
K n o w l e d g e  a n d  C o m m o n  K n o w l e d g e  i n  a D i s t r i b u t e d  E n v i r o n m e n t  

Joseph Y. Halpern 

IBM Research Laboratory,  
San Jose, CA 95193 

Yoram Moses 

Computer  Science Depar tment  
Stanford University, Stanford, CA 94305 

A b s t r a c t :  We argue tha t  the right way to under- 
stand distr ibuted protocols is by considering how 
messages change the state of knowledge of a sys- 
tem. We present a hierarchy of knowledge states 
tha t  a system may be in, and discuss how commu- 
nication can move the system's state of knowledge 
of a fact up the hierarchy. Of special interest is 
the notion of common knowledge. Common knowl- 
edge is an essential state of knowledge for reaching 
agreements and coordinating action. We show tha t  
in practical distr ibuted systems, common knowledge 
is not attainable.  We introduce various relaxations 
of common knowledge tha t  are at tainable in many 
cases of interest. We describe in what  sense these 
notions are appropriate,  and discuss their relation- 
ship to each other. We conclude with a discussion 
of the role of knowledge in distributed systems. 

1. I n t r o d u c t i o n  

The notion of knowledge in a distr ibuted en- 
vironment is fundamenta l  to many issues in dis- 
t r ibuted computing. Many tasks in a distr ibuted 
system directly involve the achievement of specific 
states of knowledge and others crucially depend 
on a variety of constraints on the state of knowl- 
edge of the parties involved. Reasoning about  such 
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states of knowledge plays an essential role in un- 
derstanding the correctness of distr ibuted commu- 
nication protocols such as "Handshake" protocols, 
distr ibuted agreement protocols such as the "Byzan- 
tine Agreement" [PSL,DS] and "2¥ansaction Com- 
mit" [Li,LF], as well as cryptographic protocols such 
as the "Oblivious Transfer" protocol [HR]. Commu- 
nication in a distr ibuted system can be viewed (and 
often should be viewed) as the act of transforming 
the system's state of knowledge. 

The general concept of knowledge has received 
considerable a t tent ion in a variety of fields, rang- 
ing from Philosophy [Hi] and Artificial Intelligence 
[Mc], to Game Theory [Au] and Psychology [CM]. 
Although in different contexts knowledge is assumed 
to mean different things, one property  tha t  is gen- 
erally required of knowledge is that  only true things 
be known. More formally, knowledge satisfies the 
axiom 

Kip D p 

i.e., if an individual i knows p, then p is true. 

In the presence of many irldividuals, an indi- 
vidual may have knowledge about  other individuals '  
knowledge, in addition to his knowledge about  the 
physical world. This often requires care in distin- 
guishing subtle differences between seemingly simi- 
lar states of knowledge. A classical example is the 
"dirty children" puzzle -- a variant of the well known 
"wise men" or "cheating wives" puzzles. The ver- 
sion given here is taken from [Ba]: 

Imagine n children playing together. The 
mother of these children has told them that 
if they get dirty there will be scvcrc conse- 
quences. So, of course, each child wants to 
keep clean, but each would love to scc the oth- 
ers get dirty. Now it happens during their play 
that some of tile children, szty k of them, get 
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mud on their foreheads. Each can see the mud 
on others but not on his own forehead. So, of 
course, no one says a thing. Along comes the 
father, who says, "At least onc of you has mud 
on your head," thus expressing a fact known to 
each of them before he spoke (if k > 1). The 
father then asks thc following qucstion, over 
mid over: "Can any of you prove you have 
mud on your head?" Assuming that "all the 
children are perceptive, intelligent, truthful,  
and that  they mmwer simultaneously, what 
will happen? 

There is a "proof" that the first k - 1 

times he ~sks the question, they will all say 
"no" but then the kth time the dirty children 
will answer "yes." 

The "proof" is by induction on k. For 
k = 1 the result is obvious: the dirty child 
sees that no one else is muddy, so he must be 
the muddy one. Let us do/c = 2. So there a r e  

just two dirty children, a rind b. Each answers 
"no" the first timc, because of the mud on the 
other. But,  when b says "no," a realizes that  
he must be muddy, for otherwise b would have 
known the mud was on his head mid answered 
"yes" the first time. Thus a answers '~ycs" the 
second time. But  b goes through the same rea- 
soning. Now suppose k == 3; so there axe three 
dirty children, a, b,c. Child a axgucs as fol- 
lows. Assume I don't  have mud on my head. 
Then, by the k = 2 case, both b a~ld c will an- 
swcr "yes" the second time. When they don't ,  
he realizes that the assumption was false, that  
he is mnddy, and so will ,'mswcr "yes" on the 
third question. Sinfilaxly for b arm c. 

Assuming  k > 1, the f a the r  d idn ' t  tell the  chil- 
d ren  a ny th ing  they  d idn ' t  know already.  Yet it  is 
easy to see t ha t  w i thou t  his s t a t e m e n t  the  ch i ld ren  
wi th  mud  on the i r  heads  wouhl  neve r  be  able to de- 
duce this. W h a t  was the role of the  fa the r ' s  s ta te-  
mea t?  We will r e t u r n  to this quest ion.  

How does tile no t ion  of  knowlcdge  gencral ize  
f rom an ind iv idua l ' s  knowledge to a group ' s  knowl- 
edge? In o the r  words,  wha t  does it  mean  to say t h a t  
a group G of individuals  knows a fact  p? Mo re  t h a n  
one possibi l i ty  is reasonable ,  wi th  the  a p p r o p r i a t e  
choice depend ing  on the appl ica t ion:  

(i) IGp (read " the  group G has  Implicit Knowl- 
edge of the  fact  p"):  Wc say t h a t  G has  im- 
plicit  knowledge  of p iff by pool ing  t o g e th e r  

(ii) 

the i r  knowledge,  the  m e m b e r s  of G can con- 
e lude  p. For  ins tance ,  if  one m e m b e r  o f  G 
knows q and  a n o t h e r  knows q D p, t he  group  G 
can be said to  have implici t  knowledge  (abbrev.  
I -knowledge)  of p. 

