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ommon me
hanism for ensuring fault-toleran
ein a distributed system is data repli
ation, whi
h leads to the prob-lem of maintaining the 
onsisten
y of the repli
as. Quorum systems area 
ommon solution to this problem, and mu
h work has been done indetermining quorum systems with good theoreti
al properties, su
h ashigh availability and robustness to 
ertain 
lasses of failures. However,even given a theoreti
ally good quorum system, it is not obvious howto deploy su
h a system in a real distributed system so as to a
hievelow network 
ost of using the quorum system. It turns out that for anyquorum system, there exist natural distributed networks where a sub-optimal deployment performs signi�
antly more poorly than an optimaldeployment.This paper introdu
es a new 
ombinatorial optimization problem, theQuorum Deployment Problem, and studies its 
omplexity. We demon-strate that it is NP-hard to approximate the Quorum Deployment Prob-lem within any fa
tor of nÆ, where n is the number of nodes in thedistributed network and Æ > 0. The problem is NP-hard on even thesimplest possible distributed network: a one-dimensional line with met-ri
 
ost.Finally, we begin to study algorithms for variants of the problem. Somevariants 
an be solved optimally in polynomial time and some NP-hardvariants 
an be approximated to within a 
onstant fa
tor.



1 Introdu
tionThe most 
ommon te
hnique for ensuring fault-toleran
e in a distributed systemis repli
ation: the data or 
ode is repli
ated at a large number of nodes in thenetwork, thus ensuring that no small number of failures 
an derail the 
ompu-tation. The primary diÆ
ulty with this approa
h is ensuring the 
onsisten
y ofrepli
as, without in
reasing the 
ost of a

essing the data too mu
h. There isa fundamental trade-o� between the fault-toleran
e of the data and the 
ost ofmaintaining 
onsisten
y.Quorum systems are 
ommonly used to maintain the 
onsisten
y of repli
as.A quorum, q, is a set of nodes in the network, and a quorum system is a set ofquorums, Q, su
h that every two quorums in Q share at least one node. That is,given two quorums, q; q0 2 Q, there exists some node i 2 q \ q0; the interse
tionof these two quorums is non-empty.In order to ensure the 
onsisten
y of the data, when a node 
hooses to modifythe data, it noti�es some quorum, say, q 2 Q, of the modi�
ation; when anode wants to a

ess the data, it 
onta
ts some quorum, say, q0 2 Q. Sin
ethe two quorums, q and q0, interse
t at some node, we 
an be sure that the readoperation that a

esses the data learns about the earlier modi�
ation. Variationson this te
hnique are frequently used to implement data repli
ation (e.g., [1{4℄).For example, Attiya et al. use this te
hnique to 
onstru
t a read/write sharedmemory ([5℄), and this is later extended to 
onstru
t a re
on�gurable read/writeshared memory ([6, 7℄). A similar te
hnique has been used for mutual ex
lusionproto
ols (e.g., [8, 9℄) and se
ure a

ess proto
ols (e.g., [10℄).Mu
h of the original work on quorum system assumes that ea
h quorum
onsisted of a majority of the nodes in the network. In this way, the interse
-tion property is immediately guaranteed, and optimal fault-toleran
e is a
hieved.(See, for example, [11{13℄.) More re
ently, however, there has been mu
h resear
hdeveloping more 
ompli
ated quorum systems, designed to allow improved avail-ability, faster responses, and more 
exibility to respond to dynami
 systems.(See, for example, [14{17℄.)While many of these quorum systems have the potential to improve perfor-man
e, it turns out that the performan
e of a quorum system depends signi�-
antly on how it is used. We refer to the use of a quorum system as a quorumdeployment, whi
h we de�ne more formally in Se
tion 2. As an example, how-ever, 
onsider the quorum system in Figure 1(a) (originally des
ribed in [14℄).The nodes in the network are arranged in a grid with pn nodes in ea
h rowand 
olumn. Ea
h quorum 
onsists of one row and one 
olumn. Any two quo-rums, then, interse
t at two nodes; for example, in Figure 1(a) quorums q andq0 interse
t at node i. Figure 1(b) represents an arbitrary network embedded ina two-dimensional plane in whi
h the 
ost of 
ommuni
ation between any twonodes is proportional to the distan
e between the nodes. In order to use thequorum system, ea
h node in the real network must be mapped to a node in thegrid, as in Figure 1(
). Then, ea
h node 
hooses one of the quorums to use; in anoptimal world, all the nodes in the 
hosen quorum are near to the node that is1
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(
) Mapping of realnodes to quorumsystemFig. 1. Figure 1(a) represents an abstra
t quorum system of 16 nodes, where q andq0 are two possible quorums, and i is a node in the interse
tion. Figure 1(b) is anexample of a network of nodes, embedded in a two-dimensional plane; 
ommuni
ationtime between two nodes is proportional to their distan
e. Figure 1(
) is a mapping ofthe real nodes in the network onto the abstra
t nodes in the quorum system.using it. For example, node i might 
hoose to use quorum q, while node j might
hoose to use quorum q0.If the quorum system is badly deployed, the 
ost of maintaining 
onsistentrepli
as may be prohibitively expensive. It turns out that for 
ompletely naturalquorum systems { and real world networks { the di�eren
e between an optimaldeployment and a sub-optimal deployment 
an be quite large. In fa
t, we 
anshow that for every non-trivial quorum system, there is some network in whi
han optimal deployment is mu
h better than a bad deployment. If there are twonodes 
onne
ted by an expensive 
ommuni
ation link (for example, the networkis o

asionally partitioned), a sub-optimal deployment may require the nodes to
ommuni
ate while an optimal deployment may not. One 
on
lusion we drawfrom this is that the development of new quorum systems must take into a

ountthe eÆ
ien
y with whi
h they 
an be deployed.In this paper, we introdu
e the Quorum Deployment Problem, the problemof using a quorum system optimally. We assume that the set of quorums is�xed, and that the 
ost of sending a message between any two nodes is knownin advan
e. The 
ost for some node, i, of using a quorum system is de�ned tobe the 
ost of sending a message to every node in some quorum. Our goal is todetermine the mapping from the real nodes in the network to the abstra
t nodesin the quorum spe
i�
ation, and the 
hoi
e of whi
h quorum ea
h node shoulduse during an operation. We present the problem more formally in Se
tion 2.2



