
RAMBO II: Rapidly Re
on�gurable Atomi
 Memory for

Dynami
 Networks

1

by

Seth Gilbert

Submitted to the Department of Ele
tri
al Engineering and Computer

S
ien
e

in partial ful�llment of the requirements for the degree of

Master of S
ien
e in Ele
tri
al Engineering and Computer S
ien
e

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2003

Massa
husettes Institute of Te
hnology 2003. All rights reserved.

Author .

Department of Ele
tri
al Engineering and Computer S
ien
e

August 29, 2003

Certi�ed by .

Nan
y A. Lyn
h

NEC Professor of Software S
ien
e and Engineering

Thesis Supervisor

A

epted by .

Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

RAMBO II: Rapidly Re
on�gurable Atomi
 Memory for Dynami

Networks

2

by

Seth Gilbert

Submitted to the Department of Ele
tri
al Engineering and Computer S
ien
e

on August 29, 2003, in partial ful�llment of the

requirements for the degree of

Master of S
ien
e in Ele
tri
al Engineering and Computer S
ien
e

Abstra
t

Future
ivilian res
ue and military operations will depend on a
omplex system of
ommu-

ni
ating devi
es that
an operate in highly dynami
 environments. In order to present a

onsistent view of a
omplex world, these devi
es will need to maintain data obje
ts with

atomi
 (linearizable) read/write semanti
s.

Lyn
h and Shvartsman have re
ently developed a re
on�gurable atomi
 read/write mem-

ory algorithm for su
h environments [12, 13℄ This algorithm,
alled Rambo, guarantees

atomi
ity for arbitrary patterns of asyn
hrony, message loss, and node
rashes. Rambo

installs new
on�gurations lazily, transferring data from old
on�gurations to new
on�g-

urations using a ba
kground information transfer task. That task handles
on�gurations

sequentially, transferring information from ea
h
on�guration to the next.

This paper presents a new algorithm, Rambo II, that implements a radi
ally di�er-

ent approa
h to installing new
on�gurations: instead of operating sequentially, the new

algorithm re
on�gures \aggressively", transferring information from old
on�gurations in

parallel. This improvement substantially redu
es the time ne
essary to remove obsolete
on-

�gurations, whi
h in turn substantially in
reases the fault-toleran
e. This paper presents

a formal spe
i�
ation of the new algorithm, a
orre
tness proof, and a
onditional analysis

of its performan
e. Preliminary empiri
al studies performed using LAN implementations of

Rambo and the new algorithm illustrate the advantages of the new algorithm.

Thesis Supervisor: Nan
y A. Lyn
h

Title: NEC Professor of Software S
ien
e and Engineering

2

This work was supported in part by the NSF ITR Grant CCR-0121277.

3

4

A
knowledgments

I would like to thank Nan
y Lyn
h for all her ideas, advi
e, and help on this proje
t, and

for all the time she has spent working with me on preparing this thesis. I would also like

to thank Alex Shvartsman, who together with Nan
y Lyn
h developed the original Rambo

algorithm whi
h led to this proje
t.

Also thanks to the TDS group: Rui, Tina, Josh, Sayan, and Carl. And I appre
iate the

great oÆ
emates and fellow theory students I have spent hours talking with in hallways and

oÆ
es (Matt, John, Mohammad, and many others).

Peter Musial has done mu
h work on implementing the Rambo algorithm, providing

data in
luded in this thesis, and has dis
overed various mistakes along the way. I appre
iate

his help on this proje
t.

Finally, I would like to thank my family for all their en
ouragement, and Valerie, who

has supported me throughout, and put up with yet another year of train rides and telephone

alls.

5

6

Contents

1 Introdu
tion 11

2 The Original Rambo Algorithm 17

3 Formal Spe
i�
ation of Rambo II 25

4 Notation and Basi
 Lemmas 31

4.1 Good Exe
utions . 31

4.2 Notational
onventions . 33

4.3 Con�guration map invariants . 35

4.4 Phase guarantees . 40

5 Atomi
 Consisten
y 45

5.1 Behavior of
on�guration upgrade . 45

5.2 Behavior of a read or a write following a
on�guration upgrade 51

5.3 Behavior of sequential reads and writes . 53

5.4 Atomi
ity . 56

6 Re
on�guration Servi
e 59

6.1 Re
on�guration Servi
e Spe
i�
ation . 59

6.2 Re
on�guration Servi
e Implementation . 61

6.3 Consensus servi
es . 62

6.4 Re
on automata . 63

7

7 Conditional Performan
e Analysis 67

7.1 De�nitions . 67

7.2 Limiting Nondeterminism . 68

7.3 The Behavior of the Environment . 69

7.3.1 Normal Timing Behavior from Some Point Onward 70

7.3.2 Con�guration{Viability . 70

7.3.3 Re
on-Spa
ing . 71

7.3.4 Join-Conne
tivity . 72

7.3.5 Re
on-Readiness . 73

7.3.6 Upgrade-Readiness . 73

7.3.7 Fixed Parameters . 74

7.4 Basi
 Lemmas . 74

7.5 Propagation of Information . 76

7.6 Upgrade-Ready Viability . 84

7.7 Con�guration-Upgrade Laten
y Results . 88

7.8 Read-Write Laten
y Results . 106

8 Implementation and Preliminary Evaluation 113

9 Con
lusion and Open Problems 117

8

List of Figures

2-1 Rambo(x): External signature . 18

2-2 Reader �Writer

i

: Signature and state . 19

2-3 Reader �Writer

i

: Read/write transitions 20

2-4 Reader �Writer

i

: Rambo Garbage-
olle
tion transitions 21

2-5 Summary of two phase read or write operation 22

2-6 Summary of two phase garbage-
olle
tion operation 22

3-1 Reader �Writer

i

: Con�guration Management transitions 26

3-2 Summary of two phase
on�guration upgrade operation 28

6-1 Re
on: External signature . 60

6-2 Cons(k;
): External signature . 62

6-3 Re
on

i

: Signature and state . 64

6-4 Re
on

i

: Transitions. 65

7-1 De�nition of J(t) . 69

7-2 Lemma 7.4.2, Case 1 . 75

7-3 Lemma 7.4.2, Case 2 . 75

7-4 Lemma 7.5.4 . 77

7-5 Lemma 7.5.6 . 78

7-6 Lemma 7.5.7 . 80

7-7 Lemma 7.5.9 . 82

7-8 Lemma 7.5.10 . 83

9

8-1 Preliminary empiri
al evaluation of the average operation laten
y (measured

as the number of gossip intervals), as a fun
tion of re
on�guration frequen
y,

measured as number of re
on�gurations per one re
on�guration period. . . . 114

8-2 Preliminary empiri
al evaluation of the average number of
on�gurations in

map's, as a fun
tion of re
on�guration frequen
y, measured as number of

re
on�gurations per one re
on�guration period. 115

10

Chapter 1

Introdu
tion

Future large s
ale
ivilian res
ue and military deployment operations will involve large num-

bers of
ommuni
ation and
omputing devi
es operating in highly dynami
 network sub-

strates. Su

essful
oordination and marshaling of human resour
es and equipment involves

olle
ting information about a
omplex real-world situation using sensors and input devi
es,

gathering the information in survivable repositories, and providing appropriate and
oherent

information to the stakeholders.

Data obje
ts with atomi
 (linearizable) read/write semanti
s
ommonly o

ur in su
h

settings. Repli
ation of obje
ts is a prerequisite for fault-toleran
e and availability, and with

repli
ation
omes the need to maintain
onsisten
y. Additionally, in dynami
 settings where

parti
ipants may join and leave the environment, may fail, and where the physi
al obje
ts

migrate, one needs to be able to e�e
tively move the
orresponding data obje
ts from one

set of data owners to another.

Lyn
h and Shvartsman developed a re
on�gurable atomi
 read/write memory algorithm

for dynami
 networks [12, 13℄. The algorithm,
alled Rambo, guarantees atomi
ity for

arbitrary patterns of asyn
hrony, message loss, and node
rashes. Conditional performan
e

analysis of the algorithm shows that when the environment timing stabilizes, when failures

are within spe
i�
 parameters, and when the re
on�gurations are not frequent and not bursty,

then read and write operations have small laten
y bounded in terms of the maximummessage

delay and the periodi
 gossip interval. However when the re
on�gurations are frequent or

11

bursty, this algorithm may perform poorly be
ause of the inherently sequential pro
essing

of the new
on�gurations on
e they be
ome determined by the algorithm. In parti
ular, the

number of
on�gurations maintained by the algorithm may grow without bound, leading to

the unbounded number of messages ne
essary in pro
essing the read and write operations.

Su
h situations may arise due to failures or asyn
hrony, yet these are not the only reasons.

Even in syn
hronous failure-free environments the world dynami
s may require that frequent

re
on�gurations are performed to keep tra
k of the rapidly moving physi
al obje
ts or rapidly

hanging set of stakeholders.

This thesis presents a new algorithm, Rambo II, integrated with Rambo, that imple-

ments a radi
ally di�erent approa
h to installing new
on�gurations: instead of operating

sequentially, the new algorithm re
on�gures \aggressively", transferring information from

old
on�gurations in parallel. This improvement substantially redu
es the time ne
essary to

pro
ess new
on�gurations and to remove obsolete
on�gurations from the system, whi
h in

turn substantially in
reases fault-toleran
e. This is due to the fa
t that on
e a
on�guration

is removed, the system no longer depends on it, and as soon as the
on�guration is removed,

it is allowed to fail. The pro
ess exe
uting the new algorithm a
hieves a linear speed-up

in the number of old
on�gurations known to the pro
ess. For example, our
onditional

performan
e analysis shows that if a pro
ess knows about a sequen
e of h
on�gurations,

then the it
an eliminates all but one of these
on�gurations in time O(1), as
ompared to

the original Rambo, where this takes �(h) time. Additionally, the new algorithm redu
es

the number of messages ne
essary to pro
ess these
on�gurations

This thesis presents a formal spe
i�
ation of the new algorithm, a
orre
tness proof, and

a
onditional analysis of its performan
e. Preliminary empiri
al studies performed using

LAN implementations of Rambo and the new algorithm illustrate the advantages of the

new algorithm.

Ba
kground. Starting with the work of Gi�ord [6℄ and Thomas [18℄, interse
ting
olle
-

tions of sets found use in several algorithms providing
onsistent data in distributed settings.

Depending on the algorithm and its setting, su
h
olle
tions of sets,
alled quorums when any

two have non-empty interse
tion, represent either sets of pro
essors or their knowledge. Up-

12

fal and Wigderson [19℄ use majority sets of readers and writers to emulate shared memory in

a distributed setting. Vit�anyi and Awerbu
h [20℄ implement multi-writer/multi-reader reg-

isters using matri
es of single-writer/single-reader registers where the rows and the
olumns

are written and respe
tively read by spe
i�
 pro
essors. Attiya, Bar-Noy and Dolev [1℄ use

majorities of pro
essors to implement single-writer/multi-reader obje
ts in message passing

systems. Su
h algorithms assume a stati
 pro
essor universe and rely on stati
 stati
 quorum

systems.

In long-lived systems where pro
essors may dynami
ally join and leave the system, it is

important to re
on�gure a quorum system to adapt it to the new set of pro
essors [8, 4, 7, 17℄.

Prior approa
hes required that the new quorum system in
lude pro
essors from the old

quorum system. This is stated as a stati

onstraint on the quorum system that needs to

be satis�ed during or even before the re
on�guration. In our work on re
on�gurable atomi

memory [15, 5, 12℄ we repla
e the spa
e-domain requirement on su

essive quorum system

interse
tions with the time-domain requirement that some quorums from the old and the

new system are involved in the re
on�guration algorithm. Su
h systems are more dynami

be
ause they allow for more
hoi
es of new quorum systems and do not require that su

essive

on�gurations interse
t.

Re
on�guration in Highly Dynami
 Settings. Lyn
h and Shvartsman's earlier algo-

rithms [15, 5℄ allowed a single distinguished pro
ess to a
t as the quorum system re
on�gurer.

The advantage of the single-re
on�gurer approa
h is its relative simpli
ity and eÆ
ien
y: any

pro
ess maintains at most two
on�gurations, the
urrent
on�guration and the proposed

new
on�guration. The disadvantage of the single re
on�gurer is that it is a single point of

failure { no further re
on�guration is possible if the re
on�gurer fails.

The Rambo algorithm [12, 13℄ removed the requirement of having a single re
on�g-

urer, thus enabling any pro
ess within its own
urrent
on�guration to begin re
on�guration

to a new quorum system supplied by the environment. The algorithm implements atomi

shared memory suitable for use in highly dynami
 settings, and it guarantees atomi
ity in

any asyn
hronous exe
ution and in the presen
e of arbitrary pro
ess and network failures.

However the multiple-re
on�gurer approa
h introdu
es the problem of maintaining multi-

13

ple
on�gurations and removing old
on�gurations from the system. Rambo implements

a sequential \garbage-
olle
tion" algorithm where pro
esses remove obsolete
on�gurations

one-at-a-time. Con�guration removal requires that information is propagated from the ear-

liest known
on�guration to its su

essor. Sin
e arbitrarily many new
on�gurations may

be introdu
ed this leads to an unbounded number of old
on�gurations that need to be

sequentially removed.

The environment may introdu
e new
on�gurations for several reasons: (i) due to failures

and network instability that endanger installed
on�gurations, (ii) due to the mobility of the

physi
al obje
ts represented by the abstra
t memory obje
ts and the mobility of the pro
esses

maintaining the obje
t repli
as, and (iii) due to the need to rebalan
e loads on pro
esses

within installed
on�gurations. Frequent or bursty re
on�guration
an substantially in
rease

the number of installed
on�gurations and, sin
e a pro
ess performing a read or a write

operation potentially needs to
onta
t quorums in all
on�gurations known to it, this leads

to the
orresponding in
rease in the number of messages needed to perform the operation.

The New Algorithm. The primary
ontribution of this thesis is a new algorithm for

re
on�gurable atomi
 memory, based on the originalRambo, that implements an aggressive

on�guration-repla
ement proto
ol where any lo
ally-known
ontiguous sequen
e of
on�g-

urations is repla
ed by the last
on�guration in the sequen
e. The removal of the old
on-

�gurations is done in parallel, while preserving all other properties of the original Rambo.

Spe
i�
ally, we maintain a loose
oupling between the re
on�guration algorithms and the

original Rambo algorithms implementing the read and write operations.

In order to a
hieve availability in the presen
e of failures, the obje
ts are repli
ated at

several network lo
ations. In order to maintain memory
onsisten
y in the presen
e of small

and transient
hanges, the algorithm uses
on�gurations, ea
h of whi
h
onsists of a set of

members plus sets of read-quorums and write-quorums. In order to a

ommodate larger

and more permanent
hanges, the algorithm supports re
on�guration, by whi
h the set of

members and the sets of quorums are modi�ed. Su
h
hanges do not
ause violations of

atomi
ity. Any quorum
on�guration may be installed at any time|no interse
tion require-

ment is imposed on the sets of members or on the quorums of distin
t
on�gurations.

14

The algorithm is
omposed of a main algorithm, whi
h handles reading, writing, and

repla
ement of old
on�gurations with a su

essor
on�guration, and a global
on�guration

announ
ement servi
e, Re
on, whi
h provides the main algorithm with a
onsistent sequen
e

of
on�gurations. Several
on�gurations may be known to the algorithm at one time, and

read and write operations
an use them all without any harm.

The main algorithm performs read and write operations requested by
lients using a

two-phase strategy, where the �rst phase gathers information from read-quorums of a
tive

on�gurations and the se
ond phase propagates information to write-quorums of a
tive
on-

�gurations. This
ommuni
ation is
arried out using ba
kground gossiping, whi
h allows

the algorithm to maintain only a small amount of proto
ol state information. Ea
h phase is

terminated by a �xed point
ondition that involves a quorum from ea
h a
tive
on�guration.

Di�erent read and write operations may exe
ute
on
urrently: the restri
ted semanti
s of

reads and writes permit the e�e
ts of this
on
urren
y to be sorted out afterward.

The main algorithm provides a new
on�guration-repla
ement algorithm that removes

old
on�gurations while ensuring that their use is no longer ne
essary for maintaining
on-

sisten
y. Con�guration-repla
ement also uses a two-phase strategy, where the �rst phase

ommuni
ates in parallel with all old
on�gurations being removed and the se
ond phase

ommuni
ates with a new
on�guration. A
on�guration-repla
ement operation ensures that

both a read-quorum and a write-quorum of ea
h old
on�guration learn about the new
on-

�guration, and that the latest value from all old
on�gurations is
onveyed to a write-quorum

of the new
on�guration. The strength of the new algorithm is that it pro
eeds aggressively

in parallel. An arbitrary number of old
on�gurations
an be repla
ed in
onstant time

(assuming bounded message laten
y and non-failure of a
tive
on�gurations).

The
on�guration announ
ement servi
e is implemented by a distributed algorithm that

uses distributed
onsensus to agree on the su

essive
on�gurations. Any member of the

latest
on�guration
 may propose a new
on�guration at any time; di�erent proposals

are re
on
iled by an exe
ution of
onsensus among the members of
. Consensus is, in

turn, implemented using a version of the Paxos algorithm [9℄, as des
ribed formally in [3℄.

Although su
h
onsensus exe
utions may be slow|in fa
t, in some situations, they may not

even terminate|they do not
ause any delays for read and write operations.

15

All servi
es and algorithms, and their intera
tions, are spe
i�ed using I/O automata.

We show
orre
tness (atomi
ity) of the algorithm for arbitrary patterns of asyn
hrony and

failures. On the other hand, we analyze performan
e
onditionally , based on
ertain failure

and timing assumptions. For example, assuming that gossip and
on�guration-repla
ement

o

ur periodi
ally, and that quorums of a
tive
on�gurations do not fail, we show that read

and write operations
omplete within time 8d, where d is the maximum message laten
y.

Note that the original Rambo algorithm also had to assume also that garbage-
olle
tion

is able to keep up|this assumption is not ne
essary in the new algorithm due to the new

on�guration repla
ement algorithm. For the
on�guration repla
ement algorithm we show

that any number of
on�gurations
an be repla
ed by their su

essor in
onstant time.

At the same time, all the performan
e results of the original Rambo algorithm still hold;

in instan
es where the network is reliable and timely throughout the exe
ution, the bounds

des
ribed in the previous Rambo papers [12, 13℄ still hold.

Implementations of Rambo and Rambo II on a LAN are
urrently being
ompleted [16℄.

Preliminary empiri
al studies performed using this implementation illustrate the advantages

of the new algorithm over the previous one.

Do
ument Stru
ture. In Chapter 2 we des
ribe the original Rambo algorithm of Lyn
h

and Shvartsman, and then in Chapter 3 present and dis
uss the formal spe
i�
ation of

Rambo II. In Chapter 4 we present some notation, and restate some basi
 lemmas, only

slightly modi�ed from Rambo. In Chapter 5 we prove that the new algorithm guarantees

atomi

onsisten
y. In Chapter 6 we present the re
on�guration servi
e. In Chapter 7 we

analyze the performan
e of Rambo II, and dis
uss in detail the areas in whi
h this algorithm

improves over the original Rambo algorithm. In Chapter 8 we dis
uss the preliminary

performan
e results. Finally, in Chapter 9 we summarize the results, and areas for future

resear
h.

16

Chapter 2

The Original Rambo Algorithm

In this
hapter, we present the original Rambo algorithm, on whi
h the new algorithm

Rambo II is based. Rambo is an algorithm designed to support read/write operations on

an atomi
 shared memory.

In order to a
hieve fault toleran
e and availability, Rambo repli
ates data at several

network lo
ations. The algorithm uses
on�gurations to maintain
onsisten
y in the presen
e

of small and transient
hanges. Ea
h
on�guration
onsists of a set of members plus sets

of read-quorums and write-quorums. The quorum interse
tion property requires that every

read-quorum interse
t every write-quorum. Read and write operations are implemented as

a two-phase proto
ol, in whi
h ea
h phase a

esses a set of read or write quorums.

Rambo supports re
on�guration, whi
h modi�es the set of members and the sets of

quorums, thereby a

ommodating larger and more permanent
hanges without violating

atomi
ity. In this way, failed nodes
an be removed from a
tive quorums, and newly joined

nodes
an be integrated into the system. Any quorum
on�guration may be installed at any

time { no interse
tion requirement is imposed on the sets of members or on the quorums of

distin
t
on�gurations.

The Rambo algorithm
onsists of three kinds of automata:

� Joiner automata, whi
h handle join requests,

� Re
on automata, whi
h handle re
on�guration requests, and generate a totally ordered

sequen
e of
on�gurations, and

17

� Reader-Writer automata, whi
h handle read and write requests, manage garbage
ol-

le
tion, and send and re
eive gossip messages.

In this thesis, we dis
uss only the Reader-Writer automaton. The Joiner automaton is quite

simple; it sends a join message when node i joins, and sends a join-a
k message in response

to join messages. The Re
on automaton depends on a
onsensus servi
e, implemented using

Paxos [9℄, to agree on a total ordering of
on�gurations. However, we assume that this total

ordering exists, and therefore need not dis
uss this automaton any further. For more details

of these two automata, see the original Rambo paper [12, 13℄.

The
omplete implementation S is the
omposition of all the automata des
ribed above|

the Joiner

i

, Reader-Writer

i

, and Re
on

i

automata for all i, and all the
hannels, with all

the a
tions that are not external a
tions of the Rambo spe
i�
ation hidden.

Input:

join(rambo; J)

x;i

, J a �nite subset of I � fig, x 2 X , i 2 I ,

su
h that if i = (i

0

)

x

then J = ;

read

x;i

, x 2 X , i 2 I

write(v)

x;i

, v 2 V

x

, x 2 X , i 2 I

re
on(
;

0

)

x;i

,
;

0

2 C, i 2 members(
), x 2 X , i 2 I

fail

i

, i 2 I

Output:

join-a
k(rambo)

x;i

, x 2 X , i 2 I

read-a
k(v)

x;i

, v 2 V

x

, x 2 X , i 2 I

write-a
k

x;i

, x 2 X , i 2 I

re
on-a
k(b)

x;i

, b 2 fok; nokg; x 2

X; i 2 I

report(
)

x;i

,
 2 C;
 2 X; i 2 I

Figure 2-1: Rambo(x): External signature

The external signature for Rambo appears in Figure 2-1. The algorithm is spe
i�ed for

a single memory lo
ation, and extended to implement a
omplete shared memory. A
lient

uses the join

i

a
tion to join the system. After re
eiving a join-a
k

i

, the
lient
an issue read

i

and write

i

requests, whi
h results in read-a
k

i

and write-a
k

i

responses. The
lient
an issue

a re
on

i

request to propose a new
on�guration. Finally, the fail

i

a
tion is used to model

node i failing.

The signature and state for the Reader-Writer automata is presented in Figure 2-2.

The
ode for the Reader-Writer automata is presented in Figure 2-3. All three operations,

read, write, and garbage-
olle
t, are implemented using gossip messages. Unlike in many

other algorithms, there are no dire
ted messages spe
i�ed in this algorithm; at no point

does a given node, say i, de
ide to send a message spe
i�
ally to node j. Instead, at regular

intervals node i will non-deterministi
ally send all of its publi
 state to other nodes. Progress

18

Signature:

Input:

read

i

write(v)

i

, v 2 V

new-
on�g(
; k)

i

,
 2 C; k 2 N

+

re
v(join)

j;i

, j 2 I � fig

re
v(m)

j;i

, m 2M , j 2 I

join(rw)

i

fail

i

Output:

join-a
k(rw)

i

read-a
k(v)

i

, v 2 V

write-a
k

i

send(m)

i;j

, m 2M , j 2 I

Internal:

query-�x

i

prop-�x

i

g
(k)

i

, k 2 N

g
-query-�x(k)

i

, k 2 N

g
-prop-�x(k)

i

, k 2 N

g
-a
k(k)

i

, k 2 N

State:

status 2 fidle; joining; a
tive; failedg, initially idle

world , a �nite subset of I , initially ;

value 2 V , initially v

0

tag 2 T , initially (0; i

0

)

map 2 CMap , initially
map(0) =

0

,

map(k) = ? for k � 1

pnum1 2 N, initially 0

pnum2 , a mapping from I to N, initially

everywhere 0

failed , a Boolean, initially false

op, a re
ord with �elds:

type 2 fread;writeg

phase 2 fidle; query; prop; doneg, initially idle

pnum 2 N

map 2 CMap

a

, a �nite subset of I

value 2 V

g
, a re
ord with �elds:

phase 2 fidle; query; propg, initially idle

pnum 2 N

a

, a �nite subset of I

map 2 CMap

index 2 N

Figure 2-2: Reader-Writer

i

: Signature and state

in an operation o

urs when enough information has been ex
hanged. After initiating an

operation, the automaton waits until it
an be sure that it has shared state with enough

other nodes (using gossip messages), and then de
lares the operation
omplete. The phase

numbering regime, implemented using pnum1 and pnum2 is used to determine when enough

ommuni
ation has
ompleted.

Every node maintains a tag and a value for the data obje
t. Every new value is assigned a

unique tag, with ties broken by pro
ess-ids. These tags are used to determine an ordering of

the write operations, and therefore determine the value that a read operation should return.

Read and write operations require two phases, a query phase and a propagation phase,

19

Output send(hW; v; t;
m; pns; pnri)

i;j

Pre
ondition:

:failed

status = a
tive

j 2 world

hW; v; t;
m; pns; pnri =

hworld ; value; tag ;
map; pnum1 ; pnum2 (j)i

E�e
t:

none

Input re
v(hW; v; t;
m; pns; pnri)

j;i

E�e
t:

if :failed then

if status 6= idle then

status a
tive

world world [W

if t > tag then (value ; tag) (v; t)

map update(
map;
m)

pnum2 (j) max(pnum2 (j); pns)

if op:phase 2 fquery; propg and pnr � op:pnum then

op:
map extend(op:
map ; trun
ate(
m))

if op:
map 2 Trun
ated then

op:a

 op:a

 [fjg

else

op:a

 ;

op:
map trun
ate(
map)

if g
:phase 2 fquery; propg and pnr � g
:pnum then

g
:a

 g
:a

 [fjg

Input new-
on�g(
; k)

i

E�e
t:

if :failed then

if status 6= idle then

map(k) update(
map(k);
)

Input read

i

E�e
t:

if :failed then

if status 6= idle then

pnum1 pnum1 + 1

hop:pnum; op:type ; op:phase ; op:
map ; op:a

i

 hpnum1 ; read; query; trun
ate(
map); ;i

Input write(v)

i

E�e
t:

if :failed then

if status 6= idle then

pnum1 pnum1 + 1

hop:pnum; op:type ; op:phase ; op:
map ; op:a

; op:valuei

 hpnum1 ;write; query; trun
ate(
map); ;; vi

Internal query-�x

i

Pre
ondition:

:failed

status = a
tive

op:type 2 fread;writeg

op:phase = query

8k 2 N;
 2 C : op:
map(k) =

) 9R 2 read-quorums(
) : R � op:a

E�e
t:

if op:type = read then op:value value

else value op:value

tag htag :seq + 1; ii

pnum1 pnum1 + 1

op:pnum pnum1

op:phase prop

op:
map trun
ate(
map)

op:a

 ;

Internal prop-�x

i

Pre
ondition:

:failed

status = a
tive

op:type 2 fread;writeg

op:phase = prop

8k 2 N;
 2 C : op:
map(k) =

) 9W 2 write-quorums(
) : W � op:a

E�e
t:

op:phase = done

Output read-a
k(v)

i

Pre
ondition:

:failed

status = a
tive

op:type = read

op:phase = done

v = op:value

E�e
t:

op:phase = idle

Output write-a
k

i

Pre
ondition:

:failed

status = a
tive

op:type = write

op:phase = done

E�e
t:

op:phase = idle

Figure 2-3: Reader-Writer

i

: Read/write transitions

20

Internal g
(k)

i

Pre
ondition:

:failed

status = a
tive

g
:phase = idle

map(k) 2 C

map(k + 1) 2 C

k = 0 or
map(k � 1) = �

E�e
t:

pnum1 pnum1 + 1

g
:pnum pnum1

g
:phase query

g
:a

 ;

g
:index k

Internal g
-query-�x(k)

i

Pre
ondition:

:failed

status = a
tive

g
:phase = query

g
:index = k

map(k) 6= �

9R 2 read-quorums(
map(k)) :

9W 2 write-quorums(
map(k)) :

R [W � g
:a

E�e
t:

pnum1 pnum1 + 1

g
:pnum pnum1

g
:phase prop

g
:a

 ;

Internal g
-prop-�x(k)

i

Pre
ondition:

:failed

status = a
tive

g
:phase = prop

g
:index = k

9W 2 write-quorums(
map(k + 1)) : W � g
:a

E�e
t:

map(k) �

Internal g
-a
k(k)

i

Pre
ondition:

:failed

status = a
tive

g
:index = k

map(k) = �

E�e
t:

g
:phase = idle

Figure 2-4: Reader-Writer

i

: Rambo Garbage-
olle
tion transitions

ea
h of whi
h a

esses
ertain quorums of repli
as. Assume the operation is initiated at

node i. See Figure 2-5 for a summary of the two phases. First, in the query phase, node i

onta
ts read quorums to determine the most re
ent available tag and value. Then, in the

propagation phase, node i
onta
ts write quorums. If the operation is a read operation, the

se
ond phase propagates the largest tag dis
overed in the query phase, and its asso
iated

value. If the operation is a write operation, node i
hooses a new tag, stri
tly larger than

every tag dis
overed in the query phase and propagates the new tag and the new value to

the write quorums. Note that every operation a

esses both read and write quorums.

