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Chapter 1IntroductionAs we enter the 21st century, computers are progressively being turned into interactingcoordination devices in asynchronous, distributed systems. Unfortunately, the standard,Turing notions of computability and complexity are not su�cient for evaluating the behaviorof such systems. In the last few years, techniques of modeling and analysis based onclassical algebraic topology [4, 10, 12, 16, 20, 18, 19, 21, 22, 26, 29], in conjunction withdistributed simulation methods [8, 9, 10, 23] have brought about signi�cant progress inour understanding of asynchronous computability problems. In this thesis, these techniquesare extended and modi�ed to provide a framework for analyzing asynchronous complexityproblems.1.1 Historical Background and Related WorkIn this section, we give a brief account of previous work on computability problems infault-prone, asynchronous, distributed systems, applications of algebraic topology to asyn-chronous computability problems, simulation techniques, and also on characterizing theApproximate Agreement task.In 1985, a fundamental paper by Fischer, Lynch and Paterson [15] demonstrated thattraditional Turing computability theory is not su�cient for analyzing computability prob-lems in asynchronous, distributed systems. In particular, it showed that the well-knownConsensus task, in which each participating process has a private input value drawn from8



some set S, and every non-faulty process must decide on an output value equal to the inputof some process, cannot be solved in a message passing system if only one process may failby halting. Later, it was also shown that the message passing and shared memory modelsare equivalent [2], so this result carries over to shared memory systems as well. This fun-damental discovery led to the creation of a highly active research area, which is surveyedin a recent book by Lynch [25].In 1988, Biran, Moran and Saks [6] introduced a graph-theoretic framework that providesa complete characterization of the types of tasks that can be solved in a message passing orshared memory system in the presence of a single failure. This framework proved hard to ex-tend to more than one failure, however, and even the problems of completely characterizingspeci�c tasks such as Renaming [5] and Set Agreement [11] remained unsolved.In 1993, three research teams working independently - Borowsky and Gafni [8], Saksand Zaharoglou [29], and Herlihy and Shavit [21], derived lower bounds for solving the SetAgreement task. The paper of Borowsky and Gafni introduced a powerful new simulationtechnique for proving solvability and unsolvability results in asynchronous, distributed sys-tems. The technique allows N -process protocols to be executed by fewer processes in aresilient way, and has recently been proven correct by Lynch and Rajsbaum [23].The landmark paper of Herlihy and Shavit [21] introduced a new formalism based ontools from classical, algebraic topology for reasoning about computations in asynchronous,distributed systems in which up to all but one process may fail. Their framework consists ofmodeling tasks and protocols using algebraic structures called simplicial complexes, and thenapplying standard homology theory to reason about them. In 1994 and 1995, Herlihy andShavit extended this framework by providing the Asynchronous Computability Theorem,which states a condition that is necessary and su�cient for a task to be solvable by a wait-free protocol in shared memory [22, 26], and showed applications of this theorem to taskssuch as Set Agreement and Renaming. In her PhD thesis, Elisabeth Borowsky generalizedthis solvability condition to a model consisting of regular shared memory augmented withset-consensus objects, and under more general resiliency requirements [7].In 1993, Chaudhuri, Herlihy and Lynch [12] also used topological and geometric ar-guments to prove tight bounds on solving the Set Agreement problem in the synchronousmessage passing model where an arbitrary number of processes may fail.9



In 1994, Herlihy and Rajsbaum derived further impossibility results for Set Agreementby applying classical homology theory [20]. Moreover, in a unifying paper in 1995, Herlihyand Rajsbaum provided a common, general framework for describing a wide collection ofimpossibility results by using chain maps and chain complexes [18]. At the same time,Attiya and Rajsbaum reproved several impossibility results using a purely combinatorialframework [4].Gafni and Koutsopias recently used a reduction from the classical contractibility problemof algebraic topology to show that it is undecidable whether a certain class of 3-processtasks are wait-free solvable in the shared memory model or not [16]. This work was thengeneralized by Herlihy and Rajsbaum to arbitrary numbers of processes and failures in avariety of computational models. [19]. Recently, Havlicek showed that, while undecidabilityholds in the general case, the problem of solvability is in fact decidable for a relatively largeclass of tasks [17].The immediate snapshot (IS) object was introduced by Borowsky and Gafni in 1993 [9].It is the basic building block of the iterated immediate snapshot (IIS) model, �rst implicitlyused by Herlihy and Shavit [21, 22], and more recently formulated as a computation modelby Borowsky and Gafni [10] as part of their new, simpli�ed proof of the AsynchronousComputability Theorem of Herlihy and Shavit [21, 22, 26]. This work also shows that theIIS model is computationally equivalent to standard shared memory models by providing await-free implementation of IIS from shared memory, and vice versa. It is not clear, however,whether these implementations are optimal from a complexity-theoretic viewpoint.The Approximate Agreement problem, a weakening of the Consensus problem in whicheach process has a real valued input, and the non-faulty processes must agree on outputvalues at most � > 0 apart. It was �rst introduced in 1986 by Dolev, Lynch, Pinter, Starkand Weihl [13], in a paper showing that this task can be solved in both the synchronous andasynchronous message passing models even when assuming the Byzantine failure model (inwhich processes may exhibit arbitrary, even malicious behavior). The paper also providedmatching upper and lower bounds for solving the task in these settings. These results wereextended to various failure models by Fekete [14], who also showed optimality in terms ofthe number of rounds of communication used.In 1994, Attiya, Lynch and Shavit published a paper giving a 
(logn) lower bound,10



together with an almost matching O(logn) upper bound, where n is the number of processes,on solving Approximate Agreement in failure-free single-writer, multi-reader shared memorysystems [3]. These results were part of a proof that, in certain settings, wait-free algorithmsare inherently slower than non-wait-free algorithms.This work was extended by Schenk [30], who showed matching upper and lower boundsfor solving the task in the asynchronous single-writer, multi-reader shared memory modelwhere the magnitudes of the inputs are bounded above.Finally, in 1994, Aspnes and Herlihy [1] showed a jlog3 input�range� k lower bound, togetherwith a jlog2 input�range� k upper bound on solving Approximate Agreement using wait-freeprotocols in the atomic snapshot shared memory model.1.2 This WorkIn this thesis, we study the problem of analyzing the complexity of wait-free shared memoryprotocols solving decision tasks. In such a task, each process starts with a private inputvalue and must decide on a private output value according to some task speci�cation.We focus on a generalized version of Borowsky and Gafni's iterated immediate snapshot(IIS) model [10], called the non-uniform iterated immediate snapshot (NIIS) Model. TheIIS model has already been used successfully by Borowsky and Gafni [10] as part of theirnew simpli�ed proof of the asynchronous computability theorem [26]. We believe it is agood �rst candidate for topological modeling and analysis, since it has a particularly niceand regular geometric representation.Keeping in style with Herlihy and Shavit's topological computability framework andAsynchronous Computability Theorem [26], we show in Theorem 4.2 that there is a wait-free protocol in the NIIS model solving a given decision task with complexity k on a set ofinputs, where k is an integer, if and only if there is a non-uniform chromatic subdivisionof the input complex with level k on the corresponding input simplex that can be mappedsimplicially to the output complex in accordance with the task speci�cation.The non-uniform chromatic subdivisions we introduce are a looser and more generalform of the iterated standard chromatic subdivisions used in the computability work ofHerlihy and Shavit and Borowsky and Gafni [21, 22, 26, 10]. Unlike iterated standard11



chromatic subdivisions, non-uniform chromatic subdivisions allow individual simplexes ina complex to be subdivided di�erent numbers of times, while assuring that the subdivisionof the complex as a whole remains consistent.Non-uniformity is a useful property when analyzing complexity, since the time complex-ity, and hence the level of subdivision, of an input simplex may di�er from one set of inputsto the next. Considering just the complexity of the worst case execution over all input setswould in many cases make a complexity theorem less than useful.The power of Theorem 4.2 lies in its ability to allow one to reason about the complexityof solving decision tasks in a purely topological setting. As we will show, the non-uniformchromatic subdivisions of a complex provide a clean and high level way of thinking aboutthe multitude of concurrent executions of a NIIS protocol. We found this topological rep-resentation very helpful, and we are sure that it will prove to be an invaluable tool fordesigning and analyzing concurrent protocols.We provide one example application of Theorem 4.2. In Chapter 5, we use our topo-logical framework to show tight upper and lower bounds on the time to solve the Ap-proximate Agreement problem wait-free in the NIIS model. The best known previousresults, due to Aspnes and Herlihy [1], imply an jlog2 input�range� k upper bound and anjlog3 input�range� k lower bound. We close this gap, proving matching upper and lower boundsof jlogd input�range� k where d = 3 for two processes and d = 2 for three or more.1.3 OrganizationThe thesis is organized as follows. Chapter 2 provides a formal de�nition of decision tasks.It also contains a thorough description of our model of computation, together with thecomplexity measures we use for analyzing protocols in this model. Chapter 3 contains acollection of necessary de�nitions and results from algebraic topology, as well as a descrip-tion of how we model decision tasks and NIIS protocols topologically. It also containsde�nitions of the standard chromatic subdivision and the non-uniform chromatic subdivi-sion. Chapter 4 contains a statement and proof our main theorem. Chapter 5 containsan application of our Asynchronous Complexity Theorem to the Approximate Agreementtask. Finally, Chapter 6 summarizes our results, and also gives some directions for further12



research.
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Chapter 2ModelIn order to develop a useful and applicable complexity theory for asynchronous, distributedcomputer systems, we need to de�ne some reasonable model of such systems. This modelmust be detailed enough so as to accurately and faithfully capture the inherent complexityof solving tasks in real distributed systems, yet be simple enough so as to easily lend itself tosome practical form of complexity analysis. The model we consider in this thesis consists ofa class of one-shot distributed problems, called decision tasks, together with a novel model ofcomputation, a type of shared memory called the non-uniform iterated immediate snapshot(NIIS) model. This chapter contains a detailed description of these fundamental concepts.It also contains the complexity measures that will be used to analyze the complexity ofsolving decision tasks in the non-uniform iterated immediate snapshot model.2.1 Informal SynopsisWe begin with an informal synopsis of our model, which largely follows that of Herlihyand Shavit [21, 22, 26]. Some �xed number N = n + 1 of sequential threads of control,called processes, communicate by asynchronously accessing shared memory in order to solvedecision tasks. In such a task, each process starts with a private input value and halts with aprivate output value. For example, in the well-known Binary Consensus task, the processeshave binary inputs, and must agree on some process's input [15]. A protocol is a distributedprogram that solves a decision task in such a system. A protocol is wait-free if it guaranteesthat every non-faulty process will halt in a �nite number of steps, independent of the14



progress of the other processes. The time complexity of solving a decision task in this modelon a given input set is the supremum of the number of accesses to shared memory made byany process on that input set.2.2 Decision TasksIn this section, we de�ne decision tasks more precisely. This class of tasks is intended toprovide a simple model of reactive systems, such as databases, �le systems, or automaticteller machines. An input value represents information entering the system from the sur-rounding environment, such as a character typed at a keyboard, a message from anothercomputer, or a signal from a sensor. An output value models an e�ect on the outside world,such as an irrevocable decision to commit a transaction, to dispense cash, or to launch amissile. Informally speaking, A decision task is a relation between vectors of input valuesand vectors of output values. We de�ne this more precisely below.Let DI and DO be two data types, possibly identical, called the input data type and theoutput data type, respectively. We �rst de�ne the concept of an input vector.De�nition 2.1 An n + 1-process input vector ~I is an n + 1-dimensional vector, indexedby Zn+1 (the integers mod n), each component of which is either an object of type DI , orthe distinguished value ?, with the additional requirement that at least one component of ~Imust be di�erent from ?.The de�nition of output vectors is similar to that for input vectors:De�nition 2.2 An n+ 1-process output vector ~O is an n+ 1-dimensional vector, indexedby Zn+1, each component of which is either an object of type DO, or the distinguished value?. When it is clear from the context, we omit mentioning the number of processes inspecifying input and output vectors. We denote the i-th component of an input vector ~Iby ~I [i], and similarly, we denote the i-th component of an output vector ~O by ~O[i]. In theremainder of this thesis, unless stated otherwise, we will assume that i and j are index valuesin the set Zn+1. These index values will be used both for specifying vector elements and15



also to index processes. We note that, in this thesis, we will use the terms \one-dimensionalarray"(\array" for short) and \vector" interchangeably - they refer to the same data type.De�nition 2.3 A vector ~U is a pre�x of ~V if ~V [i] = ? implies that ~U [i] = ?, and for alli such that ~U [i] 6= ?, ~U [i] = ~V [i].De�nition 2.4 A set V of vectors is pre�x-closed if for all ~V 2 V , every pre�x ~U of ~V isin V .In this thesis, we will only consider sets of input and output vectors that are �nite andpre�x-closed.De�nition 2.5 An input set is a �nite, pre�x-closed set of input vectors. An output setis a �nite, pre�x-closed set of output vectors.Next, we de�ne the notion of a task speci�cation map, which maps each element of theinput set to a subset of the output set. Our de�nition is similar to that of Havlicek [17].De�nition 2.6 Let I and O be input and output sets, respectively. A task speci�cationmap relating the two sets is a relation 
 � I �O such that the following conditions hold:� For all ~I 2 I, there exists a vector ~O 2 O such that (~I; ~O) 2 
.� For all (~I; ~O) 2 
, and for all i, ~I [i] = ? if and only if ~O[i] = ?.As a convenient notation, we denote the set of vectors ~O in O such that (~I; ~O) 2 
by 
(~I). For a given input vector ~I, the set of vectors 
(~I) simply represents the set oflegitimate output vectors for the set of inputs speci�ed by ~I. This set will generally containmore than one allowable output vector. We are now ready to give a precise de�nition ofdecision tasks.De�nition 2.7 A decision task D = hI; O; 
i is a tuple consisting of a set I of inputvectors, a set O of output vectors, and a task speci�cation map 
 relating these two sets.16