1.1 Summary of ResultsOur goal in this paper is to determine when the Quorum Deployment Problem
an and 
annot be eÆ
iently solved. We �rst noti
e that a simpli�ed versionof the problem, the Partial Deployment Problem, is solvable in polynomial time(see Se
tion 3).It turns out that the general version of the Quorum Deployment Problem isquite hard. Even in the simplest possible distributed network { where the nodesare arranged in a line { the problem is NP-hard.The natural question, then, is whether it is possible to determine an ap-proximately optimal deployment. We show in Se
tion 4 that it is NP-hard toapproximate an optimal deployment within any 
onstant fa
tor. In fa
t, it ishard to approximate an optimal deployment within any fa
tor of nÆ for anyÆ > 0, where n is the number of nodes in the network.Finally, in Se
tion 5, we explore spe
ial 
ases (that are still NP-hard) inwhi
h the problem 
an be approximately solved, and in Se
tion 6, we 
on
ludeand dis
uss future work.2 The Quorum Deployment ProblemIn this se
tion, we formally de�ne the Quorum Deployment Problem. The goal ofthe Quorum Deployment Problem is to determine, given a quorum system anda distributed network, how best to make use of that quorum system.More formally, assume we are given a distributed network 
onsisting of nnodes, 
onne
ted by a message-passing network. We are given an n by n matrix,C, that spe
i�es the 
ost of sending a message from node i to node j: Ci;j isassumed to be the laten
y of the network 
onne
ting i and j. In this paper, weassume that the 
ommuni
ation network is �xed. Anytime the network 
hanges,the deployment must be re
al
ulated, resulting in a quorum re
on�guration.We are also given a quorum system, Q. For 
on
reteness, we assume that Q
onsists of exa
tly n quorums, one for ea
h node in the network. While quorumsystems with more { and fewer { quorums may be interesting, we dis
over thatthe problem is quite hard even with this restri
tion. We assume that the quorumsystem is spe
i�ed as an n by n matrix, where the 
olumns represent the nodesin the quorums and the rows represent the quorums. Ea
h entry in the matrixis either a 0 or a 1. Quorum p 
ontains node j if (and only if) Qp;j = 1. (SeeFigure 3(b) for an example of a quorum system in matrix form.)Re
all that the original notion of a quorum system assumes that every pairof quorums interse
t. O

asionally in this paper, we relax this restri
tion, andallow the matrix Q to 
ontain quorums that do not share a node. It turns outthat the relaxed version of the problem is polynomially equivalent to the stri
tversion of the problem.A quorum deployment, then 
onsists of two 
omponents. First, re
all thatea
h 
olumn in the quorum matrix represents a node; therefore ea
h 
olumn inthe quorum matrix must be assigned to a node in the network. This determines3



whi
h real nodes are in ea
h quorum. If node i is assigned to 
olumn j, then Qp;jdetermines whether node i is in quorum p. (Re
all that ea
h row of Q representsa quorum.)Se
ond, ea
h node is assigned a quorum to use. Typi
ally when using a quo-rum system, a node performing an operation must send a message to every nodein some quorum, or re
eive a message from every node in some quorum. If, forexample, node i is assigned quorum p, then whenever an operation o

urs atnode i, it �rst attempts to 
onta
t quorum p. If this fails (due to the failure ofnodes in quorum p, for example), then node i may 
onta
t other quorums. (It isa separate { and harder { problem to determine a sequen
e of quorums to 
on-ta
t.) In this paper, we attempt to optimize for the 
ommon 
ase, where quorump has not failed. For ea
h node i, the 
ost of the deployment is determined bythe 
ost of a

essing ea
h node in its assigned quorum. For example, if node i isassigned quorum p, then the 
ost of the quorum deployment for i is:Xj2p Ci;jWe express ea
h of the two 
omponents of quorum deployment as a permu-tation on [1; n℄. We refer to the �rst 
omponent, the assignment of a node to a
olumn in the quorum matrix, as the permutation �. That is, node i is assignedto 
olumn j if �(i) = j. Therefore, if node i is assigned quorum p, then the 
ostof the quorum deployment for i is:nXj=1 Ci;j �Qp;�(j)The �rst term determines the 
ost of a

essing node j, and the se
ond termdetermines whether node j is in quorum p: the term Qp;�(j) is 1 if the 
olumnassigned to j is part of quorum p.We refer to the se
ond 
omponent of the quorum deployment, the assignmentof a quorum to ea
h node, as the permutation �. Node i is assigned quorum p if�(i) = p. Therefore, the 
ost of quorum deployment for node i is:nXj=1Ci;j �Q�(i);�(j)The total 
ost of a quorum deployment is the total 
ost of deployment for allthe nodes in the network. Therefore, the total 
ost of deployment, D(C;Q; �; �)is: D(C;Q; �; �) = nXi=1 nXj=1Ci;j �Q�(i);�(j)Our goal is to minimize this 
ost: given matri
es C and Q, �nd two permu-tations � and � on f1; : : : ; ng that minimize D(C;Q; �; �) a
ross all possible
hoi
es for � and �. We 
all this optimization problem the Quorum DeploymentProblem. 4



Throughout the paper, we o

asionally 
onsider variants and restri
ted ver-sions of the Quorum Deployment Problem. We des
ribe these in more detail asthey arise. The following is a brief preview of the variants:{ Relaxed Quorum Deployment : In this variant, the \quorums" are not re-quired to interse
t3. We may at times refer to the original problem as thestri
t deployment problem.{ Partial Quorum Deployment : In this variant, one of the two permutations,� or �, is given in advan
e as part of the problem instan
e.{ Linear Quorum Deployment : In this variant, the 
ommuni
ation network isrestri
ted to be a linear network. That is, all the nodes in the distributednetwork are embedded on a line.{ Metri
 Cost Quorum Deployment : In this variant, the 
ost matrix de�nes ametri
. In parti
ular, the distan
es between the nodes satis�es the triangleinequality.3 Partial Quorum DeploymentWe �rst 
onsider the restri
ted problem of Partial Quorum Deployment. In thegeneral Quorum Deployment Problem, we are given a quorum, Q, and a dis-tributed network, C, and our goal is to determine a deployment, h�; �i, thathas optimal 
ost. In the Partial Quorum Deployment problem, we assume thatone of the two permutations in the deployment is �xed. That is, we assume thateither � or � is given.In one 
ase, the permutation � may be �xed in advan
e. For example, � maybe �xed as the identity: node 1 uses quorum 1, node 2 uses quorum 2, et
. Thegoal is to determine the permutation �, the assignment of nodes to the 
olumnsof the quorum matrix.In the se
ond 
ase, the permutation � is �xed in advan
e. The goal, then,is to determine the permutation �, the assignment of whi
h quorum ea
h nodeshould use.Both 
ases of the Partial Deployment Problem 
an be redu
ed to the As-signment Problem, whi
h has been well studied and 
an be solved in polynomialtime (see, for example, [18℄).In the Assignment Problem, we are given a weighted bipartite graph, 
onsist-ing of 2n nodes { n left nodes, L, and n right nodes, R { and a weight fun
tionwi;j � 0 for all i 2 L and j 2 R. The goal is to 
hoose a mat
hing 
onsisting ofn edges with minimum weight.Theorem 1. Given an instan
e of the Partial Deployment Problem, 
onsistingof C, Q, and �, we 
an determine an instan
e of the Assignment Problem (inO(n2) time) where the solution to the Assignment Problem is the permutation �3 In this 
ase, referring to the sets as \quorums" is a misuse of terminology, sin
e thede�ning features of a set of quorums is that they interse
t. For simpli
ity, however,we 
ontinue to use this term. 5



that minimizes the 
ost of the deployment. The same holds if the Partial Deploy-ment Problem is spe
i�ed to in
lude �; the solution to the resulting AssignmentProblem is the permutation � that minimizes the 
ost of the deployment.Proof. Assume that the permutation � is given. We 
onstru
t a bipartite graphfor the Assignment Problem where the left nodes, L, represent the nodes andthe right nodes, R, repesent the 
olumns in the quorum matrix, Q. The weightof an edge 
onne
ting i 2 L and j 2 R is the 
ost of assigning i to 
olumn j inQ. That is: wi;j = nX̀=1 C`;i �Q�(`);j :The Assignment Problem results in a permutation that minimizes the 
ost ofthe weights. The resulting permutation minimizes the 
ost of the quorum de-ployment.Equivalently, if the permutation � is given, the left nodes in the bipartitegraph represent the nodes and the right nodes represent the quorums; the weightof an edge represents the 
ost of a node using a given quorum. In this 
ase:wi;j = nX̀=1 Ci;` �Qj;�(`) :Again, the Assignment Problem minimizes the weights, resulting in a permuta-tion that minimizes the 
ost of the quorum deployment. ut4 Hardness of the Quorum Deployment Problem
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Fig. 2. Example in-stan
e of the Balan
edComplete Bipartite Sub-graph problem, wherek = 2.

