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Abstrat

Future ivilian resue and military operations will depend on a omplex system of ommu-

niating devies that an operate in highly dynami environments. In order to present a

onsistent view of a omplex world, these devies will need to maintain data objets with

atomi (linearizable) read/write semantis.

Lynh and Shvartsman have reently developed a reon�gurable atomi read/write mem-

ory algorithm for suh environments [12, 13℄ This algorithm, alled Rambo, guarantees

atomiity for arbitrary patterns of asynhrony, message loss, and node rashes. Rambo

installs new on�gurations lazily, transferring data from old on�gurations to new on�g-

urations using a bakground information transfer task. That task handles on�gurations

sequentially, transferring information from eah on�guration to the next.

This paper presents a new algorithm, Rambo II, that implements a radially di�er-

ent approah to installing new on�gurations: instead of operating sequentially, the new

algorithm reon�gures \aggressively", transferring information from old on�gurations in

parallel. This improvement substantially redues the time neessary to remove obsolete on-

�gurations, whih in turn substantially inreases the fault-tolerane. This paper presents

a formal spei�ation of the new algorithm, a orretness proof, and a onditional analysis

of its performane. Preliminary empirial studies performed using LAN implementations of

Rambo and the new algorithm illustrate the advantages of the new algorithm.
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Chapter 1

Introdution

Future large sale ivilian resue and military deployment operations will involve large num-

bers of ommuniation and omputing devies operating in highly dynami network sub-

strates. Suessful oordination and marshaling of human resoures and equipment involves

olleting information about a omplex real-world situation using sensors and input devies,

gathering the information in survivable repositories, and providing appropriate and oherent

information to the stakeholders.

Data objets with atomi (linearizable) read/write semantis ommonly our in suh

settings. Repliation of objets is a prerequisite for fault-tolerane and availability, and with

repliation omes the need to maintain onsisteny. Additionally, in dynami settings where

partiipants may join and leave the environment, may fail, and where the physial objets

migrate, one needs to be able to e�etively move the orresponding data objets from one

set of data owners to another.

Lynh and Shvartsman developed a reon�gurable atomi read/write memory algorithm

for dynami networks [12, 13℄. The algorithm, alled Rambo, guarantees atomiity for

arbitrary patterns of asynhrony, message loss, and node rashes. Conditional performane

analysis of the algorithm shows that when the environment timing stabilizes, when failures

are within spei� parameters, and when the reon�gurations are not frequent and not bursty,

then read and write operations have small lateny bounded in terms of the maximummessage

delay and the periodi gossip interval. However when the reon�gurations are frequent or
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bursty, this algorithm may perform poorly beause of the inherently sequential proessing

of the new on�gurations one they beome determined by the algorithm. In partiular, the

number of on�gurations maintained by the algorithm may grow without bound, leading to

the unbounded number of messages neessary in proessing the read and write operations.

Suh situations may arise due to failures or asynhrony, yet these are not the only reasons.

Even in synhronous failure-free environments the world dynamis may require that frequent

reon�gurations are performed to keep trak of the rapidly moving physial objets or rapidly

hanging set of stakeholders.

This thesis presents a new algorithm, Rambo II, integrated with Rambo, that imple-

ments a radially di�erent approah to installing new on�gurations: instead of operating

sequentially, the new algorithm reon�gures \aggressively", transferring information from

old on�gurations in parallel. This improvement substantially redues the time neessary to

proess new on�gurations and to remove obsolete on�gurations from the system, whih in

turn substantially inreases fault-tolerane. This is due to the fat that one a on�guration

is removed, the system no longer depends on it, and as soon as the on�guration is removed,

it is allowed to fail. The proess exeuting the new algorithm ahieves a linear speed-up

in the number of old on�gurations known to the proess. For example, our onditional

performane analysis shows that if a proess knows about a sequene of h on�gurations,

then the it an eliminates all but one of these on�gurations in time O(1), as ompared to

the original Rambo, where this takes �(h) time. Additionally, the new algorithm redues

the number of messages neessary to proess these on�gurations

This thesis presents a formal spei�ation of the new algorithm, a orretness proof, and

a onditional analysis of its performane. Preliminary empirial studies performed using

LAN implementations of Rambo and the new algorithm illustrate the advantages of the

new algorithm.

Bakground. Starting with the work of Gi�ord [6℄ and Thomas [18℄, interseting olle-

tions of sets found use in several algorithms providing onsistent data in distributed settings.

Depending on the algorithm and its setting, suh olletions of sets, alled quorums when any

two have non-empty intersetion, represent either sets of proessors or their knowledge. Up-
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fal and Wigderson [19℄ use majority sets of readers and writers to emulate shared memory in

a distributed setting. Vit�anyi and Awerbuh [20℄ implement multi-writer/multi-reader reg-

isters using matries of single-writer/single-reader registers where the rows and the olumns

are written and respetively read by spei� proessors. Attiya, Bar-Noy and Dolev [1℄ use

majorities of proessors to implement single-writer/multi-reader objets in message passing

systems. Suh algorithms assume a stati proessor universe and rely on stati stati quorum

systems.

In long-lived systems where proessors may dynamially join and leave the system, it is

important to reon�gure a quorum system to adapt it to the new set of proessors [8, 4, 7, 17℄.

Prior approahes required that the new quorum system inlude proessors from the old

quorum system. This is stated as a stati onstraint on the quorum system that needs to

be satis�ed during or even before the reon�guration. In our work on reon�gurable atomi

memory [15, 5, 12℄ we replae the spae-domain requirement on suessive quorum system

intersetions with the time-domain requirement that some quorums from the old and the

new system are involved in the reon�guration algorithm. Suh systems are more dynami

beause they allow for more hoies of new quorum systems and do not require that suessive

on�gurations interset.

Reon�guration in Highly Dynami Settings. Lynh and Shvartsman's earlier algo-

rithms [15, 5℄ allowed a single distinguished proess to at as the quorum system reon�gurer.

The advantage of the single-reon�gurer approah is its relative simpliity and eÆieny: any

proess maintains at most two on�gurations, the urrent on�guration and the proposed

new on�guration. The disadvantage of the single reon�gurer is that it is a single point of

failure { no further reon�guration is possible if the reon�gurer fails.

The Rambo algorithm [12, 13℄ removed the requirement of having a single reon�g-

urer, thus enabling any proess within its own urrent on�guration to begin reon�guration

to a new quorum system supplied by the environment. The algorithm implements atomi

shared memory suitable for use in highly dynami settings, and it guarantees atomiity in

any asynhronous exeution and in the presene of arbitrary proess and network failures.

However the multiple-reon�gurer approah introdues the problem of maintaining multi-
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ple on�gurations and removing old on�gurations from the system. Rambo implements

a sequential \garbage-olletion" algorithm where proesses remove obsolete on�gurations

one-at-a-time. Con�guration removal requires that information is propagated from the ear-

liest known on�guration to its suessor. Sine arbitrarily many new on�gurations may

be introdued this leads to an unbounded number of old on�gurations that need to be

sequentially removed.

The environment may introdue new on�gurations for several reasons: (i) due to failures

and network instability that endanger installed on�gurations, (ii) due to the mobility of the

physial objets represented by the abstrat memory objets and the mobility of the proesses

maintaining the objet replias, and (iii) due to the need to rebalane loads on proesses

within installed on�gurations. Frequent or bursty reon�guration an substantially inrease

the number of installed on�gurations and, sine a proess performing a read or a write

operation potentially needs to ontat quorums in all on�gurations known to it, this leads

to the orresponding inrease in the number of messages needed to perform the operation.

The New Algorithm. The primary ontribution of this thesis is a new algorithm for

reon�gurable atomi memory, based on the originalRambo, that implements an aggressive

on�guration-replaement protool where any loally-known ontiguous sequene of on�g-

urations is replaed by the last on�guration in the sequene. The removal of the old on-

�gurations is done in parallel, while preserving all other properties of the original Rambo.

Spei�ally, we maintain a loose oupling between the reon�guration algorithms and the

original Rambo algorithms implementing the read and write operations.

In order to ahieve availability in the presene of failures, the objets are repliated at

several network loations. In order to maintain memory onsisteny in the presene of small

and transient hanges, the algorithm uses on�gurations, eah of whih onsists of a set of

members plus sets of read-quorums and write-quorums. In order to aommodate larger

and more permanent hanges, the algorithm supports reon�guration, by whih the set of

members and the sets of quorums are modi�ed. Suh hanges do not ause violations of

atomiity. Any quorum on�guration may be installed at any time|no intersetion require-

ment is imposed on the sets of members or on the quorums of distint on�gurations.

14



The algorithm is omposed of a main algorithm, whih handles reading, writing, and

replaement of old on�gurations with a suessor on�guration, and a global on�guration

announement servie, Reon, whih provides the main algorithm with a onsistent sequene

of on�gurations. Several on�gurations may be known to the algorithm at one time, and

read and write operations an use them all without any harm.

The main algorithm performs read and write operations requested by lients using a

two-phase strategy, where the �rst phase gathers information from read-quorums of ative

on�gurations and the seond phase propagates information to write-quorums of ative on-

�gurations. This ommuniation is arried out using bakground gossiping, whih allows

the algorithm to maintain only a small amount of protool state information. Eah phase is

terminated by a �xed point ondition that involves a quorum from eah ative on�guration.

Di�erent read and write operations may exeute onurrently: the restrited semantis of

reads and writes permit the e�ets of this onurreny to be sorted out afterward.

The main algorithm provides a new on�guration-replaement algorithm that removes

old on�gurations while ensuring that their use is no longer neessary for maintaining on-

sisteny. Con�guration-replaement also uses a two-phase strategy, where the �rst phase

ommuniates in parallel with all old on�gurations being removed and the seond phase

ommuniates with a new on�guration. A on�guration-replaement operation ensures that

both a read-quorum and a write-quorum of eah old on�guration learn about the new on-

�guration, and that the latest value from all old on�gurations is onveyed to a write-quorum

of the new on�guration. The strength of the new algorithm is that it proeeds aggressively

in parallel. An arbitrary number of old on�gurations an be replaed in onstant time

(assuming bounded message lateny and non-failure of ative on�gurations).

The on�guration announement servie is implemented by a distributed algorithm that

uses distributed onsensus to agree on the suessive on�gurations. Any member of the

latest on�guration  may propose a new on�guration at any time; di�erent proposals

are reoniled by an exeution of onsensus among the members of . Consensus is, in

turn, implemented using a version of the Paxos algorithm [9℄, as desribed formally in [3℄.

Although suh onsensus exeutions may be slow|in fat, in some situations, they may not

even terminate|they do not ause any delays for read and write operations.
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All servies and algorithms, and their interations, are spei�ed using I/O automata.

We show orretness (atomiity) of the algorithm for arbitrary patterns of asynhrony and

failures. On the other hand, we analyze performane onditionally , based on ertain failure

and timing assumptions. For example, assuming that gossip and on�guration-replaement

our periodially, and that quorums of ative on�gurations do not fail, we show that read

and write operations omplete within time 8d, where d is the maximum message lateny.

Note that the original Rambo algorithm also had to assume also that garbage-olletion

is able to keep up|this assumption is not neessary in the new algorithm due to the new

on�guration replaement algorithm. For the on�guration replaement algorithm we show

that any number of on�gurations an be replaed by their suessor in onstant time.

At the same time, all the performane results of the original Rambo algorithm still hold;

in instanes where the network is reliable and timely throughout the exeution, the bounds

desribed in the previous Rambo papers [12, 13℄ still hold.

Implementations of Rambo and Rambo II on a LAN are urrently being ompleted [16℄.

Preliminary empirial studies performed using this implementation illustrate the advantages

of the new algorithm over the previous one.

Doument Struture. In Chapter 2 we desribe the original Rambo algorithm of Lynh

and Shvartsman, and then in Chapter 3 present and disuss the formal spei�ation of

Rambo II. In Chapter 4 we present some notation, and restate some basi lemmas, only

slightly modi�ed from Rambo. In Chapter 5 we prove that the new algorithm guarantees

atomi onsisteny. In Chapter 6 we present the reon�guration servie. In Chapter 7 we

analyze the performane of Rambo II, and disuss in detail the areas in whih this algorithm

improves over the original Rambo algorithm. In Chapter 8 we disuss the preliminary

performane results. Finally, in Chapter 9 we summarize the results, and areas for future

researh.
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Chapter 2

The Original Rambo Algorithm

In this hapter, we present the original Rambo algorithm, on whih the new algorithm

Rambo II is based. Rambo is an algorithm designed to support read/write operations on

an atomi shared memory.

In order to ahieve fault tolerane and availability, Rambo repliates data at several

network loations. The algorithm uses on�gurations to maintain onsisteny in the presene

of small and transient hanges. Eah on�guration onsists of a set of members plus sets

of read-quorums and write-quorums. The quorum intersetion property requires that every

read-quorum interset every write-quorum. Read and write operations are implemented as

a two-phase protool, in whih eah phase aesses a set of read or write quorums.

Rambo supports reon�guration, whih modi�es the set of members and the sets of

quorums, thereby aommodating larger and more permanent hanges without violating

atomiity. In this way, failed nodes an be removed from ative quorums, and newly joined

nodes an be integrated into the system. Any quorum on�guration may be installed at any

time { no intersetion requirement is imposed on the sets of members or on the quorums of

distint on�gurations.

The Rambo algorithm onsists of three kinds of automata:

� Joiner automata, whih handle join requests,

� Reon automata, whih handle reon�guration requests, and generate a totally ordered

sequene of on�gurations, and

17



� Reader-Writer automata, whih handle read and write requests, manage garbage ol-

letion, and send and reeive gossip messages.

In this thesis, we disuss only the Reader-Writer automaton. The Joiner automaton is quite

simple; it sends a join message when node i joins, and sends a join-ak message in response

to join messages. The Reon automaton depends on a onsensus servie, implemented using

Paxos [9℄, to agree on a total ordering of on�gurations. However, we assume that this total

ordering exists, and therefore need not disuss this automaton any further. For more details

of these two automata, see the original Rambo paper [12, 13℄.

The omplete implementation S is the omposition of all the automata desribed above|

the Joiner

i

, Reader-Writer

i

, and Reon

i

automata for all i, and all the hannels, with all

the ations that are not external ations of the Rambo spei�ation hidden.

Input:

join(rambo; J)

x;i

, J a �nite subset of I � fig, x 2 X , i 2 I ,

suh that if i = (i

0

)

x

then J = ;

read

x;i

, x 2 X , i 2 I

write(v)

x;i

, v 2 V

x

, x 2 X , i 2 I

reon(; 

0

)

x;i

, ; 

0

2 C, i 2 members(), x 2 X , i 2 I

fail

i

, i 2 I

Output:

join-ak(rambo)

x;i

, x 2 X , i 2 I

read-ak(v)

x;i

, v 2 V

x

, x 2 X , i 2 I

write-ak

x;i

, x 2 X , i 2 I

reon-ak(b)

x;i

, b 2 fok; nokg; x 2

X; i 2 I

report()

x;i

,  2 C;  2 X; i 2 I

Figure 2-1: Rambo(x): External signature

The external signature for Rambo appears in Figure 2-1. The algorithm is spei�ed for

a single memory loation, and extended to implement a omplete shared memory. A lient

uses the join

i

ation to join the system. After reeiving a join-ak

i

, the lient an issue read

i

and write

i

requests, whih results in read-ak

i

and write-ak

i

responses. The lient an issue

a reon

i

request to propose a new on�guration. Finally, the fail

i

ation is used to model

node i failing.

The signature and state for the Reader-Writer automata is presented in Figure 2-2.

The ode for the Reader-Writer automata is presented in Figure 2-3. All three operations,

read, write, and garbage-ollet, are implemented using gossip messages. Unlike in many

other algorithms, there are no direted messages spei�ed in this algorithm; at no point

does a given node, say i, deide to send a message spei�ally to node j. Instead, at regular

intervals node i will non-deterministially send all of its publi state to other nodes. Progress
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Signature:

Input:

read

i

write(v)

i

, v 2 V

new-on�g(; k)

i

,  2 C; k 2 N

+

rev(join)

j;i

, j 2 I � fig

rev(m)

j;i

, m 2M , j 2 I

join(rw)

i

fail

i

Output:

join-ak(rw)

i

read-ak(v)

i

, v 2 V

write-ak

i

send(m)

i;j

, m 2M , j 2 I

Internal:

query-�x

i

prop-�x

i

g(k)

i

, k 2 N

g-query-�x(k)

i

, k 2 N

g-prop-�x(k)

i

, k 2 N

g-ak(k)

i

, k 2 N

State:

status 2 fidle; joining; ative; failedg, initially idle

world , a �nite subset of I , initially ;

value 2 V , initially v

0

tag 2 T , initially (0; i

0

)

map 2 CMap , initially map(0) = 

0

,

map(k) = ? for k � 1

pnum1 2 N, initially 0

pnum2 , a mapping from I to N, initially

everywhere 0

failed , a Boolean, initially false

op, a reord with �elds:

type 2 fread;writeg

phase 2 fidle; query; prop; doneg, initially idle

pnum 2 N

map 2 CMap

a, a �nite subset of I

value 2 V

g, a reord with �elds:

phase 2 fidle; query; propg, initially idle

pnum 2 N

a, a �nite subset of I

map 2 CMap

index 2 N

Figure 2-2: Reader-Writer

i

: Signature and state

in an operation ours when enough information has been exhanged. After initiating an

operation, the automaton waits until it an be sure that it has shared state with enough

other nodes (using gossip messages), and then delares the operation omplete. The phase

numbering regime, implemented using pnum1 and pnum2 is used to determine when enough

ommuniation has ompleted.

