
Fault-tolerant and 3-Dimensional Distributed Topology ControlAlgorithms in Wireless Multi-hop Networks ?Mohsen Bahramgiri1, MohammadTaghi Hajiaghayi2, Vahab S. Mirrokni21 Department of Mathematis, Massahusetts Institute of Tehnology2 Laboratory for Computer Siene, Massahusetts Institute of TehnologyAbstrat. We an ontrol the topology of a multi-hop wireless network by varying the transmissionpower at eah node. The life-time of suh networks depends on battery power at eah node. This paperpresents a distributed fault-tolerant topology ontrol algorithm for minimum energy onsumption in thesenetworks. More preisely, we present algorithms whih preserve the onnetivity of a network upon failingof, at most, k nodes (k is onstant) and simultaneously minimize the transmission power at eah node tosome extent. In addition, we present simulations to support the e�etiveness of our algorithm. We alsodemonstrate some optimizations to further minimize the power at eah node. Finally, we show how ouralgorithms an be extended to 3-dimensions.1 IntrodutionMulti-hop wireless networks, in whih ommuniation between two nodes an go through multiple nodes, anbe deployed in various ivil and military appliations. Unlike wired networks, in these networks, eah nodean move and thus hange the topology of the network. In this ase, we need to adjust the transmissionpower to keep some properties of the network suh as onnetivity. The lifetime of a wireless network, whihdepending on battery power, usually is restrited beause of limited apaity and resoures. Thus a main goalof topology ontrol is to inrease the longevity of suh networks whih an be obtained by designing power-eÆient algorithms. Indeed, minimizing energy onsumption in topology ontrol is a key fator in the optimalusage of wireless sensor networks [1℄. We also note that beause of limited apaity, we need to have as few aspossible failities suh as GPS.One property of the network that has been onsidered by Li et al.[15, 10℄ is onnetivity. They assumethat nodes do not have any kind of GPS and their algorithm works using only diretional information. Theydemonstrate a simple distributed algorithm in whih eah node uses only loal deisions about its transmissionpower to guarantee the global onnetivity of the network. More preisely, using only diretional information,eah node inreases its transmission power until it detets a neighbor in all diretions. Using this algorithm,the authors simultaneously redue both transmission power and traÆ interferene. The algorithm tends tominimize the power onsumption in eah node, but there are some issues that may make the network unreliable.The �rst one is that the algorithm makes the network very sparse and thus any failure in the network might faila routing proess. Another issue is that for some nodes in the network, we might have a lot of ongestion sinethose nodes are the only ones on the paths from some nodes to others in the network. Thus, the algorithmmight result in hot spots and ongestion, whih in turn might drain battery power and lead to a networkpartition, as pointed out by Li et al. [10℄. These motivations lead us to searh for more powerful propertiesin the network by whih we an tolerate failures and avoid network partition. In this paper, we onsider k-onnetivity of networks in whih we satisfy the following two properties simultaneously: First for eah p < k,failures of (or eliminating) p nodes in the graph does not disonnet it. Seond, there are k node-disjoint pathsbetween any two nodes in the network. One an observe that the former property solves the �rst issue and thelatter property solves the seond issue.Another assumption made by Li et al, [10℄ is that our set of nodes is deployed in a 2-dimensional area.In this paper, we also onsider the 3-dimensional model. In fat, suppose that our nodes are some wirelesssensors in a multi-oor building. In this network, eah node independently explores its surrounding region andestablishes onnetions with other neighbors that are within its transmission and reeption range; i.e., theyare in the sphere of some radius r entered at the node. One an observe that if the number of oors is morethan two or three, then we annot model this network by the aforementioned 2-dimensional model and thuswe need a 3-dimensional model.? Emails: m bahram�mit.edu and fhajiagha,mirroknig�theory.ls.mit.edu



