Knowledge and Common Knowledge in a Distributed Environment

Joseph Y. Halpern

IBM Research Laboratory,
San Jose, CA 95193

Yoram Moses

Computer Science Department
Stanford University, Stanford, CA 94305

Abstract: We argue that the right way to under-
stand distributed protocols is by considering how
messages change the state of knowledge of a sys-
tem. We present a hierarchy of knowledge states
that a system may be in, and discuss how commu-
nication can move the system’s state of knowledge
of a fact up the hierarchy. Of special interest is
the notion of common knowledge. Commorn knowl-
edge is an essential state of knowledge for reaching
agreements and coordinating action. We show that
in practical distributed systems, common knowledge
is not attainable. We introduce various relaxations
of common knowledge that are attainable in many
cases of interest. We describe in what sense these
notions are appropriate, and discuss their relation-
ship to each other. We conclude with a discussion
of the role of knowledge in distributed systems.

1. Introduction

The notion of knowledge in a distributed en-
vironment is fundamental to many issues in dis-
tributed computing. Many tasks in a distributed
system directly involve the achievement of specific
statcs of knowledge and others crucially depend
on a variety of constraints on the state of knowl-
edge of the parties involved. Reasoning about such

Permission to copy without fee all or part of this ma-
terial is granted provided that copies are not made or dis-
tributed for direct commercial advantage, the ACM copyright
notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the As-
sociation for Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific perinission

© 1984 ACM 0-89791-143-1/84/008/0050 $00.75

states of knowledge plays an essential role in un-
derstanding the correctness of distributed commu-
nication protocols such as “Handshake” protocols,
distributed agreement protocols such as the “Byzan-
tine Agreement” [PSL,DS] and “Transaction Com-
mit” [Li,LF], as well as cryptographic protocols such
as the “Oblivious Transfer” protocol [HR]. Commu-
nication in a distributed system can be viewed (and
often should be viewed) as the act of transforming
the system’s state of knowledge.

The general concept of knowledge has reccived
considerable attention in a variety of fields, rang-
ing from Philosophy [Hi] and Artificial Intclligence
[Mc], to Game Theory [Au] and Psychology [CM].
Although in different contexts knowledge is assumed
to mean different things, one property that is gen-
erally required of knowledge is that only true things
be known. More formally, knowledge satisfies the
axiom

KipDp
i.e., if an individual ¢ knows p, then p is true.

In the presence of many individuals, an indi-
vidual may have knowledge about other individuals’
knowledge, in addition to his knowledge about the
physical world. This often requires care in distin-
guishing subtle differences between secmingly simi-
lar states of knowledge. A classical example is the
“dirty children” puzzle - a variant of the well known
“wise men” or “chcating wives” puzzles. The ver-
sion given here is taken from [Bal:

Imagine n children playing together. The
mother of these children has told them that
if they get dirty there will be severe conse-
quences. So, of course, cach child wants to
keep clean, but cach would love to sce the oth-
ers get dirty. Now it happens during their play
that sone of the children, say &k of them, get

50

mud on their forcheads. Each can see the mud
on others but not on his own forchead. So, of
course, no one says a thing. Along comes the
father, who says, “At least onc of you has mud
on your head,” thus expressing a fact known to
cach of them before he spoke (if & > 1). The
father then asks the following question, over
and over: “Can any of you prove you have
mud on your head?” Assuming that all the
children are perceptive, intelligent, truthful,
and that they answer simultancously, what
will happen?

There is a “proof” that the first k& — 1
times he asks the question, they will all say
“110” but then the kth time the dirty children
will answer “yes.”

The “proof” is by induction on k. For
k = 1 the result is obvious: the dirty child
sees that no one else is muddy, so he must be
the muddy one. Let us do k = 2. So there are
just two dirty children, a and b. Fach answers
“no” the first time, because of the mud on the
other. But, when b says “no,” a realizes that
he must be muddy, for otherwise b would have
known the mud was on his head and answered
“yes” the first timne. Thus a answers “yes” the
second time. But b goes through the same rea-
soning. Now suppose k = 3; so there are three
dirty children, a,b,c. Child a argues as fol-
lows. Assume I don’t have mud on my head.
Then, by the k& = 2 case, both b and ¢ will an-
swer “yes” the second timne. When they don’t,
he rcalizes that the assumption was false, that
he is muddy, and so will answer “yes” on the
third question. Similarly for b and c.

Assuming k > 1, the father didn’t tell the chil-
dren anything they didn’t know already. Yet it is
casy to sce that without his statement the children
with maud on their heads would never be able to de-
duce this. What was the role of the father’s state-
ment? We will return to this question.

How docs the notion of knowledge generalize
from an individual’s knowledge to a group’s knowl-
edge? In other words, what does it mean to say that
a group G of individuals knows a fact p? More than
one possibility is reasonable, with the appropriate
choice depending on the application:

(i) Isp (read “the group G has Implicit Knowl-
edge of the fact p”): We say that G has im-
plicit knowledge of p iff by pooling together

(iii)

their knowledge, the members of G can con-
clude p. TFor instance, if one member of G
knows q and another knows q O p, the group G
can be said to have implicit knowledge (abbrev.
I-knowledge) of p.

Sqep (rcad “Someone in G knows p”, S-
knowledge in short): We say that G has S-
knowledge of p iff some member of G knows
p. More forinally,

Scp = V Kip.
1eG

E;p (read “Everyone in G knows p”, E-
knowledge in short): G is said to have E-
knowledge of p iff all members of G' know p.
More formally,

Ee.p= /\ K;p.
i1eG

Eip, k>2 (read “pis E*-knowledge in G”):
E¥p is defined by

Elp = Egp,

EXtlp = E EXp, for k> 1.

p is said to be E*-knowledge in G if “everyone
in G knows that everyone in G knows that ...
that everyone in G knows that p is true” is true,
where the phrase “everyone in ¢ knows that”
appears in the the sentence k times. Equiva-
lently,

Eép

I

/\ Ki Ki, '”Kikp.
1;6G,1<5<k

Cep (read “p is Common Knowledge in G”):
p is said to be common knowledge in G if p is
truc, and is Ef-knowledge for all & > 1. In
other words,

CcpEp/\EGp/\Egp/\---/\Eg‘p/\---

In particular, Cs;p implies all formulas of the
form K;, K;, --- K, p, where the 7; are all mem-
bers of G, for any finite n.

