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husetts Institute of Te
hnologyAbstra
t. We 
an 
ontrol the topology of a multi-hop wireless network by varying the transmissionpower at ea
h node. The life-time of su
h networks depends on battery power at ea
h node. This paperpresents a distributed fault-tolerant topology 
ontrol algorithm for minimum energy 
onsumption in thesenetworks. More pre
isely, we present algorithms whi
h preserve the 
onne
tivity of a network upon failingof, at most, k nodes (k is 
onstant) and simultaneously minimize the transmission power at ea
h node tosome extent. In addition, we present simulations to support the e�e
tiveness of our algorithm. We alsodemonstrate some optimizations to further minimize the power at ea
h node. Finally, we show how ouralgorithms 
an be extended to 3-dimensions.1 Introdu
tionMulti-hop wireless networks, in whi
h 
ommuni
ation between two nodes 
an go through multiple nodes, 
anbe deployed in various 
ivil and military appli
ations. Unlike wired networks, in these networks, ea
h node
an move and thus 
hange the topology of the network. In this 
ase, we need to adjust the transmissionpower to keep some properties of the network su
h as 
onne
tivity. The lifetime of a wireless network, whi
hdepending on battery power, usually is restri
ted be
ause of limited 
apa
ity and resour
es. Thus a main goalof topology 
ontrol is to in
rease the longevity of su
h networks whi
h 
an be obtained by designing power-eÆ
ient algorithms. Indeed, minimizing energy 
onsumption in topology 
ontrol is a key fa
tor in the optimalusage of wireless sensor networks [1℄. We also note that be
ause of limited 
apa
ity, we need to have as few aspossible fa
ilities su
h as GPS.One property of the network that has been 
onsidered by Li et al.[15, 10℄ is 
onne
tivity. They assumethat nodes do not have any kind of GPS and their algorithm works using only dire
tional information. Theydemonstrate a simple distributed algorithm in whi
h ea
h node uses only lo
al de
isions about its transmissionpower to guarantee the global 
onne
tivity of the network. More pre
isely, using only dire
tional information,ea
h node in
reases its transmission power until it dete
ts a neighbor in all dire
tions. Using this algorithm,the authors simultaneously redu
e both transmission power and traÆ
 interferen
e. The algorithm tends tominimize the power 
onsumption in ea
h node, but there are some issues that may make the network unreliable.The �rst one is that the algorithm makes the network very sparse and thus any failure in the network might faila routing pro
ess. Another issue is that for some nodes in the network, we might have a lot of 
ongestion sin
ethose nodes are the only ones on the paths from some nodes to others in the network. Thus, the algorithmmight result in hot spots and 
ongestion, whi
h in turn might drain battery power and lead to a networkpartition, as pointed out by Li et al. [10℄. These motivations lead us to sear
h for more powerful propertiesin the network by whi
h we 
an tolerate failures and avoid network partition. In this paper, we 
onsider k-
onne
tivity of networks in whi
h we satisfy the following two properties simultaneously: First for ea
h p < k,failures of (or eliminating) p nodes in the graph does not dis
onne
t it. Se
ond, there are k node-disjoint pathsbetween any two nodes in the network. One 
an observe that the former property solves the �rst issue and thelatter property solves the se
ond issue.Another assumption made by Li et al, [10℄ is that our set of nodes is deployed in a 2-dimensional area.In this paper, we also 
onsider the 3-dimensional model. In fa
t, suppose that our nodes are some wirelesssensors in a multi-
oor building. In this network, ea
h node independently explores its surrounding region andestablishes 
onne
tions with other neighbors that are within its transmission and re
eption range; i.e., theyare in the sphere of some radius r 
entered at the node. One 
an observe that if the number of 
oors is morethan two or three, then we 
annot model this network by the aforementioned 2-dimensional model and thuswe need a 3-dimensional model.? Emails: m bahram�mit.edu and fhajiagha,mirroknig�theory.l
s.mit.edu



There are some other results on topology 
ontrol and network design for in
reasing network longevity.Hu [6℄ presents a topology 