During a phase of an operation, whenever node i re
eives a gossip message from node j,

it
ompares the largest phase number j has re
eived from i (by examining pns) to the lo
al

21

Operation initiated by read

i

or write(v)

i

Phase 1 :

� Node i
ommuni
ates with a read-quorum from ea
h
on�guration in op:
map in order to

determine the largest value/tag pair.

Phase 2 :

� Node i
ommuni
ates with a write-quorum from ea
h
on�guration in in op:
map to notify it

of the
urrent largest value/tag pair (or the new value/tag pair, if it is a write operation).

Figure 2-5: Summary of two phase read or write operation

phase number when the operation began. If j initiated the gossip message after re
eiving a

message from i sent after the phase began, then i adds j to the a

 set. In e�e
t, there has

been a round-trip message sent from i to j ba
k to i. Also, i then updates its op:
map if

ne
essary.

Garbage
olle
tion operations remove old
on�gurations from the system. A garbage

olle
tion operation involves two
on�gurations: the old
on�guration being removed and

the new
on�guration being established. See Figure 2-6 for a summary of the two phases.

A garbage
olle
tion operation requires two phases, a query phase and a propagation phase.

The �rst phase
onta
ts a read-quorum and a write-quorum from the old
on�guration, and

the se
ond phase
onta
ts a write-quorum from the new
on�guration.

Note that, unlike a read or write operation, the �rst phase of the garbage-
olle
tion

operation must
onta
t two types of quorums: a read-quorum and a write-quorum for the

Operation initiated by g
(k)

i

Phase 1 :

� Node i
ommuni
ates with a read-quorum from
on�guration
(k) in order to determine the

largest value/tag pair.

� Node i
ommuni
ates with a write-quorum from
on�guration
(k) in order to notify it of

on�guration k + 1.

Phase 2 :

� Node i
ommuni
ates with a write-quorum from
on�guration
(k+1) to notify it of the
urrent

largest value/tag pair.

Figure 2-6: Summary of two phase garbage-
olle
tion operation

22

on�guration being garbage-
olle
ted. This ensures that enough nodes are aware of the new

on�gurations, and ensures that any ongoing read/write operations will in
lude the new,

larger,
on�guration.

The
map is a mapping from integer indi
es to
on�gurations [f?;�g, that initially

maps every index to ?. The
map tra
ks whi
h
on�gurations are a
tive, whi
h are not

de�ned, indi
ated by ?, and whi
h are removed, indi
ated by �. The total ordering on

on�gurations determined by the Re
on automata ensures that all nodes agree on whi
h

on�guration is stored in ea
h position in the array. We de�ne
(k) to be the
on�guration

asso
iated with index k.

The re
ord op stores information about the
urrent phase of an ongoing read or write

operation, while g
 stores information about an ongoing garbage
olle
tion operation. (A

node
an pro
ess read and write operations even when a garbage
olle
tion operation is

ongoing.) The op:
map sub�eld re
ords the
on�guration map for an operation. This
onsists

of the node's
map when a phase begins, augmented by any new
on�gurations dis
overed

during the phase. A phase
an
omplete only when the initiator has ex
hanged information

with quorums from every non-removed
on�guration in op:
map. The pnum sub�eld re
ords

the phase number when the phase begins, allowing the initiator to determine whi
h responses

orrespond to the
urrent phase. The a

 sub�eld re
ords whi
h nodes from whi
h quorums

have responded during the
urrent phase.

In Rambo,
on�gurations go through three phases: proposal, installation, and upgrade.

First, a
on�guration is proposed by a re
on event. Next, if the proposal is su

essful, the

Re
on servi
e a
hieves
onsensus on the new
on�guration, and noti�es parti
ipants with

de
ide events. When every non-failed member of the previous
on�guration has been noti�ed,

the
on�guration is installed . The
on�guration is upgraded when every
on�guration with

a smaller index has been removed at some pro
ess in the system. On
e a
on�guration has

been upgraded, it is responsible for maintaining the data.

23

24

Chapter 3

Formal Spe
i�
ation of Rambo II

In this
hapter we present the new algorithm in detail, and dis
uss how it di�ers from the

Rambo algorithm. The
omplete implementation, S, is the
omposition of all the automata

des
ribed|the Joiner

i

and Re
on

i

automata des
ribed in Rambo, the new Reader-Writer

i

automaton des
ribed here, for all i, and all the
hannels { with all the a
tions that are not

external a
tions of the Rambo II spe
i�
ation hidden.

The key problem that prevents rapid stabilization in the original algorithm is the sequen-

tial nature of the
on�guration upgrade me
hanism: in Rambo,
on�gurations are upgraded

one at a time, in order. (Re
all that in Rambo, a
on�guration is upgraded when every

on�guration with a smaller index has been garbage
olle
ted.) Con�guration
(k)
an be

upgraded only if
on�guration
(k�1) has previously been upgraded. This requirement arises

from the need to ensure that information is preserved as
on�gurations are
hanged. As in

Rambo, a
on�guration in Rambo II is upgraded when every
on�guration with a smaller

index has been removed at some pro
ess in the system. Rambo II, however, implements

a new re
on�guration proto
ol that
an upgrade any
on�guration, even if
on�gurations

with smaller indi
es have not been upgraded. Unlike in Rambo, then, there may be
on�g-

urations that are not upgraded until they themselves are removed, at the same instant that

some
on�guration with a larger index is upgraded.

After Rambo II
ompletes an upgrade operation for some
on�guration, all
on�gura-

tions with smaller indi
es
an be removed. Thus a single upgrade operation in Rambo II

25

Signature:

As in Rambo, with the following modi�
ations:

Internal:

fg-upgrade(k)

i

, k 2 N

>0

fg-upg-query-�x(k)

i

, k 2 N

>0

fg-upg-prop-�x(k)

i

, k 2 N

>0

fg-upgrade-a
k(k)

i

, k 2 N

>0

Con�guration Management State:

As in Rambo, with the following repla
ing the

g
 re
ord:

upg , a re
ord with �elds:

phase 2 fidle; query; propg, initially idle

pnum 2 N

map 2 CMap ,

a

, a �nite subset of I

target 2 N

Con�guration Management Transitions:

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

Internal
fg-upgrade(k)

i

Pre
ondition:

:failed

status = a
tive

upg :phase = idle

map(k) 2 C

map(k � 1) 2 C

1

8` 2 N; ` < k :
map(`) 6= ?

E�e
t:

pnum1 pnum1 + 1

upg hquery; pnum1 ;
map; ;; ki

Internal
fg-upg-query-�x(k)

i

Pre
ondition:

:failed

status = a
tive

upg :phase = query

upg :target = k

8` 2 N; ` < k : upg :
map(`) 2 C

) 9R 2 read-quorums(upg :
map(`)) :

9W 2 write-quorums(upg :
map(`)) :

R [W � upg :a

E�e
t:

pnum1 pnum1 + 1

upg :pnum pnum1

upg :phase prop

upg :a

 ;

Internal
fg-upg-prop-�x(k)

i

Pre
ondition:

:failed

status = a
tive

upg :phase = prop

upg :target = k

9W 2 write-quorums(upg :
map(k)) : W � upg :a

E�e
t:

for ` 2 N : ` < k do

map(`) �

Internal
fg-upgrade-a
k(k)

i

Pre
ondition:

:failed

status = a
tive

upg :target = k

8` 2 N; ` < k :
map(`) = �

E�e
t:

upg :phase = idle

Output send(hW; v; t;
m; pns; pnri)

i;j

Pre
ondition:

:failed

status = a
tive

j 2 world

hW; v; t;
m; pns; pnri =

hworld ; value; tag ;
map; pnum1 ; pnum2 (j)i

E�e
t:

none

Input re
v(hW; v; t;
m; pns; pnri)

j;i

E�e
t:

if :failed then

if status 6= idle then

status a
tive

world world [W

if t > tag then (value ; tag) (v; t)

map update(
map ;
m)

pnum2 (j) max(pnum2 (j); pns)

if op:phase 2 fquery; propg and pnr � op:pnum then

op:
map extend(op:
map ; trun
ate(
m))

if op:
map 2 Trun
ated then

op:a

 op:a

 [fjg

else

op:a

 ;

op:
map trun
ate(
map)

if upg :phase 2 fquery; propg and pnr � upg :pnum then

upg :a

 upg :a

 [fjg

Figure 3-1: Reader-Writer

i

: Con�guration Management transitions

26

potentially has the e�e
t of many garbage
olle
tion operations in Rambo, ea
h of whi
h

an only remove a single
on�guration. The name has been
hanged to emphasize the oper-

ation's a
tive role in
on�guration management:
on�guration upgrade is an inherent part

of preparing a
on�guration to assume responsibility for the data. The
ode for the new

on�guration management me
hanism appears in Figure 3-1. All labeled lines in this se
tion

refer to the
ode therein.

We now des
ribe in more detail the
on�guration upgrade operation, whi
h is at the

heart ofRambo II. A
on�guration upgrade is a two-phase operation, mu
h like the garbage-

olle
tion operation inRambo. See Figure 3-2 for a summary of the two phases. An upgrade

operation is initiated at node i with a
fg-upgrade(k) event. When this happens,
map(k)

must be de�ned, that is, must be a valid
on�guration 2 C (line A). Additionally, for every

on�guration ` < k,
map(`) must be either 2 C or removed, that is, � (line B).

We refer to
on�guration
(k) as the target of the upgrade operation, and we refer to the

set of
on�gurations to be removed, f
(`) : ` < k ^ upg :
map(`) 2 Cg, as the removal-set of

the
on�guration upgrade operation. The
on�guration management me
hanism guarantees

that the removal-set
onsists of
on�gurations with a
ontiguous set of indi
es.

As a result of the
fg-upgrade event, node i initializes its upg state (line C), and begins

the query phase of the upgrade operation. In parti
ular, node i stores its
urrent
map in

upg :
map, whi
h re
ords the
on�gurations that are
urrently a
tive. Only these
on�gura-

tions (and, in fa
t, only those with index smaller than k) matter during the operation; new

on�gurations are ignored.

The query phase
ontinues until node i re
eives responses from enough nodes. In par-

ti
ular, for every
on�guration
(`) with index less than k in upg :
map, there must exist a

read-quorum, R, of
on�guration
(`), and a write-quorum, W , of
on�guration
(`) su
h

that i has re
eived a response (that is, a re
ent gossip message) from every node in R [W

(lines D{E).

When the query phase
ompletes, a
fg-upg-query-�x event o

urs. When this event

1

In the
onferen
e version of the thesis, this line was omitted. The removal of this line has no detrimental

e�e
t on the algorithm, sin
e the operation then
ompletes in zero time. However for
larity sake it is

in
luded.

27

Operation initiated by
fg-upgrade(k)

i

:

Phase 1 :

� Node i
ommuni
ates with a read-quorum from ea
h
on�guration being removed in order to

determine the largest value/tag pair.

� Node i
ommuni
ates with a write-quorum from ea
h
on�guration being removed to notify it

of the new, a
tive
on�guration.

Phase 2 :

� Node i
ommuni
ates with a write-quorum from the target
on�guration being upgraded, to

notify it of the
urrent largest value/tag pair.

Figure 3-2: Summary of two phase
on�guration upgrade operation

o

urs, node i then has the most re
ent tag and value dis
overed by operations using
on-

�gurations with index smaller than k. Further, all
on�gurations with indi
es smaller than

k have been noti�ed of
on�guration
(k). Node i then reinitializes upg to begin the propa-

gation phase (lines F{G).

The propagation phase
ontinues until node i re
eives responses from a write-quorum in

on�guration
(k). In parti
ular, there must exist a write-quorum, W , of
on�guration
(k),

su
h that i has re
eived a response from every node in W (line H).

When the propagation phase
ompletes, a
fg-upg-prop-�x event o

urs, whi
h veri�es the

termination
ondition. At this point node i has ensured that
on�guration
(k) has re
eived

the most re
ent value known to i, whi
h, as a result of the query phase, is itself a re
ent

value. At this point, the
on�gurations with index < k are no longer needed, and node i

removes these
on�gurations from its lo
al
map, setting
map(`) = � for all ` < k (line

I{J). Gossip messages may eventually notify other pro
esses that these
on�gurations have

been removed.

Finally, a
fg-upgrade-a
k(k) event noti�es the
lient that
on�guration
(k) has been

su

essfully upgraded.

Noti
e that the algorithm allows a nondeterministi

hoi
e of whi
h
on�guration to up-

grade { and therefore whi
h
on�gurations to remove. Therefore it is possible to restri
t

the algorithm so that it removes only the smallest
on�guration, upgrading the
on�gura-

tions one at a time. In this
ase the algorithm progresses exa
tly as the original Rambo

28

algorithm. Therefore it is
learly possible, by restri
ting the nondeterminism appropriately,

to implement Rambo II in su
h a way as to guarantee equivalent performan
e as Rambo.

However we will show that by allowing greater
exibility we
an a
hieve equivalent safety

results and improved performan
e.

The new algorithm introdu
es several diÆ
ulties not present inRambo. Consider, for ex-

ample, a ni
e property guaranteed by the sequential garbage
olle
tion algorithm in Rambo:

every
on�guration is upgraded before it is removed. In Rambo II, on the other hand, some

on�gurations never re
eive up to date information; a
on�guration may be upgraded at the

same instant it is removed.

As a result of this fa
t, a number of plausible improvements fail. Assume that during

an ongoing upgrade operation for
on�guration
(k) initiated by node i, node i re
eives a

message indi
ating that
on�guration
(k

0

) has been removed, for some k

0

< k. In Rambo II,

node i sets
map(k

0

) = �, but does not
hange upg :
map. Consider the following in
orre
t

modi�
ation to the
on�guration management me
hanism. When node i re
eives su
h a

message, it sets upg :
map(k

0

) to �. Sin
e the
on�guration has been removed, it seems

plausible that the
on�guration upgrade operation
an safely ignore it, thus
ompleting

more qui
kly. It turns out, however, that this improvement results in a ra
e
ondition that

an lead to data loss. The
on�guration upgrade operation that removes
on�guration
(k

0

)

might o

ur
on
urrently with the operation at node i upgrading
on�guration
(k). This

on
urren
y might result in data being propagated from
on�guration
(k

0

) to a
on�guration

(k

00

) : k

0

< k

00

< k that has already been pro
essed by the upgrade operation at node i. The

data thus propagated might then be lost.

29

30

Chapter 4

Notation and Basi
 Lemmas

This
hapter is, to a large extent, a restatement of notation and results from the original

Rambo paper [13℄. Some of the notation in the proofs has been slightly modi�ed to a

ount

for the new
on�guration management me
hanism, and some of the proofs have therefore

been updated, but the results are essentially un
hanged. Mu
h of this
hapter is taken

dire
tly from [13℄.

4.1 Good Exe
utions

Throughout the rest of this thesis, we will talk about \good" exe
utions of the algorithm.

In this se
tion, we present a set of environment assumptions that de�ne a \good" exe
ution.

In general, the assumptions we will present require well-formed requests:
lients follow the

proto
ol to join and to initiate re
on�gurations;
lients initiate only one operation at a time;

lients wait for appropriate a
knowledgments before pro
eeding.

We
onsider exe
utions of S (re
all that S is the entire system
ombining Reader-Writer ,

Re
on and Joiner automata) whose tra
es satisfy
ertain assumptions about the environ-

ment. We
all these good exe
utions. In parti
ular, an \invariant" is a statement that is

true of all states that are rea
hable in good exe
utions of S. The environment assumptions

are simple \well-formedness"
onditions:

� Well-formedness for Reader-Writer:

31

{ For every x and i:

� No join(rambo; �)

x;i

, read

x;i

, write(�)

x;i

, or re
on(�; �)

x;i

event is pre
eded by

a fail

i

event.

� At most one join(rambo; �)

x;i

event o

urs.

� Any read

x;i

, write(�)

x;i

, or re
on(�; �)

x;i

event is pre
eded by a join-a
k(rambo)

x;i

event.

� Any read

x;i

, write(�)

x;i

, or re
on(�; �)

x;i

event is pre
eded by an -a
k event for

any pre
eding event of any of these kinds.

{ For every x and
, at most one re
on(�;
)

x;�

event o

urs. (This says that
on�g-

uration identi�ers that are proposed in re
on events are unique. It does not say

that the membership and/or quorum sets are unique|just the identi�ers. The

same membership and quorum sets may be asso
iated with di�erent
on�gura-

tion identi�ers.) Uniqueness of
on�guration identi�ers is a
hievable using lo
al

pro
ess identi�ers and sequen
e numbers.

{ For every
,

0

, x, and i, if a re
on(
;

0

)

x;i

event o

urs, then it is pre
eded by:

� A report(
)

x;i

event, and

� A join-a
k(rambo)

x;j

event for every j 2 members(

0

).

� Well-formedness for Re
on:

1

{ For every i:

� No join(re
on)

i

or re
on(�; �)

i

event is pre
eded by a fail

i

event.

� At most one join(re
on)

i

event o

urs.

� Any re
on(�; �)

i

event is pre
eded by a join-a
k(re
on)

i

event.

� Any re
on(�; �)

i

event is pre
eded by an -a
k for any pre
eding re
on(�; �)

i

event.

{ For every
, at most one re
on(�;
)

�

event o

urs.

1

The following properties appear in Chapter 6, but we repeat them here for
ompleteness.

32

{ For every
,

0

, x, and i, if a re
on(
;

0

)

i

event o

urs, then it is pre
eded by:

� A report(
)

i

event, and

� A join-a
k(re
on)

j

for every j 2 members(

0

).

4.2 Notational
onventions

In this se
tion, we introdu
e some de�nitions and notational
onventions, and we add
ertain

history variables to the global state of the system S.

De�nitions:

� update, a binary fun
tion on C

�

, de�ned by update(
;

0

) = max(
;

0

) if
 and

0

are

omparable (in the augmented partial ordering of C

�

), update(
;

0

) =
 otherwise.

� extend , a binary fun
tion on C

�

, de�ned by extend(
;

0

) =

0

if
 = ? and

0

2 C, and

extend(
;

0

) =
 otherwise.

� CMap, the set of
on�guration maps, de�ned as the set of mappings from N to C

�

.

The update and extend operators are extended element-wise to binary operations on

CMap.

� trun
ate, a unary fun
tion on CMap, de�ned by trun
ate(
m)(k) = ? if there exists

` � k su
h that
m(`) = ?, trun
ate(
m)(k) =
m(k) otherwise. This trun
ates

on�guration map
m by removing all the
on�guration identi�ers that follow a ?.

� Trun
ated , the subset of CMap su
h that
m 2 Trun
ated if and only if trun
ate(
m) =

m.

� Usable, the subset of CMap su
h that
m 2 Usable i� the pattern o

urring in
m

onsists of a pre�x of �nitely many �s, followed by an element of C, followed by an

in�nite sequen
e of elements of C [f?g in whi
h all but �nitely many elements are ?.

An operation is a pair (n; i)
onsisting of a natural number n and an index i 2 I. Here,

i is the index of the pro
ess running the operation, and n is the value of pnum1

i

just after

the read, write, or
fg-upgrade event of the operation o

urs.

33

We introdu
e the following history variables:

� in-transit , a set of messages, initially ;.

A message is added to the set when it is sent by any Reader-Writer

i

to any Reader-Writer

j

.

No message is ever removed from this set.

� For every k 2 N :

1.
(k) 2 C, initially unde�ned.

This is set when the �rst new-
on�g(
; k)

i

o

urs, for some
 and i. It is set to

the
 that appears as the �rst argument of this a
tion.

� For every operation �:

1. tag(�) 2 T , initially unde�ned.

This is set to the value of tag at the pro
ess running �, at the point right after �'s

query-�x or
fg-upg-query-�x event o

urs. If � is a read or
on�guration upgrade

operation, this is the highest tag that it en
ounters during the query phase. If �

is a write operation, this is the new tag that is sele
ted for performing the write.

� For every read or write operation �:

1. query-
map(�), a CMap, initially unde�ned.

This is set in the query-�x step of �, to the value of op:
map in the pre-state.

2. R(�; k), for k 2 N , a subset of I, initially unde�ned.

This is set in the query-�x step of �, for ea
h k su
h that query-
map(�)(k) 2 C.

It is set to an arbitrary R 2 read-quorums(
(k)) su
h that R � op:a

 in the

pre-state.

3. prop-
map(�), a CMap, initially unde�ned.

This is set in the prop-�x step of �, to the value of op:
map in the pre-state.

4. W (�; k), for k 2 N , a subset of I, initially unde�ned.

This is set in the prop-�x step of �, for ea
h k su
h that prop-
map(�)(k) 2 C.

It is set to an arbitrary W 2 write-quorums(
(k)) su
h that W � op:a

 in the

pre-state.

34

� For every
on�guration upgrade operation
 for k:

1. removal-set(
), a subset of N , initially unde�ned.

This is set in the
fg-upgrade step of
, to the set f` : ` < k;
map(`) 6= �g.

2. R(
; `), for ` 2 N , a subset of I, initially unde�ned.

This is set in the
fg-upg-query-�x step of
, for ea
h ` 2 removal-set(
), to an

arbitrary R 2 read-quorums(
(`)) su
h that R � upg :a

 in the pre-state.

3. W

1

(
; `), for ` 2 N , a subset of I, initially unde�ned.

This is set in the
fg-upg-query-�x step of
, for ea
h ` 2 removal-set(
), to an

arbitrary W 2 write-quorums(
(`)) su
h that W � upg :a

 in the pre-state.

4. W

2

(
), a subset of I, initially unde�ned.

This is set in the
fg-upg-prop-�x step of
, to an arbitraryW 2 write-quorums(
(k))

su
h that W � upg :a

 in the pre-state.

In any good exe
ution �, we de�ne the following events (more pre
isely, we are giving

additional names to some existing events):

1. For every read or write operation �:

(a) query-phase-start(�) , initially unde�ned.

This is de�ned in the query-�x step of �, to be the unique earlier event at whi
h

the
olle
tion of query results was started and not subsequently restarted. This

is either a read, write, or re
v event.

(b) prop-phase-start(�), initially unde�ned.

This is de�ned in the prop-�x step of �, to be the unique earlier event at whi
h

the
olle
tion of propagation results was started and not subsequently restarted.

This is either a query-�x or re
v event.

4.3 Con�guration map invariants

In this se
tion, we give invariants des
ribing the kinds of
on�guration maps that may appear

in various pla
es in the state of S. We begin with a lemma saying that various operations

35

yield or preserve the \usable" property:

Lemma 4.3.1 1. If
m;
m

0

2 Usable then update(
m;
m

0

) 2 Usable.

2. If
m 2 Usable, k 2 N ,
 2 C, and
m

0

is identi
al to
m ex
ept that
m

0

(k) =

update(
m(k);
), then
m

0

2 Usable.

3. If
m;
m

0

2 Usable then extend(
m;
m

0

) 2 Usable.

4. If
m 2 Usable then trun
ate(
m) 2 Usable.

Proof. Part 1 is shown using a
ase analysis based on whi
h of
m and
m

0

has a longer

pre�x of �s. Part 2 uses a
ase analysis based on where k is with respe
t to the pre�x of

�s. Part 3 and Part 4 are also straightforward. �

The next invariant (re
all from Se
tion 4.1 that this means a property of all states

that arise in good exe
utions of S) des
ribes some properties of
map

i

that hold while

Reader-Writer

i

is
ondu
ting a
on�guration upgrade operation:

Invariant 4.3.2 If upg :phase

i

6= idle and upg :target

i

= k, then:

1. 8` : ` � k)
map(`)

i

2 C [f�g.

2. If k

1

= minf` : ` � k and upg :
map(`) 6= �g then k

1

= 0 or
map(k

1

� 1)

i

= �.

Proof. By the pre
ondition of
fg-upgrade(k)

i

and monotoni
ity of all the
hanges to

map

i

. �

We next pro
eed to des
ribe the patterns of C, ?, and � values that may o

ur in

on�guration maps in various pla
es in the system state.

Invariant 4.3.3 Let
m be a CMap that appears as one of the following:

1. The
m
omponent of some message in in-transit .

2.
map

i

for any i 2 I.

3. op:
map

i

for some i 2 I for whi
h op:phase 6= idle.

36

4. query-
map(�) or prop-
map(�) for any operation �.

5. upg :
map

i

for some i 2 I for whi
h upg :phase 6= idle.

Then
m 2 Usable.

In the following proof and elsewhere, we use dot notation to indi
ate
omponents of a

state, for example, s:
map

i

indi
ates the value of
map

i

in state s.

Proof. By indu
tion on the length of a �nite good exe
ution.

Base: Part 1 holds be
ause initially, in-transit is empty. Part 2 holds be
ause initially,

for every i,
map(0)

i

=

0

and
map(k)

i

= ?; the resulting CMap is in Usable. Part 3 and

Part 5 hold va
uously, be
ause in the initial state, all op:phase and upg :phase values are

idle. Part 4 also holds va
uously, be
ause in the initial state, all query-
map and prop-
map

variables are unde�ned.

Indu
tive step: Let s and s

0

be the states before and after the new event, respe
tively.

We
onsider Parts 1{5 one by one.

For Part 1, the interesting
ase is a send

i

event that puts a message
ontaining
m in

in-transit . The pre
ondition on the send a
tion implies that
m is set to s:
map

i

. The

indu
tive hypothesis, Part 2, implies that s:
map

i

2 Usable, whi
h suÆ
es.

For Part 2, �x i. The interesting
ases are those that may
hange
map

i

, namely, new-
on�g

i

,

re
v

i

for a gossip (non-join) message, and
fg-upg-prop-�x

i

. The latter
ase is the only one

modi�ed from the original Rambo algorithm.

1. new-
on�g(
; �)

i

.

By indu
tive hypothesis, s:
map

i

2 Usable. The only
hange this
an make is
hanging

a ? to
. Then Lemma 4.3.1, Part 2, implies that s

0

:
map

i

2 Usable.

2. re
v(h�; �;
m; �; �i)

i

.

By indu
tive hypothesis,
m 2 Usable and s:
map

i

2 Usable. The step sets s

0

:
map

i

to update(s:
map

i

;
m). Lemma 4.3.1, Part 1, then implies that s

0

:
map

i

2 Usable.

37

3.
fg-upg-prop-�x(k)

i

.

This sets
map(`)

i

to � for all ` < k. By the de�nition of this step, s

0

:
map(`)

i

= �

for ` < k.

If s:
map(k � 1)

i

= �, then the operation has no e�e
t, and s

0

:
map

i

= s:
map

i

2

Usable. Assume, then, that s:
map(k� 1)

i

2 C [f?g. This implies, by the indu
tive

hypothesis showing s:
map

i

2 Usable, that s:
map(`)

i

2 C [f?g for all ` � k � 1.

By Invariant 4.3.2, we know that s:
map(k)

i

2 C [f�g, and therefore s:
map(k)

i

2

C. Therefore s

0

:
map(k)

i

2 C and s

0

:
map(`)

i

2 C [f?g for all ` > k, sin
e the

fg-upg-prop-�x does not
hange entries in the
map larger than k�1. Further, there are

only �nitely many entries in s:
map

i

that are in C (by the indu
tive hypothesis), and

so there are still only �nitely many entries in s

0

:
map

i

. Therefore, s

0

:
map

i

2 Usable.

For Part 3, the interesting a
tions to
onsider are those that modify op:
map, namely, read

i

,

write

i

, re
v

i

, and query-�x

i

.

1. read

i

, write

i

, or query-�x

i

.

By indu
tive hypothesis, s:
map

i

2 Usable. The new step sets s

0

:op:
map

i

to trun
ate(s:
map

i

);

sin
e s:
map

i

2 Usable, Lemma 4.3.1, Part 4, implies that this is also usable.

2. re
v(h�; �;
m; �; �i)

i

.

This step may alter op:
map

i

only if s:op:phase 2 fquery; propg, and then in only two

ways: by setting it either to extend(s:op:
map

i

; trun
ate(
m)) or to trun
ate(update(s:
map

i

;
m)).

The indu
tive hypothesis implies that s:op:
map

i

,
map

i

, and
m are all in Usable.