(We will omit the subscript G when the group

G is understood from context.)

51

Returning to the “dirty children” puzule, we
denote by m the fact “There arc children with mud
on their forcheads”, and observe the state of the
children’s knowledge of m. Before the father spoke
E*~lm was true, and E*¥m wasn’t. Let us sce this
in the case k = 3. There are 3 dirty children, and
thercfore each child sces at least 2 dirty children.
In particular, a dirty child sees exactly two dirty
children. He thercfore knows that each other child
knows of at least one dirty child. So, we have E?m,
but not E3m.

We leave it to the reader to check that when
there are k dirty children, E¥m suffices to ensure
that the dirty children will be able to prove their
dirtyness, whereas E*"!m does not. After the
father tells the children m, m becomes common
knowledge. This implies E*m, and thercfore the
dirty children succeed in proving their dirtyness. (A
more detailed analysis of this argument, and vari-
ants of it, will appear in [DHM].)

It is clear that the notions of group knowledge
introduced above form a hierarchy, with

Cp>---DE*p>...0Ep>SpDIpDp.

However, depending on the circumstances, thesc no-
tions might not be distinct. For example, consider a
model of parallel computation in which a collection
of n processors share a common memory. If their
knowledge is stored in memory then we arrive at a
situation in which Cp = E*p = Ep = Sp = Ip. By
way of contrast, in a distributed system in which n
processors are connected via some communication
network and each one of them has ifts own mem-
ory, it is clear that the above hicrarchy is strict.
Moreover, in such a system every two levels in the
hierarchy can be separated by an actual task, in

the sense that there will be an action for which one-

level in the hierarchy will suffice, but no lower level
will. Tt is quite clear that this is the case with
Ep D Sp D Ip, and the “dirty children” puzzle
shows that I*p is strictly stronger than £*1p, for
k > 1. The fact that Cp is stronger than E¥p fol-
lows, because Cp D E**!p,

In the case of a distributed system a very
important question arises: how does the state of
knowledge of a fact p change by the commmunication
process? How can this state of knowledge climb up
our hierarchy? The vast majority of the commmunica-
tion in a distributed system can be viewed as the act
of improving the state of knowledge (in the sense of

“climbing up the hierarchy”) of certain facts. This
is an claboration of the view of communication in a
network as the act of “sharing knowledge”. Taking
this view, two notions come to mind. Oue is fact dis-
covery - the act of changing the state of knowledge
of a fact p from being implicit knowledge to levels
of cxplicit knowledge (usually S-knowledge or E-
knowledge), and the other is fact publication — the
act of changing the state of knowledge of a fact that
is known to at least one individual, but is not com-
mon knowledge, to common knowledge. An exam-
ple of fact discovery is detecting global properties
of a system, such as deadlock. The knowledge the
system initially has of the deadlock is I-knowledge,
and the detection algorithm improves this state to
S-knowledge. An example of fact publication is the
introduction of a new communication convention.
Here the initiator(s) of the convention wish to make
the new convention cominon knowledge.

Both fact discovery and fact publication are in-
teresting notions that are worth investigation. How-
ever, in the rest of this paper we restrict our at-
tention to common knowledge and fact publica-
tion. Common knowledge is a fairly basic notion
in people’s everyday life. Clark and Marshall [CM]
show that it is used fairly extensively in interper-
sonal communication in natural language, e.g. the
term “the president” assumes common knowledge
of which person is being referred to. The custom of
shaking hands to scal an agreement esscntially cor-
responds to making the agreement common knowl-
edge. Common knowledge is also inherent in the
notion of conventions. Something cannot be a con-
vention among a group of pcople if it is not commen
knowledge to them. Having common knowledge of
a large number of facts allows for better and shorter
communication. It scems quite reasonable that two
branches of a bank making transactions over a com-
puter network will not seal a million dollar transac-
tion before the transaction is common knowledge.

In the next section, we first show that if com-
munication is not guaranteed (i.e., messages might
not reach their destinations), then common knowl-
cdge is not attainable. We then show that, cven if
communication is guaranteed, common knowledge is
not attainable if we cannoi guarantee simultaneous
actions. We introduce various relaxations of com-
mon knowledge that arc attainable in many cases
of interest. We describe in what sense these no-
tions are appropriate, and discuss their relationship
to cach other. We conclude with a discussion of the
role of knowledge in distributed systems.

52

We think of the processors as state machines
with clocks, where a clock is a monotone increasing
function of real time. A processor’s state at a given
time is determined by its initial state, its clock timne,
and its message history: the sequence of messages
it has sent and received and the times (on the pro-
cessor’s clock) in which it sent or received them.

We now consider what it weans for a processor
to know p, where p is a formula that talks about the
real world and the processors’ knowledge of it. We
assune some consistent notion of truth of formulas,
without going into details of semantics. A proces-
sor has some initial information, that we assume to
be (forever) true, and it acquires additional infor-
mation through message exchange. It then deduces
what it knows using this information and some set
of rules (e.g. the axioms of [Le]). These rules arc
required to be monotonic in the inforination and in
time, meaning that if a formula p is deducible us-
ing the rules given a certain set of informnation at
time ¢ on a processor’s clock, then it will still be de-
ducible from any superset of that information at ¢ or
any later time. The rules must also be sound, i.e.,
whenever the information is true, then so arc any
conclusions drawn from it according to the rules.
Moreover, we assume that processors do not forget,
so information is never lost. Thus, once a proces-
sor deduces p, it can deduce p at any later time.
Processor ¢ knows p exactly if it can deduce p from
its information, using the rules. In this case K;p
is true. Finally, we assume, for now, that that all
processors are honest, so that a processor may send
a message stating p only if it knows p.