ontrol based on Delaunay triangulation. He uses some heuristi
s to 
hoose somelinks making a regular and uniform graph; however, he does not use the adaptive transmission power 
ontrol.Ramanathan and Rosales-Hain [11℄ 
onsider the 
onne
tivity and bi
onne
tivity (or 2-
onne
tivity), usinga 
entralized spanning tree. However their work is based on some heuristi
s and unfortunately there is noguarantee of 
onne
tivity in all 
ases. Rodoplu and Meng [12℄ and Li and Halpern [15℄ present a distributedtopology 
ontrol whi
h preserves 
onne
tivity. Li et al. [10℄ present a better des
ription of their previousalgorithm in whi
h the genesis of our paper lies. Furthermore, these problem s impli
itly have been 
onsideredin other more graph-theoreti
 papers [3, 7, 14℄. Other approa
hes also have been presented in the �eld of pa
ketradio networks, sensor networks and wireless ad-ho
 networks for power minimization and network longevity.The reader is referred to the papers due to Takagi and Kleinro
k [13℄, Hou and Li [5℄ and Henizelman et al.[4℄ for further information.The rest of this paper is organized as follows. First, Se
tion 2 introdu
es the terminology used throughoutthe paper, and formally de�ne k-
onne
tivity and our model in a plane and in 3-dimensional spa
e. Weintrodu
e our 
one-based topology 
ontrol (CBTC) algorithm in Se
tion 3. In Se
tion 4, we present the boundson the angles to preserve k-
onne
tivity in the CBTC algorithm. Se
tion 5 is devoted to the generalizationof k-
onne
tivity algorithms from 2-dimensions to 3-dimensions. We des
ribe very brie
y how we 
an handlere
on�guration due to mobility in Se
tion 6. Finally, in Se
tion 7, we 
on
lude with a list of potential extensionsfor future work.2 The ModelOur model is very similar to the model introdu
ed by Li et al. [10℄. We assume our sensor wireless network
onsists of set V of n nodes (or verti
es) lo
ated in plane (spa
e). Ea
h node v is denoted by its 
oordinated(x(v); y(v)) ((x(v); y(v); z(v))) in 2-dimensions (3-dimensions). Ea
h node v has a power supply fun
tion p(d)where p(d) is the minimum power needed to 
ommuni
ate with a node u of distan
e d away from v. Wesuppose that the maximum power for all nodes is equal to P and this power provides enough supply to
ommuni
ate within distan
e R, that is p(R) = P . Sin
e in pra
ti
e fun
tion p depends on the nth power(n � 2) of distan
e d, sending a message through a series of intermediate nodes might take less power thansending it dire
tly. If ea
h node transmits with power P , then we have an indu
ed graph GR = (V;E) su
hthat E = f(u; v)jd(u; v) � Rg where d(u; v) is the Eu
lidean distan
e between u and v in a plane (spa
e). Ourantennas in the model are omni-dire
tional ones and hen
e a node 
an broad
ast a message to all nodes withinsome distan
e r with power p � P .Here we suppose the radio 
ommuni
ation unit is able to determine the dire
tion of the sender when itre
eives a message. As mentioned in the introdu
tion, nodes have no GPS. The reader is referred to Krizmanet al. [8℄ for further information on estimating dire
tion without position information.Our primitives are the same as primitives mentioned by Li et al. [10℄. More pre
isely, we have send(u, p, m,v) by whi
h a node u sends message m with power p to v; re
v(u, m, v) used by u to re
eive message m fromv; and �nally b
ast(u, p, m) by whi
h a node u broad
asts message m to all nodes v for whi
h p(d(u; v)) � p.In addition, we assume that if a node u 
an rea
h node v with power p then node v 
an also send a messageto node u with any power p0 � p. If a node u tags the message with sending power p, node v 
an �gure outhow mu
h power was used to 
ommuni
ate with node v but 
annot dedu
e the distan
e of u.We assume our model is an asyn
hronous setting, and the 
ommuni
ation 
hannels are reliable. Nodes 
anbe mobile, i.e., nodes 
an 
hange their positions, new nodes may be added to the network or some nodes mayeven die be
ause of the la
k of energy. Our goal is to preserve a global property P in the network, e.g., propertyP is 
onne
tivity in the paper due to Li et al.[10℄ or k-
onne
tivity, de�ned below, in this paper. Sin
e ourtopology may 
hange frequently, the re
on�guration algorithm, des
ribed later, may not ever 
at
h up withthe 
hanges, and thus in some time, we may lose property P . However, as we will show, we guarantee that ourtopology stabilizes after some time depending on the speed of pro
