
K n o w l e d g e a n d C o m m o n K n o w l e d g e i n a D i s t r i b u t e d E n v i r o n m e n t

Joseph Y. Halpern

IBM Research Laboratory,
San Jose, CA 95193

Yoram Moses

Computer Science Depar tment
Stanford University, Stanford, CA 94305

A b s t r a c t : We argue tha t the right way to under-
stand distr ibuted protocols is by considering how
messages change the state of knowledge of a sys-
tem. We present a hierarchy of knowledge states
tha t a system may be in, and discuss how commu-
nication can move the system's state of knowledge
of a fact up the hierarchy. Of special interest is
the notion of common knowledge. Common knowl-
edge is an essential state of knowledge for reaching
agreements and coordinating action. We show tha t
in practical distr ibuted systems, common knowledge
is not attainable. We introduce various relaxations
of common knowledge tha t are at tainable in many
cases of interest. We describe in what sense these
notions are appropriate, and discuss their relation-
ship to each other. We conclude with a discussion
of the role of knowledge in distributed systems.

1. I n t r o d u c t i o n

The notion of knowledge in a distr ibuted en-
vironment is fundamenta l to many issues in dis-
t r ibuted computing. Many tasks in a distr ibuted
system directly involve the achievement of specific
states of knowledge and others crucially depend
on a variety of constraints on the state of knowl-
edge of the parties involved. Reasoning about such

Pernfission to copy without fee all or part of this ma-
terial is granted provided that copies are not made or dis-
tributed for direct cormnerciM advantage, the ACM copyright
notice and the title of the publication and its date appcar,
and notice is given that copying is by permission of the As-
sociation for Computing Machinery. To copy otherwise, or
to republish, requires a fce ;rod/or specific permission

© 1984 ACM0-89791-143-1/84/008/0050 $00.75

states of knowledge plays an essential role in un-
derstanding the correctness of distr ibuted commu-
nication protocols such as "Handshake" protocols,
distr ibuted agreement protocols such as the "Byzan-
tine Agreement" [PSL,DS] and "2¥ansaction Com-
mit" [Li,LF], as well as cryptographic protocols such
as the "Oblivious Transfer" protocol [HR]. Commu-
nication in a distr ibuted system can be viewed (and
often should be viewed) as the act of transforming
the system's state of knowledge.

The general concept of knowledge has received
considerable a t tent ion in a variety of fields, rang-
ing from Philosophy [Hi] and Artificial Intelligence
[Mc], to Game Theory [Au] and Psychology [CM].
Although in different contexts knowledge is assumed
to mean different things, one property tha t is gen-
erally required of knowledge is that only true things
be known. More formally, knowledge satisfies the
axiom

Kip D p

i.e., if an individual i knows p, then p is true.

In the presence of many irldividuals, an indi-
vidual may have knowledge about other individuals '
knowledge, in addition to his knowledge about the
physical world. This often requires care in distin-
guishing subtle differences between seemingly simi-
lar states of knowledge. A classical example is the
"dirty children" puzzle -- a variant of the well known
"wise men" or "cheating wives" puzzles. The ver-
sion given here is taken from [Ba]:

Imagine n children playing together. The
mother of these children has told them that
if they get dirty there will be scvcrc conse-
quences. So, of course, each child wants to
keep clean, but each would love to scc the oth-
ers get dirty. Now it happens during their play
that some of tile children, szty k of them, get

50

mud on their foreheads. Each can see the mud
on others but not on his own forehead. So, of
course, no one says a thing. Along comes the
father, who says, "At least onc of you has mud
on your head," thus expressing a fact known to
each of them before he spoke (if k > 1). The
father then asks thc following qucstion, over
mid over: "Can any of you prove you have
mud on your head?" Assuming that "all the
children are perceptive, intelligent, truthful,
and that they mmwer simultaneously, what
will happen?

There is a "proof" that the first k - 1

times he ~sks the question, they will all say
"no" but then the kth time the dirty children
will answer "yes."

The "proof" is by induction on k. For
k = 1 the result is obvious: the dirty child
sees that no one else is muddy, so he must be
the muddy one. Let us do/c = 2. So there a r e

just two dirty children, a rind b. Each answers
"no" the first timc, because of the mud on the
other. But, when b says "no," a realizes that
he must be muddy, for otherwise b would have
known the mud was on his head mid answered
"yes" the first time. Thus a answers '~ycs" the
second time. But b goes through the same rea-
soning. Now suppose k == 3; so there axe three
dirty children, a, b,c. Child a axgucs as fol-
lows. Assume I don't have mud on my head.
Then, by the k = 2 case, both b a~ld c will an-
swcr "yes" the second time. When they don't ,
he realizes that the assumption was false, that
he is mnddy, and so will ,'mswcr "yes" on the
third question. Sinfilaxly for b arm c.

Assuming k > 1, the f a the r d idn ' t tell the chil-
d ren a ny th ing they d idn ' t know already. Yet it is
easy to see t ha t w i thou t his s t a t e m e n t the ch i ld ren
wi th mud on the i r heads wouhl neve r be able to de-
duce this. W h a t was the role of the fa the r ' s s ta te-
mea t? We will r e t u r n to this quest ion.

How does tile no t ion of knowlcdge gencral ize
f rom an ind iv idua l ' s knowledge to a group ' s knowl-
edge? In o the r words, wha t does it mean to say t h a t
a group G of individuals knows a fact p? Mo re t h a n
one possibi l i ty is reasonable , wi th the a p p r o p r i a t e
choice depend ing on the appl ica t ion:

(i) IGp (read " the group G has Implicit Knowl-
edge of the fact p"): Wc say t h a t G has im-
plicit knowledge of p iff by pool ing t o g e th e r

(ii)

the i r knowledge, the m e m b e r s of G can con-
e lude p. For ins tance , if one m e m b e r o f G
knows q and a n o t h e r knows q D p, t he group G
can be said to have implici t knowledge (abbrev.
I -knowledge) of p.