Every node maintains a tag and a value for the data objet. Every new value is assigned a

unique tag, with ties broken by proess-ids. These tags are used to determine an ordering of

the write operations, and therefore determine the value that a read operation should return.

Read and write operations require two phases, a query phase and a propagation phase,
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Output send(hW; v; t; m; pns; pnri)

i;j

Preondition:

:failed

status = ative

j 2 world

hW; v; t; m; pns; pnri =

hworld ; value; tag ; map; pnum1 ; pnum2 (j)i

E�et:

none

Input rev(hW; v; t; m; pns; pnri)

j;i

E�et:

if :failed then

if status 6= idle then

status  ative

world  world [W

if t > tag then (value ; tag) (v; t)

map  update(map; m)

pnum2 (j) max(pnum2 (j); pns)

if op:phase 2 fquery; propg and pnr � op:pnum then

op:map  extend(op:map ; trunate(m))

if op:map 2 Trunated then

op:a  op:a [ fjg

else

op:a  ;

op:map  trunate(map)

if g:phase 2 fquery; propg and pnr � g:pnum then

g:a  g:a [ fjg

Input new-on�g(; k)

i

E�et:

if :failed then

if status 6= idle then

map(k) update(map(k); )

Input read

i

E�et:

if :failed then

if status 6= idle then

pnum1  pnum1 + 1

hop:pnum; op:type ; op:phase ; op:map ; op:ai

 hpnum1 ; read; query; trunate(map); ;i

Input write(v)

i

E�et:

if :failed then

if status 6= idle then

pnum1  pnum1 + 1

hop:pnum; op:type ; op:phase ; op:map ; op:a; op:valuei

 hpnum1 ;write; query; trunate(map); ;; vi

Internal query-�x

i

Preondition:

:failed

status = ative

op:type 2 fread;writeg

op:phase = query

8k 2 N;  2 C : op:map(k) = 

) 9R 2 read-quorums() : R � op:a

E�et:

if op:type = read then op:value  value

else value  op:value

tag  htag :seq + 1; ii

pnum1  pnum1 + 1

op:pnum  pnum1

op:phase  prop

op:map  trunate(map)

op:a  ;

Internal prop-�x

i

Preondition:

:failed

status = ative

op:type 2 fread;writeg

op:phase = prop

8k 2 N;  2 C : op:map(k) = 

) 9W 2 write-quorums() : W � op:a

E�et:

op:phase = done

Output read-ak(v)

i

Preondition:

:failed

status = ative

op:type = read

op:phase = done

v = op:value

E�et:

op:phase = idle

Output write-ak

i

Preondition:

:failed

status = ative

op:type = write

op:phase = done

E�et:

op:phase = idle

Figure 2-3: Reader-Writer

i

: Read/write transitions
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Internal g(k)

i

Preondition:

:failed

status = ative

g:phase = idle

map(k) 2 C

map(k + 1) 2 C

k = 0 or map(k � 1) = �

E�et:

pnum1  pnum1 + 1

g:pnum  pnum1

g:phase  query

g:a  ;

g:index  k

Internal g-query-�x(k)

i

Preondition:

:failed

status = ative

g:phase = query

g:index = k

map(k) 6= �

9R 2 read-quorums(map(k)) :

9W 2 write-quorums(map(k)) :

R [W � g:a

E�et:

pnum1  pnum1 + 1

g:pnum  pnum1

g:phase  prop

g:a  ;

Internal g-prop-�x(k)

i

Preondition:

:failed

status = ative

g:phase = prop

g:index = k

9W 2 write-quorums(map(k + 1)) : W � g:a

E�et:

map(k) �

Internal g-ak(k)

i

Preondition:

:failed

status = ative

g:index = k

map(k) = �

E�et:

g:phase = idle

Figure 2-4: Reader-Writer

i

: Rambo Garbage-olletion transitions

eah of whih aesses ertain quorums of replias. Assume the operation is initiated at

node i. See Figure 2-5 for a summary of the two phases. First, in the query phase, node i

ontats read quorums to determine the most reent available tag and value. Then, in the

propagation phase, node i ontats write quorums. If the operation is a read operation, the

seond phase propagates the largest tag disovered in the query phase, and its assoiated

value. If the operation is a write operation, node i hooses a new tag, stritly larger than

every tag disovered in the query phase and propagates the new tag and the new value to

the write quorums. Note that every operation aesses both read and write quorums.

During a phase of an operation, whenever node i reeives a gossip message from node j,

it ompares the largest phase number j has reeived from i (by examining pns) to the loal
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Operation initiated by read

i

or write(v)

i

Phase 1 :

� Node i ommuniates with a read-quorum from eah on�guration in op:map in order to

determine the largest value/tag pair.

Phase 2 :

� Node i ommuniates with a write-quorum from eah on�guration in in op:map to notify it

of the urrent largest value/tag pair (or the new value/tag pair, if it is a write operation).

Figure 2-5: Summary of two phase read or write operation

phase number when the operation began. If j initiated the gossip message after reeiving a

message from i sent after the phase began, then i adds j to the a set. In e�et, there has

been a round-trip message sent from i to j bak to i. Also, i then updates its op:map if

neessary.

Garbage olletion operations remove old on�gurations from the system. A garbage

olletion operation involves two on�gurations: the old on�guration being removed and

the new on�guration being established. See Figure 2-6 for a summary of the two phases.

A garbage olletion operation requires two phases, a query phase and a propagation phase.

The �rst phase ontats a read-quorum and a write-quorum from the old on�guration, and

the seond phase ontats a write-quorum from the new on�guration.

Note that, unlike a read or write operation, the �rst phase of the garbage-olletion

operation must ontat two types of quorums: a read-quorum and a write-quorum for the

Operation initiated by g(k)

i

Phase 1 :

� Node i ommuniates with a read-quorum from on�guration (k) in order to determine the

largest value/tag pair.

� Node i ommuniates with a write-quorum from on�guration (k) in order to notify it of

on�guration k + 1.

Phase 2 :

� Node i ommuniates with a write-quorum from on�guration (k+1) to notify it of the urrent

largest value/tag pair.

Figure 2-6: Summary of two phase garbage-olletion operation
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on�guration being garbage-olleted. This ensures that enough nodes are aware of the new

on�gurations, and ensures that any ongoing read/write operations will inlude the new,

larger, on�guration.

The map is a mapping from integer indies to on�gurations [f?;�g, that initially

maps every index to ?. The map traks whih on�gurations are ative, whih are not

de�ned, indiated by ?, and whih are removed, indiated by �. The total ordering on

on�gurations determined by the Reon automata ensures that all nodes agree on whih

on�guration is stored in eah position in the array. We de�ne (k) to be the on�guration

assoiated with index k.

The reord op stores information about the urrent phase of an ongoing read or write

operation, while g stores information about an ongoing garbage olletion operation. (A

node an proess read and write operations even when a garbage olletion operation is

ongoing.) The op:map sub�eld reords the on�guration map for an operation. This onsists

of the node's map when a phase begins, augmented by any new on�gurations disovered

during the phase. A phase an omplete only when the initiator has exhanged information

with quorums from every non-removed on�guration in op:map. The pnum sub�eld reords

the phase number when the phase begins, allowing the initiator to determine whih responses

orrespond to the urrent phase. The a sub�eld reords whih nodes from whih quorums

have responded during the urrent phase.

In Rambo, on�gurations go through three phases: proposal, installation, and upgrade.

First, a on�guration is proposed by a reon event. Next, if the proposal is suessful, the

Reon servie ahieves onsensus on the new on�guration, and noti�es partiipants with

deide events. When every non-failed member of the previous on�guration has been noti�ed,

the on�guration is installed . The on�guration is upgraded when every on�guration with

a smaller index has been removed at some proess in the system. One a on�guration has

been upgraded, it is responsible for maintaining the data.
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Chapter 3

Formal Spei�ation of Rambo II

In this hapter we present the new algorithm in detail, and disuss how it di�ers from the

Rambo algorithm. The omplete implementation, S, is the omposition of all the automata

desribed|the Joiner

i

and Reon

i

automata desribed in Rambo, the new Reader-Writer

i

automaton desribed here, for all i, and all the hannels { with all the ations that are not

external ations of the Rambo II spei�ation hidden.

The key problem that prevents rapid stabilization in the original algorithm is the sequen-

tial nature of the on�guration upgrade mehanism: in Rambo, on�gurations are upgraded

one at a time, in order. (Reall that in Rambo, a on�guration is upgraded when every

on�guration with a smaller index has been garbage olleted.) Con�guration (k) an be

upgraded only if on�guration (k�1) has previously been upgraded. This requirement arises

from the need to ensure that information is preserved as on�gurations are hanged. As in

Rambo, a on�guration in Rambo II is upgraded when every on�guration with a smaller

index has been removed at some proess in the system. Rambo II, however, implements

a new reon�guration protool that an upgrade any on�guration, even if on�gurations

with smaller indies have not been upgraded. Unlike in Rambo, then, there may be on�g-

urations that are not upgraded until they themselves are removed, at the same instant that

some on�guration with a larger index is upgraded.

After Rambo II ompletes an upgrade operation for some on�guration, all on�gura-

tions with smaller indies an be removed. Thus a single upgrade operation in Rambo II
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Signature:

As in Rambo, with the following modi�ations:

Internal:

fg-upgrade(k)

i

, k 2 N

>0

fg-upg-query-�x(k)

i

, k 2 N

>0

fg-upg-prop-�x(k)

i

, k 2 N

>0

fg-upgrade-ak(k)

i

, k 2 N

>0

Con�guration Management State:

As in Rambo, with the following replaing the

g reord:

upg , a reord with �elds:

phase 2 fidle; query; propg, initially idle

pnum 2 N

map 2 CMap ,

a, a �nite subset of I

target 2 N

Con�guration Management Transitions:

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

Internal fg-upgrade(k)

i

Preondition:

:failed

status = ative

upg :phase = idle

map(k) 2 C

map(k � 1) 2 C

1

8` 2 N; ` < k : map(`) 6= ?

E�et:

pnum1  pnum1 + 1

upg  hquery; pnum1 ; map; ;; ki

Internal fg-upg-query-�x(k)

i

Preondition:

:failed

status = ative

upg :phase = query

upg :target = k

8` 2 N; ` < k : upg :map(`) 2 C

) 9R 2 read-quorums(upg :map(`)) :

9W 2 write-quorums(upg :map(`)) :

R [W � upg :a

E�et:

pnum1  pnum1 + 1

upg :pnum  pnum1

upg :phase  prop

upg :a  ;

Internal fg-upg-prop-�x(k)

i

Preondition:

:failed

status = ative

upg :phase = prop

upg :target = k

9W 2 write-quorums(upg :map(k)) : W � upg :a

E�et:

for ` 2 N : ` < k do

map(`) �

Internal fg-upgrade-ak(k)

i

Preondition:

:failed

status = ative

upg :target = k

8` 2 N; ` < k : map(`) = �

E�et:

upg :phase = idle

Output send(hW; v; t; m; pns; pnri)

i;j

Preondition:

:failed

status = ative

j 2 world

hW; v; t; m; pns; pnri =

hworld ; value; tag ; map; pnum1 ; pnum2 (j)i

E�et:

none

Input rev(hW; v; t; m; pns; pnri)

j;i

E�et:

if :failed then

if status 6= idle then

status  ative

world  world [W

if t > tag then (value ; tag) (v; t)

map  update(map ; m)

pnum2 (j) max(pnum2 (j); pns)

if op:phase 2 fquery; propg and pnr � op:pnum then

op:map  extend(op:map ; trunate(m))

if op:map 2 Trunated then

op:a  op:a [ fjg

else

op:a  ;

op:map  trunate(map)

if upg :phase 2 fquery; propg and pnr � upg :pnum then

upg :a  upg :a [ fjg

Figure 3-1: Reader-Writer

i

: Con�guration Management transitions
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potentially has the e�et of many garbage olletion operations in Rambo, eah of whih

an only remove a single on�guration. The name has been hanged to emphasize the oper-

ation's ative role in on�guration management: on�guration upgrade is an inherent part

of preparing a on�guration to assume responsibility for the data. The ode for the new

on�guration management mehanism appears in Figure 3-1. All labeled lines in this setion

refer to the ode therein.

We now desribe in more detail the on�guration upgrade operation, whih is at the

heart ofRambo II. A on�guration upgrade is a two-phase operation, muh like the garbage-

olletion operation inRambo. See Figure 3-2 for a summary of the two phases. An upgrade

operation is initiated at node i with a fg-upgrade(k) event. When this happens, map(k)

must be de�ned, that is, must be a valid on�guration 2 C (line A). Additionally, for every

on�guration ` < k, map(`) must be either 2 C or removed, that is, � (line B).

We refer to on�guration (k) as the target of the upgrade operation, and we refer to the

set of on�gurations to be removed, f(`) : ` < k ^ upg :map(`) 2 Cg, as the removal-set of

the on�guration upgrade operation. The on�guration management mehanism guarantees

that the removal-set onsists of on�gurations with a ontiguous set of indies.

As a result of the fg-upgrade event, node i initializes its upg state (line C), and begins

the query phase of the upgrade operation. In partiular, node i stores its urrent map in

upg :map, whih reords the on�gurations that are urrently ative. Only these on�gura-

tions (and, in fat, only those with index smaller than k) matter during the operation; new

on�gurations are ignored.

The query phase ontinues until node i reeives responses from enough nodes. In par-

tiular, for every on�guration (`) with index less than k in upg :map, there must exist a

read-quorum, R, of on�guration (`), and a write-quorum, W , of on�guration (`) suh

that i has reeived a response (that is, a reent gossip message) from every node in R [W

(lines D{E).

When the query phase ompletes, a fg-upg-query-�x event ours. When this event

1

In the onferene version of the thesis, this line was omitted. The removal of this line has no detrimental

e�et on the algorithm, sine the operation then ompletes in zero time. However for larity sake it is

inluded.
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Operation initiated by fg-upgrade(k)

i

:

Phase 1 :

� Node i ommuniates with a read-quorum from eah on�guration being removed in order to

determine the largest value/tag pair.

� Node i ommuniates with a write-quorum from eah on�guration being removed to notify it

of the new, ative on�guration.

Phase 2 :

� Node i ommuniates with a write-quorum from the target on�guration being upgraded, to

notify it of the urrent largest value/tag pair.

Figure 3-2: Summary of two phase on�guration upgrade operation

ours, node i then has the most reent tag and value disovered by operations using on-

�gurations with index smaller than k. Further, all on�gurations with indies smaller than

k have been noti�ed of on�guration (k). Node i then reinitializes upg to begin the propa-

gation phase (lines F{G).

The propagation phase ontinues until node i reeives responses from a write-quorum in

on�guration (k). In partiular, there must exist a write-quorum, W , of on�guration (k),

suh that i has reeived a response from every node in W (line H).

When the propagation phase ompletes, a fg-upg-prop-�x event ours, whih veri�es the

termination ondition. At this point node i has ensured that on�guration (k) has reeived

the most reent value known to i, whih, as a result of the query phase, is itself a reent

value. At this point, the on�gurations with index < k are no longer needed, and node i

removes these on�gurations from its loal map, setting map(`) = � for all ` < k (line

I{J). Gossip messages may eventually notify other proesses that these on�gurations have

been removed.

Finally, a fg-upgrade-ak(k) event noti�es the lient that on�guration (k) has been

suessfully upgraded.

Notie that the algorithm allows a nondeterministi hoie of whih on�guration to up-

grade { and therefore whih on�gurations to remove. Therefore it is possible to restrit

the algorithm so that it removes only the smallest on�guration, upgrading the on�gura-

tions one at a time. In this ase the algorithm progresses exatly as the original Rambo
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algorithm. Therefore it is learly possible, by restriting the nondeterminism appropriately,

to implement Rambo II in suh a way as to guarantee equivalent performane as Rambo.

However we will show that by allowing greater exibility we an ahieve equivalent safety

results and improved performane.

The new algorithm introdues several diÆulties not present inRambo. Consider, for ex-

ample, a nie property guaranteed by the sequential garbage olletion algorithm in Rambo:

every on�guration is upgraded before it is removed. In Rambo II, on the other hand, some

on�gurations never reeive up to date information; a on�guration may be upgraded at the

same instant it is removed.