esses and 
ommuni
ation links.The generalization of 
onne
tivity, namely k-
onne
tivity, is an important fault-tolerant property of graphs.De�nition 1. A separating set or vertex 
ut of a graph G = (V;E) is a set S � V (G) su
h that G � S hasmore than one 
omponent. A graph G is k-
onne
ted if every vertex 
ut has at least k verti
es. The 
onne
tivityof G, denoted by �(G), is the maximum k su
h that G is k-
onne
ted.2



The k-
onne
tivity property 
an be 
onsidered from another viewpoint. Two paths are internally-disjoint ifneither 
ontains a non-endpoint vertex of the other. It is well known that a graph is k-
onne
ted if and onlyif for ea
h pair x and y of verti
es, there exist k pairwise internally-disjoint paths whose endpoints are x andy (see Menger's Theorem [16℄). The reader is referred to the book by West on graph theory [16℄ for furtherinformation about k-
onne
tivity. Preserving k-
onne
tivity using lo
al de
isions is one of our major goals inthis paper, whi
h guarantees a network to be fault-tolerant (see the introdu
tion). In the rest of this paper,we assume that graph GR itself is k-
onne
ted and we try to keep the property and simultaneously minimizethe power at ea
h node lo
ally.3 The 
one-based topology 
ontrol algorithmOur algorithm for topology 
ontrol is very similar to the algorithm used by Li et al. [15, 10℄. Here we brie
ypresent the algorithm; and the reader is referred to the original papers for more dis
ussion. The algorithm
alled 
one-based topology 
ontrol (CBTC) is as follows. A Hello message is originally broad
ast from a nodeu using minimum power p0. Ea
h message also 
ontains the power used to broad
ast. The power is thenin
reased at ea
h step using some fun
tion In
rease (see the details in [9, 10℄). Upon re
eiving su
h a messagefrom a node u, node v replies with an A
k message. Node v en
loses both the original power that was usedby u to send the message to v (whi
h it has re
eived from the Hello message) and the power that it uses tosend the message. Upon re
eiving the A
k message from v, node u adds v to its set Nu of neighbors, tags themessage with the power with whi
h it originally sent the Hello message to v and �nally adds v's dire
tiondiru(v) to its set Du of dire
tions. Here diru(v), whi
h is measured as an angle relative to some �xed angle,
an be obtained by our earlier assumptions. Then using pro
edure gap�(Du), we test whether there exists agap greater than � between the su

essive dire
tions in Du (dire
tions are sorted a

ording to their angles).CBTC(�)Nu = ;;Du = ;; pu = p0;while (pu < P and gap�(Du)) dopu = In
rease(pu)b
ast(u, pu, Hello) and gather a
knowledgments.Nu = Nu + fv : v dis
overedgDu = Du + fdiru(v) : v dis
overedgWe de�ne set N� = f(u; v) 2 V � V : v 2 N�(u)g where N�(u) is the �nal set of dis
overed neighbors
omputed by a node u at the end of the running of CBTC(�). Also, let pu;� be the 
orresponding �nal power.First we note that the N� relation is not symmetri
. Now we 
onsider graph G� = (V;E�), where V 
onsists ofall nodes and E� = ffu; vgj(u; v) 2 N�; (v; u) 2 N�g. In other words, in our new graph, ea
h node only talksto its neighbors in E� with power at most pu;� (the new graph 
an be 
onstru
ted by some message passingbetween ea
h vertex u and verti
es in N�(u)). Li et al. [15, 10℄ have shown that for � � 2�3 , G� is 
onne
tedif and only if G is 
onne
ted and the theorem does not work ne
essarily for � > 2�3 . In the next se
tion, wegeneralize this property to k-
onne
tivity.For more detailed timing issues, we refer the reader to [15, 10℄. Also the details of implementing andsimulating of this model 
an be found in [9℄. In se
tion 6, you 
an see some other ideas for dealing withmobility. In the rest of this paper, we assume we have this model with the aforementioned properties andprove new properties for the output of this model with di�erent angles �.4 Bounds on the angles for preserving k-
onne
tivityThe CBTC(�) algorithm �rst 
onstru
ts a dire
ted graph. Then, it eliminates one-dire
tional edges from thisgraph and keeps bidire
tional edges. The following de�nition formalizes this pro
ess:De�nition 2. Let G be an undire
ted graph. Let D� be the dire
ted subgraph of G that is the output ofCBTC(�) algorithm i.e., ea
h vertex in
reases its power (edge length) until it rea
hes its maximum power orthe maximum angle between two 