Sap (read "Someone in G knows p", S-
kuowledge in short) : We say t h a t G has S-
knowledge of p iff some m e m b e r of G knows
p. More formally,

Sap ~ V K I P .
leg

(iii) E~,p (read "Eve ryone in G knows p', E-
knowledge in shor t) : G is said to have E-
knowledge of p iff all meiifl)ers of G know p.
Mo re formally,

Ecp -= A Kip.
leg

(iv) E~p, k > 2 (read "p is Ek-knowledge in G"):
E~p is def ined by

E~p = EGp,

Ek+l EcE~p, for k > 1. G P ~--

p is said to be Ek-knowledge in G if "everyone
in G knows tha t ev e ry o n e in G knows t h a t . . .
t h a t eve ryone in G knows tha t p is t rue" is t rue ,
where tile phrase "everyone in G knows t h a t "
appea r s in the the sen tence k t imes. Equiva-
lently,

k EGP ---- A Ki , Ki 2 . . . Kikp.
ijeG,l<j<_k

(v) Cap (read "p is Common Knowledge in G") :
p is said to bc c o m m o n knowledge in G if p is
t rue , ~md is E~-knowledge for all k > 1. In
o th e r words,

Cap - p A Ecp A E2p A ... A E~'~p A . . .

In pa r t i cu la r , Cop implies all fo rmulas of the
fo rm Ifil Ki~ .. . Ki.,p, where the i j are all mem-
bers of G, for any finite n.

(We will omi t the subscr ip t G when the group
G is u n d e r s t o o d fl 'om con tex t .)

51

Returning to the "dirty children" puzzle, we
denote by m the fact "There are chihh'en wi~h mud
on their foreheads", and observe the state of the
chihlren's knowledge of m. Before the father spoke
Ek- - Im was true, and E k m wasn't . Let us see this
in the case k = 3. There are 3 dirty children, and
therefore each child sees at least 2 dirty children.
In particular, a dirty child sees exactly two dirty
children. He therefore knows tha t each other child
knows of at least one dirty child. So, we have E 2 m ,
but not E3m.

We leave it to the reader to check tha t when
there are k dirty children, E k m suffices to ensure
tha t the dirty children will be able to prove their
dirtyncss, whereas E k - l m does not. After the
father tells the children m, m becomes common
knowledge. This implies E k m , and therefore the
dirty children succeed in proving their dirtyness. (A
more detailed analysis of this argument , and vari-
ants of it, will appear in [DHM].)

It is clear tha t the notions of group knowledge
introduced above form a hierarchy, with

Cp D . . . D Ek+~p D . . . D Ep D Sp D Ip D p.

However, depending on the circumstances, these no-
tions nfight not be distinct. For example, consider a
model of parallel computat ion in which a collection
of n processors share a common memory. If their
know]edge is stored in memory then we arrive at a
situation in which Cp =- Ekp = Ep = Sp = Ip. By
way of contrast, in a distr ibuted system in which n
processors are connected via some communicat ion
network and each one of them has its own mem-
ory, it is clear tha t the above hierarchy is strict.
Moreover, in such a system every two levels in the
hierarchy can be separated by an actual ~ask, in
the sense tha t there will be an action for which one
level in the hierarchy will suffice, but no lower level
will. It is quite clear tha t this is the case with
Ep D Sp D I p , and the "dirty children" puzzle
shows tha t Ekp is strictly stronger than Ek-ap , for
k > 1. The fact tha t Cp is stronger than Ekp fol-
lows, because Cp D Ek+lp.

In the case of a distr ibuted system a very
important question arises: how does the state of
knowledge of a fact p change by the communicat ion
process? How can this state of knowledge climb up
our hierarchy? The vast majori ty of the communica-
tion in a distributed system can be viewed as the act
of improving the state of knowledge (in the sense of

"clirnbing up the hierarchy") of certain facts. This
is an elaboration of the view of comumnicat ion ill a
network as the act of "sharing knowledge". Taking
this view, two notions come to mind. One is fact dis-
covery - the act of changing the state of knowledge
of a fact p from being implicit knowledge to levels
of explicit knowledge (usually S-knowledge or E-
knowh.'dge), and the other is fact publication - the
act of changing the state of knowledge of a fact tha t
is kamwn to at least one individual, but, is not com-
mon knowledge, to common knowledge. Aal exam-
ple of fact discovery is detecting global properties
of a system, such as deadlock. The knowledge the
system initially has of the deadlock i s / -knowledge ,
and the detection algori thm improves this state to
S-knowledge. An example of fact publication is the
introduction of a new communicat ion convention.
Here the initiator(s) of the convention wish to make
the new convention common knowledge.

Both fact discovery and fact publication are in-
teresting notions t ha t are worth investigation. How-
ever, in the rest of this paper we restrict our at-
tention to common knowledge and fact publica-
tion. Common knowledge is a fairly basic notion
in people's everyday life. Clark £nd Marshall [CM]
show tha t it is used fairly extensively in interper-
sonal comnmnicat ion in natural language, e.g. the
term "the president" assumes common knowledge
of which person is being referred to. The custom of
shaking hands to seal an agreement essentially cor-
responds to making the agreement contmon knowl-
edge. Common knowledge is also inherent in the
notion of conventions. Something cannot be a con-
vention among a group of pcople if it is not commen
knowledge to them. Having comnton knowledge of
a large number of facts allows for bet ter and shorter
communication. It seems quite reasonable tha t two
branches of a bank making transactions over a com-
puter network will not seal a million dollar transac-
tion before the t ransact ion is common knowledge.

In the next section, we first show tha t if com-
municat ion is not guaranteed (i.e., messages nfight
not reach their destinations), then conunon knowl-
edge is not at tainable. We then show that , even if
communicat ion is guaranteed, common knowledge is
not a t ta inable if we cannot guarantee simultaneous
actions. We introduce various relaxations of com-
mon knowledge tha t are at,tainable in many cases
of interest. We describe in what sense these no-
tions are appropriate, and discuss their relationship
to each other. We conclude with a discussion of the
role of knowledge in distr ibuted systems.

52

We think of the processors as state machines
with clocks, where a (:lock is a monotone increasing
flmction of real time. A processo/"s state at a given
time is determined by its initial state, its clock time,
and its message history: the sequence of messages
it has sent and received and the times (on the pro-
cessor's clock) in which it sent or received them.