We note that, by de�nition, decision tasks are inherently one-shot, in the sense that allprocesses have a single input and must decide on a single output exactly once.Not all entries in a given input vector need contain an input value; some may contain thespecial value ?, indicating that some processes do not receive an input value. We formalizethis notion of participation in the de�nition below.De�nition 2.8 For any input vector ~I, if the i-th component is not ?, then i participates in~I. Otherwise, we say that i does not participate in ~I. Moreover, we de�ne the participatingset in ~I to be set of participating indexes.As noted by Herlihy and Shavit [21, 22, 26], the reason for incorporating an explicitnotion of participating indexes in our formalism for decision tasks is that it is convenientfor distinguishing between tasks such as the following, which have the same sets of inputand output vectors, but di�erent task speci�cation maps.Example 2.9 The n + 1-process Unique-Id task is de�ned as follows:� I = f[x0; : : : ; xn] j xi 2 fi;?gg.� O = f[x0; : : : ; xn] j xi 2Zn+1 [ f?g; (xi = xj)) (xi = ?)g.� 
 = f(~I; ~O) j (~I[i] = ? , ~O[i] = ?)g.Example 2.10 The n + 1-process Fetch-And-Increment task is de�ned as follows:� I = f[x0; : : : ; xn] j xi 2 fi;?gg.� O = f[x0; : : : ; xn] j xi 2Zn+1 [ f?g; (xi = xj)) (xi = ?)g.� 
 is the set of pairs (~I; ~O) for which the following conditions hold:{ ~I[i] = ? , ~O[i] = ?{ If ~O[i] 6= ?, then ~O[i] must be less than the size of the participating set of ~I.The two decision tasks above di�er in that the task speci�cation map of Fetch-And-Increment involves explicit mention of the participating set of the input vectors, while thatof Unique-Id does not. 17



2.3 One-Shot Immediate SnapshotBorowsky and Gafni's immediate snapshot (IS) object [9] has by now been proven to bea useful building block for the construction and analysis of protocols in asynchronous,distributed systems [9, 10, 21, 22, 26, 28].Informally, an n + 1-process IS object consists of a shared n + 1-dimensional memoryarray, and supports a single type of external operation, called writeread . The IS object hasn+ 1 ports, one for each process. We typically associate process i with the i-th port. Eachwriteread operation writes a value to a single shared memory array cell, and then immedi-ately returns a snapshot view of the entire array. There is a separate writeread operationfor each of the IS object's n + 1 ports. A writeread operation on port i writes its value tothe i-th cell of the memory array.Formally, we can specify IS objects as I/O automata [24]. Let D be any data type, andde�ne #(D) to be the data type (D[f?g)n+1, the set of all n+1-arrays each of whose cellscontains either an element of D, or ?. We index the elements of #(D) using the numbersin Zn+1. An IS automaton for n + 1-processes and data type D called ISx is de�ned asin Figure 2-1. We refer to such an object as an ISn+1D object. When the data type andnumber of processes are clear from the context, we usually omit the sub- and superscriptsabove.For all i, the inv writeread(v)i;x action simply writes the input value v to the i-th cell ofthe input value array of ISx. This array provides temporary storage for inputs to the ISn+1Dobject. At the same time, the 
ag \inv" is written to the i-th cell of the interface array,which indicates that an input has arrived on port i. The update(U) action periodicallycopies a set of values corresponding to the indexes in U , from the input value array tothe memory array. The set U must be a subset of the indexes i with the property thatinterface[i] = inv. Additionally, a copy of the memory array is written to the i-th cell ofthe return value array for each i 2 U . Finally, the 
ag \ret" is written to the i-th cell ofthe interface array for each i 2 U , indicating that a response value to the invocation onport i is available. The ret writeread(S)i;x output action provides a response to a previousinvocation on port i. Its only e�ect on the IS object is to reset the value interface[i] to ?,thereby preventing more than one response to an invocation. The ret writeread(S)i;x action18



ISn+1D object named ISxSignatureInputs:inv writeread(v)i;x, v 2 D, i 2 f0; : : : ; ng.Internals:update(U), U � f0; : : : ; ng.Outputs:ret writeread(S)i;x, S 2 #(D), i 2 f0; : : : ; ng.Statememory 2 #(D), initially (?; : : : ;?).input value 2 #(D), initially (?; : : : ;?).return value 2 #2(D), initially (?; : : : ;?).interface 2 finv; ret;?gn+1, initially (?; : : : ;?)Transitionsinput: inv writeread(v)i;xE�: input value[i] := vinterface[i] := invinternal: update(U)Pre: U � fi j interface[i] = invgE�: For all i in U domemory[i] := input value[i]For all i in U doreturn value[i] := memoryFor all i in U dointerface[i] := ret
output: ret writeread(S)i;xPre: interface[i] = retreturn value[i] = SE�: interface[i] := ?Figure 2-1: I/O Automaton for an ISn+1D object with name ISx.
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can only occur after a return value has been written to the i-th cell of the return value array,and the 
ag \ret" has been written to the corresponding cell in the interface array.In the remainder of this section, we will state and prove a few basic properties about ISobjects. These properties will be useful later, when we prove the correctness of a topologicalframework for analyzing the complexity of protocols in models of computation that includemultiple IS objects. For the purpose of this discussion, let us for the remainder of thissection �x our attention on a single ISn+1D object, which we will call ISx. Following Lynch[25], we de�ne executions of the automaton ISx as follows.De�nition 2.11 An execution fragment of ISx is either a �nite sequences0; a1; s1; a2; s2; : : : ; ar�1; sr or an in�nite sequence s0; a1; s1; a2; s2; : : : of alternating statesand actions such that for all k, where k � 1, the action ak brings the object from state sk�1to state sk. An execution fragment beginning with a start state is called an execution.We note that the speci�cation of ISx does not in any way restrict the number of accessesthat may occur on any given port in an execution. In fact, it even allows two invocationson a port i before any response is given to the �rst invocation. In this thesis, however, wewill only be using IS objects as building blocks to construct more complicated, long-livedmodels of computation, not as long-lived objects in their own right. Therefore, we will onlyconsider a restricted class of executions of ISx, called one-shot executions, as de�ned below.De�nition 2.12 A one-shot execution of ISx is an execution for which there is at mostone invocation and at most one response on each port.From Figure 2-1, it is clear that, while inv writeread(v)i;x actions are always enabled,no ret writeread(S)i;x action may occur on a port i before an inv writeread(v)i;x action hasoccured on the same port. De�nition 2.13 provides a convenient notation for matchinginv writeread(v)i;x and ret writeread(S)i;x actions in one-shot executions.De�nition 2.13 For all i, a writeread(v; S)i;x operation in a one-shot execution � is aninv writeread(v)i;x action together with the next ret writeread(S)i;x action on the same port.The operation writeread(v; S)i;x uses the i-th port of ISx to write the value v to thei-th cell of memory , and subsequently return a snapshot S.20



De�nition 2.14 For all i, an incomplete operation in a one-shot execution � is aninv writeread(v)i;x action for which there is no subsequent ret writeread(S)i;x action on thesame port.An incomplete operation inv writeread(v)i;x in � uses the i-th port of ISx to write avalue v to the i-th cell of memory , but there is no subsequent response on the i-th port in�. In the remainder of this section, we will be considering only one-shot executions of ISx.Lemma 2.15 For any two distinct actions update(U) and update(U 0) in a one-shot exe-cution � of ISx, the index sets U and U 0 are disjoint.Proof. Suppose without loss of generality that U occurs before U 0, and suppose i 2U . Immediately after the action update(U), interface[i] is equal to \ret" . Since we areconsidering a one-shot execution, interface[i] will remain equal to \ret" for the remainderof the execution. Hence, the precondition of the update(U 0) action guarantees that i 62 U 0.2We can now de�ne what we mean by concurrent operations of ISx.De�nition 2.16 Two operations writeread(vi; Si)i;x and writeread(vj ; Sj)j;x in a one-shotexecution � of ISx are concurrent if there exists an action update(U) in � such that i; j 2 U .ISx exhibits a property called self-containment: A snapshot returned on port i bya ret writeread(S)i;x action in a one-shot execution � must necessarily contain the valuewritten to memory in the matching, preceding inv writeread(v)i;x action on port i that ispart of the same operation. This property is proven in Lemma 2.17.Lemma 2.17 Consider any operation writeread(vi; Si)i;x in a one-shot execution � of ISx.Then Si[i] 6= ?.Proof. The input value vi is written to memory by an action update(Ui). In the sameaction, after the vi has been written to memory , the memory variable is copied toreturn value[i] . This value is then returned as a response on port i. It follows that Si[i] 6= ?for all i. 2 21



The value returned by a ret writeread(S)i;x action is a 1-dimensional array of type #(D).In the following lemma, we prove that ISx exhibits the property that the set of snapshotsreturned in a one-shot execution can be totally ordered by the pre�x relation de�ned inDe�nition 2.3.Lemma 2.18 Consider any two writeread operations in a one-shot execution �,writeread(vi; Si)i;x and writeread(vj ; Sj)j;x . Either Si is a pre�x of Sj, or Sj is a pre�x ofSi.Proof. Suppose the values vi and vj are written to memory by the actions update(Ui)and update(Uj), respectively.If these actions are the same, that is, if Ui = Uj , the two operations writeread(vi; Si)i;xand writeread(vj ; Sj)j;x are concurrent. In this case, the value of memory that is copied toreturn value[i] is identical to the value copied to return value[j] , since both are copied bythe same update(Ui) action. It follows that Si = Sj . Now suppose Ui 6= Uj , and supposeupdate(Ui) occurs after update(Uj). Since no memory cells are ever reset, it follows thatthe memory version that is written to return value[j] during update(Uj) is a pre�x of theversion that is written to return value[i] during update(Ui). Hence Sj is a pre�x of Si. Thecase where update(Uj) occurs after update(Ui) is similar, and in this case we have that Siis a pre�x of Sj . The lemma follows. 2The next lemma concerns what is referred to as the immediacy property of one-shotexecutions of ISx. If a value written to memory by an invocation on port j is contained ina snapshot on port i, then the snapshot returned on port j is a pre�x of that returned onport i. This corresponds to the informal notion of a writeread operation on port j happeningbefore a writeread operation on port i.Lemma 2.19 Consider any two writeread operations in a one-shot execution �,writeread(vi; Si)i;x and writeread(vj ; Sj)j;x. If Si[j] 6= ? then Sj is a pre�x of Si.Proof. Suppose the values vi and vj are written tomemory by the actions update(Ui) andupdate(Uj), respectively, and suppose Si[j] 6= ?. This implies that either vj was written tomemory during update(Ui), in which case Ui = Uj , or the action update(Uj) occured before22



ISx

update(U)
ret_writeread(S) i,x

inv_writeread(v)
i,xFigure 2-2: Diagram of ISx.update(Ui). In either case, since no memory cells are ever reset or written to more thanonce in a one-shot execution, we have that Sj must be a pre�x of Si. 2Finally, we will prove that one-shot executions are �nite, a property that we shall needwhen discussing fairness in the IIS model, to be introduced in Section 2.4.Lemma 2.20 Any one-shot execution � of ISx is �nite.Proof. The number of actions of type inv writeread(v)i;x in � is at most n + 1, one foreach port. Similarly, the number of actions of type ret writeread(S)i;x is at most n + 1.By Lemma 2.15, the number of update(U) actions is bounded by n + 1 as well. Hence � is�nite. 2Figure 2-2 shows a stylized diagram of the IS object ISx.2.4 The Iterated Immediate Snapshot (IIS) ModelThe iterated immediate snapshot (IIS) model, �rst used implicitly by Herlihy and Shavit[22, 26], was recently formulated as a computation model by Borowsky and Gafni [10].The model assumes a �nite sequence ISn+1D ; ISn+1#(D); ISn+1#2(D); : : : ; IS#k�1(D) of IS objects,denoted by IS1; IS2; IS3; : : : ; ISk, where k > 0. In the k-shot IIS model, there are kavailable IS objects in sequence.Each protocol in the IIS model is fully determined by the maximum number n + 1 ofprocesses that can participate, the number k of IS objects available, and a decision map23



Environment ESignatureInputs:decide(S)i , S 2 #k(D).Internals:Outputs:start(v)i , v 2 D.failiStatestatus 2 f?; participating;started ;decided ; failedgn+1; initially in f?;participatinggn+1.Transitionsinput: decide(S)iE�: status := decidedoutput: failiPre: status = startedE�: status := failed output: start(v)iPre: status = participatingE�: status = startedFigure 2-3: I/O Automaton for environment E in P(n;k;�).� : #k(D) ! DO, where DO is an arbitrary data type, which we call the protocol's outputdata type. We refer to the protocol obtained by �xing these parameters as P(n;k;�).We can specify the P(n;k;�) protocol using I/O automata [24, 25] as follows. Each ISobject is speci�ed as in �gure 2-1, and each process i is speci�ed as in Figure 2-4. Theexternal environment E is modeled as an automaton as speci�ed in Figure 2-3. The pro-tocol P(n;k;�) can then be speci�ed by composing the automata for the processes with theEnvironment automaton and the IS object automata by matching up operations as fol-lows. Assume that for each process i, and each x, where 1 � x � k, the object ISx isconnected to the x-th port on i, and the i-th process is connected to the i-th port on ISx.For each processor i and IS object ISx, we match up i's and ISx's inv writeread(v)i;x andret writeread(S)i;x actions. Moreover, each process i's start(v)i, decide(S)i and faili actionsare matched up with E's start(v)i, decide(S)i and faili actions. The resulting protocol au-tomaton is denoted P(n;k;�) = fE; 0; 1; : : : ; n; IS1; IS2; : : : ; ISkg.In any execution � ofP(n;k;�), the �rst action executed by any process i is a start(v)i action,which stores an input value v in its local state variable. Lemma 2.21 states that in a given ex-ecution �, some processes may not receive a start(v)i action, and duplicate start(v)i actionsmay not occur. 24