While the Partial Deployment Problem is readilysolvable, the general Quorum Deployment Problem isquite hard. In this se
tion, we �rst show in Se
tion 4.1that it is NP-hard to approximate the general Quo-rum Deployment Problem within any 
onstant fa
-tor. In fa
t, for any Æ > 0, it is hard to approximatewithin a fa
tor of nÆ, where n is the number of nodesin the network. We then show that another variant,the Metri
 Cost Deployment problem, is NP-hard,and that the relaxed version (where the quorums arenot required to interse
t) is also NP-hard to approx-imate.4.1 Hardness of ApproximationOur main hardness result is derived from a gap-
reating redu
tion from the Balan
ed Complete Bi-partite Subgraph (BCBS) Problem (see [19℄ for a6
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1CCCCCCCCCCCCA(b) Quorum Matrix,Quorums(G; k)Fig. 3. An example of a redu
tion from the Balan
ed Complete Bipartite Subgraphproblem in Figure 2 to the Quorum Deployment Problem.statement of the problem, and [20℄ for re
ent re-sults). In this problem, we are given a bipartite graph,G = (V;E), 
onsisting of left nodes, L, and rightnodes, R. We are also given a 
onstant, k. The goalis to �nd a balan
ed 
omplete bipartite subgraph of size 2k, with k left nodesand k right nodes.Throughout this se
tion, we use the bipartite graph in Figure 2 as an example.Noti
e that this graph has a balan
ed, 
omplete subgraph of size two, 
onsistingof nodes 2 and 3 on the left (in L) and nodes 5 and 8 on the right (in R).However, there is no su
h subgraph of size three.In our redu
tion, we produ
e an instan
e of the Quorum Deployment Problemthat has an eÆ
ient deployment if and only if the graph G 
ontains a balan
ed
omplete bipartite subgraph of size k.First, we de�ne the redu
tion, Cost(G; k) = C and Quorums(G; k) = Q, thattransforms an instan
e of the BCBS problem into an instan
e of the QuorumDeployment Problem. We 
hoose n = jV j+1. The �rst n�1 
olumns en
ode theoriginal BCBS problem; the last 
olumn ensures that all the quorums interse
t.The 
ost matrix, C, is related to the \
omplement" of the in
iden
e matrixfor the graph, G: ea
h edge in the matrix G results in a 
heap link in the matrixC, while two dis
onne
ted nodes in G are 
onne
ted by an expensive link in thematrix C. For the purposes of the redu
tion, we �x x so that nx is suÆ
ientlylarge. The size of x depends on the desired value of Æ. (That is, x = O(Æ).)Formally: Cost(G; k)i;j =8<:1 if (i; j) 2 E and i; j < nnx if (i; j) =2 E and i; j < n1 if i = n or j = nConsider the example in Figure 3(a). The submatrix delimited by the �rst fourrows and �rst four 
olumns represents the edges between nodes in L. Noti
e7



that be
ause there are no edges between nodes in L, all the entries are nx. Thesubmatrix delimited by rows �ve through eight and 
olumns �ve through eightrepresents edges between nodes in R, and therefore 
onsists only of entries nx.The last row and the last 
olumn 
ontain the value 1. The remaining entriesrepresent the edges between nodes in L and nodes in R. For example, the entryat (3; 5) represents the edge between node 3 and node 5. Observe that the 
ostmatrix is symmetri
.The quorum matrix, Q, 
onsists of k quorums 
ontaining the �rst k nodes,and the extra node, n. It also 
ontains a single quorum that 
ontains all thenodes. The rest of the quorums 
ontain only node n. Formally:Quorums(G; k)i;j = 8>><>>:1 if i; j � k1 if i = n1 if j = n0 otherwiseConsider again the example in Figure 3(b). The �rst two rows and two 
olumns
ontains the value 1, representing the 
omplete bipartite graph of size two. Thelast row and the last 
olumn 
ontain the value 1, as well.We show that if the original bipartite graph 
ontains a balan
ed, 
ompletebipartite subgraph of size k, then the derived Quorum Deployment Problem hasa small 
ost. Alternatively, if the original bipartite graph does not 
ontain su
h asubgraph, then the derived Quorum Deployment Problem results in a high 
ostdeployment. A full proof is 
ontained in Appendix A.Lemma 1. Fix any x > 1. Let G = (V;E) be a bipartite graph, and let 1 � k �jV j. Let C = Cost(G; k) and Q = Quorums(Q; k). Then the following holds:(G; k) 2 BCBS ) 9�; 9�; D(C;Q; �; �) � n2(G; k) =2 BCBS ) 8�;8�; D(C;Q; �; �) > nxThat is, if there is a size k balan
ed, 
omplete, bipartite subgraph in G, then theminimum 
ost of the resulting deployment is less then or equal to n2. If there isnot a size k balan
ed, 
omplete, bipartite subgraph in G, then the minimum 
ostof the resulting deployment is greater than nx.Proof (sket
h). The proof 
onsists of two parts. In the �rst, we assume that(G; k) 2 BCBS. In the se
ond, we assume that (G; k) =2 BCBS.Case 1 { (G; k) 2 BCBS: First, suppose that there is a balan
ed 
ompletebipartite subgraph on 2k nodes in G. We determine a deployment, (�; �) thathas a small 
ost. Let L0 � L be the left partition of the subgraph and R0 � Rthe right partition of the subgraph. Choose � to map the nodes in L0 to the �rstk rows, and 
hoose � to map the nodes in R0 to the �rst k 
olumns. Node n ismapped to row n and 
olumn n. Then ea
h of the quorum entries in the �rstk rows and k 
olumns is mapped to one of the edges in the 
omplete bipartitesubgraph, and as a result, has 
ost 1. Ea
h of the quorum entries in row n and
olumn n is mapped to an entry in the 
ost matrix of 
ost 1. Therefore, the total
ost of the deployment is k2 + 2n� 1 � n2, as desired.8



