
The Power of a Leader in the Stone Age

Yuval Emek∗

yemek@ie.technion.ac.il

Technion

Stephan Holzer†

holzer@mit.edu

MIT

Roger Wattenhofer
wattenhofer@ethz.ch

ETH Zurich

Abstract

It is known that in cellular networks modeled by the stone age model of distributed com-
puting [PODC 2013 [3]] certain computations are not possible. This includes electing a leader,
computing shortest paths and the diameter of a graph [STOC 1980 [1]],[ICALP 2014 [2]]. How-
ever, certain organisms such as the true slime mold Physarum polycephalum seem to be able
to compute shortest paths [Nature 2000 [4]] and structures close to minimum spanning trees
[Science 2010 [6]]. When such an organism is modeled using the stone age model, this behavior
is only possible when a leader is available. In a first attempt to explain the true slime molds
abilities using the stone age model we equip the cellular network with a leader and show that
this enables the network to identify cells of maximal distance to each other.

1 Introduction

Experiments indicate that the true slime mold might be able to compute shortest paths and graphs
close to minimum spanning trees over food sources in space [4, 6]. Although the true slime mold
consists of only one (giant) cell or merged cells, it has multiple nuclei [5]. When we assume
that these nuclei communicate/interact with each other through tubular structures [5], the true
slime mold is a candidate to be modeled by the stone age model of distributed computing [3] which
essentially corresponds to networked finite state machines. However, it is known that computations
such as shortest paths cannot be performed in the stone age model. In particular it was shown [1, 2]
that when we consider Las Vegas algorithms in a version of the local model, leader election and
solving many related problems is impossible. This extends to the stone age model which has further
restrictions compared to the model studied in [1, 2]. Thus the construction [1, 2] implies that in
the stone age model it is impossible to identify two nodes of maximal distance in the network, or to
compute shortest paths between two nodes as one can even not distinguish a graph with diameter
1 (the ring of size 3) from a graph of diameter 2n (a ring of size 4n).

In this paper we show that when a leader is given in addition to the assumptions made in
the stone age model, the network can identify two nodes of maximal distance to each other in
the graph. This essentially corresponds to computing the diameter in this model, as each finite
state machine cannot store a number representing the diameter. By doing so we open the doors
for further investigations of this model when a leader is provided. This might eventually lead to
algorithms that identify which nodes/nuclei are included in a shortest paths connecting two food
sources. More sophisticated problems such as determining which nuclei are contained in the paths

∗Part of this work has been done at ETH Zurich.
†Part of this work has been done at ETH Zurich. At MIT the author is supported by the following grants:

AFOSR Contract Number FA9550-13-1-0042, NSF Award 0939370-CCF, NSF Award CCF-1217506, NSF Award
number CCF-AF-0937274.

1



used as edges between food sources in a minimum spanning tree (over the food sources) might be
possible as well or require a further modification of the model. The goal of this paper is to provide a
first step towards a more general study with the aim to understand weather the property of having
a leader (or being able to elect a leader) is a property that determines which (global) problems can
be solved. Here, global problems are those that require nodes at distance Ω(D) to communicate
with each other in order to compute a solution, where D is the diameter of the graph. Another
open question is whether there are any local problems in the stone age model that cannot be solved
without a leader but can be solved when we know a leader?

2 Model and Definitions

We recall the stone age model of distributed computing defined in [3] using their notation in an
informal. The formalism of [3] is omitting as this paper only provides high-level implementations of
the algorithms that do not use specific details of the model [3]. We assume a network represented
by a finite undirected graph G = (V,E). Under the networked finite state machines (nFSM) model,
each node v ∈ V runs a protocol Π executed by a finite state machine. It is important to point out
that protocol Π is oblivious to the graph G.

Communication. Node v communicates with its adjacent nodes in G by transmitting messages.
A transmitted message consists of a single letter σ from an alphabet Σ and it is assumed that this
letter is delivered to all neighbors u of v. We assume that any of the constant many messages sent
during our protocol correspond to a letter in Σ. Each neighbor u has a port ψu(v) (a different port
for every adjacent node v) in which the last message σ received from v is stored.

Asynchrony. The nodes are assumed to operate in an asynchronous environment as described
in [3]. In the same paper [3] it is shown how to implement a synchronous environment. Therefore
we only consider synchronous executions of our algorithms and assume time is partitioned into time
slots, where each node can send one message per time slot.

In this paper we are interested in possibility results and do not introduce the notion of runtime. If
one would consider the runtime, the presented algorithm would have a runtime close to the worst
possible runtime in this model and it is an open problem to improve it.

Definition 2.1 (Diameter). Let G = (V,E) be a graph and let u, v ∈ V be any two nodes in G.
The distance d(u, v) between uand v is the length of a shortest path between u and v. The diameter
D := maxu,v∈V d(u, v) of a graph G is the maximum distance between any two nodes of the graph.

3 Identifying two Nodes of Maximal Distance

Theorem 3.1. A network G = (V,E) modeled by the stone age model of computation [3] extended
by the existence of a leader is able to determine two nodes u, v ∈ V of maximal distance in the
network.

Proof. In this short paper we present only a high-level description of the algorithm in the stone
age model. We start by considering the following algorithm that computes the diameter in classical
models of computation and is stated in a way that is useful for investigation in the stone age model:

2



Algorithm Compute the diameter. In our setting this cor-
responds to finding two nodes of maximal distance.