Lemma 2.21 In any execution � of P(n;k;�), the environment E may issue at most onestart(v)i action for each process i.Proof. The proof follows immediately from the speci�cation of the environment E inFigure 2-3. A start(v)i action occurs only if the status[i] �eld is initially set to participating.Moreover, since the status[i] �eld is set to started by any start(v)i action, and never resetto participating, the precondition of start(v)i prevents duplicate start(v)i actions. 2In the case where a process i does not have a start(v)i action in �, i takes no steps atall in this particular execution.De�nition 2.22 A process i is said to participate in an execution � of the protocol P(n;k;�)if � contains a start(v)i action. The set of participating processes in � is called the partic-ipating set in �.A process i is said to decide in an execution � when it executes a decide(S)i action.After executing a decide(S)i action, a process i does not take any further steps in �. Thevalue S returned by the decide(S)i action is process i's output value in �.For any execution � of P(n;k;�), the processes' input values can conveniently be repre-sented using an n + 1-dimensional input vector ~I, as speci�ed in the previous section, withinput data type D. The i-th entry of ~I is the input of process i. Similarly, the processes'output values in � can be represented using an n+1-dimensional output vector ~O. The i-thentry of ~O is the output of process i.It should be noted that the notions of participating processes and sets de�ned for exe-cutions and input vectors are consistent; A process i participates in an execution � if andonly if the index i participates in the input vector ~I corresponding to �. Therefore, whenthe meaning is clear from the context, we usually omit qualifying a participating set withan execution or input vector.Suppose for now that no processes fail in the execution � of P(n;k;�), that is, for all i,no faili action occurs in �. We will discuss the issue of failures later in this section. Inthe non-failing case, each participating process i starts by accessing the �rst IS object byexecuting a writeread(v)i;IS1 action, where v is equal to local state , which initially contains25



the input of process i. The response consists of a snapshot Si 2 #(D) of the �rst IS object'sshared memory vector, containing the input values of some of the participating processes.In particular, process i's input is always contained in the output i receives. Upon receivingthe response Si, process i copies this value to its local state variable, after which it accessesthe second IS object by executing a writeread(v)i;IS2 action, where v is equal to local state.In e�ect, the output from the �rst IS object is used as an input to the second. Each non-failing, participating process accesses exactly k IS objects in sequence in this manner, beforedeciding. The number k of IS objects accessed is the same for each non-failing, participatingprocess in any execution of the protocol. Once a process has received an output from thek-th IS object and stored this value in the local state variable, it applies a decision map �to this value, which maps the local state to an output value, stores the result in local state,and halts. The local state variable now contains the process' decision value.All executions of any protocol P(n;k;�) are necessarily �nite, as stated in Lemma 2.23.Lemma 2.23 Let � be an execution of the protocol P(n;k;�). Then � is �nite.Proof. It follows from Lemma 2.21 that � contains at most n+1 actions of type start(v)i.It is also clear from the speci�cation of E that it contains at most n + 1 actions of typedecide(S)i and at most n + 1 actions of type faili. Now, for all x, where 1 � x � k, therestriction of � to ISx, denoted �x, is a one-shot execution of ISx. It follows that �x is�nite by Lemma 2.20. Now, every action of � necessarily belongs to the restriction �x forsome x, where 1 � x � k, and so we conclude that � is �nite. 2We are particularly interested in protocols that guarantee strong fault-tolerance condi-tions. The failure model we shall be concerned with only involves stopping failures, thatis, we assume that each process i may simply stop without warning, after which it issuesno further locally controlled actions. We model this using the faili action, as shown inFigure 2-4.De�nition 2.24 A process i fails in an execution � of P(n;k;�) if � contains a faili action.To ensure that the faili action achieves the stopping failure property we want, we needthe following lemma. 26



Process iSignatureInputs:ret writeread(S)i;x, S 2 Skl=1 #l(D).start(v)i, v 2 D.failiInternals:Outputs:inv writeread(v)i;x, v 2Skl=0 #l(D).decide(S)i, S 2 #k(D).Statelocal state 2 (Skl=0 #l(D)) [ f?g, initially in the fresh state ?.counter 2Z, initially 1.status 2 fready;waiting;decided ;failedg, initially ready.Transitionsinput: ret writeread(S)i;xE�: local state := Scounter := counter +1If status waiting dostatus := readyoutput: inv writeread(v)i;xPre: counter = x � klocal state = v 6= ?status = readyE�: status := waitinginput: failiE�: status := failed
input: start(v)iE�: local state := voutput: decide(S)iPre: counter > k�(local state ) = Sstatus = readyE�: status := decidedFigure 2-4: I/O Automaton for process i running k-shot IIS protocol.
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Lemma 2.25 Let � be an execution of P(n;k;�) that contains a faili action. Then � containsno actions locally controlled by i (inv writeread(v)i;x or decide(S)i ) after the faili action.Proof. The faili action sets the status variable to the value failed. Since all actions locallycontrolled by i require the status variable to have the value ready, and no input actions maychange the status variable once it has been set to failed, the lemma follows. 2We do not consider other, more complicated models, such as the Byzantine failure model,in which processes may exhibit arbitrary behavior. We use the following fairness condition,adapted from Lynch [25], for protocols in the IIS model.De�nition 2.26 An execution � of a protocol P(n;k;�) is fair if, for all i, in the �nal stateof �, no locally controlled action of process i is enabled.In the remainder of this thesis, unless stated otherwise, we restrict our attention tothe set of fair executions of a protocol. Furthermore, we will focus on protocols with theproperty that any non-failing process eventually decides, independent of the progress of theother processes. This is called wait-free termination. In this thesis, we use the followingformalization of the wait-free termination condition, also adapted from Lynch [25].De�nition 2.27 A protocol P(n;k;�) is wait-free if, in any fair execution � of P(n;k;�), forall i, and all x, where 1 � x � k, every inv writeread(v)i;x action issued by a process i hasa following ret writeread(S)i;x action.The IIS protocols we consider trivially satisfy the wait-free termination condition, since,for all x; y, where 1 � x; y � k, invocations and responses on any given port i of ISx areindependent of invocations and responses on any other port j of ISy (note that x and ymay be equal).A stylized interconnection diagram of the k-shot IIS model is given in Figure 2-5. The di-agram does not show any internal actions, nor does it show the start , decide and fail actionsof the processes. 28
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kFigure 2-5: Diagram of the k-shot IIS model.2.5 The Non-Uniform Iterated Immediate Snapshot (NIIS)ModelIn this section, we generalize the IIS model by introducing the non-uniform IIS (NIIS)model. In the standard IIS model, the number of IS objects available is �nite, and thenumber of IS objects accessed is �xed over all processes and all executions. The NIIS model,however, assumes an in�nite sequence ISn+1D ; ISn+1#(D); ISn+1#2(D); : : : of IS objects, denotedIS1; IS2; IS3; : : : . The number of IS objects accessed by any two distinct processes in agiven execution need not be the same, and, moreover, the number of objects accessed byany �xed process may vary from execution to execution. The motivation behind this is tobe able to model complexity more accurately, as will be shown in later sections.Each protocol in the NIIS model can be fully characterized by the maximum numbern+1 of processes that can participate, a predicate function � : Skl=0 #l(D)! ftrue; falseg,which each process applies to its local state variable after each complete writeread operationto determine whether or not to decide, and a decision map � : Skl=0 #l(D) ! DO, whereDO is an arbitrary data type, which we call the protocol's output data type. We refer to theprotocol obtained by �xing these parameters as P(n;�;�).We can specify the P(n;�;�) protocol using I/O automata [24, 25] as follows. Each IS ob-29



Environment ESignatureInputs:decide(S)i , S 2 Sl�1 #l(D).Internals:Outputs:start(v)i , v 2 D.failiStatestatus 2 f?; participating;started ;decided ; failedgn+1; initially in f?;participatinggn+1.Transitionsinput: decide(S)iPre: status = startedE�: status := decidedoutput: failiPre: status = startedE�: status := failed output: start(v)iPre: status = participatingE�: status = startedFigure 2-6: I/O Automaton for environment E in P(n;�;�).ject is speci�ed as in Figure 2-1, and each process i is speci�ed as in Figure 2-7. The externalenvironment E is modeled as an automaton as speci�ed in Figure 2-6. The protocol P(n;�;�)can then be speci�ed by composing the automata for the processes with the environment Eautomaton and the IS object automata by matching up operations as follows. Assume thatfor each process i, the x-th IS object, ISx, is connected to the x-th port on i, and for each ISobject ISx, the i-th process is connected to the i-th port on ISx. For each processor i andIS object ISx, we match up i's and ISx's inv writeread(v)i;x and ret writeread(S)i;x actions.Moreover, each process i's start(v)i , decide(S)i and faili actions are matched up withE's start(v)i , decide(S)i and faili actions. The resulting protocol automaton is denotedP(n;�;�) = fE; 0; 1; : : : ; n; IS1; IS2; : : :g.The only signi�cant di�erence between a protocol P(n;�;�) in the NIIS model and aprotocol in the IIS model is that after each complete writeread operation, each process checkswhether it has reached a �nal state by applying the predicate � to the local state variable.If � returns true, the process executes a decide(S)i action and halts. Otherwise, it accessesthe next IS object as in the IIS model, and so on. In fact, any protocol P(n;k;�) in the IISmodel is equivalent to a protocol P(n;�;�) in the NIIS model, in which the predicate � simply30



checks whether or not the local state variable is of type #k(D) or not.Notice that, unlike the IIS model, the NIIS model permits in�nite executions, for somechoices of the termination predicate map � . We only consider protocols for which � ischosen such that the entire system does not have any in�nite executions, however. Thefailure model we use for the NIIS model is the same as for the IIS model, that is, we allowstopping failures, in which a process simply stops taking steps. As for the IIS model, wemodel stopping failures using faili actions, as shown in Figure 2-7.We use the following fairness condition, adapted from Lynch [25], for protocols in theNIIS model.De�nition 2.28 An execution � of a protocol P(n;�;�) is fair if � is �nite, and in the �nalstate no locally controlled action of process i is enabled.In the remainder of this thesis, unless stated otherwise, we restrict our attention to theset of fair executions of a protocol. We use the following wait-free termination condition,also adapted from Lynch [25], for protocols in the NIIS model.De�nition 2.29 A protocol P(n;�;�) is wait-free if, in any fair execution � of P(n;�;�), for alli, and all x, where 1 � x, every inv writeread(v)i;x action issued by a process i is followedby a ret writeread(S)i;x action.The NIIS protocols we consider trivially satisfy the wait-free termination condition,since, for all x; y, where 1 � x; y � k, invocations and responses on any given port i of ISxare independent of invocations and responses on any other port j of ISy (note that x andy may be equal).A stylized interconnection diagram of the NIIS model is given in Figure 2-8. Thediagram does not show any internal actions, nor does it show the start and decide actionsof the processes.2.6 Solvability of Decision TasksIn this section we specify the safety property [25] we will consider in this thesis, which wecall solvability. We will de�ne precisely what it means to solve a decision task in the NIIS31



Process iSignatureInputs:ret writeread(S)i;x , S 2 Skl=1 #l(D).start(v)i, v 2 D.failiInternals:Outputs:inv writeread(v)i;x, v 2Skl=0 #l(D).decide(S)i, S 2 Skl=0 #l(D).Statelocal state 2 (Skl=0 #l(D)) [ f?g, initially in the fresh state ?.status 2 fready;waiting;decided ;failedg, initially ready.Transitionsinput: ret writeread(S)i;xE�: local state := SIf status waiting dostatus := readyoutput: inv writeread(v)i;xPre: �(local state ) = falsestatus = readylocal state = v 6= ?E�: status := waitinginput: failiE�: status := failed
input: start(v)iE�: local state := voutput: decide(S)iPre: �(local state ) = true�(local state ) = Sstatus = readyE�: status := decidedFigure 2-7: I/O Automaton for process i running NIIS protocol.
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Figure 2-8: Diagram of the NIIS model.model. Since the IIS model is equivalent to a special case of the NIIS model, the de�nitionsbelow also apply directly to the IIS model. Although we are primarily interested in the fairexecutions of a given protocol, these de�nitions do hold for all executions of a protocol.De�nition 2.30 Suppose we are given a decision task D = hI; O; 
i, and an execution �of a protocol P(n;�;�) in the NIIS model, with corresponding input and output vectors ~I and~O, respectively. Then P(n;�;�) solves D in � if ~O is a pre�x of some vector in 
(~I).Informally, this means that if P(n;�;�) solves a task D = hI; O; 
i in �, then the outputsof � are consistent with some continuation �0 of �, where the outputs of �0 correspond tosome vector in 
(~I).De�nition 2.31 A protocol P(n;�;�) solves a decision task D = hI; O; 
i if it solves it inevery execution �.2.7 Complexity Measures for the IIS and NIIS ModelsWe now de�ne the complexity measures to be used for analyzing the performance of pro-tocols in the NIIS model. Since the IIS model is equivalent to a special case of the NIIS33



model, these measures also apply directly to the IIS model. As we will see however, thesemeasures expose a potential weakness of the IIS model: All processes always take the samenumber of steps in every execution of a given protocol.Let P(n;�;�) be a protocol in the NIIS model solving a given decision task D, let ~I be aninput vector, and let � be any execution of P(n;�;�) that corresponds to ~I. For all i, let tibe the number of IS objects accessed by process i in �. Clearly, ti is an integer. We �rstde�ne the time complexity of the execution �.De�nition 2.32 The time complexity of �, denoted t�, is maxi ti, the maximum numberof IS objects accessed by any process.We note that t� is well-de�ned, since the number of processes n+ 1 is �nite. Moreover,by de�nition of the max function, t� is an integer value. We use the de�nition given aboveto de�ne the time complexity of the protocol P on the input vector ~I.De�nition 2.33 The time complexity of P(n;�;�) on ~I, denoted t~I , is the supremum of theset ft� j t� is an execution corresponding to ~Ig.Finally, we de�ne the complexity of a protocol P(n;�;�) on an input set I .De�nition 2.34 The time complexity of P(n;�;�) on I, denoted tI , is the supremum of theset ft~I j ~I 2 Ig.The reason for preferring these simple, discrete complexity measures over other, moreelaborate measures such as real time, for instance, is the highly regular structure of theIIS and NIIS models. We make the assumption that each access to an IS object takes thesame amount of time, and do not worry about breaking up the time required to completeeach access to an IS object into subparts. Instead, we group the time spent on invocation,response, and on local computation at the IS object. This assumption is somewhat strong,as the presence of asynchrony in our model will tend to introduce varying delays for eachaccess to an object. However, we believe that, as a �rst step towards a complexity theory,this assumption is justi�able, as it allows for complexity measures that are simple and easyto apply, and that have a particularly nice topological representation, as we will see inChapter 3. 34