Case 2 { (G; k) 62 BCBS: On the other hand, suppose that there is no 
ompletebipartite subgraph on 2k nodes in G. We shall see that any deployment has
ost larger than nx. In parti
ular, every deployment must in
lude at least oneexpensive edge. It is 
lear that node n 
an, without loss of generality, be mappedto row n and 
olumn n: given an optimal assignment where this is not the 
ase, itis possible to permute the assignment so that this is the 
ase, without in
reasingthe 
ost. Then noti
e that if there is a deployment that does not in
lude anyentry of nx, then this implies that there exists a 
omplete bipartite subgraph ofsize k, whi
h we assumed was not the 
ase. utWe 
on
lude that the Quorum Deployment Problem is hard to approximate:Theorem 2. For any Æ > 0, it is NP-hard to approximate the Quorum Deploy-ment problem with fa
tor nÆ.4.2 Hardness of Metri
 Cost Quorum DeploymentIn the Metri
 Cost Quorum Deployment Problem, the 
ost matrix is restri
tedto be symmetri
 and satisfy the triangle inequality. In this 
ase, the 
ost of isending a message to j is the same as the 
ost of j sending a message to i, andthe 
ost of sending a message from i to j is no larger than the 
ost of sending amessage from i to k and from k to j. It is 
lear from the redu
tion in Lemma 1that this version of the problem is NP-hard:Theorem 3. The Metri
 Cost Quorum Deployment Problem is NP-hard.Proof. We use the same redu
tion as in Lemma 1, ex
ept instead of 
onstru
tingthe matrix Cost(G; k) by setting non-edge 
osts to nx, we set non-edge 
osts to 2.The matrix immediately satis�es the requirements of a metri
. The 
orre
tnessfollows by the same argument as in Lemma 1, where if (G; k) 2 BCBS then theoptimal 
ost of deployment is k2 + 2n � 1; otherwise, if (G; k) =2 BCBS, then
ost of any deployment is at least k2 + 2n. ut4.3 Hardness of Relaxed Metri
 Quorum DeploymentIf we do not require that the \quorums" interse
t, then we 
an show that su
hrelaxed deployment problem is inapproximable even when the 
ost matrix issymmetri
 and satis�es the triangle inequality. The proof is inspired by the re-du
tion from a strongly NP-
omplete 3-Partition Problem (see [19℄, SP15) to theQuadrati
 Assignment Problem (QAP) (see [19℄, ND43) given by Queyranne [21℄.Our redu
tion extends the result of Queyranne. Sin
e the deployment algorithmallows two degrees of freedom, � and �, as 
ompared to QAP that has only onedegree of freedom (� = � in QAP), we 
onstru
t an instan
e of the deploymentproblem that redu
es this 
exibility, ensuring that when there is no 3-partitionthe 
ost of deployment is high. The proof is presented in Appendix B.Theorem 4. The Relaxed Metri
 Quorum Deployment Problem (with symmet-ri
 
ost matrix that satis�es the triangle inequality and quorums that do not haveto interse
t) is NP-hard to approximate to within any 
onstant fa
tor.9



Fig. 4. Left: example of a hyperbola 
ontained in k = 3 nested squares. Middle: exam-ple of a blo
k diagonal hyperboli
 quorum matrix with p = 3 hyperbolas with k1 = 1,k2 = 3 and k3 = 2 nested squares respe
tively. Right: a quorum matrix 
omposedof a part, 
alled verti
al teles
ope, of a single hyperbola. Note that any two quorumsinterse
t in this matrix.We note that the proof of this theorem implies that when the quorum matrixis a blo
k diagonal matrix (ones inside blo
ks and zeros everywhere else) andthe number of blo
ks 
an be as large as a polynomial fra
tion of n, then thedeployment problem is inapproximable to within any 
onstant fa
tor. We alsonote that if the quorum matrix 
ontains just one blo
k, then it is NP-hard tooptimally solve the problem. This follows from the proof of Theorem 3, wherethe bottom row and right 
olumn are trimmed from the matri
es.5 Approximation Algorithms for Metri
 Costs andRestri
ted QuorumsWe have seen that if we allow arbitrary relaxed quorum matrix, then there is no
onstant fa
tor approximation algorithm for the deployment problem even if weassume that the 
ost matrix is symmetri
 and satis�es the triangle inequality.It seems that the intri
a
y of the quorum matrix plays an important role inthe ability to approximate the problem. Therefore, in this se
tion, we establisha family of somewhat 
ontrived quorum matri
es that admit 
onstant fa
torapproximation for metri
 
ost networks. Solving deployment optimally for thisfamily, however, is still NP-hard.We give a 
onstant fa
tor approximation algorithm for the Quorum Deploy-ment Problem with a blo
k diagonal hyperboli
 quorum matrix and a symmetri

ost matrix that satis�es the triangle inequality. The quorum matrix is 
omposedof a 
onstant number p of hyperbolas pla
ed on the diagonal. Ea
h hyperbola i is
ontained inside a 
onstant number ki of nested squares (see Figure 4, and a for-mal de�nition in Appendix C). The approximation fa
tor is 
 = 4 �max1�r�p kr.The algorithm runs in O(nk1+:::+kp+3p) time.Theorem 5. There is a 
-approximation algorithm for the Quorum DeploymentProblem with a blo
k diagonal hyperboli
 quorum matrix and symmetri
 
ostmatrix that satis�es the triangle inequality, where 
 = 4 � max1�r�p kr. Thealgorithm runs in O(nk1+:::+kp+3p) time.10



The proof sket
h that follows presents an overview of the approximationalgorithm and our key observations. A detailed proof of the theorem is given inAppendix C. For 
onvenien
e of the presentation, we spe
ify the permutations �and � to rearrange rows and 
olumns of the 
ost matrix rather than the quorummatrix. This of 
ourse yields an equivalent optimization problem.Proof (sket
h). Suppose for a moment that the quorum matrix has ones insidea submatrix U �U , and zeros everywhere else. Let m = jU j. An optimal deploy-ment will pla
e some rows ~U 0 and some 
olumns ~V 0 of the 
ost matrix insideU �U . When we pi
k a row i and m 
olumns V , that minimize the sum of 
ostsat the interse
tion of the row and the 
olumns, then by the triangle inequalityand symmetri
ity of the 
ost matrix, we 
an 
on
lude that the sum of 
ostsinside the submatrix V �V is at most twi
e the 
ost of the optimal deployment.We noti
e that the 
on
lusion is true even though the optimal deployment mayhave ~U 0 6= ~V 0, i.e., may indeed take advantage of two degrees of freedom to lowerthe 
ost. This observation extends the te
hnique of Krumke et al. [22℄ developedfor the Quadrati
 Assignment Problem where we would have ~U 0 = ~V 0 (in QAProws and 
olumns are permuted in the same way).Now suppose that the quorum matrix has the ri
her stru
ture of a singlehyperbola. Then an optimal deployment has extra ability to avoid high 
ostsdue to \holes" in the quorum matrix, as 
ompared to the U � U 
ase justdis
ussed. We 
an show, however, how to e�e
tively deal with these holes byappropriately rearranging rows and 
olumns to \push" low 
osts to the areaso

upied by the hyperbola, and leave high 
osts behind. The hyperbola is 
on-tained in k nested squares. The square h has size mh by mh and the hyperbolahas thi
kness ah at the edge of the square (
f. Figure 4). For ea
h h, we 
an�nd a row ih and mh 
olumns Vh that minimize the sum of 
osts at the inter-se
tion of this row and the 
olumns. Sin
e we have sele
ted a row and 
olumnsthat minimize the sum, 
learly, the 
ost of any optimal deployment is at least1=kP1�h�k ahPj2Vh Cih;j : This simplisti
 bound leaves too big a freedom inthe 
hoi
e of subsets Vh, and so the submatri
es Vh � Vh would not be usefulfor approximation be
ause the submatri
es would not have to be nested. Re-
all that the k squares are nested in the optimal deployment, so we 
an stillbound from below the 
ost of the deployment if we introdu
e a 
onstraint thatV1 � V2 � : : : � Vk. With this 
onstraint though, there are dependen
ies be-tween Vh's. Hen
e we 
annot perform the minimization of the sum Pj2Vh Cih;ja
ross the 
hoi
es of ih and Vh independent from the minimization of the 
or-responding sums a
ross other rows and other subsets of 
olumns be
ause we
ould get stu
k in a lo
al minimum. What we need to do instead, is to min-imize the value of the entire bound a
ross all possible 
hoi
es under the 
on-straint. We 
an �nd the nested subsets Vh and rows ih that minimize the boundP1�h�k ahPj2Vh Cih;j using an appropriately adjusted polynomial time algo-rithm of Tokuyama and Nakano [23℄, in a fashion resembling the method usedby Guttmann-Be
k and Hassin [24℄. After Vh's and ih's have been found, we re-arrange rows and 
olumns. Using the triangle inequality and symmetri
ity of the
ost matrix, we 
on
lude that the 
osts inside submatrix Vh�Vh 
an be bounded11