Sap (read "Someone  in G knows p",  S- 
kuowledge  in short) :  We say t h a t  G has  S- 
knowledge  of  p iff some m e m b e r  of  G knows 
p. More  formally,  

Sap ~ V K I P .  
leg 

(iii) E~,p  (read "Eve ryone  in G knows p', E- 
knowledge  in shor t ) :  G is said to have E-  
knowledge  of  p iff all meiifl)ers of G know p. 
Mo re  formally,  

Ecp -= A Kip. 
leg 

(iv) E~p, k > 2 (read "p is Ek-knowledge in G" ): 
E~p is def ined by 

E~p = EGp, 

Ek+l EcE~p, for k > 1. G P ~-- 

p is said to  be  Ek-knowledge  in G if "everyone  
in G knows tha t  ev e ry o n e  in G knows t h a t  . . .  
t h a t  eve ryone  in G knows tha t  p is t rue"  is t rue ,  
where  tile phrase  "everyone  in G knows t h a t "  
appea r s  in the  the  sen tence  k t imes.  Equiva-  
lently,  

k EGP ---- A Ki ,  Ki 2 . . .  Kikp. 
ijeG,l<j<_k 

(v) Cap ( read "p is Common Knowledge in G" ) :  
p is said to bc  c o m m o n  knowledge  in G if p is 
t rue ,  ~md is E~-knowledge  for all k > 1. In 
o th e r  words,  

Cap - p A Ecp A E2p A ... A E~'~p A . . .  

In pa r t i cu la r ,  Cop implies  all fo rmulas  of  the 
fo rm Ifil Ki~ .. .  Ki.,p, where  the  i j  are  all mem-  
bers  of G,  for any finite n. 

(We will omi t  the  subscr ip t  G when  the  group  
G is u n d e r s t o o d  fl 'om con tex t . )  
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Returning to the "dirty children" puzzle, we 
denote by m the fact "There are chihh'en wi~h mud 
on their foreheads", and observe the state of the 
chihlren's knowledge of m. Before the father spoke 
Ek- - Im was true, and E k m  wasn't .  Let us see this 
in the case k = 3. There are 3 dirty children, and 
therefore each child sees at  least 2 dirty children. 
In particular,  a dirty child sees exactly two dirty 
children. He therefore knows tha t  each other child 
knows of at  least one dirty child. So, we have E 2 m ,  
but not E3m.  

We leave it to the reader to check tha t  when 
there are k dirty children, E k m  suffices to ensure 
tha t  the dirty children will be able to prove their 
dirtyncss, whereas E k - l m  does not. After the 
father tells the children m,  m becomes common 
knowledge. This implies E k m ,  and therefore the 
dirty children succeed in proving their dirtyness. (A 
more detailed analysis of this argument ,  and vari- 
ants of it, will appear in [DHM].) 

It is clear tha t  the notions of group knowledge 
introduced above form a hierarchy, with 

Cp D . . .  D Ek+~p D . . .  D Ep D Sp D Ip D p. 

However, depending on the circumstances, these no- 
tions nfight not be distinct. For example, consider a 
model of parallel computat ion in which a collection 
of n processors share a common memory. If their 
know]edge is stored in memory then we arrive at  a 
situation in which Cp =- Ekp = Ep = Sp = Ip. By 
way of contrast,  in a distr ibuted system in which n 
processors are connected via some communicat ion 
network and each one of them has its own mem- 
ory, it is clear tha t  the above hierarchy is strict. 
Moreover, in such a system every two levels in the 
hierarchy can be separated by an actual  ~ask, in 
the sense tha t  there will be an action for which one 
level in the hierarchy will suffice, but no lower level 
will. It is quite clear tha t  this is the case with 
Ep D Sp D I p ,  and the "dirty children" puzzle 
shows tha t  Ekp is strictly stronger than  Ek-ap ,  for 
k > 1. The fact tha t  Cp is stronger than Ekp fol- 
lows, because Cp D Ek+lp.  

In the case of a distr ibuted system a very 
important  question arises: how does the state of 
knowledge of a fact p change by the communicat ion 
process? How can this state of knowledge climb up 
our hierarchy? The vast majori ty of the communica- 
tion in a distributed system can be viewed as the act 
of improving the state of knowledge (in the sense of 

"clirnbing up the hierarchy") of certain facts. This 
is an elaboration of the view of comumnicat ion ill a 
network as the act of "sharing knowledge". Taking 
this view, two notions come to mind. One is fact dis- 
covery - the act of changing the state of knowledge 
of a fact p from being implicit knowledge to levels 
of explicit knowledge (usually S-knowledge or E- 
knowh.'dge), and the other is fact publication - the 
act of changing the state of knowledge of a fact tha t  
is kamwn to at  least one individual, but, is not com- 
mon knowledge, to common knowledge. Aal exam- 
ple of fact discovery is detecting global properties 
of a system, such as deadlock. The knowledge the 
system initially has of the deadlock i s / -knowledge ,  
and the detection algori thm improves this state to 
S-knowledge. An example of fact publication is the 
introduction of a new communicat ion convention. 
Here the initiator(s) of the convention wish to make 
the new convention common knowledge. 

Both fact discovery and fact publication are in- 
teresting notions t ha t  are worth investigation. How- 
ever, in the rest of this paper we restrict our at- 
tention to common knowledge and fact publica- 
tion. Common knowledge is a fairly basic notion 
in people's everyday life. Clark £nd Marshall  [CM] 
show tha t  it is used fairly extensively in interper- 
sonal comnmnicat ion in natural  language, e.g. the 
term "the president" assumes common knowledge 
of which person is being referred to. The custom of 
shaking hands to seal an agreement essentially cor- 
responds to making the agreement contmon knowl- 
edge. Common knowledge is also inherent  in the 
notion of conventions. Something cannot  be a con- 
vention among a group of pcople if it is not commen 
knowledge to them. Having comnton knowledge of 
a large number  of facts allows for bet ter  and shorter 
communication.  It seems quite reasonable tha t  two 
branches of a bank making transactions over a com- 
puter  network will not seal a million dollar transac- 
tion before the t ransact ion is common knowledge. 