As a result of this fat, a number of plausible improvements fail. Assume that during

an ongoing upgrade operation for on�guration (k) initiated by node i, node i reeives a

message indiating that on�guration (k

0

) has been removed, for some k

0

< k. In Rambo II,

node i sets map(k

0

) = �, but does not hange upg :map. Consider the following inorret

modi�ation to the on�guration management mehanism. When node i reeives suh a

message, it sets upg :map(k

0

) to �. Sine the on�guration has been removed, it seems

plausible that the on�guration upgrade operation an safely ignore it, thus ompleting

more quikly. It turns out, however, that this improvement results in a rae ondition that

an lead to data loss. The on�guration upgrade operation that removes on�guration (k

0

)

might our onurrently with the operation at node i upgrading on�guration (k). This

onurreny might result in data being propagated from on�guration (k

0

) to a on�guration

(k

00

) : k

0

< k

00

< k that has already been proessed by the upgrade operation at node i. The

data thus propagated might then be lost.
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Chapter 4

Notation and Basi Lemmas

This hapter is, to a large extent, a restatement of notation and results from the original

Rambo paper [13℄. Some of the notation in the proofs has been slightly modi�ed to aount

for the new on�guration management mehanism, and some of the proofs have therefore

been updated, but the results are essentially unhanged. Muh of this hapter is taken

diretly from [13℄.

4.1 Good Exeutions

Throughout the rest of this thesis, we will talk about \good" exeutions of the algorithm.

In this setion, we present a set of environment assumptions that de�ne a \good" exeution.

In general, the assumptions we will present require well-formed requests: lients follow the

protool to join and to initiate reon�gurations; lients initiate only one operation at a time;

lients wait for appropriate aknowledgments before proeeding.

We onsider exeutions of S (reall that S is the entire system ombining Reader-Writer ,

Reon and Joiner automata) whose traes satisfy ertain assumptions about the environ-

ment. We all these good exeutions. In partiular, an \invariant" is a statement that is

true of all states that are reahable in good exeutions of S. The environment assumptions

are simple \well-formedness" onditions:

� Well-formedness for Reader-Writer:
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{ For every x and i:

� No join(rambo; �)

x;i

, read

x;i

, write(�)

x;i

, or reon(�; �)

x;i

event is preeded by

a fail

i

event.

� At most one join(rambo; �)

x;i

event ours.

� Any read

x;i

, write(�)

x;i

, or reon(�; �)

x;i

event is preeded by a join-ak(rambo)

x;i

event.

� Any read

x;i

, write(�)

x;i

, or reon(�; �)

x;i

event is preeded by an -ak event for

any preeding event of any of these kinds.

{ For every x and , at most one reon(�; )

x;�

event ours. (This says that on�g-

uration identi�ers that are proposed in reon events are unique. It does not say

that the membership and/or quorum sets are unique|just the identi�ers. The

same membership and quorum sets may be assoiated with di�erent on�gura-

tion identi�ers.) Uniqueness of on�guration identi�ers is ahievable using loal

proess identi�ers and sequene numbers.

{ For every , 

0

, x, and i, if a reon(; 

0

)

x;i

event ours, then it is preeded by:

� A report()

x;i

event, and

� A join-ak(rambo)

x;j

event for every j 2 members(

0

).

� Well-formedness for Reon:

1

{ For every i:

� No join(reon)

i

or reon(�; �)

i

event is preeded by a fail

i

event.

� At most one join(reon)

i

event ours.

� Any reon(�; �)

i

event is preeded by a join-ak(reon)

i

event.

� Any reon(�; �)

i

event is preeded by an -ak for any preeding reon(�; �)

i

event.

{ For every , at most one reon(�; )

�

event ours.

1

The following properties appear in Chapter 6, but we repeat them here for ompleteness.
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{ For every , 

0

, x, and i, if a reon(; 

0

)

i

event ours, then it is preeded by:

� A report()

i

event, and

� A join-ak(reon)

j

for every j 2 members(

0

).

4.2 Notational onventions

In this setion, we introdue some de�nitions and notational onventions, and we add ertain

history variables to the global state of the system S.

De�nitions:

� update, a binary funtion on C

�

, de�ned by update(; 

0

) = max(; 

0

) if  and 

0

are

omparable (in the augmented partial ordering of C

�

), update(; 

0

) =  otherwise.

� extend , a binary funtion on C

�

, de�ned by extend(; 

0

) = 

0

if  = ? and 

0

2 C, and

extend(; 

0

) =  otherwise.

� CMap, the set of on�guration maps, de�ned as the set of mappings from N to C

�

.

The update and extend operators are extended element-wise to binary operations on

CMap.

� trunate, a unary funtion on CMap, de�ned by trunate(m)(k) = ? if there exists

` � k suh that m(`) = ?, trunate(m)(k) = m(k) otherwise. This trunates

on�guration map m by removing all the on�guration identi�ers that follow a ?.

� Trunated , the subset of CMap suh that m 2 Trunated if and only if trunate(m) =

m.

� Usable, the subset of CMap suh that m 2 Usable i� the pattern ourring in m

onsists of a pre�x of �nitely many �s, followed by an element of C, followed by an

in�nite sequene of elements of C [f?g in whih all but �nitely many elements are ?.

An operation is a pair (n; i) onsisting of a natural number n and an index i 2 I. Here,

i is the index of the proess running the operation, and n is the value of pnum1

i

just after

the read, write, or fg-upgrade event of the operation ours.
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We introdue the following history variables:

� in-transit , a set of messages, initially ;.

A message is added to the set when it is sent by any Reader-Writer

i

to any Reader-Writer

j

.

No message is ever removed from this set.

� For every k 2 N :

1. (k) 2 C, initially unde�ned.

This is set when the �rst new-on�g(; k)

i

ours, for some  and i. It is set to

the  that appears as the �rst argument of this ation.

� For every operation �:

1. tag(�) 2 T , initially unde�ned.

This is set to the value of tag at the proess running �, at the point right after �'s

query-�x or fg-upg-query-�x event ours. If � is a read or on�guration upgrade

operation, this is the highest tag that it enounters during the query phase. If �

is a write operation, this is the new tag that is seleted for performing the write.

� For every read or write operation �:

1. query-map(�), a CMap, initially unde�ned.

This is set in the query-�x step of �, to the value of op:map in the pre-state.

2. R(�; k), for k 2 N , a subset of I, initially unde�ned.

This is set in the query-�x step of �, for eah k suh that query-map(�)(k) 2 C.

It is set to an arbitrary R 2 read-quorums((k)) suh that R � op:a in the

pre-state.

3. prop-map(�), a CMap, initially unde�ned.

This is set in the prop-�x step of �, to the value of op:map in the pre-state.

4. W (�; k), for k 2 N , a subset of I, initially unde�ned.

This is set in the prop-�x step of �, for eah k suh that prop-map(�)(k) 2 C.

It is set to an arbitrary W 2 write-quorums((k)) suh that W � op:a in the

pre-state.
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� For every on�guration upgrade operation  for k:

1. removal-set(), a subset of N , initially unde�ned.

This is set in the fg-upgrade step of , to the set f` : ` < k; map(`) 6= �g.

2. R(; `), for ` 2 N , a subset of I, initially unde�ned.

This is set in the fg-upg-query-�x step of , for eah ` 2 removal-set(), to an

arbitrary R 2 read-quorums((`)) suh that R � upg :a in the pre-state.

3. W

1

(; `), for ` 2 N , a subset of I, initially unde�ned.

This is set in the fg-upg-query-�x step of , for eah ` 2 removal-set(), to an

arbitrary W 2 write-quorums((`)) suh that W � upg :a in the pre-state.

4. W

2

(), a subset of I, initially unde�ned.

This is set in the fg-upg-prop-�x step of , to an arbitraryW 2 write-quorums((k))

suh that W � upg :a in the pre-state.

In any good exeution �, we de�ne the following events (more preisely, we are giving

additional names to some existing events):

1. For every read or write operation �:

(a) query-phase-start(�) , initially unde�ned.

This is de�ned in the query-�x step of �, to be the unique earlier event at whih

the olletion of query results was started and not subsequently restarted. This

is either a read, write, or rev event.

(b) prop-phase-start(�), initially unde�ned.

This is de�ned in the prop-�x step of �, to be the unique earlier event at whih

the olletion of propagation results was started and not subsequently restarted.

This is either a query-�x or rev event.

4.3 Con�guration map invariants

In this setion, we give invariants desribing the kinds of on�guration maps that may appear

in various plaes in the state of S. We begin with a lemma saying that various operations
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yield or preserve the \usable" property:

Lemma 4.3.1 1. If m; m

0

2 Usable then update(m; m

0

) 2 Usable.

2. If m 2 Usable, k 2 N ,  2 C, and m

0

is idential to m exept that m

0

(k) =

update(m(k); ), then m

0

2 Usable.

3. If m; m

0

2 Usable then extend(m; m

0

) 2 Usable.

4. If m 2 Usable then trunate(m) 2 Usable.

Proof. Part 1 is shown using a ase analysis based on whih of m and m

0

has a longer

pre�x of �s. Part 2 uses a ase analysis based on where k is with respet to the pre�x of

�s. Part 3 and Part 4 are also straightforward. �

The next invariant (reall from Setion 4.1 that this means a property of all states

that arise in good exeutions of S) desribes some properties of map

i

that hold while

Reader-Writer

i

is onduting a on�guration upgrade operation:

Invariant 4.3.2 If upg :phase

i

6= idle and upg :target

i

= k, then:

1. 8` : ` � k ) map(`)

i

2 C [ f�g.

2. If k

1

= minf` : ` � k and upg :map(`) 6= �g then k

1

= 0 or map(k

1

� 1)

i

= �.

Proof. By the preondition of fg-upgrade(k)

i

and monotoniity of all the hanges to

map

i

. �

We next proeed to desribe the patterns of C, ?, and � values that may our in

on�guration maps in various plaes in the system state.

Invariant 4.3.3 Let m be a CMap that appears as one of the following:

1. The m omponent of some message in in-transit .

2. map

i

for any i 2 I.

3. op:map

i

for some i 2 I for whih op:phase 6= idle.
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4. query-map(�) or prop-map(�) for any operation �.

5. upg :map

i

for some i 2 I for whih upg :phase 6= idle.

Then m 2 Usable.

In the following proof and elsewhere, we use dot notation to indiate omponents of a

state, for example, s:map

i

indiates the value of map

i

in state s.

Proof. By indution on the length of a �nite good exeution.

Base: Part 1 holds beause initially, in-transit is empty. Part 2 holds beause initially,

for every i, map(0)

i

= 

0

and map(k)

i

= ?; the resulting CMap is in Usable. Part 3 and

Part 5 hold vauously, beause in the initial state, all op:phase and upg :phase values are

idle. Part 4 also holds vauously, beause in the initial state, all query-map and prop-map

variables are unde�ned.

Indutive step: Let s and s

0

be the states before and after the new event, respetively.

We onsider Parts 1{5 one by one.

For Part 1, the interesting ase is a send

i

event that puts a message ontaining m in

in-transit . The preondition on the send ation implies that m is set to s:map

i

. The

indutive hypothesis, Part 2, implies that s:map

i

2 Usable, whih suÆes.

For Part 2, �x i. The interesting ases are those that may hange map

i

, namely, new-on�g

i

,

rev

i

for a gossip (non-join) message, and fg-upg-prop-�x

i

. The latter ase is the only one

modi�ed from the original Rambo algorithm.

1. new-on�g(; �)

i

.

By indutive hypothesis, s:map

i

2 Usable. The only hange this an make is hanging

a ? to . Then Lemma 4.3.1, Part 2, implies that s

0

:map

i

2 Usable.

2. rev(h�; �; m; �; �i)

i

.

By indutive hypothesis, m 2 Usable and s:map

i

2 Usable. The step sets s

0

:map

i

to update(s:map

i

; m). Lemma 4.3.1, Part 1, then implies that s

0

:map

i

2 Usable.
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3. fg-upg-prop-�x(k)

i

.

This sets map(`)

i

to � for all ` < k. By the de�nition of this step, s

0

:map(`)

i

= �

for ` < k.

If s:map(k � 1)

i

= �, then the operation has no e�et, and s

0

:map

i

= s:map

i

2

Usable. Assume, then, that s:map(k� 1)

i

2 C [ f?g. This implies, by the indutive

hypothesis showing s:map

i

2 Usable, that s:map(`)

i

2 C [ f?g for all ` � k � 1.

By Invariant 4.3.2, we know that s:map(k)

i

2 C [ f�g, and therefore s:map(k)

i

2

C. Therefore s

0

:map(k)

i

2 C and s

0

:map(`)

i

2 C [ f?g for all ` > k, sine the

fg-upg-prop-�x does not hange entries in the map larger than k�1. Further, there are

only �nitely many entries in s:map

i

that are in C (by the indutive hypothesis), and

so there are still only �nitely many entries in s

0

:map

i

. Therefore, s

0

:map

i

2 Usable.

For Part 3, the interesting ations to onsider are those that modify op:map, namely, read

i

,

write

i

, rev

i

, and query-�x

i

.

1. read

i

, write

i

, or query-�x

i

.

By indutive hypothesis, s:map

i

2 Usable. The new step sets s

0

:op:map

i

to trunate(s:map

i

);

sine s:map

i

2 Usable, Lemma 4.3.1, Part 4, implies that this is also usable.

2. rev(h�; �; m; �; �i)

i

.

This step may alter op:map

i

only if s:op:phase 2 fquery; propg, and then in only two

ways: by setting it either to extend(s:op:map

i

; trunate(m)) or to trunate(update(s:map

i

; m)).

The indutive hypothesis implies that s:op:map

i

, map

i

, and m are all in Usable.

Lemma 4.3.1 implies that trunate, extend , and update all preserve usability. There-

fore, s

0

:op:map

i

2 Usable.

For Part 4, the ations to onsider are query-�x

i

and prop-�x

i

.

1. query-�x

i

.

This sets s

0

:query-map

i

to the value of s:op:map

i

. Sine by indutive hypothesis the

latter is usable, so is s

0

:query-map

i

.
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2. prop-�x

i

.

This sets s

0

:prop-map

i

to the value of s:op:map

i

. Sine by indutive hypothesis, the

latter is usable, so is s

0

:prop-map

i

.

For Part 5, the ations to onsider are fg-upgrade(k)

i

and fg-upg-query-�x(k)

i

. These set

s

0

:upg :map

i

to the value of s:map

i

. Sine by the indutive hypothesis the latter is usable,

so is s

0

:upg :map

i

. �

We now strengthen Invariant 4.3.3 to say more about the form of the CMaps that are

used for read and write operations:

Invariant 4.3.4 Let m be a CMap that appears as op:map

i

for some i 2 I for whih

op:phase

i

6= idle, or as query-map(�) or prop-map(�) for any operation �. Then:

1. m 2 Trunated.

2. m onsists of �nitely many � entries followed by �nitely many C entries followed by

an in�nite number of ? entries.

Proof. We prove that the desired properties hold for a m that is op:map

i

. The

same properties for query-map

i

and prop-map

i

follow by the way they are de�ned, from

op:map

i

.

To prove Part 1 we proeed by indution. In the initial state, op:phase

i

= idle, whih

makes the laim vauously true. For the indutive step we onsider all ations that alter

op:map

i

:

1. read

i

, write

i

, or query-�x

i

.

These set op:map

i

to trunate(map

i

), whih is neessarily in Trunated .

2. rev

i

.

This �rst sets op:map

i

to a preliminary value and then tests if the result is in

Trunated . If it is, we are done. If not, then this step resets op:map

i

to trunate(map

i

),

whih is in Trunated .

To see Part 2, note that m 2 Usable by Invariant 4.3.3. The fat that m 2 Trunated

then follows from the de�nition of Usable and Part 1. �
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4.4 Phase guarantees

In this setion, we present results saying what is ahieved by the individual operation phases.

We give four lemmas, desribing the messages that must be sent and reeived and the

information ow that must our during the two phases of on�guration-upgrades and during

the two phases of read and write operations.

Note that these lemmas treat the ase where j = i uniformly with the ase where j 6= i.

This is beause, in the Reader-Writer algorithm, ommuniation from a loation to itself

is treated uniformly with ommuniation between two di�erent loations. We �rst onsider

the query phase of a on�guration-upgrade:

Lemma 4.4.1 Suppose that a fg-upg-query-�x(k)

i

event for on�guration upgrade operation

 ours in � and k

0

2 removal-set(). Suppose j 2 R(; k

0

) [W

1

(; k

0

).

Then there exist messages m from i to j and m

0

from j to i suh that:

1. m is sent after the fg-upgrade(k)

i

event of .

2. m

0

is sent after j reeives m.

3. m

0

is reeived before the fg-upg-query-�x(k)

i

event of .

4. In any state after j reeives m, map(`)

j

6= ? for all ` � k.

5. tag() � t, where t is the value of tag

j

in any state before j sends message m

0

.

Proof. The phase number disipline implies the existene of the laimed messages m and

m

0

.

For Part 4, the preondition of fg-upgrade(k) implies that, when the fg-upgrade(k)

i

event of  ours, map(`)

i

6= ? for all ` � k. Therefore, j sets map(`)

j

6= ? for all ` � k

when it reeives m. Monotoniity of map

j

ensures that this property persists forever.