onse
utive neighbors of G is at most �. Let G� be the undire
ted subgraphof G attained by keeping the bidire
tional edges of D� and removing other edges.3



We know the following lemma from [10℄:Lemma 1. If graph G is 
onne
ted, then G 2�3 is 
onne
ted.Now, we have the following result for preserving k�
onne
tivity.Theorem 1. If a graph G is k-
onne
ted then G 2�3k is also k-
onne
ted. It means that if the CBTC(�) isapplied with � = 2�3k for a k-
onne
ted graph, then the resulting graph G 2�3k is also k-
onne
ted.Proof. Suppose we run the algorithm with � = 2�3k . After exe
ution of the algorithm, we want to prove that thegraph G� is k-
onne
ted. We prove it by 
ontradi
tion. Suppose that there are k � 1 nodes fv1; v2; : : : ; vk�1gwhose removal makes G� a dis
onne
ted graph, 
alled graph G1. Thus G1 is a dis
onne
ted graph resultingfrom removing k � 1 verti
es from G�.Sin
e G is k-
onne
ted, the graph G0 resulting from removing fv1; v2; : : : ; vk�1g from G is also 
onne
ted.From Lemma 1, G02�3 is also 
onne
ted. Now we prove that G02�3 is a subgraph of G1, and it 
ontradi
ts non-
onne
tivity of G1. Suppose that there exists an edge uv in G02�3 whi
h is not in G1. Edge uv is an edge inG02�3 , thus the distan
e of u and v is less than or equal to R. Furthermore, the maximum required power ofeither u or v, say u, in G 2�3k is less than the distan
e of uv. Edge uv is not an edge of G1, thus it is not inG 2�3k as well. Therefore, there exist some verti
es 
loser than v to u for whi
h the maximum angle between two
onse
utive ones is at most 2�3k . After removing k � 1 verti
es, there exist some verti
es 
loser than v to u forwhi
h the maximum angle between two 
onse
utive ones is at most 2�3 . Hen
e, these verti
es are also in G02�3and therefore, the power of u is less than uv in G02�3 . It 
ontradi
ts the fa
t that uv is an edge of G02�3 , be
ausewe just put bidire
tional edges in G02�3 . utFor the other side, i.e., the maximum � for preserving k-
onne
tivity, we need the following de�nition andtheorem.De�nition 3. A k-
onne
ted Harary graph Hk;n, for k = 2r < n, 
an be 
onstru
ted by pla
ing n verti
es in
ir
ular order and making ea
h vertex adja
ent to the nearest r verti
es in ea
h dire
tion around the 
ir
le.H4;8 is depi
ted in Figure 1(aa).Theorem 2. (Harary(1992)[16℄) �(Hk;n) = k, i.e., Hk;n is k-
onne
ted.Remark 1. For k = 2r, graph Hn;k is k-regular. It means that after deleting an edge from G, the degree ofea
h of its adja
ent verti
es is k � 1. Thus, the new graph is k � 1-
onne
ted and not k-
onne
ted.Using Harary graphs, we 
onstru
t examples to show an upper bound for the angle to preserve k-
onne
tivity.Lemma 2. If graph G is k-
onne
ted, then graph G0, resulting from G by adding a vertex v to G and addingedges between v and all other verti
es, is k + 1-
onne
ted.Proof. The proof is by 
ontradi
tion. If we remove a subset of k verti
es of G0 and it be
omes dis
onne
ted,then this subset, say S, 
ontains the node v, be
ause otherwise v is adja
ent to the rest of the graph. Thusthe graph with v is 
onne
ted. Therefore, this subset of size k 
ontains v, and in graph G, if we delete subsetS � fvg, it be
omes dis
onne
ted. Now, jS � fvgj = k � 1 
ontradi
ts the k-
onne
tivity of G. utTheorem 3. For odd k = 2s+1, there exists a k-
onne
ted graph G on whi
h if we run CBTC(�) algorithmwith � > 2�3(k�1) the resulting graph is not k�
onne
ted. In other words, it is ne
essary to have � � 2�3(k�1) topreserve k-
onne
tivity in CBTC(�) algorithm. 4
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(aa) (bb)Fig. 1. (aa) The graph H4;8. (bb) The 
ounterexample for � = 2�3(k�1) + ÆProof. We 
onstru
t a 2s + 1-
onne
ted network on whi
h if we use the algorithm with � = 2�3(k�1) + Æ forÆ > 0, the resulting graph is not 2s+1-
onne
ted. This graph is shown in Figure 1(bb). There is a node 
 in the
enter of the 
ir
le. There is also a node u in the distan
e R of 
 and the other nodes are on the 
ir
le of radiusR� �; ea
h of them has the angle a = � = 2�3(k�1) from ea
h of its neighbors ex
ept vt, vt+1, u and v1. Pointsvq ; vr; u; vp are pla
ed around the 
ir
le in su
h a way that [vp
vr = du
vr = dvp
u = 2�3 and[vq
vr = �3 . Here,du
v1 = Æ, \vt
vt+1 = a� Æ and for all other i's, \vi
vi+1 = a. Also we have du
vt = �3 + Æ, therefore uvt 
an bethe largest edge in the triangle 
uvt i.e., uvt > R. In the �rst graph, there is an edge between ea