We now consider what it means for a processor
to know p, where p is a formula tha t talks about the
real world and the processors' knowledge of it. We
assume some consistent notion of t ru th of formulas,
without going into details of semantics. A proces-
sor has some initial information, that we assume to
be (forever) true, and it acquires additional infor-
mation through message exchange. It then deduces
what it knows using this information and some set
of rules (e.g. the axioms of [Le D . These rules are
required to be monotonic in the information and in
time, meaning tha t if a formula p is deducible us-
ing the rules given a certain set of information at
t ime t on a processor's clock, then it will still be de-
ducible from any superset of tha t information at t or
any later time. Tile rules must also be sound, i.e.,
whenever the information is true, then so are any
conclusions drawn fl'om it according to the rules.
Moreover, we assume tha t processors do not forget,
so information is never lost. Thus, once a proces-
sor deduces p, it can deduce p at any later time.
Processor i knows p exactly if it can deduce p from
its information, using tile rules, h~ this case Kip
is true. Finally, we assume, for now, tha t tha t all
processors are honest, so that a processor may send
a message stating p only if it knows p.

From our assumptions above, it follows tha t
the system will always be in a knowledge consis-
tent state: whenever Kip is true, p is true (i.e., the
axiom Kip D p is satisfied). Notice tha t all the
facts that can be known are stable: facts that , once
true, remain true. This is a weaker restriction than
it may seem, since given any fact q, facts such as
"q hehl sometime in the past" , or "q holds a t t ime
t on i's clock", "q holds throughout time interval
I " , are all stable. It is not reasonable for a proces-
sor i to send a message to processor j stating tha t
p is true, if p might become false by the time the
message reaches j . It is reasonable for i to send a
message stating tha t p is true at time t on its clock,
however, or even a message stating tha t p is true,
and will remain true throughout the future (this, in
fact, can be accepted to be the default meaning of
a message stating simply p).

A protocol is a (possilfly nondeterministic) dis-
t r i lmted algorithm. A protocol essentially deter-
mines what messages can be sent by the proces-
sors, as a function of their internal state. Even if
a protocol is deternfinistic, the system may behave
nondeternfinistically, due to uncertainty in message
delivery times and to the possibility that messages
might fail to he delivered. A run of the pr.otocol is
a particular execution of the protocol.

We say tha t a processor i supports Cp, if i
knows all the K~ Ki~ "" Ki,p fornnflas tha t consti-
tu te Cp (see introduction). A' system has attained
Cp if all its members support Cp.

L e m m a 1: A processor i supports Cp iff the sys-
tem has a t ta ined Cp.

Proof : The 'if ' direction follows from the defini-
tion. For the other direction, assume, to the con-
trary, tha t i supports Cp and j does not. There is a
formula q = Ki~ Ki: ... K~,p, such tha t j does not
know q, b u t i claims to know Kjq. The system is
therefore not knowledge consistent, a contradiction.
rn

A protocol for attaining common knowledge is
a protocol with the following property: if some pro-
cessor knows a fact p, it can initiate tile protocol,
and is guaranteed that the system will then eventu-
ally a t ta in Cp.

A fact p is said to be C-undetermined in a sys-
tem at a given point in time if, without any further
coimnunication in the system, Cp will never hold.

We are now ready to investigate fact publica-
tion in distr ibuted systems. Following the coordi-
nated at tack exmnple, we first consider systems in
which communicat ion is not guaranteed.

T h e o r e m 1: There is no protocol for a t ta ining
common knowledge if communicat ion is not guaran-
teed. In particular, if q is a C-undetermined fact, Sq
holds and conmnmicat ion is not guaranteed, then
there is no protocol tha t is guaranteed to a t ta in Cq.

P r o o f : Assume, to the contrary, tha t P is such a
protocol. Consider a run of P in which no message
sent by any processor is delivered to its destination.
If Cq is a t ta ined, it is a t ta ined without any commu-
nication, contradicting q's being C-undetermined.
[]

53

We t.hink of the processors as state machines
with clocks, where a clock is a monotone increasing
function of real tiara. A processor's state at a given
time is determined by its initial state, its clock time,
and its message history: the sequence of messages
it has sent and received ~md the times (on the pro-
cessoFs clock) in which it sent or received them.

We now consider what it means for a processor
to know p, where p is a fornnfla tha t talks about the
real world and the processors' knowledge of it. We
assume some consistent notion of t ru th of formulas,
wi thout going into details of semantics. A proces-
sor has some initial information, tha t we assume to
be (forever) true, and it acquires additional infor-
mation through message exchange. It then deduces
what it knows using this information and some set
of rules (e.g. the axioms of [Le]). These rules are
required to be monotonic in the information and in
time, meaning tha t if a fornmla p is deducible us-
ing the rules given a certain set of information at
time t on a processor's clock, then it will still be de-
ducible from any superset of that information at t or
any later time. The rules must also be sound, i.e.,
whenever the information is true, then so are any
conclusions drawn from it according to the rules.
Moreover, we assume tha t processors do not forget,
so information is never lost. Thus, once a proces-
sor deduces p, it can deduce p at any later time.
Processor i knows p exactly if it can deduce p from
its information, using the rules. /31 this case Kip
is true. Finally, we assume, for now, tha t tha t all
processors are honest, so tha t a processor may send
a message stat ing p only if it knows p.

From our assumptions above, it follows tha t
the system will always be in a knowledge consis-
tent state: whenever Kip is true, p is true (i.e., the
axiom Kip D p is satisfied). Notice tha t all the
facts that can be known are stable: facts that , once
true, remain true. This is a weaker restriction than
it may seem, since given any fact q, facts such as
"q held sometime in the past" , or "q holds at t ime
t on i's clock", "q holds throughout t ime interval
I " , are all stable. It is not reasonable for a proces-
sor i to send a message to processor j stat ing tha t
p is true, if p might become false by the time the
message reaches j . It is reasonable for i to send a
message stating tha t p is true at t ime t on its clock,
however, or even a message stating tha t p is true,
and will remain true throughout the future (this, in
fact, can be accepted to be the default meaning of
a message stating simply p).