In the next section, we first show tha t  if com- 
municat ion is not guaranteed (i.e., messages nfight 
not reach their destinations),  then conunon knowl- 
edge is not at tainable.  We then show that ,  even if 
communicat ion is guaranteed,  common knowledge is 
not a t ta inable  if we cannot guarantee simultaneous 
actions. We introduce various relaxations of com- 
mon knowledge tha t  are at,tainable in many cases 
of interest. We describe in what  sense these no- 
tions are appropriate,  and discuss their relationship 
to each other. We conclude with a discussion of the 
role of knowledge in distr ibuted systems. 
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We think of the processors as state machines 
with clocks, where a (:lock is a monotone increasing 
flmction of real time. A processo/"s state at a given 
time is determined by its initial state, its clock time, 
and its message history: the sequence of messages 
it has sent and received and the times (on the pro- 
cessor's clock) in which it sent or received them. 

We now consider what it means for a processor 
to know p, where p is a formula tha t  talks about  the 
real world and the processors' knowledge of it. We 
assume some consistent notion of t ru th  of formulas, 
without  going into details of semantics. A proces- 
sor has some initial information, that  we assume to 
be (forever) true, and it acquires additional infor- 
mation through message exchange. It then deduces 
what  it knows using this information and some set 
of rules (e.g. the axioms of [Le D . These rules are 
required to be monotonic in the information and in 
time, meaning tha t  if a formula p is deducible us- 
ing the rules given a certain set of information at  
t ime t on a processor's clock, then it will still be de- 
ducible from any superset of tha t  information at t or 
any later time. Tile rules must also be sound, i.e., 
whenever the information is true, then so are any 
conclusions drawn fl'om it according to the rules. 
Moreover, we assume tha t  processors do not forget, 
so information is never lost. Thus, once a proces- 
sor deduces p, it can deduce p at  any later time. 
Processor i knows p exactly if it can deduce p from 
its information, using tile rules, h~ this case Kip 
is true. Finally, we assume, for now, tha t  tha t  all 
processors are honest, so that  a processor may send 
a message stating p only if it knows p. 

From our assumptions above, it follows tha t  
the system will always be in a knowledge consis- 
tent state: whenever Kip is true, p is true (i.e., the 
axiom Kip D p is satisfied). Notice tha t  all the 
facts that  can be known are stable: facts that ,  once 
true, remain true. This is a weaker restriction than 
it may seem, since given any fact q, facts such as 
"q hehl sometime in the past" ,  or "q holds a t  t ime 
t on i's clock", "q holds throughout  time interval 
I " ,  are all stable. It is not reasonable for a proces- 
sor i to send a message to processor j stating tha t  
p is true, if p might become false by the time the 
message reaches j .  It is reasonable for i to send a 
message stating tha t  p is true at time t on its clock, 
however, or even a message stating tha t  p is true, 
and will remain true throughout  the future (this, in 
fact, can be accepted to be the default meaning of 
a message stating simply p). 

A protocol is a (possilfly nondeterministic) dis- 
t r i lmted algorithm. A protocol essentially deter- 
mines what  messages can be sent by the proces- 
sors, as a function of their internal state. Even if 
a protocol is deternfinistic, the system may behave 
nondeternfinistically, due to uncertainty in message 
delivery times and to the possibility that  messages 
might fail to he delivered. A run of the pr.otocol is 
a particular execution of the protocol. 

We say tha t  a processor i supports Cp, if i 
knows all the K~ Ki~ "" Ki,p fornnflas tha t  consti- 
tu te  Cp (see introduction).  A' system has attained 
Cp if all its members support Cp. 

L e m m a  1: A processor i supports Cp iff the sys- 
tem has a t ta ined Cp. 

Proof :  The 'if ' direction follows from the defini- 
tion. For the other direction, assume, to the con- 
trary, tha t  i supports Cp and j does not. There is a 
formula q = Ki~ Ki: ... K~,p, such tha t  j does not 
know q, b u t  i claims to know Kjq. The system is 
therefore not knowledge consistent, a contradiction. 
rn 

A protocol for attaining common knowledge is 
a protocol with the following property: if some pro- 
cessor knows a fact p, it can initiate tile protocol, 
and is guaranteed that  the system will then eventu- 
ally a t ta in  Cp. 

A fact p is said to be C-undetermined in a sys- 
tem at a given point in  time if, without  any further 
coimnunication in the system, Cp will never hold. 

We are now ready to investigate fact publica- 
tion in distr ibuted systems. Following the coordi- 
nated at tack exmnple, we first consider systems in 
which communicat ion is not guaranteed. 

T h e o r e m  1: There is no protocol for a t ta ining 
common knowledge if communicat ion is not guaran- 
teed. In particular, if q is a C-undetermined fact, Sq 
holds and conmnmicat ion is not guaranteed, then 
there is no protocol tha t  is guaranteed to a t ta in  Cq. 

P r o o f :  Assume, to the contrary, tha t  P is such a 
protocol. Consider a run of P in which no message 
sent by any processor is delivered to its destination. 
If Cq is a t ta ined,  it is a t ta ined without  any commu- 
nication, contradicting q's being C-undetermined.  
[] 
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We t.hink of the processors as state machines 
with clocks, where a clock is a monotone increasing 
function of real tiara. A processor's state at  a given 
time is determined by its initial state, its clock time, 
and its message history: the sequence of messages 
it has sent and received ~md the times (on the pro- 
cessoFs clock) in which it sent or received them. 

We now consider what  it means for a processor 
to know p, where p is a fornnfla tha t  talks about  the 
real world and the processors' knowledge of it. We 
assume some consistent notion of t ru th  of formulas, 
wi thout  going into details of semantics. A proces- 
sor has some initial information, tha t  we assume to 
be (forever) true, and it acquires additional infor- 
mation through message exchange. It then deduces 
what  it knows using this information and some set 
of rules (e.g. the axioms of [Le]). These rules are 
required to be monotonic in the information and in 
time, meaning tha t  if a fornmla p is deducible us- 
ing the rules given a certain set of information at 
time t on a processor's clock, then it will still be de- 
ducible from any superset of that  information at  t or 
any later time. The rules must also be sound, i.e., 
whenever the information is true, then so are any 
conclusions drawn from it according to the rules. 
Moreover, we assume tha t  processors do not forget, 
so information is never lost. Thus, once a proces- 
sor deduces p, it can deduce p at  any later time. 
Processor i knows p exactly if it can deduce p from 
its information, using the rules. /31 this case Kip 
is true. Finally, we assume, for now, tha t  tha t  all 
processors are honest, so tha t  a processor may send 
a message stat ing p only if it knows p. 