For Part 5, let t be the value of tag

j

in any state before j sends message m

0

. Let t

0

be

the value of tag

j

in the state just before j sends m

0

. Then t � t

0

, by monotoniity. The tag

omponent of m

0

is equal to t

0

, by the ode for send. Sine i reeives this message before the

fg-upg-query-�x(k), it follows that tag() is set by i to a value � t. �
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Next, we onsider the propagation phase of a on�guration upgrade:

Lemma 4.4.2 Suppose that a fg-upg-prop-�x(k)

i

event for a on�guration upgrade opera-

tion  ours in �. Suppose that j 2 W

2

().

Then there exist messages m from i to j and m

0

from j to i suh that:

1. m is sent after the fg-upg-query-�x(k)

i

event of .

2. m

0

is sent after j reeives m.

3. m

0

is reeived before the fg-upg-prop-�x(k)

i

event of .

4. In any state after j reeives m, tag

j

� tag().

Proof. The phase number disipline implies the existene of the laimed messages m and

m

0

.

For Part 4, when j reeives m, it sets tag

j

to be � tag(). Monotoniity of tag

j

ensures

that this property persists in later states. �

Next, we onsider the query phase of read and write operations:

Lemma 4.4.3 Suppose that a query-�x

i

event for a read or write operation � ours in �.

Let k; k

0

2 N. Suppose query-map(�)(k) 2 C and j 2 R(�; k).

Then there exist messages m from i to j and m

0

from j to i suh that:

1. m is sent after the query-phase-start(�) event.

2. m

0

is sent after j reeives m.

3. m

0

is reeived before the query-�x event of �.

4. If t is the value of tag

j

in any state before j sends m

0

, then:

(a) tag(�) � t.

(b) If � is a write operation then tag(�) > t.

5. If map(`)

j

6= ? for all ` � k

0

in any state before j sends m

0

, then query-map(�)(`) 2

C for some ` � k

0

.
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Proof. The phase number disipline implies the existene of the laimed messages m and

m

0

.

For Part 4, the tag omponent of message m

0

is � t, so i reeives a tag that is � t during

the query phase of �. Therefore, tag(�) � t. Also, if � is a write, the e�ets of the query-�x

imply that tag(�) > t.

Finally, we show Part 5. In the m omponent of message m

0

, m(`) 6= ? for all ` � k

0

.

Therefore, trunate(m)(`) = m(`) for all ` � k

0

, so trunate(m)(`) 6= ? for all ` � k

0

.

Let m

0

be the on�guration map extend(op:map

i

; trunate(m)) omputed by i during

the e�ets of the rev event for m

0

. Sine i does not reset op:a to ; in this step, by

de�nition of the query-phase-start event, it follows that m

0

2 Trunated , and m

0

is the

value of op:map

i

just after the rev step.

Fix `, 0 � ` � k

0

. We laim that m

0

(`) 6= ?. We onsider ases:

1. op:map(`)

i

6= ? just before the rev step.

Then the de�nition of extend implies that m

0

(`) 6= ?, as needed.

2. op:map(`)

i

= ? just before the rev step and trunate(m)(`) 2 C.

Then the de�nition of extend implies that m

0

(`) 2 C, whih implies that m

0

(`) 6= ?,

as needed.

3. op:map(`)

i

= ? just before the rev step and trunate(m)(`) =2 C.

Sine trunate(m)(`) 6= ?, it follows that trunate(m)(`) = �. Sine trunate(m)(`) =

� and trunate(m) 2 Usable, it follows that, for some `

0

> `, trunate(m)(`

0

) 2 C.

By the ase assumption, op:map(`)

i

= ? just before the rev step. Sine, by In-

variant 4.3.4, op:map

i

2 Trunated , it follows that op:map(`

0

)

i

= ? before the rev

step.

Then by de�nition of extend , we have that m

0

(`) = ? while m

0

(`

0

) 2 C. This

implies that m

0

=2 Trunated , whih ontradits the fat, already shown, that m

0

=2

Trunated , So this ase annot arise.
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Sine this argument holds for all `, 0 � ` � k

0

, it follows that m

0

(`) 6= ? for all ` � k

0

.

Sine m

0

(`) 6= ? for all ` � k

0

, Invariant 4.3.3 implies that m

0

2 Usable, whih implies by

de�nition of Usable that m

0

(`) 2 C for some ` � k

0

. That is, op:map

i

(`) 2 C for some

` � k

0

immediately after the rev step. This implies that query-map(�)(`) 2 C for some

` � k

0

, as needed. �

And �nally, we onsider the propagation phase of read and write operations:

Lemma 4.4.4 Suppose that a prop-�x

i

event for a read or write operation � ours in �.

Suppose prop-map(�)(k) 2 C and j 2 W (�; k).

Then there exist messages m from i to j and m

0

from j to i suh that:

1. m is sent after the prop-phase-start(�) event.

2. m

0

is sent after j reeives m.

3. m

0

is reeived before the prop-�x event of �.

4. In any state after j reeives m, tag

j

� tag(�).

5. If map(`)

j

6= ? for all ` � k

0

in any state before j sends m

0

, then prop-map(�)(`) 2 C

for some ` � k

0

.

Proof. The phase number disipline implies the existene of the laimed messages m and

m

0

.

For Part 4, letm:tag be the tag �eld of messagem. Sinem is sent after the prop-phase-start

event, whih is not earlier than the query-�x, it must be that m:tag � tag(�). Therefore, by

the e�ets of the rev, just after j reeives m, tag

j

� m:tag � tag(�). Then monotoniity of

tag

j

implies that tag

j

� tag(�) in any state after j reeives m.

For Part 5, the proof is analogous to the proof of Part 5 of Lemma 4.4.3. In fat, it is

idential exept for the �nal onlusion, whih now says that prop-map(�)(`) 2 C for some

` � k

0

. �
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Chapter 5

Atomi Consisteny

This setion ontains the proof of atomi onsisteny. The proof is arried out in several

stages. First in Setion 5.1 we present some lemmas about the new on�guration man-

agement mehanism, desribing the relationship between on�guration upgrade operations.

Setion 5.2 desribes the relationship between read/write operations and on�guration up-

grade operations. Setion 5.3 then onsiders two read or write operations, and ulminates

in Lemma 5.3.3, whih says that tags are monotoni with respet to non-onurrent read or

write operations. Finally, Setion 5.4 uses the tags to de�ne a partial order on operations

and veri�es the four properties required for atomiity.

5.1 Behavior of on�guration upgrade

This setion presents the key new tehnial lemmas on whih the proof of atomiity is based.

Spei�ally, we present lemmas desribing information ow between on�guration upgrade

operations. These lemmas assert the existene of a sequene of on�guration upgrade opera-

tions on whih we an make ertain neessary guarantees. In partiular, the key property is

that the tags are monotonially inreasing with respet to the spei� sequene of upgrade

operations, guaranteeing that value/tag information is propagated to newer on�gurations.

The �rst lemma shows that if all on�guration upgrade operations remove two partiular

on�gurations together, then those two on�guration are always in the same state in all
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maps.

Lemma 5.1.1 Suppose that k > 0, and � is an exeution in whih no fg-upg-prop-�x(k)

event ours in �. Suppose that m is a CMap that appears as one of the following in any

state in �:

1. The m omponent of some message in in-transit .

2. map

i

for any i 2 I.

If m(k � 1) = � then m(k) = �.

Proof. Fix some � and k > 0 suh that no fg-upg-prop-�x(k) event ours in �. We

proeed by indution on the length of a �nite pre�x of �: for every ation in �, if before

the ation m(k�1) = � =) m(k) = �, then the same impliation holds after the ation.

Base: For Part 1, the onlusion follows vauously beause initially in-transit is empty.

For Part 2, the onlusion again follows vauously beause initially map

i

(`) 6= � for all i

and `.

Indutive step: Let s and s

0

be the states before and after the new event, respetively. We

onsider Parts 1 and 2 separately.

For Part 1, the interesting ase is a send

i

event that puts a message ontaining m in

in-transit . The preondition on the send ation implies that m is set to s:map

i

. The

indutive hypothesis, Part 2, implies that if s:map(k � 1) = �, then s:map(k) = �.

Therefore in state s

0

, the same holds for m, whih has been added to in-transit .

For Part 2, �x i. The interesting ases are those that may hange map

i

, namely, new-on�g

i

,

rev

i

for a gossip message, and fg-upg-prop-�x

i

.

1. new-on�g(; �)

i

.

If s

0

:map(k � 1)

i

= �, then s:map(k � 1)

i

= �, sine installing a new on�guration

does not set any entry to �. Then by the indutive hypothesis s:map(k)

i

= �, whih

implies that s

0

:map(k)

i

= �, sine this ation annot modify an entry that is already

�.
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2. rev(h�; �; m; �; �i)

i

.

First, if m(0) 6= �, then the message does not ause any entry in s:map to be set

to �, and as in Case 1 the desired property still holds. Also, if s:map(0) 6= �, then

for all `, s

0

:map(`) = � if and only if m(`) = �. By the indutive hypothesis

m(k� 1) = � =) m(k) = �, so the desired onlusion follows. For the rest of this

ase, we will assume that m(0) = � and s:map(0) = �.

By Invariant 4.3.3, m 2 Usable. Therefore we an de�ne k

msg-max

suh that m(`) = �

for all ` � k

msg-max

and m(`) 6= � for all ` > k

msg-max

. Similarly, we an de�ne k

max

suh that s:map(`)

i

= � for all ` � k

max

and s:map(`)

i

6= � for all ` > k

max

. De�ne

k

0

max

in the same way for the poststate, s

0

.

There are two ases. First, assume k

max

� k

msg-max

. Then k

0

max

= k

max

, by the mono-

toniity of CMap. By our indutive hypothesis s:map(k � 1) = � =) s:map(k) =

�; it follows, then, that if k� 1 � k

max

then k � k

max

. Therefore if k� 1 � k

0

max

, then

k � k

0

max

. Finally, then, if s

0

:map(k � 1) = �, then s

0

:map(k) = �.

Assume, then, that k

msg-max

> k

max

. Then after the update operation, k

0

max

= k

msg-max

.

By our indutive hypothesis, m(k � 1) = � =) m(k) = �; it follows, then, that if

k� 1 � k

msg-max

, then k � k

msg-max

. Therefore if k� 1 � k

0

max

, then k � k

0

max

. Finally,

then, s

0

:map(k � 1) = � implies that s

0

:map(k) = �.

3. fg-upg-prop-�x(k

0

)

i

.

By assumption, k 6= k

0

. If k < k

0

, then this operation sets both s

0

:map(k � 1)

i

= �

and s

0

:map(k)

i

= �. If k > k

0

, then this operation has no e�et on map(k)

i

or

map(k � 1)

i

, and the desired property still holds.

�

The following orollary says that if a fg-upgrade(k) event for an upgrade operation 

ours in an exeution, then there is some previous on�guration upgrade operation 

0

(that

ompletes before the upgrade event) where the target of 

0

is the on�guration with the

smallest index removed by .
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Corollary 5.1.2 Let  be a on�guration upgrade operation, initiated by a fg-upgrade(k)

i

event in �, and let k

1

= minfremoval-set()g. That is, k

1

is the smallest element suh

that upg-map()(k

1

) 2 C. Assume k

1

> 0. Then a fg-upg-prop-�x(k

1

)

j

event for some

on�guration upgrade operation 

0

ours in � for some j suh that the fg-upg-prop-�x

j

event of 

0

preedes the fg-upgrade(k)

i

event in �.

Proof. By the de�nition of k

1

, we know that in the state just after the fg-upgrade event,

upg :map(k

1

� 1)

i

= � and upg :map(k

1

)

i

6= �. Sine upg :map

i

is set by the fg-upgrade

event to map

i

in the state just prior to the fg-upgrade event, we know that map(k

1

�1)

i

=

� and map(k

1

)

i

6= � in the state just prior to the fg-upgrade event. Lemma 5.1.1, then,

implies that some fg-upgrade-prop-�x(k

1

) event for some operation 

0

ours in � preeding

the fg-upgrade event. �

The next lemma says that for a given on�guration upgrade operation , there exists a

sequene of preeding upgrade operations satisfying ertain properties. The lemma begins by

assuming that some on�guration with index k is removed by the spei�ed upgrade operation.

For every on�guration with an index smaller than k, we hoose a single upgrade operation {

that removes that on�guration { to add to the sequene. Therefore the onstruted sequene

may well ontain the same on�guration upgrade operation multiple times, if the operation

has removed multiple on�gurations. If two elements in the sequene are distint upgrade

operations, then the earlier operation in the sequene ompletes before the later operation in

the sequene is initiated. Also, the target of an upgrade operation in the sequene is removed

by the next distint upgrade operation in the sequene. As a result of these properties, the

on�guration upgrade proess obeys a sequential disipline.

Lemma 5.1.3 If a fg-upgrade

i

event for upgrade operation  ours in � suh that k 2

removal-set(), then there exists a sequene (possibly ontaining repeated elements) of on-

�guration upgrade operations 

0

; 

1

; : : : ; 

k

with the following properties:

1. 8 s : 0 � s � k; s 2 removal-set(

s

),

2. 8 s : 0 � s < k, if 

s

6= 

s+1

, then the fg-upg-prop-�x event of 

s

ours in � and the
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fg-upgrade event of 

s+1

ours in �, and the fg-upg-prop-�x event of 

s

preedes the

fg-upgrade event of 

s+1

, and

3. 8 s : 0 � s < k, if 

s

6= 

s+1

, then target(

s

) 2 removal-set(

s+1

).

Proof. We onstrut the sequene in reverse order, �rst de�ning 

k

, and then at eah step

de�ning the preeding element. We prove the lemma by bakward indution on `, for ` = k

down to ` = 0, maintaining the following three properties at eah step of the indution:

1

0

. 8 s : ` � s � k; s 2 removal-set(

s

),

2

0

. 8 s : ` � s < k, if 

s

6= 

s+1

, then the fg-upg-prop-�x event of 

s

ours in � and the

fg-upgrade event of 

s+1

ours in �, and the fg-upg-prop-�x event of 

s

preedes the

fg-upgrade event of 

s+1

, and

3

0

. 8 s : ` � s < k, if 

s

6= 

s+1

, then target(

s

) 2 removal-set(

s+1

).

To begin the indution, we �rst examine the base ase, where ` = k. De�ne 

k

= . Property

1

0

holds by assumption, and Property 2

0

and Property 3

0

are vauously true.

For the indutive step, we assume that 

`

has been de�ned and that properties 1

0

{3

0

hold.

If ` = 0, then 

0

has been de�ned, and we are done. Otherwise, we need to de�ne 

`�1

. If

`� 1 2 removal-set(

`

), then let 

`�1

= 

`

, and all the properties still hold.

Otherwise, ` � 1 =2 removal-set(

`

) and ` 2 removal-set(

`

), whih implies that ` =

minfremoval-set(

`

)g beause eah on�guration upgrade operates on a onseutive sequene

of on�gurations. Then by Corollary 5.1.2, there ours in � a on�guration upgrade oper-

ation, that we label 

`�1

, with the following properties: (i) the fg-upg-prop-�x event of 

`�1

preedes the fg-upgrade event of 

`

, and (ii) target(

`�1

) = minfk

0

: k

0

2 removal-set(

`

)g.

Reall that ` = minfremoval-set(

`

)g. Therefore, by Property (ii) of 

`�1

, target(

`�1

) =

`. Sine removal-set(

`�1

) 6= ;, this implies that `�1 2 removal-set(

`�1

), proving Property

1

0

. Property 2

0

follows from Property (i) of 

`�1

. Property 3

0

follows from Property (ii) of



`�1

. �

The sequential nature of on�guration upgrade has a nie onsequene for propagation

of tags: for any sequene of upgrade operations like that in Lemma 5.1.3, tag(

s

) is nonde-

reasing in s.
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Lemma 5.1.4 Let 

`

; : : : ; 

k

be a sequene of on�guration upgrade operations suh that:

1. 8 s : 0 � s � k; s 2 removal-set(

s

),

2. 8 s : 0 � s < k, if 

s

6= 

s+1

, then the fg-upg-prop-�x event of 

s

ours in � and the

fg-upgrade event of 

s+1

ours in �, and the fg-upg-prop-�x event of 

s

preedes the

fg-upgrade event of 

s+1

, and

3. 8 s : 0 � s < k, if 

s

6= 

s+1

, then target(

s

) 2 removal-set(

s+1

).

Then 8 s : 0 � s < k; tag(

s

) � tag(

s+1

).

Proof. If 

s

= 

s+1

, then it is trivially true that tag(

s

) � tag(

s+1

). Therefore assume

that 

s

6= 

s+1

; this implies that the fg-upg-prop-�x event of 

s

preedes the fg-upgrade

event of 

s+1

. Let k

2

be the largest element in removal-set(

s

). We know by assumption that

k

2

+1 2 removal-set(

s+1

). Therefore, W

2

(

s

), a write-quorum of on�guration (k

2

+1), has

at least one element in ommon with R(

s+1

; k

2

+1); label this node j. By Lemma 4.4.2, and

the monotoniity of tag

j

, after the fg-upg-prop-�x event of 

s

we know that tag

j

� tag(

s

).