There are some other results on topology ontrol and network design for inreasing network longevity.Hu [6℄ presents a topology ontrol based on Delaunay triangulation. He uses some heuristis to hoose somelinks making a regular and uniform graph; however, he does not use the adaptive transmission power ontrol.Ramanathan and Rosales-Hain [11℄ onsider the onnetivity and bionnetivity (or 2-onnetivity), usinga entralized spanning tree. However their work is based on some heuristis and unfortunately there is noguarantee of onnetivity in all ases. Rodoplu and Meng [12℄ and Li and Halpern [15℄ present a distributedtopology ontrol whih preserves onnetivity. Li et al. [10℄ present a better desription of their previousalgorithm in whih the genesis of our paper lies. Furthermore, these problem s impliitly have been onsideredin other more graph-theoreti papers [3, 7, 14℄. Other approahes also have been presented in the �eld of paketradio networks, sensor networks and wireless ad-ho networks for power minimization and network longevity.The reader is referred to the papers due to Takagi and Kleinrok [13℄, Hou and Li [5℄ and Henizelman et al.[4℄ for further information.The rest of this paper is organized as follows. First, Setion 2 introdues the terminology used throughoutthe paper, and formally de�ne k-onnetivity and our model in a plane and in 3-dimensional spae. Weintrodue our one-based topology ontrol (CBTC) algorithm in Setion 3. In Setion 4, we present the boundson the angles to preserve k-onnetivity in the CBTC algorithm. Setion 5 is devoted to the generalizationof k-onnetivity algorithms from 2-dimensions to 3-dimensions. We desribe very briey how we an handlereon�guration due to mobility in Setion 6. Finally, in Setion 7, we onlude with a list of potential extensionsfor future work.2 The ModelOur model is very similar to the model introdued by Li et al. [10℄. We assume our sensor wireless networkonsists of set V of n nodes (or verties) loated in plane (spae). Eah node v is denoted by its oordinated(x(v); y(v)) ((x(v); y(v); z(v))) in 2-dimensions (3-dimensions). Eah node v has a power supply funtion p(d)where p(d) is the minimum power needed to ommuniate with a node u of distane d away from v. Wesuppose that the maximum power for all nodes is equal to P and this power provides enough supply toommuniate within distane R, that is p(R) = P . Sine in pratie funtion p depends on the nth power(n � 2) of distane d, sending a message through a series of intermediate nodes might take less power thansending it diretly. If eah node transmits with power P , then we have an indued graph GR = (V;E) suhthat E = f(u; v)jd(u; v) � Rg where d(u; v) is the Eulidean distane between u and v in a plane (spae). Ourantennas in the model are omni-diretional ones and hene a node an broadast a message to all nodes withinsome distane r with power p � P .Here we suppose the radio ommuniation unit is able to determine the diretion of the sender when itreeives a message. As mentioned in the introdution, nodes have no GPS. The reader is referred to Krizmanet al. [8℄ for further information on estimating diretion without position information.Our primitives are the same as primitives mentioned by Li et al. [10℄. More preisely, we have send(u, p, m,v) by whih a node u sends message m with power p to v; rev(u, m, v) used by u to reeive message m fromv; and �nally bast(u, p, m) by whih a node u broadasts message m to all nodes v for whih p(d(u; v)) � p.In addition, we assume that if a node u an reah node v with power p then node v an also send a messageto node u with any power p0 � p. If a node u tags the message with sending power p, node v an �gure outhow muh power was used to ommuniate with node v but annot dedue the distane of u.We assume our model is an asynhronous setting, and the ommuniation hannels are reliable. Nodes anbe mobile, i.e., nodes an hange their positions, new nodes may be added to the network or some nodes mayeven die beause of the lak of energy. Our goal is to preserve a global property P in the network, e.g., propertyP is onnetivity in the paper due to Li et al.