A protocol is a (possibly nondeterministic) dis-
t r ibuted algorithm. A protocol essentially deter-
mines what messages can be sent by the proces-
sors, as a function of their internal state. Even if
a protocol is deterministic, the system may behave
nondetermini.~ticMly, due to uncertainty ilz message
delivery times and to the possibility tha t messages
might fail to be delivered. A run of the protocol is
a particular execution of the protocol.

We say tha t a processor i supports Cp, if i
knows all the Ki~ Ki~ "" Ki .p formulas tha t consti-
tu te Cp (sec introduction). A system has attained
Cp if all its members support Cp.

L e r n m a 1: A processor i supports Cp iff the sys-
tem has a t ta ined Cp.

P r o o f : The 'if' direction follows from the defini-
tion. For the other direction, assume, to the con-
trary, tha t i supports ~ and j does not. There is a
formula q = Ifi~Ki~.... Ki.p, such tha t j does not
know q, but i claims to know Kjq. The system is
therefore not knowledge consistent, a contradiction.
[]

A protocol .for attaining common knowledge is
a protocol with the following property: if some pro-
cessor knows a fact p, it can init iate the protocol,
and is guaranteed tha t the system will then eventu-
ally a t ta in Cp.

A fact p is said to be C-undetermined in a sys-
tem at a given point in t ime if, without any fur ther
communicat ion in the system, Cp will never hold.

We are now ready to investigate fact publica-
tion in distr ibuted systems. Following the coordi-
nated at tack example, we first consider systems in
which communicat ion is not guaranteed.

T h e o r e m 1: There is no protocol for a t ta ining
common knowledge if communicat ion is not guaran-
teed.]zl particular, if q is a C-undetermined fact, Sq
holds and communicat ion is not guaranteed, then
there is no protocol tha t is guaranteed to a t ta in Cq.

Proof." Assume, to the contrary, tha t P is such a
protocol. Consider a run of P in which no message
sent by any processor is delivered to its destination.
If Cq is a t ta ined, it is a t ta ined wi thout any commu-
nication, contradicting q's being C-undetermined.
[]

54

As the proof of Theorem 1 shows, d~,manding
that we be guaranteed to at tain Cq regardless of
the system's behavior is too strong. It is reasonable,
however, to hope for a protocol tha t will succeed in
at taining Cq ;,n runs during which a sugicient part
of its comnmnication succeeds. Theorem 2 shows
tha t this too is impossible.

T h e o r e m 2: If q is a C-undetermined fact, no
m n of any protocol ever at tains Cq.

P r o o f i Let P be a protocol. We prove by induc-
tion on n tha t P has no run tha t at tains Cq in which
exactly n messages are delivered to their destina-
tions upto (and including) the time Cq is at tained.
The case n = 0 follows by assumption, since q is
C-undetermined. Suppose we have proved the re-
sult for n =- k, and assume tha t P has a run r tha t
at tains Cq using k + 1 messages. Let tc be the (say)
real time in which Cq is first at tained in r. Let m~
be the last message tha t was delivered in r no later
than tc (or one of them, in case of a tie). Let i~ be
m~'s sender, and let t~ be the time at which mr is
delivered. Denote by r - a run of P tha t behaves ex-
actly like r until t , , except that m~ is not delivered,
and in which no message is delivered after t~. Since
i, 's information at time tc is identical in r and in
r - , and i~ supports Cq at t~ in run r, it follows tha t
proccssor i~ will also support Cq at tc in r - . By
Lemma 1, it follows tha t Cq is a t ta ined at time t~
in r - , contradicting the induction hypothesis. []

Returning to the "coordinated attack" prob-
lem, recall tha t the generals required common
knowledge of the at tack before attacking. Theorem
2 shows tha t they have no hope of that. The reader
may suspect tha t something in our definitions, or in
the statement of the notion of agreement required
in the "coordinated attack" problem is behind this
result Perhaps, if the generals were not required
to worry so much about their states of kuowledge,
there might be a protocol tha t would ensure tha t
they attack only in tandem, and tha t does allow
them to at tack under some circumstances. This is
not the case. A slight extension of the proof of The-
orem 2 proves:

P r o p o s i t i o n 2: If communication is not guaran-
teed, any protocol tha t guarantees that if any party
attacks, they both attack, is a protocol iu which
necessarily neither party attacks (!).

The previous results show that , in a strong
sense, common knowledge is not at tainable in a
system in which comnmnication is not guaranteed.
However, even when communicat ion is guaranteed,
common knowledge can be elusive. To see this, con-
sider a system consisting of two processors R2 and
D2, connected by a comnmnication link. Assume
tha t their clocks run at the same rate, but might not
be showing the same times at a giwm instant. As-
sume that communicat ion (deliw'ry) is guaranteed,
and tha t fllrthermore it is (say commonly) kuown
tha t any message sent from R2 to D2 reaches D2
either immediately or after exactly • seconds. At
t ime tR on R2's clock, R2 sends D2 a message stat-
ing tha t m is true. D2 receives the message at t ime
tm on his own clock. (Recall tha t we are assuming
tha t m is a stable fact.) D2 doesn' t know m ini-
tially. How does {R2, D2}'s state of knowledge of m
change with time?

R2 cannot be sure that D2 knows m before t R +
e. D2, on the other hand, cannot be sure that R2
knows D2 knows m until tD+c (because the message
could have arrived immediately, and R2 waits until
t~+e before deciding tha t D2 knows m). R2 cannot
be sure tha t D2 knows R2 knows D2 knows m before
tR-~-2c (since the message could have been delivered
exactly • seconds after being sent, and D2 waits
until t D + e, e seconds after it arrives). In other
words, if we denote R2's knowledge by K R and D2's
knowledge by KD, we have m true at t~, K R K D m
true at tR + • (and no sooner), and K R K D K n K D m
t rue at t/~ + 2• (and no sooner). This argunlent can
be easily extended to show tha t (KRKD)'~m holds
at tl~ + ne and no sooner(!). Since

E2nm D (KI~KD)nm D E2n- lm ,

it follows tha t E:n+lm will not hold before t~ + n e .
(It will hold by tn + (n + 1)~, though.) hi order to
have Cm, all formulas of the form Ekm, k > 1,
must be true. From the above analysis it is clear
tha t m will never become common knowledge.