From our assumptions above, it follows that
the system will always be in a knowledge consts-
tent state: whenever K;p is true, p is true (i.c., the
axiom K;p D p is satisfied). Notice that all the
facts that can be known are stable: facts that, once
true, remain true. This is a weaker restriction than
it may seem, since given any fact g, facts such as
“q held sometime in the past”, or “q holds at time
t on ¢’s clock”, “q holds throughout time interval
I, are all stable. It is not rcasonable for a proces-
sor ¢ to send a message to processor j stating that
p is true, if p might become false by the time the
message reaches j. It is reasonable for ¢ to send a
message stating that p is true at time ¢ on its clock,
however, or even a message stating that p is true,
and will remain true throughout the future (this, in
fact, can be accepted to be the default meaning of
a message stating simply p).

A protocol is a (possibly nondeterministic) dis-
tributed algorithm. A protocol essentially deter-
mines what messages can be sent by the proces-
sors, as a function of their internal state. Fven if
a protocol is deterministic, the system may behave
nondcterministically, due to uncertainty in message
delivery times and to the possibility that messages
might fail to be delivered. A run of the protocol is
a particular exccution of the protocol.

We say that a processor ¢ supports Cp, if ¢
knows all the K;, K,, - -+ K; p formulas that consti-
tute Cp (see introduction). A’system has attained
Cp if all its members support Cp.

Lemma 1: A processor ¢ supports Cp iff the sys-
tem has attained Cp.

Proof: The ‘if’ direction follows from the defini-
tion. Tor the other direction, assume, to the con-
trary, that ¢ supports Cp and j does not. There is a
formula ¢ = K,;, K;, --- K, _p, such that 7 does not
know ¢, but ¢ claims to know K;q. The system is
therefore not knowledge consistent, a contradiction.

a

A protocol for attaining common knowledge is
a protocol with the following property: if some pro-
cessor knows a fact p, it can initiate the protocol,
and is guaranteed that the system will then eventu-
ally attain Cp.

A fact p is said to be C-undetermined in a sys-
tem at a given point.in time if, without any further
cominunication in the system, Cp will never hold.

We are now ready to investigate fact publica-
tion in distributed systems. TFollowing the coordi-
nated attack example, we first consider systems in
which communication is not guaranteed.

Theorem 1: There is no protocol for attaining
common knowledge if communication is not guaran-
teed. In particular, if ¢ 1s a C-undetermined fact, Sq
holds and communication is not guaranteed, then
there is no protocol that is guarantced to attain Cgq.

Proof: Assume, to the contrary, that P is such a
protocol. Consider a run of P in which no message
sent by any processor is delivered to its destination.
If Cq is attained, it is attained without any commu-
nication, contradicting ¢’s being C-undetermined.

O

53

We think of the processors as state machines
with elocks, where a clock is a monotone increasing
function of real time. A processor’s state at a given
time is determined by its initial state, its clock time,
and its message history: the sequence of messages
it has sent and received and the times (on the pro-
cessor’s clock) in which it sent or received them.

We now consider what it means for a processor
to know p, where p is a formula that talks about the
real world and the processors’ knowledge of it. We
assume some consistent notion of truth of formulas,
without going into details of semantics. A proces-
sor has some initial information, that we assume to
be (forever) true, and it acquires additional infor-
mation through message exchange. It then deduces
what it knows using this information and some set
of rules (e.g. the axioms of [Le]). These rules are
required to be monotonic in the information and in
time, meaning that if a formula p is deducible us-
ing the rules given a certain set of information at
time ¢ on a processor’s clock, then it will still be de-
ducible from any superset of that information at ¢ or
any later time. The rules must also be sound, i.e.,
whenever the information is true, then so are any
conclusions drawn from it according to the rules.
Moreover, we assume that processors do not forget,
so information is never lost. Thus, once a proces-
sor deduces p, it can deduce p at any later time.
Processor 7 knows p exactly if it can deduce p from
its information, using the rules. In this case K;p
is true. Finally, we assume, for now, that that all
processors are honest, so that a processor may send
a message stating p only if it knows p.

From our assumptions above, it follows that
the system will always be in a knowledge consis-
tent state: whenever K,p is true, p is true (i.e., the
axiom K;p D p is satisfied). Notice that all the
facts that can be known are stable: facts that, once
true, remain true. This is a weaker restriction than
it may scem, since given any fact g, facts such as
“g held sometime in the past”, or “g holds at time
t on 7’s clock”, “q holds throughout time interval
I’ are all stable. It is not reasonable for a proces-
sor ¢ to send a message to processor j stating that
p is true, if p might become false by the time the
message reaches j. It is reasonable for 7 to send a
message stating that p is true at time ¢ on its clock,
however, or even a message stating that p is true,
and will remain true throughout the future (this, in
fact, can be accepted to be the default meaning of
a message stating simply p).

A protocol is a (possibly nondeterministic) dis-
tributed algorithm. A protocol cssentially deter-
mines what messages can be sent by the proces-
sors, as a function of their internal state. Even if
a protocol is deterministic, the system may behave
nondeterministically, due to uncertainty i message
delivery times and to the possibility that messages
might fail to be delivered. A run of the protocol is
a particular exccution of the protocol.

We say that a processor ¢ supports Cp, if ¢
knows all the K; K, --- K; p formulas that consti-
tute Cp (sec introduction). A system has attained
Cp if all its members support Cp.