The motivation behind introducing non-uniformity to the IIS model is to give a moreaccurate description of the complexity of solving decision tasks. With our complexity mea-sures, the required amount of computation in order to solve a given decision task in theNIIS model may vary from process to process, from input value to input value, and indeedfrom execution to execution. Were we to restrict our attention to the uniform IIS model,however, the complexity measures de�ned above would be somewhat less useful, since inthis model, all processes always take the same number of steps in a given execution, andany process will take the same number of steps in all executions in which it participates. Inother words, the complexity of solving a task in the IIS model is always the same across allprocesses and all executions, namely the number k of IS objects available. Thus, the intro-duction of non-uniformity allows us to more accurately capture the complexity of solvingdecision tasks.
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Chapter 3Topological FrameworkIn this section we �rst introduce some known tools from the �eld of algebraic topology andshow how they may be used to model decision tasks and protocols in the NIIS model ofcomputation. We then introduce a new tool for analyzing complexity in this setting, calledthe non-uniform iterated chromatic subdivision.3.1 Basic Topological De�nitions and ConceptsThis section introduces the basic topological de�nitions and concepts that we shall needfor modeling decision tasks and wait-free protocols in the NIIS model. Some of thesede�nitions are fairly standard, and are mainly taken from popular textbooks on algebraictopology [27, 31], while others are due to Herlihy and Shavit [21, 22, 26]. Some of the �guresused in this section are also adopted from Herlihy and Shavit's work [21, 22, 26].A vertex ~v is a point in a Euclidian space Rl. A set f~v0; : : : ; ~vng of vertexes is geo-metrically independent if and only if the set of vectors f~vi � ~v0gni=1 is linearly independent.Clearly, for a set of n + 1 vertexes to be geometrically independent, l � n. We can nowde�ne the concept of a geometric simplex, or simplex for short.De�nition 3.1 Let f~v0; : : : ; ~vng be a geometrically independent set of vertexes in Rl. Wede�ne the n-simplex S spanned by ~v0; : : : ; ~vn to be the set of all points x such that x =Pni=0 ti~vi where Pni=0 ti = 1 and ti � 0 for all i.36
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2Figure 3-1: Example of a 2-simplex.For example, a 0-simplex is a vertex, a 1-simplex a line segment, a 2-simplex a solidtriangle, and a 3-simplex a solid tetrahedron. For an example of a 2-simplex see Figure 3-1.For simplicity, we often denote the simplex spanned by a set f~v0; : : : ; ~vng of geometricallyindependent vertexes as (~v0; : : : ; ~vn). The number n is called the dimension of the simplexS, and is often denoted by dim(S). For clarity, we will sometimes include the number n asan explicit superscript when referring to a simplex, that is, we will write Sn to refer to thesimplex spanned by the vertexes in f~v0; : : : ; ~vng.Any simplex T spanned by a subset of f~v0; : : : ; ~vng is called a face of S. The faces of Sdi�erent from S itself are called the proper faces of S. The simplex spanned by the vertexesf~v0; ~v1g is a proper face of the 2-simplex in Figure 3-1.The union of the proper faces of S is called the boundary of S, and is denoted Bd(S).The interior of S, denoted Int(S), is de�ned by the set equation Int(S) = S � Bd(S).We will use a vertex to model the state of a single process, and a simplex to modelconsistent states of all the processes involved in solving a decision task or in running aprotocol in the NIIS model. To model a collection of such states we need the concept of ageometric, simplicial complex, or complex for short, which is de�ned below.De�nition 3.2 A geometric simplicial complex K in the Euclidean space Rl is a collectionof geometric simplexes in Rl such that� Every face T of every simplex S in K, where dim(T ) � dim(S), is contained in K.� The intersection U of any two simplexes S, T in K, where dim(U) � dim(S); dim(T ),37



is contained in K.In this thesis we will only consider �nite complexes. The dimension of a complex K,often denoted by dim(K), is the highest dimension of any of its simplexes, and is alsosometimes indicated explicitly by a superscript. An n-dimensional complex (or n-complex)is pure if every simplex is a face of some n-simplex. All complexes considered in this paperare pure, unless stated otherwise. A simplex S in K with dimension dim(S) = dim(K) iscalled a maximal simplex.Given a simplex S, let S denote the complex of all faces of S, and let _S denote thecomplex consisting of all proper faces of S. We note that, since _S contains all faces ofS except S itself, dim( _S) = dim(S) � 1. An example of a pure, 2-dimensional simplicialcomplex, which we call K, is shown in Figure 3-2. This complex equals the union of _S and_T , where S is the 2-simplex spanned by f~v0; ~v1; ~v2g, and T is the 2-simplex spanned byf~v0; ~v1; ~v3g. Both S and T are maximal simplexes in this example.If L is a subcollection of K that is closed under containment and intersection, wheredim(L) � dim(K), then L is a complex in its own right. It is called a subcomplex of K. Forexample, the complex _S of faces of S is a subcomplex of K in Figure 3-2One subcomplex of a complex K of particular interest is the subcomplex of all simplexesin K of dimension at most p, where p is some integer between 0 and dim(K). We callthis subcomplex the p-th skeleton of a K, denoted skelp(K). The elements of the collectionskel0(K) are called the vertexes of K. The 0-skeleton of the complex K in Figure 3-2 is thecollection of vertexes ff~v0g; : : : ; f~v3gg. Similarly, the 1-skeleton of K is the union of the0-skeleton described above and the collection ff~v0; ~v1g; : : :f~v0; ~v3g; f~v1; ~v2g; f~v1; ~v3gg.We now de�ne a way of \adding" simplexes, known as starring.De�nition 3.3 Let S = (s0; : : : ; sp) and T = (t0; : : : ; tq) be simplexes. Then the star of Sand T , denoted S ? T is the simplex (s0; : : : ; sp; t0; : : : ; tq).We may extend the notion of starring to complexes as well, as shown below.De�nition 3.4 Let K and L be simplicial complexes, not necessarily of the same dimension.Then the star of K and L, denoted K ?L, is the collection of simplexes K[L[fS ? T j S 2K; T 2 Lg. 38
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v23vFigure 3-2: Example of a pure, 2-dimensional simplicial complex.The star of two complexes K and L is a complex in its own right [27].Let jKj be the subset SS2K S of Rl that is the union of the simplexes of K. Giving eachsimplex its natural topology as a subspace of Rl, we topologize jKj by declaring a subset Aof jKj to be closed i� A \ S is closed for all S 2 K. This space is called the polytope of K.Conversely, K is called a triangulation of jKj.In practice, the geometric representations we have given for simplexes and complexesare not always convenient, since the analytic geometry involved can get quite involved.Therefore, we introduce the notions of abstract simplexes and abstract complexes.De�nition 3.5 An abstract simplex S is a �nite, nonempty set.The dimension of S is its cardinality. Each nonempty subset T of S is called a faceof S. Each element of S is called a vertex of S. There is a close relationship betweengeometric simplexes and abstract simplexes; Any geometrically independent set of vectorsf~v0; : : : ; ~vng not only span a geometric simplex, they also form an abstract simplex.De�nition 3.6 An abstract complex Ka is a collection of abstract simplexes, such that ifS is in Ka, so is any face of S.Most concepts de�ned for geometric complexes immediately carry over to abstract com-plexes; The dimension of Ka, often denoted by dim(Ka), is the highest dimension of any ofits simplexes. An n-dimensional abstract complex (or n-complex) is pure if every simplex39



is a face of some n-simplex. If La is a subcollection of Ka that is itself an abstract complex,then La is called a subcomplex of Ka.De�nition 3.7 Let K be a geometric complex, and let V be the vertex set of K. Let Ka bethe collection of all subsets S of V such that S spans a simplex in K. Then Ka is called thevertex scheme of K.De�nition 3.8 Two abstract complexes Ka and La are isomorphic if there is a bijectivecorrespondence  between their vertex sets such that a set S of vertexes is in Ka i�  (S) 2La. The bijective correspondence  is called an isomorphism.Theorem 3.9 Every abstract complex Ka is isomorphic to the vertex scheme of some geo-metric complex K in R2dim(Ka)+1.We will not prove this theorem here. For a proof, see any standard textbook on algebraictopology [27, 31]. In the rest of this thesis, for convenience, we will often use abstract andgeometric representations of simplexes and complexes interchangeably. The remainder ofthis section, however, which introduces a number of important topological concepts, suchas simplicial maps, subdivisions and carriers, is set in the context of geometric complexes.We �rst de�ne the notions of simplicial vertex maps and simplicial maps from onecomplex into another.De�nition 3.10 Let K and L be complexes, possibly of di�erent dimensions, and let � :skel0(K)! skel0(L) be a function mapping vertexes to vertexes. Suppose that whenever thevertexes ~v0; : : : ; ~vn of K span a simplex of K, the vertexes �(~v0); : : : ; �(~vn) span a simplex ofL. Then � is called a simplicial vertex map from K to L. � can be extended to a continuousmap �� : jKj ! jLj such thatx = nXi=0 ti~vi ) ��(x) = nXi=0 ti��(~vi)This continuous extension is called a simplicial map from K to L.For simplicity, we henceforth refer to the simplicial vertex map � as the simplicialmap, without actual reference to the continuous extension ��, which is less relevant for our40



µFigure 3-3: Example of a simplicial map between two complexes.purposes. As a further abuse of notation, we usually write � : K ! L when we refer to thesimplicial vertex map, glossing over the fact that this map is in fact only de�ned on thevertexes of K, and that the image of the map is a subset of the vertex set of L. Henceforth,unless stated otherwise, all maps between complexes are assumed to be simplicial. Anexample of a simplicial map is given in Figure 3-3.We note that a simplex and its image under a simplicial map need not have the samedimension. A simplicial map � : K ! L is non-collapsing if it preserves dimension, that is,for all S 2 K: dim(�(S)) = dim(S).De�nition 3.11 A coloring of an n-dimensional complex K is a non-collapsing simplicialmap � : K ! S, where S is an n-simplex.Intuitively, a coloring corresponds to a labeling of the vertexes of the complex such thatno two neighboring vertexes (connected by a 1-simplex) have the same label. A chromaticcomplex (K; �) is a complex K together with a coloring � of K. An example of a chromaticcomplex is given in Figure 3-4, where the colors are the values f1; 2; 3g. When it is clear fromthe context, we specify the chromatic complex (K; �) simply as the complex K, omittingexplicit mention of the coloring �.De�nition 3.12 Let (K; �K) and (L; �L) be chromatic complexes, and let � : K ! L be asimplicial map. We say that � is chromatic if, for every vertex ~v 2 K, �K(~v) = �L(�(~v)).41
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3Figure 3-4: Example of a 1-dimensional chromatic complex.In other words, � is chromatic if it maps each vertex in K to a vertex in L of the samecolor. All the simplicial maps we consider in this thesis are chromatic. We can now de�nethe concepts of a subdivision of a complex, and the carrier of a simplex in a subdivision.De�nition 3.13 Let K be a complex in Rl. A complex �(K) is said to be a subdivision ofK if the following two conditions hold:� Each simplex in �(K) is contained in a simplex in K.� Each simplex of K equals the union of �nitely many simplexes in �(K).An example of a complex and its subdivision is given in Figure 3-5.De�nition 3.14 If S is a simplex of �(K), the carrier of S, denoted carrier(S) is theunique smallest T 2 K such that S � jT j.The concept of a carrier of a simplex is illustrated in Figure 3-6. The original complexis shown on the right, and the subdivided complex is shown on the left. A simplex S in thesubdivision and the corresponding carrier carrier(S) in the original complex are highlightedin the �gure.A chromatic subdivision of (K; �K) is a chromatic complex �(K); ��(K)) such that �(K)is a subdivision of K, and for all S in �(K), ��(K)(S) � �K(carrier(S)). A simplicial map42



κ σ(κ)Figure 3-5: Example of a pure, 2-dimensional simplicial complex and a subdivision of it.
Simplex S Carrier(S)Figure 3-6: The Carrier of a Simplex� : �1(K) ! �2(K) between chromatic subdivisions of K is carrier preserving if for allS 2 �1(K), carrier(S) = carrier(�(S)). All subdivisions we consider in this thesis will bechromatic, unless explicitly stated otherwise.3.2 Topological Modeling of Decision TasksEarlier in this section, we de�ned the notion of a decision task in terms of input and outputvectors. That de�nition was intended to help the reader understand what a decision taskis, but it lacks the mathematical structure necessary to prove interesting results. We nowreformulate this de�nition in terms of simplicial complexes.To illustrate our constructions, we will use the well-known Unique-Id task as an informalexample. We will give a formal, topological de�nition of decision tasks later. The Unique-Id43



task was introduced in Section 1, but we restate it here for convenience.Example 3.15 The n + 1-process Unique-Id task is de�ned as follows:� I = f[0; : : : ; n]g.� O = f[x0; : : : ; xn] j 8i; j : xi 2 (Z)n+1 [ f?g ^ (xi = xj)) (xi = ?)g.� 
 = f(~I; ~O) j (~I[i] = ? , ~O[i] = ?)g.We represent the (unique) n+ 1-dimensional input vector ~I = [0; : : : ; n] to the Unique-Id task as a simplex S, called an input simplex, with dimension 0 � dim(S) � n. Thedimension of S equals the number of non-? elements in the vector. Each vertex ~v in Sis labeled with a process id and an input value: hi; vii, where ~I[i] = vi. We use ids(S) todenote the simplex's set of process ids, and vals(S) to denote the multiset of values. If ~J isa pre�x of ~I , then the simplex corresponding to ~J is a face of S. The set I of input vectorsis thus modeled as a complex I of input simplexes, called the input complex.Similarly, we represent each n + 1-dimensional output vector ~O = [x1; : : : ; xn], wherefor all i; j, either xi = ? or 0 � xi � n and (xi = xj) ) (xi = ?), as a simplex T , calledan output simplex, with dimension 0 � dim(T ) � n. Each vertex ~v in T is labeled witha process id and an output value: hi; vii, where ~O[i] = vi. We use ids(T ) to denote thesimplex's set of process ids, and vals(T ) to denote the multiset of values. If ~P is a pre�x of~O, then the simplex corresponding to ~P is a face of T . The set O of input vectors is thusmodeled as a complex O of output simplexes, called the output complex.The task speci�cation map 
 induces a topological task speci�cation map � for theUnique-Id task in the natural way, mapping each input simplex S 2 I to a set �(S) ofoutput simplexes in O, with the property that for all T 2 �(S), the set vals(T ) contains nonon-? duplicates.We can now give an alternative, topological representation of the Unique-Id decisiontask by simply specifying it as a tuple D = hI;O;�i consisting of an input complex I, andoutput complex O, and a topological task speci�cation map, �.Figure 3-7 shows two triangles (2-simplexes) corresponding to two distinct outputs forthe 3-process Unique-Id task, one given by the output vector ~O1 = [0; 1; 2], the other given44