Now consider what wouhl happen if R2 and D2
shared the same clock (or, equivalently, if it were
common knowledge that their clocks show tile same
time at any given instant). R2 could send D2 the
following message: "I am sending you this message
at time t~, knowing it will reach you by tR+e at tile
latest; m is true." Siuce they commonly know tha t
their clocks read the same time, m would become
common knowledge at time t R + ~.

55

What is the essential difference between these
two situ,~tions? It seems that what made achiev-
ing common knowledge easy in tim lat ter case was
the possibility of making the transition from non-
common knowledge to common knowledge simulta-
neously. The impossibility of doing so in the former
case was the driving force behind the extra cost in
time incurred in a t ta ining every extra level of E-
knowledge. Indeed, the following theorem confirms
this intuition.

L e m m a 2: If Cp is to be at tained, all processors
must start supporting it sinmltaneously.

P r o o f : Follows trivially from Lemma 1. []

Simultaneity is said to be at tainable in a system
if there is a protocol that guarantees that all mem-
bers of the system will execute a prescribed action,
such as flipping a specific bit from 0 to 1, simulta-
neously (cf. [DHS]). Lemma 2 essentially states tha t
for common knowledge to be at tainable in a system,
simultaneity must be at tainable in the system.

L e m m a 3: If clocks are not initially identical, and
there is an uncertainty in message delivery times,
then simultaneity cannot be guaranteed.

P r o o f : Follows from Theorem 4 of [DHS]. []

T h e o r e m 3: If communicat ion is guaranteed, but
clocks are not initially identical, amt there is an un-
certainty in nmssage delivery times, then there is no
protocol tbr a t ta ining common knowledge.

P r o o f : Immediate from Lemlnas 2 and 3. []

Theorems 1-3, roughly speaking, say tha t at-
taining common knowledge is practically impossible
in actual distr ibuted systems. In such systems, we
have the following situation: a fact p can be known
to an individual without being common knowledge,
or it can be common knowledge (in which case tha t
individual also knows p), bu t there is no way of get-
ting from the first case to the second. As long as we
play according to the rules, tha t is.

Let us take a close look at the state of knowl-
edge R2 and D2 have once the message m is sent.
R2 and D2 commonly know tha t any message sent
between them will arrive at most e seconds after
it is sent. Initially, R2 knows m. But, in fact, he
knows more. Ite knows tha t within e, both of them
will know m. But he knows even more: within e
they will both know that within another e they will
both l~mw m. This argument can be continued, and

this leads us to the notion of e-common knowledge
denoted C ~.

In order to define C ~ we need to introduce time.
Let O cot'respond to "oue time unit later", and O ~
be "e time units later". C ~ is defined by:

COp ~- p A O~ Ep A . . . A (0 '~ E)~p A . . .

So, in the preceding protocol R2 and D2 have e-
common knowledge of m as ~oon as the message is
sent.Similarly, if it were common knowledge tha t a
message from R2 to D2 is delivbred after somewhere
between 5 and 5 + e time units, the contents of the
message would become C e exactly 5 time units after
the message was sent.

Communicat ion in a distributed system is
called e-close if all copies of a message sent to all
processors in the system are guaranteed to arrive
within e time units of one another.

A si tuat ion where e-common knowledge is rele-
vant is in the broadcast model of communication: all
messages are sent to all processors, and it is (com-
monly) l~mwn that communicat ion is e-close. Every
message is e-common knowledge once it reaches any
processor.

Notice t ha t there is an interesting difference be-
tween C and C E. Whereas common knowledge is a
static state of knowledge, tha t can be true of a point
in time irrespective of its past or future, e-common
knowledge is a notion tha t is essentially temporal.
Whether or not it holds at a point in t ime depends
on the system's behavior in the future. I

Now consider what would happen if R2 "breaks
the rules", and uses the following (illegal) "eager
protocol": instead of sending D2 the message m,
R2 sends D2 the message ' :Cm' , and immediately
starts supporting Cm. D2 behaves normally, i.e.,
supports C m when it receives the message.

If the message C m reaches D2 immediately,
C m is a t ta ined, and everything is fine. In the worst
case, the message might arrive e seconds later. So,
for ¢ seconds, R2 may support Cm, when, in fact,

1 This may, in pr inc ip le , r e s t r i c t the app l icab i l i ty of C e, e.g.
in sys t ems t h a t go d o w n periodical ly . However , we will see

uses for C e for which th i s will no t b e the case.

56

Cm is false! 2 However, fl'om time tR -t- e on, they
will, in fact, have at tained Cm. In a sense, Lemma
2 says tha t at taining common knowledge requires
a certain kind of "natural birth"; it is not possible
to at tain it consisteatly unl(,s.~ simulataneity is at-
tainable. But if one is willing to loosen the honesty
requirement, and to give up knowledge consistency
(abandon the Kip D p axiom) for short intervals
of time, common knowledge can be attained. In
the remainder of the paper, we change our model
slightly, and allow processors to send a message stat-
ing Cp when they only know p. This implies tha t
the system is no longer guaranteed to be knowledge
consistent, and our previous results, which assume
knowledge consistency, do not necessarily hold.

Notice that in the above protocol, R2 essen-
tially acts under the assumption that the system
will behave well during a short time interval after
the message is sent. He comnfits to Cm at a point
where he has no reason to believe that Cm actuaUy
holds. If the system crashes between tR and tR + ~,
it will crash in a state in which R2 and D2's knowl-
edge is inconsistent. So, in fact, t~2 is taking a "leap
of faith" in using this protocol. The "eager proto-
col" can be generalized to an arbitrary system: A
processor is allowed to send messages stating Cp if it
knows p. When a processor does that , it starts sup-
porting Cp at the first instant at which, according to
its knowledge, it is possible for any other processor
to receive the message.

We have established the fact tha t common
knowledge cannot be a t ta ined in a practical dis-
tr ibuted system without some risk. Using the "eager
protocol" for at taining common knowledge is an ex-
ample of the kind of risk taking tha t is required to
overcome this hurdle. Using this protocol, the sys-
tem is in a knowledge inconsistent state during an c
time interval, but this state "soon becomes consis-
tent".