1: umax, vmax are any two nodes in V ;
2: for u ∈ V do
3: for v ∈ V do
4: if d(u, v) > d(umax, vmax) then
5: umax := u;
6: vmax := v;
7: end if
8: end for
9: end for

10: output umax, vmax;

We implement the above algorithm in the stone age model when a leader is provided.

Line 1: Given a leader l, we set umax, vmax := l in the first line.

Line 2: As a first step towards iterating over all nodes, we argue that given a leader we can
choose a random node u′ ∈ V . In this sub-procedure we require that each node has a positive
probability to be chosen. We can do so by starting a random walk at the leader l. That is l chooses
a random neighbor w. With probability 1/2, node w decides to be the randomly selected node.
If not, node w chooses a random neighbor w′. With probability 1/2, node w′ decides to be the
randomly selected node and so on.

Now we use this insight to iterate over all u ∈ V : Start by choosing a random u′ ∈ V . Node
u′ marks itself and the inner part of the for-loop is executed. We select another node u′ ∈ V at
random. If u′ is unmarked, it marks itself and we execute the inner part of the for-loop. Continuing
like this until all nodes are marked ensures that we will have iterated over all nodes u ∈ V in the
end. All this can be done by a randomized FSM.

We still need to ensure that we can detect when all nodes are marked. After each iteration the
leader l does the following: l sends out a message “Are you not marked?” that is broadcast through
the network and waits for some time to be specified below. If a node receives this message and
is not marked, it broadcasts “No, I am not marked” through the network. Parallel to this, when
node umax receives the message “Are you not marked?” for the first time during this iteration,
umax broadcasts a message “Ping” that is received by vmax after some time. This causes vmax to
broadcast “Ping 2”, which in turn is received by umax after some time. Then umax broadcasts
“Stop”.

We claim that if l does not receive message “No, I am not marked” before receiving “Stop”, then
all nodes are marked: Since umax and vmax are temporarily the nodes of maximal distance that the
algorithm is aware of, the leader would have received the message “No, I am not marked” within
2 · d(umax, vmax) time slots if there was any. On the other hand it takes at least 2 · d(umax, vmax)
time steps before umax broadcasts “Stop”. Again, all this can be executed by an FSM.

Line 3: We do the same as in Line 2 but use a different alphabet during the computation.

Line 4: The high-level idea is that u and umax start a broadcast at the same time. If d(u, v) >
d(umax, vmax), then umax’s broadcast reaches vmax earlier than u’s broadcast reaches v and is able
to detect this.

3



Since u and umax do not have a clock and do not know how to start at the same time, we simu-
late synchronized time steps using the leader. The leader sends a message and waits until it receives
a reply from both u and umax. Then one simulated time step is over. Upon receiving the mes-
sage belonging to this time step, all nodes active in each of the two ongoing broadcasts execute one
step. When these broadcasts reach v or vmax, these nodes broadcast “v reached”, or “vmax reached”.
Based on this the leader decides whether d(u, v) > d(umax, vmax). This can be executed by an FSM.

Lines 5,6: The two nodes rename themselves.

Line 10: After all nodes in the first for-loop are marked, the nodes that are currently umax

and vmax will have maximal possible distance in G.

Finally we want to note that there are only 4 variables involved such that each node knows which
role it plays during our implementation. Also it is not be the case that a node has to broadcast
the same message two times after each other due to two parallel (or sequential) broadcasts using
the same message. In between two broadcasts that use the same message there is always another
broadcast using a different message. Thus, during a broadcast, a node only needs to send the
received message if it differs from the last message sent.

If there are several different broadcasts going on in parallel, they can be simulated by extending
the alphabet such that there is no congestion. This is important e.g. when we need to decide
d(u, v) > d(umax, vmax).

References

[1] Dana Angluin. Local and global properties in networks of processors. In Proceedings of the
twelfth annual ACM symposium on Theory of computing, pages 82–93. ACM, 1980.

[2] Yuval Emek, Jochen Seidel, and Roger Wattenhofer. Computability in anonymous networks:
Revocable vs. irrecovable outputs. In Automata, Languages, and Programming (ICALP), pages
183–195. Springer, 2014.

[3] Yuval Emek and Roger Wattenhofer. Stone age distributed computing. In Proceedings of the
2013 ACM symposium on Principles of distributed computing (PODC), pages 137–146. ACM,
2013.

[4] Toshiyuki Nakagaki, Hiroyasu Yamada, and Ágota Tóth. Intelligence: Maze-solving by an
amoeboid organism. Nature, 407(6803):470–470, 2000.

[5] Atsuko Takamatsu, Eri Takaba, and Ginjiro Takizawa. Environment-dependent morphology in
plasmodium of true slime mold¡ i¿ physarum polycephalum¡/i¿ and a network growth model.
Journal of theoretical biology, 256(1):29–44, 2009.

[6] Atsushi Tero, Seiji Takagi, Tetsu Saigusa, Kentaro Ito, Dan P Bebber, Mark D Fricker, Kenji
Yumiki, Ryo Kobayashi, and Toshiyuki Nakagaki. Rules for biologically inspired adaptive
network design. Science, 327(5964):439–442, 2010.

4


	1 Introduction
	2 Model and Definitions
	3 Identifying two Nodes of Maximal Distance

