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Abstract. We can control the topology of a multi-hop wireless network by varying the transmission
power at each node. The life-time of such networks depends on battery power at each node. This paper
presents a distributed fault-tolerant topology control algorithm for minimum energy consumption in these
networks. More precisely, we present algorithms which preserve the connectivity of a network upon failing
of, at most, k nodes (k is constant) and simultaneously minimize the transmission power at each node to
some extent. In addition, we present simulations to support the effectiveness of our algorithm. We also
demonstrate some optimizations to further minimize the power at each node. Finally, we show how our
algorithms can be extended to 3-dimensions.

1 Introduction

Multi-hop wireless networks, in which communication between two nodes can go through multiple nodes, can
be deployed in various civil and military applications. Unlike wired networks, in these networks, each node
can move and thus change the topology of the network. In this case, we need to adjust the transmission
power to keep some properties of the network such as connectivity. The lifetime of a wireless network, which
depending on battery power, usually is restricted because of limited capacity and resources. Thus a main goal
of topology control is to increase the longevity of such networks which can be obtained by designing power-
efficient algorithms. Indeed, minimizing energy consumption in topology control is a key factor in the optimal
usage of wireless sensor networks [1]. We also note that because of limited capacity, we need to have as few as
possible facilities such as GPS.

One property of the network that has been considered by Li et al.[15,10] is connectivity. They assume
that nodes do not have any kind of GPS and their algorithm works using only directional information. They
demonstrate a simple distributed algorithm in which each node uses only local decisions about its transmission
power to guarantee the global connectivity of the network. More precisely, using only directional information,
each node increases its transmission power until it detects a neighbor in all directions. Using this algorithm,
the authors simultaneously reduce both transmission power and traffic interference. The algorithm tends to
minimize the power consumption in each node, but there are some issues that may make the network unreliable.
The first one is that the algorithm makes the network very sparse and thus any failure in the network might fail
a routing process. Another issue is that for some nodes in the network, we might have a lot of congestion since
those nodes are the only ones on the paths from some nodes to others in the network. Thus, the algorithm
might result in hot spots and congestion, which in turn might drain battery power and lead to a network
partition, as pointed out by Li et al. [10]. These motivations lead us to search for more powerful properties
in the network by which we can tolerate failures and avoid network partition. In this paper, we consider k-
connectivity of networks in which we satisfy the following two properties simultaneously: First for each p < k,
failures of (or eliminating) p nodes in the graph does not disconnect it. Second, there are k node-disjoint paths
between any two nodes in the network. One can observe that the former property solves the first issue and the
latter property solves the second issue.

Another assumption made by Li et al, [10] is that our set of nodes is deployed in a 2-dimensional area.
In this paper, we also consider the 3-dimensional model. In fact, suppose that our nodes are some wireless
sensors in a multi-floor building. In this network, each node independently explores its surrounding region and
establishes connections with other neighbors that are within its transmission and reception range; i.e., they
are in the sphere of some radius r centered at the node. One can observe that if the number of floors is more
than two or three, then we cannot model this network by the aforementioned 2-dimensional model and thus
we need a 3-dimensional model.
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There are some other results on topology control and network design for increasing network longevity.
Hu [6] presents a topology control based on Delaunay triangulation. He uses some heuristics to choose some
links making a regular and uniform graph; however, he does not use the adaptive transmission power control.
Ramanathan and Rosales-Hain [11] consider the connectivity and biconnectivity (or 2-connectivity), using
a centralized spanning tree. However their work is based on some heuristics and unfortunately there is no
guarantee of connectivity in all cases. Rodoplu and Meng [12] and Li and Halpern [15] present a distributed
topology control which preserves connectivity. Li et al. [10] present a better description of their previous
algorithm in which the genesis of our paper lies. Furthermore, these problem s implicitly have been considered
in other more graph-theoretic papers [3, 7, 14]. Other approaches also have been presented in the field of packet
radio networks, sensor networks and wireless ad-hoc networks for power minimization and network longevity.
The reader is referred to the papers due to Takagi and Kleinrock [13], Hou and Li [5] and Henizelman et al.
[4] for further information.