[10℄ or k-onnetivity, de�ned below, in this paper. Sine ourtopology may hange frequently, the reon�guration algorithm, desribed later, may not ever ath up withthe hanges, and thus in some time, we may lose property P . However, as we will show, we guarantee that ourtopology stabilizes after some time depending on the speed of proesses and ommuniation links.The generalization of onnetivity, namely k-onnetivity, is an important fault-tolerant property of graphs.De�nition 1. A separating set or vertex ut of a graph G = (V;E) is a set S � V (G) suh that G � S hasmore than one omponent. A graph G is k-onneted if every vertex ut has at least k verties. The onnetivityof G, denoted by �(G), is the maximum k suh that G is k-onneted.2



The k-onnetivity property an be onsidered from another viewpoint. Two paths are internally-disjoint ifneither ontains a non-endpoint vertex of the other. It is well known that a graph is k-onneted if and onlyif for eah pair x and y of verties, there exist k pairwise internally-disjoint paths whose endpoints are x andy (see Menger's Theorem [16℄). The reader is referred to the book by West on graph theory [16℄ for furtherinformation about k-onnetivity. Preserving k-onnetivity using loal deisions is one of our major goals inthis paper, whih guarantees a network to be fault-tolerant (see the introdution). In the rest of this paper,we assume that graph GR itself is k-onneted and we try to keep the property and simultaneously minimizethe power at eah node loally.3 The one-based topology ontrol algorithmOur algorithm for topology ontrol is very similar to the algorithm used by Li et al. [15, 10℄. Here we brieypresent the algorithm; and the reader is referred to the original papers for more disussion. The algorithmalled one-based topology ontrol (CBTC) is as follows. A Hello message is originally broadast from a nodeu using minimum power p0. Eah message also ontains the power used to broadast. The power is theninreased at eah step using some funtion Inrease (see the details in [9, 10℄). Upon reeiving suh a messagefrom a node u, node v replies with an Ak message. Node v enloses both the original power that was usedby u to send the message to v (whih it has reeived from the Hello message) and the power that it uses tosend the message. Upon reeiving the Ak message from v, node u adds v to its set Nu of neighbors, tags themessage with the power with whih it originally sent the Hello message to v and �nally adds v's diretiondiru(v) to its set Du of diretions. Here diru(v), whih is measured as an angle relative to some �xed angle,an be obtained by our earlier assumptions. Then using proedure gap�(Du), we test whether there exists agap greater than � between the suessive diretions in Du (diretions are sorted aording to their angles).CBTC(�)Nu = ;;Du = ;; pu = p0;while (pu < P and gap�(Du)) dopu = Inrease(pu)bast(u, pu, Hello) and gather aknowledgments.Nu = Nu + fv : v disoveredgDu = Du + fdiru(v) : v disoveredgWe de�ne set N� = f(u; v) 2 V � V : v 2 N�(u)g where N�(u) is the �nal set of disovered neighborsomputed by a node u at the end of the running of CBTC(�). Also, let pu;� be the orresponding �nal power.First we note that the N� relation is not symmetri. Now we onsider graph G� = (V;E�), where V onsists ofall nodes and E� = ffu; vgj(u; v) 2 N�; (v; u) 2 N�g. In other words, in our new graph, eah node only talksto its neighbors in E� with power at most pu;� (the new graph an be onstruted by some message passingbetween eah vertex u and verties in N�(u)). Li et al. [15, 10℄ have shown that for � � 2�3 , G� is onnetedif and only if G is onneted and the theorem does not work neessarily for � > 2�3 . In the next setion, wegeneralize this property to k-onnetivity.For more detailed timing issues, we refer the reader to [15, 