Lemma 4.3.1 implies that trun
ate, extend , and update all preserve usability. There-

fore, s

0

:op:
map

i

2 Usable.

For Part 4, the a
tions to
onsider are query-�x

i

and prop-�x

i

.

1. query-�x

i

.

This sets s

0

:query-
map

i

to the value of s:op:
map

i

. Sin
e by indu
tive hypothesis the

latter is usable, so is s

0

:query-
map

i

.

38

2. prop-�x

i

.

This sets s

0

:prop-
map

i

to the value of s:op:
map

i

. Sin
e by indu
tive hypothesis, the

latter is usable, so is s

0

:prop-
map

i

.

For Part 5, the a
tions to
onsider are
fg-upgrade(k)

i

and
fg-upg-query-�x(k)

i

. These set

s

0

:upg :
map

i

to the value of s:
map

i

. Sin
e by the indu
tive hypothesis the latter is usable,

so is s

0

:upg :
map

i

. �

We now strengthen Invariant 4.3.3 to say more about the form of the CMaps that are

used for read and write operations:

Invariant 4.3.4 Let
m be a CMap that appears as op:
map

i

for some i 2 I for whi
h

op:phase

i

6= idle, or as query-
map(�) or prop-
map(�) for any operation �. Then:

1.
m 2 Trun
ated.

2.
m
onsists of �nitely many � entries followed by �nitely many C entries followed by

an in�nite number of ? entries.

Proof. We prove that the desired properties hold for a
m that is op:
map

i

. The

same properties for query-
map

i

and prop-
map

i

follow by the way they are de�ned, from

op:
map

i

.

To prove Part 1 we pro
eed by indu
tion. In the initial state, op:phase

i

= idle, whi
h

makes the
laim va
uously true. For the indu
tive step we
onsider all a
tions that alter

op:
map

i

:

1. read

i

, write

i

, or query-�x

i

.

These set op:
map

i

to trun
ate(
map

i

), whi
h is ne
essarily in Trun
ated .

2. re
v

i

.

This �rst sets op:
map

i

to a preliminary value and then tests if the result is in

Trun
ated . If it is, we are done. If not, then this step resets op:
map

i

to trun
ate(
map

i

),

whi
h is in Trun
ated .

To see Part 2, note that
m 2 Usable by Invariant 4.3.3. The fa
t that
m 2 Trun
ated

then follows from the de�nition of Usable and Part 1. �

39

4.4 Phase guarantees

In this se
tion, we present results saying what is a
hieved by the individual operation phases.

We give four lemmas, des
ribing the messages that must be sent and re
eived and the

information
ow that must o

ur during the two phases of
on�guration-upgrades and during

the two phases of read and write operations.

Note that these lemmas treat the
ase where j = i uniformly with the
ase where j 6= i.

This is be
ause, in the Reader-Writer algorithm,
ommuni
ation from a lo
ation to itself

is treated uniformly with
ommuni
ation between two di�erent lo
ations. We �rst
onsider

the query phase of a
on�guration-upgrade:

Lemma 4.4.1 Suppose that a
fg-upg-query-�x(k)

i

event for
on�guration upgrade operation

 o

urs in � and k

0

2 removal-set(
). Suppose j 2 R(
; k

0

) [W

1

(
; k

0

).

Then there exist messages m from i to j and m

0

from j to i su
h that:

1. m is sent after the
fg-upgrade(k)

i

event of
.

2. m

0

is sent after j re
eives m.

3. m

0

is re
eived before the
fg-upg-query-�x(k)

i

event of
.

4. In any state after j re
eives m,
map(`)

j

6= ? for all ` � k.

5. tag(
) � t, where t is the value of tag

j

in any state before j sends message m

0

.

Proof. The phase number dis
ipline implies the existen
e of the
laimed messages m and

m

0

.

For Part 4, the pre
ondition of
fg-upgrade(k) implies that, when the
fg-upgrade(k)

i

event of
 o

urs,
map(`)

i

6= ? for all ` � k. Therefore, j sets
map(`)

j

6= ? for all ` � k

when it re
eives m. Monotoni
ity of
map

j

ensures that this property persists forever.

For Part 5, let t be the value of tag

j

in any state before j sends message m

0

. Let t

0

be

the value of tag

j

in the state just before j sends m

0

. Then t � t

0

, by monotoni
ity. The tag

omponent of m

0

is equal to t

0

, by the
ode for send. Sin
e i re
eives this message before the

fg-upg-query-�x(k), it follows that tag(
) is set by i to a value � t. �

40

Next, we
onsider the propagation phase of a
on�guration upgrade:

Lemma 4.4.2 Suppose that a
fg-upg-prop-�x(k)

i

event for a
on�guration upgrade opera-

tion
 o

urs in �. Suppose that j 2 W

2

(
).

Then there exist messages m from i to j and m

0

from j to i su
h that:

1. m is sent after the
fg-upg-query-�x(k)

i

event of
.

2. m

0

is sent after j re
eives m.

3. m

0

is re
eived before the
fg-upg-prop-�x(k)

i

event of
.

4. In any state after j re
eives m, tag

j

� tag(
).

Proof. The phase number dis
ipline implies the existen
e of the
laimed messages m and

m

0

.

For Part 4, when j re
eives m, it sets tag

j

to be � tag(
). Monotoni
ity of tag

j

ensures

that this property persists in later states. �

Next, we
onsider the query phase of read and write operations:

Lemma 4.4.3 Suppose that a query-�x

i

event for a read or write operation � o

urs in �.

Let k; k

0

2 N. Suppose query-
map(�)(k) 2 C and j 2 R(�; k).

Then there exist messages m from i to j and m

0

from j to i su
h that:

1. m is sent after the query-phase-start(�) event.

2. m

0

is sent after j re
eives m.

3. m

0

is re
eived before the query-�x event of �.

4. If t is the value of tag

j

in any state before j sends m

0

, then:

(a) tag(�) � t.

(b) If � is a write operation then tag(�) > t.

5. If
map(`)

j

6= ? for all ` � k

0

in any state before j sends m

0

, then query-
map(�)(`) 2

C for some ` � k

0

.

41

Proof. The phase number dis
ipline implies the existen
e of the
laimed messages m and

m

0

.

For Part 4, the tag
omponent of message m

0

is � t, so i re
eives a tag that is � t during

the query phase of �. Therefore, tag(�) � t. Also, if � is a write, the e�e
ts of the query-�x

imply that tag(�) > t.

Finally, we show Part 5. In the
m
omponent of message m

0

,
m(`) 6= ? for all ` � k

0

.

Therefore, trun
ate(
m)(`) =
m(`) for all ` � k

0

, so trun
ate(
m)(`) 6= ? for all ` � k

0

.

Let
m

0

be the
on�guration map extend(op:
map

i

; trun
ate(
m))
omputed by i during

the e�e
ts of the re
v event for m

0

. Sin
e i does not reset op:a

 to ; in this step, by

de�nition of the query-phase-start event, it follows that
m

0

2 Trun
ated , and
m

0

is the

value of op:
map

i

just after the re
v step.

Fix `, 0 � ` � k

0

. We
laim that
m

0

(`) 6= ?. We
onsider
ases:

1. op:
map(`)

i

6= ? just before the re
v step.

Then the de�nition of extend implies that
m

0

(`) 6= ?, as needed.

2. op:
map(`)

i

= ? just before the re
v step and trun
ate(
m)(`) 2 C.

Then the de�nition of extend implies that
m

0

(`) 2 C, whi
h implies that
m

0

(`) 6= ?,

as needed.

3. op:
map(`)

i

= ? just before the re
v step and trun
ate(
m)(`) =2 C.

Sin
e trun
ate(
m)(`) 6= ?, it follows that trun
ate(
m)(`) = �. Sin
e trun
ate(
m)(`) =

� and trun
ate(
m) 2 Usable, it follows that, for some `

0

> `, trun
ate(
m)(`

0

) 2 C.

By the
ase assumption, op:
map(`)

i

= ? just before the re
v step. Sin
e, by In-

variant 4.3.4, op:
map

i

2 Trun
ated , it follows that op:
map(`

0

)

i

= ? before the re
v

step.

Then by de�nition of extend , we have that
m

0

(`) = ? while
m

0

(`

0

) 2 C. This

implies that
m

0

=2 Trun
ated , whi
h
ontradi
ts the fa
t, already shown, that
m

0

=2

Trun
ated , So this
ase
annot arise.

42

Sin
e this argument holds for all `, 0 � ` � k

0

, it follows that
m

0

(`) 6= ? for all ` � k

0

.

Sin
e
m

0

(`) 6= ? for all ` � k

0

, Invariant 4.3.3 implies that
m

0

2 Usable, whi
h implies by

de�nition of Usable that
m

0

(`) 2 C for some ` � k

0

. That is, op:
map

i

(`) 2 C for some

` � k

0

immediately after the re
v step. This implies that query-
map(�)(`) 2 C for some

` � k

0

, as needed. �

And �nally, we
onsider the propagation phase of read and write operations:

Lemma 4.4.4 Suppose that a prop-�x

i

event for a read or write operation � o

urs in �.

Suppose prop-
map(�)(k) 2 C and j 2 W (�; k).

Then there exist messages m from i to j and m

0

from j to i su
h that:

1. m is sent after the prop-phase-start(�) event.

2. m

0

is sent after j re
eives m.

3. m

0

is re
eived before the prop-�x event of �.

4. In any state after j re
eives m, tag

j

� tag(�).

5. If
map(`)

j

6= ? for all ` � k

0

in any state before j sends m

0

, then prop-
map(�)(`) 2 C

for some ` � k

0

.

Proof. The phase number dis
ipline implies the existen
e of the
laimed messages m and

m

0

.

For Part 4, letm:tag be the tag �eld of messagem. Sin
em is sent after the prop-phase-start

event, whi
h is not earlier than the query-�x, it must be that m:tag � tag(�). Therefore, by

the e�e
ts of the re
v, just after j re
eives m, tag

j

� m:tag � tag(�). Then monotoni
ity of

tag

j

implies that tag

j

� tag(�) in any state after j re
eives m.

For Part 5, the proof is analogous to the proof of Part 5 of Lemma 4.4.3. In fa
t, it is

identi
al ex
ept for the �nal
on
lusion, whi
h now says that prop-
map(�)(`) 2 C for some

` � k

0

. �

43

44

Chapter 5

Atomi
 Consisten
y

This se
tion
ontains the proof of atomi

onsisten
y. The proof is
arried out in several

stages. First in Se
tion 5.1 we present some lemmas about the new
on�guration man-

agement me
hanism, des
ribing the relationship between
on�guration upgrade operations.

Se
tion 5.2 des
ribes the relationship between read/write operations and
on�guration up-

grade operations. Se
tion 5.3 then
onsiders two read or write operations, and
ulminates

in Lemma 5.3.3, whi
h says that tags are monotoni
 with respe
t to non-
on
urrent read or

write operations. Finally, Se
tion 5.4 uses the tags to de�ne a partial order on operations

and veri�es the four properties required for atomi
ity.

5.1 Behavior of
on�guration upgrade

This se
tion presents the key new te
hni
al lemmas on whi
h the proof of atomi
ity is based.

Spe
i�
ally, we present lemmas des
ribing information
ow between
on�guration upgrade

operations. These lemmas assert the existen
e of a sequen
e of
on�guration upgrade opera-

tions on whi
h we
an make
ertain ne
essary guarantees. In parti
ular, the key property is

that the tags are monotoni
ally in
reasing with respe
t to the spe
i�
 sequen
e of upgrade

operations, guaranteeing that value/tag information is propagated to newer
on�gurations.

The �rst lemma shows that if all
on�guration upgrade operations remove two parti
ular

on�gurations together, then those two
on�guration are always in the same state in all

45

maps.

Lemma 5.1.1 Suppose that k > 0, and � is an exe
ution in whi
h no
fg-upg-prop-�x(k)

event o

urs in �. Suppose that
m is a CMap that appears as one of the following in any

state in �:

1. The
m
omponent of some message in in-transit .

2.
map

i

for any i 2 I.

If
m(k � 1) = � then
m(k) = �.

Proof. Fix some � and k > 0 su
h that no
fg-upg-prop-�x(k) event o

urs in �. We

pro
eed by indu
tion on the length of a �nite pre�x of �: for every a
tion in �, if before

the a
tion
m(k�1) = � =)
m(k) = �, then the same impli
ation holds after the a
tion.

Base: For Part 1, the
on
lusion follows va
uously be
ause initially in-transit is empty.

For Part 2, the
on
lusion again follows va
uously be
ause initially
map

i

(`) 6= � for all i

and `.

Indu
tive step: Let s and s

0

be the states before and after the new event, respe
tively. We

onsider Parts 1 and 2 separately.

For Part 1, the interesting
ase is a send

i

event that puts a message
ontaining
m in

in-transit . The pre
ondition on the send a
tion implies that
m is set to s:
map

i

. The

indu
tive hypothesis, Part 2, implies that if s:
map(k � 1) = �, then s:
map(k) = �.

Therefore in state s

0

, the same holds for
m, whi
h has been added to in-transit .

For Part 2, �x i. The interesting
ases are those that may
hange
map

i

, namely, new-
on�g

i

,

re
v

i

for a gossip message, and
fg-upg-prop-�x

i

.

1. new-
on�g(
; �)

i

.

If s

0

:
map(k � 1)

i

= �, then s:
map(k � 1)

i

= �, sin
e installing a new
on�guration

does not set any entry to �. Then by the indu
tive hypothesis s:
map(k)

i

= �, whi
h

implies that s

0

:
map(k)

i

= �, sin
e this a
tion
annot modify an entry that is already

�.

46

2. re
v(h�; �;
m; �; �i)

i

.

First, if
m(0) 6= �, then the message does not
ause any entry in s:
map to be set

to �, and as in Case 1 the desired property still holds. Also, if s:
map(0) 6= �, then

for all `, s

0

:
map(`) = � if and only if
m(`) = �. By the indu
tive hypothesis

m(k� 1) = � =)
m(k) = �, so the desired
on
lusion follows. For the rest of this

ase, we will assume that
m(0) = � and s:
map(0) = �.

By Invariant 4.3.3,
m 2 Usable. Therefore we
an de�ne k

msg-max

su
h that
m(`) = �

for all ` � k

msg-max

and
m(`) 6= � for all ` > k

msg-max

. Similarly, we
an de�ne k

max

su
h that s:
map(`)

i

= � for all ` � k

max

and s:
map(`)

i

6= � for all ` > k

max

. De�ne

k

0

max

in the same way for the poststate, s

0

.

There are two
ases. First, assume k

max

� k

msg-max

. Then k

0

max

= k

max

, by the mono-

toni
ity of CMap. By our indu
tive hypothesis s:
map(k � 1) = � =) s:
map(k) =

�; it follows, then, that if k� 1 � k

max

then k � k

max

. Therefore if k� 1 � k

0

max

, then

k � k

0

max

. Finally, then, if s

0

:
map(k � 1) = �, then s

0

:
map(k) = �.

Assume, then, that k

msg-max

> k

max

. Then after the update operation, k

0

max

= k

msg-max

.

By our indu
tive hypothesis,
m(k � 1) = � =)
m(k) = �; it follows, then, that if

k� 1 � k

msg-max

, then k � k

msg-max

. Therefore if k� 1 � k

0

max

, then k � k

0

max

. Finally,

then, s

0

:
map(k � 1) = � implies that s

0

:
map(k) = �.

3.
fg-upg-prop-�x(k

0

)

i

.

By assumption, k 6= k

0

. If k < k

0

, then this operation sets both s

0

:
map(k � 1)

i

= �

and s

0

:
map(k)

i

= �. If k > k

0

, then this operation has no e�e
t on
map(k)

i

or

map(k � 1)

i

, and the desired property still holds.

�

The following
orollary says that if a
fg-upgrade(k) event for an upgrade operation

o

urs in an exe
ution, then there is some previous
on�guration upgrade operation

0

(that

ompletes before the upgrade event) where the target of

0

is the
on�guration with the

smallest index removed by
.

47

Corollary 5.1.2 Let
 be a
on�guration upgrade operation, initiated by a
fg-upgrade(k)

i

event in �, and let k

1

= minfremoval-set(
)g. That is, k

1

is the smallest element su
h

that upg-
map(
)(k

1

) 2 C. Assume k

1

> 0. Then a
fg-upg-prop-�x(k

1

)

j

event for some

on�guration upgrade operation

0

o

urs in � for some j su
h that the
fg-upg-prop-�x

j

event of

0

pre
edes the
fg-upgrade(k)

i

event in �.

Proof. By the de�nition of k

1

, we know that in the state just after the
fg-upgrade event,

upg :
map(k

1

� 1)

i

= � and upg :
map(k

1

)

i

6= �. Sin
e upg :
map

i

is set by the
fg-upgrade

event to
map

i

in the state just prior to the
fg-upgrade event, we know that
map(k

1

�1)

i

=

� and
map(k

1

)

i

6= � in the state just prior to the
fg-upgrade event. Lemma 5.1.1, then,

implies that some
fg-upgrade-prop-�x(k

1

) event for some operation

0

o

urs in � pre
eding

the
fg-upgrade event. �

The next lemma says that for a given
on�guration upgrade operation
, there exists a

sequen
e of pre
eding upgrade operations satisfying
ertain properties. The lemma begins by

assuming that some
on�guration with index k is removed by the spe
i�ed upgrade operation.

For every
on�guration with an index smaller than k, we
hoose a single upgrade operation {

that removes that
on�guration { to add to the sequen
e. Therefore the
onstru
ted sequen
e

may well
ontain the same
on�guration upgrade operation multiple times, if the operation

has removed multiple
on�gurations. If two elements in the sequen
e are distin
t upgrade

operations, then the earlier operation in the sequen
e
ompletes before the later operation in

the sequen
e is initiated. Also, the target of an upgrade operation in the sequen
e is removed

by the next distin
t upgrade operation in the sequen
e. As a result of these properties, the

on�guration upgrade pro
ess obeys a sequential dis
ipline.

Lemma 5.1.3 If a
fg-upgrade

i

event for upgrade operation
 o

urs in � su
h that k 2

removal-set(
), then there exists a sequen
e (possibly
ontaining repeated elements) of
on-

�guration upgrade operations

0

;

1

; : : : ;

k

with the following properties:

1. 8 s : 0 � s � k; s 2 removal-set(

s

),

2. 8 s : 0 � s < k, if

s

6=

s+1

, then the
fg-upg-prop-�x event of

s

o

urs in � and the

48

fg-upgrade event of

s+1

o

urs in �, and the
fg-upg-prop-�x event of

s

pre
edes the

fg-upgrade event of

s+1

, and

3. 8 s : 0 � s < k, if

s

6=

s+1

, then target(

s

) 2 removal-set(

s+1

).

Proof. We
onstru
t the sequen
e in reverse order, �rst de�ning

k

, and then at ea
h step

de�ning the pre
eding element. We prove the lemma by ba
kward indu
tion on `, for ` = k

down to ` = 0, maintaining the following three properties at ea
h step of the indu
tion:

1

0

. 8 s : ` � s � k; s 2 removal-set(

s

),

2

0

. 8 s : ` � s < k, if

s

6=

s+1

, then the
fg-upg-prop-�x event of

s

o

urs in � and the

fg-upgrade event of

s+1

o

urs in �, and the
fg-upg-prop-�x event of

s

pre
edes the

fg-upgrade event of

s+1

, and

3

0

. 8 s : ` � s < k, if

s

6=

s+1

, then target(

s

) 2 removal-set(

s+1

).

To begin the indu
tion, we �rst examine the base
ase, where ` = k. De�ne

k

=
. Property

1

0

holds by assumption, and Property 2

0

and Property 3

0

are va
uously true.

For the indu
tive step, we assume that

`

has been de�ned and that properties 1

0

{3

0

hold.

If ` = 0, then

0

has been de�ned, and we are done. Otherwise, we need to de�ne

`�1

. If

`� 1 2 removal-set(

`

), then let

`�1

=

`

, and all the properties still hold.

Otherwise, ` � 1 =2 removal-set(

`

) and ` 2 removal-set(

`

), whi
h implies that ` =

minfremoval-set(

`

)g be
ause ea
h
on�guration upgrade operates on a
onse
utive sequen
e

of
on�gurations. Then by Corollary 5.1.2, there o

urs in � a
on�guration upgrade oper-

ation, that we label

`�1

, with the following properties: (i) the
fg-upg-prop-�x event of

`�1

pre
edes the
fg-upgrade event of

`

, and (ii) target(

`�1

) = minfk

0

: k

0

2 removal-set(

`

)g.

Re
all that ` = minfremoval-set(

`

)g. Therefore, by Property (ii) of

`�1

, target(

`�1

) =

`. Sin
e removal-set(

`�1

) 6= ;, this implies that `�1 2 removal-set(

`�1

), proving Property

1

0

. Property 2

0

follows from Property (i) of

`�1

. Property 3

0

follows from Property (ii) of

`�1

. �

The sequential nature of
on�guration upgrade has a ni
e
onsequen
e for propagation

of tags: for any sequen
e of upgrade operations like that in Lemma 5.1.3, tag(

s

) is nonde-

reasing in s.

49

Lemma 5.1.4 Let

`

; : : : ;

k

be a sequen
e of
on�guration upgrade operations su
h that:

1. 8 s : 0 � s � k; s 2 removal-set(

s

),

2. 8 s : 0 � s < k, if

s

6=

s+1

, then the
fg-upg-prop-�x event of

s

o

urs in � and the

fg-upgrade event of

s+1

o

urs in �, and the
fg-upg-prop-�x event of

s

pre
edes the

fg-upgrade event of

s+1

, and

3. 8 s : 0 � s < k, if

s

6=

s+1

, then target(

s

) 2 removal-set(

s+1

).

Then 8 s : 0 � s < k; tag(

s

) � tag(

s+1

).

Proof. If

s

=

s+1

, then it is trivially true that tag(

s

) � tag(

s+1

). Therefore assume

that

s

6=

s+1

; this implies that the
fg-upg-prop-�x event of

s

pre
edes the
fg-upgrade

event of

s+1

. Let k

2

be the largest element in removal-set(

s

). We know by assumption that

k

2

+1 2 removal-set(

s+1

). Therefore, W

2

(

s

), a write-quorum of
on�guration
(k

2

+1), has

at least one element in
ommon with R(

s+1

; k

2

+1); label this node j. By Lemma 4.4.2, and

the monotoni
ity of tag

j

, after the
fg-upg-prop-�x event of

s

we know that tag

j

� tag(

s

).

Then by Lemma 4.4.1 tag(

s+1

) � tag

j

. Therefore tag(

s

) � tag(

s+1

). �

Corollary 5.1.5 Let

`

; : : : ;

k

be a sequen
e of
on�guration upgrade operations su
h that:

1. 8 s : 0 � s � k; s 2 removal-set(

s

),

2. 8 s : 0 � s < k, if

s

6=

s+1

, then the
fg-upg-prop-�x event of

s

o

urs in � and the

fg-upgrade event of

s+1

o

urs in �, and the
fg-upg-prop-�x event of

s

pre
edes the

fg-upgrade event of

s+1

, and

3. 8 s : 0 � s < k, if

s

6=

s+1

, then target(

s

) 2 removal-set(

s+1

).

Then 8 s; s

0

: 0 � s � s

0

� k, tag(

s

) � tag(

s

0

)

Proof. This follows immediately from Lemma 5.1.4 by indu
tion. �

50

5.2 Behavior of a read or a write following a
on�gu-

ration upgrade

Now we des
ribe the relationship between an upgrade operation and a following read or write

operation. These three lemmas relate the removal-set of a pre
eding
on�guration upgrade

operation with the query-
map of a later read or write operation.

The �rst lemma shows that if, for some read or write operation, k is the smallest index

su
h that query-
map(k) 2 C, then some
on�guration upgrade operation with target k

pre
edes the read or write operation.

Lemma 5.2.1 Let � be a read or write operation whose query-�x event o

urs in �. Let k

be the smallest element su
h that query-
map(�)(k) 2 C. Assume k > 0. Then there must

exist a
on�guration upgrade operation
 su
h that k = target(
), and the
fg-upg-prop-�x

event of
 pre
edes the query-phase-start(�) event.

Proof. This follows from Lemma 5.1.1. Let s be the state just before the query-phase-start(�)

event. By de�nition, query-
map(�) = s:
map

i

. Sin
e s:
map(k�1)

i

= � and s:
map(k)

i

6=

�, there must exist su
h a
on�guration upgrade operation for k by the
ontrapositive of

Lemma 5.1.1. �

Se
ond, if some upgrade removing k does
omplete before the query-phase-start event of

a read or write operation, then some
on�guration with index � k + 1 must be in
luded in

the query-
map of a later read or write operation.

Lemma 5.2.2 Let
 be a
on�guration upgrade operation su
h that k 2 removal-set(
).

Let � be a read or write operation whose query-�x event o

urs in �. Suppose that the

fg-upg-prop-�x event of
 pre
edes the query-phase-start(�) event in �.

Then query-
map(�)(`) 2 C for some ` � k + 1.

Proof. Suppose for the sake of
ontradi
tion that query-
map(�)(`) =2 C for all ` � k+1.

Fix k

0

= max(f`

0

: query-
map(�)(`

0

) 2 Cg). Then k

0

� k.

51

Let

0

; : : : ;

k

be the sequen
e of upgrade operations whose existen
e is asserted by

Lemma 5.1.3, where

k

=
. Then, by this
onstru
tion, k

0

2 removal-set(

k

0

), and the

fg-upg-prop-�x event of

k

0

does not
ome after the
fg-upg-prop-�x event of
 in �. By

assumption, the
fg-upg-prop-�x event of
 pre
edes the query-phase-start(�) event in �.

Therefore the
fg-upg-prop-�x event of

k

0

pre
edes the query-phase-start(�) event in �.

Then, sin
e k

0

2 removal-set(

k

0

), write-quorumW

1

(

k

0

; k

0

) is de�ned. Sin
e query-
map(k

0

) 2

C), the read-quorum R(�; k

0

) is de�ned. Choose j 2 W

1

(

k

0

; k

0

) \ R(�; k

0

). Assume that

k

t

= target(

k

0

). Noti
e that k

0

< k

t

. Then Lemma 4.4.1 and monotoni
ity of
map imply

that, in the state just prior to the
fg-upg-query-�x event of

k

0

,
map(`)

j

6= ? for all ` � k

t

.

Then Lemma 4.4.3 implies that query-
map(�)(`) 2 C for some ` � k

t

. But this
ontradi
ts

the
hoi
e of k

0

. �

The next lemma des
ribes propagation of tag information from a
on�guration up-

grade operation to a following read or write operation. For this lemma, we assume that

query-
map(k) 2 C, where k is the target of the upgrade operation,

Lemma 5.2.3 Let
 be a
on�guration upgrade operation. Assume that k = target(
).

Let � be a read or write operation whose query-�x event o

urs in �. Suppose that the

fg-upg-prop-�x event of
 pre
edes the query-phase-start(�) event in exe
ution �. Suppose

also that query-
map(�)(k) 2 C. Then:

1. tag(
) � tag(�).

2. If � is a write operation then tag(
) < tag(�).

Proof. The propagation phase of
 a

esses write-quorum W

2

(
) of
(k), whereas the

query phase of � a

esses read-quorum R(�; k). Sin
e both are quorums of
on�guration

(k), they have a nonempty interse
tion;
hoose j 2 W

2

(
) \R(�; k).

Lemma 4.4.2 implies that, in any state after the
fg-upg-prop-�x event for
, tag

j

� tag(
).

Sin
e the
fg-upg-prop-�x event of
 pre
edes the query-phase-start(�) event, we have that

t � tag(
), where t is de�ned to be the value of tag

j

just before the query-phase-start(�) event.

Then Lemma 4.4.3 implies that tag(�) � t, and if � is a write operation, then tag(�) > t.

Combining the inequalities yields both
on
lusions of the lemma. �

52

5.3 Behavior of sequential reads and writes

Read or write operations that originate at di�erent lo
ations may pro
eed
on
urrently.

However, in the spe
ial
ase where they exe
ute sequentially, we
an prove some relationships

between their query-
maps, prop-
maps, and tags. The �rst lemma says that, when two

read or write operations exe
ute sequentially, the smallest
on�guration index used in the

propagation phase of the �rst operation is less than or equal to the largest index used in the

query phase of the se
ond. In other words, we
annot have a situation in whi
h the se
ond

operation's query phase exe
utes using only
on�gurations with indi
es that are stri
tly less

than any used in the �rst operation's propagation phase.

Lemma 5.3.1 Assume �

1

and �

2

are two read or write operations, su
h that:

1. The prop-�x event of �

1

o

urs in �.

2. The query-�x event of �

2

o

urs in �.

3. The prop-�x event of �

1

pre
edes the query-phase-start(�

2

) event.

Then min(f` : prop-
map(�

1

)(`) 2 Cg) � max(f` : query-
map(�

2

)(`) 2 Cg).