The rest of this paper is organized as follows. First, Section 2 introduces the terminology used throughout
the paper, and formally define k-connectivity and our model in a plane and in 3-dimensional space. We
introduce our cone-based topology control (CBTC) algorithm in Section 3. In Section 4, we present the bounds
on the angles to preserve k-connectivity in the CBTC algorithm. Section 5 is devoted to the generalization
of k-connectivity algorithms from 2-dimensions to 3-dimensions. We describe very briefly how we can handle
reconfiguration due to mobility in Section 6. Finally, in Section 7, we conclude with a list of potential extensions
for future work.

2 The Model

Our model is very similar to the model introduced by Li et al. [10]. We assume our sensor wireless network
consists of set V' of n nodes (or vertices) located in plane (space). Each node v is denoted by its coordinated
(z(v),y(v)) ((z(v),y(v),z(v))) in 2-dimensions (3-dimensions). Each node v has a power supply function p(d)
where p(d) is the minimum power needed to communicate with a node u of distance d away from v. We
suppose that the maximum power for all nodes is equal to P and this power provides enough supply to
communicate within distance R, that is p(R) = P. Since in practice function p depends on the nth power
(n > 2) of distance d, sending a message through a series of intermediate nodes might take less power than
sending it directly. If each node transmits with power P, then we have an induced graph Gg = (V, E) such
that E = {(u,v)|d(u,v) < R} where d(u,v) is the Euclidean distance between u and v in a plane (space). Our
antennas in the model are omni-directional ones and hence a node can broadcast a message to all nodes within
some distance r with power p < P.

Here we suppose the radio communication unit is able to determine the direction of the sender when it
receives a message. As mentioned in the introduction, nodes have no GPS. The reader is referred to Krizman
et al. [8] for further information on estimating direction without position information.

Our primitives are the same as primitives mentioned by Li et al. [10]. More precisely, we have send(u, p, m,
v) by which a node u sends message m with power p to v; recv(u, m, v) used by u to receive message m from
v; and finally bcast(u, p, m) by which a node u broadcasts message m to all nodes v for which p(d(u,v)) < p.
In addition, we assume that if a node u can reach node v with power p then node v can also send a message
to node u with any power p' > p. If a node u tags the message with sending power p, node v can figure out
how much power was used to communicate with node v but cannot deduce the distance of u.

We assume our model is an asynchronous setting, and the communication channels are reliable. Nodes can
be mobile, i.e., nodes can change their positions, new nodes may be added to the network or some nodes may
even die because of the lack of energy. Our goal is to preserve a global property P in the network, e.g., property
P is connectivity in the paper due to Li et al.[10] or k-connectivity, defined below, in this paper. Since our
topology may change frequently, the reconfiguration algorithm, described later, may not ever catch up with
the changes, and thus in some time, we may lose property P. However, as we will show, we guarantee that our
topology stabilizes after some time depending on the speed of processes and communication links.

The generalization of connectivity, namely k-connectivity, is an important fault-tolerant property of graphs.

Definition 1. A separating set or vertex cut of a graph G = (V, E) is a set S C V(G) such that G — S has
more than one component. A graph G is k-connected if every vertex cut has at least k vertices. The connectivity
of G, denoted by k(Q), is the mazimum k such that G is k-connected.



The k-connectivity property can be considered from another viewpoint. Two paths are internally-disjoint if
neither contains a non-endpoint vertex of the other. It is well known that a graph is k-connected if and only
if for each pair x and y of vertices, there exist k pairwise internally-disjoint paths whose endpoints are z and
y (see Menger’s Theorem [16]). The reader is referred to the book by West on graph theory [16] for further
information about k-connectivity. Preserving k-connectivity using local decisions is one of our major goals in
this paper, which guarantees a network to be fault-tolerant (see the introduction). In the rest of this paper,
we assume that graph G itself is k-connected and we try to keep the property and simultaneously minimize
the power at each node locally.