10℄. Also the details of implementing andsimulating of this model an be found in [9℄. In setion 6, you an see some other ideas for dealing withmobility. In the rest of this paper, we assume we have this model with the aforementioned properties andprove new properties for the output of this model with di�erent angles �.4 Bounds on the angles for preserving k-onnetivityThe CBTC(�) algorithm �rst onstruts a direted graph. Then, it eliminates one-diretional edges from thisgraph and keeps bidiretional edges. The following de�nition formalizes this proess:De�nition 2. Let G be an undireted graph. Let D� be the direted subgraph of G that is the output ofCBTC(�) algorithm i.e., eah vertex inreases its power (edge length) until it reahes its maximum power orthe maximum angle between two onseutive neighbors of G is at most �. Let G� be the undireted subgraphof G attained by keeping the bidiretional edges of D� and removing other edges.3



We know the following lemma from [10℄:Lemma 1. If graph G is onneted, then G 2�3 is onneted.Now, we have the following result for preserving k�onnetivity.Theorem 1. If a graph G is k-onneted then G 2�3k is also k-onneted. It means that if the CBTC(�) isapplied with � = 2�3k for a k-onneted graph, then the resulting graph G 2�3k is also k-onneted.Proof. Suppose we run the algorithm with � = 2�3k . After exeution of the algorithm, we want to prove that thegraph G� is k-onneted. We prove it by ontradition. Suppose that there are k � 1 nodes fv1; v2; : : : ; vk�1gwhose removal makes G� a disonneted graph, alled graph G1. Thus G1 is a disonneted graph resultingfrom removing k � 1 verties from G�.Sine G is k-onneted, the graph G0 resulting from removing fv1; v2; : : : ; vk�1g from G is also onneted.From Lemma 1, G02�3 is also onneted. Now we prove that G02�3 is a subgraph of G1, and it ontradits non-onnetivity of G1. Suppose that there exists an edge uv in G02�3 whih is not in G1. Edge uv is an edge inG02�3 , thus the distane of u and v is less than or equal to R. Furthermore, the maximum required power ofeither u or v, say u, in G 2�3k is less than the distane of uv. Edge uv is not an edge of G1, thus it is not inG 2�3k as well. Therefore, there exist some verties loser than v to u for whih the maximum angle between twoonseutive ones is at most 2�3k . After removing k � 1 verties, there exist some verties loser than v to u forwhih the maximum angle between two onseutive ones is at most 2�3 . Hene, these verties are also in G02�3and therefore, the power of u is less than uv in G02�3 . It ontradits the fat that uv is an edge of G02�3 , beausewe just put bidiretional edges in G02�3 . utFor the other side, i.e., the maximum � for preserving k-onnetivity, we need the following de�nition andtheorem.De�nition 3. A k-onneted Harary graph Hk;n, for k = 2r < n, an be onstruted by plaing n verties inirular order and making eah vertex adjaent to the nearest r verties in eah diretion around the irle.H4;8 is depited in Figure 1(aa).Theorem 2. (Harary(1992)[16℄) �(Hk;n) = k, i.e., Hk;n is k-onneted.Remark 1. For k = 2r, graph Hn;k is k-regular. It means that after deleting an edge from G, the degree ofeah of its adjaent verties is k � 1. Thus, the new graph is k � 1-onneted and not k-onneted.Using Harary graphs, we onstrut examples to show an upper bound for the angle to preserve k-onnetivity.Lemma 2. If graph G is k-onneted, then graph G0, resulting from G by adding a vertex v to G and addingedges between v and all other verties, is k + 1-onneted.Proof. The proof is by ontradition. If we remove a subset of k verties of G0 and it beomes disonneted,then this subset, say S, ontains the node v, beause otherwise v is adjaent to the rest of the graph. Thusthe graph with v is onneted. Therefore, this subset of size k ontains v, and in graph G, if we delete subsetS � fvg, it beomes disonneted. Now, jS � fvgj = k � 1 ontradits the k-onnetivity of G. utTheorem 3. For odd k = 2s+1, there exists a k-onneted graph G on whih if we run CBTC(�) algorithmwith � > 2�3(k�1) the resulting graph is not k�onneted. In other words, it is neessary to have � � 2�3(k�1) topreserve k-onnetivity in CBTC(�) algorithm. 4