Then by Lemma 4.4.1 tag(

s+1

) � tag

j

. Therefore tag(

s

) � tag(

s+1

). �

Corollary 5.1.5 Let 

`

; : : : ; 

k

be a sequene of on�guration upgrade operations suh that:

1. 8 s : 0 � s � k; s 2 removal-set(

s

),

2. 8 s : 0 � s < k, if 

s

6= 

s+1

, then the fg-upg-prop-�x event of 

s

ours in � and the

fg-upgrade event of 

s+1

ours in �, and the fg-upg-prop-�x event of 

s

preedes the

fg-upgrade event of 

s+1

, and

3. 8 s : 0 � s < k, if 

s

6= 

s+1

, then target(

s

) 2 removal-set(

s+1

).

Then 8 s; s

0

: 0 � s � s

0

� k, tag(

s

) � tag(

s

0

)

Proof. This follows immediately from Lemma 5.1.4 by indution. �

50



5.2 Behavior of a read or a write following a on�gu-

ration upgrade

Now we desribe the relationship between an upgrade operation and a following read or write

operation. These three lemmas relate the removal-set of a preeding on�guration upgrade

operation with the query-map of a later read or write operation.

The �rst lemma shows that if, for some read or write operation, k is the smallest index

suh that query-map(k) 2 C, then some on�guration upgrade operation with target k

preedes the read or write operation.

Lemma 5.2.1 Let � be a read or write operation whose query-�x event ours in �. Let k

be the smallest element suh that query-map(�)(k) 2 C. Assume k > 0. Then there must

exist a on�guration upgrade operation  suh that k = target(), and the fg-upg-prop-�x

event of  preedes the query-phase-start(�) event.

Proof. This follows from Lemma 5.1.1. Let s be the state just before the query-phase-start(�)

event. By de�nition, query-map(�) = s:map

i

. Sine s:map(k�1)

i

= � and s:map(k)

i

6=

�, there must exist suh a on�guration upgrade operation for k by the ontrapositive of

Lemma 5.1.1. �

Seond, if some upgrade removing k does omplete before the query-phase-start event of

a read or write operation, then some on�guration with index � k + 1 must be inluded in

the query-map of a later read or write operation.

Lemma 5.2.2 Let  be a on�guration upgrade operation suh that k 2 removal-set().

Let � be a read or write operation whose query-�x event ours in �. Suppose that the

fg-upg-prop-�x event of  preedes the query-phase-start(�) event in �.

Then query-map(�)(`) 2 C for some ` � k + 1.

Proof. Suppose for the sake of ontradition that query-map(�)(`) =2 C for all ` � k+1.

Fix k

0

= max(f`

0

: query-map(�)(`

0

) 2 Cg). Then k

0

� k.
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Let 

0

; : : : ; 

k

be the sequene of upgrade operations whose existene is asserted by

Lemma 5.1.3, where 

k

= . Then, by this onstrution, k

0

2 removal-set(

k

0

), and the

fg-upg-prop-�x event of 

k

0

does not ome after the fg-upg-prop-�x event of  in �. By

assumption, the fg-upg-prop-�x event of  preedes the query-phase-start(�) event in �.

Therefore the fg-upg-prop-�x event of 

k

0

preedes the query-phase-start(�) event in �.

Then, sine k

0

2 removal-set(

k

0

), write-quorumW

1

(

k

0

; k

0

) is de�ned. Sine query-map(k

0

) 2

C), the read-quorum R(�; k

0

) is de�ned. Choose j 2 W

1

(

k

0

; k

0

) \ R(�; k

0

). Assume that

k

t

= target(

k

0

). Notie that k

0

< k

t

. Then Lemma 4.4.1 and monotoniity of map imply

that, in the state just prior to the fg-upg-query-�x event of 

k

0

, map(`)

j

6= ? for all ` � k

t

.

Then Lemma 4.4.3 implies that query-map(�)(`) 2 C for some ` � k

t

. But this ontradits

the hoie of k

0

. �

The next lemma desribes propagation of tag information from a on�guration up-

grade operation to a following read or write operation. For this lemma, we assume that

query-map(k) 2 C, where k is the target of the upgrade operation,

Lemma 5.2.3 Let  be a on�guration upgrade operation. Assume that k = target().

Let � be a read or write operation whose query-�x event ours in �. Suppose that the

fg-upg-prop-�x event of  preedes the query-phase-start(�) event in exeution �. Suppose

also that query-map(�)(k) 2 C. Then:

1. tag() � tag(�).

2. If � is a write operation then tag() < tag(�).

Proof. The propagation phase of  aesses write-quorum W

2

() of (k), whereas the

query phase of � aesses read-quorum R(�; k). Sine both are quorums of on�guration

(k), they have a nonempty intersetion; hoose j 2 W

2

() \R(�; k).

Lemma 4.4.2 implies that, in any state after the fg-upg-prop-�x event for , tag

j

� tag().

Sine the fg-upg-prop-�x event of  preedes the query-phase-start(�) event, we have that

t � tag(), where t is de�ned to be the value of tag

j

just before the query-phase-start(�) event.

Then Lemma 4.4.3 implies that tag(�) � t, and if � is a write operation, then tag(�) > t.

Combining the inequalities yields both onlusions of the lemma. �

52



5.3 Behavior of sequential reads and writes

Read or write operations that originate at di�erent loations may proeed onurrently.

However, in the speial ase where they exeute sequentially, we an prove some relationships

between their query-maps, prop-maps, and tags. The �rst lemma says that, when two

read or write operations exeute sequentially, the smallest on�guration index used in the

propagation phase of the �rst operation is less than or equal to the largest index used in the

query phase of the seond. In other words, we annot have a situation in whih the seond

operation's query phase exeutes using only on�gurations with indies that are stritly less

than any used in the �rst operation's propagation phase.

Lemma 5.3.1 Assume �

1

and �

2

are two read or write operations, suh that:

1. The prop-�x event of �

1

ours in �.

2. The query-�x event of �

2

ours in �.

3. The prop-�x event of �

1

preedes the query-phase-start(�

2

) event.

Then min(f` : prop-map(�

1

)(`) 2 Cg) � max(f` : query-map(�

2

)(`) 2 Cg).

Proof. Suppose for the sake of ontradition that min(f` : prop-map(�

1

)(`) 2 Cg) >

k, where k is de�ned to be max(f` : query-map(�

2

)(`) 2 Cg). Then in partiular,

prop-map(�

1

)(k) =2 C. The form of prop-map(�

1

), as expressed in Invariant 4.3.4, im-

plies that prop-map(�

1

)(k) = �.

This implies that some fg-upg-prop-�x event for some upgrade operation  suh that k 2

removal-set() ours prior to the prop-�x of �

1

, and hene prior to the query-phase-start(�

2

)

event. Lemma 5.2.2 then implies that query-map(�

2

)(`) 2 C for some ` � k + 1. But this

ontradits the hoie of k. �

The next lemma desribes propagation of tag information, in the ase where the prop-

agation phase of the �rst operation and the query phase of the seond operation share a

on�guration.

Lemma 5.3.2 Assume �

1

and �

2

are two read or write operations, and k 2 N, suh that:
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1. The prop-�x event of �

1

ours in �.

2. The query-�x event of �

2

ours in �.

3. The prop-�x event of �

1

preedes the query-phase-start(�

2

) event.

4. prop-map(�

1

)(k) and query-map(�

2

)(k) are both in C.

Then:

1. tag(�

1

) � tag(�

2

).

2. If �

2

is a write then tag(�

1

) < tag(�

2

).

Proof. The hypotheses imply that prop-map(�

1

)(k) = query-map(�

2

)(k) = (k). Then

W (�

1

; k) and R(�

2

; k) are both de�ned in �. Sine they are both quorums of on�guration

(k), they have a nonempty intersetion; hoose j 2 W (�

1

; k) \ R(�

2

; k).

Lemma 4.4.4 implies that, in any state after the prop-�x event of �

1

, tag

j

� tag(�

1

). Sine

the prop-�x event of �

1

preedes the query-phase-start(�

2

) event, we have that t � tag(�

1

),

where t is de�ned to be the value of tag

j

just before the query-phase-start(�

2

) event. Then

Lemma 4.4.3 implies that tag(�

2

) � t, and if �

2

is a write operation, then tag(�

2

) > t.

Combining the inequalities yields both onlusions. �

The �nal lemma is similar to the previous one, but it does not assume that the prop-

agation phase of the �rst operation and the query phase of the seond operation share a

on�guration. The main fous of the proof is on the situation where all the on�guration

indies used in the query phase of the seond operation are greater than those used in the

propagation phase of the �rst operation.

Lemma 5.3.3 Assume �

1

and �

2

are two read or write operations, suh that:

1. The prop-�x of �

1

ours in �.

2. The query-�x of �

2

ours in �.

3. The prop-�x event of �

1

preedes the query-phase-start(�

2

) event.
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Then:

1. tag(�

1

) � tag(�

2

).

2. If �

2

is a write then tag(�

1

) < tag(�

2

).

Proof. Let i

1

and i

2

be the indies of the proesses that run operations �

1

and �

2

, respe-

tively. Let m

1

= prop-map(�

1

) and m

2

= query-map(�

2

). If there exists k suh that

m

1

(k) 2 C and m

2

(k) 2 C, then Lemma 5.3.2 implies the onlusions of the lemma. So

from now on, we assume that no suh k exists.

Lemma 5.3.1 implies that min(f` : m

1

(`) 2 Cg) � max(f` : m

2

(`) 2 Cg). Invari-

ant 4.3.4 implies that the set of indies used in eah phase onsists of onseutive integers.

Sine the intervals have no indies in ommon, it follows that s

1

< s

2

, where s

1

is de�ned to

be max(f` : m

1

(`) 2 Cg) and s

2

is de�ned to be min(f` : m

2

(`) 2 Cg).

Lemma 5.2.1 implies that there exists a on�guration upgrade operation that we will all



s

2

�1

suh that s

2

= target(

s

2

�1

), and the fg-upg-prop-�x of 

s

2

�1

preedes the query-phase-start(�

2

)

event. Then by Lemma 5.2.3, tag(

s

2

�1

) � tag(�

2

), and if �

2

is a write operation then

tag(

s

2

�1

) < tag(�

2

).

Next we will demonstrate a hain of on�guration upgrade operations with non-dereasing

tags. Lemma 5.1.3, in onjuntion with the already de�ned 

s

2

�1

, implies the existene of a

sequene of on�guration upgrade operations 

0

; : : : ; 

s

2

�1

suh that:

1. 8 s : 0 � s � s

2

� 1; s 2 removal-set(

s

),

2. 8 s : 0 � s < s

2

� 1, if 

s

6= 

s+1

, then the fg-upg-prop-�x event of 

s

preedes the

fg-upgrade event of 

s+1

in �,

3. 8 s : 0 � s < s

2

� 1, if 

s

6= 

s+1

, then target(

s

) 2 removal-set(

s+1

).

As a speial ase of Property 1, sine s

1

� s

2

� 1, we know that s

1

2 removal-set(

s

1

). Then

Corollary 5.1.5 implies that tag(

s

1

) � tag(

s

2

�1

).

It remains to show that the tag of �

1

is no greater than the tag of 

s

1

. Therefore we

fous now on the relationship between operation �

1

and on�guration upgrade 

s

1

. The

propagation phase of �

1

aesses write-quorum W (�

1

; s

1

) of on�guration (s

1

), whereas the
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query phase of 

s

1

aesses read-quorum R(

s

1

; s

1

) of on�guration (s

1

). Sine W (�

1

; s

1

) \

R(

s

1

; s

1

) 6= ;, we may �x some j 2 W (�

1

; s

1

)\R(

s

1

; s

1

). Let message m

1

from i

1

to j and

message m

0

1

from j to i

1

be as in Lemma 4.4.4 for the propagation phase of 

s

1

.

Let message m

2

from the proess running 

s

1

to j and message m

0

2

from j to the proess

running 

s

1

be the messages whose existene is asserted in Lemma 4.4.1 for the query phase

of 

s

1

.

We laim that j sends m

0

1

, its message for �

1

, before it sends m

0

2

, its message for 

s

1

.

Suppose for the sake of ontradition that j sends m

0

2

before it sends m

0

1

. Assume that

s

t

= target(

s

1

. Notie that s

t

> s

1

, sine s

1

2 removal-set(

s

1

). Lemma 4.4.1 implies that

in any state after j reeives m

2

, before j sends m

0

2

, map(k)

j

6= ? for all k � s

t

. Sine

j sends m

0

2

before it sends m

0

1

, monotoniity of map implies that just before j sends m

0

1

,

map(k)

j

6= ? for all k � s

t

. Then Lemma 4.4.4 implies that prop-map(�

1

)(`) 2 C for

some ` � s

t

. But this ontradits the hoie of s

1

, sine s

1

< s

t

. This implies that j sends

m

0

1

before it sends m

0

2

.

Sine j sends m

0

1

before it sends m

0

2

, Lemma 4.4.4 implies that, at the time j sends m

0

2

,

tag(�

1

) � tag

j

. Then Lemma 4.4.1 implies that tag(�

1

) � tag(

s

1

). From above, we know

that tag(

s

1

) � tag(

s

2

�1

), and tag(

s

2

�1

) � tag(�

2

), and if �

2

is a write operation then

tag(

s

2

�1

) < tag(�

2

). Combining the various inequalities then yields both onlusions. �

5.4 Atomiity

In order to prove that all exeutions of Rambo II are atomi, we use four suÆient on-

ditions. A memory is said to be atomi provided that the following onditions hold for all

good exeutions:

� If all the read and write operations that are invoked omplete, then the read and write

operations for objet x an be partially ordered by an ordering �, so that:

1. No operation has in�nitely many other operations ordered before it.

2. The partial order is onsistent with the external order of invoations and re-

sponses, that is, there do not exist read or write operations �

1

and �

2

suh that
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�

1

ompletes before �

2

starts, yet �

2

� �

1

.

3. All write operations are totally ordered and every read operation is ordered with

respet to all the writes.

4. Every read operation ordered after any writes returns the value of the last write

preeding it in the partial order; any read operation ordered before all writes

returns the initial value.

This de�nition is suÆient to guarantee atomiity in terms of the other ommon de�nition

whih is de�ned in terms of equivalene to a serial memory. (See, for example, Lemma 13.16

in [11℄.)

Let � be a trae of S, the system that implementsRambo II (reall that this inludes the

Reader-Writer , Reon and Joiner automata), and assume that all read and write operations

omplete in �. Consider any partiular good exeution � of S whose trae is �. We de�ne

a partial order � on read and write operations in �, in terms of the operations' tags in

�. Namely, we totally order the writes in order of their tags, and we order eah read with

respet to all the writes as follows: a read with tag t is ordered after all writes with tags � t

and before all writes with tags > t.

Lemma 5.4.1 The ordering � is well-de�ned.

Proof. The key is to show that no two write operations get assigned the same tag. This is

obviously true for two writes that are initiated at di�erent loations, beause the low-order

tiebreaker identi�ers are di�erent. For two writes at the same loation, Lemma 5.3.3 implies

that the tag of the seond is greater than the tag of the �rst. This suÆes. �

Lemma 5.4.2 � satis�es the four onditions in the de�nition of atomiity.

Proof. We begin with Property 2, whih as usual in suh proofs, is the most interesting

thing to show. Suppose for the sake of ontradition that �

1

ompletes before �

2

starts, yet

�

2

� �

1

. We onsider two ases:

1. �

2

is a write operation.
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Sine �

1

ompletes before �

2

starts, Lemma 5.3.3 implies that tag(�

2

) > tag(�

1

). On

the other hand, the fat that �

2

� �

1

implies that tag(�

2

) � tag(�

1

). This yields a

ontradition.

2. �

2

is a read operation.

Sine �

1

ompletes before �

2

starts, Lemma 5.3.3 implies that tag(�

2

) � tag(�

1

). On

the other hand, the fat that �

2

� �

1

implies that tag(�

2

) < tag(�

1

). This yields a

ontradition.

Sine we have a ontradition in either ase, Property 2 must hold.

Property 1 follows from Property 2. Properties 3 and 4 are straightforward. �

Now we tie everything together for the proof of Theorem 5.4.3.

Theorem 5.4.3 Let � be a trae of S, the system that implements Rambo II. Then �

satis�es the atomiity guarantee.

Proof. Assume that all read and write operations omplete in �. Let � be a good exeution

of S whose trae is �. De�ne the ordering � on the read and write operations in � as above,

using the exeution �. Then Lemma 5.4.2 says that � satis�es the four onditions in the

de�nition of atomiity. Thus, � satis�es the atomiity ondition, as needed. �
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Chapter 6

Reon�guration Servie

In this hapter we present the spei�ation and implementation for the reon�guration spe-

i�ation. This setion is a restatement of Setions 4 and 7 of the Rambo tehnial report,

and is taken diretly from [13℄. Our Rambo implementation for eah objet x onsists of

a main Reader-Writer algorithm and a reon�guration servie, Reon(x); sine we are sup-

pressing mention of x, we write this simply as Reon. First, in Setion 6.1, we present the

spei�ation for the Reon servie, as an external signature and set of traes. In Setion 6.2,

we present our implementation of Reon.