3 The cone-based topology control algorithm

Our algorithm for topology control is very similar to the algorithm used by Li et al. [15,10]. Here we briefly
present the algorithm; and the reader is referred to the original papers for more discussion. The algorithm
called cone-based topology control (CBTC) is as follows. A Hello message is originally broadcast from a node
u using minimum power py. Each message also contains the power used to broadcast. The power is then
increased at each step using some function Increase (see the details in [9,10]). Upon receiving such a message
from a node u, node v replies with an Ack message. Node v encloses both the original power that was used
by u to send the message to v (which it has received from the Hello message) and the power that it uses to
send the message. Upon receiving the Ack message from v, node u adds v to its set N, of neighbors, tags the
message with the power with which it originally sent the Hello message to v and finally adds v’s direction
dir, (v) to its set D, of directions. Here dir,(v), which is measured as an angle relative to some fixed angle,
can be obtained by our earlier assumptions. Then using procedure gap, (D, ), we test whether there exists a
gap greater than a between the successive directions in D, (directions are sorted according to their angles).

CBTC(«)
N, = w;Du = @§pu = Po;
while (p, < P and gap,(D,)) do
pu = Increase(p,)
bcast(u, p,, Hello) and gather acknowledgments.
N, = N, + {v : v discovered}
D, = D, + {dir,(v) : v discovered}

We define set Ny = {(u,v) € V xV : v € Ny(u)} where N,(u) is the final set of discovered neighbors
computed by a node u at the end of the running of CBTC(a). Also, let p,, o be the corresponding final power.
First we note that the N, relation is not symmetric. Now we consider graph G, = (V, E,), where V consists of
all nodes and E, = {{u,v}|(u,v) € Ny, (v,u) € N,}. In other words, in our new graph, each node only talks
to its neighbors in E, with power at most p, , (the new graph can be constructed by some message passing
between each vertex u and vertices in No(u)). Li et al. [15,10] have shown that for & < 2%, G, is connected
if and only if G is connected and the theorem does not work necessarily for a > %’T In the next section, we
generalize this property to k-connectivity.

For more detailed timing issues, we refer the reader to [15,10]. Also the details of implementing and
simulating of this model can be found in [9]. In section 6, you can see some other ideas for dealing with
mobility. In the rest of this paper, we assume we have this model with the aforementioned properties and
prove new properties for the output of this model with different angles «.

4 Bounds on the angles for preserving k-connectivity

The CBTC(«) algorithm first constructs a directed graph. Then, it eliminates one-directional edges from this
graph and keeps bidirectional edges. The following definition formalizes this process:

Definition 2. Let G be an undirected graph. Let D, be the directed subgraph of G that is the output of
CBTC(«) algorithm i.e., each vertex increases its power (edge length) until it reaches its mazimum power or
the mazimum angle between two consecutive neighbors of G is at most a. Let G, be the undirected subgraph
of G attained by keeping the bidirectional edges of D, and removing other edges.



We know the following lemma from [10]:
Lemma 1. If graph G is connected, then G?w is connected.
Now, we have the following result for preserving k—connectivity.

Theorem 1. If a graph G is k-connected then Gi—i is also k-connected. It means that if the CBTC(a) is
applied with o = ?3—’,: for a k-connected graph, then the resulting graph Gz% is also k-connected.

Proof. Suppose we run the algorithm with a = g—’,; After execution of the algorithm, we want to prove that the
graph G, is k-connected. We prove it by contradiction. Suppose that there are k — 1 nodes {v1,va,... ,v5_1}
whose removal makes G, a disconnected graph, called graph G;. Thus G is a disconnected graph resulting
from removing k£ — 1 vertices from G,.