from above by 2mh times the 
osts at the interse
tion of row ih and 
olumns Vh.If we move the ah lowest 
ost rows to the top part of the submatrix, then thesum of 
osts a

umulated there is proportionally redu
ed, and so it is at mosta ah=mh fra
tion of the sum of 
osts inside the entire submatrix. We rearrangerows of the submatrix V1�V1, then rows of V2�V2 and so on, and then 
olumns.When rearrangements are done 
arefully, we 
an ensure that one rearrangementdoes not destroy the upper bounds on 
osts 
reated by the prior rearrangements.After the rearrangements, the sum of 
osts inside the parabola will be at most4P1�h�k ahPj2Vh Cih;j . This 
ompletes approximation argument for a singleparabola.Finally, assume that the quorum matrix is a blo
k diagonal hyperboli
 quo-rum matrix 
omposed of p hyperbolas. We modify the algorithm for �ndingnested subsets of 
olumns, so that now the algorithm minimizes a
ross p 
olle
-tions of nested subsets of 
olumns. After we have found the 
olle
tions, we apply,to ea
h of the p 
olle
tions of nested submatri
es, the algorithm for rearrangingrows and 
olumns. This yields the desired approximation result and 
ompletesthe proof. utWe 
ontrast our approximation results with the inapproximability resultsfrom the previous se
tion. When the number of hyperbolas 
an be as big asa polynomial fra
tion of n, then the deployment problem is inapproximable towithin any 
onstant fa
tor, even when ea
h hyperbola i is just a single square
ompletely �lled in with ones. However, we 
an approximate the problem towithin a 
onstant fa
tor when the number of hyperbolas is 
onstant, and evenif ea
h hyperbola is 
ontained in more than one square.6 Con
lusions and Future WorkIn this paper, we have introdu
ed the Quorum Deployment problem, a naturalproblem that arises when attempting to eÆ
iently repli
ate data. We have ex-amined the 
omplexity of a number of variants of the problem, showing that thePartial Deployment Problem 
an be solved in polynomial time, while the generalQuorum Deployment Problem and the Relaxed Metri
 Deployment problem areinapproximable. Finally, we presented some spe
ial NP-hard 
ases in whi
h theproblem 
an be approximated and other 
ases that admit optimal polynomialtime solution.While many of the results presented in this paper are negative, we believe itis important to 
ontinue examining 
ases for whi
h quorums may be eÆ
ientlydeployed, as the problem has signi�
ant pra
ti
al import. Most previous resear
hhas fo
used on developing quorum systems that have good robustness to var-ious failure modes; future resear
h should also take into a

ount the diÆ
ultyof deploying the quorums. While we 
onje
ture that most 
urrently developedquorum systems (su
h as the grid quorum system) 
annot be deployed eÆ
iently,we would like to develop families of quorum systems that are both robust and
an be deployed eÆ
iently.
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A Hardness of ApproximationLemma 1. Fix any x > 1. Let G = (V;E) be a bipartite graph, and let 1 � k �jV j. Let C = Cost(G; k) and Q = Quorums(Q; k). Then the following holds:(G; k) 2 BCBS ) 9�; 9�; D(C;Q; �; �) � n2(G; k) =2 BCBS ) 8�;8�; D(C;Q; �; �) > nxThat is, if there is a size k balan
ed, 
omplete, bipartite subgraph in G, then theminimum 
ost of the resulting deployment is less then or equal to n2. If thereis not a size k balan
ed, 
omplete, bipartite subgraph in G, then the minimum
ost of the resulting deployment is greater than nx.Proof. The proof 
onsists of two parts. In the �rst, we assume that (G; k) 2BCBS. In the se
ond, we assume that (G; k) =2 BCBS.Case 1 { (G; k) 2 BCBS: First, suppose that there is a balan
ed 
ompletebipartite subgraph on 2k nodes in G. We determine a deployment, (�; �) thathas a small 
ost.Let L0 � L be the left partition of the subgraph and R0 � R the rightpartition of the subgraph. Noti
e that jL0j = jR0j = k, and L0 \ R0 = ;. LetL0 = f`1; : : : ; `kg and R0 = fr1; : : : ; rkg. We de�ne the deployment as follows:�(i) =8<: j i = `jn i = narbitrary otherwise (1)�(i) =8<: j i = rjn i = narbitrary otherwise (2)Noti
e that � assigns the �rst k 
olumns of C to nodes in L0, and � assigns the�rst k rows of C to nodes in R0.We now determine the 
ost of this deployment. Re
all that the �rst k rowsand k 
olumns of Q 
ontain the value 1. Noti
e that when �(i) = 1, i = `1.Similarly, when �(j) = 1, j = r1. Therefore i 2 L0 and j 2 R0, whi
h impliesthat there is an edge between nodes i and j. As a result, Ci;j = 1.This holds for all �(i) � k and �(j) � k. Therefore the �rst k rows and k
olumns of Q 
ontribute 
ost at most k2.The only other entries in Q with value 1 are row n and 
olumn n. However,node n is assigned to 
olumn n, and node n is assigned to row n. Sin
e Ci;n = 1for all i, and Cn;j = 1 for all j, row n and 
olumn n 
ontribute 
ost 2n� 1.There are no other entries 
ontaining a 1 in Q. Therefore the total 
ost ofthe deployment is at most n2.Case 2 { (G; k) 62 BCBS: On the other hand, suppose that there is no 
ompletebipartite subgraph on 2k nodes in G. We shall see that any deployment has




ost larger than nx. In parti
ular, every deployment must in
lude at least oneexpensive edge.Let h�; �i be the optimal deployment. We bound the 
ost of this deploymentfrom below in two steps.First, assume that �(n) 6= n. In parti
ular, assume that �(n) = a, and a 6= n.Then node n uses the quorum designated by row a of Q. Some other node, b, isassigned to row n of Q. Consider the new deployment, h�0; �i, where �(n) = nand �(b) = a. We now argue that this new deployment has a 
ost no greaterthan that of the originaly deployment h�; �i.Let A be the set of nodes in quorum a, that is, the set fj : Qa;j = 1g. In theoriginaly deployment, the 
ost of node n a

essing the nodes in A is jAj, sin
enode n 
an a

ess ea
h node for 
ost 1. Let x be the 
ost of node b a

essingquorum n.In the revised deployment that in
ludes �0, node n a

esses quorum n, whi
hhas 
ost exa
tly n. Let y be the 
ost of node b a

essing nodes in the set A. Ourgoal is to show that n+ y � jAj+X .Noti
e that y � x� (n�jAj). Sin
e every node in A is also in quorum n, the
ost y has to be less than the 
ost x. Sin
e the smallest 
ost of a