6.1 Reon�guration Servie Spei�ation

The interfae for Reon appears in Figure 6-1. The lient of Reon at loation i requests

to join the reon�guration servie by performing a join(reon)

i

input ation. The servie

aknowledges this with a orresponding join-ak

i

output ation. The lient requests to re-

on�gure the objet using a reon

i

input, whih is aknowledged with a reon-ak

i

output

ation. Rambo reports a new on�guration to the lient using a report

i

output ation.

Crashes are modeled using fail ations.

Reon also produes outputs of the form new-on�g(; k)

i

, whih announe at loation

i that  is the k

th

on�guration identi�er for the objet. These outputs are used for om-

muniation with the portion of the Reader-Writer algorithm running at loation i. Reon
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announes onsistent information, only one on�guration identi�er per index in the on�g-

uration identi�er sequene. It delivers information about eah on�guration to members of

the new on�guration and of the immediately preeding on�guration.

Input:

join(reon)

i

, i 2 I

reon(; 

0

)

i

, ; 

0

2 C, i 2 members()

fail

i

, i 2 I

Output:

join-ak(reon)

i

, i 2 I

reon-ak(b)

i

, b 2 fok; nokg; i 2 I

report()

i

,  2 C; i 2 I

new-on�g(; k)

i

,  2 C, k 2 N

+

, i 2 I

Figure 6-1: Reon: External signature

Now we de�ne the set of traes desribing Reon's safety properties. Again, these are

de�ned in terms of environment assumptions and and servie guarantees. The environment

assumptions are simple well-formedness onditions, onsistent with the well-formedness as-

sumptions for Rambo:

� Well-formedness:

{ For every i:

� No join(reon)

i

or reon(�; �)

i

event is preeded by a fail

i

event.

� At most one join(reon)

i

event ours.

� Any reon(�; �)

i

event is preeded by a join-ak(reon)

i

event.

� Any reon(�; �)

i

event is preeded by an -ak for any preeding reon(�; �)

i

event.

{ For every , at most one reon(�; )

�

event ours.

{ For every , 

0

, x, and i, if a reon(; 

0

)

i

event ours, then it is preeded by:

� A report()

i

event, and

� A join-ak(reon)

j

for every j 2 members(

0

).

The safety guarantees provided by the servie are as follows:

� Well-formedness: For every i:
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{ No join-ak(reon)

i

, reon-ak(�)

i

, report(�)

i

, or new-on�g(�; �)

i

event is preeded

by a fail

i

event.

{ Any join-ak(reon)

i

(resp., reon-ak()

i

) event has a preeding join(reon)

i

(resp.,

reon

i

) event with no intervening invoation or response ation for x and i.

� Agreement: If new-on�g(; k)

i

and new-on�g(

0

; k)

j

both our, then  = 

0

. (No

disagreement arises about what the k

th

on�guration identi�er is, for any k.)

� Validity: If new-on�g(; k)

i

ours, then it is preeded by a reon(�; )

i

0

for some i

0

for whih a mathing reon-ak(nok)

i

0

does not our. (Any on�guration identi�er

that is announed was previously requested by someone who did not reeive a negative

aknowledgment.)

� No dupliation: If new-on�g(; k)

i

and new-on�g(; k

0

)

i

0

both our, then k = k

0

.

(The same on�guration identi�er annot be assigned to two di�erent positions in the

sequene of on�guration identi�ers.)

6.2 Reon�guration Servie Implementation

In this setion, we desribe a distributed algorithm that implements the Reon servie for a

partiular objet x (and we suppress mention of x). This algorithm is onsiderably simpler

than the Reader-Writer algorithm. It onsists of a Reon

i

automaton for eah loation i,

whih interats with a olletion of global onsensus servies Cons(k; ), one for eah k � 1

and eah  2 C, and with a point-to-point ommuniation servie.

Cons(k; ) aepts inputs from members of on�guration , whih it assumes to be the

k � 1

st

on�guration. These inputs are proposed new on�gurations. The deision reahed

by Cons(k; ), whih must be one of the proposed on�gurations, is determined to be the

k

th

on�guration.

Reon

i

is ativated by the joining protool. It proesses reon�guration requests us-

ing the onsensus servies, and reords the new on�gurations that the onsensus servies

determine. Reon

i

also onveys information about new on�gurations to the members of
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those on�gurations, and releases new on�gurations for use by Reader-Writer

i

. It returns

aknowledgments and on�guration reports to its lient.

6.3 Consensus servies

In this setion, we speify the behavior we assume for onsensus servie Cons(k; ), for a �xed

k � 1 and  2 C. This behavior an be ahieved using the Paxos onsensus algorithm [9℄, as

desribed formally in [14℄. Fix V to be the set of onsensus values. (In the implementation

of the Reon servie, V will be instantiated as C.) The external signature of Cons(k; ) is

given in Figure 6-2.

Input:

init(v)

k;;i

, v 2 V , i 2 members()

fail

i

, i 2 members()

Output:

deide(v)

k;;i

, v 2 V , i 2 members()

Figure 6-2: Cons(k; ): External signature

We desribe the safety properties of Cons(k; ) in terms of properties of a trae � of

ations in the external signature. Namely, we de�ne the lient safety assumptions:

� Well-formedness: For any i 2 members():

{ No init(�)

k;;i

event is preeded by a fail(i) event.

{ At most one init(�)

k;;i

event ours in �.

And we de�ne the onsensus safety guarantees:

� Well-formedness: For any i 2 members():

{ No deide(�)

k;;i

event is preeded by a fail(i) event.

{ At most one deide(�)

k;;i

event ours in �.

{ If a deide(�)

k;;i

event ours in �, then it is preeded by an init(�)

k;;i

event.

� Agreement: If deide(v)

k;;i

and deide(v

0

)

k;;i

0

events our in �, then v = v

0

.

� Validity: If a deide(v)

k;;i

event ours in �, then it is preeded by an init(v)

k;;j

.
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We assume that the Cons(k; ) servie is implemented using the Paxos algorithm [9℄, as

desribed formally in [14℄. This satis�es the safety guarantees desribed above, based on the

safety assumptions:

Theorem 6.3.1 If � is a trae of Paxos that satis�es the safety assumptions of Cons(k; ),

then � also satis�es the (well-formedness, agreement, and validity) safety guarantees of

Cons(k; ).

The Paxos algorithm also satis�es the following lateny result:

Theorem 6.3.2 Consider a timed exeution � of the Paxos algorithm and a pre�x �

0

of �.

Suppose that:

1. The underlying system \behaves well" after �

0

, in the sense that timing is \normal"

(what is alled \regular" in [14℄)

1

and no proess failures or message losses our.

2. For every i that does not fail in �, an init(�)

i

event ours in �

0

.

3. There exist R 2 read-quorums() and W 2 write-quorums() suh that for all i 2

R [W , no fail

i

event ours in �.

Then for every i that does not fail in �, a deide(�)

i

event ours, no later than 9d+ " time

after the end of �

0

(" > 0).

6.4 Reon automata

A Reon

i

proess is responsible for initiating onsensus exeutions to help determine new

on�gurations, for telling the loal Reader-Writer

i

proess about a newly-determined on-

�guration, and for disseminating information about newly-determined on�gurations to the

members of those on�gurations. The signature and state of Reon

i

appear in Figures 6-3,

and the transitions in Figure 6-4.

1

In [14℄, regular timing implies that messages are delivered reliably within time d, that loal proessing

time is 0, and that information is \gossiped" at intervals of d.
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Signature:

Input:

join(reon)

i

reon(; 

0

)

i

; ; 

0

2 C; i 2 members()

deide()

k;i

;  2 C; k 2 N

+

rev(hon�g; ; ki)

j;i

,  2 C, k 2 N

+

,

i 2 members(), j 2 I � fig

rev(hinit; ; 

0

; ki)

j;i

, ; 

0

2 C, k 2 N

+

,

i; j 2 members(), j 6= i

fail

i

Output:

join-ak(reon)

i

new-on�g(; k)

i

,  2 C; k 2 N

+

init(; 

0

)

k;i

, ; 

0

2 C; k 2 N

+

, i 2 members()

reon-ak(b)

i

, b 2 fok; nokg

report()

i

,  2 C

send(hon�g; ; ki)

i;j

,  2 C, k 2 N

+

,

j 2 members()� fig

send(hinit; ; 

0

; ki)

i;j

; ; 

0

2 C; k 2 N

+

;

i; j 2 members(), j 6= i

State:

status 2 fidle ; ativeg, initially idle .

re-map 2 CMap , initially re-map(0) = 

0

and re-map(k) = ? for all k 6= 0.

did-init � N

+

, initially ;

did-new-on�g � N

+

, initially ;

ons-data 2 (N

+

! (C �C)): initially ? everywhere

re-status 2 fidle ; ativeg, initially idle

outome 2 fok; nok;?g, initially ?

reported � C, initially ;

failed , a Boolean, initially false

Figure 6-3: Reon

i

: Signature and state

Loation i joins the Reon servie when a join(reon) input ours. Reon

i

responds with

a join-ak.

Reon

i

inludes a state variable re-map, whih holds a CMap: re-map(k) =  indi-

ates that i knows that  is the kth on�guration identi�er. If Reon

i

has learned that  is

the kth on�guration identi�er, it an onvey this to its loal Reader-Writer

i

proess using a

new-on�g(; k)

i

output ation, and it an inform any other Reon

j

proess, j 2 members(),

by sending a hon�g; ; ki message. Reon

i

learns about new on�gurations either by reeiv-

ing a deide input from a Cons servie, or by reeiving a on�g or init message from another

proess.

Reon

i

reeives a reon�guration request from its environment via a reon(; 

0

)

i

event.

Upon reeiving suh a request, Reon

i

determines whether (a) i is a member of the known

on�guration  with the largest index k � 1 and (b) it has not already prepared data for

a onsensus for the next larger index k. If both (a) and (b) hold, Reon

i

prepares suh

data, onsisting of the pair h; 

0

i, where  is the k � 1st on�guration identi�er and 

0

is

the proposed on�guration identi�er. Otherwise, Reon

i

responds negatively to the new

reon�guration request.

Reon

i

initiates partiipation in a Cons(k; ) algorithm when its onsensus data are pre-
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Input join(reon)

i

E�et:

if :failed then

if status = idle then

status  ative

Output join-ak(reon)

i

Preondition:

:failed

status = ative

E�et:

none

Output new-on�g(; k)

i

Preondition:

:failed

status = ative

re-map(k) = 

k =2 did-new-on�g

E�et:

did-new-on�g  did-new-on�g [ fkg

Output send(hon�g; ; ki)

i;j

Preondition:

:failed

status = ative

re-map(k) = 

E�et:

none

Input rev(hon�g; ; ki)

j;i

E�et:

if :failed then

if status = ative then

re-map(k) 

Output report()

i

Preondition:

:failed

status = ative

 62 reported

S = f` : re-map(`) 2 Cg

 = re-map(max(S))

E�et:

reported  reported [ fg

Input reon(; 

0

)

i

E�et:

if :failed then

if status = ative then

re-status  ative

let S = f` : re-map(`) 2 Cg

if S 6= ; and  = re-map(max(S))

and ons-data(max(S) + 1) = ? then

ons-data(max(S) + 1) h; 

0

i

else outome  nok

Output init(

0

)

k;;i

Preondition:

:failed

status = ative

ons-data(k) = h; 

0

i

if k � 1 then k 2 did-new-on�g

k 62 did-init

E�et:

did-init  did-init [ fkg

Output send(hinit; ; 

0

; ki)

i;j

Preondition:

:failed

status = ative

ons-data(k) = h; 

0

i

k 2 did-init

E�et:

none

Input rev(hinit; ; 

0

; ki)

j;i

E�et:

if :failed then

if status = ative then

if re-map(k � 1) = ? then re-map(k � 1) 

if ons-data(k) = ? then ons-data(k) h; 

0

i

Input deide(

0

)

k;;i

E�et:

if :failed then

if status = ative then

re-map(k) 

0

if re-status = ative then

if ons-data(k) = h; 

0

i then outome  ok

else outome  nok

Output reon-ak(b)

i

Preondition:

:failed

status = ative

re-status = ative

b = outome

E�et:

re-status = idle

outome  ?

Input fail

i

E�et:

failed  true

Figure 6-4: Reon

i

: Transitions.
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pared. After initiating partiipation in a onsensus algorithm, it sends initmessages to inform

the other members of  about its initiation of onsensus. The other members use this infor-

mation to prepare to partiipate in the same onsensus algorithm (and also to update their

re-map if neessary). Thus, there are two ways in whih Reon

i

an initiate partiipation

in onsensus: as a result of a loal reon event, or by reeiving an init message from another

Reon

j

proess.

When Reon

i

reeives a deide(

0

)

k;i

diretly from Cons(k; ), it reords on�guration 

0

in re-map It also determines if a response to its loal lient is neessary (if a loal reon-

�guration operation is ative), and determines the response based on whether the onsensus

deision is the same as the loally-proposed on�guration identi�er.

Eah onsensus servie Cons(k; ) is responsible for onveying onsensus deisions to

members(). The Reon

i

omponents are responsible for telling members(

0

) about 

0

by

sending new-on�g messages.

Theorem 6.4.1 The Reon implementation guarantees well-formedness, agreement, and va-

lidity.
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Chapter 7

Conditional Performane Analysis

In this hapter we give a onditional lateny analysis of the new algorithm, fousing on the

improvements realized by the aggressive on�guration-upgrade mehanism. We show that

the new algorithm allows the system to reover rapidly after a period of unreliable network

onnetivity or bursty reon�guration. In partiular, we prove that if on�gurations do not

fail too rapidly, then progress is guaranteed. First, in Setion 7.1, we present a few general

de�nitions. In Setion 7.2 and 7.3, we de�ne the exeutions being onsidered, and the

environmental assumptions that these exeutions satisfy. Then in Setions 7.5, 7.6, and 7.7,

we prove a series of lemmas that desribe how long it takes on�guration-upgrade operations

to omplete. Finally, in Setion 7.8 we state the main stabilization theorem, and prove that

operations will omplete as long as the exeution assumptions are met. Throughout this

hapter, we ompare the results with those proved in Setion 9 of the Rambo tehnial

report [13℄.

7.1 De�nitions

In this setion, we present a few basi de�nitions. These de�nitions do not depend on timing,

but are needed only for the onditional performane analysis. For these de�nitions, assume

that � is an exeution.

First we de�ne what it means for a on�guration to be installed: on�guration  is
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installed when either of the following holds: (i)  = 

0

or (ii) for some k > 0, for all non-

failed i 2 members((k�1)), a deide()

k;i

event ours in �. That is, on�guration  = (k)

is installed when every non-failed member of on�guration (k � 1) performs a deide((k))

event.

Next, we de�ne an event that ours when a on�guration is guaranteed to be ready to

be upgraded (though an upgrade operation may our earlier than this event). We de�ne

the upgrade-ready(k) event, for k > 0, to be the �rst event in � after whih, 8` � k, the

following hold: (i) on�guration (`) is installed, and (ii) 8i 2 members((k � 1)) suh that

i has not failed at the time of the event, map(`)

i

6= ?.

7.2 Limiting Nondeterminism

The algorithm, as presented, is highly nondeterministi. Therefore for the purposes of anal-

ysis, we restrit our attention to a subset of exeutions in whih automata follow ertain

timing-related rules. For the rest of this thesis we assume a �xed onstant d > 0. We as-

sume that gossip ours at �xed intervals of time d, and also that in times of good behavior

messages are delivered within time d

1

.

1. Eah node, i 2 I, performs a send

i;j

for all j 2 world

i

every time d as measured by the

loal lok of i.

2. Eah node, i 2 I, performs a send

i;j

(an \important" send) whenever any of the

following ours:

� Just after a rev(join)

j;i

event ours, if status

i

= ative.

� (Responses for messages) Just after a rev(�; �; �; �; pns; �)

j;i

event ours, if pns >

pnum2 (j)

i

and status

i

= ative.

� Just after a new-on�g(; k)

i

event ours if status

i

= ative and j 2 world

i

.

� Just after a rev(�; �; �; m; �; �)

j;i

event ours, if op:phase

i

6= idle and for some

k, m(k) 6= ? and map(k)

i

= ?.

1

It seems, perhaps, that we should not be using d to represent both these quantities; however for onsis-

teny with the original Rambo presentation, we ontinue to use this onvention.
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join-ak

i

� e + 2d

i 2 J(t)

t

Figure 7-1: De�nition of J(t)

� Just after a read

i

, write

i

, or query-�x

i

event ours, if j 2 members(), for some 

in the range of op:map

i

.

� Just after a fg-upgrade(k)

i

event ours for on�guration-upgrade , if j 2

members(map(k

0

)

i

) for any k

0

2 removal-set().

� Just after a fg-upg-query-�x(k)

i

event ours for on�guration-upgrade , if j 2

members(map(k

0

)

i

) where k

0

= target().