Since G is k-connected, the graph G’ resulting from removing {vy, va,... ,v5_1} from G is also connected.
From Lemma 1, Gz,r is also connected. Now we prove that G'5, is a subgraph of G4, and it contradicts non-
connectivity of G. Suppose that there exists an edge uv in GQ,r which is not in GG;. Edge uwv is an edge in
G'5, , thus the distance of v and v is less than or equal to R. Furthermore, the maximum required power of
eit%er u or v, say u, in G2 is less than the distance of uv. Edge uv is not an edge of G, thus it is not in
Gzﬂ as well. Therefore, thefe exist some vertices closer than v to u for which the maximum angle between two
consecutlve ones is at most . After removing k — 1 vertices, there exist some vertices closer than v to u for
which the maximum angle be‘rween two consecutive ones is at most 2” . Hence, these vertices are also in G,

and therefore, the power of u is less than uwv in G, . It contradicts the fact that uv is an edge of Gy, , because
3 3

we just put bidirectional edges in G's, . O
3

For the other side, i.e., the maximum « for preserving k-connectivity, we need the following definition and
theorem.

Definition 3. A k-connected Harary graph Hy ,,, for k = 2r < n, can be constructed by placing n vertices in
circular order and making each vertex adjacent to the nearest r vertices in each direction around the circle.

H, g is depicted in Figure 1(aa).
Theorem 2. (Harary(1992)[16]) k(Hy ) =k, i.e., Hy, is k-connected.

Remark 1. For k = 2r, graph H,,  is k-regular. It means that after deleting an edge from G, the degree of
each of its adjacent vertices is k — 1. Thus, the new graph is k — 1-connected and not k-connected.

Using Harary graphs, we construct examples to show an upper bound for the angle to preserve k-connectivity.

Lemma 2. If graph G is k-connected, then graph G', resulting from G by adding a vertex v to G and adding
edges between v and all other vertices, is k + 1-connected.

Proof. The proof is by contradiction. If we remove a subset of k vertices of G' and it becomes disconnected,
then this subset, say S, contains the node v, because otherwise v is adjacent to the rest of the graph. Thus
the graph with v is connected. Therefore, this subset of size k contains v, and in graph G, if we delete subset
S — {v}, it becomes disconnected. Now, |S — {v}| = k — 1 contradicts the k-connectivity of G. O

Theorem 3 For odd k = 2s+ 1, there ezists a k-connected graph G on which if we run CBTC(«q) algorithm
with a > ( ) the resulting graph is not k— connected. In other words, it is necessary to have o < (k ) to
preserve k-connectivity in CBTC(a) algorithm.



(aa) (bb)

Fig. 1. (aa) The graph Hags. (bb) The counterexample for o = % +46

Proof. We construct a 2s + 1-connected network on which if we use the algorithm with a = ?(k 7+ o for
0 > 0, the resulting graph is not 2s+ 1-connected. This graph is shown in Figure 1(bb). There is a node cin the
center of the circle. There is also a node u in the distance R of ¢ and the other nodes are on the circle of radius

R — ¢; each of them has the angle a = a = from each of its neighbors except v, v¢y1, u and v1. Points

(k 1)
vqﬂ)mu vp are placed around the circle in such a Way that vpcv,, = ucv, = vpcu = 27” and vqcvr = Z. Here,
——
ucy; = 0, vicvgry = a — d and for all other i’s, v;cviy, = a. Also we have ucy; = T Z + 9, therefore uvt can be

the largest edge in the triangle cuv; i.e., uv; > R. In the first graph, there is an edge between each two nodes
of distance at most R. This graph without node ¢ is Hs; ,, since each node is connected to at least s other
nodes in each side. Thus the first graph without node ¢ is 2s-connected. Lemma 2 shows that after adding
node ¢ to the graph the resulting graph is 2s + 1-connected. Notice that uv; > R implies that uv; ¢ E(G),
hence deg(u) = 2s + 1.