Lemma 1: A processor ¢ supports Cp iff the sys-
tem has attained Cp.

Proof: The ‘if’ direction follows from the defini-
tion. TFor the other dircction, assume, to the con-
trary, that ¢ supports ¢ and j does not. There is a
formula ¢ = K; K,, --+- K;_ p, such that 5 does not
know q, but ¢ claims to know K;q. The system is
therefore not knowledge consistent, a contradiction.

a

A protocol for altaining common knowledge is
a protocol with the following property: if some pro-
cessor knows a fact p, it can initiate the protocol,
and is guarantced that the system will then eventu-
ally attain Cp.

A fact p is said to be C-undetermined in a sys-
tem at a given point in time if, without any further
communication in the system, Cp will never hold.

We are now ready to investigate fact publica-
tion in distributed systems. Following the coordi-
nated attack example, we first consider systems in
which communication is not guaranteed.

Theorem 1: There is no protocol for attaining
common knowledge if communication is not guaran-
teed. In particular, if ¢ is a C-undetermined fact, Sq
holds and communication is not guaranteed, then
there is no protocol that is guaranteed to attain Cq.

Proof: Assume, to the contrary, that P is such a
protocol. Consider a run of P in which no message
sent by any processor is delivered to its destination.
If Cq is attained, it is attained without any commu-
nication, contradicting ¢’s being C-undetcrmined.

0

54

As the proof of Theorcin 1 shows, demanding
that we be guarantced to attain Cq regardless of
the system’s behavior is too strong. It is rcasonable,
however, to hope for a protocol that will succced in
attaining Cq in runs during which a sufficient part
of its communication succeeds. Theorem 2 shows
that this too is impossible.

Theorem 2: If q is a C-undetermined fact, no
run of any protocol ever attains Cq.

Proof: Let P be a protocol. We prove by induc-
tion on n that P has no run that attains Cq in which
exactly n messages are delivered to their destina-
tions upto (and including) the time Cq is attained.
The case n = 0 follows by assumption, since q is
C-undetermined. Suppose we have proved the re-
sult for n = k, and assume that P has a run r that
attains Cq using K+ 1 messages. Let t; be the (say)
real time in which Cq is first attained in r. Let m,
be the last message that was delivered in 7 no later
than tc (or one of them, in case of a tie). Let i, be
m,’s sender, and let ¢, be the time at which m, is
delivered. Denote by r~ arun of P that behaves ex-
actly like 7 until ¢,, except that m, is not delivered,
and in which no message is delivered after ¢,. Since
t,’s information at time t. is identical in r and in
r~, and z, supports Cq at ¢, in run r, it follows that
processor 1, will also support Cq at t, in 7. By
Lemma 1, it follows that Cq is attained at time ¢,
in 7, contradicting the induction hypothesis. O

Returning to the “coordinated attack” prob-
lem, recall that the generals required common
knowledge of the attack before attacking. Theorem
2 shows that they have no hope of that. The reader
may suspect that something in our definitions, or in
the statement of the notion of agreement required
in the “coordinated attack” problem is behind this
result Perhaps, if the generals were not required
to worry so much about their states of knowledge,
therc might be a protocol that would ensure that
they attack only in tandem, and that does allow
them to attack under some circumstances. This is
not the case. A slight extension of the proof of The-
orem 2 proves:

Proposition 2: If communication is not gnaran-
teed, any protocol that guarantees that if any party
attacks, they both attack, is a protocol in which
necessarily neither party attacks (!).

The previous results show that, in a strong
sense, common knowledge is not attainable in a
system in which communication is not guaranteed.
However, even when communication 4s guaranteed,
common knowledge can be elusive. To see this, con-
sider a system consisting of two processors R2 and
D2, connected by a communication link. Assume
that their clocks run at the same rate, but might not
be showing the same times at a given instant. As-
sume that communication (delivery) is guaranteed,
and that furthermore it is (say commonly) known
that any message sent from R2 to D2 reaches D2
either immediately or after cxactly ¢ seconds. At
time £ on R2’s clock, R2 sends D2 a message stat-
ing that m is true. D2 receives the mcssage at time
tp on his own clock. (Recall that we are assuming
that m is a stable fact.) D2 doesn’t know m ini-
tially. How does {R2,D2}’s state of knowledge of m
change with time?

R2 cannot be sure that D2 knows m before ¢ 5+
€. D2, on the other hand, cannot be sure that R2
knows D2 knows m until ¢ p-+¢ (because the message
could have arrived immediately, and R2 waits until
tp+e€ before deciding that D2 knows m). R2 cannot
be sure that D2 knows R2 knows D2 knows m hefore
tr+2¢ (since the message could have been delivered
exactly € seconds after being sent, and D2 waits
until p + €, € seconds after it arrives). In other
words, if we denote R2’s knowledge by Kp and D2’s
knowledge by Kp, we have m true at tp, KrKpm
true at t g + ¢ (and no sooner), and KrKp KpKpm
true at tp + 2¢ (and no sooner). This argument can
be ecasily extended to show that (K Kp)™m holds
at tp + ne and no sooner(!). Since

E*™m > (KrKp)"m > B> 'm,

it follows that E2"*1m will uot hold before ¢ + ne.
(It will hold by tx + (n + 1)¢, though.) In order to
have Cm, all formulas of the form Efm, &k > 1,
must be true. From the above analysis it is clear
that m will never become common knowledge.

Now consider what would happen if R2 and D2
shared the same clock (or, cquivalently, if it were
common knowledge that their clocks show the same
time at any given instant). R2 could send D2 the
following message: “I ain sending you this message
at time ¢, knowing it will reach you by tz+¢ at the
latest; m is true.” Since they commonly know that
their clocks read the same time, m would become
common knowledge at time tp + €.