From our assumptions above, it follows tha t  
the system will always be in a knowledge consis- 
tent state: whenever Kip is true, p is true (i.e., the 
axiom Kip D p is satisfied). Notice tha t  all the 
facts that  can be known are stable: facts that ,  once 
true, remain true. This is a weaker restriction than  
it may seem, since given any fact q, facts such as 
"q held sometime in the past" ,  or "q holds at t ime 
t on i's clock", "q holds throughout  t ime interval 
I " ,  are all stable. It is not reasonable for a proces- 
sor i to send a message to processor j stat ing tha t  
p is true, if p might become false by the time the 
message reaches j .  It  is reasonable for i to send a 
message stating tha t  p is true at t ime t on its clock, 
however, or even a message stating tha t  p is true, 
and will remain true throughout  the future (this, in 
fact, can be accepted to be the default meaning of 
a message stating simply p). 

A protocol is a (possibly nondeterministic) dis- 
t r ibuted algorithm. A protocol essentially deter- 
mines what  messages can be sent by the proces- 
sors, as a function of their internal state. Even if 
a protocol is deterministic, the system may behave 
nondetermini.~ticMly, due to uncertainty ilz message 
delivery times and to the possibility tha t  messages 
might fail to be delivered. A run of the protocol is 
a particular execution of the protocol. 

We say tha t  a processor i supports Cp, if i 
knows all the Ki~ Ki~ "" Ki .p  formulas tha t  consti- 
tu te  Cp (sec introduction).  A system has attained 
Cp if all its members support Cp. 

L e r n m a  1: A processor i supports Cp iff the sys- 
tem has a t ta ined Cp. 

P r o o f :  The 'if' direction follows from the defini- 
tion. For the other direction, assume, to the con- 
trary, tha t  i supports ~ and j does not. There is a 
formula q = Ifi~Ki~.... Ki.p, such tha t  j does not 
know q, but i claims to know Kjq. The system is 
therefore not knowledge consistent, a contradiction. 
[] 

A protocol .for attaining common knowledge is 
a protocol with the following property: if some pro- 
cessor knows a fact p, it can init iate the protocol, 
and is guaranteed tha t  the system will then eventu- 
ally a t ta in  Cp. 

A fact p is said to be C-undetermined in a sys- 
tem at a given point in t ime if, without  any fur ther  
communicat ion in the system, Cp will never hold. 

We are now ready to investigate fact publica- 
tion in distr ibuted systems. Following the coordi- 
nated at tack example, we first consider systems in 
which communicat ion is not guaranteed.  

T h e o r e m  1: There is no protocol for a t ta ining 
common knowledge if communicat ion is not  guaran- 
teed. ]zl particular,  if q is a C-undetermined fact, Sq 
holds and communicat ion is not  guaranteed,  then 
there is no protocol tha t  is guaranteed to a t ta in  Cq. 

Proof." Assume, to the contrary, tha t  P is such a 
protocol. Consider a run of P in which no message 
sent by any processor is delivered to its destination.  
If Cq is a t ta ined,  it is a t ta ined wi thout  any commu- 
nication, contradicting q's being C-undetermined.  
[] 
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As the proof of Theorem 1 shows, d~,manding 
that  we be guaranteed to at tain Cq regardless of 
the system's behavior is too strong. It is reasonable, 
however, to hope for a protocol tha t  will succeed in 
at taining Cq ;,n runs during which a sugicient part  
of its comnmnication succeeds. Theorem 2 shows 
tha t  this too is impossible. 

T h e o r e m  2: If q is a C-undetermined fact, no 
m n  of any protocol ever at tains Cq. 

P r o o f i  Let P be a protocol. We prove by induc- 
tion on n tha t  P has no run tha t  at tains Cq in which 
exactly n messages are delivered to their destina- 
tions upto (and including) the time Cq is at tained.  
The case n = 0 follows by assumption, since q is 
C-undetermined.  Suppose we have proved the re- 
sult for n =- k, and assume tha t  P has a run r tha t  
at tains Cq using k + 1 messages. Let tc be the (say) 
real time in which Cq is first at tained in r. Let m~ 
be the last message tha t  was delivered in r no later 
than tc (or one of them, in case of a tie). Let i~ be 
m~'s sender, and let t~ be the time at which mr is 
delivered. Denote by r -  a run of P tha t  behaves ex- 
actly like r until t , ,  except that  m~ is not delivered, 
and in which no message is delivered after t~. Since 
i, 's information at time tc is identical in r and in 
r - ,  and i~ supports Cq at t~ in run r, it follows tha t  
proccssor i~ will also support  Cq at tc in r - .  By 
Lemma 1, it follows tha t  Cq is a t ta ined at time t~ 
in r - ,  contradicting the induction hypothesis. [] 

Returning to the "coordinated attack" prob- 
lem, recall tha t  the generals required common 
knowledge of the at tack before attacking. Theorem 
2 shows tha t  they have no hope of that.  The reader 
may suspect tha t  something in our definitions, or in 
the statement of the notion of agreement required 
in the "coordinated attack" problem is behind this 
result Perhaps, if the generals were not required 
to worry so much about  their states of kuowledge, 
there might be a protocol tha t  would ensure tha t  
they attack only in tandem, and tha t  does allow 
them to at tack under some circumstances. This is 
not the case. A slight extension of the proof of The- 
orem 2 proves: 

P r o p o s i t i o n  2: If communication is not guaran- 
teed, any protocol tha t  guarantees that  if any party 
attacks, they both attack, is a protocol iu which 
necessarily neither party attacks (!). 

The previous results show that ,  in a strong 
sense, common knowledge is not at tainable in a 
system in which comnmnication is not guaranteed. 
However, even when communicat ion is guaranteed,  
common knowledge can be elusive. To see this, con- 
sider a system consisting of two processors R2 and 
D2, connected by a comnmnication link. Assume 
tha t  their clocks run at the same rate, but might not 
be showing the same times at a giwm instant.  As- 
sume that  communicat ion (deliw'ry) is guaranteed,  
and tha t  fllrthermore it is (say commonly) kuown 
tha t  any message sent from R2 to D2 reaches D2 
either immediately or after exactly • seconds. At 
t ime tR on R2's clock, R2 sends D2 a message stat- 
ing tha t  m is true. D2 receives the message at t ime 
tm on his own clock. (Recall tha t  we are assuming 
tha t  m is a stable fact.) D2 doesn' t  know m ini- 
tially. How does {R2, D2}'s state of knowledge of m 
change with time? 