essing a nodeis 1, when node a a

esses quorum n the 
ost must be at least n�jAj more thanthe 
ost of a

essing just the nodes in A. Therefore, we 
on
lude that:n+ y � n+ (x� (n� jAj)� x+ jAjTherefore the 
ost of the deployment 
ontaining �0 is less than or equal to the
ost of the original deployment. Therefore, without loss of generality we assumethat �(n) = n. By the same argument, we 
an assume without loss of generalitythat �(n) = n. Therefore row n and 
olumn n 
ontribute exa
tly 2n� 1 to the
ost of the deployment.Let L0 be the set of rows mapped to the the �rst k rows. That is, L0 = fi :1 � �(i) � kg. Let R0 be the set of 
olumns mapped to the �rst k 
olumns. Thatis, R0 = fj : 1 � �(j) � kg. These are the only entries of C that 
an 
ontributeto the 
ost, aside from row n and 
olumn n.If all the 
osts Ci;j = 1 for i 2 L0 and j 2 R0, then there is an edge betweenevery node in L0 and every node in R0, thus 
reating a balan
ed 
omplete bipar-tite subgraph of size k. Thus at least one of the 
ost Ci;j = nx for some i 2 L0and some j 2 R0.Thus the 
ost of the optimal deployment is at least nx + 2n � 1, whi
h isgreater than nx, as desired. utB Hardness of Relaxed Metri
 Quorum DeploymentTheorem 4. The Relaxed Metri
 Quorum Deployment Problem (with sym-metri
 
ost matrix that satis�es the triangle inequality and quorums that do nothave to interse
t) is not approximable to within any 
onstant, unless P=NP.



Proof. Suppose that there is an r-approximation algorithm for the deploymentproblem. We will show a polynomial time redu
tion from 3-Partition to thedeployment problem that 
reates a gap of at least r + 1. This will yield a 
on-tradi
tion when P6=NP.Take any instan
e of the 3-Partition Problem. We 
onstru
t an instan
e ofthe restri
ted/relaxed Quorum Deployment Problem. There are Bk nodes in thenetwork. Nodes are pla
ed on a line and the line and distan
e between nodesindu
es the 
ost matrix. The nodes are grouped into k 
lusters, ea
h 
ontainingB nodes. Conse
utive 
lusters are separated by a \large" gap of � = r +1, and
onse
utive nodes inside a 
luster are separated by a \small" gap of Æ = 1=(kB3).For ea
h size, we 
onstru
t as many quorums as the value of the size. Thequorums will form a \
lique", whi
h will allow us to keep them \together" orelse substantially in
rease the 
ost. For a given size si, we produ
e si equalquorums, ea
h of 
ardinality si, ea
h equal to f(s1+ : : :+ si�1+1); : : : : : : ; (s1+: : :+si)g. Note that the size of the instan
e of the Quorum Deployment Problemis polynomial with respe
t to k (re
all that Bk is bounded by the value of a �xedpolynomial of k, be
ause 3-Partition is strongly NP-
omplete).If there exists a 3-partition S1; : : : ; Sk, then the minimal 
ost of deployment is\small". To see this, we 
onsider the three sizes in Sh and assign the B quorumsderived from these sizes to the 
luster h. There are exa
tly B distin
t elementsin all quorums assigned to the 
luster. At the same time, the 
luster has exa
tlyB nodes. Hen
e we 
an de�ne a \lo
al" mapping: the B quorum elements arearbitrarily mapped to the B nodes of the 
luster. Sin
e there are B quorums ina 
luster, ea
h quorum has at most B elements and the diameter of the 
luster isat most BÆ, the total 
ontribution of this 
luster to the 
ost of the deploymentis at most ÆB3. Hen
e the total 
ost of deployment is at most kÆB3.If there is no 3-partition, then the minimal 
ost of deployment must be\large". We 
onsider three 
ases, always 
on
luding that the minimal 
ost ofdeployment is � or more. Take a deployment that minimizes 
ost. If elementsof a quorum are assigned to two di�erent 
lusters, then 
ost of the deploymentis at least �. So, let us assume that, for ea
h quorum, the elements (or the onlyelement, as a quorum may be a singleton) of the quorum are assigned to thesame 
luster. If a quorum is assigned to a 
luster other than the 
luster wherethe quorum elements are assigned to, then the 
ost of the deployment is at least�. Finally, assume that ea
h quorum is assigned to the (only) 
luster wherethe elements of the quorum are assigned. This, however, would imply that a3-partition exists. Therefore, minimal 
ost of deployment is at least �.To 
omplete the inapproximability argument, it remains to noti
e that asuÆ
ient gap has been 
reated be
ause of the 
hoi
e of the value of Æ and �. ut



C Approximation Algorithm for Metri
 Costs andRestri
ted QuorumsThis se
tion presents an approximation algorithm for the Quorum DeploymentProblem with a blo
k diagonal hyperboli
 quorum matrix and a symmetri
 
ostmatrix that satis�es the triangle inequality.C.1 De�nitionsWe de�ne a blo
k diagonal hyperboli
 quorum matrix. Let the matrix Q be ablo
k diagonal n by n matrix with zero entries outside of the blo
ks, and whereea
h blo
k is a hyperbola (see Figure 4 for an example). Spe
i�
ally, the matrix isde�ned by several numbers. A sequen
e of p � 1 numbers n1; : : : ; np representsthe sizes of the p blo
ks of the matrix. Ea
h size has to be at least one, and thesizes must sum up to at most n. Ea
h blo
k i, that has size ni, is a hyperbolade�ned by ki � 1 numbers 0 < mi1 < mi2 < : : : < miki = ni, and ki othernumbers, su
h that aij � mij , for 1 � j � ki, ai1 > ai2 > : : : > aiki � 1. The �rsthyperbola is de�ned asH1 =  k1[h=1[a1h℄� [m1h℄! [ k1[h=1[m1h℄� [a1h℄! :The other hyperbolas are appropriately shifted to �t inside the 
orrespondingblo
ks. Spe
i�
ally, hyperbola i is de�ned asHi = ki[h=1[si + 1; si + aih℄� [si + 1; si +mih℄![ ki[h=1[si + 1; si +mih℄� [si + 1; si + aih℄! ;where si is the shift equal to Pi�1w=1 nw. The matrix Q is an n by n matrixthat has 1 at any entry (y; x) that belongs to any of the p hyperbolas, and 0everywhere else Qy;x = (1; (y; x) 2 H1 [ : : : [Hp ;0; (y; x) =2 H1 [ : : : [Hp :The matrix Q is 
alled a blo
k diagonal hyperboli
 quorum matrix. Su
h matrixis a quorum matrix in the stri
t sense only when p = 1 and n1 = n. When p > 1or when n1 < n, then not every quorum interse
ts with every quorum.C.2 Algorithm and its analysisWe begin the approximation argument with a lemma that bounds from belowthe 
ost of an optimal deployment. We �nd a 
olle
tion of sets of 
olumns, some