3. Loally ontrolled ations of any automaton in the system that have no e�ets, other

than the important sends desribed just above, are performed only one.

4. If an ation is enabled to our at node i, and has not yet been performed (and

therefore is not restrited by the previous rule), then it ours immediately, with zero

time passing.

7.3 The Behavior of the Environment

Muh of the analysis in the original Rambo algorithm makes guarantees about the lateny

of requests when \normal behavior" holds. In Setion 9 of [13℄, Lynh and Shvartsman begin

to examine how the system behaves in exeutions that ahieve normal behavior after some

point. Here we adopt a similar model. We �rst de�ne what it means for an exeution to

exhibit \normal behavior" from some point onward.

For the rest of the thesis, we use the following notation: given some time t 2 R

�0

,

J(t; e; �) represents the set of all nodes j suh that join-ak

j

ours no later than time

t�e�2d in �. (Reall that d has been �xed, above.) In most ases, we will use the notation

J(t), when e and � are lear from the ontext.
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7.3.1 Normal Timing Behavior from Some Point Onward

Let � be an admissible timed exeution, and �

0

a �nite pre�x of �. Arbitrary behavior is

allowed in �

0

: messages may be lost or delivered late, loks may run at arbitrary rates, and

in general any asynhronous behavior may our. However we assume that after �

0

, good

behavior resumes. We say that � is an �

0

-normal exeution if the following assumptions

hold:

1. Initial time: The join-ak

i

0

event ours at time 0, ompleting the join protool for

node i

0

, the node that reated the data objet.

2

2. Regular timing: The loal loks of allRambo II automata (i.e., Reader-Writer

i

;Reon

i

; Joiner

i

)

at all nodes progress at exatly the rate of real time, after �

0

.

3. Reliable message delivery: No message sent in � after �

0

is lost.

4. Message delay bound: If a message is sent at time t in � and it is delivered, then it is

delivered by time max(t; `time(�

0

)) + d.

7.3.2 Con�guration{Viability

Next we will de�ne on�guration-viability, whih is the key assumption needed to guarantee

that read and write operations omplete. As in all quorum-based algorithms, liveness de-

pends on all the nodes in some quorums remaining alive. In Rambo II, a node an make

progress only if it is able to ommuniate with the read and write quorums of all extant

on�gurations. We say that a on�guration has failed when either: (i) some node in every

read-quorum of the on�guration has failed, or (ii) some node in every write-quorum of the

on�guration has failed. If a on�guration fails before a new on�guration is installed and

the old on�guration removed, then the system will be e�etively rashed: no future read or

write request will ever omplete. In order to guarantee that operations omplete, then, it is

neessary for the lient using the Rambo II system to initiate appropriate reon�gurations

2

This assumption was assumed impliitly in the initial Rambo papers, and was missing from the list of

assumptions.
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to ensure that quorums remain aessible. The on�guration viability assumption is a om-

plex property, depending on the behavior of the algorithm, the lient initiating appropriate

reon�gurations, and on the patterns of node failure and message loss.

We de�ne what it means for an exeution to be (�

0

, e, �)-on�guration-viable: Let � be

an admissible timed exeution, and let �

0

be a �nite pre�x of �. Let e; � 2 R

�0

. Then � is

(�

0

, e, �)-on�guration-viable if the following holds:

For all i; ; k suh that map(k)

i

=  in some state in �, there exist R 2 read-quorums()

and W 2 write-quorums() suh that at least one of the following holds:

1. No proess in R [W fails in �.

2. There exists a �nite pre�x �

install

of � suh that for all ` � k + 1, on�guration (`)

is installed in �

install

and no proess in R [ W fails in � by time max(`time(�

0

) +

e; `time(�

install

)) + � .

By assuming that an exeution is (�

0

,e,�)-on�guration-viable, we ensure that the algo-

rithm has at least time � after a new on�guration is installed to lean up obsolete on�gura-

tions. Also, sine all on�gurations are viable until at least time e+ � after �

0

, the algorithm

has at least time e+ � after the system stabilizes to lean up obsolete on�gurations.

7.3.3 Reon-Spaing

While reon�gurations annot impede a read/write operation, too frequent reon�gurations

an slow down a read/write operation by introduing new quorums that must be ontated.

In order to bound the time required for a read/write operation, we need to bound the

frequeny of reon�gurations.

There are two omponents to Reon-Spaing. Let � be an �

0

-normal exeution, and

e 2 R

�0

. Then � satis�es:

1. (�

0

,e)-reon-spaing-1 : if for any reon(; �)

i

event in � after �

0

the preeding report()

i

event ours at least time e earlier.
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2. (�

0

,e)-reon-spaing-2 : if for any reon(; �)

i

event in � after �

0

there exists a write-

quorum W 2 write-quorums() suh that for all j 2 W , report()

j

preedes the

reon(; �)

i

event in �.

We say that � satis�es (�

0

,e)-reon-spaing if it satis�es both (�

0

,e)-reon-spaing-1 and

(�

0

,e)-reon-spaing-2.

Notie that, instead of assuming the seond part of this requirement, we ould instead

modify the reon automaton to enfore this ordering: the automaton ould ollet gossip

messages indiating whih nodes had performed a report(), and delay or abort the next

reon if it preeded an appropriate set of report events. We hoose to instantiate this as

an assumption, rather than as a modi�ation to the automaton for two reasons. First, we

prefer to retain ompatibility with the original Rambo analysis. Seond, by stating this as

an assumption, it is possible that the lient using the Rambo II algorithm might hoose to

violate the seond part of the assumption. As a result, those guarantees that depend on this

assumption will not hold; however reon�gurations may be more performed more frequently.

Even if the seond part of this assumption is violated, safety is still guaranteed: atomiity is

maintained, and read and write operations are guaranteed to terminate. However, operations

might not terminate rapidly in 8d, as in Setion 7.8.

7.3.4 Join-Connetivity

The hypothesis of join-onnetivity is designed to ensure that all non-failing joining proesses

are able to learn about eah other. Otherwise, it is possible for the proesses to join and fail

in suh a way that the world-views of the nodes are partitioned into multiple omponents,

with di�erent nodes aware of di�erent, disonneted piees of the world. It is also important

for the lateny analysis to bound how long this proess takes. If two nodes both omplete

the join protool and do not fail, then they should learn about eah other within a bounded

time. For this reason, we de�ne the notion of join-onnetivity as follows:

Let � be an �

0

-normal exeution, e 2 R

�0

. We say that � satis�es (�

0

,e)-join-onnetivity

provided that: for any time t and nodes i; j 2 J(t; e; �), if neither i nor j fails until after

max(t� 2d; `time(�

0

) + e), then by time max(t� 2d; `time(�

0

) + e), i 2 world

j

.
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This indiates, then, that if two nodes both omplete joining by some time t after �

0

,

then within time e the two nodes are aware of eah other. If two nodes both omplete joining

by some time t during �

0

, then within time e after �

0

the two nodes are aware of eah other.

Prior results on joining from [13℄ suggest that in some ases it an be shown that the

urrent simple join protool in the Rambo II algorithm provides (�

0

; d + ddlog(jJ j)e)-join-

onnetivity. However we will not prove - or depend on - this earlier result. Instead we will

assume that the system provides (�

0

,e)-join-onnetivity for some e, and prove our results

in this ontext. We leave it as an open problem to determine the exat value of e; a more

ompliated and interative join protool might well provide better results.

7.3.5 Reon-Readiness

The next assumption we make is related to the problem of reon�guration by a node that

has reently joined. We will assume that every node that is proposed to be a member of

a on�guration has been a member of the Rambo II system for a reasonable period of

time. This allows us to onlude that everyone is aware of nodes that are part of ative

on�gurations.

An �

0

-normal exeution � satis�es (�

0

; e)-reon-readiness if the following property holds:

if for some node i and some on�gurations  and 

0

, a reon(; 

0

)

i

event ours in � at time

t, then:

� If j 2 members(

0

), then j performs a join-ak prior to the reon event.

� If the reon event ours after �

0

, and if j 2 members(

0

), then j 2 J(t; e; �).

This prohibits nodes that have just joined the system, but are not yet in anyone's world

view from forming new on�gurations. As long as e is not too large, this seems a reasonable

requirement.

7.3.6 Upgrade-Readiness

The last assumption we make ensures that a node initiates an upgrade operation only if it

has joined suÆiently long ago. This ensures that when a node performs an upgrade, it has
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relatively up-to-date information.

We say that an �

0

-normal exeution � satis�es (�

0

; e)-upgrade-readiness if the following

property holds: if for some i a fg-upgrade(�)

i

event ours in � after �

0

at time t, then

i 2 J(t).

In partiular, we suggest that in an implementation of this algorithm, only members

of on�guration (k) initiate operations to upgrade on�guration (k). In this ase, reon-

readiness guarantees upgrade-readiness.

7.3.7 Fixed Parameters

We have already �xed d suh that gossip ours at �xed intervals of time d, and in times of

good behaviour messages are delivered with time d. We now �x e as well. Additionally, for the

rest of the thesis, we �x � and �

0

, and assume that � is an �

0

-normal exeution. We therefore

sometimes suppress these parameters, as they are lear from ontext. For example, we will

use the notation J(t) to represent J(t; e; �). When we refer to join-onnetivity, we mean

(�

0

; e)-join-onnetivity; reon-readiness is used to mean (�

0

; e)-reon-readiness; upgrade-

readiness is used to mean (�

0

; e)-upgrade-readiness; � -reon-spaing is used to mean (�

0

; �)-

reon-spaing; � -on�guration-viability is used to mean (�

0

; e; �)-on�guration viability.

7.4 Basi Lemmas

In this setion, we prove a few basi lemmas that will be useful in the rest of the thesis.

The following two lemmas demonstrate some basi fats about the sets J(�):

Lemma 7.4.1 1. If t � t

0

, then J(t) � J(t

0

).

2. For all t; t

0

, J(t) � J(max(t; t

0

)).

Proof. By de�nition of J(�). �

The following lemma uses the reon-readiness assumption to say something stronger

about the joining time of members of a on�guration:
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t

i 2 J(t)

t'

reon(�; h)join-ak

i

�

0

� e+ 2d

Figure 7-2: Lemma 7.4.2, Case 1

t

i 2 J(t)

t'

reon(�; h)join-ak

i

�

0

� e+ 2d

Figure 7-3: Lemma 7.4.2, Case 2

Lemma 7.4.2 Assume that � is an �

0

-normal exeution satisfying (�

0

; e)-reon-readiness.

If h is a on�guration proposed at time t

0

by a reon(�; h) event, t � t

0

, and t � `time(�

0

) +

e+ 2d, then members(h) � J(t).

Proof. First, assume that t

0

� `time(�

0

). Then the result follows immediately by reon-

readiness and Lemma 7.4.1. Assume, then, that t

0

< `time(�

0

). By reon-readiness, every

member of on�guration h performs a join-ak by `time(�

0

). Therefore, by de�nition of J ,

members(h) � J(`time(�

0

)+ e+2d). Sine t � `time(�

0

)+ e+2d, Lemma 7.4.1 implies that

J(`time(�

0

) + e + 2d) � J(t). �

The next lemma shows a similar result about upgrade-readiness:

Lemma 7.4.3 Assume that � is an �

0

-normal exeution satisfying (�

0

; e)-upgrade-readiness.

If a fg-upgrade(�)

i

event ours in � at time t, for some node i, then i 2 J(max(t; `time(�

0

)+

e+ 2d)).

Proof. First, assume that the fg-upgrade event ours after �

0

. Then the lemma follows

immediately by the de�nition of upgrade-readiness and Lemma 7.4.1. Assume, then, that the

fg-upgrade event ours in �

0

. By the preondition of fg-upgrade, i must perform a join-ak

prior to the fg-upgrade event; otherwise status

i

6= ative when the fg-upgrade ours, whih

ontradits the preondition of the fg-upgrade. Therefore i performs a join-ak

i

at latest at

time `time(�

0

), and therefore i 2 J(`time(�

0

) + e + 2d), and the lemma again follows by

Lemma 7.4.1. �
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7.5 Propagation of Information

In this setion, we introdue the notion of information being in the \mainstream". One a

suÆient set of nodes know a partiular fat, then, under appropriate assumptions, this fat

will never be forgotten by the system as a whole. In partiular, we show that this is true

about information in the map: updates to the map are propagated. One every non-failed

node in J(t) updates its map, then at any time in the future, at time t

0

� t + 2d, every

non-failed node in J(t

0

) will be aware of this update.

If m is a CMap and � is a �nite pre�x of � with `time(�) = t � e + 2d, then we say

that m is mainstream after � provided that the following holds: For every i 2 J(t) suh

that fail

i

does not our in �, m � `state(�):map

i

.

Further, we de�ne the following notation: given an exeution � and a time t 2 R

�0

, we

de�ne �(t; �) to be the �nite pre�x of � suh that `time(�(t; �)) = t and every event that

ours at time t ours in �(t; �). As we have already �xed �, for the rest of this paper we

use the simpler notation of �(t). We then say that a CMap m is mainstream after t if it is

mainstream after �(t).

The �rst lemma shows a basi property of mainstream maps:

Lemma 7.5.1 Assume that � is an exeution, t is a time, and m, m2 are CMaps. If

m � m2 , and m2 is mainstream after t, then m is mainstream after t.

Proof. Immediate from the de�nition of mainstream. �

The following lemma shows that a node's map is monotone:

Lemma 7.5.2 Assume that �

00

is a �nite pre�x of exeution �, and that �

000

is a pre�x of

�

00

. Assume that i is a node. Then `state(�

000

):map

i

� `state(�

00

):map

i

.

Proof. In the algorithm, map

i

is only modi�ed by the update funtion, and the update

funtion is monotone; that is, for all CMaps new-map, map � update(map; new-map).

�

Lemma 7.5.3 Assume that � is an exeution, and t and t

0

are times, and that t � t

0

.

Assume that i is a node, and m is a CMap.
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+ e�

0

� e
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`state(�(t)):map

i

mainstream after t+ 2d

t

fail

i

join-ak

i

Figure 7-4: Lemma 7.5.4

1. If m � `state(�(t)):map

i

, then m � `state(�(t

0

)):map

i

.

2. `state(�(t)):map

i

� `state(�(t

0

)):map

i

.

Proof. This follows by Lemma 7.5.2, where �

000

= �(t) and �

00

= �(t

0

). �

Next, we demonstrate a partiular ase when a map beomes mainstream.

Lemma 7.5.4 Let � be an �

0

-normal exeution satisfying (�

0

,e)-join-onnetivity. Let t be

a time suh that t � `time(�

0

) + e. If i 2 J(t + 2d), and i does not fail in �(t + d), then

`state(�(t)):map

i

is mainstream after t+ 2d.

Proof. Let m = `state(�(t)):map

i

. To show that m is mainstream after t+2d, we need

to show that for all j 2 J(t + 2d) suh that j does not fail in �(t + 2d), m � `state(�(t +

2d)):map

j

. Fix any suh j. By join-onnetivity, j 2 world

i

by time max(t; `time(�

0

)+e) �

t.

By time t + d, i sends a gossip message, msg, to node j suh that m � msg :map

i

.

By time t + 2d, j reeives the gossip message and updates map

j

with msg :map. By the

monotoniity of the update funtion, msg :map � update(map

j

;msg :map). Therefore

m � `state(�(t+ 2d)):map

j

, as required. �

The following lemma shows that if two nodes are both in the set J(t + 2d), then infor-

mation is propagated from one to the other.

Lemma 7.5.5 Let � be an �

0

-normal exeution satisfying (�

0

,e)-join-onnetivity. Assume

that t and t

0

are times, and t

0

� 2d � t � `time(�

0

) + e. Assume that i and j are nodes, and

i; j 2 J(t+ 2d). Also, assume that i does not fail in �(t+ 2d), and j does not fail in �(t

0

).

If m � `state(�(t)):map

i

, then m � `state(�(t

0

)):map

j

.

77



�

0

�

0

+ e+ 2d reon(h; h

0

)

i

t

0

m mainstream after t m mainstream after t

0

+ 2d

t

0

+ 2dt

=)

Figure 7-5: Lemma 7.5.6

Proof. By Lemma 7.5.4, `state(�(t)):map

i

is mainstream after t + 2d. Notie that j 2

J(t+ 2d), and therefore, by the de�nition of mainstream, `state(�(t)):map

i

� `state(�(t+

2d)):map

j

. Sine t+2d � t

0

, by Lemma 7.5.3, `state(�(t+2d)):map

j

� `state(�(t

0

)):map

j

.

Putting the inequalities together, m � `state(�(t

0

)):map

j

. �

We now show that one a map is in the mainstream, after 2d it will always be in the

mainstream. First, Lemma 7.5.6 onsiders a speial ase: it onsiders only times t

0

after

the system has stabilized, when a reon(h; h

0

) event ours. Seond, Lemma 7.5.7 handles

the ase where the map is in the mainstream at a time in �

0

. Third, Lemma 7.5.8 proves

the existene of a on�guration with some neessary speial properties to prove the main

theorem. Finally, Lemmas 7.5.9 and 7.5.10 prove the general result, as summarized in

Lemma 7.5.11.