(0,0)
(1,1)

(2,2)(0,3)

S

TFigure 3-7: Part of output complex for the 3-proc Unique-Id task.by the output vector ~O2 = [3; 1; 2]. Notice that the vertexes of each simplex are colored bythe appropriate process ids.This topological representation gives an alternative interpretation of the notion of \sim-ilar" system states. The processes corresponding to vertexes on the common boundary ofthe two simplexes cannot distinguish between the two global output sets based on their ownoutput values. Unlike graph-theoretic models (e.g., [6]), simplicial complexes capture in anatural way the notion of the degree of similarity between the two global output sets: it isthe dimension of the intersection of the two 2-simplexes.We now give a novel, formal procedure for how to specify a given decision task D =hI; O; 
i topologically. We �rst construct a representation using abstract simplexes andcomplexes. It then follows from Theorem 3.9 that there exists a representation using geo-metric simplexes and complexes, for which the vertex scheme is isomorphic to the abstractrepresentation. There are standard ways of constructing such geometric complexes [27], butwe choose not to get into the details of these constructions in this thesis.De�nition 3.16 Let ~I 2 I be an input vector. The input simplex corresponding to ~I,denoted S(~I), is the abstract simplex (hi0; vi0i; : : : ; him; vimi), where for all ij, where i0 �ij � im, ij 2 f0; : : : ; ng ^ ~I[ij ] 6= ?, and for all i, (~I [i] = ?)) (i 62 fi0; : : : ; img).De�nition 3.17 Let ~O 2 O be an output vector. The output simplex corresponding to~O, denoted T ( ~O), is the abstract simplex (hi0; vi1i; : : : ; him; vimi), where for all ij, where45



i0 � ij � im, ij 2 f0; : : : ; ng ^ ~O[ij] 6= ?, and for all i, ( ~O[i] = ?)) (i 62 fi0; : : : ; img).Having de�ned input and output simplexes, we can de�ne input and output complexes.De�nition 3.18 The input complex corresponding to I, denoted I, is the collection ofinput simplices S(~I) corresponding to the input vectors of I.De�nition 3.19 The output complex corresponding to O, denoted O, is the collection ofoutput simplices T ( ~O) corresponding to the output vectors of O.We have to prove that these de�nitions make sense topologically, that is, that the inputand output complexes thus de�ned are in fact abstract complexes. We will do the proof forinput complexes in the lemma below. The proof relies on the requirement that the sets ofinput vectors we consider are pre�x-closed.Lemma 3.20 Given a set I of input vectors. The corresponding input complex I, as de�nedin De�nition 3.18, is an abstract, chromatic complex.Proof. Clearly, I as de�ned above is a collection of abstract simplexes. We must showthat this collection satis�es the requirements of De�nition 3.6, that is, we must establishthat I is closed under containment.Let S(~I) = (~s0; : : : ; ~sm) be an abstract simplex of I, and let T = (~t0; : : : ;~tm0), wherem0 � m, be a face of S(~I). It follows that skel0(T ) � skel0(S(~I)). Consider the vector~J , the i-th entry of which is ? i� i 62 ids(T ), and otherwise val(~tj), where i = id(~tj). Weclaim that this vector is a pre�x of ~I . Suppose ~I[i] = ?. Then i 62 ids(S(~I)), and hencei 62 ids(T ). It follows that ~J [i] = ?. Now suppose that ~J [i] 6= ?. Then there is a vertex ~tjin T with id(~tj) = i and val(~tj) = ~J [i]. Since skel0(T ) � skel0(S(~I)), this vertex is also avertex of S(~I), and so it follows that ~I[i] = val(~tj) = ~J [i]. It follows that ~J is a pre�x of~I . Since we only consider pre�x-closed sets of input vectors, ~J must be in I . The simplexcorresponding to ~J , denoted S( ~J) is equal to T , and hence T is in I.It follows that I is an abstract complex. Moreover, let S = (~s0; : : : ; ~sn) be any n-simplex. Then the map � : I ! S de�ned by �(~v) = ~si, where i = id(~v) is a chromatic andsimplicial map from I to S, and hence I is a chromatic, abstract complex, as required. 246



Lemma 3.21 Given a set O of output vectors. The corresponding output complex O, asde�ned in De�nition 3.18, is an abstract, chromatic complex.The proof is identical to the proof of Lemma 3.20, and will be omitted here. Givena pair of (abstract) input and output complexes, we may apply Theorem 3.9 to constructa corresponding pair of geometric chromatic input and output complexes by embeddingthe abstract complexes in R2n+1. As discussed in Section 3.1, the abstract and geometricrepresentations of a complex are equivalent up to linear isomorphism, and thus we will workwith both interchangeably in the remainder of this thesis.We now construct a topological equivalent of the task speci�cation map 
 � I � O.De�nition 3.22 The topological task speci�cation map corresponding to 
, denoted � �I � O, is de�ned as follows. (S(~I); T ( ~O)) 2 �() (~I; ~O) 2 
As a convenient notation, for all S(~I) 2 I, we denote the set of simplexes T ( ~O) inO such that (S(~I); T ( ~O)) 2 � by �(S(~I)). Usually, we simply refer to a topological taskspeci�cation map as a \task speci�cation map". We now prove that task speci�cations areid-preserving; if a process i has an input value, it must also have an output value, and viceversa.Lemma 3.23 For all S(~I) 2 I, and all T ( ~O) 2 �(S(~I)), ids(T ) = ids(S).Proof. Let S(~I) be any simplex in I, and let T ( ~O) 2 �(S(~I)). Then ~O 2 
(~I) byDe�nition 3.22. Suppose i 62 ids(S(~I)). Then ~I[i] = ? by De�nition 3.16, and hence byDe�nition 2.6, ~O[i] = ?. It follows from De�nition 3.17 that i 62 ids(T ( ~O)). Now supposei 62 ids(T ( ~O)). Then ~O[i] = ? by De�nition 3.17, and hence by De�nition 2.6, ~I[i] = ?. Itfollows from De�nition 3.16 that i 62 ids(S(~I)). 2An illustration of a pair of input and output complexes, together with a task speci�cationmap relating them, is given in Figure 3-8. 47



De�nition 3.24 Given a decision task D = hI; O; 
i, the corresponding topological repre-sentation of the task, denoted D = hI;O;�i, consists of an input complex I corresponding toI, and output complex O corresponding to O, and a task speci�cation map � correspondingto 
.
Input Complex Output Complex

Input
Simplex

Set of legal
output simplexes

Figure 3-8: A Decision TaskIn the remainder of this paper, we will specify decision tasks using both De�nition 2.7and De�nition 3.24 interchangeably. A set of inputs or outputs may thus be speci�ed aseither a vector or as a simplex the vertexes of which are labeled with process ids and values.3.3 Topological Modeling of NIIS ProtocolsWe model protocols in the NIIS model in much the same way that we model decision tasks.As discussed in Chapter 2, the sets of inputs and outputs for any execution � of a protocolP(n;�;�) in the NIIS model can be modeled using n+1 process input and output vectors. Wedenote the sets of input vectors and output vectors of a protocol by I and O, respectively.We are only interested in protocols that solve decision tasks, so we may assume that the setI of possible input vectors to a protocol is pre�x-closed. The following lemma states thatfor any protocol in the NIIS model, the set O of possible output vectors from all executionsof the protocol must necessarily be pre�x-closed. Recall from Section 2.5 that we are onlyconsidering the set of fair (and hence �nite) executions of a protocol here.48



Lemma 3.25 Let O be the set of possible output vectors of a protocol P(n;�;�) in the NIISmodel, with corresponding set of input vectors I. Then O is pre�x-closed.Proof. Let ~O be an output vector produced by the execution �O, and let ~P be a pre�xof ~O. We construct an execution �P as follows: For each i such that ~O[i] = vi 6= ? = ~P [i],replace the action decide(S)i (S is the snapshot returned by that action) in �O with afaili action, meaning that process i fail-stopped before deciding. Clearly, the executionthus obtained is a possible execution of P(n;�;�), and its output vector is ~P . Hence ~P is inO, and O is pre�x-closed. 2Given that both the set of input vectors I and the set of output vectors O associatedwith a protocol P(n;�;�) are pre�x-closed sets of vectors, we can construct correspondinginput and output complexes, denoted I and P(n;�;�)(I), respectively. These complexes areconstructed in the same way as the complexes corresponding to input and output sets ofvectors for decision tasks, and the proofs that they are indeed chromatic complexes are alsoidentical. The output complex P(n;�;�)(I) is called a protocol complex.Let J be a subcomplex of the input complex I. The set of possible outputs when theprotocol is given inputs corresponding to simplexes in J is denoted P(n;�;�)(J ).Lemma 3.26 Let J be a subcomplex of I. Then P(n;�;�)(J ) is a subcomplex of P(n;�;�)(I).Proof. It su�ces to show that P(n;�;�)(J ) is a complex, since P(n;�;�)(J ) is clearly a subsetof P(n;�;�)(I). We simply look at the set of vectors J corresponding to the subcomplex J inisloation, as the set of input vectors to the protocol P(n;�;�). This set is pre�x-closed sinceJ is a complex, and hence closed under containment. Hence the set P of output vectorsgiven input vecors in J is pre�x-closed by Lemma 3.25. It follows from Lemma 3.21 thatP(n;�;�)(J ), the complex corresponding to P(n;�;�), is a complex, and hence a subcomplex ofP(n;�;�)(I). 2In the remainder of this thesis, we will specify protocols in NIIS using both its formalspeci�cation from Section 2.5 as well as protocol complexes as described in this sectioninterchangeably. A set of inputs or outputs may thus be speci�ed as either a vector or as asimplex the vertexes of which are labeled with process ids and values.49



3.4 SubdivisionsThe standard chromatic subdivision was introduced by Herlihy and Shavit as part of theirwork on asynchronous computability [21, 22, 26]. It is essentially a chromatic generalizationof the standard barycentric subdivision from classical algebraic topology [27, 31]. In thissection, we will present a complete, formal de�nition of the standard chromatic subdivision,together with a proof that this de�nition does indeed correspond to a chromatic subdivisionof a given complex. Our de�nition is somewhat di�erent from that of Herlihy and Shavit[21, 22, 26], as it is based on an explicit, inductive, geometric construction, which welater formally prove to be a chromatic subdivision. We also introduce the concept of anon-uniform chromatic subdivision, a generalization of the standard chromatic subdivision,in which the di�erent simplexes of a complex are not necessarily subdivided the samenumber of times. Informally, a non-uniform chromatic subdivision of level 1 of a complexK, denoted by eX 1(K), is constructed by choosing, for each n-simplex in K, a single faceof the simplex (a face can be of any dimension and could also be the whole simplex) towhich we apply the standard chromatic subdivision. We then induce the subdivision ontothe rest of the simplex. The subdivisions of any two individual simplexes must be such thatthey agree on their shared face. This can be seen in Figure 3-9. Its right hand side showsa valid non-uniform chromatic subdivision of a complex where, for example, the simplex(b; c; d)'s subdivision is the result of subdividing the 1-face (c; d) once and then inducingthis subdivision onto the rest of the simplex. The left hand side structure is not a legalsubdivision, since the subdivision of the simplex (b; c; d) does not agree with that of thesimplex (a; b; d) on the shared face (b; d). This structure is not even a simplicial complex,since it contains an object that is not a simplex (the cross-hatched region in Figure 3-9. A k-th level non-uniform chromatic subdivision of a complex K, denoted by eX k(K), is generatedby repeating this process k times, where only simplexes in faces that were subdivided inround k�1 can be subdivided in phase k. The complex on the right hand side of Figure 3-9is an example of a non-uniform chromatic subdivision of level 2, since the face (a; d) issubdivided twice.Later, we will show that these structures correspond in a natural way to the set ofprotocol complexes in the NIIS model of computation. In fact, it turns out that each non-uniform standard chromatic subdivision is equal to some NIIS protocol complex (up to50
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invalid subdivisionFigure 3-9: Valid and Invalid Non-uniform Subdivisionsisomorphism).3.4.1 The Standard Chromatic SubdivisionIn this section we provide our de�nition of the standard chromatic subdivision, and provethat this de�nition does indeed specify a chromatic subdivision of a given complex. WhileHerlihy and Shavit gave a high level combinatorial de�nition of the standard chromaticsubdivision [21, 22, 26], our de�nition is based on an explicit, geometric construction.Let K be a pure, n-dimensional, chromatic geometric complex, where the colors are thenumbers in Zn+1. Label each vertex ~v in K with hi; vii, where i is the color of ~v, and viis a value in some set DI chosen such that no two vertexes in K have the same label. Inorder to de�ne the standard chromatic subdivision of K, we inductively de�ne a sequenceof subdivisions Lp of the skeletons of K, where 0 � p � n as follows. Let L0 = skel0(K).Now suppose that Lp�1 is a chromatic subdivision of the p� 1-skeleton of K. Each vertex~v in Lp�1 is labeled hi; Sii, where Si is the vertex scheme of some simplex in skelp�1(K).The labels hi; Sii are such that any T = (~t0; : : : ; ~tr), where r � p� 1, is a simplex in Lp�1i� ids(T ) � ids(carrier(T ) and the following conditions hold for all 1 � i; j � r:� id(ti) 6= id(tj).� id(~ti) 2 ids(val(~ti))� val(~ti) is a face of val(~tj) or vice versa51