Now, by running the algorithm with a = + d, when the center point reaches to power R — ¢, the

(k 1)
largest angle between two consecutive vertices around c will be 3(k m+ d, and it will not increase its power.
Thus, in the resulting graph from the algorithm, we do not have the edge cu. Now, the degree of u in the new
graph is 2s, and deleting all neighbors of u will make this graph disconnected. Thus, the new graph is not
2s + 1-connected. Therefore, angle 3'(15—31) + 4, for 4 > 0, is not enough for preserving k-connectivity for odd

k. a

Theorem 4 For even k = 2s, there exists a k-connected graph G on which if we run CBTC(«) algorithm
with o > 2% the resulting graph is not k—connected. In other words, it is necessary (and sufficient) to have
a < Z’T to prPs’PrUP k-connectivity in CBTC(«) algorithm.

Proof. We construct this network very similar to the network for odd k. This graph differs from the previous
one only for the place of node v,. Its place is slightly changed such that wcv, = T+ g. Thus, the edge between
u and v, is eliminated in the first graph, and in this graph deg(u) = 2s. One can observe that by choosing
appropriate § and e it is possible to just delete the edge uv, and no other edges. Therefore, the first graph
in Figure 1(bb) with this change will be a 2s-connected graph, and if we run the algorithm with the same
a= %—’,: + 4, then the resulting graph will have similar properties that were mentioned in the proof of Theorem
3. In other words, the edge between u and ¢ will not be in the resulting graph. The new graph is not 2s-
connected, because it has a node of degree 2s — 1. Hence, this example shows that the angle a = %—’,: + § for
any d > 0 is not sufficient for preserving k connectivity, where k is even. O

So far, we have shown that for odd k, 2” <a< ?(k ) and for even k, a = 2—2 is sufficient and necessary
for preserving k-connectivity. For large k’s ‘rhe difference between lower bound and upper bound is small. For
example, for £ > 10°, this difference is at most 1°.



4.1 Experimental Results

In order to understand the effectiveness of our algorithm, we generated random networks on which we see
its effect. You can see an example in Figures 2. In that example, there are 100 nodes randomly placed in a
400 x 400 rectangular grid. Each node has a maximum transmission radius of 200.

(aa) (bb)

Fig. 2. (aa) First Network. (bb) Network after CBTC(2£)

In table 4.1, we also list the results for £k = 1,2,3 in terms of the average node degree and the average
radius. These graphs have 200 nodes randomly placed in a grid of 400 x 400 with maximum power 260. The
effectiveness of this algorithm can be easily seen from the average radius of new networks compared with the
first network.

Max Powerla = 2E (k= 1)[a = Z(k=2)[a = 27 (k= 3)
Average Degree| 67.400 4.0565 14.600 21.925
Average Radius 260 92.510 158.388 184.025

Table 1. Average degree and radius of the cone-based topology control algorithm for 1-, 2-, and 3-connectivity.

4.2 An optimization

Similar to the shrink-back operation in [1] for preserving connectivity, we can design an optimization operation
to the basic algorithm to further reduce the maximum power at each node while still preserving k-connectivity.
Here the same shrink-back optimization in [1] does not work for preserving k-connectivity; however it can be
modified as follows. Given a set dir of directions (angles), define covery(dir) = {f| for at least k& members
0" € dir, |6 — 0'| mod 2r < Z}. We modify CBTC(a) such that at each iteration, a node in N, is tagged
with the power used the first time it was discovered. Suppose that the power levels used by node w during the
algorithm are p1,... ,p,. If u is a boundary node, p, is the maximum power P. A boundary node successively
removes nodes tagged with power p,, then p,_;, and so on, as long as their removal does not change the
coverage. In other words, let dir;, © = 1,... ,q, be the set of directions found with all power levels p; or less,
then the minimum ¢ such that covery(dir;) = covery(diry) is found. Let N7 ,(u) consist of all the nodes

s

in Nok(u) tagged with power p; or less. Suppose N, = {{u,v}lv € N; ,(u)}. Also, similar to Ga, Ga
is the undirected (symmetric) graph constructed from N, j and G} ; is the undirected (symmetric) graph
constructed from Ng k-

In order to prove correctness of this optimization operation for preserving k-connectivity, we need the

following definition and theorem.