h two nodesof distan
e at most R. This graph without node 
 is H2s;n, sin
e ea
h node is 
onne
ted to at least s othernodes in ea
h side. Thus the �rst graph without node 
 is 2s-
onne
ted. Lemma 2 shows that after addingnode 
 to the graph the resulting graph is 2s + 1-
onne
ted. Noti
e that uvt > R implies that uvt 62 E(G),hen
e deg(u) = 2s+ 1.Now, by running the algorithm with � = 2�3(k�1) + Æ, when the 
enter point rea
hes to power R � �, thelargest angle between two 
onse
utive verti
es around 
 will be 2�3(k�1) + Æ, and it will not in
rease its power.Thus, in the resulting graph from the algorithm, we do not have the edge 
u. Now, the degree of u in the newgraph is 2s, and deleting all neighbors of u will make this graph dis
onne
ted. Thus, the new graph is not2s + 1-
onne
ted. Therefore, angle 2�3(k�1) + Æ, for Æ > 0, is not enough for preserving k-
onne
tivity for oddk. utTheorem 4. For even k = 2s, there exists a k-
onne
ted graph G on whi
h if we run CBTC(�) algorithmwith � > 2�3k the resulting graph is not k�
onne
ted. In other words, it is ne
essary (and suÆ
ient) to have� � 2�3k to preserve k-
onne
tivity in CBTC(�) algorithm.Proof. We 
onstru
t this network very similar to the network for odd k. This graph di�ers from the previousone only for the pla
e of node vq . Its pla
e is slightly 
hanged su
h that du
vq = �3 + Æ2 . Thus, the edge betweenu and vq is eliminated in the �rst graph, and in this graph deg(u) = 2s. One 
an observe that by 
hoosingappropriate Æ and � it is possible to just delete the edge uvq and no other edges. Therefore, the �rst graphin Figure 1(bb) with this 
hange will be a 2s-
onne
ted graph, and if we run the algorithm with the same� = 2�3k + Æ, then the resulting graph will have similar properties that were mentioned in the proof of Theorem3. In other words, the edge between u and 
 will not be in the resulting graph. The new graph is not 2s-
onne
ted, be
ause it has a node of degree 2s � 1. Hen
e, this example shows that the angle � = 2�3k + Æ forany Æ > 0 is not suÆ
ient for preserving k 
onne
tivity, where k is even. utSo far, we have shown that for odd k, 2�3k � � � 2�3(k�1) and for even k, � = 2�3k is suÆ
ient and ne
essaryfor preserving k-
onne
tivity. For large k's the di�eren
e between lower bound and upper bound is small. Forexample, for k > 10o, this di�eren
e is at most 1o. 5



4.1 Experimental ResultsIn order to understand the e�e
tiveness of our algorithm, we generated random networks on whi
h we seeits e�e
t. You 
an see an example in Figures 2. In that example, there are 100 nodes randomly pla
ed in a400� 400 re
tangular grid. Ea
h node has a maximum transmission radius of 200.(a) (b)

(aa) (bb)Fig. 2. (aa) First Network. (bb) Network after CBTC( 2�6 )In table 4.1, we also list the results for k = 1; 2; 3 in terms of the average node degree and the averageradius. These graphs have 200 nodes randomly pla
ed in a grid of 400� 400 with maximum power 260. Thee�e
tiveness of this algorithm 
an be easily seen from the average radius of new networks 
ompared with the�rst network. Max Power � = 2�3 (k = 1) � = 2�6 (k = 2) � = 2�9 (k = 3)Average Degree 67.400 4.055 14.600 21.925Average Radius 260 92.510 158.388 184.025Table 1. Average degree and radius of the 
one-based topology 
ontrol algorithm for 1-, 2-, and 3-
onne
tivity.4.2 An optimizationSimilar to the shrink-ba
k operation in [1℄ for preserving 
onne
tivity, we 
an design an optimization operationto the basi
 algorithm to further redu
e the maximum power at ea
h node while still preserving k-
onne
tivity.Here the same shrink-ba
k optimization in [1℄ does not work for preserving k-
onne
tivity; however it 
an bemodi�ed as follows. Given a set dir of dire
tions (angles), de�ne 
overk(dir) = f�j for at least k members�0 2 dir; j� � �0j mod 2� � �3 g. We modify CBTC(�) su
h that at ea
h iteration, a node in Nu is taggedwith the power used the �rst time it was dis
overed. Suppose that the power levels used by node u during thealgorithm are p1; : : : ; pq. If u is a boundary node, pq is the maximum power P . A boundary node su

essivelyremoves nodes tagged with power pq, then pq�1, and so on, as long as their removal does not 
hange the
overage. In other words, let diri, i = 1; : : : ; q; be the set of dire
tions found with all power levels pi or less,then the minimum i su
h that 
overk(diri) = 