of whi
h are nested, and a 
olle
tion of rows. The 
osts lo
ated at the inter-se
tions of rows and 
olumns, weighted appropriately, will yield a lower boundon the minimal 
ost of deployment. Our sear
h algorithm uses an algorithm ofTokuyama and Nakano as a subpro
edure.Lemma 2. Given any instan
e of the Quorum Deployment Problem with a blo
kdiagonal hyperboli
 quorum matrix, there is an algorithm that sele
ts rows irh,not ne
essarily distin
t, of the 
ost matrix C, 1 � r � p, 1 � h � kr, and p
olle
tions in nested subsets of 
olumns V r1 � V r2 � : : : � V rkr � [n℄, 1 � r � p,su
h that jV rh j = arh, and that when r 6= r0, then V rkr does not interse
t with V r0kr0 ,so that pXr=1 1=kr krXh=1arh Xd2V rh Cirh;dis a lower bound on the minimal 
ost of deployment for the instan
e of theproblem. The algorithm runs in O(nk1+:::+kp+3p) time.Proof. Take an optimal deployment that somehow independently permutes rowsand 
olumns of the 
ost matrix. Let us fo
us on the hyperbola Hr, and the 
ostsassigned to it. The nr by nr blo
k gets assigned nr rows and nr 
olumns. Let~V rh be the set of mrh leftmost 
olumns of the 
ost matrix that are assignedto the blo
k. Obviously, ~V r1 � : : : � ~V rkr , and the sets ~V rkr , for di�erent r, aredisjoint. The hyperbola Hr in
ludes kr \horizontal" re
tangles that overlap. There
tangle [sr + 1; sr + arh℄ � [sr + 1; sr +mrh℄ gets assigned 
olumns ~V rh , where1 � h � kr. Among the arh rows assigned to the re
tangle h, we 
an �nd a row ~irhthat minimizes the sumPd2~V rh C~irh;d of 
osts assigned to the row of the re
tangle.The 
ontribution, to the 
ost of the optimal deployment, of this re
tangle is atleast arh times the sum. When we sum up the kr lower bounds on 
osts of there
tangles, we establish a lower bound on kr times the 
ost 
ontributed by thehyperbola Hr. Hen
e the 
ost of the optimal deployment is bounded from belowby an expression min � pXr=1 1=kr0� krXh=1 arh Xd2~V rh C~irh;d1A :We 
an bound the expression from below by minimizing a
ross a larger set of
hoi
es: the 
hoi
es of rows irh, not ne
essarily distin
t, and subsets of 
olumnsV r1 � : : : � V rkr , su
h that jV rh j = mrh, and that the sets V rkr , for di�erent r, aredisjoint, where indi
es range over 1 � r � p, 1 � h � kr.The sele
tion of rows and subsets of 
olumns to minimize the sum 
an bedone by repeatedly applying the O(n) deterministi
 algorithm of Tokuyama andNakano [23℄. The algorithm assumes that subsets are disjoint, while in our 
asesome are nested and some are disjoint. We 
an 
omply with the assumptions ofTokuyama and Nakano by prepro
essing the input. We 
onsider all nk1+:::+kpsele
tions for p tuples (ir1; : : : ; irkr) 2 [n℄kr , where r ranges from 1 to p. We take



a table (ti;j) of size k1 + : : :+ kp by n, and partition it into re
tangles of widthn and height k1, k2 and so on, moving from the top to the bottom of the table.Then we 
opy rows i11; : : : ; i1k1 of the 
ost matrix into the top re
tangle. For ea
hrow h of the re
tangle, h = k1; (k1 � 1); : : : ; 1, we s
ale the row and add s
aled
osts of rows h + 1; : : : ; k1 of the re
tangle i.e., th;j be
omes Ph�x�k1 a1x � tx;j ,for any 1 � j � n. Observe that if we sele
t a subset Ah � [n℄ of 
ardinalitya1h � a1h�1 of 
osts inside ea
h row h, di�erent for di�erent rows (i.e., i 6= jimplies Ai \ Aj = ;), and add the sele
ted 
osts for all k1 rows of the topre
tangle, then the sum P1�h�k1Pj2Ah th;j is equal to exa
tly the 
ost withnested subsetsP1�h�k1 a1hPj2Vh Cih;j , where Vh = A1[: : :[Ah has 
ardinalitya1h and V1 � : : : � Vk1 . The reverse relationship holds as well. Hen
e the twooptimization problems: sele
ting Vh's and sele
ting Ah's, are equivalent. Next we
opy 
osts from the rows given by the p�1 remaining tuples to the 
orrespondingremaining p� 1 re
tangles, and modify the 
osts inside ea
h re
tangle in way asimilar to the way we modi�ed 
osts inside the top re
tangle. The prepro
essingthat we have just des
ribed allows us to apply the algorithm of Tokuyama andNakano [23℄. Using the notation of the authors, we set �d, where d is representedby d = k1 + : : : + kr�1 + h, 1 � h � kr, to our arh � arh�1, then the weightof the edge (i; j), in the 
omplete bipartite graph with n nodes on the left andk1+ : : :+kp on the right, is set to tj;i. Overall, a straightforward implementationof the pro
edure yields an O(nk1+:::+kp+3p) time algorithm for sele
ting rows irhand subsets of 
olumns V rh . This 
ompletes the proof. utNext we show how to rearrange rows and 
olumns inside nested squares,so that low 
osts are moved to where a hyperbola is and high 
osts are leftoutside of the hyperbola. Given nested submatri
es (V1 � V1) � (V2 � V2) �: : : � (Vk � Vk) of the 
ost matrix, one 
an produ
e a new 
ost matrix byrearranging rows and 
olumns inside the submatri
es, so that the 
ost of thenew matrix inside the hyperbola is proportionally redu
ed 
ompared to the 
ostsinside the submatri
es. Using the triangle inequality and the symmetri
ity of the
ost matrix, we 
an bound the sum of 
osts inside ea
h submatrix Vh�Vh by thesum of 
osts at the interse
tion of row ih and 
olumns Vh multiplied by twi
ethe 
ardinality of Vh. This will let us relate the 
osts after rearrangement to thelower bound on 
ost established in Lemma 2.Lemma 3. Given a hyperbolaH =  k[h=1[ah℄� [mh℄! [ k[h=1[mh℄� [ah℄! ;k rows ih, k nested subsets of 
olumns Vh = [mh℄, 1 � h � k, and a symmetri

ost matrix C that satis�es the triangle inequality, there is a matrix F obtainedfrom C after rearranging rows Vk and 
olumns Vk, so that the sum of 
ostsX(y;x) 2 H Fy;x



of the of rearranged matrix inside the hyperbola is at most4 kXh=1ah Xd2Vh Cih;d :The matrix F 
an be found in O(n3) time.Proof. Note that the submatri
es are nested (V1 � V1) � (V2 � V2) � : : : �(Vk � Vk), and that symmetri
ity and the triangle inequality implies that thesum of 
osts of C inside the submatrix Vh�Vh is at most 2mhPj2Vh Cih;j . Hen
ea trivial upper bound on the 
ost of the hyperbola is 4Pkh=1mhPd2Vh Cih;d.Our goal is to show how to rearrange rows and 
olumns so as to turn mh's intoah's. Let us introdu
e orientation in matri
es: rows are numbered from top tobottom, and 
olumns are numbered from left to right.We initialize Fy;x := Cy;x and then rearrange F in two phases. We �rst rear-range rows to bound the 
ost inside a horizontal teles
ope de�ned as Skh=1[ah℄�[mh℄, and then rearrange 
olumns to bound the 
ost inside a verti
al teles
ope(see Figure 4) de�ned as Skh=1[mh℄� [ah℄, while maintaining the previously es-tablished bound on the 
ost of the horizontal teles
ope.In the �rst phase, we fo
us on the horizontal teles
ope. We rearrange rowsof F in k rounds; �rst rows V1, then rows V2, and so on up to rows Vk . Let �sbe the sum of 
osts of F inside the part ([a1℄� [m1℄) [ : : : [ ([as℄� [ms℄) of theteles
ope at the end of round s (so �k is the sum inside the entire horizontalteles
ope). Our rearrangements will maintain an invariant that at the end ofround s:(i) the sum of 
osts inside the part ([a1℄� [m1℄) [ : : : [ ([as℄� [ms℄) of theteles
ope is bounded as desired i.e., �s � 2P1�h�s ahPj2Vh Cih;j , and(ii) for all subsequent submatri
es, the initial upper bounds on the sum of 
ostsare maintained i.e., for all s+1 � h � k, the sum of 
osts inside the submatrixVh � Vh is at most 2mhPj2Vh Cih;j .The invariant holds for s = 0, be
ause of symmetri
ity, the triangle inequalityand the way F was initialized.During round s, we pi
k as smallest sum rows of the submatrix Vs�Vs, and,if any is below the as top rows, we swap the row with the 
urrently highest 
ostrow among the top as rows of the submatrix (naturally, we a
tually swap rowsof the entire n by n matrix F inside whi
h the k submatri
es reside, be
ausewe are not allowed to ex
hange parts of rows of the matrix). As a result of theswapping, the top as rows of the submatrix Vs � Vs 
ontain rows whi
h sum isthe smallest a
ross all possible sele
tions of as rows of the submatrix. Hen
e thesum of 
osts inside these rows of the submatrix is at most 2asPj2Vs Cis;j . Notethat sin
e submatri
es are nested, swapping preserves upper bounds on the sumof 
osts for ea
h of the subsequent to Vs�Vs submatri
es i.e., after the swapping,for any h � s+ 1, the sum of 
osts inside the submatrix Vh � Vh is still at most2mhPj2Vh Cih;j (we merely permuted the rows of the submatrix). Now let us