Definition 4. We say a subgraph G' of Ggr has 2?”fproperty, if for every edge wv € E(G) such that uv &
E(G"), there exists a vertex w in V(G) such that either wuv < Z and |wu| < [uv| or wou < % and [wo| < |uv].
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From [10], it is not hard to see that graph GQT" has = —property. The following theorem states a stronger
fact: '

Theorem 5. If Gg is a connected graph, then every subgraph G' of G with 2:;7 —property is connected.

Proof. We prove it by contradiction. Suppose G’ is not connected and suppose u and v are the closest pair of
vertices that are in different connected components and uv € E(G). Since uv ¢ E(G'), there exists a vertex
w for which either wuv < % and |wu| < |uv| or wou < % and |vw| < |uv|. Without loss of generality, assume
the former case. uv € E(G) means |uv| < R, thus |wu| < Juv| < R, and uw € E(G). Angle wou < § means
that edge wv cannot be the largest edge in triangle uvw, thus |wv| < |uv| < R, thus wv € E(G). Since u and
v are not in the same connected component, wv ¢ E(G') or wu ¢ E(G') which contradicts the minimality of
uv. This contradiction shows the connectivity of G'. a
The next theorem shows that shrink-back is a proper optimization operation.
2n

Theorem 6. The shrink-back optimization described above preserves k-connectivity. In other words, if « < 57,
then according to the above definition, G? , s k-connected if the graph G g 1is k-connected.

Proof. We know that if G is k-connected then G, j is k-connected. Now, we should prove that in this case
nyyk is k-connected as well. We can prove this fact, by proving that even after removing k — 1 vertices the

shrink-back operation does not violate the 2?’Tfproper‘r.y of the graph. Notice that the first graph, G, after
removing k — 1 vertices has 2?’Tfproper‘r.y. Now, removing edge uwv in the shrink-back operation means this

edge does not change the set covery(dir), and it implies that there are at least k other vertices in the original
graph with angle less than % to u and closer than v to u. After removing k — 1 vertices there are at least one
such vertex and it shows that removing uv keeps the %’r—property of the graph. From Theorem 5, we know
that G7, , is connected after removing k — 1 vertices, and thus G ; is k—connected. O

5 Preserving connectivity in 3-dimensions

In this section, we generalize the connectivity algorithm from 2-dimensions to 3-dimensions. The main idea
here is that each node increases its power until there is no 3D-cone of degree a in which there is no other
node. Algorithm CBTC-3D is exactly the same as CBTC, except in which procedure gap,(D,) is replaced
by procedure gap — 3D,. The procedure gap — 3D, for a node u tests whether there exists a node in each
3D-cone of degree « centered at w.
Procedure gap — 3D, (D)
let S be a sphere centered at u with arbitrary radius r
for each direction dir, € D,
let ¢, to be the intersection of sphere S with the cone of degree o which is symmetric around dir,
let 0, be the center of circle ¢, on sphere S
for each two circles ¢, = ¢, do keep ¢, and eliminate ¢,
if there exists a circle ¢, not intersected to any other circle
return false
for intersection(s) x of any two circles ¢, and ¢, (v # w) do
if there is no other circle ¢, such that z is inside ¢,
sort all centers 0;’s according to their angles relative to = with respect to a fixed direction
where o; is the center of circle ¢; containing x on its boundary
if there exists an angle 0;z0;11 > 7 (consider i’s circularly)
return false
return true

Intuitively, in procedure gap — 3D,,, first we find the intersection of sphere S with each cone of degree «
symmetric around dir,, and then we check whether these intersections cover all the sphere.

Theorem 7. Procedure gap3D,(D,) detects correctly whether there exists a cone of degree o centered at u
without any other node.



Proof. First, we note that there is no cone of degree a, centered at a node w, without any other node if and
only if the set U, the intersection of sphere S with all cones of degree o symmetric around dir,’s covers the
sphere S. We show that in the case U # S one of the following three situations happens (here by S we mean
all points on sphere S).

1. U is disconnected.
2. There exists a point & which is the intersection of boundaries of exactly two circles (these circles are
intersections of cones with sphere S) and belongs to (the interior of) none of the other circles.