overk(dirq) is found. Let Ns�;k(u) 
onsist of all the nodesin N�;k(u) tagged with power pi or less. Suppose Ns�;k = ffu; vgjv 2 Ns�;k(u)g. Also, similar to G�, G�;kis the undire
ted (symmetri
) graph 
onstru
ted from N�;k and Gs�;k is the undire
ted (symmetri
) graph
onstru
ted from Ns�;k.In order to prove 
orre
tness of this optimization operation for preserving k-
onne
tivity, we need thefollowing de�nition and theorem.De�nition 4. We say a subgraph G0 of GR has 2�3 �property, if for every edge uv 2 E(G) su
h that uv 62E(G0), there exists a vertex w in V (G) su
h that either dwuv � �3 and jwuj < juvj or dwvu � �3 and jwvj < juvj.6



From [10℄, it is not hard to see that graph G 2�3 has 2�3 �property. The following theorem states a strongerfa
t:Theorem 5. If GR is a 
onne
ted graph, then every subgraph G0 of G with 2�3 �property is 
onne
ted.Proof. We prove it by 
ontradi
tion. Suppose G0 is not 
onne
ted and suppose u and v are the 
losest pair ofverti
es that are in di�erent 
onne
ted 
omponents and uv 2 E(G). Sin
e uv 62 E(G0), there exists a vertexw for whi
h either dwuv � �3 and jwuj < juvj or dwvu � �3 and jvwj < juvj. Without loss of generality, assumethe former 
ase. uv 2 E(G) means juvj � R, thus jwuj < juvj � R, and uw 2 E(G). Angle dwvu � �3 meansthat edge wv 
annot be the largest edge in triangle uvw, thus jwvj < juvj � R, thus wv 2 E(G). Sin
e u andv are not in the same 
onne
ted 
omponent, wv 62 E(G0) or wu 62 E(G0) whi
h 
ontradi
ts the minimality ofuv. This 
ontradi
tion shows the 
onne
tivity of G0. utThe next theorem shows that shrink-ba
k is a proper optimization operation.Theorem 6. The shrink-ba
k optimization des
ribed above preserves k-
onne
tivity. In other words, if � � 2�3k ,then a

ording to the above de�nition, Gs�;k is k-
onne
ted if the graph GR is k-
onne
ted.Proof. We know that if G is k-
onne
ted then G�;k is k-
onne
ted. Now, we should prove that in this 
aseGs�;k is k-
onne
ted as well. We 
an prove this fa
t, by proving that even after removing k � 1 verti
es theshrink-ba
k operation does not violate the 2�3 �property of the graph. Noti
e that the �rst graph, G�;k afterremoving k � 1 verti
es has 2�3 �property. Now, removing edge uv in the shrink-ba
k operation means thisedge does not 
hange the set 
overk(dir), and it implies that there are at least k other verti
es in the originalgraph with angle less than �3 to u and 
loser than v to u. After removing k � 1 verti
es there are at least onesu
h vertex and it shows that removing uv keeps the 2�3 �property of the graph. From Theorem 5, we knowthat Gs�;k is 
onne
ted after removing k � 1 verti
es, and thus Gs�;k is k�
onne
ted. ut5 Preserving 
onne
tivity in 3-dimensionsIn this se
tion, we generalize the 
onne
tivity algorithm from 2-dimensions to 3-dimensions. The main ideahere is that ea
h node in
reases its power until there is no 3D-
one of degree � in whi
h there is no othernode. Algorithm CBTC-3D is exa
tly the same as CBTC, ex
ept in whi
h pro
edure gap�(Du) is repla
edby pro
edure gap � 3D�. The pro
edure gap � 3D� for a node u tests whether there exists a node in ea
h3D-
one of degree � 
entered at u.Pro
edure gap� 3D�(Du)let S be a sphere 
entered at u with arbitrary radius rfor ea
h dire
tion dirv 2 Dulet 
v to be the interse
tion of sphere S with the 
one of degree � whi
h is symmetri
 around dirvlet ov be the 
enter of 
ir
le 
v on sphere Sfor ea
h two 
ir
les 
v = 
w do keep 
v and eliminate 
wif there exists a 
ir
le 
v not interse
ted to any other 
ir
lereturn falsefor interse
tion(s) x of any two 
ir
les 
v and 
w (v 6= w) doif there is no other 
ir
le 
p su
h that x is inside 
psort all 
enters oi's a

ording to their angles relative to x with respe
t to a �xed dire
tionwhere oi is the 
enter of 
ir
le 
i 
ontaining x on its boundaryif there exists an angle \oixoi+1 � � (
onsider i's 
ir
ularly)return falsereturn trueIntuitively, in pro
edure gap� 3D�, �rst we �nd the interse
tion of sphere S with ea
h 
one of degree �symmetri
 around dirv , and then we 
he
k whether these interse
tions 
over all the sphere.Theorem 7. Pro
edure gap3D�(Du) dete
ts 
orre
tly whether there exists a 
one of degree � 
entered at uwithout any other node. 7



Proof. First, we note that there is no 
one of degree �, 
entered at a node u, without any other node if andonly if the set U , the interse
tion of sphere S with all 
ones of degree � symmetri