55

What is the essential difference between these
two situations? It scems that what made achiev-
ing common knowledge easy in the latter case was
the possibility of making the trausition fromn non-
common knowledge to common knowledge simulta-
neously. The impossibility of doing so in the former
case was the driving force behind the extra cost in
time incurred in attaining every extra level of E-
knowledge. Indeed, the following thecorem confirms
this intuition.

Lermma 2: If Cp is to be attained, all processors
must start supporting it simultancously.

Proof: Tollows trivially from Lemma 1. [

Stmultaneity is said to be attainable in a system
if there is a protocol that guarantees that all mem-
bers of the system will execute a prescribed action,
such as flipping a specific bit from 0 to 1, simulta-
neously (cf. [DHS]). Lemma 2 essentially states that
for common knowledge to be attainable in a system,
simultaneity must be attainable in the system.

Lemma 3: If clocks are not initially identical, and
there is an uncertainty in message delivery times,
then simultaneity cannot be guaranteed.

Proof: Follows from Theorem 4 of [DHS]. [

Theorem 3: If communication is guaranteed, but
clocks are not initially identical, and there is an un-
certainty in message dclivery times, then there is no
protocol for attaining comion kaowledge.

Proof: Immediate from Lemmas 2 and 3. O

Theorems 1-3, roughly speaking, say that at-
taining common knowledge is practically impossible
in actual distributed systems. In such systems, we
have the following situation: a fact p can be known
to an individual without being common knowledge,
or it can be common knowledge (in which case that
individual also knows p), but there is no way of get-
ting from the first case to the second. As long as we
play according to the rules, that is.

Let us take a close look at the state of knowl-
edge R2 and D2 have once the message m is sent.
R2 and D2 commonly know that any message sent
between them will arrive at most € seconds after
it is sent. Initially, R2 knows m. But, in fact, he
knows more. He knows that within ¢, both of them
will know m. But he knows even more: within ¢
they will both know that within another € they will
both know m. This argument can be continued, and

this leads us to the notion of e¢-common knowledge
denoted C*¢.

In order to define C¢ we need to introduce time.
Lot O correspond to “onc time unit later”, and Q€
p s
be “e time units later”. C*© is defined by:

Cp=pAO“EpA---AN(O°E)"pA---

So, in the preceding protocol R2 and D2 have e-
common knowledge of m as soon as the message is
sent.Similarly, if it were common knowledge that a
message from R2 to D2 is delivered after somewhere
between & and § + ¢ time units, the contents of the
message would become C€ exactly § time units after
the message was sent.

Communication in a distributed system is
called e-close if all copies of a message sent to all
processors in the system are guarantced to arrive
within € time units of one another.

A situation where e-common knowledge is rele-
vant is in the broadcast model of communication: all
messages are sent to all processors, and it is (com-
meoenly) known that communication is e-close. Every
message is e-common knowledge once it reaches any
processor.

Notice that there is an interesting difference be-
tween C and C¢. Whereas common knowledge is a
static state of knowledge, that can be true of a point
in time irrespective of its past or future, e-common
knowledge is a notion that is essentially temporal.
Whether or not it holds at a point in time depends
on the system’s behavior in the future. !

Now consider what would happen if R2 “breaks
the rules”, and uses the following (illegal) “eager
protocol”: instead of sending D2 the message m,
R2 sends D2 the message “Cm”, and immediately
starts supporting Cm. D2 behaves normally, i.e.,
supports Cm when it receives the message.

If the message Cm reaches D2 immediately,
Cm is attained, and everything is fine. In the worst
case, the message might arrive € seconds later. So,
for € seconds, R2 may support Cm, when, in fact,

1 This may, in principle, restrict the applicability of C'¢, c.g.
in systems that go down periodically. However, we will sce
uses for C'¢ for which this will not be the case.

56

Cm is false! 2 However, from time tp - € on, they
will, in fact, have attained C'm. In a sense, Lemma
2 says that attaining cominon knowledge requires
a certain kind of “natural birth”; it is not possible
to attain 1t consistently nnless simulatancity is at-
tainable. But if one is willing to loosen the honesty
requirement, and to give up knowledge cousistency
(abandon the K;p D p axiom) for short intervals
of time, common knowledge can be attained. In
the remainder of the paper, we change our model
slightly, and allow processors to send a message stat-
ing Cp when they only know p. This implies that
the systemn is no longer guaranteed to be knowledge
consistent, and our previous results, which assume
knowledge consistency, do not necessarily hold.

Notice that in the above protocol, R2 essen-
tially acts under the assumption that the system
will behave well during a short time interval after
the message is sent. He commits to Cm at a point
where he has no reason to believe that Cm actually
holds. If the system crashes between tg and tp + €,
it will crash in a state in which R2 and D2’s knowl-
edge is inconsistent. So, in fact, R2 is taking a “leap
of faith” in using this protocol. The “eager proto-
col” can be generalized to an arbitrary system: A
processor is allowed to send messages stating Cp if it
knows p. When a processor does that, it starts sup-
porting Cp at the first instant at which, according to
its knowledge, it is possible for any other processor
to receive the message.

We have cstablished the fact that common
knowledge cannot be attained in a practical dis-
tributed system without some risk. Using the “eager
protocol” for attaining common knowledge is an ex-
ample of the kind of risk taking that is required to
overcome this hurdle. Using this protocol, the sys-
tewn is in a knowledge inconsistent state during an ¢
time interval, but this state “soon becomes consis-
tent”.

Lemma 4: If the cager protocol is used in a broad-
cast model in which communication is e-close, then
Cp is attained at most € time units after the first
processor starts supporting Cp.