R2 cannot be sure that  D2 knows m before t R +  
e. D2, on the other hand,  cannot be sure that  R2 
knows D2 knows m until tD+c (because the message 
could have arrived immediately, and R2 waits until  
t~+e  before deciding tha t  D2 knows m). R2 cannot  
be sure tha t  D2 knows R2 knows D2 knows m before 
tR-~-2c (since the message could have been delivered 
exactly • seconds after being sent, and D2 waits 
until t D + e, e seconds after it arrives). In other 
words, if we denote R2's knowledge by K R and D2's 
knowledge by KD, we have m true at  t~, K R K D m  
true at tR + • (and no sooner), and K R K D K n K D m  
t rue at t/~ + 2• (and no sooner). This argunlent can 
be easily extended to show tha t  (KRKD)'~m holds 
at  tl~ + ne and no sooner(!). Since 

E2nm D (KI~KD)nm D E2n- lm ,  

it follows tha t  E:n+lm  will not hold before t~ + n e .  
(It will hold by tn + (n + 1)~, though.) hi order to 
have Cm, all formulas of the form Ekm,  k > 1, 
must be true. From the above analysis it is clear 
tha t  m will never become common knowledge. 

Now consider what wouhl happen if R2 and D2 
shared the same clock (or, equivalently, if it were 
common knowledge that  their clocks show tile same 
time at  any given instant).  R2 could send D2 the 
following message: "I am sending you this message 
at  time t~,  knowing it will reach you by tR+e at tile 
latest; m is true." Siuce they commonly know tha t  
their clocks read the same time, m would become 
common knowledge at time t R + ~. 
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What  is the essential difference between these 
two situ,~tions? It seems that  what made achiev- 
ing common knowledge easy in tim lat ter  case was 
the possibility of making the transition from non- 
common knowledge to common knowledge simulta- 
neously. The impossibility of doing so in the former 
case was the driving force behind the extra cost in 
time incurred in a t ta ining every extra level of E- 
knowledge. Indeed, the following theorem confirms 
this intuition. 

L e m m a  2: If Cp is to be at tained,  all processors 
must start  supporting it sinmltaneously. 

P r o o f :  Follows trivially from Lemma 1. [] 

Simultaneity is said to be at tainable in a system 
if there is a protocol that  guarantees that  all mem- 
bers of the system will execute a prescribed action, 
such as flipping a specific bit from 0 to 1, simulta- 
neously (cf. [DHS]). Lemma 2 essentially states tha t  
for common knowledge to be at tainable in a system, 
simultaneity must be at tainable in the system. 

L e m m a  3: If  clocks are not  initially identical, and 
there is an uncertainty in message delivery times, 
then simultaneity cannot be guaranteed. 

P r o o f :  Follows from Theorem 4 of [DHS]. [] 

T h e o r e m  3: If communicat ion is guaranteed,  but 
clocks are not initially identical, amt there is an un- 
certainty in nmssage delivery times, then there is no 
protocol tbr a t ta ining common knowledge. 

P r o o f :  Immediate  from Lemlnas 2 and 3. [] 

Theorems 1-3, roughly speaking, say tha t  at- 
taining common knowledge is practically impossible 
in actual distr ibuted systems. In such systems, we 
have the following situation: a fact p can be known 
to an individual without  being common knowledge, 
or it can be common knowledge (in which case tha t  
individual also knows p), bu t  there is no way of get- 
ting from the first case to the second. As long as we 
play according to the rules, tha t  is. 

Let us take a close look at the state of knowl- 
edge R2 and D2 have once the message m is sent. 
R2 and D2 commonly know tha t  any message sent 
between them will arrive at most e seconds after 
it is sent. Initially, R2 knows m. But,  in fact, he 
knows more. Ite knows tha t  within e, both  of them 
will know m. But he knows even more: within e 
they will both know that  within another e they will 
both l~mw m. This argument  can be continued, and 

this leads us to the notion of e-common knowledge 
denoted C ~. 

In order to define C ~ we need to introduce time. 
Let O cot'respond to "oue time unit  later",  and O ~ 
be "e time units later".  C ~ is defined by: 

COp ~- p A O~ Ep  A . . .  A ( 0  '~ E )~p  A . . .  

So, in the preceding protocol R2 and D2 have e- 
common knowledge of m as ~oon as the message is 
sent.Similarly, if it were common knowledge tha t  a 
message from R2 to D2 is delivbred after somewhere 
between 5 and 5 + e time units, the contents of the 
message would become C e exactly 5 time units after 
the message was sent. 

Communicat ion in a distributed system is 
called e-close if all copies of a message sent to all 
processors in the system are guaranteed to arrive 
within e time units of one another. 

A si tuat ion where e-common knowledge is rele- 
vant is in the broadcast model of communication: all 
messages are sent to all processors, and it is (com- 
monly) l~mwn that  communicat ion is e-close. Every 
message is e-common knowledge once it reaches any 
processor. 

Notice t ha t  there is an interesting difference be- 
tween C and C E. Whereas common knowledge is a 
static state of knowledge, tha t  can be true of a point 
in time irrespective of its past or future, e-common 
knowledge is a notion tha t  is essentially temporal. 
Whether  or not  it holds at  a point in t ime depends 
on the system's behavior in the future. I 

Now consider what  would happen if R2 "breaks 
the rules", and uses the following (illegal) "eager 
protocol": instead of sending D2 the message m, 
R2 sends D2 the message ' :Cm' ,  and immediately 
starts supporting Cm.  D2 behaves normally, i.e., 
supports C m  when it receives the message. 