� id(~tj) 2 ids(val(~ti))) val(~tj) is a face of val(~ti)Let S = (~s0; : : : ; ~sp) be a p-simplex in K. The set Bd(S) is the polytope of a subcomplexof the p � 1-skeleton of K, and hence of a subcomplex of Lp�1, which we denote LBd(S).Let ~b be the barycenter of S, and let � be some positive real number such that 0 < � < 1.For each 1 � i � p, de�ne ~mi to be the point (1 + �)~b� �~si. These points are called themidpoints of S. Label ~mi with hi; Si, S here being the vertex scheme of the geometricsimplex S. Let MS be the set of midpoints of S. We de�ne LS to be the union of LBd(S)and all the faces of all chromatic p-simplexes T = (~t0; : : : ; ~tp), such that for all 1 � i; j � p :~ti 2 skel0(LBd(S)) [MS , and the following conditions hold:� id(ti) 6= id(tj).� id(~ti) 2 ids(val(~ti))� val(~ti) is a face of val(~tj) or vice versa� id(~tj) 2 ids(val(~ti))) val(~tj) is a face of val(~ti)We now de�ne Lp to be the complex consisting of the union of the complexes LS , asS ranges over all the p-simplexes of K. We now prove that this structure makes sensemathematically, that is, that it is in fact a subdivision of the p-skeleton of K.Lemma 3.27 For all 0 � p � n, Lp is a chromatic subdivision of skelp(K).Proof. We argue by induction. The case p = 0 is trivial. So suppose p > 0, and supposethe claim holds for L0; : : : ;Lp�1. We will �rst prove that Lp is a chromatic simplicialcomplex. To that end, we prove the following auxiliary lemma.Lemma 3.28 For all p-simplexes S in K, LS is a chromatic complex.Proof. We must show that LS is closed under containment and intersection. Let U be asimplex in LS , and let V be a face of U , where 0 � dim(V ) � dim(U) � p. If U is in LBd(S),then so is V , since LBd(S) is a complex (since Lp is a subdivision and hence a complex byassumption). Hence V is in LS . Suppose U is not contained in LBd(S). Then U must be52



the face of a p-simplex T as described above. By de�nition of LS , all the faces of T , andhence all faces of U , must be in LS . It follows that LS is closed under containment.Let U , V be simplexes in LS , and suppose their intersection, denoted byW , is nonempty.If U , V are both in LBd(S), it follows immediately that V r is in LBd(S) and hence in LS .Similarly, if U is in LBd(S) but V is not, then W = U \ V = U \ (V \ jLBd(S)j). Notethat V \ jLBd(S)j is a simplex in LBd(S), since all the criteria given above are satis�ed.Hence it follows that W is in LBd(S), and hence in LS . If neither U nor V is in LBd(S),then since all faces of U and V are in LS , then so is W . It follows that LS is closed underintersection, and hence is a complex. That LS is chromatic follows from the fact thatwe only include chromatic simplexes in LS in our construction (note that Lp�1 and henceLBd(S) are chromatic by assumption). 2Notice that for all distinct p-simplexes S; T we have that jLS j \ jLT j = S \ T , which isa simplex in skelp�1(K), and hence is the polytope of a subcomplex of Lp�1, and hence ofboth LS and LT . It follows that Lp is a simplicial complex [27]. It remains to show thatLp is a chromatic subdivision. To this end, we must �rst show that every simplex in Lp iscontained in some simplex in skelp(K), and that every simplex in skelp(K) is the union of�nitely many simplexes in Lp. Now, it is clear from our construction that any simplex Tq inLp is contained in some simplex S in skelp(K). Also, since for all simplexes S in skelp(K),the set of midpoints is �nite, and Lp�1 is a subdivision of skelp�1(K) by assumption, itfollows that S is the union of �nitely many simplexes in Lp. Hence Lp is a subdivision.This subdivision is chromatic, since Lp�1 is chromatic by assumption, since the colors usedto color the midpoints of any simplex S are exactly the colors used to color S, and sinceany simplex in Lp including midpoints must satisfy the requirement that no two vertexeshave the same color (id). 2We are now ready to give our de�nition of the standard chromatic subdivision of acomplex K.De�nition 3.29 The standard chromatic subdivision of K, denoted X (K), is the complexLn.An example of a complex and its standard chromatic subdivision is given in Figure 3-10.53



κ σ(κ)XFigure 3-10: Example of a 2-dimensional complex and its standard chromatic subdivision.Applying the standard chromatic subdivision k times, where k > 1, yields a subdivisionX k(K) = X k�1(X (K)), which we call the kth iterated standard chromatic subdivision[21, 22, 26]. Since the standard chromatic subdivision of a complex is again a complex, and achromatic subdivision of a chromatic subdivision of K is itself a chromatic subdivision of K,X k(K) is a chromatic subdivision of K. The number k is called the level of the subdivision.Moreover, for all k, X k(K) = X k�1(X (K)) = X (X k�1(K)).We will mostly use the vertex scheme representation of the standard chromatic subdivi-sion, as it has a particularly compact representation, as stated in the lemma below. We notethat this formulation of the standard chromatic subdivision is equivalent to the de�nitionof Herlihy and Shavit [21, 22, 26].Lemma 3.30 Let K be a pure, chromatic complex of dimension n. The vertex schemeof X (K) is the closure under containment of the set of all n-simplexes of the form S =(h0; S0i; : : : ; hn; Sni), where for all i, Si is the vertex scheme of some face of a simplex Sin K, and the following conditions hold for all i, j:� i 2 ids(Si).� Si is a face of Sj or vice versa.� If j 2 ids(Si), then Sj is a face of Si.Proof. We argue by induction on k, where 0 � k � n. It is immediate that the simplexesof X (K) lying in the subdivision L0 of skel0(K) are of this form (each such simplex is a54



vertex of K labeled with a process id and a value), and the requirements above are allsatis�ed trivially.Now suppose the claim holds for 0; : : : ; k� 1. Consider a simplex T lying in the subdi-vision Lk of skelk(K) and not in Lk�1. Then T = U ?V , where U is a simplex in Lk�1, andV is a simplex each vertex of which is one of the midpoints in MS , where S = carrier(T ).By assumption, V is non-trivial, meaning that there is at least one vertex in V . However,U may be trivial. For each vertex ~v in V , val(~v) = S, the vertex scheme of S. Hence for i; jin ids(V ), since ids(V ) � ids(S), all the conditions listed above are clearly satis�ed. Fori; j in ids(U), the conditions are satis�ed by induction. Now suppose i is in ids(U), whilej is in ids(V ). Notice that Si = carrier(U), and Sj = carrier(V ) = S.The �rst condition follows by induction (for i) and since ids(V ) � ids(S) = vals(V )(for j). Since carrier(U) is a face of S, it follows that Si is a proper face of S, and henceof Sj , which equals the vertex scheme of S, and so the second condition is satis�ed. It isclear that i is in ids(Sj), since Sj equals the vertex scheme of S, and i is in ids(carrier(U)),which is a subset of ids(S). That Si is a face of Sj has already been established. It followsthat, since X (K) is chromatic, ids(U)\ ids(V ) = emptyset, ids(Si) � ids(carrier(U)), andj is not in ids(carrier(U)), j cannot be in ids(Si). It follows that the third condition issatis�ed. 2In the remainder of this thesis, we will usually work with this description of the standardchromatic subdivision, and refer to it as X (K). Whenever the distinction between thegeometric and abstract representations of X (K) is signi�cant, it will be mentioned explicitly.3.4.2 The Non-Uniform Chromatic SubdivisionIn this section, we de�ne the non-uniform chromatic subdivision, and prove that this de�-nition does indeed specify a chromatic subdivision of a given complex.De�nition 3.31 Let K be a pure n-dimensional chromatic complex, where the colors are thenumbers in Zn+1. We will give a recursive de�nition of a non-uniform chromatic subdivisionof K. In general, we denote a k-level non-uniform chromatic subdivision of a complex K byeX k(K), for k � 0. 55



κ σ(κ)X
~1Figure 3-11: Example of level 1 non-uniform chromatic subdivision of a 2-complex.If dim(K) = 0, then for all k � 0, eX k(K) is K itself. Now suppose dim(K) > 0. TheneX 0(K) is K itself. For k > 0, eX k(K) is given by the following procedure: Partition thevertexes of K into two disjoint sets, A and B, where A is nonempty. From these sets weconstruct two complexes, denoted by A and B, respectively, as follows: A simplex S in K isin A if the vertexes spanning S are all in A, and it is in B if its spanning vertexes are allin B. The subdivision eX k(K) is the complex consisting of all simplexes in B, all simplexesin eX k�1(X (A)), and all simplexes of the form S ? T , where S is a simplex in eX k�1(X (A)),T is a simplex in B, and carrier(S) ? T is a simplex in K.Informally speaking, a non-uniform chromatic subdivision of level k is one in which thereis some simplex in K which is subdivided k times, but no simplex that is subdivided morethan k times. Note that the k level standard chromatic subdivision is a special case of the klevel non-uniform chromatic subdivision. Hence for all k � 0, there exists some non-uniformchromatic subdivision of level k. Our de�nition of non-uniform chromatic subdivisions isdesigned to easily model protocol complexes of the NIIS model. At any level of the recursion,the vertexes in A can be thought of as corresponding to processes that continue computinggiven their current local state, while the vertexes in B correspond to processes that decide.An example of a level 1 non-uniform chromatic subdivision of a 2-complex K is given inFigure 3-11, and an example of a level 2 non-uniform chromatic subdivision of a slightlybigger 2-complex L is given in Figure 3-12. Note that in Figure 3-12 the complex A for thesecond level of recursion is isomorphic to the complex A for the �rst level of recursion inFigure 3-11. 56
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Figure 3-12: Example of level 2 non-uniform chromatic subdivision of a 2-complex.An example of a chromatic subdivision that does not satisfy De�nition 3.31 is given inFigure 3-13. It is not a non-uniform chromatic subdivision because the vertex b is part ofthe B complex at the �rst level of recursion (that is, it is not part of the subcomplex thatis subdivided further), while in the next level of recursion, the edge between d (which is inthe A complex at the �rst level of recursion, and hence is to be subdivided further) and bis subdivided, meaning that b is in the A complex at the second level of recursion, which isclearly impossible, since the carrier of any vertex in the A complex at the second level mustbe a simplex in the A complex at the �rst level of recursion. Informally, this simply meansthat, if a vertex is not to be part of the complex to be further subdivided at the �rst level,it cannot be part of the complex to be further subdivided at the second level.Lemma 3.32 Any non-uniform chromatic subdivision eX k(K) is a chromatic subdivision ofK. 57
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c d eFigure 3-13: Example of a subdivision that is not a non-uniform chromatic subdivision.Proof. We �rst note that eX k(K) is well-de�ned, since each recursive step lowers the levelof subdivision by 1, and eX 0(K) is de�ned for all K. We will prove that eX k(K) is a chromaticsubdivision by induction on k.The case where k = 0 is trivial, since eX 0(K) = K. Now suppose that k > 0, and thatfor 0 � l � k� 1, and any complex K, eX l(K) is a chromatic subdivision of K. If B = ;, theresult follows by induction and by Lemma 3.27. So suppose that B is nonempty.We �rst show that eX k(K) is closed under containment. Let U be a simplex in eX k(K),and let V be a face of U . If U is in B, then so is V , since B is a complex. Hence V isin eX k(K). Similarly, if U is in eX k�1(X (A)), then so is V , since eX k�1(X (A)) is a complexby our induction hypothesis. Now suppose U = S ? T for some S in eX k�1(X (A)), T in B.Then S \ V is in eX k�1(X (A)), and T \ V is in B. It follows that V = (S \ V ) ? (T \ V ),where carrier(S \ V ) ? (T \ V ) is a simplex in K. By De�nition 3.31, V is in eX k(K). Itfollows that eX k(K) is closed under containment.Let U , V be simplexes in eX k(K), and let W be their intersection. If both U , V arein B, then so is W , since B is closed under intersection. Similarly, if both U and V arein eX k�1(X (A)), then so is W , since eX k�1(X (A)) is closed under intersection. If U isin B and V is in eX k�1(X (A)), or vice versa, then U \ V = ;, and so containment underintersection holds vacuously. We now consider the case where either U or V is not containedin either complex, that is, suppose U = S ? T for some S in eX k�1(X (A)), T in B, and58



V = X ? Y for some X in eX k�1(X (A)), Y in B. Now, U \ V = (S ? T ) \ (X ? Y ), and(S ? T ) \ (X ? Y ) = (S \X) ? (T \ Y ) [27]. If S \ X = ; or T \ Y = ;, then one of thecases discussed above applies, and V is in eX k(K). So suppose now that S, T , X , Y , andthe intersections S \X and Y \ T are all nonempty. Since carrier(S \X) is a face of bothcarrier(S) and carrier(X), it follows that carrier(S \ X) ? T and carrier(S \X) ? Y aresimplexes in K, and so is their intersection carrier(S \X) ? (T \ Y ), since K is a complex.It follows that V is in eX k(K). This concludes the proof that eX k(K) is a complex. That itis a chromatic complex follows directly from Lemma 3.27.We now prove that eX k(K) is a chromatic subdivision. Given a simplex U in eX k(K). IfU is in B then U is clearly contained in a simplex in K, namely itself, and that the colorsof U are contained in the set of colors of its carrier. If U is in eX k�1(X (A)), it follows byinduction and Lemma 3.27 that U is contained in some some simplex carrier(U) in A, andhence in K, and that the colors of U are a subset of the colors of its carrier. Now supposeU = S ? T , where carrier (S) ? T is in K. Then U is contained in carrier(S) ? T , and thecolors of U are a subset of the colors of carrier(S) ? T . Now consider any simplex U in K.We can decompose it into two disjoint faces S and T , such that S 2 A and T 2 B. Thesimplex S is subdivided according to eX k�1(X (A)), which by induction and Lemma 3.27consists of �nitely many simplexes. The simplex T is not subdivided at all. It follows thatthe subdivision eX k(K) subdivides U into �nitely many simplexes (those in eX k�1(X (S))?T ).This completes the proof that eX k(K) is a chromatic subdivision. 2A non-uniform subdivision eX k(K) of a complex induces a non-uniform chromatic subdi-vision of any subcomplex L of K. The level of the induced subdivision of L may vary fromsubcomplex to subcomplex.De�nition 3.33 Let K be a chromatic complex, L a subcomplex or simplex of K, and leteX k(K) be a non-uniform iterated chromatic subdivision of K. We denote its restriction tosimplexes in L for eX k(L). The level of eX k(K) on L is the maximal level of subdivision ofeX k(L), which we denote by kL.It is clear that for any subcomplex or simplex L of K, it must be the case that the levelof eX k(K) on L is less than or equal to k. 59