Proof: Since the processors start supporting Cp
when they receive a message stating p, and they are

2 Notice that the worst case period of this knowlcdge incon-
sistency can be reduced further by R2’s claiming C'm only

at tR+6/2.

guaranteed to receive these messages no more than
¢ time units apart, Cp will be attained. [

We say that a system is ¢-knowledge-consistent
iff whenever processor ¢ claims to know p, then p
will becoine true within € time units. e-knowledge
consistency is a reclaxation of the axiom K;p D p
discussed in the introduction. Processor ¢ might
claim K;p without p being true. Note that an e-
knowledge consistent system would seem consistent
to an interviewer that is capable of querying the pro-
cessors about their knowledge only one at a time,
with queries at least € time units apart. For suffi-
ciently small ¢, it may be the case that the inconsis-
tency in an e-knowledge consistent system will never
be detected from within the system. We say that
a distributed system is internally knowledge consis-
tent if 1t is not possible for a processor to detect that
the system is not knowledge consistent from within
the system.

Theorem 4: A broadcast model in which commu-
nication is e-close, and in which the eager protocol
is used, is e-knowledge-consistent.

Proof: Assume that processor ¢ claims to know p
at time ¢. 7+ must be able to deduce p. This deduc-
tion might rely on a number of facts of the form Cq,
for which only C¢q holds. However, by Lemma 4,
at time ¢t + ¢ Cq will hold for all these ¢’s. Since
the rules that processor 7 is using are monotone and
sound, it follows that p will hold at ¢ +¢. O

It is often the case. that a distributed system
is e-insensitive: within the system it is not possible
to determine the temporal relationship between two
events that occur in different sites of the system less
than € time units apart. A typical example of a
system that is ¢-insensitive is a distributed system
in which the known bounds on the uncertainty in
message delivery times are more than € greater than
the actual uncertainty (cf. [DHS]).

Theorem 5: A distributed system that is e-
knowledge consistent and is ¢-insensitive, is inter-
nally knowledge consistent.

Proof: Tollows directly from the definitions. [J

Theorem 5 offers one explanation of how peo-
ple, not being capable of simultaneity, can function
under the assumption that they do achieve com-
mon knowledge. When people are copresent with
the occurrence of a fact, the ¢ is so small that their
assumption of common knowledge can never be con-
tradicted.

57

3. Asynchronous communication

In asynchronous communication, the system
guarantees only that cvery message sent will eventu-
ally reach its destination. No bound on transmission
time is known to exist. Consider R2 and D2’s state
of knowledge when they cominunicate in such a net-
work. Wheu R2 sends D2 the message m, he knows
only that D2 will eventually reccive the message.
Without any counfirmation from D2, R2 will never
know that D2 has received m. So, in asynchronous
communication, £2m is never attained unless mes-
sages are acknowledged. However, R2 knows a little
more than just that D2 will eventually know m. He
knows that when D2 receives m he will know that
R2 knows that he will eventually know m, etc.

This state of knowledge, where, roughly speak-
ing, m is true, and eventually everyone will know
that m is true and that eventually everyone will
know ...is very common in asynchronous systems.
We now define a weak notion of knowledge that cor-
responds to this state, which we call eventual com-
mon knowledge.

We adopt the temporal logic symbol ¢ to stand
for “eventually”. -common knowledge (read even-
tual common knowledge), denoted by C°, is defined
as follows:

Cp =pAOEpA -~ AN(OE)"P A ---

In R2 and D2’s case, m becomes C° at the
instant it is sent. In (guaranteed) asynchronous
broadcast communication, every message becomes
& -common knowledge from the instant it is sent.

Actual experience tends to support the claim
that sending a message to a mailing list on g large
network guarantees at best achieving ¢ -common
knowledge.
Agreement” problem, the state of knowledge that
is sought is C° (cf. [DDS]).

One can imagine using the eager protocol for
common knowledge in an asynchronous system. Ob-
viously, this can result in the system being in incon-
sistent states for long periods of time. However, we
can define a rather weak notion of consistency that
we call & -knowledge consistency that will be obeyed
in such circumstances. We say that a system is $-
knowledge consistent if whenever individual 7 claims
K;p, p will eventually hold.

Lemma 5: Whenever the eager protocol is used
to convert C°p into Cp, Cp is cventually attained.

In some versions of the “Byzantine.

Proof: Since each processor supports Cp when it
receives the message stating p, and we are guaran-
teed that they all cventually receive it, it follows
that Cp will be attained once the last of the proces-
sors receives the message. []

Theorem 6: A broadcast model in which com-
imunication is asynchronous, and in which the eager
protocol is used, is ¢&-knowledge-consistent.

Proof: The proof is essentially the same as that
of Theorem 4, using Lemma 5. [

4. Comunnon knowledge revisited

The definitions of C, C¢ and C?° are very sim-
ilar. In this section we look for the unifying el-
ements. exploit our experience from the previous
sections, and come up with a general technique for
generating notions of common knowledge appropri-
ate for arbitrary network communication behaviors.
In particular, it will be possible to analyze the state
of knowledge attained when messages are sent in a
system where communication is not guaranteed.

For the purpose of this section, we will assume
that knowledge can be “factored” out of infinite con-

junctions, in particular, A Ep,, 2 E(A pn) (where
n n

the conjunction may be infinite). With this assump-
tion, it is easy to see that Cp O ECp, so that if p
is common knowledge, then everyone knows that it
is. In fact, Cp = ECp, and Cp can be thought of
as a fixpoint of the equation

Cp=pAECp.

This view, in some sense, describes how it is that
certain notions of agreement, and certain scenarios
in everyday life (e.g. copresence) involve the infi-
nite conjunction that constitutes Cp: they simply
involve a state of knowledge that is a fixpoint of
the F operator, in which p is true. With our above
assumption, common knowledge can be character-
ized by the following three axioms (cf. [Le|, and the
analogous axioms for the PDL # opcrator in [KP]):

(1) The “fixpoint” axiom:
Cp D pANECD.

