pw`

1−p
v

dwv

)α
≥ 1

τ
,

which can be transformed to dwv ≤ `pw`1−pv (cvτ)1/α, and similarly, dw′v ≤ `pw′`
1−p
v (cvτ)1/α. Recall

that since lv is non-weak, cv ≤ 2β. By the triangular inequality, we have that

dw′w ≤ d(sw′ , rv) + d(rv, sw) + d(sw, rw)(16)

= dw′v + dwv + `w

≤ 2`pw`
1−p
v (cvτ)1/α + `w

≤ 2`pw`
1−p
v (2βτ)1/α + `w

≤ `pw`
1−p
1 + `w ≤ 2`w ,

using that Λ`v ≤ `1 ≤ `w. Similarly,

(17) dww′ ≤ `w′ +
1

2
`pw`

1−p
1 .

Applying 2-independence, on one hand, and multiplying Eqn. 16 and 17, on the other, we obtain
that

(18) 4`w`w′ ≤ dw′w · dww′ ≤ 2`w′`w + `pw`
1−p
1 · `w ,

Canceling a 2`w-factor, simplifying and rearranging, we have that

(19) `pw ≥
2`w′

`1−p1

.
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We label the links in Q as l1, l2, . . . , l|Q| in increasing order of length, and define λi = `i/`1. By

dividing both sides of Eqn. 19 by `p1, we get that

λpi+1 ≥ 2λi .

Then, λ2 ≥ 21/p and by induction λt ≥ 2(1/p)t−1
. Note that

∆(Q) = `|Q|/`1 = λ|Q| ≥ 2(1/p)|Q|−1
,

so
|Q| − 1 ≤ log1/p log2 ∆,

and the claim follows.
The other case of links lw with av(w) ≥ 1/τ is symmetric, with the roles of p and 1 − p

switched, leading to a bound of 1 + log1/(1−p) log2 ∆.
The case that a link can have both properties does not affect the asymptotic statement of

the result. �

Proposition 16 |L3| ≤ 2 · 4α + 1.

Proof. By Lemma 1, L3 can be divided into 2 · 4α + 1 sets, each of which is 4-independent. For
contradiction, if |L3| > 2 · 4α + 1, then at least one of these sets must be of size at least 2. Thus,
there would be two different links lx and ly that are members of L3 and are 4-independent.

However, since lx, ly ∈ L3, we can argue that

d(x, y)
1
≤ `x + d(rx, ry)

2
≤ `x +D

3
≤ `x + 2`x ≤ 3`x ,

Explanation of numbered inequalities:

(1) By triangle inequality.
(2) Observing that both rx and ry are in B(sv, D/2) (due to the definition of L3) and using

the triangle inequality.
(3) Since `x = d(sx, rx) ≥ D/2 as rx ∈ B(rv, D/2) (since lx ∈ L3) and d(sx, rv) ≥ D (by

definition of D)

We can similarly show that d(y, x) ≤ 3`y. Then d(x, y) · d(y, x) ≤ 9`x`y, contradicting
4-independence. �
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