Proof. Suppose for the sake of
ontradi
tion that min(f` : prop-
map(�

1

)(`) 2 Cg) >

k, where k is de�ned to be max(f` : query-
map(�

2

)(`) 2 Cg). Then in parti
ular,

prop-
map(�

1

)(k) =2 C. The form of prop-
map(�

1

), as expressed in Invariant 4.3.4, im-

plies that prop-
map(�

1

)(k) = �.

This implies that some
fg-upg-prop-�x event for some upgrade operation
 su
h that k 2

removal-set(
) o

urs prior to the prop-�x of �

1

, and hen
e prior to the query-phase-start(�

2

)

event. Lemma 5.2.2 then implies that query-
map(�

2

)(`) 2 C for some ` � k + 1. But this

ontradi
ts the
hoi
e of k. �

The next lemma des
ribes propagation of tag information, in the
ase where the prop-

agation phase of the �rst operation and the query phase of the se
ond operation share a

on�guration.

Lemma 5.3.2 Assume �

1

and �

2

are two read or write operations, and k 2 N, su
h that:

53

1. The prop-�x event of �

1

o

urs in �.

2. The query-�x event of �

2

o

urs in �.

3. The prop-�x event of �

1

pre
edes the query-phase-start(�

2

) event.

4. prop-
map(�

1

)(k) and query-
map(�

2

)(k) are both in C.

Then:

1. tag(�

1

) � tag(�

2

).

2. If �

2

is a write then tag(�

1

) < tag(�

2

).

Proof. The hypotheses imply that prop-
map(�

1

)(k) = query-
map(�

2

)(k) =
(k). Then

W (�

1

; k) and R(�

2

; k) are both de�ned in �. Sin
e they are both quorums of
on�guration

(k), they have a nonempty interse
tion;
hoose j 2 W (�

1

; k) \ R(�

2

; k).

Lemma 4.4.4 implies that, in any state after the prop-�x event of �

1

, tag

j

� tag(�

1

). Sin
e

the prop-�x event of �

1

pre
edes the query-phase-start(�

2

) event, we have that t � tag(�

1

),

where t is de�ned to be the value of tag

j

just before the query-phase-start(�

2

) event. Then

Lemma 4.4.3 implies that tag(�

2

) � t, and if �

2

is a write operation, then tag(�

2

) > t.

Combining the inequalities yields both
on
lusions. �

The �nal lemma is similar to the previous one, but it does not assume that the prop-

agation phase of the �rst operation and the query phase of the se
ond operation share a

on�guration. The main fo
us of the proof is on the situation where all the
on�guration

indi
es used in the query phase of the se
ond operation are greater than those used in the

propagation phase of the �rst operation.

Lemma 5.3.3 Assume �

1

and �

2

are two read or write operations, su
h that:

1. The prop-�x of �

1

o

urs in �.

2. The query-�x of �

2

o

urs in �.

3. The prop-�x event of �

1

pre
edes the query-phase-start(�

2

) event.

54

Then:

1. tag(�

1

) � tag(�

2

).

2. If �

2

is a write then tag(�

1

) < tag(�

2

).

Proof. Let i

1

and i

2

be the indi
es of the pro
esses that run operations �

1

and �

2

, respe
-

tively. Let
m

1

= prop-
map(�

1

) and
m

2

= query-
map(�

2

). If there exists k su
h that

m

1

(k) 2 C and
m

2

(k) 2 C, then Lemma 5.3.2 implies the
on
lusions of the lemma. So

from now on, we assume that no su
h k exists.

Lemma 5.3.1 implies that min(f` :
m

1

(`) 2 Cg) � max(f` :
m

2

(`) 2 Cg). Invari-

ant 4.3.4 implies that the set of indi
es used in ea
h phase
onsists of
onse
utive integers.

Sin
e the intervals have no indi
es in
ommon, it follows that s

1

< s

2

, where s

1

is de�ned to

be max(f` :
m

1

(`) 2 Cg) and s

2

is de�ned to be min(f` :
m

2

(`) 2 Cg).

Lemma 5.2.1 implies that there exists a
on�guration upgrade operation that we will
all

s

2

�1

su
h that s

2

= target(

s

2

�1

), and the
fg-upg-prop-�x of

s

2

�1

pre
edes the query-phase-start(�

2

)

event. Then by Lemma 5.2.3, tag(

s

2

�1

) � tag(�

2

), and if �

2

is a write operation then

tag(

s

2

�1

) < tag(�

2

).

Next we will demonstrate a
hain of
on�guration upgrade operations with non-de
reasing

tags. Lemma 5.1.3, in
onjun
tion with the already de�ned

s

2

�1

, implies the existen
e of a

sequen
e of
on�guration upgrade operations

0

; : : : ;

s

2

�1

su
h that:

1. 8 s : 0 � s � s

2

� 1; s 2 removal-set(

s

),

2. 8 s : 0 � s < s

2

� 1, if

s

6=

s+1

, then the
fg-upg-prop-�x event of

s

pre
edes the

fg-upgrade event of

s+1

in �,

3. 8 s : 0 � s < s

2

� 1, if

s

6=

s+1

, then target(

s

) 2 removal-set(

s+1

).

As a spe
ial
ase of Property 1, sin
e s

1

� s

2

� 1, we know that s

1

2 removal-set(

s

1

). Then

Corollary 5.1.5 implies that tag(

s

1

) � tag(

s

2

�1

).

It remains to show that the tag of �

1

is no greater than the tag of

s

1

. Therefore we

fo
us now on the relationship between operation �

1

and
on�guration upgrade

s

1

. The

propagation phase of �

1

a

esses write-quorum W (�

1

; s

1

) of
on�guration
(s

1

), whereas the

55

query phase of

s

1

a

esses read-quorum R(

s

1

; s

1

) of
on�guration
(s

1

). Sin
e W (�

1

; s

1

) \

R(

s

1

; s

1

) 6= ;, we may �x some j 2 W (�

1

; s

1

)\R(

s

1

; s

1

). Let message m

1

from i

1

to j and

message m

0

1

from j to i

1

be as in Lemma 4.4.4 for the propagation phase of

s

1

.

Let message m

2

from the pro
ess running

s

1

to j and message m

0

2

from j to the pro
ess

running

s

1

be the messages whose existen
e is asserted in Lemma 4.4.1 for the query phase

of

s

1

.

We
laim that j sends m

0

1

, its message for �

1

, before it sends m

0

2

, its message for

s

1

.

Suppose for the sake of
ontradi
tion that j sends m

0

2

before it sends m

0

1

. Assume that

s

t

= target(

s

1

. Noti
e that s

t

> s

1

, sin
e s

1

2 removal-set(

s

1

). Lemma 4.4.1 implies that

in any state after j re
eives m

2

, before j sends m

0

2

,
map(k)

j

6= ? for all k � s

t

. Sin
e

j sends m

0

2

before it sends m

0

1

, monotoni
ity of
map implies that just before j sends m

0

1

,

map(k)

j

6= ? for all k � s

t

. Then Lemma 4.4.4 implies that prop-
map(�

1

)(`) 2 C for

some ` � s

t

. But this
ontradi
ts the
hoi
e of s

1

, sin
e s

1

< s

t

. This implies that j sends

m

0

1

before it sends m

0

2

.

Sin
e j sends m

0

1

before it sends m

0

2

, Lemma 4.4.4 implies that, at the time j sends m

0

2

,

tag(�

1

) � tag

j

. Then Lemma 4.4.1 implies that tag(�

1

) � tag(

s

1

). From above, we know

that tag(

s

1

) � tag(

s

2

�1

), and tag(

s

2

�1

) � tag(�

2

), and if �

2

is a write operation then

tag(

s

2

�1

) < tag(�

2

). Combining the various inequalities then yields both
on
lusions. �

5.4 Atomi
ity

In order to prove that all exe
utions of Rambo II are atomi
, we use four suÆ
ient
on-

ditions. A memory is said to be atomi
 provided that the following
onditions hold for all

good exe
utions:

� If all the read and write operations that are invoked
omplete, then the read and write

operations for obje
t x
an be partially ordered by an ordering �, so that:

1. No operation has in�nitely many other operations ordered before it.

2. The partial order is
onsistent with the external order of invo
ations and re-

sponses, that is, there do not exist read or write operations �

1

and �

2

su
h that

56

�

1

ompletes before �

2

starts, yet �

2

� �

1

.

3. All write operations are totally ordered and every read operation is ordered with

respe
t to all the writes.

4. Every read operation ordered after any writes returns the value of the last write

pre
eding it in the partial order; any read operation ordered before all writes

returns the initial value.

This de�nition is suÆ
ient to guarantee atomi
ity in terms of the other
ommon de�nition

whi
h is de�ned in terms of equivalen
e to a serial memory. (See, for example, Lemma 13.16

in [11℄.)

Let � be a tra
e of S, the system that implementsRambo II (re
all that this in
ludes the

Reader-Writer , Re
on and Joiner automata), and assume that all read and write operations

omplete in �. Consider any parti
ular good exe
ution � of S whose tra
e is �. We de�ne

a partial order � on read and write operations in �, in terms of the operations' tags in

�. Namely, we totally order the writes in order of their tags, and we order ea
h read with

respe
t to all the writes as follows: a read with tag t is ordered after all writes with tags � t

and before all writes with tags > t.

Lemma 5.4.1 The ordering � is well-de�ned.

Proof. The key is to show that no two write operations get assigned the same tag. This is

obviously true for two writes that are initiated at di�erent lo
ations, be
ause the low-order

tiebreaker identi�ers are di�erent. For two writes at the same lo
ation, Lemma 5.3.3 implies

that the tag of the se
ond is greater than the tag of the �rst. This suÆ
es. �

Lemma 5.4.2 � satis�es the four
onditions in the de�nition of atomi
ity.

Proof. We begin with Property 2, whi
h as usual in su
h proofs, is the most interesting

thing to show. Suppose for the sake of
ontradi
tion that �

1

ompletes before �

2

starts, yet

�

2

� �

1

. We
onsider two
ases:

1. �

2

is a write operation.

57

Sin
e �

1

ompletes before �

2

starts, Lemma 5.3.3 implies that tag(�

2

) > tag(�

1

). On

the other hand, the fa
t that �

2

� �

1

implies that tag(�

2

) � tag(�

1

). This yields a

ontradi
tion.

2. �

2

is a read operation.

Sin
e �

1

ompletes before �

2

starts, Lemma 5.3.3 implies that tag(�

2

) � tag(�

1

). On

the other hand, the fa
t that �

2

� �

1

implies that tag(�

2

) < tag(�

1

). This yields a

ontradi
tion.

Sin
e we have a
ontradi
tion in either
ase, Property 2 must hold.

Property 1 follows from Property 2. Properties 3 and 4 are straightforward. �

Now we tie everything together for the proof of Theorem 5.4.3.

Theorem 5.4.3 Let � be a tra
e of S, the system that implements Rambo II. Then �

satis�es the atomi
ity guarantee.

Proof. Assume that all read and write operations
omplete in �. Let � be a good exe
ution

of S whose tra
e is �. De�ne the ordering � on the read and write operations in � as above,

using the exe
ution �. Then Lemma 5.4.2 says that � satis�es the four
onditions in the

de�nition of atomi
ity. Thus, � satis�es the atomi
ity
ondition, as needed. �

58

Chapter 6

Re
on�guration Servi
e

In this
hapter we present the spe
i�
ation and implementation for the re
on�guration spe
-

i�
ation. This se
tion is a restatement of Se
tions 4 and 7 of the Rambo te
hni
al report,

and is taken dire
tly from [13℄. Our Rambo implementation for ea
h obje
t x
onsists of

a main Reader-Writer algorithm and a re
on�guration servi
e, Re
on(x); sin
e we are sup-

pressing mention of x, we write this simply as Re
on. First, in Se
tion 6.1, we present the

spe
i�
ation for the Re
on servi
e, as an external signature and set of tra
es. In Se
tion 6.2,

we present our implementation of Re
on.

6.1 Re
on�guration Servi
e Spe
i�
ation

The interfa
e for Re
on appears in Figure 6-1. The
lient of Re
on at lo
ation i requests

to join the re
on�guration servi
e by performing a join(re
on)

i

input a
tion. The servi
e

a
knowledges this with a
orresponding join-a
k

i

output a
tion. The
lient requests to re-

on�gure the obje
t using a re
on

i

input, whi
h is a
knowledged with a re
on-a
k

i

output

a
tion. Rambo reports a new
on�guration to the
lient using a report

i

output a
tion.

Crashes are modeled using fail a
tions.

Re
on also produ
es outputs of the form new-
on�g(
; k)

i

, whi
h announ
e at lo
ation

i that
 is the k

th

on�guration identi�er for the obje
t. These outputs are used for
om-

muni
ation with the portion of the Reader-Writer algorithm running at lo
ation i. Re
on

59

announ
es
onsistent information, only one
on�guration identi�er per index in the
on�g-

uration identi�er sequen
e. It delivers information about ea
h
on�guration to members of

the new
on�guration and of the immediately pre
eding
on�guration.

Input:

join(re
on)

i

, i 2 I

re
on(
;

0

)

i

,
;

0

2 C, i 2 members(
)

fail

i

, i 2 I

Output:

join-a
k(re
on)

i

, i 2 I

re
on-a
k(b)

i

, b 2 fok; nokg; i 2 I

report(
)

i

,
 2 C; i 2 I

new-
on�g(
; k)

i

,
 2 C, k 2 N

+

, i 2 I

Figure 6-1: Re
on: External signature

Now we de�ne the set of tra
es des
ribing Re
on's safety properties. Again, these are

de�ned in terms of environment assumptions and and servi
e guarantees. The environment

assumptions are simple well-formedness
onditions,
onsistent with the well-formedness as-

sumptions for Rambo:

� Well-formedness:

{ For every i:

� No join(re
on)

i

or re
on(�; �)

i

event is pre
eded by a fail

i

event.

� At most one join(re
on)

i

event o

urs.

� Any re
on(�; �)

i

event is pre
eded by a join-a
k(re
on)

i

event.

� Any re
on(�; �)

i

event is pre
eded by an -a
k for any pre
eding re
on(�; �)

i

event.

{ For every
, at most one re
on(�;
)

�

event o

urs.

{ For every
,

0

, x, and i, if a re
on(
;

0

)

i

event o

urs, then it is pre
eded by:

� A report(
)

i

event, and

� A join-a
k(re
on)

j

for every j 2 members(

0

).

The safety guarantees provided by the servi
e are as follows:

� Well-formedness: For every i:

60

{ No join-a
k(re
on)

i

, re
on-a
k(�)

i

, report(�)

i

, or new-
on�g(�; �)

i

event is pre
eded

by a fail

i

event.

{ Any join-a
k(re
on)

i

(resp., re
on-a
k(
)

i

) event has a pre
eding join(re
on)

i

(resp.,

re
on

i

) event with no intervening invo
ation or response a
tion for x and i.

� Agreement: If new-
on�g(
; k)

i

and new-
on�g(

0

; k)

j

both o

ur, then
 =

0

. (No

disagreement arises about what the k

th

on�guration identi�er is, for any k.)

� Validity: If new-
on�g(
; k)

i

o

urs, then it is pre
eded by a re
on(�;
)

i

0

for some i

0

for whi
h a mat
hing re
on-a
k(nok)

i

0

does not o

ur. (Any
on�guration identi�er

that is announ
ed was previously requested by someone who did not re
eive a negative

a
knowledgment.)

� No dupli
ation: If new-
on�g(
; k)

i

and new-
on�g(
; k

0

)

i

0

both o

ur, then k = k

0

.

(The same
on�guration identi�er
annot be assigned to two di�erent positions in the

sequen
e of
on�guration identi�ers.)

6.2 Re
on�guration Servi
e Implementation

In this se
tion, we des
ribe a distributed algorithm that implements the Re
on servi
e for a

parti
ular obje
t x (and we suppress mention of x). This algorithm is
onsiderably simpler

than the Reader-Writer algorithm. It
onsists of a Re
on

i

automaton for ea
h lo
ation i,

whi
h intera
ts with a
olle
tion of global
onsensus servi
es Cons(k;
), one for ea
h k � 1

and ea
h
 2 C, and with a point-to-point
ommuni
ation servi
e.

Cons(k;
) a

epts inputs from members of
on�guration
, whi
h it assumes to be the

k � 1

st

on�guration. These inputs are proposed new
on�gurations. The de
ision rea
hed

by Cons(k;
), whi
h must be one of the proposed
on�gurations, is determined to be the

k

th

on�guration.

Re
on

i

is a
tivated by the joining proto
ol. It pro
esses re
on�guration requests us-

ing the
onsensus servi
es, and re
ords the new
on�gurations that the
onsensus servi
es

determine. Re
on

i

also
onveys information about new
on�gurations to the members of

61

those
on�gurations, and releases new
on�gurations for use by Reader-Writer

i

. It returns

a
knowledgments and
on�guration reports to its
lient.

6.3 Consensus servi
es

In this se
tion, we spe
ify the behavior we assume for
onsensus servi
e Cons(k;
), for a �xed

k � 1 and
 2 C. This behavior
an be a
hieved using the Paxos
onsensus algorithm [9℄, as

des
ribed formally in [14℄. Fix V to be the set of
onsensus values. (In the implementation

of the Re
on servi
e, V will be instantiated as C.) The external signature of Cons(k;
) is

given in Figure 6-2.

Input:

init(v)

k;
;i

, v 2 V , i 2 members(
)

fail

i

, i 2 members(
)

Output:

de
ide(v)

k;
;i

, v 2 V , i 2 members(
)

Figure 6-2: Cons(k;
): External signature

We des
ribe the safety properties of Cons(k;
) in terms of properties of a tra
e � of

a
tions in the external signature. Namely, we de�ne the
lient safety assumptions:

� Well-formedness: For any i 2 members(
):

{ No init(�)

k;
;i

event is pre
eded by a fail(i) event.

{ At most one init(�)

k;
;i

event o

urs in �.

And we de�ne the
onsensus safety guarantees:

� Well-formedness: For any i 2 members(
):

{ No de
ide(�)

k;
;i

event is pre
eded by a fail(i) event.

{ At most one de
ide(�)

k;
;i

event o

urs in �.

{ If a de
ide(�)

k;
;i

event o

urs in �, then it is pre
eded by an init(�)

k;
;i

event.

� Agreement: If de
ide(v)

k;
;i

and de
ide(v

0

)

k;
;i

0

events o

ur in �, then v = v

0

.

� Validity: If a de
ide(v)

k;
;i

event o

urs in �, then it is pre
eded by an init(v)

k;
;j

.

62

We assume that the Cons(k;
) servi
e is implemented using the Paxos algorithm [9℄, as

des
ribed formally in [14℄. This satis�es the safety guarantees des
ribed above, based on the

safety assumptions:

Theorem 6.3.1 If � is a tra
e of Paxos that satis�es the safety assumptions of Cons(k;
),

then � also satis�es the (well-formedness, agreement, and validity) safety guarantees of

Cons(k;
).

The Paxos algorithm also satis�es the following laten
y result:

Theorem 6.3.2 Consider a timed exe
ution � of the Paxos algorithm and a pre�x �

0

of �.

Suppose that:

1. The underlying system \behaves well" after �

0

, in the sense that timing is \normal"

(what is
alled \regular" in [14℄)

1

and no pro
ess failures or message losses o

ur.

2. For every i that does not fail in �, an init(�)

i

event o

urs in �

0

.

3. There exist R 2 read-quorums(
) and W 2 write-quorums(
) su
h that for all i 2

R [W , no fail

i

event o

urs in �.

Then for every i that does not fail in �, a de
ide(�)

i

event o

urs, no later than 9d+ " time

after the end of �

0

(" > 0).

6.4 Re
on automata

A Re
on

i

pro
ess is responsible for initiating
onsensus exe
utions to help determine new

on�gurations, for telling the lo
al Reader-Writer

i

pro
ess about a newly-determined
on-

�guration, and for disseminating information about newly-determined
on�gurations to the

members of those
on�gurations. The signature and state of Re
on

i

appear in Figures 6-3,

and the transitions in Figure 6-4.

1

In [14℄, regular timing implies that messages are delivered reliably within time d, that lo
al pro
essing

time is 0, and that information is \gossiped" at intervals of d.

63

Signature:

Input:

join(re
on)

i

re
on(
;

0

)

i

;
;

0

2 C; i 2 members(
)

de
ide(
)

k;i

;
 2 C; k 2 N

+

re
v(h
on�g;
; ki)

j;i

,
 2 C, k 2 N

+

,

i 2 members(
), j 2 I � fig

re
v(hinit;
;

0

; ki)

j;i

,
;

0

2 C, k 2 N

+

,

i; j 2 members(
), j 6= i

fail

i

Output:

join-a
k(re
on)

i

new-
on�g(
; k)

i

,
 2 C; k 2 N

+

init(
;

0

)

k;i

,
;

0

2 C; k 2 N

+

, i 2 members(
)

re
on-a
k(b)

i

, b 2 fok; nokg

report(
)

i

,
 2 C

send(h
on�g;
; ki)

i;j

,
 2 C, k 2 N

+

,

j 2 members(
)� fig

send(hinit;
;

0

; ki)

i;j

;
;

0

2 C; k 2 N

+

;

i; j 2 members(
), j 6= i

State:

status 2 fidle ; a
tiveg, initially idle .

re
-
map 2 CMap , initially re
-
map(0) =

0

and re
-
map(k) = ? for all k 6= 0.

did-init � N

+

, initially ;

did-new-
on�g � N

+

, initially ;

ons-data 2 (N

+

! (C �C)): initially ? everywhere

re
-status 2 fidle ; a
tiveg, initially idle

out
ome 2 fok; nok;?g, initially ?

reported � C, initially ;

failed , a Boolean, initially false

Figure 6-3: Re
on

i

: Signature and state

Lo
ation i joins the Re
on servi
e when a join(re
on) input o

urs. Re
on

i

responds with

a join-a
k.

Re
on

i

in
ludes a state variable re
-
map, whi
h holds a CMap: re
-
map(k) =
 indi-

ates that i knows that
 is the kth
on�guration identi�er. If Re
on

i

has learned that
 is

the kth
on�guration identi�er, it
an
onvey this to its lo
al Reader-Writer

i

pro
ess using a

new-
on�g(
; k)

i

output a
tion, and it
an inform any other Re
on

j

pro
ess, j 2 members(
),

by sending a h
on�g;
; ki message. Re
on

i

learns about new
on�gurations either by re
eiv-

ing a de
ide input from a Cons servi
e, or by re
eiving a
on�g or init message from another

pro
ess.

Re
on

i

re
eives a re
on�guration request from its environment via a re
on(
;

0

)

i

event.

Upon re
eiving su
h a request, Re
on

i

determines whether (a) i is a member of the known

on�guration
 with the largest index k � 1 and (b) it has not already prepared data for

a
onsensus for the next larger index k. If both (a) and (b) hold, Re
on

i

prepares su
h

data,
onsisting of the pair h
;

0

i, where
 is the k � 1st
on�guration identi�er and

0

is

the proposed
on�guration identi�er. Otherwise, Re
on

i

responds negatively to the new

re
on�guration request.

Re
on

i

initiates parti
ipation in a Cons(k;
) algorithm when its
onsensus data are pre-

64

Input join(re
on)

i

E�e
t:

if :failed then

if status = idle then

status a
tive

Output join-a
k(re
on)

i

Pre
ondition:

:failed

status = a
tive

E�e
t:

none

Output new-
on�g(
; k)

i

Pre
ondition:

:failed

status = a
tive

re
-
map(k) =

k =2 did-new-
on�g

E�e
t:

did-new-
on�g did-new-
on�g [fkg

Output send(h
on�g;
; ki)

i;j

Pre
ondition:

:failed

status = a
tive

re
-
map(k) =

E�e
t:

none

Input re
v(h
on�g;
; ki)

j;i

E�e
t:

if :failed then

if status = a
tive then

re
-
map(k)

Output report(
)

i

Pre
ondition:

:failed

status = a
tive

 62 reported

S = f` : re
-
map(`) 2 Cg

 = re
-
map(max(S))

E�e
t:

reported reported [f
g

Input re
on(
;

0

)

i

E�e
t:

if :failed then

if status = a
tive then

re
-status a
tive

let S = f` : re
-
map(`) 2 Cg

if S 6= ; and
 = re
-
map(max(S))

and
ons-data(max(S) + 1) = ? then

ons-data(max(S) + 1) h
;

0

i

else out
ome nok

Output init(

0

)

k;
;i

Pre
ondition:

:failed

status = a
tive

ons-data(k) = h
;

0

i

if k � 1 then k 2 did-new-
on�g

k 62 did-init

E�e
t:

did-init did-init [fkg

Output send(hinit;
;

0

; ki)

i;j

Pre
ondition:

:failed

status = a
tive

ons-data(k) = h
;

0

i

k 2 did-init

E�e
t:

none

Input re
v(hinit;
;

0

; ki)

j;i

E�e
t:

if :failed then

if status = a
tive then

if re
-
map(k � 1) = ? then re
-
map(k � 1)

if
ons-data(k) = ? then
ons-data(k) h
;

0

i

Input de
ide(

0

)

k;
;i

E�e
t:

if :failed then

if status = a
tive then

re
-
map(k)

0

if re
-status = a
tive then

if
ons-data(k) = h
;

0

i then out
ome ok

else out
ome nok

Output re
on-a
k(b)

i

Pre
ondition:

:failed

status = a
tive

re
-status = a
tive

b = out
ome

E�e
t:

re
-status = idle

out
ome ?

Input fail

i

E�e
t:

failed true

Figure 6-4: Re
on

i

: Transitions.

65

pared. After initiating parti
ipation in a
onsensus algorithm, it sends initmessages to inform

the other members of
 about its initiation of
onsensus. The other members use this infor-

mation to prepare to parti
ipate in the same
onsensus algorithm (and also to update their

re
-
map if ne
essary). Thus, there are two ways in whi
h Re
on

i

an initiate parti
ipation

in
onsensus: as a result of a lo
al re
on event, or by re
eiving an init message from another

Re
on

j

pro
ess.

When Re
on

i

re
eives a de
ide(

0

)

k;i

dire
tly from Cons(k;
), it re
ords
on�guration

0

in re
-
map It also determines if a response to its lo
al
lient is ne
essary (if a lo
al re
on-

�guration operation is a
tive), and determines the response based on whether the
onsensus

de
ision is the same as the lo
ally-proposed
on�guration identi�er.

Ea
h
onsensus servi
e Cons(k;
) is responsible for
onveying
onsensus de
isions to

members(
). The Re
on

i

omponents are responsible for telling members(

0

) about

0

by

sending new-
on�g messages.

Theorem 6.4.1 The Re
on implementation guarantees well-formedness, agreement, and va-

lidity.

66

Chapter 7

Conditional Performan
e Analysis

In this
hapter we give a
onditional laten
y analysis of the new algorithm, fo
using on the

improvements realized by the aggressive
on�guration-upgrade me
hanism. We show that

the new algorithm allows the system to re
over rapidly after a period of unreliable network

onne
tivity or bursty re
on�guration. In parti
ular, we prove that if
on�gurations do not

fail too rapidly, then progress is guaranteed. First, in Se
tion 7.1, we present a few general

de�nitions. In Se
tion 7.2 and 7.3, we de�ne the exe
utions being
onsidered, and the

environmental assumptions that these exe
utions satisfy. Then in Se
tions 7.5, 7.6, and 7.7,

we prove a series of lemmas that des
ribe how long it takes
on�guration-upgrade operations

to
omplete. Finally, in Se
tion 7.8 we state the main stabilization theorem, and prove that

operations will
omplete as long as the exe
ution assumptions are met. Throughout this

hapter, we
ompare the results with those proved in Se
tion 9 of the Rambo te
hni
al

report [13℄.

7.1 De�nitions

In this se
tion, we present a few basi
 de�nitions. These de�nitions do not depend on timing,

but are needed only for the
onditional performan
e analysis. For these de�nitions, assume

that � is an exe
ution.

First we de�ne what it means for a
on�guration to be installed:
on�guration
 is

67

installed when either of the following holds: (i)
 =

0

or (ii) for some k > 0, for all non-

failed i 2 members(
(k�1)), a de
ide(
)

k;i

event o

urs in �. That is,
on�guration
 =
(k)

is installed when every non-failed member of
on�guration
(k � 1) performs a de
ide(
(k))

event.

Next, we de�ne an event that o

urs when a
on�guration is guaranteed to be ready to

be upgraded (though an upgrade operation may o

ur earlier than this event). We de�ne

the upgrade-ready(k) event, for k > 0, to be the �rst event in � after whi
h, 8` � k, the

following hold: (i)
on�guration
(`) is installed, and (ii) 8i 2 members(
(k � 1)) su
h that

i has not failed at the time of the event,
map(`)

i

6= ?.