(2) The “induction” axiom:

(p/\C(p . Ep)) D Cbp.

58

3) The “consequence closure” axion:
(Cp/\ Cp > q)) > Cq.

The induction axiom states that if p is true, and
t is common knowledge that whenever p is true, Ep
s true, then p is common knowledge. It is called an
nduction axiowun, because using it we can prove by
nduction that if p holds, then E™p holds, for all n.
Chis axioim, in some sense, traces our line of reason-
ng when we claimed that the dirty children attain
ommon knowledge of m, and when we claimed that
he strong notion of agreement that people attain
n signing a contract, or by shaking hands, implics
ommon knowledge of the agreement.

As expected, the notions of C¢ and C° can
ve characterized in a similar fashion. If we denote
D€ L by E° (respectively, & I by E°), then axioms
1)-(8) characterize C*p (resp. C°p), if we replace E
yy £2¢ and C by C¢ (resp. E by E° and C by C°).3
lecall that if it is common knowledge that every
nessage broadcast reaches all processors within €
ime units (resp. eventually), then any such mes-
age, once scnt, is e-common knowledge (resp. -
comimon knowledge). In fact, the induction axiom
ells us that we do not nced the message delivery be-
1avior of the system to be common knowledge for
his to hold. It suffices that it be C€¢ (resp. C°).

Using these ideas, we can now define a number
if other variants of common knowledge. For exam-
le, suppose we have a system where communication
s not guarantecd, but it is common knowledge that
iy message sent is likely to arrive, and delivery,
vhen successful, is immediate. Let p be “the mes-
age m has been sent”. We have C(p D “Likely” Ep
cf. [HR}). The notion of common knowledge that
:orresponds to this is called likely common knowl-
'dge, denoted C*. If we denote “Likely Ep” by EXp,
2Ep is defined by:

C'p=pA /\(El’)kp.
k

Jlearly, C*p D E*C*p. However, if we denote
‘Likely ¢” by Lgq, it is not, in general, the case that
ikelihood satisfies a consequence closure axiom sim-
lar to (3) (cf. [HR]). C* therefore does not satisfy

' This forms a complete characterization of C€ and C°.

axiom (3). As a consequence, C* does not satisfy
the induction axiom. Rather, it satisfies the weak
induction axiom:

(2) (p/\C(p D Ebp)) > Chp.

Here, p D E"pneeds to be common knowledge for p
to imply C"p. Note that if it is common kuowledge
that a message is likely to arrive immediately, or if
the message itself states this fact, then the weak in-
duction axiom suffices for a processor to prove that
the message is likely-common knowledge.

Continuing along these lines, you can now de-
fine notions of common knowledge corresponding
to your favorite conditions for attaining Ep. Con-
ditions that come to mind are “Likely within ¢”,
“Likely eventually”, “With probability =”, “Un-
likely”, and so on. The fixpoint axiom and the weak
induction axiom will hold for all of them, and when-
ever the condition satisfies a consequence closure
axiom, the corresponding common knowledge will
satisfy the (strong) induction axiom and the conse-
quence axiom.

Corresponding to each such notion of common
knowledge, one can imagine the use of an “cager pro-
tocol” to convert this “conditional” common knowl-
edge to common knowledge. Along with it comes a
notion of “conditonal”-knowledge consistency, that
describes the inconsistency involved in using such
an eager protocol.

5. Time stamping: a relativistic alternative

Many distributed systems work in phases (with
or without a common clock). In other systems, syn-
chronization algorithms (cf. [HSSD]) keep the pro-
cessors’ clocks within some bound of each other, and
there are known bounds on message delivery times.
In such systems, it is often natural to speak of the
processors’ state of knowledge at the begining of
phase t + 1, or at time T on their clock. Since time
T on my clock may be quite different from time T
on your clock, time becomes a private matter, and
we are lead to a relativistic notions of knowledge.

Consider the following scenario: R2 knows that
R2 and D2’s clock differ by at inost §, and that any
message R2 sends D2 will arrive within € time units.
Not having rcad the initial part of this paper, and
attempting to attain Cm, R2 sends D2 the following
message:

59

“It is now tp on my clock. This message
will reach you by tp + ¢ + 6 on both of our
clocks. m is true”

Let us denote tp +¢-1-6 by Ty. Now, at Ty, R2
would like to claim that they have attained common
Imowledge of m. Have they? Well, we know by now
that they probably haven’t, but let us analyze their
sitnation. First, we necd to introduce a relativistic
formalism for knowledge, that we call time-starmped
knowledge: We denote “at time T on his clock, ¢
knows p” by K[p. T is said to be the time-stamp
associated with this knowledge. Furthermore,

Efp= /\ KiT'p.
T

E7p corresponds to everyone knowing p individually
at time T on their own clocks. If we define p = “R2
sent the above message to D2”, we havep D E7o. It
is now, of course, natural to define the correspond-
ing notion of common knowledge, C*, which we call
time-stamped common knowledge:

C'p=pA /\(E")kp.
k

So, R2 and D2 have time-stamped common knowl-
edge of m with time stamp Tp. It is casy to check
that the condition “at time T om #’s clock” satisfies
a consequence axiow, and it therefore follows that

C7 satisfies axioms (1)—(3) of the previous section.

It is interesting to investigate how C7 relates to
C, C% and C°. This is a good example of how look-
ing at the conditions that define notions of common
knowledge gives insight into their meaning, and the
relations between these notions. Not surprisingly,
the relative behavior of the clocks in the system
plays a crucial role in determining the meaning of
CT.
Theorem 7:

(a) If it is commmon knowledge that all clocks show
identical times, then at T on any processor’s

clock, CTp = Cp.