Fig. 5. Three regions inside a horizontal teles
ope.bound �s from above. By the invariant, the value of �s�1 right before round swas bounded from above by 2P1�h�s�1 ahPj2Vh Cih;j . Re
all that �s�1 is thesum of 
osts inside the part ([a1℄� [m1℄)[: : :[([as�1℄� [ms�1℄) of the horizontalteles
ope. We 
an partition the part into s � 1 regions: [ah℄ � [mh�1 + 1;mh℄,for 1 � h � s � 1 (see Figure 5). We noti
e that after the swapping of rows,the fragments of the s � 1 regions starting from row as + 1 downwards (thedarkest gray area in Figure 5) 
ontain only some 
osts that were present in thes� 1 regions before the swapping. So the sum of 
osts inside these fragments isbounded from above be the value of �s�1 at the time right before the swapping.We have observed that after the swapping, the 
ost of the top as rows andms 
olumns of submatrix Vs � Vs is at most 2asPj2Vs Cis;j . Hen
e, after theswapping, �s is bounded from above by 2P1�h�s ahPj2Vh Cih;j .After k rounds, the invariant implies that the sum of 
osts of F inside thehorizontal teles
ope is bounded from above by 2P1�h�k ahPj2Vh Cih;j . This
on
lusion 
ompletes the �rst phase.In the se
ond phase we rearrange 
olumns. We apply an algorithm that issymmetri
 to the one used in the �rst phase (i.e., now we swap 
olumns insteadof rows). As a result, we obtain the same upper bound on the sum of 
osts insidethe verti
al teles
ope. The only remaining issue is that we may invalidate thebound on the sum of 
osts inside the horizontal teles
ope. This, however, is notthe 
ase as explained next.We will study how lo
ations of 
osts 
hange and will use labels to tra
kthe 
osts. Ea
h of 
olumns Vk of the matrix F will have a label from the setfH;V 1; V 2; : : : ; V kg of k + 1 labels. A label \travels" with a 
olumn wheneverthe 
olumn is swapped. We will assign the labels to 
olumns after the �rst round,and then may modify labels after ea
h round. At the end of any round, we 
anpartition 
olumns into k + 1 subsets, based on the labels. We will argue thatthe sum of 
osts inside 
olumns, 
ontributed by ea
h subset, is appropriatelybounded.After the �rst round of swapping, we assign label V 1 to ea
h of the leftmosta1 
olumns of F , and ea
h of the 
olumns [a1 + 1;mk℄ gets the label H . Re
allthat right before the se
ond phase, the 
ost inside the horizontal teles
ope wasat most 2P1�h�s ahPj2Vh Cih;j . The swapping of 
olumns done during the�rst round of the se
ond phase permutes only the 
olumns [m1℄, so the 
ost
ontributed by 
olumns with label H remains at most 2P1�h�s ahPj2Vh Cih;j .



The 
ost of 
olumns with label V 1 inside verti
al re
tangle [m1℄� [a1℄ is at most2a1Pj2V1 Ci1 ;j .We will argue that the following invariant holds at the end of any round s(i) the sum of 
osts of 
olumns labeled H inside the horizontal teles
ope is atmost the initial bound on the 
osts inside the horizontal teles
ope i.e.,X(y;x)2H\([a1℄�[mk℄) ^ (x has label H)Fy;x � 2 X1�h�k ah Xj2Vh Cih;j(ii) for all 1 � r � s, the sum of 
osts of 
olumns labeled V r inside the part ofthe hyperbola on and above row msX(y;x)2H\([ms℄�[mk℄) ^ (x has label V r)Fy;xis at most 2arPj2Vr Cir ;j .The invariant holds at the end of the �rst round of the se
ond phase. Nowwe explain how we modify labels during ea
h su

essive round. At the end ofround s, some 
olumns reside among the leftmost as 
olumns. These 
olumnsget assigned the label V s. The labels of other 
olumns remain un
hanged.Let us now bound the 
osts 
ontributed by 
olumns with di�erent labels. Theonly 
olumns with label V s are the leftmost as 
olumns. Hen
e, by the argumentgiven for swapping rows, the sum of 
osts of these 
olumns inside the top msrows of the hyperbola is bounded byX(y;x)2H\([ms℄�[mk℄) ^ (x has label V s)Fy;x � 2as Xj2Vs Cis;j ;as desired. Inside the remaining mk�as 
olumns some new 
olumns might havebeen swapped in, 
ompared to the 
olumns that were there during the previousround. These new 
olumns 
an only have label V (s�1), be
ause no other 
olumnsmove right in round s. So the sum of 
osts of 
olumns with label V e, for anye � s� 2, inside the top ms rows of the hyperbola 
an only get redu
ed (as noextra 
olumn gets assigned su
h a label). How about the sum for 
olumns withlabel V (s � 1)? We noti
e that when a 
olumn with su
h label moves right, itis pla
ed at a 
olumn where the thi
kness of the horizontal teles
ope is at mostas�1. Hen
e the 
ontribution of this 
olumn to the sum of 
osts of 
olumns withlabel V (s � 1) inside the teles
ope may only get redu
ed. Hen
e the invariantholds after the round s.After the two phases have been 
ompleted, the invariant implies that thesum of 
osts inside the entire hyperbola is at most4 X1�h�k ah Xj2Vh Cih;j ;whi
h 
ompletes the proof. ut



Theorem 6. There is a 
-approximation algorithm for the Quorum Deploymentproblem with a blo
k diagonal hyperboli
 quorum matrix and symmetri
 
ostmatrix that satis�es the triangle inequality, where 
 = 4 � max1�r�p kr. Thealgorithm runs in O(nk1+:::+kp+3p) time.Proof. We apply Lemma 2 to �nd sets V rh and rows that bound the 
ost of mini-mal deployment from below. Then we rearrange rows V rkr and 
olumns V rkr insideea
h hyperbola Hr as shown in Lemma 3, and as a result obtain a deploymentwith a desirable 
ost. ut