Chapter 4The Asynchronous ComplexityTheoremThe strength and usefulness of the NIIS model of computation comes from the fact thateach of its associated protocol complexes has a nice, recursive structure. In fact, it turnsout that any protocol complex of NIIS is equal to some non-uniform iterated chromaticsubdivision of the input complex, and vice versa. This is the essence of our main theorem,which we state and prove in this chapter.The level of subdivision necessary for the existence of a simplicial map from the inputto the output complex of a decision task that agrees with the task speci�cation can beinterpreted as a topological measure of the task's time complexity. The following de�nitionintroduces the concept of mappability, which is a useful construct for reasoning about thistopological measure.De�nition 4.1 Given a decision task D = hI;O;�i and a non-negative integer k, we saythat eX k(I) is a mappable subdivision of the input complex, and k is a mappable level ofsubdivision if there exists some chromatic simplicial map � from eX k(I) to O such that forall T in eX k(I), �(T ) 2 �(T ).This de�nition extends naturally to individual simplexes as the map induces di�erentlevels of subdivision on the individual simplexes in accordance with the idea that, in orderto solve a decision task, some processes may have to do more computational work than60



others, and some inputs may require more computation than others. We can now state ourmain theorem:Theorem 4.2 (Time Complexity) A decision task D = hI;O;�i has a wait-free solutionprotocol in the NIIS model with worst case time complexity kS on inputs in S, where S is asimplex in I, if and only if there is a mappable non-uniform iterated chromatic subdivisioneX k(In) with level kS on S.Keeping in style with Herlihy and Shavit [21, 22, 26], the theorem simply states thatsolvability of a decision task D = hI;O;�i in the NIIS model is equivalent to the existenceof a chromatic simplicial map � from some non-uniform chromatic subdivision eX k(I) to Othat agrees with the task speci�cation �, that is, for all T in eX k(I), �(Tm) 2 �(T ). Thelevel kS is a lower bound on the worst case time complexity of solving this task with inputsin S in the NIIS model.The theorem also immediately provides a matching upper bound given the subdivisionand simplicial mapping. Simply run the normal form protocol of Figure 2-7. Since eachprocess can locally store the subdivision and mapping, the termination predicate map �just needs to test if the local state variable is equal to some node v in the subdivision andif so return �(v).In the remainder of this chapter, we will give a proof of our asynchronous time complexitytheorem. We �rst state and prove a lemma about the protocol complex of a protocol in theIIS model with only one available IS object.Lemma 4.3 Let A be an input complex in the IIS model with a single IS object. Thecorresponding protocol complex is isomorphic to X (A).Proof. We will construct an isomorphism 	 from the abstract complex P(n;�;�)(A) to theabstract complex (vertex scheme) X (A), as speci�ed by Lemma 3.30. Let ~v = hi; Sii be anyvertex in P(n;�;�)(A). Then 	(~v) = hi; Tii, where Ti is the simplex in A such that for all j,Si[j] = vj if and only if hj; vji 2 Ti. Notice that this isomorphism is chromatic, that is, theid of a vertex equals the id of its image under 	.By Lemma 3.30, we must show that a set of vertexes ~v0; : : : ; ~vm in skel0(P(n;�;�)(A)),wherem � n, form a simplex in P(n;�;�)(A) if and only if the set of vertexes 	(~v0); : : : ;	(~vm)61



in skel0(X (A)) form a simplex in X (A). Suppose without loss of generality that for all i,where 0 � i � m, ~vi = hi; Sii, where Si 2 #(DI), and DI is the input data type (that is,the id of the i-th vertex is i).Suppose that the vertexes ~v0; : : : ; ~vm do form a simplex V in in P(n;�;�)(A). This outputsimplex corresponds to some execution � in the 1-shot IS model, with corresponding inputsimplex U in A. Each vertex in U is labeled with a process id i and an input value vi 2 DI .Notice that dim(V ) � dim(U), since some participating processes may not decide, that is,they may fail (execute a faili action) before executing a decide action.From Lemma 2.17, we have that, for any vertex ~vi = hi; Sii in V , Si[i] = vi. This impliesthat hi; vii is in Ti. From Lemma 2.18, we have that, for any two vertexes ~vi = hi; Sii and~vj = hj; Sji in V , either Si is a pre�x of Sj or vice versa. Suppose without loss of generalitythat Sj is a pre�x of Si. Then for all x, where 0 � x � n, if Si[x] = ?, then Sj [x] = ?,and if Sj [x] 6= ? then Si[x] = Sj [x]. It follows that if hx; vxi is in Tj it is also in Ti, and ifx is not in ids(Ti), then it is also not in ids(Tj) This implies that Tj is a face of Ti. FromLemma 2.19, it follows that, if Si[j] = vj , then Sj is a pre�x of Si. This means that, ifhj; vji is in Ti, then Tj is a face of Ti.Now suppose that the vertexes 	(~v0); : : : ;	(~vm) in skel0(X (A)) form a simplex V inX (A). We will construct an execution � with corresponding output simplex U such that	(U) = V . Let W = carrier(V ). Partition the set ids(V ) into a collection of nonemptyconcurrency classes of process ids, C1, : : : , Ck for some k � 0, such that any two processindices i; j are in the same concurrency class if and only if Ti = Tj .We can de�ne a total order � on this collection of concurrency classes as follows. LetCx; Cy be distinct concurrency classes. Then Cx \ Cy = ;. Since both classes are nonempty,we can pick an element from each, say i 2 Cx and j 2 Cy . By assumption, Ti 6= Tj. Thenbe Lemma 3.30, either Ti is a face of Tj or Tj is a face of Ti. In the �rst case, let Cx � Cy,and in the second case, let Cy � Cx. The faces of a simplex are totally ordered, and hence� is a total order of the concurrency classes.Now use this ordered partition of the participating processes in � to de�ne a secondpartition C 01, : : : , C 0k of the set ids(W ) as follows. For each concurrency class C of ids(V ),de�ne a concurrency class C 0 of ids(W ) as follows. C 0 is the union of C and all i 2 ids(W )�ids(V ) such that C is the least concurrency class (as determined by �) such that for all62



j 2 C, i 2 Tj . Note that this is a partition of all of ids(W ) since W = carrier(S). Thispartition gives us a new collection of concurrency classes C 01, : : : , C 0k .We are now ready to construct �. First position updateC0i actions in increasing order ac-cording to the � ordering. For each concurrency class C 0x, position the inv writeread(v)i;IS1actions of all i such that i 2 Cx immediately before the updateC0x action (their internal order-ing does not matter). Similarly, position the ret writeread(v)i;IS1 and decide(S)i actionsof all i such that i 2 Cx and i 2 ids(V ) immediately after the updateC0x action, but beforethe inv writeread(v)i;IS1 actions associated with the next concurrency class C 0y. Processesi whose index is not in ids(W ) do not participate and hence take no steps in �. Pro-cesses i whose index is in some concurrency class C 0x but not in ids(V ) do not execute aret writeread(v)i;IS1 action, instead they execute a faili action after the updateC0x action,but before the inv writeread(v)i;IS1 actions associated with the next concurrency class C0y.By construction, each deciding process i decides Si in �, as required. The lemma follows.2We now consider the protocol complex of a protocol in NIIS with time complexity 1 onthe input complex I, that is, some processes access a single IS object, while some decidebased only on their own inputs. We will show that, if � is trivial, which we denote by � = 1,then this protocol complex is indeed a non-uniform chromatic subdivision.Lemma 4.4 The protocol complex P(n;�;1)(I) of any NIIS protocol of time complexity 1with input complex I is equal to some non-uniform chromatic subdivision eX 1(I) up toisomorphism.Proof. We will show how to construct the protocol complex P(n;�;1)(I), and prove thisconstruction is in accordance with De�nition 3.31.Consider any vertex ~v in I. It is labeled with hi; vii, where i is a process id and virepresents an input value to process i. According to the speci�cation of NIIS protocolsin Section 2.5, process i will (provided it does not fail), upon having received the inputvi, either execute an action inv writeread(v)i;IS1 or decide(S)i , depending on whether�(local state ) evaluates to true or not. In this way, the predicate map � induces a partitionof the vertexes of I into two disjoint sets A and B. Since the time complexity of P(n;�;1) on63



any input simplex in I is 1, the set A must be nonempty. We now construct complexes Aand B as in De�nition 3.31, that is, a simplex T in I is in A if and only if all its vertexesare in A, and it is in B if and only if all its vertexes are in B.The vertexes in A correspond to processes that, based on their input values, executean inv writeread(v)i;IS1 action with the object IS1. By Lemma 4.3, the protocol complexP(n;�;1)(A) equals X (A) up to isomorphism. A simplex U is in P(n;�;1)(I) if and only if itcorresponds to an output vector of an execution � of the protocol. In any execution � ofthe protocol, some of the participating, non-failing processes decide on their input values(corresponding to vertexes in B), while some decide on the snapshots they receive from theobject IS1 (corresponding to vertexes in P(n;�;1)(A)). It follows that P(n;�;1)(I) containsany simplex in B, any simplex in P(n;�;1)(A) = X (A), and any simplex of the form S ? T ,where S is in X (A), T is in B, and carrier (S) ? T is in I. The lemma follows. 2Lemma 4.5 For all k > 0, the protocol complex P(n;�;1)(I) of any protocol in the NIISmodel, with time complexity k on inputs in I is equal to some non-uniform chromaticsubdivision eX k(I) up to isomorphism.Proof. We use induction on the time complexity k. By Lemma 4.4, the result holds fork = 1. Now suppose k > 1, and that the result holds for 1; : : : ; k�1. Consider the protocolcomplex P(n;�;1)(I) of any protocol in the NIIS model with time complexity k on inputs inI. Any vertex ~v in I is labeled with hi; vii, where i is a process id and vi represents aninput value to process i. According to the speci�cation of NIIS protocols in Section 2.5,any non-failing process i will, upon having received the input vi, either execute an actioninv writeread(v)i;IS1 or decide(S)i , depending on whether �(vi) evaluates to true or not.In this way, the predicate map � induces a partition of the vertexes of I into two disjointsets A and B. Since the time complexity of P(n;�;1) on inputs in I is k, the set A must benonempty. We now construct complexes A and B as in De�nition 3.31, that is, a simplexT in I is in A i� all its vertexes are in A, and it is in B i� all its vertexes are in B.The vertexes in A correspond to processes that, based on their input values, executean inv writeread(v)i;IS1 action with the object IS1. By Lemma 4.3, the output protocolcomplex on inputs in A after the �rst IS access equals X (A). The �nal protocol complex64



P(n;�;1)(A) is given by applying X (A) as an input complex to the Protocol. Since thecomplexity of the protocol on inputs in I, and hence on inputs in A, is k, the complexityof the protocol on inputs in X (A) must be k � 1. It follows by induction that the protocolcomplex P(n;�;1)(A) equals some non-uniform chromatic subdivision eX k�1(X (A)) of X (A)up to isomorphism. A simplex U is in P(n;�;1)(I) i� it corresponds to a valid set of outputs ofan execution � of the protocol. In any execution � of the protocol, some of the participating,non-failing processes decide on their input values, while some decide on the snapshots theyreceive from some IS object. It follows that P(n;�;1)(I) contains any simplex in B, andsimplex in P(n;�;1)(A) = eX k�1(X (A)), and any simplex of the form S ? T , where S is ineX k�1(X (A)), T is in B, and carrier(S) ? T is in I. It follows from De�nition 3.31 that theprotocol complex P(n;�;1)(I) equals some non-uniform chromatic subdivision eX k(I) of I upto isomorphism. 2We must also prove that, for any mappable non-uniform chromatic subdivision eX k(I)of an input complex I, there is a matching protocol P(n;�;1) in the NIIS model.Lemma 4.6 For any mappable non-uniform chromatic subdivision eX k(I) of an input com-plex I, there is a matching protocol P(n;�;1) in the NIIS model such that the protocol complexP(n;�;1)(I) = eX k(I) up to isomorphism.Proof. Given a vertex ~v in I. The de�nition of the subdivision eX k(I) induces a sequenceof non-uniform chromatic subdivisions I; eX 1(I); : : : ; eX k(I), and corresponding sequencesA0; : : : ;Ak�1 and B0; : : : ;Bk�1 of complexes, the former sequence specifying the subcom-plex to be subdivided further at each level of recursion.In order to construct a protocol for n + 1 processes, we must specify the function � :Skl=0 #l(D) ! ftrue; falseg and the decision map � : Skl=0 #l(D) ! DO. We specify � tobe true for all values v such that there is a vertex ~v in one of the complexes A0; : : : ;Ak�1with val(~v) = v, and � to be false for all values v such that there is a vertex ~v in one of thecomplexes B0; : : : ;Bk�1 with val(~v) = v. For all other values v, � evaluates to false. Thisde�nition is well-formed, since for all p, where 0 � p � k, it follows from De�nition 3.29and De�nition 3.31 that there are no two vertexes in eX p(I) with the same process-valuelabel pair, and for all p; q, where 0 � p; q � k and p 6= q, Bp and Bq have no vertexes withcommon labels (process id and value label). This concludes the proof. 265