(b) Assume that the clocks all run at the rate of
rcal time. If it is ¢-common knowledge that
all clocks are within ¢ time units of each other
then, at T on any processor’s clock, CTp D
Cep.

If it is O-common knowledge that all clocks are
monotone increasing with no bound, meaning

60

that every clock eventually displays every pos-
sible reading, then C"p D C°p. 1O

Theorem 7 demonstrates the conditions that al-
low interchanging the relativistic C7 with C, C¢ and
C*. It also sheds light on the connection betwecn
the absolute time notions nf commmon knowledge and
the relative behavior of clocks in the system. Note
that a weak converse of Theorem 7 holds as well.
Suppose we allowed the processors to sct their clocks
to a common agreed upon time T, when Cp (resp.
C*p, C°p) is attained. Then it is easy to see that if
Cp (resp. Cp, C°p) is attainable, then so is CTp.

6. Conclusions

Knowledge plays a fundamental role in dis-
tributed systems. Viewing comnnunication in a net-
work and goals of protocols through the “knowledge
perspective” in many cases clarifies a number of is-
sues. We have investigated several notions of group
knowledge. We define a hierarchy of these notions,
and show that it is strict in the case of distributed
systems. A general taxonomy of distributed systems
is required, which will specify the time and commu-
nication complexities involved in changing the state
of knowledge of a fact from one level in our knowl-
edge hierarchy to a higher one.

The weakest notion in the hierarchy is that of
implicit knowledge, which corresponds to the knowl-
edge a single individual would have, if he knew what
all the members of the group know. This notion can
be appropriate for worst case analysis of what an
adversary group, such as the KGB, CIA, or Byzan-
tine traitors, might know at a given point in time.
This notion is also useful in the verification of cryp-
tographical protocols, where proving that a group
is ignorant of a fact amounts to showing that its
members don’t even have implicit knowledge of the
fact.

The strongest state of knowledge we discussed
is common knowledge. It is, in a scase, the state of
knowing a fact and knowing that the other members
of the group have the same knowledge regarding the
fact as you do.

One of our main results shows that common
knowledge is not attainable in real world systems.
However, various weaker notions, such as e-common
knowledge, time-stamped common knowledge, and
likely-common knowledge, are often attainable, ap-
propriate substitutes for common knowledge. The

use of an “cager” protocol, that treats ¢-common
knowledge as if it were common knowledee, results
in a system that is inconsisteat, but is ¢-knowledge-
consistent. For small ¢, this inconsistency may go
undetected, and the system may be indistinguish-
able from a consistent one.

We believe that the “knowledge perspective”
will give us a better understanding, of distributed
communication protocols and distributed consensus
protocols, and provides a clear formalisin in which
to specify and verify them.

Acknowledgeinents: Many people coramented
on different versions of this work. Of special value
were discussions with Dave Chelberg, Steve Decering,
Danny Lehman, Tim Mann, Ray Strong and Moshe
Vardi. Ron Fagin, Dick Gabriel, Yoni Malachi and
Joe Weening werc very helpful in proofreading carly
versions, and in the typesctting of the paper.

Bibliography

[Au] R.J. Aumann, Agrceing to disagree, Annals

of Statistics, 4:6, 1976.

J. Barwise, Scenes and other situations,
Journal of Philosophy, Vol. LXXVII, No.
7, 1981, 369-397.

H. H. Clark and C. R. Marshall, Definite
reference and mutual knowledge, in A. K.
Joshi, B. L. Webber, and I. A. Sag (Eds.),
Elements of Discourse Understanding, Cam-
bridge University Press, 1981.

D. Dolev, C. Dwork, and L. Stockmeyer, On
the minimal synchronization needed for dis-
tributed consensus, FOCS, 1983,.pp. 369-
397.

[DHM] D. Dolev, J. Y. Halpern, and Y. Moses,
Cheating husbands and other stories: a case
study of common knowledge, unpublished
manuscript, 1984.

D. Dolev, J. Y. Halpern, and H. R. Strong,
On the possibility and impossibility of

achieving clock synchvonization. STOC
1984, pp. 504-511.

[Ba

[CM]

[DDS)

[DHS)

[DS] D. Dolev and H. R. Strong, Byzantine agree-
ment, IBM Research Report RJ 3714, 1982.
[HR] J. Y. Halpern and M. O. Rabin, A logic to

reason about likelihood, STOC, 1983, pp.
310-319.

61

[HSSD]J. Y. Halpern. B. Simons, and IL. R. Strong,
D. Dolev, ffault tolerant clock synchronisa-
tion, PODC 1984.

J. Hintikka, Knowledge and Belief, ‘Cornell
University Press, 1962.

i)

D. Kozen and R. Parikh, An clementary
proof of the completeness of PD1LL, Theoreti-
cal Computer Science, 14:1, 1981, pp. 113~
118.

KD

[Le]

D. Lehman, Knowledge, common knowl-
edge, and related puzzles, PODC 1984,

[Li] B. Lindsay et al, Notes on Distributed
Databases, IBM Research Report RJ 2571,

1979.

[LF] L. Lamport and M. Fischer, Byzantine gen-
crals and trausaction commit protocols, SRI

International Report, 1982.

L. Lamport and P. M. Meclliar-Smith, Syn-
chronizing clocks in the presence of faults,
SRI International Report, 1982.

J. McCarthy, Lecture Notes 1968 — 1974.

[LM]

[Mc]

[Mo] R.C. Moore, Reasoning about knowledge
and action, Artificial Intelligence Center

Technical Note 191, SRI International, 1980.

M. Pease, R. Shostak, and L. Lamport,
Reaching agreement in the presence of
faults, JACM, 27:2, 1980, pp. 228-234.

[PS1)

S] D. Schwabe, Formal specification and veri-
fication of a’connection establishment pro-
tocol, Seventh IEEL Date Communications

Symposium, 1981, pp. 11-26.