If the message C m  reaches D2 immediately, 
C m  is a t ta ined,  and everything is fine. In the worst 
case, the message might arrive e seconds later. So, 
for ¢ seconds, R2 may support  Cm,  when, in fact, 

1 This  may,  in pr inc ip le ,  r e s t r i c t  the  app l icab i l i ty  of C e, e.g. 
in sys t ems  t h a t  go d o w n  periodical ly .  However ,  we will  see 

uses for C e for which  th i s  will no t  b e  the  case. 
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Cm is false! 2 However, fl'om time tR -t- e on, they 
will, in fact, have at tained Cm. In a sense, Lemma 
2 says tha t  at taining common knowledge requires 
a certain kind of "natural  birth"; it is not possible 
to at tain it consisteatly unl(,s.~ simulataneity is at- 
tainable. But if one is willing to loosen the honesty 
requirement, and to give up knowledge consistency 
(abandon the Kip D p axiom) for short intervals 
of time, common knowledge can be attained. In 
the remainder of the paper, we change our model 
slightly, and allow processors to send a message stat- 
ing Cp when they only know p. This implies tha t  
the system is no longer guaranteed to be knowledge 
consistent, and our previous results, which assume 
knowledge consistency, do not necessarily hold. 

Notice that  in the above protocol, R2 essen- 
tially acts under the assumption that  the system 
will behave well during a short time interval after 
the message is sent. He comnfits to Cm at a point 
where he has no reason to believe that  Cm actuaUy 
holds. If the system crashes between tR and tR + ~, 
it will crash in a state in which R2 and D2's knowl- 
edge is inconsistent. So, in fact, t~2 is taking a "leap 
of faith" in using this protocol. The "eager proto- 
col" can be generalized to an arbitrary system: A 
processor is allowed to send messages stating Cp if it 
knows p. When a processor does that ,  it starts sup- 
porting Cp at the first instant at which, according to 
its knowledge, it is possible for any other processor 
to receive the message. 

We have established the fact tha t  common 
knowledge cannot be a t ta ined in a practical dis- 
tr ibuted system without some risk. Using the "eager 
protocol" for at taining common knowledge is an ex- 
ample of the kind of risk taking tha t  is required to 
overcome this hurdle. Using this protocol, the sys- 
tem is in a knowledge inconsistent state during an c 
time interval, but this state "soon becomes consis- 
tent".  

L e m m a  4" If the eager protocol is used in a broad- 
cast model in which communication is e-close, then 
Cp is at tained at most e t ime units alter the first 
processor starts supporting Cp. 

P r o o f i  Since the processors start  supporting Cp 
when they receive a message s tat ing p, and they are 

2 Not ice  tha t  the worst  case per iod of this knowlcdge incon- 
sistency can be reduced fur ther  by R2's  clahrfifig C m  only 

at t R + El2. 

guaranteed to receive th¢,se nws~ages no more than  
e time units apart ,  Cp will be at tained.  L-] 

We say that  a system is c-knowledge-consistent 
iff whenever processor i claims to know p, then p 
will become true within e time units, e-knowledge 
consistency is a relaxation of the axiom Kip D p 
discussed in the introduction. Processor i aright 
claim Kip without  p being true. Note tha t  an E- 
knowledge consistent system would seem consistent 
to an interviewer tha t  is capable of querying the pro- 
cessors about  their knowledge only one a t  a time, 
with queries at least e time units apart.  For suffi- 
ciently small e, it may be the case tha t  the inconsis- 
tency in an e-knowledge consistent system will never 
be detected from within the system. We say tha t  
a distributed system is internally knowledge consis- 
tent if it is not  possible for a processor to detect t ha t  
the system is not knowledge consistent fl'om within 
the system. 

T h e o r e m  4: A broadcast  model in which comnm- 
nication is c-close, and in which the eager protocol 
is used, is e-knowledge-consistent. 

Pr o o f :  Assume tha t  processor i claims to know p 
at  time t. i must be able to deduce p. This dcduc- 
tion might rely on a number of facts of the form Cq, 
for which only C~q holds. However, by Lemma 4, 
at  time t + e Cq will hold for all these q's. Since 
the rules tha t  processor i is using are monotone and 
sound, it follows tha t  p will hold at t + e. [] 

It is often the case. tha t  a distr ibuted system 
is e-insensitive: within the system it is not possible 
to determine the temporal  relationship between two 
events that  occur in different sites of the system less 
than e time units apart .  A typical example of a 
system tha t  is e-insensitive is a distr ibuted system 
in which the known bounds on the uncertainty in 
message delivery times are more than e greater than  
the actual uncertainty (cf. [DHS]). 

T h e o r e m  5: A distributed system tha t  is E- 
knowledge consistent and is e-insensitive, is inter- 
nally knowledge consistent. 

P r o o f :  Follows directly from the definitions. [] 

Theorem 5 offers one explanation of how peo- 
ple, not being capable of simultaneity, can flmction 
under the assumption tha t  they do achieve com- 
mon knowledge. When people are coprescnt with 
the occurrence of a fact, the e is so small that  their 
assumption of common knowledge can never be con- 
tradicted.  
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3. A s y n c h r o n o u s  c o m m u n i c a t i o n  

In asynchronous communication,  the system 
guarant, ees only that  every message sent will eventu- 
ally reach its destim'~tion. No bound on transmission 
time is knowu t~) exist. Consider R2 and D2's s ta te  
of knowledge when they communicate  in such a net- 
work. Wheu R2 sends D2 the message m, he knows 
only that  D2 will eventually receive the message. 
Without  any confirmation from D2, R2 will never 
know that  D2 has received rn. So, in asynchronous 
comnmnication,  E2m is never a t ta ined unless mes- 
sages are acknowledged. However, R2 knows a little 
more than just  that  D2 will eventually know m. He 
knows that  when D2 receives m he will know that  
R2 knows that he will eventually know m, etc. 

This s tate of knowledge, where, roughly speak- 
ing, m is true, and eventually everyone will know 
that  m is true and that  eventually everyone will 
know . . .  is very common in asynchronous systems. 
We now define a weak notion of knowledge that  cor- 
rcsponds to this state,  which we call eventual com- 
mon knowledge. 

We adopt  the temporal  logic symbol ~ to s tand 
for "eventually". O-common knowledge (read even- 
tual common knowledge), denoted by C ° , is defined 
as follows: 

C°p =- p A O E p  A . . .  A (OE)"p  A . . .  