3. There exists a point which is the intersection of k circles (k > 3) and the angle of two consecutive centers

of these circles is greater than or equal to 3.

Suppose U # S and let the curve v be (one of the connected components of) the boundary of U. Curve ~
is either a circle or the union of several concave arcs (see Figure 3(aa)). In the former case, since o < 7, the
set U is disconnected and the claim is proved. In the latter case, we consider z € 7 one of the intersections of
two boundary arcs (see Figure 3(aa)). If it is the intersection of exactly two circles then there is a point close
to z which belongs to none of the other circles and the proof is complete. Suppose x is the intersection of k
circles where k£ > 3. Let 01, ... ,0r be the centers of the circles passing through z. Since the radii of the circles
are equal, oy, ... , 0, belongs to a circle centered at z. If 0;z0,41 < 7 foreach i =1,... ,k (0g41 = 01) then
the circles around o1, ... ,0 (and thus the set U) cover all neighborhood close enough to x. Since x in on the
boundary of U, it is impossible. Hence the claim is proved. O

(aa) (bb)

Fig. 3. (aa) Concave curves (bb) The 3D counterexample.

Below we prove that procedure CBTC(«) with a < %’r works correctly.

Theorem 8. If a < 2?’7, procedure CBTC () preserves connectivity.

Proof. We prove by obtaining a contradiction. Consider two nodes u and v of minimum distance which are
connected in G, but there is no path from u to v in G, . Since {u,v} € E,, w.l.0.g. we can assume v € N, (u).
Thus there exists a node w such that wuv < Z. Because of procedure CBTC-3D, we know |wu| < |uv|. Since
wuv < % and |wu| < |uv], uv is the largest edge of the triangle wuv. Thus [wv| < |uv| < R and |wu| < |uv| < R.
By the assumption that {u, v} is a counterexample with minimum distance, w and v are connected in G, and
also w and u are connected in G,. Thus v and u are connected in GG, and it is a contradiction. O

It is worth mentioning that using a very similar approach of k-connectivity in 2-dimensions, we can also
27

prove procedure CBTC(a) for a < % preserves k-connectivity. Now we show that these bounds are tight
upper bounds in some cases.

Theorem 9. For a > %’r, procedure CBTC(a) does not necessarily preserve connectivity and for o > % does
not necessarily preserve 2- or 3-connectivity.



Proof. In the 3-dimensional space with axes z, y and z consider the hexagon A;,---, Ag in the xy-plane
centered at Ag = 0 (i.e., Ag is the origin) with radius R (see Figure 3(bb)). For i = 1,---,6, let B; and
C; be two points in the space such that the triangles AAgA; B; and AAgA;C; are equilateral whose planes
are orthogonal to the zy-plane (B; above and C; under the xy-plane). We define vector v = §A; Ag and
By =By +v,C] =Cy +v, Ay = Ay + v, Af = Ag + v (here we consider points and their vectors from origin
equivalent). Figure 3(bb) depicts these points. If § is sufficiently small,

— 2
Bl A.C! < ?” te, |[A1 Bl =|AC!| > R and |A Ay| = |A1 A} > R. (1)

For an arbitrary point P define P = (1 — §;)P (i.e. P is slightly closer to the origin than P). For sufficiently
small §; > 0, because of (1)

3

—

—=_ 9 _ _ _ _
B AT < ?” te, |AB =|ACl > R and |A,AL| = |A, 4] > R. 2)

We consider tight examples for k-connectivity for different k’s:

Case k = 1: We consider the following set of points S; = {Ag = Ay, Ay, A3, A5, B}, By, Bs, C}, C3, C5 }.
Before the process, A; is connected only to Agy. After the process with o = %’r + ¢, by radius (1 — ;)R the
vertex Ag can observe all of the other points except A;. Here in each cone of degree %’r + ¢, node Ag can see
a vertex, which makes A; isolated.