7.2 Limiting Nondeterminism

The algorithm, as presented, is highly nondeterministi
. Therefore for the purposes of anal-

ysis, we restri
t our attention to a subset of exe
utions in whi
h automata follow
ertain

timing-related rules. For the rest of this thesis we assume a �xed
onstant d > 0. We as-

sume that gossip o

urs at �xed intervals of time d, and also that in times of good behavior

messages are delivered within time d

1

.

1. Ea
h node, i 2 I, performs a send

i;j

for all j 2 world

i

every time d as measured by the

lo
al
lo
k of i.

2. Ea
h node, i 2 I, performs a send

i;j

(an \important" send) whenever any of the

following o

urs:

� Just after a re
v(join)

j;i

event o

urs, if status

i

= a
tive.

� (Responses for messages) Just after a re
v(�; �; �; �; pns; �)

j;i

event o

urs, if pns >

pnum2 (j)

i

and status

i

= a
tive.

� Just after a new-
on�g(
; k)

i

event o

urs if status

i

= a
tive and j 2 world

i

.

� Just after a re
v(�; �; �;
m; �; �)

j;i

event o

urs, if op:phase

i

6= idle and for some

k,
m(k) 6= ? and
map(k)

i

= ?.

1

It seems, perhaps, that we should not be using d to represent both these quantities; however for
onsis-

ten
y with the original Rambo presentation, we
ontinue to use this
onvention.

68

join-a
k

i

� e + 2d

i 2 J(t)

t

Figure 7-1: De�nition of J(t)

� Just after a read

i

, write

i

, or query-�x

i

event o

urs, if j 2 members(
), for some

in the range of op:
map

i

.

� Just after a
fg-upgrade(k)

i

event o

urs for
on�guration-upgrade
, if j 2

members(
map(k

0

)

i

) for any k

0

2 removal-set(
).

� Just after a
fg-upg-query-�x(k)

i

event o

urs for
on�guration-upgrade
, if j 2

members(
map(k

0

)

i

) where k

0

= target(
).

3. Lo
ally
ontrolled a
tions of any automaton in the system that have no e�e
ts, other

than the important sends des
ribed just above, are performed only on
e.

4. If an a
tion is enabled to o

ur at node i, and has not yet been performed (and

therefore is not restri
ted by the previous rule), then it o

urs immediately, with zero

time passing.

7.3 The Behavior of the Environment

Mu
h of the analysis in the original Rambo algorithm makes guarantees about the laten
y

of requests when \normal behavior" holds. In Se
tion 9 of [13℄, Lyn
h and Shvartsman begin

to examine how the system behaves in exe
utions that a
hieve normal behavior after some

point. Here we adopt a similar model. We �rst de�ne what it means for an exe
ution to

exhibit \normal behavior" from some point onward.

For the rest of the thesis, we use the following notation: given some time t 2 R

�0

,

J(t; e; �) represents the set of all nodes j su
h that join-a
k

j

o

urs no later than time

t�e�2d in �. (Re
all that d has been �xed, above.) In most
ases, we will use the notation

J(t), when e and � are
lear from the
ontext.

69

7.3.1 Normal Timing Behavior from Some Point Onward

Let � be an admissible timed exe
ution, and �

0

a �nite pre�x of �. Arbitrary behavior is

allowed in �

0

: messages may be lost or delivered late,
lo
ks may run at arbitrary rates, and

in general any asyn
hronous behavior may o

ur. However we assume that after �

0

, good

behavior resumes. We say that � is an �

0

-normal exe
ution if the following assumptions

hold:

1. Initial time: The join-a
k

i

0

event o

urs at time 0,
ompleting the join proto
ol for

node i

0

, the node that
reated the data obje
t.

2

2. Regular timing: The lo
al
lo
ks of allRambo II automata (i.e., Reader-Writer

i

;Re
on

i

; Joiner

i

)

at all nodes progress at exa
tly the rate of real time, after �

0

.

3. Reliable message delivery: No message sent in � after �

0

is lost.

4. Message delay bound: If a message is sent at time t in � and it is delivered, then it is

delivered by time max(t; `time(�

0

)) + d.

7.3.2 Con�guration{Viability

Next we will de�ne
on�guration-viability, whi
h is the key assumption needed to guarantee

that read and write operations
omplete. As in all quorum-based algorithms, liveness de-

pends on all the nodes in some quorums remaining alive. In Rambo II, a node
an make

progress only if it is able to
ommuni
ate with the read and write quorums of all extant

on�gurations. We say that a
on�guration has failed when either: (i) some node in every

read-quorum of the
on�guration has failed, or (ii) some node in every write-quorum of the

on�guration has failed. If a
on�guration fails before a new
on�guration is installed and

the old
on�guration removed, then the system will be e�e
tively
rashed: no future read or

write request will ever
omplete. In order to guarantee that operations
omplete, then, it is

ne
essary for the
lient using the Rambo II system to initiate appropriate re
on�gurations

2

This assumption was assumed impli
itly in the initial Rambo papers, and was missing from the list of

assumptions.

70

to ensure that quorums remain a

essible. The
on�guration viability assumption is a
om-

plex property, depending on the behavior of the algorithm, the
lient initiating appropriate

re
on�gurations, and on the patterns of node failure and message loss.

We de�ne what it means for an exe
ution to be (�

0

, e, �)-
on�guration-viable: Let � be

an admissible timed exe
ution, and let �

0

be a �nite pre�x of �. Let e; � 2 R

�0

. Then � is

(�

0

, e, �)-
on�guration-viable if the following holds:

For all i;
; k su
h that
map(k)

i

=
 in some state in �, there exist R 2 read-quorums(
)

and W 2 write-quorums(
) su
h that at least one of the following holds:

1. No pro
ess in R [W fails in �.

2. There exists a �nite pre�x �

install

of � su
h that for all ` � k + 1,
on�guration
(`)

is installed in �

install

and no pro
ess in R [W fails in � by time max(`time(�

0

) +

e; `time(�

install

)) + � .

By assuming that an exe
ution is (�

0

,e,�)-
on�guration-viable, we ensure that the algo-

rithm has at least time � after a new
on�guration is installed to
lean up obsolete
on�gura-

tions. Also, sin
e all
on�gurations are viable until at least time e+ � after �

0

, the algorithm

has at least time e+ � after the system stabilizes to
lean up obsolete
on�gurations.

7.3.3 Re
on-Spa
ing

While re
on�gurations
annot impede a read/write operation, too frequent re
on�gurations

an slow down a read/write operation by introdu
ing new quorums that must be
onta
ted.

In order to bound the time required for a read/write operation, we need to bound the

frequen
y of re
on�gurations.

There are two
omponents to Re
on-Spa
ing. Let � be an �

0

-normal exe
ution, and

e 2 R

�0

. Then � satis�es:

1. (�

0

,e)-re
on-spa
ing-1 : if for any re
on(
; �)

i

event in � after �

0

the pre
eding report(
)

i

event o

urs at least time e earlier.

71

2. (�

0

,e)-re
on-spa
ing-2 : if for any re
on(
; �)

i

event in � after �

0

there exists a write-

quorum W 2 write-quorums(
) su
h that for all j 2 W , report(
)

j

pre
edes the

re
on(
; �)

i

event in �.

We say that � satis�es (�

0

,e)-re
on-spa
ing if it satis�es both (�

0

,e)-re
on-spa
ing-1 and

(�

0

,e)-re
on-spa
ing-2.

Noti
e that, instead of assuming the se
ond part of this requirement, we
ould instead

modify the re
on automaton to enfor
e this ordering: the automaton
ould
olle
t gossip

messages indi
ating whi
h nodes had performed a report(
), and delay or abort the next

re
on if it pre
eded an appropriate set of report events. We
hoose to instantiate this as

an assumption, rather than as a modi�
ation to the automaton for two reasons. First, we

prefer to retain
ompatibility with the original Rambo analysis. Se
ond, by stating this as

an assumption, it is possible that the
lient using the Rambo II algorithm might
hoose to

violate the se
ond part of the assumption. As a result, those guarantees that depend on this

assumption will not hold; however re
on�gurations may be more performed more frequently.

Even if the se
ond part of this assumption is violated, safety is still guaranteed: atomi
ity is

maintained, and read and write operations are guaranteed to terminate. However, operations

might not terminate rapidly in 8d, as in Se
tion 7.8.

7.3.4 Join-Conne
tivity

The hypothesis of join-
onne
tivity is designed to ensure that all non-failing joining pro
esses

are able to learn about ea
h other. Otherwise, it is possible for the pro
esses to join and fail

in su
h a way that the world-views of the nodes are partitioned into multiple
omponents,

with di�erent nodes aware of di�erent, dis
onne
ted pie
es of the world. It is also important

for the laten
y analysis to bound how long this pro
ess takes. If two nodes both
omplete

the join proto
ol and do not fail, then they should learn about ea
h other within a bounded

time. For this reason, we de�ne the notion of join-
onne
tivity as follows:

Let � be an �

0

-normal exe
ution, e 2 R

�0

. We say that � satis�es (�

0

,e)-join-
onne
tivity

provided that: for any time t and nodes i; j 2 J(t; e; �), if neither i nor j fails until after

max(t� 2d; `time(�

0

) + e), then by time max(t� 2d; `time(�

0

) + e), i 2 world

j

.

72

This indi
ates, then, that if two nodes both
omplete joining by some time t after �

0

,

then within time e the two nodes are aware of ea
h other. If two nodes both
omplete joining

by some time t during �

0

, then within time e after �

0

the two nodes are aware of ea
h other.

Prior results on joining from [13℄ suggest that in some
ases it
an be shown that the

urrent simple join proto
ol in the Rambo II algorithm provides (�

0

; d + ddlog(jJ j)e)-join-

onne
tivity. However we will not prove - or depend on - this earlier result. Instead we will

assume that the system provides (�

0

,e)-join-
onne
tivity for some e, and prove our results

in this
ontext. We leave it as an open problem to determine the exa
t value of e; a more

ompli
ated and intera
tive join proto
ol might well provide better results.

7.3.5 Re
on-Readiness

The next assumption we make is related to the problem of re
on�guration by a node that

has re
ently joined. We will assume that every node that is proposed to be a member of

a
on�guration has been a member of the Rambo II system for a reasonable period of

time. This allows us to
on
lude that everyone is aware of nodes that are part of a
tive

on�gurations.

An �

0

-normal exe
ution � satis�es (�

0

; e)-re
on-readiness if the following property holds:

if for some node i and some
on�gurations
 and

0

, a re
on(
;

0

)

i

event o

urs in � at time

t, then:

� If j 2 members(

0

), then j performs a join-a
k prior to the re
on event.

� If the re
on event o

urs after �

0

, and if j 2 members(

0

), then j 2 J(t; e; �).

This prohibits nodes that have just joined the system, but are not yet in anyone's world

view from forming new
on�gurations. As long as e is not too large, this seems a reasonable

requirement.

7.3.6 Upgrade-Readiness

The last assumption we make ensures that a node initiates an upgrade operation only if it

has joined suÆ
iently long ago. This ensures that when a node performs an upgrade, it has

73

relatively up-to-date information.

We say that an �

0

-normal exe
ution � satis�es (�

0

; e)-upgrade-readiness if the following

property holds: if for some i a
fg-upgrade(�)

i

event o

urs in � after �

0

at time t, then

i 2 J(t).

In parti
ular, we suggest that in an implementation of this algorithm, only members

of
on�guration
(k) initiate operations to upgrade
on�guration
(k). In this
ase, re
on-

readiness guarantees upgrade-readiness.

7.3.7 Fixed Parameters

We have already �xed d su
h that gossip o

urs at �xed intervals of time d, and in times of

good behaviour messages are delivered with time d. We now �x e as well. Additionally, for the

rest of the thesis, we �x � and �

0

, and assume that � is an �

0

-normal exe
ution. We therefore

sometimes suppress these parameters, as they are
lear from
ontext. For example, we will

use the notation J(t) to represent J(t; e; �). When we refer to join-
onne
tivity, we mean

(�

0

; e)-join-
onne
tivity; re
on-readiness is used to mean (�

0

; e)-re
on-readiness; upgrade-

readiness is used to mean (�

0

; e)-upgrade-readiness; � -re
on-spa
ing is used to mean (�

0

; �)-

re
on-spa
ing; � -
on�guration-viability is used to mean (�

0

; e; �)-
on�guration viability.

7.4 Basi
 Lemmas

In this se
tion, we prove a few basi
 lemmas that will be useful in the rest of the thesis.

The following two lemmas demonstrate some basi
 fa
ts about the sets J(�):

Lemma 7.4.1 1. If t � t

0

, then J(t) � J(t

0

).

2. For all t; t

0

, J(t) � J(max(t; t

0

)).

Proof. By de�nition of J(�). �

The following lemma uses the re
on-readiness assumption to say something stronger

about the joining time of members of a
on�guration:

74

t

i 2 J(t)

t'

re
on(�; h)join-a
k

i

�

0

� e+ 2d

Figure 7-2: Lemma 7.4.2, Case 1

t

i 2 J(t)

t'

re
on(�; h)join-a
k

i

�

0

� e+ 2d

Figure 7-3: Lemma 7.4.2, Case 2

Lemma 7.4.2 Assume that � is an �

0

-normal exe
ution satisfying (�

0

; e)-re
on-readiness.

If h is a
on�guration proposed at time t

0

by a re
on(�; h) event, t � t

0

, and t � `time(�

0

) +

e+ 2d, then members(h) � J(t).

Proof. First, assume that t

0

� `time(�

0

). Then the result follows immediately by re
on-

readiness and Lemma 7.4.1. Assume, then, that t

0

< `time(�

0

). By re
on-readiness, every

member of
on�guration h performs a join-a
k by `time(�

0

). Therefore, by de�nition of J ,

members(h) � J(`time(�

0

)+ e+2d). Sin
e t � `time(�

0

)+ e+2d, Lemma 7.4.1 implies that

J(`time(�

0

) + e + 2d) � J(t). �

The next lemma shows a similar result about upgrade-readiness:

Lemma 7.4.3 Assume that � is an �

0

-normal exe
ution satisfying (�

0

; e)-upgrade-readiness.

If a
fg-upgrade(�)

i

event o

urs in � at time t, for some node i, then i 2 J(max(t; `time(�

0

)+

e+ 2d)).

Proof. First, assume that the
fg-upgrade event o

urs after �

0

. Then the lemma follows

immediately by the de�nition of upgrade-readiness and Lemma 7.4.1. Assume, then, that the

fg-upgrade event o

urs in �

0

. By the pre
ondition of
fg-upgrade, i must perform a join-a
k

prior to the
fg-upgrade event; otherwise status

i

6= a
tive when the
fg-upgrade o

urs, whi
h

ontradi
ts the pre
ondition of the
fg-upgrade. Therefore i performs a join-a
k

i

at latest at

time `time(�

0

), and therefore i 2 J(`time(�

0

) + e + 2d), and the lemma again follows by

Lemma 7.4.1. �

75

7.5 Propagation of Information

In this se
tion, we introdu
e the notion of information being in the \mainstream". On
e a

suÆ
ient set of nodes know a parti
ular fa
t, then, under appropriate assumptions, this fa
t

will never be forgotten by the system as a whole. In parti
ular, we show that this is true

about information in the
map: updates to the
map are propagated. On
e every non-failed

node in J(t) updates its
map, then at any time in the future, at time t

0

� t + 2d, every

non-failed node in J(t

0

) will be aware of this update.

If
m is a CMap and � is a �nite pre�x of � with `time(�) = t � e + 2d, then we say

that
m is mainstream after � provided that the following holds: For every i 2 J(t) su
h

that fail

i

does not o

ur in �,
m � `state(�):
map

i

.

Further, we de�ne the following notation: given an exe
ution � and a time t 2 R

�0

, we

de�ne �(t; �) to be the �nite pre�x of � su
h that `time(�(t; �)) = t and every event that

o

urs at time t o

urs in �(t; �). As we have already �xed �, for the rest of this paper we

use the simpler notation of �(t). We then say that a CMap
m is mainstream after t if it is

mainstream after �(t).

The �rst lemma shows a basi
 property of mainstream
maps:

Lemma 7.5.1 Assume that � is an exe
ution, t is a time, and
m,
m2 are CMaps. If

m �
m2 , and
m2 is mainstream after t, then
m is mainstream after t.

Proof. Immediate from the de�nition of mainstream. �

The following lemma shows that a node's
map is monotone:

Lemma 7.5.2 Assume that �

00

is a �nite pre�x of exe
ution �, and that �

000

is a pre�x of

�

00

. Assume that i is a node. Then `state(�

000

):
map

i

� `state(�

00

):
map

i

.

Proof. In the algorithm,
map

i

is only modi�ed by the update fun
tion, and the update

fun
tion is monotone; that is, for all CMaps new-
map,
map � update(
map; new-
map).

�

Lemma 7.5.3 Assume that � is an exe
ution, and t and t

0

are times, and that t � t

0

.

Assume that i is a node, and
m is a CMap.

76

�

0

+ e�

0

� e

t+ 2d

`state(�(t)):
map

i

mainstream after t+ 2d

t

fail

i

join-a
k

i

Figure 7-4: Lemma 7.5.4

1. If
m � `state(�(t)):
map

i

, then
m � `state(�(t

0

)):
map

i

.

2. `state(�(t)):
map

i

� `state(�(t

0

)):
map

i

.

Proof. This follows by Lemma 7.5.2, where �

000

= �(t) and �

00

= �(t

0

). �

Next, we demonstrate a parti
ular
ase when a
map be
omes mainstream.

Lemma 7.5.4 Let � be an �

0

-normal exe
ution satisfying (�

0

,e)-join-
onne
tivity. Let t be

a time su
h that t � `time(�

0

) + e. If i 2 J(t + 2d), and i does not fail in �(t + d), then

`state(�(t)):
map

i

is mainstream after t+ 2d.

Proof. Let
m = `state(�(t)):
map

i

. To show that
m is mainstream after t+2d, we need

to show that for all j 2 J(t + 2d) su
h that j does not fail in �(t + 2d),
m � `state(�(t +

2d)):
map

j

. Fix any su
h j. By join-
onne
tivity, j 2 world

i

by time max(t; `time(�

0

)+e) �

t.

By time t + d, i sends a gossip message, msg, to node j su
h that
m � msg :
map

i

.

By time t + 2d, j re
eives the gossip message and updates
map

j

with msg :
map. By the

monotoni
ity of the update fun
tion, msg :
map � update(
map

j

;msg :
map). Therefore

m � `state(�(t+ 2d)):
map

j

, as required. �

The following lemma shows that if two nodes are both in the set J(t + 2d), then infor-

mation is propagated from one to the other.

Lemma 7.5.5 Let � be an �

0

-normal exe
ution satisfying (�

0

,e)-join-
onne
tivity. Assume

that t and t

0

are times, and t

0

� 2d � t � `time(�

0

) + e. Assume that i and j are nodes, and

i; j 2 J(t+ 2d). Also, assume that i does not fail in �(t+ 2d), and j does not fail in �(t

0

).

If
m � `state(�(t)):
map

i

, then
m � `state(�(t

0

)):
map

j

.

77

�

0

�

0

+ e+ 2d re
on(h; h

0

)

i

t

0

m mainstream after t
m mainstream after t

0

+ 2d

t

0

+ 2dt

=)

Figure 7-5: Lemma 7.5.6

Proof. By Lemma 7.5.4, `state(�(t)):
map

i

is mainstream after t + 2d. Noti
e that j 2

J(t+ 2d), and therefore, by the de�nition of mainstream, `state(�(t)):
map

i

� `state(�(t+

2d)):
map

j

. Sin
e t+2d � t

0

, by Lemma 7.5.3, `state(�(t+2d)):
map

j

� `state(�(t

0

)):
map

j

.

Putting the inequalities together,
m � `state(�(t

0

)):
map

j

. �

We now show that on
e a
map is in the mainstream, after 2d it will always be in the

mainstream. First, Lemma 7.5.6
onsiders a spe
ial
ase: it
onsiders only times t

0

after

the system has stabilized, when a re
on(h; h

0

) event o

urs. Se
ond, Lemma 7.5.7 handles

the
ase where the
map is in the mainstream at a time in �

0

. Third, Lemma 7.5.8 proves

the existen
e of a
on�guration with some ne
essary spe
ial properties to prove the main

theorem. Finally, Lemmas 7.5.9 and 7.5.10 prove the general result, as summarized in

Lemma 7.5.11.

First, we de�ne a su

essful re
on event as follows: a re
on(�;
) event is su

essful if at

some time afterwards a de
ide(
)

k;i

event o

urs for some k and i.

Lemma 7.5.6 Let � be an �

0

-normal exe
ution satisfying: (i) (�

0

,e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, and (iv) (�

0

; e; 2d)-
on�guration-

viability.

Assume that t and t

0

are times, and that t � `time(�

0

) + e + 2d and t

0

� t. Let h and

h

0

be two
on�gurations, and assume that re
on(h; h

0

)

�

o

urs at time t

0

, and that this is a

su

essful re
on event.

If
m is mainstream after t, then
m is mainstream after t

0

+ 2d.

Proof. Fix t and
m su
h that
m is mainstream after t. We prove the result by indu
tion

on the number of su

essful re
on events that o

ur at or after time t.

78

As the base
ase,
onsider the �rst su

essful re
on(h; h

0

) event that o

urs in � at a time

t

0

� t. We need to show that
m is mainstream after t

0

+2d. Therefore �x some j

0

2 J(t

0

+2d)

su
h that fail

j

0

does not o

ur in �(t

0

+2d). We will show that
m � `state(�(t

0

+2d)):
map

j

0

.

Choose some node j 2 members(h) su
h that j does not fail in �(t

0

+2d); that is, j does

not fail until after t

0

+ 2d. Con�guration-viability ensures that su
h a node exists. Noti
e

that j 2 J(t), by Lemma 7.4.2. Sin
e
m is mainstream after t, then
m � `state(�):
map

j

.

Note that
on�guration h is proposed prior to time t, sin
e the re
on(h; h

0

) event is the

�rst su

essful re
on event at or after time t. Therefore
on�guration h is also proposed prior

to time t

0

. By Lemma 7.4.1, j 2 J(t

0

+ 2d). By assumption j

0

2 J(t

0

+ 2d) and does not fail

in �(t

0

+ 2d). Therefore, by Lemma 7.5.5,
m � `state(�(t

0

+ 2d)):
map

j

0

, as needed.

Next we show the indu
tive step. Indu
tively assume the following: if re
on(�; �) is one

of the �rst n su

essful re
on events in � that o

ur at time t

0

� t, then
m is mainstream

after t

0

.

Consider the (n+1)

st

su

essful re
on(h; h

0

) event in � that o

urs at or after t. Assume

this event o

urs at time t

0

. We need to show that
m is mainstream after t

0

+2d. Therefore

�x some j

0

2 J(t

0

+ 2d) su
h that fail

j

0

does not o

ur in �(t

0

+ 2d). We will show that

m � `state(�(t

0

+ 2d)):
map

j

0

.

Let � be the n

th

su

essful re
on(�; h) event, and assume that � o

urs at time t

1

. Note

that the �rst argument of the (n + 1)

st

su

essful re
on event must be the
on�guration

proposed by the n

th

su

essful re
on event.

2d-re
on-spa
ing-1 guarantees that t

0

� t

1

+2d. The indu
tive hypothesis shows that
m

is mainstream after t

1

+ 2d.

Choose some node j 2 members(h) su
h that no fail

j

o

urs in �(t

0

+2d). Con�guration-

viability ensures that su
h a node exists. By re
on-readiness and Lemma 7.4.1, j 2 J(t

0

+2d).

By assumption j

0

2 J(t

0

+ 2d) and j

0

does not fail in �(t

0

+ 2d). By Lemma 7.5.5,
m �

`state(�(t

0

+ 2d)):
map

j

0

, as needed. �

The next lemma
onsiders the
ase where a
map is mainstream in �

0

or soon after, and

shows that it is mainstream after `time(�

0

) + e + 4d.

79

e+ 2d

m mainstream after �

0

+ e+ 4d

�

0

+ e+ 4d�

0

+ e+ 2dt

m mainstream after t =)

Figure 7-6: Lemma 7.5.7

Lemma 7.5.7 Let � be an �

0

-normal exe
ution satisfying (i) (�

0

,e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, and (iv) (�

0

; e; 4d)-
on�guration-

viability.

Assume that t is a time and that e + 2d � t � `time(�

0

) + e + 2d. If
m is mainstream

after t, then
m is mainstream after `time(�

0

) + e+ 4d.

Proof. Consider
on�guration

0

. By
on�guration-viability, there exists a read-quorum,

R 2 read-quorums(

0

), and a write-quorum, W 2 write-quorums(

0

) su
h that no node in

R [W fails by `time(�

0

) + e + 4d.

Let t

1

= `time(�

0

) + e+ 2d. Consider i

0

2 R [W ; i

0

does not fail by `time(�

0

) + e+ 4d.

Sin
e i

0

performs a join-a
k at time 0, by the assumption that � is an �

0

-normal exe
ution,

and sin
e t � e+ 2d, i

0

2 J(t). Also note that by Lemma 7.5.3, i

0

2 J(t

1

).

Sin
e
m is mainstream after t,
m � `state(�(t)):
map

i

0

. Therefore, we know by

Lemma 7.5.3 that
m � `state(�(t

1

)):
map

i

0

. By Lemma 7.5.4, we know that `state(�(t

1

)):
map

i

0

is mainstream after t

1

+2d. Therefore by Lemma 7.5.1,
m is mainstream after t

1

+2d; that

is,
m is mainstream after `time(�

0

) + e+ 4d. �

The next lemma shows the existen
e of a
ertain
on�guration, h

0

, with some parti
ular

properties. This will be useful in proving Lemma 7.5.11.

Lemma 7.5.8 Let � be an �

0

-normal exe
ution satisfying: (i) (�

0

,e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, and (iv) (�

0

; e; 4d)-
on�guration-

viability.

Assume that t and t

0

are times. Assume that `time(�

0

) + e + 2d � t � t

0

� 2d and

`time(�

0

) + e+6d � t

0

. Assume that
m is mainstream after t. Then there exists a
on�gu-

ration h, with index k, with the following properties:

80

1. members(h) � J(t

0

).

2. For all members i of
on�guration h that do not fail in �(t

0

),
m � `state(�(t

0

�

2d)):
map

i

.

3. No su

essful re
on(h; �) event o

urs in �(t

0

� 4d).

Proof. There are three di�erent sub-
ases to
onsider.

1. No su

essful re
on event o

urs in �(t

0

� 4d):

Let h =

0

. Noti
e that members(h) � J(t), sin
e i

0

(the only member of

0

)
ompletes

a join-a
k at time 0 (by assumption on �), and t > `time(�

0

) + e + 2d. This, then,

implies Property 1 by Lemma 7.4.1. Sin
e i

0

2 J(t) and
m is mainstream after

t,
m � `state(�(t)):
map

i

0

. Therefore, sin
e t � t

0

� 2d, by Lemma 7.5.3,
m �

`state(�(t

0

� 2d)):
map

i

0

, as required for Property 2. Property 3 holds trivially.

2. A su

essful re
on event o

urs in �(t

0

� 4d) after time t:

Consider the last su

essful re
on event in � that o

urs in �(t

0

� 4d); let h be the

on�guration identi�er appearing as the se
ond argument in this re
on event. Assume

that this re
on event o

urs at time t

re

. Note that t < t

re

� t

0

� 4d. Therefore

(sin
e t

0

� `time(�

0

) + e + 6d and t

0

� t

re

) by Lemma 7.4.2, members(h) � J(t

0

), as

required for Property 1. Sin
e t

re

> t, Lemma 7.5.6 shows that
m is mainstream after

t

re

+2d. Re
all that t

re

+2d � t

0

�2d. By the mainstream property, for every member,

i, of
on�guration h that does not fail in �(t

0

� 2d),
m � `state(�(t

re

+ 2d)):
map

i

;

therefore, for ea
h of these members, i, by Lemma 7.5.3,
m � `state(�(t

0

�2d)):
map

i

,

as required for Property 2. Property 3 holds by the sele
tion of the last su

essful re
on

event in �(t

0

� 4d).

3. Neither Case 1 nor Case 2 holds, that is, a su

essful re
on event o

urs in �(t

0

� 4d),

but no su
h re
on event o

urs after time t:

Consider the last su

essful re
on event in � that o

urs in �(t

0

� 4d); let h be the

on�guration identi�er appearing as the se
ond argument in this re
on event. Assume

that this re
on event o

urs at time t

re

. Noti
e, then, that t

re

� t. (Otherwise, Case

81

�

0

+ e+ 2d t

0

m mainstream after t

0

� 2dt

m mainstream after t =)

� 4d

Figure 7-7: Lemma 7.5.9

2 would hold.) Sin
e t � `time(�

0

)+e+2d, then by Lemma 7.4.2, members(h) � J(t).