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(aa) (bb)Fig. 1. (aa) The graph H4;8. (bb) The ounterexample for � = 2�3(k�1) + ÆProof. We onstrut a 2s + 1-onneted network on whih if we use the algorithm with � = 2�3(k�1) + Æ forÆ > 0, the resulting graph is not 2s+1-onneted. This graph is shown in Figure 1(bb). There is a node  in theenter of the irle. There is also a node u in the distane R of  and the other nodes are on the irle of radiusR� �; eah of them has the angle a = � = 2�3(k�1) from eah of its neighbors exept vt, vt+1, u and v1. Pointsvq ; vr; u; vp are plaed around the irle in suh a way that [vpvr = duvr = dvpu = 2�3 and[vqvr = �3 . Here,duv1 = Æ, \vtvt+1 = a� Æ and for all other i's, \vivi+1 = a. Also we have duvt = �3 + Æ, therefore uvt an bethe largest edge in the triangle uvt i.e., uvt > R. In the �rst graph, there is an edge between eah two nodesof distane at most R. This graph without node  is H2s;n, sine eah node is onneted to at least s othernodes in eah side. Thus the �rst graph without node  is 2s-onneted. Lemma 2 shows that after addingnode  to the graph the resulting graph is 2s + 1-onneted. Notie that uvt > R implies that uvt 62 E(G),hene deg(u) = 2s+ 1.Now, by running the algorithm with � = 2�3(k�1) + Æ, when the enter point reahes to power R � �, thelargest angle between two onseutive verties around  will be 2�3(k�1) + Æ, and it will not inrease its power.Thus, in the resulting graph from the algorithm, we do not have the edge u. Now, the degree of u in the newgraph is 2s, and deleting all neighbors of u will make this graph disonneted. Thus, the new graph is not2s + 1-onneted. Therefore, angle 2�3(k�1) + Æ, for Æ > 0, is not enough for preserving k-onnetivity for oddk. utTheorem 4. For even k = 2s, there exists a k-onneted graph G on whih if we run CBTC(�) algorithmwith � > 2�3k the resulting graph is not k�onneted. In other words, it is neessary (and suÆient) to have� � 2�3k to preserve k-onnetivity in CBTC(�) algorithm.Proof. We onstrut this network very similar to the network for odd k. This graph di�ers from the previousone only for the plae of node vq . Its plae is slightly hanged suh that duvq = �3 + Æ2 . Thus, the edge betweenu and vq is eliminated in the �rst graph, and in this graph deg(u) = 2s. One an observe that by hoosingappropriate Æ and � it is possible to just delete the edge uvq and no other edges. Therefore, the �rst graphin Figure 1(bb) with this hange will be a 2s-onneted graph, and if we run the algorithm with the same� = 2�3k + Æ, then the resulting graph will have similar properties that were mentioned in the proof of Theorem3. In other words, the edge between u and  will not be in the resulting graph. The new graph is not 2s-onneted, beause it has a node of degree 2s � 1. Hene, this example shows that the angle � = 2�3k + Æ forany Æ > 0 is not suÆient for preserving k onnetivity, where k is even. utSo far, we have shown that for odd k, 2�3k � � � 2�3(k�1) and for even k, � = 2�3k is suÆient and neessaryfor preserving k-onnetivity. For large k's the di�erene between lower bound and upper bound is small. Forexample, for k > 10o, this di�erene is at most 1o. 5



4.1 Experimental ResultsIn order to understand the e�etiveness of our algorithm, we generated random networks on whih we seeits e�et. You an see an example in Figures 2. In that example, there are 100 nodes randomly plaed in a400� 400 retangular grid. Eah node has a maximum transmission radius of 200.(a) (b)