In R2 and D2's case, m becomes C ° at the 
instant it is sent. In (guaranteed) asynchronous 
broadcast  communication,  every message becomes 
O-common  knowledge from the instant it is sent. 

ActuM experience tends to support  the claim 
that  sending a message to a mailing list on ~ large 
network guarantees at best  achieving (>-common 
knowledge. Tm some versions of the "Byzantine. 
Agreement" problem, the s ta te  of knowledge that  
is sought is C ° (of. [DDS]). 

One can imagine using the eager protocol for 
common knowledge in an asynchronous system. Ob- 
viously, this can result in the system being in incon- 
sistent states for long periods of time. Itowever, we 
can define a ra~her weak notion of consistency that  
wc call ~ -knowledge consistency that  will be  obeyed 
in such circumstances. We say that  a system is O-  
knowledge consistent if whenever individual i claims 
Kip, p will eventually hold. 

L e m m a  5: Whenever  the eager protocol is used 
to convert C°p into Cp, Cp is cventually at tained.  

P r o o f :  Since each processor supports  Cp when it 
receives the message stating p, and we are guaran- 
teed that  they all eventually receive it, it follows 
that  Cp will be  a t ta ined once the last of the proces- 
sors receives the message. [] 

T h e o r e m  6: A broadcast  model  in which com- 
nmnication is asynchronous, and in which the eager 
pcotocol is used, is ~-knowledge-consis~ent.  

P r o o f :  The proof  is essentially the sanle as tha t  
of Theorem 4, using Lemma 5. [] 

4. C o m m o n  k n o w l e d g e  r e v i s i t e d  

The definitions of C, C ~ and C ° are very sim- 
ilar. In this section we look for the unifying el- 
ements, exploit our experience frmn the previous 
sections, and come up with a general technique for 
generating notions of common knowledge appropri-  
ate for arbi t rary  network communicat ion behaviors.  
In particular,  it will be possible to analyze the s ta te  
of knowledge at ta ined when messages are sent in a 
system where communicat ion is not  guaranteed.  

For the purpose of this section, we will assume 
that  knowledge can be "factored" out  of infinite con- 

junctions,  in particular,  A Epn D E ( nA pn) (where 
n 

the conjunction may be infinite). With  this assump- 
tion, it is easy to see that  Cp D ECp, so that  if p 
is common knowledge, then everyone knows that  it 
is. In fact, Cp - ECp, and Cp can be thought  of 
as a fixpoint of the equation 

Cp -- p A ECp. 

This view, in some sense, describes how it is that  
certain notions of agreement,  and certain scenarios 
in everyday life (e.g. copresence) involve the infi- 
nite conjunction tha t  consti tutes Cp: they simply 
involve a s ta te  of knowledge that  is a fixpoint of 
the E operator ,  in which p is true. With our above 
assumption,  common knowledge can be character- 
ized by the following three axioms (of. [Le], and the 
analogous axioms for the P D L  * opera tor  in [KP]): 

(1) The "fixpoint" axiom: 

Cp D p A ECp. 

(2) The "induction" axiom: 

p A C(p D Ep)) D Cp. 
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3) T h e  " c o n s e q u e n c e  c l o s u r e "  a x i o m :  

The induction axiom states that  if p is true, and 
t is common knowledge that  whenever p is true, Ep 
s true, then p is common knowle(lge. It is called an 
nduction axiom, because using it we can prove by 
nduction that  if p holds, then E'~p holds, for all n. 
Fhis axiom, in some sense, traces our line of reason- 
ng when we claimed that  the dirty children a t ta in  
:o,nmon knowledge of m,  and when we claimed tha t  
he strong notion of agreement that  people a t ta in  
n signing a contract,  or by shaking hands, implies 
:ommon knowledge of Lhe agreement. 

As expected, the notions of C * and C ° can 
)e characterized in a similar fashion. If we denote 
D * E by E ~ (respectively, O E by E °), then axioms 
1)-(3) characterize C~p (resp. C°p), if we replace E 
)y E ~ and C by C ~ (resp. E by E ° and C by C°). s 
~ecall tha t  if it is common knowledge tha t  every 
uessage broadcast reaches all processors within e 
ime milts (resp. eventually), then any such rues- 
:age, once sent, is c-common knowledge (resp. ~ -  
:ommon knowledge). In fact, the induction axiom 
ells us tha t  we do not need the message delivery be- 
lavior of the system to be common knowledge for 
his to hold. It suffices that  it be C ~ (resp. C°). 

Using these ideas, we can now define a number 
)f other variants of common knowledge. For exam- 
fie, suppose we have a system where communicat ion 
s not guaranteed, but it is common knowledge tha t  
my message sent is likely to arrive, and delivery, 
vhen successful, is immediate. Let p be "the mes- 
:age m has been sent". We have C(p D "Likely"Ep 
cf. [HR]). The notion of common knowledge tha t  
:orresponds to this is called likely common knowl- 
edge, denoted C L. If we denote "Likely Ep" by ELp, 
" ~ L  p is defined by: 

--= p A 

k 

]learly, CLp D ELCLp. However, if wc denote 
'Likely q" by Lq, it is not, in general, the case tha t  
ikelihood satisfies a consequence closure axiom sim- 
lar to (3) (cf. [HR]). C ~ therefore does not satisfy 

; This forms a complete ch~actcr iza t ion  of C e and C °. 

axiom (3). As a consequence, C x" does not satisfy 
the induction axiom. Rather,  it satisfies the weak 
induction axiom: 

(2) (p AC(p  D ELp)) D CLp. 

Here, p D ELp needs to be common knowledge for p 
to imply CLp. Note tha t  if it is common kaowledge 
tha t  a message is likely to arrive immediately, or if 
the message itself states this fact, then the weak in- 
duction axiom suffices for a processor to prove that  
the message is likely-common knowledge. 

Continuing along these lines, you can now de- 
fine notions of common knowledge corresponding 
to your favorite conditions for at taining Ep. Con- 
ditions tha t  come to mind are "Likely within e", 
"Likely eventually",  "With probability ~r", "Un- 
likely", and so on. The fixpoint axiom and the weak 
induction axiom will hold for all of them, and when- 
ever the condition satisfies a consequence closure 
axiom, the corresponding common knowledge will 
satisfy the (strong) induction axiom and the conse- 
quence axiom. 