By Lemma 7.5.3, then, members(h) � J(t

0

), whi
h implies Property 1. Sin
e
m is

mainstream after t (and members(h) � J(t)), for all j 2 members(h) su
h that no fail

j

event o

urs in �(t),
m � `state(�(t)):
map

j

. Sin
e t � t

0

� 2d, by Lemma 7.5.3, for

all j su
h that no fail

i

event o

urs by time t

0

� 2d,
m � `state(�(t

0

� 2d)):
map

j

, as

required for Property 2. Property 3 holds by the sele
tion of the last su

essful re
on

event that o

urs in �(t

0

� 4d).

�

Finally we prove the main lemma of this se
tion, showing that if a
map is mainstream

at time t, then the
map is also mainstream at times t

0

� t + 2d. There are two
ases to

onsider: (i) t � `time(�

0

) + e + 2d, and (ii) t < `time(�

0

) + e + 2d. Lemma 7.5.9 shows

the �rst
ase, Lemma 7.5.10 shows the se
ond
ase, and Lemma 7.5.11 presents the overall

on
lusion.

Lemma 7.5.9 Let � be an �

0

-normal exe
ution satisfying (i) (�

0

,e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, and (iv) (�

0

; e; 4d)-
on�guration-

viability.

Assume that t and t

0

are times. Assume that e+2d � t � t

0

�2d and `time(�

0

)+e+6d � t

0

.

Additionally assume that t � `time(�

0

) + e+ 2d. If
m is a mainstream CMap after t, then

m is mainstream after t

0

.

Proof. By assumption, t � `time(�

0

) + e + 2d. Lemma 7.5.8 shows that there exists a

on�guration, h, with index k with the following three properties:

1. members(h) � J(t

0

).

82

e+ 2d �

0

+ e+ 2d �

0

+ e+ 4d � 2d

m mainstream after �

0

+ e+ 4d
m mainstream after t

t t

0

m mainstream after t

0

=)=)

Figure 7-8: Lemma 7.5.10

2. For all members i of
on�guration h that do not fail in �(t

0

),
m � `state(�(t

0

�

2d)):
map

i

.

3. No su

essful re
on(h; �) event o

urs in �(t

0

� 4d).

Con�guration-viability guarantees that some node of
on�guration h does not fail until

after the next
on�guration is installed. No su

essful re
on(h; �) event o

urs in �(t

0

� 4d),

by Property 3. Therefore some node, j 2 members(h) does not fail in �(t

0

) (and therefore

does not fail in �(t

0

� d)), by 4d-
on�guration-viability. By Property 1 of h, node j 2 J(t

0

).

Therefore, by Lemma 7.5.4, `state(�(t

0

� 2d)):
map

j

is mainstream after t

0

.

Further, we know by Property 2 that
m � `state(�(t

0

� 2d)):
map

j

. Therefore by

Lemma 7.5.1,
m is mainstream after t

0

. �

The following lemma
onsiders the
ase where t < `time(�

0

) + e+ 2d:

Lemma 7.5.10 Let � be an �

0

-normal exe
ution satisfying (i) (�

0

,e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, and (iv) (�

0

; e; 4d)-
on�guration-

viability.

Assume that t and t

0

are times. Assume that e+2d � t � t

0

�2d and `time(�

0

)+e+6d � t

0

.

Additionally, assume that t < `time(�

0

) + e+2d. If
m is a mainstream CMap after t, then

m is mainstream after t

0

.

Proof. By assumption, t < `time(�

0

)+e+2d. Let t

1

= `time(�

0

)+e+2d. By Lemma 7.5.7,

m is mainstream after t

1

+ 2d. By assumption, t

1

+ 2d � t

0

� 2d, and `time(�

0

) + e+ 2d �

t

1

+2d. By Lemma 7.5.9, however, we know that sin
e
m is mainstream after t

1

+2d, then

m is mainstream after t

0

. �

83

The following lemma
ombines the previous two lemmas into a single
on
lusion. This lemma

is the main result of this se
tion, and is used throughout the rest of the proof.

Lemma 7.5.11 Let � be an �

0

-normal exe
ution satisfying (i) (�

0

,e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, and (iv) (�

0

; e; 4d)-
on�guration-

viability.

Assume that t and t

0

are times. Assume that e+2d � t � t

0

�2d and `time(�

0

)+e+6d � t

0

.

If
m is a mainstream CMap after t, then
m is mainstream after t

0

.

Proof. By Lemmas 7.5.9 and 7.5.10. �

7.6 Upgrade-Ready Viability

In this se
tion, we show the relationship between a
on�guration being upgrade-ready, and

a
on�guration being viable. In parti
ular, we prove that if an exe
ution � is (�

0

,e,22d)-

on�guration-viable, then
on�guration
(k) is viable until at least 15d after the upgrade-ready(
(k+

1)) event.

The �rst lemma shows that soon after a
on�guration is installed, every node that joined

a while ago learns about the new
on�guration.

Lemma 7.6.1 Let � be an �

0

-normal exe
ution satisfying: (i) (�

0

,e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) (�

0

; e; 4d)-
on�guration-viability.

Assume that t 2 R

�0

is a time, and
on�guration
(k) is installed at time t. Then there

exists a CMap,
m, su
h that
m(k) 6= ?, and
m is mainstream after max(t; `time(�

0

) +

e) + 2d.

Proof. We �rst �nd a node j 2 members(
(k�1)) su
h that j 2 J(max(t; `time(�

0

)+e)+

2d) and j does not fail in �(max(t; `time(�

0

)+e)+d). Con�guration-viability guarantees that

there exists a read-quorum R 2 read-quorums(
(k�1)) and a pre�x �

00

of � su
h that
(k) is

installed in � and no node inR fails by max(`time(�

00

); `time(�

0

)+e)+4d. Sin
e
on�guration

(k) is installed at time t, we know that t � `time(�

00

), and therefore no node in R fails

84

by max(t; `time(�

0

) + e) + 4d. Therefore no node in R fails in �(max(t; `time(�

0

) + e) + d).

Choose some node j 2 R.

Assume that
on�guration
(k� 1) is proposed at time t

re

. We next apply Lemma 7.4.2

where h =
(k � 1), t

0

= t

re

, and t = max(t; `time(�

0

) + e) + 2d:

� max(t; `time(�

0

) + e) + 2d � t

re

:
(k � 1) is proposed at t

re

� t, sin
e
(k � 1) must

be proposed prior to
on�guration
(k � 1) being installed, whi
h must o

ur prior to

on�guration
(k) being installed; t � max(t; `time(�

0

) + e) + 2d.

� max(t; `time(�

0

) + e) + 2d � `time(�

0

) + e + 2d: Immediate.

We therefore
on
lude that members(
(k � 1)) � J(max(t; `time(�

0

) + e) + 2d). Therefore

we have shown that j 2 members(
(k � 1)), j 2 J(max(t; `time(�

0

) + e) + 2d), and j does

not fail in �(max(t; `time(�

0

) + e) + d).

Sin
e
on�guration
(k) is installed at time t and j 2 members(
(k�1)), `state(�(t)):
map(k)

j

6=

?, by the de�nition of a
on�guration being installed, and therefore (by Lemma 7.5.3)

`state(�(max(t; `time(�

0

) + e))):
map(k)

j

6= ?. We let
m = `state(�(max(t; `time(�

0

) +

e))):
map(k)

j

;
m(k) 6= ?, as required.

We next apply Lemma 7.5.4, where t = max(t; `time(�

0

) + e) and i = j:

� max(t; `time(�

0

) + e) � `time(�

0

) + e: Immediate.

� j 2 J(max(t; `time(�

0

) + e) + 2d): Shown above.

� j does not fail in �(max(t; `time(�

0

) + e) + d): Shown above.

We therefore
on
lude that `state(�(max(t; `time(�

0

)+e))):
map

i

is mainstream after max(t; `time(�

0

)+

e) + 2d, that is,
m is mainstream after max(t; `time(�

0

) + e) + 2d. �

The next lemma shows that soon after smaller
on�gurations are installed, a
on�guration

is upgrade-ready.

Lemma 7.6.2 Let � be an �

0

-normal exe
ution satisfying: (i) (�

0

,e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, and (iv) (�

0

; e; 4d)-
on�guration-

viability.

85

Let
 be a
on�guration with index k, and assume that for all ` � k,
on�guration
(`) is

installed in � by time t.

Then upgrade-ready(k) o

urs in �(max(t; `time(�

0

) + e) + 6d).

Proof. For every
on�guration
(`) with index ` � k, let t

`

be the time at whi
h
on�gu-

ration
(`) is installed. Therefore t � max(t

i

).

We �rst show that for all ` � k, there exists a CMap,
m

`

su
h that
m

`

(`) 6= ? and

m

`

is mainstream after max(t; `time(�

0

) + e) + 6d. Fix some ` � k.

Lemma 7.6.1, where t = t

`

and k = `, shows that there exists a CMap,
m

`

, su
h that

m

`

(`) 6= ? and
m

`

is mainstream after time max(t

`

; `time(�

0

) + e) + 2d.

We next apply Lemma 7.5.11, where t = max(t

`

; `time(�

0

)+e)+2d and t

0

= max(t; `time(�

0

)+

e) + 6d:

� max(t

`

; `time(�

0

) + e) + 2d � e+ 2d: Immediate.

� max(t

`

; `time(�

0

) + e) + 2d � max(t; `time(�

0

) + e) + 6d � 2d: We know that t

`

� t,

and `time(�

0

) + e+ 2d � `time(�

0

) + e+ 4d.

� max(t; `time(�

0

) + e) + 6d � `time(�

0

) + e + 6d: Immediate.

�
m

`

is mainstream after max(t

`

; `time(�

0

) + e) + 2d: Shown above.

We therefore
on
lude that
m

`

is mainstream after max(t; `time(�

0

) + e) + 6d. We have

thus shown that for all ` � k, there exists a CMap,
m

`

su
h that
m

`

(`) 6= ? and
m

`

is

mainstream after max(t; `time(�

0

) + e) + 6d.

Re
all that upgrade-ready(k) is designated as the �rst event after whi
h (i) all
on�g-

urations with index � k have been installed, and (ii) for all ` < k, for all members of

on�guration
(k � 1) that do not fail prior to the upgrade event,
map(`) 6= ?. The �rst

omponent o

urs by time t, and therefore by time max(t; `time(�

0

)+e)+6d, by assumption.

We therefore need to show the se
ond part. Fix some node j 2 members(
(k � 1)) su
h

that j does not fail in �(max(t; `time(�

0

)+e)+6d). Fix some ` < k. We apply Lemma 7.4.2,

where h =
(k� 1), t = max(t; `time(�

0

) + e) + 6d, and t

0

is the time at whi
h
on�guration

(k � 1) is proposed:

86

� max(t; `time(�

0

) + e) + 6d is � the time at whi
h
on�guration
(k � 1) is proposed:

(k � 1) is proposed prior to time t

k�1

(the time at whi
h
on�guration
(k � 1) is

installed), whi
h is � time t � max(t; `time(�

0

) + e) + 6d.

� max(t; `time(�

0

) + e) + 6d � `time(�

0

) + e + 2d: Immediate.

We therefore
on
lude that members(
(k�1)) � J(max(t; `time(�

0

)+e)+6d), and therefore

j 2 J(max(t; `time(�

0

) + e) + 6d).

We know from above that
m

`

is mainstream after max(t; `time(�

0

) + e) + 6d, whi
h

implies, by the de�nition of being mainstream, that
m

`

� `state(�(max(t; `time(�

0

) + e) +

6d)):
map(`)

j

. This in turn implies that `state(�(max(t; `time(�

0

)+e)+6d)):
map(`)

j

6= ?,

as required. Therefore upgrade-ready(k) o

urs in �(max(t; `time(�

0

) + e) + 6d). �

The next lemma dire
tly relates the time when all quorums of
on�guration
(k � 1) fail to

the time at whi
h upgrade-ready(k) o

urs.

Lemma 7.6.3 Let � be an �

0

-normal exe
ution satisfying: (i) (�

0

,e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, and (iv) (�

0

; e; 22d)-
on�guration-

viability.

Let
 be a
on�guration with index k, and assume that the upgrade-ready(k) event o

urs

at time t. Then there exists a read-quorum, R, and a write-quorum, W , of
on�guration

(k � 1) su
h that no node in R [W fails in �(max(t; `time(�

0

) + e) + 16d).

Proof. Let �

00

be the shortest pre�x of � su
h that every
on�guration with index � k is

installed in �. Let t

0

= `time(�

00

). Noti
e that for all ` � k,
on�guration
(`) is installed in

�(t

0

).

Lemma 7.6.2, where t = t

0

and
 and k are as de�ned above, shows that the upgrade-ready(k)

event o

urs in �(max(t

0

; `time(�

0

) + e) + 6d), that is, t � max(t

0

; `time(�

0

) + e) + 6d.

Con�guration-viability guarantees that there exists a read-quorum, R, and a write-

quorum,W , of
on�guration
(k�1) su
h that either (1) no pro
ess in R[W fails in �, or (2)

there exists a �nite pre�x, �

install

of � su
h that for all ` � k,
on�guration
(`) is installed

in �

install

and no pro
ess in R[W fails in � by time max(`time(�

install

); `time(�

0

)+e)+22d.

87

In the former
ase, we are done. We now
onsider the se
ond
ase. Sin
e �

00

is the short-

est pre�x of � su
h that every
on�guration with index � k is installed, we know that �

00

is a pre�x of �

install

, and therefore t

0

= `time(�

00

) � `time(�

install

). Therefore we know

that there exists a read-quorum, R 2 read-quorums(
(k � 1)), and a write-quorum, W 2

write-quorums(
(k�1)), su
h that no node in R[W fails by time max(t

0

; `time(�

0

)+e)+22d.

Then, max(t; `time(�

0

) + e) + 16d � max(t

0

; `time(�

0

) + e) + 22d, and as a result, no

node in R [W fails by time max(t; `time(�

0

) + e) + 16d. That is, no node in R [W fails in

�(max(t; `time(�

0

) + e) + 16d). �

The �nal lemma shows that if no upgrade-ready(k) o

urs in �, then
on�guration
(k � 1)

is always viable.

Lemma 7.6.4 Let � be an �

0

-normal exe
ution satisfying: (i) (�

0

,e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, and (iv) (�

0

; e; 4d)-
on�guration-

viability.

Let
 be a
on�guration with index k, and assume that no upgrade-ready(k + 1) event

o

urs in �. Then there exists a read-quorum, R 2 read-quorums(
), and a write-quorum,

W 2 write-quorums(
), su
h that no node in R [W fails in �.

Proof. Assume that for some ` � k + 1,
on�guration
(`) is not installed in �. By the

de�nition of
on�guration-viability, then, there exists a read-quorum, R 2 read-quorums(
),

and a write-quorum, W 2 write-quorums(
), su
h that no node in R [W fails in �.

Assume, instead, that for every ` � k + 1,
on�guration
(`) is installed in �. Then by

Lemma 7.6.2, an upgrade-ready(k + 1) event o

urs in �,
ontradi
ting the hypothesis. �

7.7 Con�guration-Upgrade Laten
y Results

In this se
tion we show that
on�guration-upgrade operations terminate rapidly, and that

any obsolete
on�guration is rapidly removed. In parti
ular, these results hold in exe
utions

that in
lude periods of bad behavior. The
on�guration-upgrade me
hanism in Rambo does

not make these guarantees. The original Rambo laten
y analysis required the assumption

88

of (�

0

;1)-
on�guration-viability

3

for the entire exe
ution. This is an unrealisti
 assumption

in a long-lived dynami
 system. As a result of the new
on�guration-upgrade me
hanism,

we need to assume only bounded
on�guration-viability to ensure liveness.

First we state a lemma about
on�guration-upgrade after the system stabilizes and good

behavior resumes.

Lemma 7.7.1 Let � be an �

0

-normal exe
ution. Let t 2 R

�0

be a time. Let i be a node

that does not fail until after max(t; `time(�

0

) + d) + 4d.

Assume a
fg-upgrade(k)

i

event o

urs in � at time t. Additionally, assume that for

every
on�guration
(`) su
h that upg :
map(`)

i

2 C, there exists a read-quorum, R

`

, and a

write-quorum, W

`

, of
on�guration
(`) su
h that no node in R

`

[W

`

fails by time t+ 3d.

Then a
fg-upgrade-a
k(k)

i

event o

urs no later than t+ 4d.

Proof. There are two
ases to
onsider.

Case 1: t > `time(�

0

). At time t, node i begins the
on�guration-upgrade, with phase-

number p

1

= upg:pnum

i

. By triggered gossip, node i immediately sends out messages

to every node in world

i

. Therefore for every
on�guration
(`) su
h that upg :
map(`)

i

2

C, every node j 2 R

`

[W

`

re
eives a message by time t+ d.

By triggered gossip, then, ea
h of these nodes sends a response with phase-number p

1

.

Ea
h response is re
eived by time t + 2d, at whi
h point a
fg-upg-query-�x(k)

i

event

o

urs. Node i then
hooses a new phase-number, p

2

, and sets upg :pnum

i

= p

2

.

Immediately, by triggered gossip node i sends out messages to every pro
ess in world

i

,

in
luding every node in R

`

[W

`

, for every
on�guration
(`) su
h that upg :
map(`)

i

2

C. Again, a response is sent by time t+ 3d, and node i re
eives a response from ea
h

with phase-number p

2

by time t + 4d. Immediately, then, a
fg-upg-query-�x(k) event

o

urs. This is followed by a
fg-upgrade-a
k(k), proving our
laim.

Case 2: t � `time(�

0

). At time t, node i begins the
on�guration-upgrade, with phase-

number p

1

= upg:pnum

i

. By o

asional gossip, i sends out messages to every node in

3

Although we have not formally de�ned (�

0

;1)-
on�guration-viability here, one
an understand it to

mean (�

0

; e)-
on�guration-viability for arbitrarily large e.

89

world

i

. Therefore for every
on�guration
(`) su
h that upg :
map(`)

i

2 C, every node

j 2 R

`

[W

`

re
eives a message by time max(t; `time(�

0

) + d) + d.

By triggered gossip, then, ea
h of these nodes sends a response with phase-number

p

1

. Ea
h response is re
eived by time max(t; `time(�

0

) + d) + 2d, at whi
h point a

fg-upg-query-�x(k)

i

event o

urs. Node i then
hooses a new phase-number, p

2

, and

sets upg :pnum

i

= p

2

.

Immediately, by triggered gossip node i sends out messages to every pro
ess in world

i

,

in
luding every node in R

`

[W

`

, for every
on�guration
(`) su
h that upg :
map(`)

i

2

C. Again, a response is sent by time max(t; `time(�

0

) + d) + 3d, and node i re
eives a

response from ea
h with phase-number p

2

by time max(t; `time(�

0

))+4d. Immediately,

then, a
fg-upg-query-�x(k) event o

urs. This is followed by a
fg-upgrade-a
k(k),

proving our
laim.

�

Next, we provide a
onditional guarantee that a
on�guration is viable: if for some time

t every earlier
fg-upgrade operation
ompletes rapidly within 4d, then every
on�guration

that is extant at time t will remain viable until t + 3d.

We do this in four steps. First, Lemma 7.7.2 demonstrates that a node with
ertain good

properties exists. Se
ond, Lemma 7.7.3 shows that this
ertain node with good properties

will begin an upgrade operation, in
ertain situations. Third, Lemma 7.7.4 shows that soon

after a
on�guration is upgrade-ready(k), some node
ompletes an upgrade operation on

on�guration
(k). Finally, Lemma 7.7.5 uses these preliminary lemmas to show that under

ertain
onditions,
on�gurations remain viable suÆ
iently long.

Lemma 7.7.2 Let � be an �

0

-normal exe
ution satisfying (i) (�

0

, e)-join-
onne
tivity, (ii)(�

0

; e)-

re
on-readiness, (iii) (�

0

; e)-upgrade-readiness, (iv) (�

0

; 2d)-re
on-spa
ing-1, (v) (�

0

; e; 22d)-

on�guration-viability.

Assume that an upgrade-ready(k

2

) event o

urs at time t for some
on�guration

2

and

assume that k

2

� 1. Let k

1

= k

2

� 1, and

1

=
(k

1

). Then there exists a node i su
h that

the following hold:

90

1. i is a member of
on�guration

1

,

2. i does not fail in �(max(t; `time(�

0

) + e+ d) + 10d),

3. i 2 J(max(t; `time(�

0

) + e+ d) + 8d),

4. i 2 J(max(t; `time(�

0

) + e+ 2d)),

5. i performs a join-a
k prior to the upgrade-ready(k

2

) event in �.

Proof. Lemma 7.6.3, applied with
 =

2

, k = k

2

, and t as de�ned above, implies

that there exists a read-quorum, R, of
on�guration

1

su
h that no member of R fails in

�(max(t; `time(�

0

)+e)+16d). Then we know that no member ofR fails in �(max(t; `time(�

0

)+

e + d) + 14d). We therefore
hoose a node i 2 R � members(

1

). We know that i does not

fail in �(max(t; `time(�

0

) + e + d) + 10d). This i satis�es Parts 1 and 2.

Let t

1

be the time at whi
h
on�guration

1

is proposed. Noti
e that max(t; `time(�

0

)+

e+2d) � t

1

, be
ause t, the time of the upgrade-ready(k

2

),
annot be smaller than t

1

, the time

at whi
h
on�guration

1

is proposed (sin
e an upgrade-ready(k

2

) event
annot o

ur until

after a re
on(

1

;

2

) event, whi
h
annot o

ur until after a re
on(�;

1

) event). Therefore,

Lemma 7.4.2, applied where h =

1

, t

0

= t

1

, and t = max(t; `time(�

0

) + e+ 2d), guarantees

that members(

1

) � J(max(t; `time(�

0

) + e + 2d)). Sin
e i 2 members(

1

), we know that

i 2 J(max(t; `time(�

0

) + e+ 2d)), satisfying Part 4.

Sin
e max(t; `time(�

0

) + e + 2d) � max(t; `time(�

0

) + e + d) + 10d (sin
e `time(�

0

) +

e + 2d � `time(�

0

) + e + 10d), Lemma 7.4.1, applied where t = max(t; `time(�

0

) + e + 2d)

and t

0

= max(t; `time(�

0

) + e + d) + 10d, implies that J(max(t; `time(�

0

) + e + 2d)) �

J(max(t; `time(�

0

)+e+d)+10d), and thus i 2 J(max(t; `time(�

0

)+e+d)+10d), satisfying

Part 3.

Finally, noti
e that re
on-readiness requires that i performs a join-a
k prior to the

re
on(�;

1

) event, and therefore prior to the
fg-upgrade(k

2

) event. This satis�es Part 5.

�

The next lemma
laims that when a
on�guration is upgrade-ready, and a node with
ertain

properties (as in Lemma 7.7.2) exists, then either the
on�guration is removed or an upgrade

operation begins.

91

Lemma 7.7.3 Let � be an �

0

-normal exe
ution satisfying (i) (�

0

, e)-join-
onne
tivity, (ii)(�

0

; e)-

re
on-readiness, (iii) (�

0

; e)-upgrade-readiness, (iv) (�

0

; 2d)-re
on-spa
ing-1, (v) (�

0

; e; 22d)-

on�guration-viability.

Assume upgrade-ready(k

2

) o

urs at time t and k

2

� 1. Let k

1

= k

2

�1 and

1

=
(k�1).

Further, assume that node i has the following properties:

1. i is a member of
on�guration

1

,

2. i does not fail in �(max(t; `time(�

0

) + e+ d) + 10d),

3. i 2 J(max(t; `time(�

0

) + e+ d) + 8d),

4. i 2 J(max(t; `time(�

0

) + e+ 2d)),

5. i performs a join-a
k prior to the upgrade-ready(k

2

) event.

Let t

0

be a time su
h that t � t

0

< max(t; `time(�

0

) + e + d) + 13d. Let �

00

be a pre�x of

� su
h that:

1. t

0

= `time(�

00

),

2. an upgrade-ready(k

2

) event is in �

00

,

3. `state(�

00

):upg :phase

i

= idle.

Then either:

1. `state(�(t

0

)):
map(k

1

)

i

= �, or

2. i performs a
fg-upgrade(k

0

)

i

at time t

0

, for some k

0

� k

2

.

Proof. If `state(�

00

):
map(k

1

)

i

= �, then the
on
lusion holds, sin
e �

00

is a pre�x of �(t

0

):

by Lemma 7.5.3, `state(�(t

0

)):
map(k

1

)

i

= �. Assume, then, that `state(�

00

):
map(k

1

)

i

6= �.

We examine in turn the pre
onditions for
fg-upgrade(k

0

)

i

just after �

00

(from Figure 3-1):

1. :`state(�

00

):failed

i

: By Part 2 of the assumption on i, we know that i does not fail in

�(max(t; `time(�

0

) + e+ d) + 10d). However, t

0

< max(t; `time(�

0

) + e+ d) + 10d, and

thus i does not fail in �(t

0

). Sin
e �

00

is a pre�x of �(t

0

), i does not fail in �

00

.

92

2. `state(�

00

):status

i

= a
tive: By Part 5 of the assumption on i we know that i performs

a join-a
k prior to the upgrade-ready(k

2

) event.

3. `state(�

00

):upg :phase

i

= idle: By assumption, this holds.

4. 8` 2 N ; ` � k

2

: `state(�

00

):
map(`)

i

6= ?: It suÆ
es to show that by the point

in the exe
ution at whi
h the upgrade-ready(k

2

) event o

urs, node i has already

learned of
on�guration

2

and all
on�gurations with smaller indi
es. Let �

000

be

the pre�x of � ending in the upgrade-ready(k

2

) event. Part (ii) of the de�nition of the

upgrade-ready(k

2

) event guarantees that: for all ` � k

2

, for all j 2 members(

1

) that

do not fail in �

000

, `state(�

000

):
map(`)

j

6= ?. Noti
e that by Part 1 of the assumption

about i, i 2 members(

1

) and that by Part 2 of the assumption about i, i does not fail

in �

000

, sin
e `time(�

000

) = t � max(t; `time(�

0

) + e+ d). Therefore we
an
on
lude by

part (ii) that for all ` � k

2

, `state(�

000

):
map(`)

i

6= ?. Sin
e �

000

is a pre�x of �

00

(by

assumption that upgrade-ready(k

2

) is in
luded in �

00

), by Lemma 7.5.2 we know that

for all ` � k

2

, `state(�

00

):
map(`)

i

6= ?, as desired.

5. `state(�

00

):
map(k

2

)

i

2 C: By assumption, `state(�

00

):
map(k

1

)

i

6= �. Invariant 4.3.3

then implies that `state(�

00

):
map(k

2

)

i

6= �, sin
e k

1

< k

2

. Part 4, above, shows that

`state(�

00

):
map(k

2

)

i

6= ?, thus implying the desired result.

6. `state(�

00

):
map(k

1

)

i

2 C: By assumption, `state(�

00

):
map(k

1

)

i

6= �. Part 4, above,

shows that `state(�

00

):
map(k

1

)

i

6= ?, sin
e k

1

� k

2

, thus implying the desired result.

Sin
e enabled events o

ur in zero time (by assumption), either the event be
omes disabled,

in whi
h
ase `state(�(t

0

)):
map(k

1

)

i

= �, satisfying Part 1 of the
on
lusion, or at time

t

0

= `time(�

00

) a
fg-upgrade event for some
on�guration
 with index k

0

� k

2

o

urs,

satisfying Part 2 of the
on
lusion. �

The next lemma
onditionally guarantees that soon after a new
on�guration is upgrade-

ready, the old
on�guration is removed.

93

Lemma 7.7.4 Let � be an �

0

-normal exe
ution satisfying (i) (�

0

, e)-join-
onne
tivity, (ii)(�

0

; e)-

re
on-readiness, (iii) (�

0

; e)-upgrade-readiness, (iv) (�

0

; 2d)-re
on-spa
ing-1, (v) (�

0

; e; 22d)-

on�guration-viability.

Assume that t 2 R

�0

is a time su
h that t > `time(�

0

) + e + 14d. Assume that

1

is a

on�guration, and for some �nite pre�x �

00

of �, where t = `time(�

00

), for some node i 2 J(t)

that does not fail in �

00

, for some index k

1

, `state(�

00

):
map(k

1

)

i

=

1

.

Also, we assume the Upgrades-Complete Hypothesis: for every
fg-upgrade(�)

j

event that

o

urs in � at some time t

upg

< t at some node j 2 J(max(t

upg

; `time(�

0

) + e + 2d)) where

j does not fail in �(max(t

upg

; `time(�

0

) + e+ d) + 4d), a mat
hing
fg-upg-a
k(�)

j

o

urs by

time max(t

upg

; `time(�

0

) + e+ d) + 4d.

Assume that an upgrade-ready(k

1

+ 1) event o

urs at time t

0

< t� 13d. Let k

2

= k

1

+ 1

and

2

=
(k

2

). Then for some node i

0

2 J(max(t

0

; `time(�

0

)+e+d)+8d) that does not fail in

�(max(t

0

; `time(�

0

)+e+d)+10d), `state(�(max(t

0

; `time(�

0

)+e+d)+8d)):
map(k

1

)

i

0

= �.