Case k = 2: Let set S» = {Ag, A1, Ay, A3, -+, A5, Ay, B}, By, -+ ,Bg,C},Cs, -+ ,Cq, D}, where D = 1 4;.
Before the process, A; is connected only to Ag and D and the graph is 2-connected. After the process, with
a = % + 5 the connection between Ag and A; will be removed and the graph loses its 2-connectivity.

Case k = 3: Assume set S = (S — {A_’Q}) U {4,}. Since triangle 4qA; As is equilateral for small §; > 0,
|A1 Ay| < |A1Ag| = R. Thus before the process, A; is connected to Ay, A and D, and the graph is 3-connected.
After the process with a = £ + 5, the connection between Ay and A is removed and the degree of node A4,
is less than 3. Thus the graph loses its 3-connectivity.

It shows that a = %’T and a = % is tight for cases k = 1 and k = 2 respectively and a = % is an upper

bound for k = 3. O

6 Dealing with mobility

In a wireless multi-hop network, nodes may be added to the system, may change their positions, or even may
die due to lack of power supply. To deal with these situations, Li et al. [10] presented the following Neighbor
Discovery Protocol (NDP). Each node uses a beaconing protocol to inform its neighbors that it is still alive.
The beacon includes the transmission power and the sending node’s ID. This beacon is sent with the power
obtained from the CBTC algorithm. A node u considers a node v failed if it does not receive any beacon
within a time interval T from v (leave,(v) event). A node v considers a node u joined to the system, if it
receives a beacon from v within the current time interval T and it has not received any beacon from v within
the previous time interval (join,(v) event). Finally, a node u considers changing in position of node v, if its
angle with respect to u has changed (change,(v) event).

Using aforementioned events, the reconfiguration algorithm is simple. If a leave, (v) event happens, and
there exists an a-gap after dropping dir,(v) from D,, node u reruns CBTC(«a) with the current power as
the initial power instead of py (see CBTC algorithm). If a join, (v) event happens, node « do the shrink-back
operation, removing farthest neighbor as long as their removal does not change the coverage. Finally, if a
change, (v) event happens, first node u treats as it treats for leave,(v) event, and then if there is no a-gap it
treats as it treats in join,(v) event. The implementation and timing issues and difficulties with asynchrony
have been discussed in Li’s et al. paper [10]. The reader is referred to the paper for further details.

7 Conclusions and future work

In this paper, we considered fault-tolerant distributed topology control algorithm. Our algorithm was based
on the the cone-based algorithm introduced by Li et al. We showed that running the algorithm with a = %—’,:
is sufficient for preserving k-connectivity. In addition, if k is even this upper bound is tight and if £ is odd

this upper bound is very near to the optimal . We also considered the extension of the cone-based algorithm



to 3-dimensions, and showed that again running the algorithm with a = %—’,: is an upper bound for preserving

k-connectivity and for k£ = 1,2(3) this bound is (nearly) tight. Here, we present several open problems that
are possible extensions of this paper.

In this paper, we designed a fault-tolerant topology control algorithm by finding a k—connected subnetwork.
The problem of finding k—connected subgraph with minimum cost is known to be NP-Hard. There are constant-
factor approximation algorithms for this problem [2]. In order to use them in a distributed mobile topology
control algorithm, one issue is to implement these algorithms on distributed networks (without global available
information), and another issue is to find the solution using the solution for the previous network after some
topology changes without recomputing everything. Adapting algorithms in [2] on distributed and mobile
networks might be a future work in this area.

One topic of interest is finding other properties of the graph for which the cone-based distributed topology
control can be applied. Finding algorithms similar to the cone-based algorithm which only uses some local
decisions to preserve a global property is an open area of research. Finding further optimizations that can be

applied after the cone-based algorithm are interesting too.

We suspect that a = %—’,: is also a tight upper bound for preserving k-connectivity where k is odd. Con-

structing an example for which the algorithm with « = g—z + € does not work would be instructive. In addition,
we believe that the upper bounds for 2-dimensions also works for 3-dimensions, as we showed for k-connectivity
for k < 3. Exploring general examples for these bounds would be a nice theoretical result.
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