(aa) (bb)Fig. 2. (aa) First Network. (bb) Network after CBTC( 2�6 )In table 4.1, we also list the results for k = 1; 2; 3 in terms of the average node degree and the averageradius. These graphs have 200 nodes randomly plaed in a grid of 400� 400 with maximum power 260. Thee�etiveness of this algorithm an be easily seen from the average radius of new networks ompared with the�rst network. Max Power � = 2�3 (k = 1) � = 2�6 (k = 2) � = 2�9 (k = 3)Average Degree 67.400 4.055 14.600 21.925Average Radius 260 92.510 158.388 184.025Table 1. Average degree and radius of the one-based topology ontrol algorithm for 1-, 2-, and 3-onnetivity.4.2 An optimizationSimilar to the shrink-bak operation in [1℄ for preserving onnetivity, we an design an optimization operationto the basi algorithm to further redue the maximum power at eah node while still preserving k-onnetivity.Here the same shrink-bak optimization in [1℄ does not work for preserving k-onnetivity; however it an bemodi�ed as follows. Given a set dir of diretions (angles), de�ne overk(dir) = f�j for at least k members�0 2 dir; j� � �0j mod 2� � �3 g. We modify CBTC(�) suh that at eah iteration, a node in Nu is taggedwith the power used the �rst time it was disovered. Suppose that the power levels used by node u during thealgorithm are p1; : : : ; pq. If u is a boundary node, pq is the maximum power P . A boundary node suessivelyremoves nodes tagged with power pq, then pq�1, and so on, as long as their removal does not hange theoverage. In other words, let diri, i = 1; : : : ; q; be the set of diretions found with all power levels pi or less,then the minimum i suh that overk(diri) = overk(dirq) is found. Let Ns�;k(u) onsist of all the nodesin N�;k(u) tagged with power pi or less. Suppose Ns�;k = ffu; vgjv 2 Ns�;k(u)g. Also, similar to G�, G�;kis the undireted (symmetri) graph onstruted from N�;k and Gs�;k is the undireted (symmetri) graphonstruted from Ns�;k.In order to prove orretness of this optimization operation for preserving k-onnetivity, we need thefollowing de�nition and theorem.De�nition 4. We say a subgraph G0 of GR has 2�3 �property, if for every edge uv 2 E(G) suh that uv 62E(G0), there exists a vertex w in V (G) suh that either dwuv � �3 and jwuj < juvj or dwvu � �3 and jwvj < juvj.6



From [10℄, it is not hard to see that graph G 2�3 has 2�3 �property. The following theorem states a strongerfat:Theorem 5. If GR is a onneted graph, then every subgraph G0 of G with 2�3 �property is onneted.Proof. We prove it by ontradition. Suppose G0 is not onneted and suppose u and v are the losest pair ofverties that are in di�erent onneted omponents and uv 2 E(G). Sine uv 62 E(G0), there exists a vertexw for whih either dwuv � �3 and jwuj < juvj or dwvu � �3 and jvwj < juvj. Without loss of generality, assumethe former ase. uv 2 E(G) means juvj � R, thus jwuj < juvj � R, and uw 2 E(G). Angle dwvu � �3 meansthat edge wv annot be the largest edge in triangle uvw, thus jwvj < juvj � R, thus wv 2 E(G). Sine u andv are not in the same onneted omponent, wv 62 E(G0) or wu 62 E(G0) whih ontradits the minimality ofuv. This ontradition shows the onnetivity of G0. utThe next theorem shows that shrink-bak is a proper optimization operation.Theorem 6. The shrink-bak optimization desribed above preserves k-onnetivity. In other words, if � � 2�3k ,then aording to the above de�nition, Gs�;k is k-onneted if the graph GR is k-onneted.Proof. We know that if G is k-onneted then G�;k is k-onneted. Now, we should prove that in this aseGs�;k is k-onneted as well. We an prove this fat, by proving that even after removing k � 1 verties theshrink-bak operation does not violate the 2�3 �property of the graph. Notie that the �rst graph, G�;k afterremoving k � 1 verties has 2�3 �property. Now, removing edge uv in the shrink-bak operation means thisedge does not hange the set overk(dir), and it implies that there are at least k other verties in the originalgraph with angle less than �3 to u and loser than v to u. After removing k � 1 verties there are at least onesuh vertex and it shows that removing uv keeps the 2�3 �property of the graph. From Theorem 5, we knowthat Gs�;k is onneted after removing k � 1 verties, and thus Gs�;k is k�onneted. ut5 Preserving onnetivity in 3-dimensionsIn this setion, we generalize the onnetivity algorithm from 2-dimensions to 3-dimensions. The main ideahere is that eah node inreases its power until there is no 3D-one of degree � in whih there is no othernode. Algorithm CBTC-3D is exatly the same as CBTC, exept in whih proedure gap�(Du) is replaedby proedure gap � 3D�. The proedure gap � 3D� for a node u tests whether there exists a node in eah3D-one of degree � entered at u.Proedure gap� 3D�(Du)let S be a sphere entered at u with arbitrary radius rfor eah diretion dirv 2 Dulet v to be the intersetion of sphere S with the one of degree � whih is symmetri around dirvlet ov be the enter of irle v on sphere Sfor eah two irles v = w do keep v and eliminate wif there exists a irle v not interseted to any other irlereturn falsefor intersetion(s) x of any two irles v and w (v 6= w) doif there is no other irle p suh that x is inside psort all enters oi's aording to their angles relative to x with respet to a �xed diretionwhere oi is the enter of irle i ontaining x on its boundaryif there exists an angle \oixoi+1 � � (onsider i's irularly)return falsereturn trueIntuitively, in proedure gap� 3D�, �rst we �nd the intersetion of sphere S with eah one of degree �symmetri around dirv , and then we hek whether these intersetions over all the sphere.Theorem 7. Proedure gap3D�(Du) detets orretly whether there exists a one of degree � entered at uwithout any other node. 7



Proof. First, we note that there is no one of degree �, entered at a node u, without any other node if andonly if the set U , the intersetion of sphere S with all ones of degree � symmetri around dirv 's overs thesphere S. We show that in the ase U 6= S one of the following three situations happens (here by S we meanall points on sphere S).1. U is disonneted.2. There exists a point x whih is the intersetion of boundaries of exatly two irles (these irles areintersetions of ones with sphere S) and belongs to (the interior of) none of the other irles.3. There exists a point whih is the intersetion of k irles (k � 3) and the angle of two onseutive entersof these irles is greater than or equal to �2 .Suppose U 6= S and let the urve  be (one of the onneted omponents of) the boundary of U . Curve is either a irle or the union of several onave ars (see Figure 3(aa)). In the former ase, sine � < �, theset U is disonneted and the laim is proved. In the latter ase, we onsider x 2  one of the intersetions oftwo boundary ars (see Figure 3(aa)). If it is the intersetion of exatly two irles then there is a point loseto x whih belongs to none of the other irles and the proof is omplete. Suppose x is the intersetion of kirles where k � 3. Let o1; : : : ; ok be the enters of the irles passing through x. Sine the radii of the irlesare equal, o1; : : : ; ok belongs to a irle entered at x. If \oixoi+1 < �2 for eah i = 1; : : : ; k (ok+1 = o1) thenthe irles around o1; : : : ; ok (and thus the set U) over all neighborhood lose enough to x. Sine x in on theboundary of U , it is impossible. Hene the laim is proved. ut
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PSfrag replaementsS(aa) (bb)Fig. 3. (aa) Conave urves (bb) The 3D ounterexample.Below we prove that proedure CBTC(�) with � � 2�3 works orretly.Theorem 8. If � � 2�3 , proedure CBTC(�) preserves onnetivity.Proof. We prove by obtaining a ontradition. Consider two nodes u and v of minimum distane whih areonneted in GR, but there is no path from u to v in G�. Sine fu; vg 62 E�, w.l.o.g. we an assume v 62 N�(u).Thus there exists a node w suh that dwuv � �3 . Beause of proedure CBTC-3D, we know jwuj < juvj. Sinedwuv � �3 and jwuj < juvj, uv is the largest edge of the triangle wuv. Thus jwvj < juvj � R and jwuj < juvj � R.By the assumption that fu; vg is a ounterexample with minimum distane, w and v are onneted in G� andalso w and u are onneted in G�. Thus v and u are onneted in G� and it is a ontradition. utIt is worth mentioning that using a very similar approah of k-onnetivity in 2-dimensions, we an alsoprove proedure CBTC(�) for � � 2�3k preserves k-onnetivity. Now we show that these bounds are tightupper bounds in some ases.Theorem 9. For � > 2�3 , proedure CBTC(�) does not neessarily preserve onnetivity and for � > �3 doesnot neessarily preserve 2- or 3-onnetivity. 8