L e m m a 4" If the eager protocol is used in a broad-
cast model in which communication is e-close, then
Cp is at tained at most e t ime units alter the first
processor starts supporting Cp.

P r o o f i Since the processors start supporting Cp
when they receive a message s tat ing p, and they are

2 Not ice tha t the worst case per iod of this knowlcdge incon-
sistency can be reduced fur ther by R2's clahrfifig C m only

at t R + El2.

guaranteed to receive th¢,se nws~ages no more than
e time units apart , Cp will be at tained. L-]

We say that a system is c-knowledge-consistent
iff whenever processor i claims to know p, then p
will become true within e time units, e-knowledge
consistency is a relaxation of the axiom Kip D p
discussed in the introduction. Processor i aright
claim Kip without p being true. Note tha t an E-
knowledge consistent system would seem consistent
to an interviewer tha t is capable of querying the pro-
cessors about their knowledge only one a t a time,
with queries at least e time units apart. For suffi-
ciently small e, it may be the case tha t the inconsis-
tency in an e-knowledge consistent system will never
be detected from within the system. We say tha t
a distributed system is internally knowledge consis-
tent if it is not possible for a processor to detect t ha t
the system is not knowledge consistent fl'om within
the system.

T h e o r e m 4: A broadcast model in which comnm-
nication is c-close, and in which the eager protocol
is used, is e-knowledge-consistent.

Pr o o f : Assume tha t processor i claims to know p
at time t. i must be able to deduce p. This dcduc-
tion might rely on a number of facts of the form Cq,
for which only C~q holds. However, by Lemma 4,
at time t + e Cq will hold for all these q's. Since
the rules tha t processor i is using are monotone and
sound, it follows tha t p will hold at t + e. []

It is often the case. tha t a distr ibuted system
is e-insensitive: within the system it is not possible
to determine the temporal relationship between two
events that occur in different sites of the system less
than e time units apart . A typical example of a
system tha t is e-insensitive is a distr ibuted system
in which the known bounds on the uncertainty in
message delivery times are more than e greater than
the actual uncertainty (cf. [DHS]).

T h e o r e m 5: A distributed system tha t is E-
knowledge consistent and is e-insensitive, is inter-
nally knowledge consistent.

P r o o f : Follows directly from the definitions. []

Theorem 5 offers one explanation of how peo-
ple, not being capable of simultaneity, can flmction
under the assumption tha t they do achieve com-
mon knowledge. When people are coprescnt with
the occurrence of a fact, the e is so small that their
assumption of common knowledge can never be con-
tradicted.

57

3. A s y n c h r o n o u s c o m m u n i c a t i o n

In asynchronous communication, the system
guarant, ees only that every message sent will eventu-
ally reach its destim'~tion. No bound on transmission
time is knowu t~) exist. Consider R2 and D2's s ta te
of knowledge when they communicate in such a net-
work. Wheu R2 sends D2 the message m, he knows
only that D2 will eventually receive the message.
Without any confirmation from D2, R2 will never
know that D2 has received rn. So, in asynchronous
comnmnication, E2m is never a t ta ined unless mes-
sages are acknowledged. However, R2 knows a little
more than just that D2 will eventually know m. He
knows that when D2 receives m he will know that
R2 knows that he will eventually know m, etc.

This s tate of knowledge, where, roughly speak-
ing, m is true, and eventually everyone will know
that m is true and that eventually everyone will
know . . . is very common in asynchronous systems.
We now define a weak notion of knowledge that cor-
rcsponds to this state, which we call eventual com-
mon knowledge.

We adopt the temporal logic symbol ~ to s tand
for "eventually". O-common knowledge (read even-
tual common knowledge), denoted by C ° , is defined
as follows:

C°p =- p A O E p A . . . A (OE)"p A . . .

In R2 and D2's case, m becomes C ° at the
instant it is sent. In (guaranteed) asynchronous
broadcast communication, every message becomes
O-common knowledge from the instant it is sent.

ActuM experience tends to support the claim
that sending a message to a mailing list on ~ large
network guarantees at best achieving (>-common
knowledge. Tm some versions of the "Byzantine.
Agreement" problem, the s ta te of knowledge that
is sought is C ° (of. [DDS]).

One can imagine using the eager protocol for
common knowledge in an asynchronous system. Ob-
viously, this can result in the system being in incon-
sistent states for long periods of time. Itowever, we
can define a ra~her weak notion of consistency that
wc call ~ -knowledge consistency that will be obeyed
in such circumstances. We say that a system is O-
knowledge consistent if whenever individual i claims
Kip, p will eventually hold.

L e m m a 5: Whenever the eager protocol is used
to convert C°p into Cp, Cp is cventually at tained.

P r o o f : Since each processor supports Cp when it
receives the message stating p, and we are guaran-
teed that they all eventually receive it, it follows
that Cp will be a t ta ined once the last of the proces-
sors receives the message. []

T h e o r e m 6: A broadcast model in which com-
nmnication is asynchronous, and in which the eager
pcotocol is used, is ~-knowledge-consis~ent.

P r o o f : The proof is essentially the sanle as tha t
of Theorem 4, using Lemma 5. []

4. C o m m o n k n o w l e d g e r e v i s i t e d

The definitions of C, C ~ and C ° are very sim-
ilar. In this section we look for the unifying el-
ements, exploit our experience frmn the previous
sections, and come up with a general technique for
generating notions of common knowledge appropri-
ate for arbi t rary network communicat ion behaviors.
In particular, it will be possible to analyze the s ta te
of knowledge at ta ined when messages are sent in a
system where communicat ion is not guaranteed.

For the purpose of this section, we will assume
that knowledge can be "factored" out of infinite con-

junctions, in particular, A Epn D E (nA pn) (where
n

the conjunction may be infinite). With this assump-
tion, it is easy to see that Cp D ECp, so that if p
is common knowledge, then everyone knows that it
is. In fact, Cp - ECp, and Cp can be thought of
as a fixpoint of the equation

Cp -- p A ECp.

This view, in some sense, describes how it is that
certain notions of agreement, and certain scenarios
in everyday life (e.g. copresence) involve the infi-
nite conjunction tha t consti tutes Cp: they simply
involve a s ta te of knowledge that is a fixpoint of
the E operator , in which p is true. With our above
assumption, common knowledge can be character-
ized by the following three axioms (of. [Le], and the
analogous axioms for the P D L * opera tor in [KP]):

(1) The "fixpoint" axiom:

Cp D p A ECp.