Proof. We �rst identify a node, i

0

, that is suitable. Then we show that i

0

ompletes an

upgrade operation in the alotted time.

We apply Lemma 7.7.2, where t = t

0

, and therefore
on
lude that there exists a node i

0

with the following �ve properties:

1. i

0

is a member of
on�guration

1

,

2. i

0

does not fail in �(max(t

0

; `time(�

0

) + e+ d) + 10d),

3. i

0

2 J(max(t

0

; `time(�

0

) + e + d) + 8d),

4. i

0

2 J(max(t

0

; `time(�

0

) + e + 2d)),

5. i

0

performs a join-a
k prior to the upgrade-ready(k

2

) event.

Noti
e that Part 2 and Part 3 satisfy the �rst two requirements for i

0

in the
on
lusion of

this lemma. It remains to show that i

0

marks
on�guration

1

as � at the appropriate point.

We
onsider what happens at time max(t

0

; `time(�

0

)+e+d). Let �

000

be the pre�x of � that

is the longer of the following two pre�xes: (i) �(`time(�

0

)+e+d), or (ii) the shortest pre�x of

94

� that in
ludes the
fg-upgrade(k

2

) event. Noti
e that `time(�

000

) = max(t

0

; `time(�

0

)+e+d),

and that the
fg-upgrade(k

2

) event is in �

000

.

If `state(�

000

)):
map(k

1

)

i

0

= �, then the
laim is immediate: Lemma 7.5.2 implies that

`state(�

000

):
map

i

0

� `state(�(max(t

0

; `time(�

0

) + e + d) + 8d)):
map

i

0

, sin
e `time(�

000

) =

max(t

0

; `time(�

0

)+e+d) < max(t

0

; `time(�

0

)+e+d)+8d. Therefore, if `state(�

000

):
map(k

1

)

i

0

=

�, then `state(�(max(t

0

; `time(�

0

) + e + d) + 8d)):
map(k

1

)

i

0

= �.

We thus assume that `state(�

000

):
map(k

1

)

i

0

6= �, and
onsider what happens at time

max(t

0

; `time(�

0

) + e+ d). There are now two
ases to
onsider:

1. `state(�

000

):upg :phase

i

0

= idle or

2. `state(�

000

):upg :phase

i

0

6= idle.

Case 1: Assume that `state(�

000

):upg :phase

i

0

= idle. We apply Lemma 7.7.3, where t = t

0

,

t

0

= max(t

0

; `time(�

0

) + e + d), �

00

= �

000

, and i

0

is as
hosen above:

� t

0

� max(t

0

; `time(�

0

) + e+ d) < max(t

0

; `time(�

0

) + e+ d) + 13d: immediate,

� i

0

satis�es the
riteria, by the properties of i

0

above,

� `time(�

000

) = max(t

0

; `time(�

0

) + e + d) and upgrade-ready(k

2

) o

urs in �

000

: by

the way in whi
h �

00

was
hosen,

� `state(�

000

):upg :phase

i

0

= idle: by the
ase assumption.

From this lemma, we
on
lude that either:

1. `state(�(max(t

0

; `time(�

0

) + e + d))):
map(k

1

)

i

0

= �, or

2. i

0

performs a
fg-upgrade(k

0

)

i

0

at time max(t

0

; `time(�

0

)+ e+d), for some k

0

� k

2

.

In the �rst
ase, where `state(�(max(t

0

; `time(�

0

) + e + d))):
map(k

1

)

i

0

= �, we are

done: Lemma 7.5.3 implies that `state(�(max(t

0

; `time(�

0

)+e+d)+8d)):
map(k

1

)

i

0

=

�. Consider the se
ond
ase, that is, i

0

performs a
fg-upgrade(k

0

)

i

0

at time max(t

0

; `time(�

0

)+

e+ d), for some k

0

� k

2

.

We then apply the Upgrades-Complete Hypothesis, where j = i

0

and t

upg

= t

0

; noti
e

that:

95

� i

0

2 J(max(t

0

; `time(�

0

) + e+ 2d)): by 4

t

h property of i

0

,

� i

0

does not fail in �(max(t

0

; `time(�

0

)+e+d)+4d): by Part 2 of the way in whi
h

i

0

was
hosen, and

� max(t

0

; `time(�

0

)+e+d) < t: t

0

+13d < t, by assumption, and `time(�

0

)+e+14d <

t, by assumption, and therefore max(t

0

; `time(�

0

) + e+ d) + 13d < t.

Therefore, by the Upgrades-Complete Hypothesis we
on
lude that a
fg-upg-a
k(k

0

)

i

0

o

urs by time max(t

0

; `time(�

0

) + e + d) + 4d. Sin
e k

0

� k

2

, then by the pre
on-

dition of a
fg-upg-a
k operation we know that `state(�(max(t

0

; `time(�

0

) + e + d) +

4d):
map(k

1

)

i

0

= �. Lemma 7.5.3 implies that `state(�(max(t

0

; `time(�

0

) + e + d) +

8d):
map(k

1

)

i

0

= �, as desired.

Case 2: Assume that `state(�

000

):upg :phase

i

0

6= idle. For this to o

ur, a
fg-upgrade(k

0

)

i

0

event must o

ur prior to the upgrade-ready(k

2

) event in � with no mat
hing
fg-upg-a
k(k

0

)

i

0

event prior to the upgrade-ready(k

2

) event, where k

0

= `state(�

00

):upg :target

i

0

. Other-

wise, if there were no ongoing upgrade operation, i

0

would be idle. Let t

1

be the time

at whi
h this earlier
fg-upgrade(k

0

)

i

0

operation o

urs.

We
an then apply the Upgrades-Complete Hypothesis, where j = i

0

and t

upg

= t

1

;

noti
e that:

� i

0

2 J(max(t

1

; `time(�

0

)+ e+2d)): Lemma 7.4.3, applied where t = t

1

and i = i

0

,

shows that i

0

2 J(max(t

1

; `time(�

0

) + e + 2d)).

� i

0

does not fail in �(max(t

1

; `time(�

0

)+e+d)+4d): By Part 2 of the way in whi
h

i

0

was
hosen, i

0

does not fail in �(max(t

0

; `time(�

0

) + e + d) + 10d). Noti
e that

t

1

� max(t

0

; `time(�

0

) + e+ d), sin
e the earlier upgrade event o

urs in �

000

prior

to the upgrade-ready(k

2

) event. Therefore i

0

does not fail in �(max(t

1

; `time(�

0

)+

e + d) + 4d).

� max(t

1

; `time(�

0

) + e + d) < t: Again, noti
e that max(t

1

; `time(�

0

) + e + d) �

max(t

0

; `time(�

0

) + e + d), sin
e t

1

� t

0

. Also, t

0

+ 13d < t, by assumption, and

`time(�

0

)+ e+14d < t, by assumption. Therefore, max(t

0

; `time(�

0

)+ e+ d) < t,

implying that max(t

1

; `time(�

0

) + e+ d) < t.

96

We
an then
on
lude that a
fg-upgrade-a
k(k

0

)

i

0

o

urs in � by time max(t

1

; `time(�

0

)+

e + d) + 4d � max(t

0

; `time(�

0

) + e + d) + 4d. If k

0

� k

2

, then by the pre
ondition of

the
fg-upgrade-a
k(k

0

) a
tion, i

0

marks
map(k

1

) = �, and we are done.

Otherwise, we apply Lemma 7.7.3 to show that another
fg-upgrade operation begins:

let t

2

be the time at whi
h the
fg-upgrade-a
k(k

0

)

i

0

o

urs and �

2

be the pre�x of �

ending in the
fg-upgrade-a
k(k

0

)

i

0

event. Noti
e that:

� t

0

� max(t

2

; `time(�

0

) + e + d): By the way in whi
h the
fg-upgrade(k

0

) was

hosen, it has to
omplete no earlier than t

0

.

� max(t

2

; `time(�

0

) + e+ d) < max(t

0

; `time(�

0

) + e+ d) + 13d: Above, we showed

that that
fg-upgrade-a
k(k

0

)

i

0

o

urs by max(t

0

; `time(�

0

) + e + d) + 4d, that is,

t

2

� max(t

1

; `time(�

0

) + e + d) + 4d � max(t

0

; `time(�

0

) + e + d) + 4d, sin
e

t

1

� t

0

. Therefore, t

2

< max(t

0

; `time(�

0

)+ e+d)+13d. Also, `time(�

0

)+ e+d <

`time(�

0

) + e+ 14d.

Then we apply Lemma 7.7.3 with t = t

0

, t

0

= max(t

2

; `time(�

0

) + e+ d), �

00

= �

2

, and

i

0

as
hosen above:

� t

0

� max(t

2

; `time(�

0

)+e+d) < max(t

0

; `time(�

0

)+e+d)+13d: as shown above,

� i

0

satis�es the
riteria, by the properties of i

0

above,

� `time(�

2

) = max(t

2

; `time(�

0

) + e + d) and upgrade-ready(k

2

) o

urs in �

00

: by

the way in whi
h �

2

was
hosen and the fa
t that the
fg-upgrade-a
k(k

0

)

i

0

must

ome after the upgrade-ready(k

2

) event,

� `state(�

2

):upg :phase

i

0

= idle: by the e�e
t of the
fg-upg-a
k(k

0

)

i

0

event that is

the last event in �

000

.

We then
on
lude that either:

1. `state(�(max(t

2

; `time(�

0

) + e+ d))):
map(k

1

)

i

0

= �, or

2. i

0

performs a
fg-upgrade(k

00

)

i

0

at time max(t

2

; `time(�

0

)+e+d), for some k

00

� k

2

.

97

Again, if the �rst
ase holds, we are done: sin
e t

2

� max(t

0

; `time(�

0

) + e + d) + 8d,

Lemma 7.5.3 implies that `state(�(max(t

0

; `time(�

0

) + e + d) + 8d)):
map(k

1

)

i

0

= �.

Therefore, we
an assume that the se
ond part holds, and i

0

performs a
fg-upgrade(k

00

)

i

0

at time max(t

2

; `time(�

0

) + e + d), for some k

00

� k

2

.

On
e more, we apply the Upgrades-Complete Hypothesis, where j = i

0

and t

upg

= t

2

;

noti
e that:

� i

0

2 J(max(t

2

; `time(�

0

)+e+2d)): Re
all that i

0

2 J(max(t

1

; `time(�

0

)+e+2d)),

above. Sin
e max(t

1

; `time(�

0

)+e+2d) � max(t

2

; `time(�

0

)+e+2d) (i.e., the up-

grade begins before it
ompletes), by Lemma 7.4.1, where t = max(t

1

; `time(�

0

)+

e + 2d) and t

0

= max(t

2

; `time(�

0

) + e + 2d), J(max(t

1

; `time(�

0

) + e + 2d)) �

J(max(t

2

; `time(�

0

) + e+2d)), implying that i

0

2 J(max(t

2

; `time(�

0

) + e+ 2d)).

� i

0

does not fail in �(max(t

2

; `time(�

0

) + e + d) + 4d): By Part 2 of the way

in whi
h i

0

was
hosen, i

0

does not fail in �(max(t

0

; `time(�

0

) + e + d) + 10d).

Noti
e that t

2

� max(t

0

; `time(�

0

) + e + d) + 4d, as shown above. Therefore

max(t

2

; `time(�

0

) + e+ d) + 4d � max(t

0

; `time(�

0

) + e+ d) + 8d, and as a result

i

0

does not fail in �(max(t

2

; `time(�

0

) + e+ d) + 4d).

� max(t

2

; `time(�

0

) + e + d) < t: Again, noti
e that max(t

2

; `time(�

0

) + e + d) �

max(t

0

; `time(�

0

)+e+d)+4d. Also, t

0

+13d < t, by assumption, and `time(�

0

)+

e + d + 13d < t, by assumption. Therefore, max(t

0

; `time(�

0

) + e + d) + 13d < t.

Therefore, max(t

2

; `time(�

0

) + e+ d) � max(t

0

; `time(�

0

) + e+ d) + 4d < t� 9d,

as desired.

We
an then
on
lude that a
fg-upgrade-a
k(k

00

)

i

0

o

urs in � by time max(t

2

; `time(�

0

)+

e+d)+4d � max(t

0

; `time(�

0

)+e+d)+8d. Sin
e k

00

� k

2

, then by the pre
ondition of

the
fg-upgrade-a
k(k

0

) a
tion, i

0

marks
map(k

1

) = �, and Lemma 7.5.3 implies that

`state(�(max(t

0

; `time(�

0

) + e+ d) + 8d)):
map(k

1

)

i

0

= �.

�

In the next lemma, we provide a
onditional guarantee that a
on�guration remains viable.

98

Lemma 7.7.5 Let � be an �

0

-normal exe
ution satisfying (i) (�

0

, e)-join-
onne
tivity, (ii)(�

0

; e)-

re
on-readiness, (iii) (�

0

; e)-upgrade-readiness, (iv) (�

0

; 2d)-re
on-spa
ing-1, (v) (�

0

; e; 22d)-

on�guration-viability.

Assume that t 2 R

�0

is a time su
h that t > `time(�

0

) + e + 14d. Assume that

1

is a

on�guration, and for some �nite pre�x �

00

of �, where t = `time(�

00

), for some node i 2

J(max(t; `time(�

0

)+e+2d)) that does not fail in �

00

, for some index k

1

, `state(�

00

):
map(k

1

)

i

=

1

.

Also we assume the Upgrades-Complete Hypothesis: for all
fg-upgrade(�)

j

events that

o

ur in � at some time t

upg

< t at some node j 2 J(max(t

upg

; `time(�

0

) + e + 2d)) where

j does not fail in �(max(t

upg

; `time(�

0

) + e+ d) + 4d, a mat
hing
fg-upg-a
k(�)

j

o

urs by

time max(t

upg

; `time(�

0

) + e+ d) + 4d.

Then there exists a read-quorum, R 2 read-quorums(

1

), and a write-quorum, W 2

write-quorums(

1

), su
h that no node in R [W fails in �(t+ 3d).

Proof. Let k

2

= k

1

+1, and let

2

=
(k

2

). First,
onsider the
ase where no upgrade-ready(k

2

)

event o

urs in �. We apply Lemma 7.6.4, where
 =

1

and k = k

1

; this implies,

then, that there exists a read-quorum, R 2 read-quorums(

1

), and a write-quorum, W 2

write-quorums(

1

), su
h that no node in R [W fails in �.

Next,
onsider the
ase where an upgrade-ready(k

2

) event o

urs in �. Let t

0

be the time

at whi
h the upgrade-ready(k

2

) event o

urs. We
laim that upgrade-ready(k

2

) o

urs no

earlier than t� 13d. That is, t

0

+ 13d � t.

Assume, in
ontradi
tion, that t

0

+ 13d < t. We now apply Lemma 7.7.4 to
on-

lude that there exists a node i

0

2 J(max(t

0

; `time(�

0

) + e + d) + 8d) that does not fail in

�(max(t

0

; `time(�

0

)+e+d)+10d) su
h that `state(�(max(t

0

; `time(�

0

)+e+d)+8d)):
map(k

1

)

i

0

=

�.

We now show that the information about
on�guration

1

's removal is propagated from

node i

0

to node i. That is, we show the following:

Claim: `state(�

00

):
map(k

1

)

i

= �.

Proof of
laim: We do this in three steps. First, we show that `state(�(max(t

0

; `time(�

0

)+

e + d) + 8d)):
map

i

0

is mainstream after max(t

0

; `time(�

0

) + e+ d) + 10d. Se
ond, we show

99

that `state(�(max(t

0

; `time(�

0

) + e + d) + 8d)):
map

i

0

is mainstream after t� d. Third, we

on
lude that `state(�

00

):
map(k

1

)

i

= �.

Step 1: We already know that i

0

2 J(max(t

0

; `time(�

0

)+ e+d)+8d), and does not fail in

�(max(t

0

; `time(�

0

)+e+d)+10d). We then apply Lemma 7.5.4, where t = max(t

0

; `time(�

0

)+

e+ d) + 8d, and i = i

0

:

� max(t

0

; `time(�

0

) + e+ d) + 8d � `time(�

0

) + e: Immediate.

� i

0

2 J(max(t

0

; `time(�

0

) + e+ d) + 8d+ 2d): i

0

2 J(max(t

0

; `time(�

0

) + e+ d) + 8d), as

shown above, therefore this follow from Lemma 7.4.1, where t = max(t

0

; `time(�

0

) +

e+ d) + 8d and t

0

= max(t

0

; `time(�

0

) + e + d) + 10d.

� i

0

does not fail in �(max(t

0

; `time(�

0

) + e + d) + 8d + d), sin
e i

0

does not fail in

�(max(t

0

; `time(�

0

) + e + d) + 8d+ 2d) as shown above.

Therefore we
an
on
lude that `state(�(max(t

0

; `time(�

0

)+e+d)+8d)):
map

i

0

is mainstream

after max(t; `time(�

0

) + e+ d) + 10d.

Step 2: We have assumed above that t

0

< t � 13d, that is, t

0

+ 10d < t � d � 2d. Also,

we have assumed that `time(�

0

) + e+ 14d < t, that is, `time(�

0

) + e+ d+ 10d < t� d� 2d.

Therefore, max(t

0

; `time(�

0

) + e + d) + 10d < t � 3d. We now apply Lemma 7.5.11, where

t = max(t

0

; `time(�

0

) + e + d) + 10d, t

0

= t � d, and
m = `state(�(max(t

0

; `time(�

0

) + e +

d) + 8d)):
map

i

0

:

� e+ 2d � max(t

0

; `time(�

0

) + e + d) + 10d,

� max(t

0

; `time(�

0

) + e+ d) + 10d � t� 3d,

� `state(�(max(t

0

; `time(�

0

)+e+d)+8d)):
map

i

0

is mainstream after max(t; `time(�

0

)+

e+ d) + 10d.

We therefore
on
lude that `state(�(max(t

0

; `time(�

0

) + e+ d) + 8d)):
map

i

0

is mainstream

after t� d.

Step 3: Noti
e, then, that by assumption i 2 J(t) and i does not fail in �(t� d). There-

fore by the de�nition of mainstream, `state(�(max(t

0

; `time(�

0

) + e + d) + 8d)):
map

i

0

�

100

`state(�(t�d)):
map

i

. Lemma 7.5.3 then implies that `state(�(t�d)):
map

i

� `state(�

00

):
map

i

,

sin
e �(t�d) is a pre�x of �

00

. Therefore, `state(�(max(t

0

; `time(�

0

)+e+d)+8d)):
map

i

0

�

`state(�

00

):
map

i

. Sin
e `state(�(max(t

0

; `time(�

0

)+ e+ d)+ 8d)):
map(k

1

)

i

0

= � (as shown

above), this means that `state(�

00

):
map(k

1

)

i

= �, as
laimed above,
on
luding Step 3.

This
laim that `state(�

00

):
map(k

1

)

i

= �, though, leads to a
ontradi
tion: by assump-

tion of this lemma, `state(�

00

):
map(k

1

)

i

=

1

. Therefore, we
on
lude that our assumption

that t

0

< t � 13d is in
orre
t: that is, we must have t

0

� t � 13d. That is, we have shown

that the upgrade-ready(k

2

) event o

urs at most 13d prior to time t.

We now apply Lemma 7.6.3, where
 =

2

, k = k

2

, and t = t

0

, to
on
lude that there

exists a read-quorum, R, and a write-quorum, W , of
on�guration

1

su
h that no node in

R[W fails in �(max(t

0

; `time(�

0

)+ e) + 16d). Above we showed that t

0

+13d � t, therefore

t

0

+ 16d � t + 3d, whi
h implies that max(t

0

; `time(�

0

) + e) + 16d � t + 3d. Therefore, we

an
on
lude that there exists a read-quorum, R, and a write-quorum, W , of
on�guration

1

su
h that no node in R [W fails in �(t+ 3d). �

The next two lemmas
laim that every
on�guration-upgrade operation
ompletes soon

after it begins, or soon after the network stabilizes. The �rst lemma handles the
ase where

the upgrade begins before the network stabilizes, or during stabilization. The se
ond lemma

handles the general
ase, for all t.

Lemma 7.7.6 Let � be an �

0

-normal exe
ution satisfying: (i) (�

0

, e)-join-
onne
tivity,

(ii) (�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, (iv) (�

0

; e; 22d)-
on�guration-

viability.

Assume that t 2 R

�0

is a time su
h that t � `time(�

0

)+e+14d, and that a
fg-upgrade(k)

i

o

urs at time t at node i. Assume that node i 2 J(t) and that i does not fail in �(max(t; `time(�

0

)+

d) + 4d).

Then a
fg-upg-a
k(k)

i

o

urs no later than time max(t; `time(�

0

) + d) + 4d.

Proof. Let
 be the
on�guration-upgrade operation asso
iated with the
fg-upgrade(k)

a
tion. Lemma 7.7.1 shows that proving the following is suÆ
ient to prove the lemma: for

every
on�guration in removal-set(
) there exists a read-quorum, R and a write-quorum,

W , su
h that no node in R [W fail by time max(t; `time(�

0

) + d) + 3d.

101

Consider any
on�guration,

1

with index k

1

in removal-set(
). If t

1

is the time at whi
h

on�guration
(k

1

+1) is installed,
on�guration-viability ensures that
on�guration

1

does

not fail until max(t

1

; `time(�

0

) + e) + 22d. Noti
e that `time(�

0

) + e + 22d > t + 3d, sin
e

t � `time(�

0

) + e + 14d. Therefore, this guarantees that there exists a read-quorum, R,

and a write-quorum, W for
on�guration

1

su
h that no node in R [W fails until after

`time(�

0

) + e + 22d > max(t; `time(�

0

) + d) + 3d. �

Lemma 7.7.7 Let � be an �

0

-normal exe
ution satisfying: (i)(�

0

, e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, (iv) (�

0

; e; 22d)-
on�guration-viability.

Assume that t 2 R

�0

is a time, and that a
fg-upgrade(k)

i

o

urs in � at time t at node

i. Assume that node i 2 J(t) and that i does not fail in �(max(t; `time(�

0

) + e + d) + 4d).

Then a
fg-upg-a
k(k)

i

o

urs no later than time max(t; `time(�

0

) + e + d) + 4d.

Proof. We prove this lemma by proving a stronger statement by strong indu
tion on the

number of
fg-upgrade events in �: if a
fg-upgrade(�)

j

event o

urs in � at some time t

upg

� t

at some node j 2 J(t

upg

), and j does not fail in �(max(t

upg

; `time(�

0

) + e+ d) + 4d), then a

mat
hing
fg-upg-a
k(�)

j

o

urs no later than time max(t

upg

; `time(�

0

) + e+ d) + 4d.

As this is strong indu
tion, we now examine the indu
tive step. Consider
on�guration-

upgrade
, the k + 1

st

upgrade operation in � that o

urs at time t

upg

� t at node j 2 J(t)

that does not fail in �(max(t

upg

; `time(�

0

) + e + d) + 4d). Assume, indu
tively, that if

0

is

one of the �rst k upgrade operations that o

urs at time t

0

� t at some node j

0

2 J(t

0

) that

does not fail in �(max(t

0

; `time(�

0

)+ e+ d) + 4d), then a mat
hing
fg-upg-a
k(�) o

urs no

later than time max(t

0

; `time(�

0

) + e + d) + 4d. There are two
ases to
onsider.

Case 1: t

upg

� `time(�

0

) + e+ 14d.

Re
all that the
fg-upgrade event o

urs at node j 2 J(t

upg

) where j does not fail in

�(max(t

upg

; `time(�

0

)+ e+ d)+ 4d). Lemma 7.7.6 shows that a
fg-upg-a
k(k)

j

o

urs

by time max(t

upg

; `time(�

0

) + d) + 4d � max(t

upg

; `time(�

0

) + e+ d) + 4d.

Case 2: t

upg

> `time(�

0

) + e + 14d.

Lemma 7.7.1 shows that proving the following is suÆ
ient to prove the lemma: for every

on�guration in removal-set(
) there exists a read-quorum, R and a write-quorum,W ,

102

su
h that no node in R[W fails in �(max(t

upg

; `time(�

0

)+d)+3d). Let �

00

be the pre�x

of � ending with the
fg-upgrade event
. Fix some
on�guration
 2 removal-set(
)

with index k; that is, `state(�

00

):
map(k)

j

=
. We now apply Lemma 7.7.5, where

1

=
, k

1

= k, �

00

is as just de�ned, and t = t

upg

:

� t

upg

> `time(�

00

) + e+ 14d.

� t

upg

= `time(�

00

).

� `state(�

00

):
map(k)

j

=
, sin
e
 2 removal-set(
) and �

00

is the exe
ution ending

with the event
.

� j 2 J(max(t

upg

; `time(�

0

) + e+ 2d)), sin
e j 2 J(t

upg

) and t

upg

> `time(�

0

) + e+

14d.

� Upgrades-Complete Hypothesis: for every
fg-upgrade(�)

j

event that o

urs in �

at some time t

0

< t

upg

at some node j

0

2 J(max(t

upg

; `time(�

0

) + e + 2d)) where

j

0

does not fail in �(max(t

upg

; `time(�

0

) + e + d) + 4d), a mat
hing
fg-upgrade

j

0

o

urs by time max(t

upg

; `time(�

0

)+ e+ d)+ 4d: this is the indu
tive hypothesis,

sin
e any
fg-upgrade o

uring at time t

0

< t

upg

must be one of the �rst k upgrade

events.

Therefore, we
on
lude that there exists a read-quorum, R 2 read-quorums(
), and a

write-quorum, W 2 write-quorums(
), su
h that no node in R [W fails in �(t + 3d).

Sin
e this is true for all
 2 removal-set(
), this then shows the desired result.

�

We next present two
orollaries that follow from these lemmas. First, we present the un
on-

ditional version of Lemma 7.7.5:

Corollary 7.7.8 Let � be an �

0

-normal exe
ution satisfying (i) (�

0

, e)-join-
onne
tivity,

(ii)(�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, (iv) (�

0

; e; 22d)-
on�guration-

viability.

103

Assume that t 2 R

�0

is a time. Assume that
 is a
on�guration, and for some �nite

pre�x �

00

of � where t = `time(�

00

), some node i 2 J(t) that does not fail in �

00

, for some

index k, `state(�

00

):
map(k)

i

=
.

Then there exists a read-quorum, R, and a write-quorum, W , su
h that no node in R[W

fails in �(max(t; `time(�

0

) + e+ d) + 3d).

Proof. If t > `time(�

0

) + e+ 14d, then we show that the result follows from Lemma 7.7.7

and Lemma 7.7.5. We apply Lemma 7.7.7 where

1

=
, k

1

= k: noti
e that Lemma 7.7.5

assumes that:

� t > `time(�

0

) + e + 14d: By assumption.

� t = `time(�

00

): By assumption.

� `state(�

00

):
map(k)

i

=
: By assumption.

� i 2 J(max(t; `time(�

0

) + e+ 2d)): t > `time(�

0

) + e + 14d.

� i does not fail in �

00

: By assumption.

� Upgrade-Completes Hypothesis: Fix some
fg-upgrade(�)

j

event that o

urs at time

t

upg

< t at node j 2 J(max(t

upg

; `time(�

0

)+e+2d) where j does not fail in �(max(t

upg

; `time(�

0

)+

e+d)+4d). We apply Lemma 7.7.7, where t = t

upg

and i = j. (Noti
e that j 2 J(t

upg

)

by Lemma 7.4.1.) We therefore
on
lude that a
fg-upgrade(�)

j

o

urs no later than

max(t

upg

; `time(�

0

)+e+d)+4d, as required by the
on
lusion of the Upgrade-Completes

Hypothesis.

We thus
on
lude that there exists a read-quorum, R 2 read-quorums(
) and a write-quorum,

W 2 write-quorums(
) su
h that no node in R [W fails in �(t+ 3d). Sin
e t > `time(�

0

) +

e+ 14d, this implies that no node in R [W fails in �(max(t; `time(�

0

) + e+ d) + 3d).

Alternatively, if t � `time(�

0

) + e + 14d,
on�guration-viability guarantees that there

exists a read-quorum, R, and a write-quorum, W , su
h that no node in R [W fails in

�(`time(�

0

) + e+ 22d), and again the result follows. �

104

The se
ond
orollary guarantees the liveness of the system; that is, the following
orollary

shows that read and write operations always terminate eventually:

Corollary 7.7.9 Let � be an �

0

-normal exe
ution satisfying (i) (�

0

, e)-join-
onne
tivity,

(ii)(�

0

; e)-re
on-readiness, (iii) (�

0

; 2d)-re
on-spa
ing-1, (iv) (�

0

; e; 22d)-
on�guration-

viability.

Assume that t 2 R

�0

. Assume that at time t, for some i 2 J(t) that does not fail in �

4

,

a read

i

or write

i

o

urs in �. Then the operation eventually
ompletes.