Proof. In the 3-dimensional spae with axes x, y and z onsider the hexagon A1; � � � ; A6 in the xy-planeentered at A0 = 0 (i.e., A0 is the origin) with radius R (see Figure 3(bb)). For i = 1; � � � ; 6, let Bi andCi be two points in the spae suh that the triangles 4A0AiBi and 4A0AiCi are equilateral whose planesare orthogonal to the xy-plane (Bi above and Ci under the xy-plane). We de�ne vetor v = Æ���!A1A0 andB01 = B1 + v, C 01 = C1 + v, A02 = A2 + v, A06 = A6 + v (here we onsider points and their vetors from originequivalent). Figure 3(bb) depits these points. If Æ is suÆiently small,\B01A0C 01 < 2�3 + � ; jA1B01j = jA1C 01j > R and jA1A06j = jA1A02j > R: (1)For an arbitrary point P de�ne P = (1� Æ1)P (i.e. P is slightly loser to the origin than P ). For suÆientlysmall Æ1 > 0, beause of (1),\B01A0C 01 < 2�3 + � ; jA1B01j = jA1C 01j > R and jA1A06j = jA1A02j > R: (2)We onsider tight examples for k-onnetivity for di�erent k's:Case k = 1: We onsider the following set of points S1 = fA0 = A0; A1; A3; A5; B01; B3; B5; C 01; C3; C5g.Before the proess, A1 is onneted only to A0. After the proess with � = 2�3 + �, by radius (1 � Æ1)R thevertex A0 an observe all of the other points exept A1. Here in eah one of degree 2�3 + �, node A0 an seea vertex, whih makes A1 isolated.Case k = 2: Let set S2 = fA0; A1; A02; A3; � � � ; A5; A06; B01; B2; � � � ; B6; C 01; C2; � � � ; C6; Dg, where D = 12A1.Before the proess, A1 is onneted only to A0 and D and the graph is 2-onneted. After the proess, with� = �3 + �2 the onnetion between A0 and A1 will be removed and the graph loses its 2-onnetivity.Case k = 3: Assume set S3 = (S2 � fA02g) [ fA2g. Sine triangle A0A1A2 is equilateral for small Æ1 > 0,jA1A2j < jA1A0j = R. Thus before the proess, A1 is onneted to A0, A2 andD, and the graph is 3-onneted.After the proess with � = �3 + �2 , the onnetion between A0 and A1 is removed and the degree of node A1is less than 3. Thus the graph loses its 3-onnetivity.It shows that � = 2�3 and � = �3 is tight for ases k = 1 and k = 2 respetively and � = �3 is an upperbound for k = 3. ut6 Dealing with mobilityIn a wireless multi-hop network, nodes may be added to the system, may hange their positions, or even maydie due to lak of power supply. To deal with these situations, Li et al. [10℄ presented the following NeighborDisovery Protool (NDP). Eah node uses a beaoning protool to inform its neighbors that it is still alive.The beaon inludes the transmission power and the sending node's ID. This beaon is sent with the powerobtained from the CBTC algorithm. A node u onsiders a node v failed if it does not reeive any beaonwithin a time interval T from v (leaveu(v) event). A node v onsiders a node u joined to the system, if itreeives a beaon from v within the urrent time interval T and it has not reeived any beaon from v withinthe previous time interval (joinu(v) event). Finally, a node u onsiders hanging in position of node v, if itsangle with respet to u has hanged (hangeu(v) event).Using aforementioned events, the reon�guration algorithm is simple. If a leaveu(v) event happens, andthere exists an �-gap after dropping diru(v) from Du, node u reruns CBTC(�) with the urrent power asthe initial power instead of p0 (see CBTC algorithm). If a joinu(v) event happens, node u do the shrink-bakoperation, removing farthest neighbor as long as their removal does not hange the overage. Finally, if ahangeu(v) event happens, �rst node u treats as it treats for leaveu(v) event, and then if there is no �-gap ittreats as it treats in joinu(v) event. The implementation and timing issues and diÆulties with asynhronyhave been disussed in Li's et al. paper [10℄. The reader is referred to the paper for further details.7 Conlusions and future workIn this paper, we onsidered fault-tolerant distributed topology ontrol algorithm. Our algorithm was basedon the the one-based algorithm introdued by Li et al. We showed that running the algorithm with � = 2�3kis suÆient for preserving k-onnetivity. In addition, if k is even this upper bound is tight and if k is oddthis upper bound is very near to the optimal �. We also onsidered the extension of the one-based algorithm9
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