(2) The "induction" axiom:

p A C(p D Ep)) D Cp.

58

3) T h e " c o n s e q u e n c e c l o s u r e " a x i o m :

The induction axiom states that if p is true, and
t is common knowledge that whenever p is true, Ep
s true, then p is common knowle(lge. It is called an
nduction axiom, because using it we can prove by
nduction that if p holds, then E'~p holds, for all n.
Fhis axiom, in some sense, traces our line of reason-
ng when we claimed that the dirty children a t ta in
:o,nmon knowledge of m, and when we claimed tha t
he strong notion of agreement that people a t ta in
n signing a contract, or by shaking hands, implies
:ommon knowledge of Lhe agreement.

As expected, the notions of C * and C ° can
)e characterized in a similar fashion. If we denote
D * E by E ~ (respectively, O E by E °), then axioms
1)-(3) characterize C~p (resp. C°p), if we replace E
)y E ~ and C by C ~ (resp. E by E ° and C by C°). s
~ecall tha t if it is common knowledge tha t every
uessage broadcast reaches all processors within e
ime milts (resp. eventually), then any such rues-
:age, once sent, is c-common knowledge (resp. ~ -
:ommon knowledge). In fact, the induction axiom
ells us tha t we do not need the message delivery be-
lavior of the system to be common knowledge for
his to hold. It suffices that it be C ~ (resp. C°).

Using these ideas, we can now define a number
)f other variants of common knowledge. For exam-
fie, suppose we have a system where communicat ion
s not guaranteed, but it is common knowledge tha t
my message sent is likely to arrive, and delivery,
vhen successful, is immediate. Let p be "the mes-
:age m has been sent". We have C(p D "Likely"Ep
cf. [HR]). The notion of common knowledge tha t
:orresponds to this is called likely common knowl-
edge, denoted C L. If we denote "Likely Ep" by ELp,
" ~ L p is defined by:

--= p A

k

]learly, CLp D ELCLp. However, if wc denote
'Likely q" by Lq, it is not, in general, the case tha t
ikelihood satisfies a consequence closure axiom sim-
lar to (3) (cf. [HR]). C ~ therefore does not satisfy

; This forms a complete ch~actcr iza t ion of C e and C °.

axiom (3). As a consequence, C x" does not satisfy
the induction axiom. Rather, it satisfies the weak
induction axiom:

(2) (p AC(p D ELp)) D CLp.

Here, p D ELp needs to be common knowledge for p
to imply CLp. Note tha t if it is common kaowledge
tha t a message is likely to arrive immediately, or if
the message itself states this fact, then the weak in-
duction axiom suffices for a processor to prove that
the message is likely-common knowledge.

Continuing along these lines, you can now de-
fine notions of common knowledge corresponding
to your favorite conditions for at taining Ep. Con-
ditions tha t come to mind are "Likely within e",
"Likely eventually", "With probability ~r", "Un-
likely", and so on. The fixpoint axiom and the weak
induction axiom will hold for all of them, and when-
ever the condition satisfies a consequence closure
axiom, the corresponding common knowledge will
satisfy the (strong) induction axiom and the conse-
quence axiom.

Corresponding to each such notion of common
knowledge, one can imagine the use of an "eager pro-
tocol" to convert this "conditional" common knowl-
edge to common knowledge. Along with it comes a
notion of "conditonal"-knowledge consistency, that
describes the inconsistency involved in using such
an eager protocol.

5. T i m e s t a m p i n g : a r e l a t i v i s t i c a l t e r n a t i v e

Many distributed systems work in phases (with
or without a common clock). In other systems, syn-
chronization algorithms (cf. [HSSD]) keep the pro-
cessors' clocks within some bound of each other, and
there are known bounds on message delivery times.
In such systems, it is often natural to speak of the
processors' state of knowledge at the begining of
phase t + 1, or at time T on their clock. Since time
T on my clock may be quite different from time T
on your clock, time becomes a private mat ter , and
we are lead to a relativistic notions of knowledge.

Consider the following scenario: R2 knows tha t
R2 and D2's clock differ by at most 5, and tha t any
message R2 sends D2 will arrive within E time units.
Not having read the initial part of this paper, and
a t tempt ing to a t ta in Cm, R2 sends]32 the following
message:

59

"It is now tl~ on my clock. This message
will reach you by t±~ + (. + 5 on both of our
clocks, m is true"

Let us denote t~z +e- t -5 by To. Now, at To, R2
w',mhl like to claim tha t they h;Lve at ta ined corn mon
knowledge of m. Itaw" they? Well~ we know hy now
that I~hcy probably haven' t , but let us analyze their
situ;ttion. First, we need to introduce a relativistic
tbrmalism for knowledge, tha t we call time-stamped
knowledge: We denote "at time T on his clock, i
knows p" hy Kirp. T is said to be the time-stamp
associat~ed with this knowledge. Furthermore,

E'rP =-- A Kip.
i

Erp corresponds to everyone knowing p individually
at t ime T on their own clocks. If we define p = "R2
sent the above message to D2", we have p D E to. It
is now, of course, natural to define the correspond-
ing noti-m of common knowledge, C ~, which we call
time-,stamped common knowledge:

- p A A(zT) p.
k

So, R2 and D2 have t ime-stamped common knowl-
edge of m wJ~h time stamp To. It is easy to check
tha t the condition "at time T on i's clock" satisfies
a consequence axiom, and it therefore follows tha t
C ~ satisfies axioms (1)-(3) of the previous section.

It is interesting to investigate how C "r relates to
C, C", and C °. This is a good example of how look-
ing at the conditions that define notions of common
knowledge gives insight into their meaning, and the
relations between these notions. Not surprisingly,
the relative behavior of the clocks in the system
plays a crucial role in determining the meaning of
C r .

T h e o r e m 7"

(a) If it is common knowledge that all clocks show
identical times, then at T on any processor's
clock, C'rp - Cp.