 around dirv 's 
overs thesphere S. We show that in the 
ase U 6= S one of the following three situations happens (here by S we meanall points on sphere S).1. U is dis
onne
ted.2. There exists a point x whi
h is the interse
tion of boundaries of exa
tly two 
ir
les (these 
ir
les areinterse
tions of 
ones with sphere S) and belongs to (the interior of) none of the other 
ir
les.3. There exists a point whi
h is the interse
tion of k 
ir
les (k � 3) and the angle of two 
onse
utive 
entersof these 
ir
les is greater than or equal to �2 .Suppose U 6= S and let the 
urve 
 be (one of the 
onne
ted 
omponents of) the boundary of U . Curve 
is either a 
ir
le or the union of several 
on
ave ar
s (see Figure 3(aa)). In the former 
ase, sin
e � < �, theset U is dis
onne
ted and the 
laim is proved. In the latter 
ase, we 
onsider x 2 
 one of the interse
tions oftwo boundary ar
s (see Figure 3(aa)). If it is the interse
tion of exa
tly two 
ir
les then there is a point 
loseto x whi
h belongs to none of the other 
ir
les and the proof is 
omplete. Suppose x is the interse
tion of k
ir
les where k � 3. Let o1; : : : ; ok be the 
enters of the 
ir
les passing through x. Sin
e the radii of the 
ir
lesare equal, o1; : : : ; ok belongs to a 
ir
le 
entered at x. If \oixoi+1 < �2 for ea
h i = 1; : : : ; k (ok+1 = o1) thenthe 
ir
les around o1; : : : ; ok (and thus the set U) 
over all neighborhood 
lose enough to x. Sin
e x in on theboundary of U , it is impossible. Hen
e the 
laim is proved. ut
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ounterexample.Below we prove that pro
edure CBTC(�) with � � 2�3 works 
orre
tly.Theorem 8. If � � 2�3 , pro
edure CBTC(�) preserves 
onne
tivity.Proof. We prove by obtaining a 
ontradi
tion. Consider two nodes u and v of minimum distan
e whi
h are
onne
ted in GR, but there is no path from u to v in G�. Sin
e fu; vg 62 E�, w.l.o.g. we 
an assume v 62 N�(u).Thus there exists a node w su
h that dwuv � �3 . Be
ause of pro
edure CBTC-3D, we know jwuj < juvj. Sin
edwuv � �3 and jwuj < juvj, uv is the largest edge of the triangle wuv. Thus jwvj < juvj � R and jwuj < juvj � R.By the assumption that fu; vg is a 
ounterexample with minimum distan
e, w and v are 
onne
ted in G� andalso w and u are 
onne
ted in G�. Thus v and u are 
onne
ted in G� and it is a 
ontradi
tion. utIt is worth mentioning that using a very similar approa
h of k-
onne
tivity in 2-dimensions, we 
an alsoprove pro
edure CBTC(�) for � � 2�3k preserves k-
onne
tivity. Now we show that these bounds are tightupper bounds in some 
ases.Theorem 9. For � > 2�3 , pro
edure CBTC(�) does not ne
essarily preserve 
onne
tivity and for � > �3 doesnot ne
essarily preserve 2- or 3-
onne
tivity. 8



Proof. In the 3-dimensional spa
e with axes x, y and z 
onsider the hexagon A1; � � � ; A6 in the xy-plane
entered at A0 = 0 (i.e., A0 is the origin) with radius R (see Figure 3(bb)). For i = 1; � � � ; 6, let Bi andCi be two points in the spa
e su
h that the triangles 4A0AiBi and 4A0AiCi are equilateral whose planesare orthogonal to the xy-plane (Bi above and Ci under the xy-plane). We de�ne ve
tor v = Æ���!A1A0 andB01 = B1 + v, C 01 = C1 + v, A02 = A2 + v, A06 = A6 + v (here we 
onsider points and their ve
tors from originequivalent). Figure 3(bb) depi
ts these points. If Æ is suÆ
iently small,\B01A0C 01 < 2�3 + � ; jA1B01j = jA1C 01j > R and jA1A06j = jA1A02j > R: (1)For an arbitrary point P de�ne P = (1� Æ1)P (i.e. P is slightly 
loser to the origin than P ). For suÆ
ientlysmall Æ1 > 0, be
ause of (1),\B01A0C 01 < 2�3 + � ; jA1B01j = jA1C 01j > R and jA1A06j = jA1A02j > R: (2)We 
onsider tight examples for k-
onne
tivity for di�erent k's:Case k = 1: We 
onsider the following set of points S1 = fA0 = A0; A1; A3; A5; B01; B3; B5; C 01; C3; C5g.Before the pro
ess, A1 is 
onne
ted only to A0. After the pro
ess with � = 2�3 + �, by radius (1 � Æ1)R thevertex A0 
an observe all of the other points ex
ept A1. Here in ea
h 
one of degree 2�3 + �, node A0 
an seea vertex, whi
h makes A1 isolated.Case k = 2: Let set S2 = fA0; A1; A02; A3; � � � ; A5; A06; B01; B2; � � � ; B6; C 01; C2; � � � ; C6; Dg, where D = 12A1.Before the pro
ess, A1 is 
onne
ted only to A0 and D and the graph is 2-
onne
ted. After the pro
ess, with� = �3 + �2 the 
onne
tion between A0 and A1 will be removed and the graph loses its 2-
onne