Proof. The read or write operation
ompletes if ea
h phase of the operation
ompletes.

Let be the read

i

, write

i

, query-�x

i

, or re
v

i

a
tion that sets op:
map to
map, beginning

the phase. Ea
h phase
ompletes when for all ` : op:
map(`)

i

2 C, i has sent a gossip

message to an appropriate quorum of nodes in
(`), and re
eived a response. The only way

an operation
an fail to terminate, then, is if there does not exist a non-failed read-quorum

or a write-quorum of some
on�guration in op:
map.

Assume that
 is a
on�guration with index k su
h that op:
map(k)

i

is set to
 at some

time t

0

after , and before the phase
ompletes. Then for some �

00

where t

0

= `time(�

00

),

`state(�

00

):
map(k)

i

=
, sin
e op:
map is set by
opying a trun
ated version of
map

i

. By

Corollary 7.7.8, there exists a read-quorum, R, and a write-quorum,W , su
h that no node in

R[W fails in �(max(t; `time(�

0

)+e+d)+3d). No later than time max(t; `time(�

0

)+e+d)+d,

node i sends a gossip message to every node in R[W . By time max(t; `time(�

0

)+e+d)+2d

the message is re
eived by every node in R[W , and ea
h node sends a response to i. By time

max(t; `time(�

0

) + e + d) + 3d, node i re
eives the response, and R [W � a

. Therefore,

for all
on�gurations the read and write quorums survive long enough, and so the phase

ompletes. �

4

More spe
i�
ally, we are assuming that i does not fail until after the operation terminates; sin
e we do

not here bound how long the operation may take, we instead assume that i does not fail in �. Obviously i

failing after the operation
ompletes has no e�e
t on the operation
ompleting.

105

7.8 Read-Write Laten
y Results

In this se
tion we state and prove the main result of the laten
y analysis: if an exe
ution

ontains a period of time of good behavior, and if this se
tion of the exe
utions is 22d-

on�guration-viable, then all read and write operations terminate, and terminate within 8d.

Noti
e that in the originalRambo paper, a similar result required the stronger assumption of

1-
on�guration-viability , an arbitrarily unbounded failure assumption, depending on events

earlier in the exe
ution. Here there is no dependen
y on earlier events: the algorithm is

guaranteed to stabilize rapidly, as soon as the network stabilizes.

We need one more lemma. This lemma shows that on
e a report(
) a
tion o

urs for

some
on�guration with index k, then soon every node has set
map(`) 6= ?, for all ` � k.

This will allow us to show that if a read or write operation begins long enough after a
ertain

report(
) operation, then it
annot be interrupted by learning about new
on�gurations with

smaller indi
es.

Lemma 7.8.1 Let � be an �

0

-normal exe
ution satisfying: (i) (�,e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) 6d-re
on-spa
ing, (iv) (�

0

; e; 4d)-
on�guration-viability.

Assume that �
ontains de
ide events for in�nitely many
on�gurations. Let ` be a

on�guration index. Let

1

be the
on�guration with index `, and

2

be the
on�guration with

index `+ 1.

Let i be the node at whi
h the �rst re
on(

1

;

2

) event, �, o

urs. Let t be the time at

whi
h the report(

1

)

i

event, �, o

urs.

Then there exists a CMap,
m, su
h that:

1.
m(`) 6= ?, and

2.
m is mainstream after max(t; `time(�

0

) + e+ d) + 6d.

Proof. There are two
ases to
onsider. In ea
h
ase, we �rst demonstrate an appropriate

m: we identify a node that performs a report(

1

) and does not fail too soon. We then show

that the
map of that node is mainstream after max(t; `time(�

0

) + e + d) + 6d.

106

Case 1: re
on(

1

;

2

)

i

o

urs at some time � `time(�

0

) + e + 2d.

In this
ase, we use the Re
on-Spa
ing-2 assumption to identify a node with an appro-

priate
map, and then use
on�guration-viability to show that this node survives long

enough for its
map to be
ome mainstream after `time(�

0

)+ e+4d, whi
h then allows

us to show that its
map is mainstream after max(t; `time(�

0

) + e + d) + 6d.

By the Re
on-Spa
ing-2 assumption, there exists a write-quorum,W 2 write-quorums(

1

),

su
h that for every node j 2 W , a report(

1

)

j

o

urs in � prior to �, the re
on event that

proposes
on�guration

2

. By
on�guration-viability, there exists some node j 2 W

that does not fail by time `time(�

0

) + e+ 4d, sin
e there exists some read-quorum, R,

that does not fail by time `time(�

0

) + e+ 4d, and by assumption R \W 6= ;.

We now show that
map

j

satis�es Property 1 after `time(�

0

) + e+ 2d. Noti
e that:

`state(�(time(�))):
map(`)

j

6= ?;

sin
e the report a
tion noti�es j of the
on�guration

1

prior to �. By assumption we

know that time(�) � `time(�

0

)+ e+2d. Therefore we know that `state(�(`time(�

0

)+

e+ 2d)):
map

j

6= ?.

Let
m = `state(�(`time(�

0

) + e + 2d)):
map

j

. We know, then, that
m(`) 6= ?, as

desired.

Next we show that
m is mainstream after `time(�

0

)+ e+4d. We apply Lemma 7.5.4,

where i = j, t = `time(�

0

) + e + 2d:

� j 2 J(`time(�

0

) + e + 4d): If ` = 0, then j = i

0

and we have, by assumption,

that i

0

performs a join-a
k

i

0

at time 0, immediately implying the statement by

the de�nition of J .

Otherwise, we apply Lemma 7.4.2, where h =

1

, t

0

= time(re
on(
(`�1);

1

)), and

t = `time(�

0

) + e+ 2d. Noti
e that `time(�

0

) + e+ 2d � time(re
on(
(`� 1);

1

))

sin
e `time(�

0

) + e + 2d � time(�), and time(�) � time(re
on(
(`� 1);

1

)). We

therefore
on
lude that members(

1

) � J(`time(�

0

) + e+ 2d). In parti
ular, this

107

means that j 2 J(`time(�

0

) + e + 2d). Next we apply Lemma 7.4.1, where t =

`time(�

0

)+e+2d and t

0

= `time(�

0

)+e+4d to see that j 2 J(`time(�

0

)+e+4d).

� `time(�

0

) + e+ 2d � `time(�

0

) + e: Immediate.

� j does not fail in �(`time(�

0

) + e + 3d): as shown above j does not fail in

�(`time(�

0

) + e + 4d), by
hoi
e of j and
on�guration-viability.

We then
on
lude, sin
e
m = `state(�(`time(�

0

) + e + 2d)):
map

j

, that
m is main-

stream after `time(�

0

) + e+ 4d.

We next apply Lemma 7.5.11, where t = `time(�

0

) + e + 4d, t

0

= max(t; `time(�

0

) +

e+ d) + 6d, and
m is as de�ned above:

� e + 2d � `time(�

0

) + e + 4d: Immediate.

� `time(�

0

) + e+ 4d � max(t; `time(�

0

) + e+ d) + 6d� 2d: Immediate.

�
m is mainstream after `time(�

0

) + e + 4d: As shown above.

Therefore, we
on
lude that
m is mainstream after max(t; `time(�

0

) + e+ d) + 6d, as

desired.

Case 2: re
on(

1

;

2

)

i

o

urs at some time > `time(�

0

) + e+ 2d.

We �rst noti
e that i has been noti�ed of
on�guration

1

and then show that the

map of i is mainstream after max(t; `time(�

0

) + e+ d) + 6d.

Noti
e that `state(�(t)):
map(`)

i

6= ?, sin
e the report(

1

)

i

event noti�es i of
on�gu-

ration

1

.

We now apply Lemma 7.5.4, where i is as de�ned above and t = max(t; `time(�

0

) +

e+ d), to show that
m is mainstream after max(t; `time(�

0

) + e+ d) + 2d:

� max(t; `time(�

0

) + e+ d) + 2d � `time(�

0

) + e: Immediate.

� i 2 J(max(t; `time(�

0

) + e + d) + 2d): We apply Lemma 7.4.2, where h =

1

,

t

0

is the time at whi
h

1

is proposed, and t = max(t; `time(�

0

) + e + d) + 2d.

Noti
e that max(t; `time(�

0

) + e + d) + 2d is no earlier than the time at whi
h

1

is proposed, sin
e a report(

1

) o

urs prior to max(t; `time(�

0

) + e + d) + 2d.

108

Also, max(t; `time(�

0

) + e+ d) + 2d � `time(�

0

) + e+ 2d. Therefore we
on
lude

that members(

1

) � J(max(t; `time(�

0

) + e + d) + 2d). This implies that i 2

J(max(t; `time(�

0

) + e + d) + 2d).

� i does not fail in �(max(t; `time(�

0

) + e + d) + d): We know that i does not fail

prior to event �, that is, the re
on(

1

;

2

)

i

event. By Re
on-Spa
ing-1, we know

that time(�) � t + 6d. By assumption of this
ase, we know that time(�) >

`time(�

0

) + e+ 2d. Therefore i does not fail in �(max(t; `time(�

0

) + e+ d) + d).

We therefore
on
lude that
m is mainstream after max(t; `time(�

0

) + e+ d) + 2d.

We next apply Lemma 7.5.11, where t = max(t; `time(�

0

)+e+d)+2d, t

0

= max(t; `time(�

0

)+

e+ d) + 6d, and
m is as de�ned above:

� e + 2d � max(t; `time(�

0

) + e+ d) + 2d: Immediate.

� max(t; `time(�

0

) + e+ d) + 2d � max(t; `time(�

0

) + e+ d) + 6d� 2d: Immediate.

�
m is mainstream after time(�

`

): As shown above.

Therefore, we
on
lude that
m is mainstream after max(t; `time(�

0

) + e+ d) + 6d, as

desired.

�

We �nally prove the main theorem, showing that read and write operations terminate

rapidly. This result requires 12d+�-re
on-spa
ing, and is similar to Theorem 8.17 from [13℄.

This earlier theorem states that in a normal, steady-state
ase, with good environmental be-

havior, read and write operations terminate within time 8d. Although the following theorem

allows for more
ompli
ated behavior, deviating from the assumption of good environmental

assumptions, read and write operations still
omplete rapidly.

Theorem 7.8.2 Let � be an �

0

-normal exe
ution satisfying: (i) (�,e)-join-
onne
tivity, (ii)

(�

0

; e)-re
on-readiness, (iii) 12d+�-re
on-spa
ing, (iv) (�

0

; e; 22d)-
on�guration-viability.

Let t > `time(�

0

)+e+17d, and assume a read or write operation starts at time t at some

node i. Assume i 2 J(t + 8d), and does not fail until the read or write operation
ompletes.

109

Also, assume that �
ontains de
ide events for in�nitely many
on�gurations. Then node i

ompletes the read or write operation by time t+ 8d.

Proof. Let

0

;

1

;

2

; : : : denote the in�nite sequen
e of su

essive
on�gurations de
ided

upon in �; by in�nite re
on�guration, this sequen
e exists. For ea
h k � 0, let �

k

be the

�rst re
on(

k

;

k+1

)

�

event in �, let i

k

be the lo
ation at whi
h this o

urs, and let �

k

be the

orresponding, pre
eding report(

k

)

i

k

event. (The spe
ial
ase of this notation for k = 0 is

onsistent with our usage elsewhere.)

We show that the time for ea
h phase of the read or write operation is � 4d { this will

yield the bound we need. Consider one of the two phases, and let be the read

i

, write

i

or

query-�x

i

event that begins the phase.

We
laim that time() > time(�

0

) + 8d, that is, that o

urs more than 8d time

after the report(0)

i

0

event: We have that time() � t, and t > time(join-a
k

i

) + 8d by

assumption that i 2 J(t + 8d). Also, time(join-a
k

i

) � time(join-a
k

i

0

). Furthermore,

time(join-a
k

i

0

) � time(�

0

), that is, when join-a
k

i

0

o

urs, report(0)

i

0

o

urs with no time

passage. Putting these inequalities together we see that time() > time(�

0

) + 8d.

Fix k to be the largest number su
h that time() > time(�

k

) + 8d. The
laim in the

pre
eding paragraph shows that su
h k exists.

Next, we show that within zero time of o

urring,
map(`)

i

6= ? for all ` � k. It is at

this point that the proof diverges from that of Lemma 8.17 from [12℄.

For the purposes of the next two lemmas, �x any ` � k. We apply Lemma 7.8.1, where

` is as �xed above, t = time(�

`

), � = �

`

, � = �

`

,

1

=

`

,and i = i

`

. We therefore
on
lude

that there exists a CMap
m su
h that:

1.
m(`) 6= ?, and

2.
m is mainstream after max(time(�

`

); `time(�

0

) + e+ d) + 6d.

We next apply Lemma 7.5.11, where t = max(time(�

`

); `time(�

0

) + e + d) + 6d, t

0

=

time(), and
m is as above, to show that
m is mainstream after time():

� e+ 2d � max(time(�

`

); `time(�

0

) + e+ d) + 6d: Immediate.

110

� max(time(�

`

); `time(�

0

)+ e+d)+6d � time()�2d: By the way in whi
h k is
hosen

we know that time(�

k

)+ 8d < time(). Also, time(�

`

) � time(�

k

): either ` = k, or �

`

pre
edes �

`

whi
h pre
edes �

k

. By assumption we know that `time(�

0

) + e + 8d < t,

and t � time().

�
m is mainstream after max(time(�

`

); `time(�

0

) + e) + 6d: As shown above.

Therefore, we
on
lude that
m is mainstream after time(). We know that i 2 J(t), and

t � time(), so by Lemma 7.4.1, i 2 J(time()). Also, i does not fail until the read or

write operation
ompletes, and therefore either the read or write operation
ompletes at

time() (in whi
h
ase we have proved the desired bound) or i does not fail in �(time()).

Therefore by de�nition of a CMap being mainstream, if
m is mainstream after time(),

then
m � `state(�(time())):
map

i

.

Having shown this for �xed ` � k, we now know that for all ` � k there exists some

CMap,
m, su
h that
m(`) 6= ? and
m is mainstream after time(), this implies that for

all ` � k, `state(�(time())):
map(`)

i

6= ?. Therefore we have shown that within zero time

of o

urring,
map(`)

i

6= ? for all ` � k.

Now, by
hoi
e of k, we know that time() � time(�

k+1

) + 8d. The Re
on-Spa
ing

ondition implies that time(�

k+1

) (the �rst re
on event that requests the
reation of the

(k + 2)

nd

on�guration) is > time(�

k+1

) + 12d. Therefore, for an interval of time of length

> 4d after , the largest index of any
on�guration that appears anywhere in the system is

k+1. This implies that the phase of the read or write operation that starts with
ompletes

with at most one additional delay (of 2d) for learning about a new
on�guration. This yields

a total time of at most 4d for the phase, as
laimed.

Finally, by Corollary 7.7.9, the operation eventually terminates, whi
h guarantees that

ever
on�guration in op:
map remains viable for long enough. �

This shows that assuming (�

0

; e; 22d)-
on�guration-viability is suÆ
ient to guarantee

that read and write operations terminate qui
kly. As long as the re
on�guration algorithm

an guarantee this level of viability, the Rambo II algorithm will
ontinue to make progress,

regardless of any bad behavior the network may experien
e. Further, while 22d may seem

111

a long period of time to ensure viability, it must be remembered that d is typi
ally a small

interval: we have been assuming that d is a single message delay in the network. Note

that simply de
iding on a new
on�guration to install might take many intervals of d (in

[12℄, it is bounded by 11d). Also, this 22d bound is fairly
onservative: by making stronger

assumptions as to who begins
on�guration-upgrade operations, and how gossip messages

propagate information about
ompleted
on�guration-upgrade operations, it is probably

possible to improve this bound. In this thesis we are primarily interested in the fa
t that it

is a
onstant time bound.

112

Chapter 8

Implementation and Preliminary

Evaluation

Musial and Shvartsman [16℄ have developed a prototype distributed implementation that in-

orporates both the original Rambo
on�guration management algorithm [12℄ and the new

Rambo II algorithm presented in this thesis. The system was developed by manually trans-

lating the Input/Output Automata spe
i�
ation to Java
ode. To mitigate the introdu
tion

of errors during translation, the implementers followed a set of pre
ise rules, similar to [2℄,

that guided the derivation of Java
ode from Input/Output Automata notation. The system

is undergoing re�nement and tuning, however an initial evaluation of the performan
e of the

two algorithms has been performed in a lo
al-area setting.

The platform
onsists of a Beowulf
luster with 13 ma
hines running Linux (Red Hat 7.1).

The ma
hines are Pentium pro
essors in the range from 90 MHz to 900 MHz, inter
onne
ted

via a 100 Mbps Ethernet swit
h. The implementation of the two algorithms shares most of

the
ode and all low-level routines. Any di�eren
e in performan
e is tra
eable to the distin
t

on�guration management dis
ipline used by ea
h algorithm.

The ma
hines vary signi�
antly in speed. Given several very slow ma
hines, Musial and

Shvartsman do not evaluate absolute performan
e and instead fo
us initially on
omparing

the two algorithms.

The preliminary results in Figure 8-1 show the average laten
y of read/write operations

113

0

5

10

15

20

25

30

0.0 5.0 10.0 15.0 20.0 25.0

Number of reconfigurations per one gossip period

(a)

L
a

te
n

c
y

RAMBO

RAMBO II

Figure 8-1: Preliminary empiri
al evaluation of the average operation laten
y (measured

as the number of gossip intervals), as a fun
tion of re
on�guration frequen
y, measured as

number of re
on�gurations per one re
on�guration period.

as the frequen
y of re
on�gurations grows from about two to twenty re
on�gurations per

one gossip period. In order to handle su
h frequent re
on�gurations, a large gossip interval

(8 se
onds) is used. This interval is mu
h larger than the round-trip message delay, thus

redu
ing the e�e
ts of network
ongestion en
ountered when re
on�guring very frequently.

The results show that the overall laten
y of read/write operations for the new algorithm

progressively improve, as the frequen
y of re
on�guration in
reases. As expe
ted, the de-

rease in laten
y be
omes substantial for bursty re
on�gurations (at 20 re
on�gurations per

gossip interval). For less frequent re
on�gurations the laten
y is similar, at about 4 gossip

intervals depending on the settings (not shown). This is expe
ted and
onsistent with our

analysis, sin
e the two algorithms are essentially identi
al when
maps
ontain one or two

on�gurations. Figure 8-2 shows the average number of
on�gurations in
maps as a fun
tion

of re
on�guration frequen
y. This further explains the di�eren
e in performan
e, sin
e the

average number of
on�gurations in
maps is lower in the new algorithm as the frequen
y of

re
on�gurations in
reases.

114

�

�

��

��

��

��� ��� ���� ���� ���� ����

����	
 ��
	
������
������ �	
 ��	 ������ �	
���

���

�
��
�
�
�
�
�

!

"#$%&

"#$%& ''

Figure 8-2: Preliminary empiri
al evaluation of the average number of
on�gurations in

map's, as a fun
tion of re
on�guration frequen
y, measured as number of re
on�gurations

per one re
on�guration period.

Finally noti
e that the modest number of ma
hines used in this study favored the original

algorithm. This is be
ause the ma
hines are often members of multiple
on�gurations, thus

the number of messages needed to rea
h �xed-points by the read/write operations of the

original algorithm is mu
h lower than is expe
ted when ea
h pro
essor is a member of a few

on�gurations.

Also, noti
e that this evaluation does not examine the e�e
ts of message loss and la
k of

network
onne
tivity. We hypothesize that, as in the
ase of frequent bursty re
on�guration,

when there are intervals of time in whi
h the network is dis
onne
ted, the new algorithm

should re
over more rapidly. This testing has not yet been performed.

Full performan
e evaluation is
urrently in progress. Shvartsman and Musial are in-

vestigating how the performan
e depends on the number of ma
hines and various timing

parameters.

115

116

Chapter 9

Con
lusion and Open Problems

In this thesis we have presented a new algorithm, improving on the original Rambo algo-

rithm by Lyn
h and Shvartsman [12, 13℄. While the original Rambo algorithm is analyzed

primarily in the
ontext of good network behavior, we are able to show that our new algo-

rithm fun
tions well even when the network experien
es transient periods of bad behavior,

in
luding message loss,
lo
k skews, and arbitrary asyn
hrony, and when re
on�guration is

bursty and uneven.

The key to this improvement is a new rapid
on�guration-upgrade me
hanism, whi
h

allows the system to stabilize rapidly after a period of bad network behavior. In the previous

Rambo algorithm, it might take arbitrarily long to re
over from a period of bad behavior.

In this new algorithm, however, within a
onstant time, the system returns to a steady-state

ondition. This allows the algorithm to fun
tion more reliably in a long-running, dynami

system: when a system is expe
ted to fun
tion for months and years without failure, it is

ne
essary to rapidly re
over from the inevitable transient network failures.

This improvement also makes pra
ti
al the design of algorithms to
hoose new
on�g-

urations. In the earlier version of Rambo, it is un
lear what properties a re
on�guration

algorithm must support in order for it to be useful. This thesis shows that a re
on�guration

automaton must provide exa
tly (�

0

; 22d)-
on�guration-viability .

To design su
h a re
on�guration algorithm, then, is one of the major open problems

posed by this thesis. In parti
ular, it seems important to show that if the rate of failure

117

is bounded, then the algorithm
ontinues to make progress. This is similar to the ideas

introdu
ed by Karger and Liben-Nowell in [10℄, in whi
h they assume that the system has

a bounded half-life: the time in whi
h either half the pro
esses fail or the number of a
tive

pro
esses doubles. Under this assumption, they show that their algorithm operates
orre
tly.

By similarly assuming a bounded rate of failures, it should be possible in
ertain
ases

to design a re
on�guration algorithm that guarantees liveness by initiating re
on�guration

with some minimum frequen
y. By
hoosing appropriate quorums and appropriate numbers

of re
on�gurations, (�

0

; 22d)-
on�guration-viability should be possible.

Other open problems in
lude improving the join proto
ol, and designing a leave proto
ol

to allow good dete
tion of nodes that have exited the system. Currently, the join proto
ol

is quite simple and it would seem bene�
ial to require more
ommuni
ation before allowing

a node to initiate operations. And when nodes fail or leave, in the algorithm as stated,

they are just ignored. By introdu
ing a formal proto
ol to leave the system, and a method

for dete
ting failed nodes, it might be possible to improve the long-run performan
e of the

system.

Another open problem is to determine how to re
over when viability fails (and data is

inevitably lost). More generally, is a self-stabilizing version of Rambo feasible? It would

also be interesting to determine whether a version of Rambo
ould be adapted to tolerate

Byzantine faults.

Rambo may also allow the
onstru
tion of other data types, su
h as weakly
onsistent

memory and sets. It may also be possible to optimize Rambo to return read values more

rapidly, in one phase, in
ertain
ases. An important question would be to determine the most

powerful data obje
t that
an be implemented using the Rambo te
hnique; one suspe
ts

that it is impossible to implement
onsensus in this manner.

Finally, it would be interesting to examine how the Rambo algorithm
ould be adapted

to spe
i�
 platforms. The algorithm is presented in a fairly abstra
t fashion. In real im-

plementations, it would be optimized depending on the target platform. In parti
ular, we

suspe
t that Rambo should work well in sensor networks, mobile-networks, and peer-to-peer

networks.

In
on
lusion, this thesis has presented a new algorithm for atomi
 memory in a highly

118

dynami
 environment, proved that is always
orre
t, and presented a set of
onditions that

guarantee liveness. This provides signi�
ant improvements over existing algorithms, rapidly

re
overing from transient network problems and bursty re
on�guration.

119

120

Bibliography

[1℄ Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-

passing systems. Journal of the ACM, 42(1):124{142, 1995.

[2℄ O. Cheiner and A.A. Shvartsman. Implementing and evaluating an eventually-

serializable data servi
e as a distributed system building blo
k. In Networks in Dis-

tributed Computing, volume 45 of DIMACS Series on Dis
. Mathemati
s and Theoreti
al

Computer S
ien
e, pages 43{71. AMS, 1999.

[3℄ Roberto DePris
o, Nan
y Lyn
h, Alex Shvartsman, Ni
ole Immorli
a, and Toh Ne Win.

A formal treatment of Lamport's Paxos algorithm. In progress.

[4℄ Danny Dolev, Idit Keidar, and Esti Yeger Lotem. Dynami
 voting for
onsistent primary

omponents. In Pro
eedings of the Sixteenth Annual ACM Symposium on Prin
iples of

Distributed Computing, pages 63{71. ACM Press, 1997.

[5℄ B. Englert and A.A. Shvartsman. Gra
eful quorum re
on�guration in a robust emula-

tion of shared memory. In Pro
eedings of the International Conferen
e on Distributed

Computer Systems, pages 454{463, 2000.

[6℄ David K. Gi�ord. Weighted voting for repli
ated data. In Pro
eedings of the seventh

symposium on Operating systems prin
iples, pages 150{162, 1979.

[7℄ Mauri
e Herlihy. Dynami
 quorum adjustment for partitioned data. Trans. on Database

Systems, 12(2):170{194, 1987.

121

[8℄ S. Jajodia and David Mut
hler. Dynami
 voting algorithms for maintaining the
on-

sisten
y of a repli
ated database. Transa
tions on Database Systems, 15(2):230{280,

1990.

[9℄ Leslie Lamport. The part-time parliament. ACM Transa
tions on Computer Systems,

16(2):133{169, 1998.

[10℄ David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the evolution

of peer-to-peer systems. In Pro
eedings of the Twenty-First Annual Symposium on

Prin
iples of Distributed Computing, pages 233{242. ACM Press, 2002.

[11℄ Nan
y Lyn
h. Distributed Algorithms. Morgan Kaufman, 1996.

[12℄ Nan
y Lyn
h and Alex Shvartsman. Rambo: A re
on�gurable atomi
 memory ser-

vi
e for dynami
 networks. In Pro
eedings of the 16th Intl. Symposium on Distributed

Computing, pages 173{190, 2002.

[13℄ Nan
y Lyn
h and Alex Shvartsman. Rambo: A re
on�gurable atomi
 memory servi
e

for dynami
 networks. Te
hni
al Report LCS-TR-856, M.I.T., 2002.

[14℄ Nan
y Lyn
h, Alex Shvartsman, and Roberto De Pris
o. Paxos made even simpler (and

formal). Manus
ript, 2002.

[15℄ Nan
y A. Lyn
h and Alexander A. Shvartsman. Robust emulation of shared mem-

ory using dynami
 quorum-a
knowledged broad
asts. In Twenty-Seventh Annual Intl.

Symposium on Fault-Tolerant Computing, pages 272{281, June 1997.

[16℄ Peter M. Musial and Alex A. Shvartsman. Implementing a re
on�gurable atomi
 mem-

ory servi
e for dynami
 networks. submitted for publi
ation.

[17℄ Roberto De Pris
o, Alan Fekete, Nan
y A. Lyn
h, and Alexander A. Shvartsman. A

dynami
 primary
on�guration group
ommuni
ation servi
e. In Pro
eedings of the 13th

International Symposium on Distributed Computing, pages 64{78, September 1999.

[18℄ Robert H. Thomas. A majority
onsensus approa
h to
on
urren
y
ontrol for multiple

opy databases. Transa
tions on Database Systems, 4(2):180{209, 1979.

122

[19℄ Eli Upfal and Avi Wigderson. How to share memory in a distributed system. Journal

of the ACM, 34(1):116{127, 1987.

[20℄ P.M.B. Vit�anyi and B. Awerbu
h. Atomi
 shared register a

ess by asyn
hronous hard-

ware. In Pro
eedings 27th Annual IEEE Symposium on Foundations of Computer S
i-

en
e, pages 233{243, New York, 1986. IEEE.

123

Index of De�nitions

A

agreement . 61

atomi
. .56

B

�(t; �) . 76

C

(k) .23, 34

CMap . 33

on�guration-viability 71

D

d . 68

E

extend . 33

G

good exe
ution . 31

I

in-transit . 34

installed . 67

invariant . 31

J

J(t; e; �) .69

join-
onne
tivity . 72

M

mainstream. .76

mainstream after � . 76

mainstream after t . 76

N

no dupli
ation . 61

O

operation . 33

P

� . 57

prop-
map(�) .34

prop-phase-start(�) . 35

Q

query-
map(�) .34

query-phase-start(�) . 35

R

R(
; `) . 35

R(�; k) . 34

re
on-readiness . 73

re
on-spa
ing . 71

removal-set(
) . 35

S

S . 18, 25

124

su

essful re
on event 78

T

tag(�) . 34

trun
ate . 33

Trun
ated . 33

U

update . 33

upgrade-readiness. .73

upgrade-ready . 68

Usable .33

V

validity . 61

W

W

1

(
; `) . 35

W

2

(
) . 35

W (�; k) . 34

well-formedness

onsensus . 62

reader-writer. .31

re
on . 32, 60

125