(b) Aasume tha t the clocks all run at the rate of
real time. If it is e.-common knowledge tha t
all clocks are within c time units of each other
then, at T on any processor's clock, CTp D
C~p.

(c) If it is ~-common knowledge tha t all clocks are
monotone increasing with no bound, meaning

thal~ every clock eventually displays every pos-
sible reading, then C'rp D C°p. []

Theorem 7 demonstrates the conditions tha t al-
low interchanging the relativistic C 7' with C, C ~ and
C ° . It also sheds light on the connection between
the absolute t, ime notions ,)f common knowledge and
the relative behavior of clocks in the system. Note
that, a weak converse of Theorem 7 holds as well.
Suppose we allowed the processors to set their clocks
to a common agreed upon time T, when Cp (resp.
C~p, C°p) is at tained. Then it is easy to see tha t if
Cp (resp. C¢p, C°p) is at tainable, then so is Crp.

6. Conc lus ions

Knowledge plays a fundamental role in dis-
t r ibuted systems. Viewing communicat ion in a net-
work and goals of protocols through the "knowledge
perspective" in many cases clarifies a number of is-
sues. We have investigated several notions of group
knowledge. We define a hierarchy of these notions,
and show tha t it is strict in tile case of distr ibuted
systems. A general taxonomy of distr ibuted systems
is required, which will specify the time and commu-
nication complexities involved in changing the state
of knowledge of a fact from one level in our knowl-
edge hierarchy to a higher one.

The weakest notion in the hierarchy is tha t of
implicit knowledge, which corresponds to the knowl-
edge a single individual would have, if he knew what
all the members of the group know. This notion can
be appropriate for worst case analysis of what au
adversary group, such as the KGB, CIA, or Byzan-
tine traitors, might know at a given point in time.
This notion is also useful in the verification of cryp-
tographical protocols, where proving tha t a group
is ignorant of a fact amounts to showing tha t its
members don ' t even have implicit knowledge of the
fact.

The strongest state of knowledge we discussed
is common knowledge. It is, in a sense, the s tate of
knowing a fact and knowing tha t the or, her members
of the group have the same knowledge regarding the
fact as you do.

One of our main results shows tha t common
knowledge is not a t ta inable in real world systems.
However, various weaker notions, such as e-common
knowledge, t ime-s tamped common knowledge, and
likely-common knowledge, are often at tainable, ap-
propriate subst i tutes for common knowledge. The

60

use of an %ag,.r" t)r~)~o('ol, that l.roals ~-common
knowledge a~-' if it w~,re ('omJn(,n k,mwl,,dg(,, rosults
in a system lhat is inconsisteat, but is t-knowledge-
consistent. For small (, this inconsistolwy may go
undetected, and the system may be indislinguish-
able from a consistent one.

We believe that the "knowh,dge per.,q)ective"
will give us a better understanding, of distri lmted
communication protocols and distributed consensus
protocols, and provides a clear formalism in which
to specify and verify them.

A c k n o w l e d g e m e n t s : Many people commented
on ditferent versions of this work. Of special value
were discussions with Dave Chelberg, Steve Dcering,
Danny Lehman, Tim Mann, Ray Strong and Moshe
Vardi. Ron Fagin, Dick GabrM, Yoni Malachi and
Joe Weening were very helpful in prooDea(ting early
versions, and in the typesetting of the paper.

[hu]

[al

[CM]

[DDS]

[DtIM]

[DtIS]

[DS]

[,m]

B i b l i o g r a p h y

R. J. Aumann, Agreeing to disagree, Annals
of Stati.~tics, 4:6, 1976.

J. Barwise, Scenes and other situations,
Journal of Philosophy, Vol. LXXVIII, No.
7, 1981, 369-397.

H. H. Clark and C. R. Marshall, Definite
reference and nmtual knowledge, in A. K.
Joshi, B. L. Webber, and I. A. Sag (Eds.),
Elements of Discourse Understanding, Cam-
bridge University Press, 1981.

D. Dolev, C. Dwork, and L. Stockmeyer, On
the minimal synchronization needed for dis-
t r ibuted consensus, FOCS, 1983,.pp. 369-
397.

D. Dolev, J. Y. Halpern, and Y. Moses,
Cheating husbands and other stories: a case
study of common knowledge, unpublished
manuscript, 1984.

D. Dolev, J. Y. tIalpern, and tI. 1"1;. Strong,
On the possibility and impossibility of
achieving clock synchronization. STOC
1984, pp. 504-511.

D. Dolev and It. R. Strong, Byzantine agree-
ment, IBM Research Report RJ 3714, 1982.

J. Y. Halpcrn and M. O. Rabin, A logic to
reason about likelihood, STOC, 1983, pp.
310-319.

[IJSSI)] J. Y. H'dp,'rn. B. Simons, m:d II. R. Strong,
D. Dolev, Fault toh'rant clock synchroni~,a-
tion, PODC t984.

[Hi] J. Hintikka, t(nowledge and Belief, "Corncll
University Press, 1962.

[KP] D. Kozen and R. Parikh, An elem(mtary
proof of the completeness of PDL, Theoreti-
cal Computer Science, 14:1, 1981, pp. 113-
118.

[Le] D. Lehman, Knowledge, common knowl-
edge, and related puzzles, PODC 1984.

[Li] B. Lindsay et al., Notes on Distrihuted
Databases, IBM Research Report RJ 2571,
1979.

[LF] L. Lamport and M. Fischer, Byzantine gen-
crals and transaction commit protocols, SRI
International Report, 1982.

[LM] L. Lampor t and P. M. Melliar-Smith, Syn-
chronizing (:locks in the presence of faults,
SRI International Report, 1982.

[Mc] J. McCarthy, Lecture Notes 1968 - - 1974.

[Mo] R.C. Moore, Reasoning about knowledge
and action, Artificial Intelligence Center
Technical Note 191, SRI International, 1980.

[PSL] M. Pease, R. Shostak, and L. Lamport ,
Reaching agreement in the presence of
faults, JACM, 27:2, 1980, pp. 228-234.

[S] D. Schwabe, Formal specification and veri-
fication of aconnec t ion establishment pro-
tocol, Seventh IEEE Data Communications
Symposium, 1981, pp. 11-26.

61