We now give the proof of Theorem 4.2.Proof. (Of Theorem 4.2) Let D = hI;O;�i be a decision task. Lemma 4.5 states thatany protocol complex P(n;�;1)(I), with worst case complexity kS on input S, corresponds toa non-uniform chromatic subdivision eX k(In) with level kS on S. Suppose now the decisionmap � is not trivial. Then, if P(n;�;�) solves D = hI;O;�i, � = � is a simplicial map fromeX k(In) to O that is in correspondence with �, so eX k(In) is mappable.Lemma 4.6 states that any mappable non-uniform chromatic subdivision eX k(In) withlevel kS on S is equal to the protocol complex P(n;�;1)(I) (where � is trivial) of a protocolin the NIIS model with worst case complexity kS on input S. If there is a simplicial map� from eX k(In) to O that is consistent with �, then by setting � = �, we have a protocolP(n;�;�) solving D = hI;O;�i with complexity kS on input S. The theorem follows. 2
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Chapter 5Applications of the AsynchronousComplexity Theorem5.1 Approximate AgreementAs an application of Theorem 4.2, we will analyze the well-known Approximate Agreementtask, in which each process i is given an input xi taken from some �nite subset of the realnumbers, and is required to decide on some output yi such that, for some predetermined� > 0, maxi yi � mini yi < �, and for all i, yi 2 [mini xi;maxi xi]. Aspnes and Herlihy [1]proved a lower bound that implies a worst case time complexity of jlog3 maxi xi�mini xi� k andan upper bound of jlog2 maxi xi�mini xi� k in the NIIS model1. In this chapter, we will showthat this log2 vs. log3 gap is not simply a technical 
uke. We specify the �nite n+1-processApproximate Agreement task for � > 0 as follows:� I = f[x0; : : : ; xn] j xi 2 V [ f?gg, where V is a �nite subset of R.� O = f[y0; : : : ; yn] j yi 2 V [ f?g; (yi; yj 6= ?)) jyi � yj j � �g.� 
 = f(~I; ~O) j ~O[i] 2 [mini ~I [i];maxi ~I [i]][ f?gg.Theorem 5.1 Given � > 0, there is a protocol P(n;�;�) solving Approximate Agreementwith complexity �logd maxi ~I[i]�mini ~I[i]� � on any input vector ~I, where d = 3 if the size of the1Although their proofs are for the read/write register model, they carry over to the NIIS model67



participating set of ~I is 2, and d = 2 if the size of the participating set of ~I is 3 or more.Moreover, this protocol is optimal on each input vector.Theorem 4.2 provides the lower bound directly, and the matching upper bound protocolfollows from the subdivision and the simplicial map. We hope to convince the reader thatthis is an excellent example of how topological modeling exposes subtle points which wouldotherwise be di�cult to grasp.
(1,1)

(0,0) (2,2)

(1, ((0,0), (1,1), (2,2)))Figure 5-1: Simplex Subdivided by an Approximate Agreement ProtocolThe key intuition behind our ability to close the gap between the upper and lowerbounds for Approximate Agreement is depicted in Figure 5-1, which shows the subdivisionsinduced by a three process protocol on the input vector [0; 1; 2]. Aspnes and Herlihy [1]derive their lower bound for any n + 1 process algorithm from a \bad" execution in whichonly the two processes with inputs farthest apart participate. Such an execution in ourmodel corresponds to a sequence of chromatic subdivisions of the edge between h0; 0i andh2; 2i.In the end, the vertexes of each 1-simplex in the non-uniform chromatic subdivision ofthe edge connecting h0; 0i and h2; 2i must be mapped by a simplicial map to vertexes withoutput values that are less than � apart, and hence connected by a simplex in the outputcomplex. Since each subdivision introduces two new vertexes and splits the edge in three, inlog3 2 such steps one can cut the distance among these vertexes to �. However, note that ifone considers executions in which 3 processes participate, we run into a problem: No matterhow we subdivide the 2-simplex, there is always a path of 1-simplexes between h0; 0i and68



h2; 2i that includes the vertex h1; (h0; 0i; h1; 1i; h2; 2i)i (marked by a darker color). Hence,for 3 process executions, only a single new vertex will be introduced to this path betweenh0; 0i and h2; 2i, and so the maximum distance between any two vertexes is cut by at mosta half for each level of subdivision. Hence our tight log2 lower bound. Our upper boundsfollow directly from Theorem 4.2 by specifying the proper subdivision and map. The keything to note about the proof of Theorem 5.1 is that it does not involve any mention of theactual executions; All we need to do is argue about the topology of the inputs and outputsand then apply Theorem 4.2.Proof. We �rst restate the description of the Approximate Agreement task using ourtopological framework as follows:� I is the closure under containment of the collection of all simplexes of the form(h0; x0i; : : : ; hn; xni), where for all i, xi 2 V .� O is the closure under containment of the collection of all simplexes of the form(h0; y0i; : : : ; hn; yni), where for all i; j, yi 2 V and jyi � yj j � �.� � = f(S; T ) j vals(T ) � [min vals(S);maxvals(S)]g.Note that the size of the participating set for the input vector corresponding to a simplexS in I equals dim(S) + 1. Theorem 5.1 then states that, given � > 0, there is a protocolP(n;�;�) solving Approximate Agreement with complexity �logd maxvals(S)�minvals(S)� � onany input simplexS, where d = 3 if dim(S) = 1, and d = 2 if dim(S) � 1. Moreover, thisprotocol is optimal on each input simplex S.We �rst establish the lower bound. Let P(n;�;�) be a protocol that solves ApproximateAgreement with worst case complexity kS on S, where S is any input simplex of dimensionn � dim(S) > 0. Let D(S) = max~v;~u2S val(~v)�val(~u). Then Theorem 4.2 states that thereis some mappable non-uniform chromatic subdivision eX k(I), with level kS on S. We willshow that kS � jlogd D(S)� k. The proof uses the following lemma.Lemma 5.2 Let l � k. Label the vertexes of eX l(S) with real numbers in a way that agreeswith the initial value labeling of S, and let lS be the level of eX l(S). Then69



D( eX l(S)) � D(S)dlSProof. Suppose without loss of generality that l = lS . We �rst give the proof for thecase of two participating processes and d = 3. By de�nition of D(S), there is a 1-simplexU = ( ~u0; ~u1) in S such that D(U) = D(S). The complex eX l(U) contains at most 3l 1-simplexes, denoted U1; : : : ; UM , where M � 3l. These form a continuous path from ~u0 to~u1, the endpoints of which are labeled with val(~u0) and val(~u1), respectively. So the best wecan do is cut D(U) in 3l pieces. The triangle inequality tells us that D(U) �PMi=1D(Ui) �M maxiD(Ui) � 3kmaxiD(Ui). Hence maxiD(Ui) � D(U)=3l = D(S)=3l. The lemmafollows, since maxiD(Ui) � D( eX l(S)).We now prove the case where the size of the participating set is greater than 2 (and hencedim(S) is greater than 1) and d = 2. We argue by induction on l. The case l = 0 is trivial.Now suppose the claim is true for l � 1. By de�nition of D( eX l�1(S)), there is a 1-simplexU = ( ~u0; ~u1) in eX l�1(S) such that D(U) = D( eX l�1(S)). U is a face of some 2-simplexU 0 = ( ~u0; ~u1; ~u2). Suppose �rst that the next level of non-uniform chromatic subdivisiondoes not subdivide U completely. Then there is some 1-simplex T in the level l non-uniformsubdivision of U 0 with D(T ) � D(U)=2. Since D(U) = D( eX l�1(S)) and D(T ) � D( eX l(S)),the lemma follows by induction. Suppose instead that the next level of subdivision doessubdivide U 0 completely. Then the level l subdivision has an internal vertex ~m2, coloredwith id(~u2), and two neighboring 1-simplexes T0 = (~u0; ~m2) and T1 = (~m2; ~u1). The triangleinequality then tells us that D(U) � D(T0) + D(T1) � 2maxiD(Ti), where i 2 f0; 1g. Itfollows that D( eX l(S)) � D( eX l�1(S))=2. The lemma follows by induction. 2Suppose now that there exists a chromatic simplicial map � : eX k(I) ! O such that,for all simplexes T in eX k(I), �(T ) 2 �(carrier(T )). We can associate this map with alabeling of the vertexes in eX k(I) as follows. Label each vertex ~v in eX k(I) with val(�(~v)).This labeling agrees with the input value labeling of I, since for any vertex ~v, the taskspeci�cation requires that for any simplex S0 that contains ~v, it must be the case that �(~v) 2D(S0). Choose two neighboring simplexes S0 and S1 containing ~v such thatD(S0)\D(S1) =val(~v). It follows that �(~v) = val(~v). Now let T be any simplex in eX k(I). By de�nition of�, �(T ) is a simplex in O, and hence D(�(T )) < �. It follows that D(T ) = D(�(T )) < �,70



and hence that D( eX k(I)) < �, where D( eX k(I)) is equal to maxT2 eX k(I)D(T ). Clearly, forany input simplex S, it follows that the labels on the restriction of eX k(I) to S, eX k(S),have range less than �. The previous lemma then states that � > D( eX k(S)) � D(S)dkS . Weconclude that kS � �logd D(S)� �To prove the upper bound, we construct a mappable non-uniform chromatic subdivisioneX k(I) of the input complex with level kS = jlogd D(S)� k on each input simplex S, accordingto De�nition 3.31. As argued above, the requirement that the subdivision be mappable isequivalent to saying that there is a vertex labeling of eX k(I) that agrees with the initialvalue labeling of I with the additional property that D( eX k(I)) < �.For each level of subdivision l � k, a vertex ~v is in A if there is another vertex ~u suchthat val(~v)� val(~u) > �, otherwise it is in B. Before applying the next level of subdivisionto X (A) (as speci�ed by De�nition 3.31), we relabel all new vertexes in X (A) (those notin skel0(A)) as follows: If the dimension of A is 1, label the new vertexes in X (A) with(2min val(A) + max val(A))=3 and (min val(A) + 2maxval(A))=3, respectively. This cutsthe distance between the vertexes with values apart in 3. Otherwise, label the new vertexeswith (min val(A)+maxval(A))=2. This cuts the distance between the values furthest apartin 2.It is clear from this construction that, at each level of recursion, for all simplexes S in Iwe have that, if D( eX l(S)) > �, then either D( eX l+1(S)) = D( eX l(S))=d), or D( eX l+1(S)) < �.It follows that the level kS of eX k(I) on S is jlogd D(S)� k, where d = 3 if dim(S) = 1, andd = 2 if dim(S) > 1. We conclude from Theorem 4.2 that there is a wait-free protocolthat solves Approximate Agreement with worst case time complexity jlogd D(S)� k on inputS, where d = 3 for two participating processes and d = 2 for three or more. 2
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Chapter 6Conclusion and Directions forFurther ResearchIn this thesis, we have extended the topological framework of Herlihy and Shavit [21, 22, 26]to obtain a complete characterization of the complexity of solving decision tasks in theNIIS model, a generalization of Borowsky and Gafni's IIS model [10]. The main di�erencebetween Theorem 4.2 and Herlihy and Shavit's Asynchronous Complexity Theorem is thatin our proof, we construct an explicit protocol complex for the NIIS model, and show thatthis complex is indeed equal to a non-uniform chromatic subdivision. Since non-uniformchromatic subdivisions have a recursive structure, they are well-suited for arguing aboutcomplexity - according to Theorem 4.2, the level of recursion of a mappable non-uniformchromatic subdivision of a task's input complex is the complexity of the correspondingwait-free NIIS solution protocol.We have applied Theorem 4.2 to tighten the upper and lower bounds on solving theApproximate Agreement task implied by the work of Aspnes and Herlihy [1], by provingmatching upper and lower bounds of jlogd input�range� k where d = 3 for two processes andd = 2 for three or more. The intuition behind this result, as well as its formal proof, is basedon simple, geometric and topological arguments about the level of non-uniform chromaticsubdivision that is necessary and su�cient for mappability. We believe this is an excellentexample of how Theorem 4.2 exposes subtle properties of protocols in asynchronous sharedmemory systems, and how it allows us to reason formally about them without having to72



argue directly about concurrent executions.A possible direction for further research is to apply Theorem 4.2 to other decision tasks,such as for example Renaming. A good �rst step towards this end would be to formulate aprecise statement of the task using our topological framework, and then state and prove aversion of Theorem 4.2 for comparison-based protocols, which are guaranteed to satisfy thesymmetry requirements of the Renaming task.Another possible direction is to try to extend our topological framework to other modelsof computation, such as the atomic snapshot model, the single-writer multi-reader model,or even the multi-writer multi-reader model. Our choice of the NIIS model was motivatedby the fact that its protocol complex is highly structured, and corresponds to a non-uniformchromatic subdivision, as the proof of Theorem 4.2 shows. Other, less restricted models,such as the ones mentioned above, do not have this property, and so in order to provea result similar to Theorem 4.2 in any of these models, one would need to identify someinvariant, recursive substructure that one can model topologically with reasonable ease.An alternative approach would be to use simulation techniques to relate the NIIS modelto other models of computation, thereby obtaining an indirect characterization of the com-plexity of solving decision tasks in these models. Currently, however, the best knownwait-free simulation of a single IS object using atomic snapshots requires O(N) accessesto shared memory by each process, where N is the number of processes. There is thusan important open problem in �nding an optimal, wait-free implementation of NIIS usingatomic snapshot, and vice versa.Finally, it is possible to extend the work presented in this thesis by using our exist-ing topological framework to develop a characterization of the work complexity involved insolving decision tasks in the NIIS model. As was the case for time complexity, a mappablenon-uniform chromatic subdivision of an input complex does contain the information neces-sary to describe work complexity. The main di�culty to be overcome is to �nd an easy wayof extracting this information from the subdivided complex. One possible approach to thisproblem would involve some form of topological invariant that keeps track of the maximalsum of the number of IS objects accessed by the processes corresponding to the vertexes ineach simplex in the subdivision. 73
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