Corresponding to each such notion of common 
knowledge, one can imagine the use of an "eager pro- 
tocol" to convert this "conditional" common knowl- 
edge to common knowledge. Along with it comes a 
notion of "conditonal"-knowledge consistency, that  
describes the inconsistency involved in using such 
an eager protocol. 

5. T i m e  s t a m p i n g :  a r e l a t i v i s t i c  a l t e r n a t i v e  

Many distributed systems work in phases (with 
or without  a common clock). In other systems, syn- 
chronization algorithms (cf. [HSSD]) keep the pro- 
cessors' clocks within some bound of each other, and 
there are known bounds on message delivery times. 
In such systems, it is often natural  to speak of the 
processors' state of knowledge at the begining of 
phase t + 1, or at  time T on their clock. Since time 
T on my clock may be quite different from time T 
on your clock, time becomes a private mat ter ,  and 
we are lead to a relativistic notions of knowledge. 

Consider the following scenario: R2 knows tha t  
R2 and D2's clock differ by at most 5, and tha t  any 
message R2 sends D2 will arrive within E time units. 
Not having read the initial part  of this paper, and 
a t tempt ing  to a t ta in  Cm, R2 sends ]32 the following 
message: 
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"It is now tl~ on my clock. This message 
will reach you by t±~ + (. + 5 on both of our 
clocks, m is true" 

Let us denote t~z +e- t -5  by To. Now, at To, R2 
w',mhl like to claim tha t  they h;Lve at ta ined corn mon 
knowledge of m. Itaw" they? Well~ we know hy now 
that  I~hcy probably haven' t ,  but let us analyze their 
situ;ttion. First,  we need to introduce a relativistic 
tbrmalism for knowledge, tha t  we call time-stamped 
knowledge: We denote "at time T on his clock, i 
knows p" hy Kirp. T is said to be the time-stamp 
associat~ed with this knowledge. Furthermore,  

E'rP =-- A Kip.  
i 

Erp corresponds to everyone knowing p individually 
at t ime T on their own clocks. If we define p = "R2 
sent the above message to D2", we have p D E to. It 
is now, of course, natural  to define the correspond- 
ing noti-m of common knowledge, C ~, which we call 
time-,stamped common knowledge: 

- p A A(zT) p. 
k 

So, R2 and D2 have t ime-stamped common knowl- 
edge of m wJ~h time stamp To. It is easy to check 
tha t  the condition "at time T on i's clock" satisfies 
a consequence axiom, and it therefore follows tha t  
C ~ satisfies axioms (1)-(3) of the previous section. 

It is interesting to investigate how C "r relates to 
C, C", and C °. This is a good example of how look- 
ing at  the conditions that  define notions of common 
knowledge gives insight into their meaning, and the 
relations between these notions. Not surprisingly, 
the relative behavior of the clocks in the system 
plays a crucial role in determining the meaning of 
C r . 

T h e o r e m  7" 

(a) If it is common knowledge that  all clocks show 
identical times, then at  T on any processor's 
clock, C'rp - Cp. 

(b) Aasume tha t  the clocks all run at  the rate of 
real time. If it is e.-common knowledge tha t  
all clocks are within c time units of each other 
then, at  T on any processor's clock, CTp D 
C~p. 

(c) If it is ~-common knowledge tha t  all clocks are 
monotone increasing with no bound,  meaning 

thal~ every clock eventually displays every pos- 
sible reading, then C'rp D C°p. [] 

Theorem 7 demonstrates the conditions tha t  al- 
low interchanging the relativistic C 7' with C, C ~ and 
C ° . It also sheds light on the connection between 
the absolute t, ime notions ,)f common knowledge and 
the relative behavior of clocks in the system. Note 
that, a weak converse of Theorem 7 holds as well. 
Suppose we allowed the processors to set their clocks 
to a common agreed upon time T, when Cp (resp. 
C~p, C°p) is at tained.  Then it is easy to see tha t  if 
Cp (resp. C¢p, C°p) is at tainable,  then so is Crp. 

6. Conc lus ions  

Knowledge plays a fundamental  role in dis- 
t r ibuted systems. Viewing communicat ion in a net- 
work and goals of protocols through the "knowledge 
perspective" in many cases clarifies a number  of is- 
sues. We have investigated several notions of group 
knowledge. We define a hierarchy of these notions, 
and show tha t  it is strict in tile case of distr ibuted 
systems. A general taxonomy of distr ibuted systems 
is required, which will specify the time and commu- 
nication complexities involved in changing the state 
of knowledge of a fact from one level in our knowl- 
edge hierarchy to a higher one. 

The weakest notion in the hierarchy is tha t  of 
implicit knowledge, which corresponds to the knowl- 
edge a single individual would have, if he knew what  
all the members of the group know. This notion can 
be appropriate for worst case analysis of what  au 
adversary group, such as the KGB, CIA, or Byzan- 
tine traitors, might know at a given point in time. 
This notion is also useful in the verification of cryp- 
tographical protocols, where proving tha t  a group 
is ignorant of a fact amounts  to showing tha t  its 
members don ' t  even have implicit knowledge of the 
fact. 

The strongest state of knowledge we discussed 
is common knowledge. It is, in a sense, the s tate  of 
knowing a fact and knowing tha t  the or, her members 
of the group have the same knowledge regarding the 
fact as you do. 

One of our main results shows tha t  common 
knowledge is not a t ta inable  in real world systems. 
However, various weaker notions, such as e-common 
knowledge, t ime-s tamped common knowledge, and 
likely-common knowledge, are often at tainable,  ap- 
propriate subst i tutes for common knowledge. The 
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use of an %ag,.r" t)r~)~o('ol, that l.roals ~-common 
knowledge a~-' if it w~,re ('omJn(,n k,mwl,,dg(,, rosults 
in a system lhat  is inconsisteat, but is t-knowledge- 
consistent. For small (, this inconsistolwy may go 
undetected, and the system may be indislinguish- 
able from a consistent one. 

We believe that  the "knowh,dge per.,q)ective" 
will give us a better understanding, of distri lmted 
communication protocols and distributed consensus 
protocols, and provides a clear formalism in which 
to specify and verify them. 
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