tivity.Case k = 3: Assume set S3 = (S2 � fA02g) [ fA2g. Sin
e triangle A0A1A2 is equilateral for small Æ1 > 0,jA1A2j < jA1A0j = R. Thus before the pro
ess, A1 is 
onne
ted to A0, A2 andD, and the graph is 3-
onne
ted.After the pro
ess with � = �3 + �2 , the 
onne
tion between A0 and A1 is removed and the degree of node A1is less than 3. Thus the graph loses its 3-
onne
tivity.It shows that � = 2�3 and � = �3 is tight for 
ases k = 1 and k = 2 respe
tively and � = �3 is an upperbound for k = 3. ut6 Dealing with mobilityIn a wireless multi-hop network, nodes may be added to the system, may 
hange their positions, or even maydie due to la
k of power supply. To deal with these situations, Li et al. [10℄ presented the following NeighborDis
overy Proto
ol (NDP). Ea
h node uses a bea
oning proto
ol to inform its neighbors that it is still alive.The bea
on in
ludes the transmission power and the sending node's ID. This bea
on is sent with the powerobtained from the CBTC algorithm. A node u 
onsiders a node v failed if it does not re
eive any bea
onwithin a time interval T from v (leaveu(v) event). A node v 
onsiders a node u joined to the system, if itre
eives a bea
on from v within the 
urrent time interval T and it has not re
eived any bea
on from v withinthe previous time interval (joinu(v) event). Finally, a node u 
onsiders 
hanging in position of node v, if itsangle with respe
t to u has 
hanged (
hangeu(v) event).Using aforementioned events, the re
on�guration algorithm is simple. If a leaveu(v) event happens, andthere exists an �-gap after dropping diru(v) from Du, node u reruns CBTC(�) with the 
urrent power asthe initial power instead of p0 (see CBTC algorithm). If a joinu(v) event happens, node u do the shrink-ba
koperation, removing farthest neighbor as long as their removal does not 
hange the 
overage. Finally, if a
hangeu(v) event happens, �rst node u treats as it treats for leaveu(v) event, and then if there is no �-gap ittreats as it treats in joinu(v) event. The implementation and timing issues and diÆ
ulties with asyn
hronyhave been dis
ussed in Li's et al. paper [10℄. The reader is referred to the paper for further details.7 Con
lusions and future workIn this paper, we 
onsidered fault-tolerant distributed topology 
ontrol algorithm. Our algorithm was basedon the the 
one-based algorithm introdu
ed by Li et al. We showed that running the algorithm with � = 2�3kis suÆ
ient for preserving k-
onne
tivity. In addition, if k is even this upper bound is tight and if k is oddthis upper bound is very near to the optimal �. We also 
onsidered the extension of the 
one-based algorithm9



to 3-dimensions, and showed that again running the algorithm with � = 2�3k is an upper bound for preservingk-
onne
tivity and for k = 1; 2(3) this bound is (nearly) tight. Here, we present several open problems thatare possible extensions of this paper.In this paper, we designed a fault-tolerant topology 
ontrol algorithm by �nding a k�
onne
ted subnetwork.The problem of �nding k�
onne
ted subgraph with minimum 
ost is known to be NP-Hard. There are 
onstant-fa
tor approximation algorithms for this problem [2℄. In order to use them in a distributed mobile topology
ontrol algorithm, one issue is to implement these algorithms on distributed networks (without global availableinformation), and another issue is to �nd the solution using the solution for the previous network after sometopology 
hanges without re
omputing everything. Adapting algorithms in [2℄ on distributed and mobilenetworks might be a future work in this area.One topi
 of interest is �nding other properties of the graph for whi
h the 
one-based distributed topology
ontrol 
an be applied. Finding algorithms similar to the 
one-based algorithm whi
h only uses some lo
alde
isions to preserve a global property is an open area of resear
h. Finding further optimizations that 
an beapplied after the 
one-based algorithm are interesting too.We suspe
t that � = 2�3k is also a tight upper bound for preserving k-
onne
tivity where k is odd. Con-stru
ting an example for whi
h the algorithm with � = 2�3k + � does not work would be instru
tive. In addition,we believe that the upper bounds for 2-dimensions also works for 3-dimensions, as we showed for k-
onne
tivityfor k � 3. Exploring general examples for these bounds would be a ni
e theoreti
al result.A
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