First, we de�ne a suessful reon event as follows: a reon(�; ) event is suessful if at

some time afterwards a deide()

k;i

event ours for some k and i.

Lemma 7.5.6 Let � be an �

0

-normal exeution satisfying: (i) (�

0

,e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, and (iv) (�

0

; e; 2d)-on�guration-

viability.

Assume that t and t

0

are times, and that t � `time(�

0

) + e + 2d and t

0

� t. Let h and

h

0

be two on�gurations, and assume that reon(h; h

0

)

�

ours at time t

0

, and that this is a

suessful reon event.

If m is mainstream after t, then m is mainstream after t

0

+ 2d.

Proof. Fix t and m suh that m is mainstream after t. We prove the result by indution

on the number of suessful reon events that our at or after time t.
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As the base ase, onsider the �rst suessful reon(h; h

0

) event that ours in � at a time

t

0

� t. We need to show that m is mainstream after t

0

+2d. Therefore �x some j

0

2 J(t

0

+2d)

suh that fail

j

0

does not our in �(t

0

+2d). We will show that m � `state(�(t

0

+2d)):map

j

0

.

Choose some node j 2 members(h) suh that j does not fail in �(t

0

+2d); that is, j does

not fail until after t

0

+ 2d. Con�guration-viability ensures that suh a node exists. Notie

that j 2 J(t), by Lemma 7.4.2. Sine m is mainstream after t, then m � `state(�):map

j

.

Note that on�guration h is proposed prior to time t, sine the reon(h; h

0

) event is the

�rst suessful reon event at or after time t. Therefore on�guration h is also proposed prior

to time t

0

. By Lemma 7.4.1, j 2 J(t

0

+ 2d). By assumption j

0

2 J(t

0

+ 2d) and does not fail

in �(t

0

+ 2d). Therefore, by Lemma 7.5.5, m � `state(�(t

0

+ 2d)):map

j

0

, as needed.

Next we show the indutive step. Indutively assume the following: if reon(�; �) is one

of the �rst n suessful reon events in � that our at time t

0

� t, then m is mainstream

after t

0

.

Consider the (n+1)

st

suessful reon(h; h

0

) event in � that ours at or after t. Assume

this event ours at time t

0

. We need to show that m is mainstream after t

0

+2d. Therefore

�x some j

0

2 J(t

0

+ 2d) suh that fail

j

0

does not our in �(t

0

+ 2d). We will show that

m � `state(�(t

0

+ 2d)):map

j

0

.

Let � be the n

th

suessful reon(�; h) event, and assume that � ours at time t

1

. Note

that the �rst argument of the (n + 1)

st

suessful reon event must be the on�guration

proposed by the n

th

suessful reon event.

2d-reon-spaing-1 guarantees that t

0

� t

1

+2d. The indutive hypothesis shows that m

is mainstream after t

1

+ 2d.

Choose some node j 2 members(h) suh that no fail

j

ours in �(t

0

+2d). Con�guration-

viability ensures that suh a node exists. By reon-readiness and Lemma 7.4.1, j 2 J(t

0

+2d).

By assumption j

0

2 J(t

0

+ 2d) and j

0

does not fail in �(t

0

+ 2d). By Lemma 7.5.5, m �

`state(�(t

0

+ 2d)):map

j

0

, as needed. �

The next lemma onsiders the ase where a map is mainstream in �

0

or soon after, and

shows that it is mainstream after `time(�

0

) + e + 4d.
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e+ 2d

m mainstream after �

0

+ e+ 4d

�

0

+ e+ 4d�

0

+ e+ 2dt

m mainstream after t =)

Figure 7-6: Lemma 7.5.7

Lemma 7.5.7 Let � be an �

0

-normal exeution satisfying (i) (�

0

,e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, and (iv) (�

0

; e; 4d)-on�guration-

viability.

Assume that t is a time and that e + 2d � t � `time(�

0

) + e + 2d. If m is mainstream

after t, then m is mainstream after `time(�

0

) + e+ 4d.

Proof. Consider on�guration 

0

. By on�guration-viability, there exists a read-quorum,

R 2 read-quorums(

0

), and a write-quorum, W 2 write-quorums(

0

) suh that no node in

R [W fails by `time(�

0

) + e + 4d.

Let t

1

= `time(�

0

) + e+ 2d. Consider i

0

2 R [W ; i

0

does not fail by `time(�

0

) + e+ 4d.

Sine i

0

performs a join-ak at time 0, by the assumption that � is an �

0

-normal exeution,

and sine t � e+ 2d, i

0

2 J(t). Also note that by Lemma 7.5.3, i

0

2 J(t

1

).

Sine m is mainstream after t, m � `state(�(t)):map

i

0

. Therefore, we know by

Lemma 7.5.3 that m � `state(�(t

1

)):map

i

0

. By Lemma 7.5.4, we know that `state(�(t

1

)):map

i

0

is mainstream after t

1

+2d. Therefore by Lemma 7.5.1, m is mainstream after t

1

+2d; that

is, m is mainstream after `time(�

0

) + e+ 4d. �

The next lemma shows the existene of a ertain on�guration, h

0

, with some partiular

properties. This will be useful in proving Lemma 7.5.11.

Lemma 7.5.8 Let � be an �

0

-normal exeution satisfying: (i) (�

0

,e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, and (iv) (�

0

; e; 4d)-on�guration-

viability.

Assume that t and t

0

are times. Assume that `time(�

0

) + e + 2d � t � t

0

� 2d and

`time(�

0

) + e+6d � t

0

. Assume that m is mainstream after t. Then there exists a on�gu-

ration h, with index k, with the following properties:
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1. members(h) � J(t

0

).

2. For all members i of on�guration h that do not fail in �(t

0

), m � `state(�(t

0

�

2d)):map

i

.

3. No suessful reon(h; �) event ours in �(t

0

� 4d).

Proof. There are three di�erent sub-ases to onsider.

1. No suessful reon event ours in �(t

0

� 4d):

Let h = 

0

. Notie that members(h) � J(t), sine i

0

(the only member of 

0

) ompletes

a join-ak at time 0 (by assumption on �), and t > `time(�

0

) + e + 2d. This, then,

implies Property 1 by Lemma 7.4.1. Sine i

0

2 J(t) and m is mainstream after

t, m � `state(�(t)):map

i

0

. Therefore, sine t � t

0

� 2d, by Lemma 7.5.3, m �

`state(�(t

0

� 2d)):map

i

0

, as required for Property 2. Property 3 holds trivially.

2. A suessful reon event ours in �(t

0

� 4d) after time t:

Consider the last suessful reon event in � that ours in �(t

0

� 4d); let h be the

on�guration identi�er appearing as the seond argument in this reon event. Assume

that this reon event ours at time t

re

. Note that t < t

re

� t

0

� 4d. Therefore

(sine t

0

� `time(�

0

) + e + 6d and t

0

� t

re

) by Lemma 7.4.2, members(h) � J(t

0

), as

required for Property 1. Sine t

re

> t, Lemma 7.5.6 shows that m is mainstream after

t

re

+2d. Reall that t

re

+2d � t

0

�2d. By the mainstream property, for every member,

i, of on�guration h that does not fail in �(t

0

� 2d), m � `state(�(t

re

+ 2d)):map

i

;

therefore, for eah of these members, i, by Lemma 7.5.3, m � `state(�(t

0

�2d)):map

i

,

as required for Property 2. Property 3 holds by the seletion of the last suessful reon

event in �(t

0

� 4d).

3. Neither Case 1 nor Case 2 holds, that is, a suessful reon event ours in �(t

0

� 4d),

but no suh reon event ours after time t:

Consider the last suessful reon event in � that ours in �(t

0

� 4d); let h be the

on�guration identi�er appearing as the seond argument in this reon event. Assume

that this reon event ours at time t

re

. Notie, then, that t

re

� t. (Otherwise, Case
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�

0

+ e+ 2d t

0

m mainstream after t

0

� 2dt

m mainstream after t =)

� 4d

Figure 7-7: Lemma 7.5.9

2 would hold.) Sine t � `time(�

0

)+e+2d, then by Lemma 7.4.2, members(h) � J(t).

By Lemma 7.5.3, then, members(h) � J(t

0

), whih implies Property 1. Sine m is

mainstream after t (and members(h) � J(t)), for all j 2 members(h) suh that no fail

j

event ours in �(t), m � `state(�(t)):map

j

. Sine t � t

0

� 2d, by Lemma 7.5.3, for

all j suh that no fail

i

event ours by time t

0

� 2d, m � `state(�(t

0

� 2d)):map

j

, as

required for Property 2. Property 3 holds by the seletion of the last suessful reon

event that ours in �(t

0

� 4d).

�

Finally we prove the main lemma of this setion, showing that if a map is mainstream

at time t, then the map is also mainstream at times t

0

� t + 2d. There are two ases to

onsider: (i) t � `time(�

0

) + e + 2d, and (ii) t < `time(�

0

) + e + 2d. Lemma 7.5.9 shows

the �rst ase, Lemma 7.5.10 shows the seond ase, and Lemma 7.5.11 presents the overall

onlusion.

Lemma 7.5.9 Let � be an �

0

-normal exeution satisfying (i) (�

0

,e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, and (iv) (�

0

; e; 4d)-on�guration-

viability.

Assume that t and t

0

are times. Assume that e+2d � t � t

0

�2d and `time(�

0

)+e+6d � t

0

.

Additionally assume that t � `time(�

0

) + e+ 2d. If m is a mainstream CMap after t, then

m is mainstream after t

0

.

Proof. By assumption, t � `time(�

0

) + e + 2d. Lemma 7.5.8 shows that there exists a

on�guration, h, with index k with the following three properties:

1. members(h) � J(t

0

).
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e+ 2d �

0

+ e+ 2d �

0

+ e+ 4d � 2d
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0

+ e+ 4dm mainstream after t

t t

0

m mainstream after t

0

=)=)

Figure 7-8: Lemma 7.5.10

2. For all members i of on�guration h that do not fail in �(t

0

), m � `state(�(t

0

�

2d)):map

i

.

3. No suessful reon(h; �) event ours in �(t

0

� 4d).

Con�guration-viability guarantees that some node of on�guration h does not fail until

after the next on�guration is installed. No suessful reon(h; �) event ours in �(t

0

� 4d),

by Property 3. Therefore some node, j 2 members(h) does not fail in �(t

0

) (and therefore

does not fail in �(t

0

� d)), by 4d-on�guration-viability. By Property 1 of h, node j 2 J(t

0

).

Therefore, by Lemma 7.5.4, `state(�(t

0

� 2d)):map

j

is mainstream after t

0

.

Further, we know by Property 2 that m � `state(�(t

0

� 2d)):map

j

. Therefore by

Lemma 7.5.1, m is mainstream after t

0

. �

The following lemma onsiders the ase where t < `time(�

0

) + e+ 2d:

Lemma 7.5.10 Let � be an �

0

-normal exeution satisfying (i) (�

0

,e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, and (iv) (�

0

; e; 4d)-on�guration-

viability.

Assume that t and t

0

are times. Assume that e+2d � t � t

0

�2d and `time(�

0

)+e+6d � t

0

.

Additionally, assume that t < `time(�

0

) + e+2d. If m is a mainstream CMap after t, then

m is mainstream after t

0

.

Proof. By assumption, t < `time(�

0

)+e+2d. Let t

1

= `time(�

0

)+e+2d. By Lemma 7.5.7,

m is mainstream after t

1

+ 2d. By assumption, t

1

+ 2d � t

0

� 2d, and `time(�

0

) + e+ 2d �

t

1

+2d. By Lemma 7.5.9, however, we know that sine m is mainstream after t

1

+2d, then

m is mainstream after t

0

. �
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The following lemma ombines the previous two lemmas into a single onlusion. This lemma

is the main result of this setion, and is used throughout the rest of the proof.

Lemma 7.5.11 Let � be an �

0

-normal exeution satisfying (i) (�

0

,e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, and (iv) (�

0

; e; 4d)-on�guration-

viability.

Assume that t and t

0

are times. Assume that e+2d � t � t

0

�2d and `time(�

0

)+e+6d � t

0

.

If m is a mainstream CMap after t, then m is mainstream after t

0

.

Proof. By Lemmas 7.5.9 and 7.5.10. �

7.6 Upgrade-Ready Viability

In this setion, we show the relationship between a on�guration being upgrade-ready, and

a on�guration being viable. In partiular, we prove that if an exeution � is (�

0

,e,22d)-

on�guration-viable, then on�guration (k) is viable until at least 15d after the upgrade-ready((k+

1)) event.

The �rst lemma shows that soon after a on�guration is installed, every node that joined

a while ago learns about the new on�guration.

Lemma 7.6.1 Let � be an �

0

-normal exeution satisfying: (i) (�

0

,e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) (�

0

; e; 4d)-on�guration-viability.

Assume that t 2 R

�0

is a time, and on�guration (k) is installed at time t. Then there

exists a CMap, m, suh that m(k) 6= ?, and m is mainstream after max(t; `time(�

0

) +

e) + 2d.

Proof. We �rst �nd a node j 2 members((k�1)) suh that j 2 J(max(t; `time(�

0

)+e)+

2d) and j does not fail in �(max(t; `time(�

0

)+e)+d). Con�guration-viability guarantees that

there exists a read-quorum R 2 read-quorums((k�1)) and a pre�x �

00

of � suh that (k) is

installed in � and no node inR fails by max(`time(�

00

); `time(�

0

)+e)+4d. Sine on�guration

(k) is installed at time t, we know that t � `time(�

00

), and therefore no node in R fails
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by max(t; `time(�

0

) + e) + 4d. Therefore no node in R fails in �(max(t; `time(�

0

) + e) + d).

Choose some node j 2 R.

Assume that on�guration (k� 1) is proposed at time t

re

. We next apply Lemma 7.4.2

where h = (k � 1), t

0

= t

re

, and t = max(t; `time(�

0

) + e) + 2d:

� max(t; `time(�

0

) + e) + 2d � t

re

: (k � 1) is proposed at t

re

� t, sine (k � 1) must

be proposed prior to on�guration (k � 1) being installed, whih must our prior to

on�guration (k) being installed; t � max(t; `time(�

0

) + e) + 2d.

� max(t; `time(�

0

) + e) + 2d � `time(�

0

) + e + 2d: Immediate.

We therefore onlude that members((k � 1)) � J(max(t; `time(�

0

) + e) + 2d). Therefore

we have shown that j 2 members((k � 1)), j 2 J(max(t; `time(�

0

) + e) + 2d), and j does

not fail in �(max(t; `time(�

0

) + e) + d).

Sine on�guration (k) is installed at time t and j 2 members((k�1)), `state(�(t)):map(k)

j

6=

?, by the de�nition of a on�guration being installed, and therefore (by Lemma 7.5.3)

`state(�(max(t; `time(�

0

) + e))):map(k)

j

6= ?. We let m = `state(�(max(t; `time(�

0

) +

e))):map(k)

j

; m(k) 6= ?, as required.

We next apply Lemma 7.5.4, where t = max(t; `time(�

0

) + e) and i = j:

� max(t; `time(�

0

) + e) � `time(�

0

) + e: Immediate.

� j 2 J(max(t; `time(�

0

) + e) + 2d): Shown above.

� j does not fail in �(max(t; `time(�

0

) + e) + d): Shown above.

We therefore onlude that `state(�(max(t; `time(�

0

)+e))):map

i

is mainstream after max(t; `time(�

0

)+

e) + 2d, that is, m is mainstream after max(t; `time(�

0

) + e) + 2d. �

The next lemma shows that soon after smaller on�gurations are installed, a on�guration

is upgrade-ready.

Lemma 7.6.2 Let � be an �

0

-normal exeution satisfying: (i) (�

0

,e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, and (iv) (�

0

; e; 4d)-on�guration-

viability.
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Let  be a on�guration with index k, and assume that for all ` � k, on�guration (`) is

installed in � by time t.

Then upgrade-ready(k) ours in �(max(t; `time(�

0

) + e) + 6d).

Proof. For every on�guration (`) with index ` � k, let t

`

be the time at whih on�gu-

ration (`) is installed. Therefore t � max(t

i

).

We �rst show that for all ` � k, there exists a CMap, m

`

suh that m

`

(`) 6= ? and

m

`

is mainstream after max(t; `time(�

0

) + e) + 6d. Fix some ` � k.

Lemma 7.6.1, where t = t

`

and k = `, shows that there exists a CMap, m

`

, suh that

m

`

(`) 6= ? and m

`

is mainstream after time max(t

`

; `time(�

0

) + e) + 2d.

We next apply Lemma 7.5.11, where t = max(t

`

; `time(�

0

)+e)+2d and t

0

= max(t; `time(�

0

)+

e) + 6d:

� max(t

`

; `time(�

0

) + e) + 2d � e+ 2d: Immediate.

� max(t

`

; `time(�

0

) + e) + 2d � max(t; `time(�

0

) + e) + 6d � 2d: We know that t

`

� t,

and `time(�

0

) + e+ 2d � `time(�

0

) + e+ 4d.

� max(t; `time(�

0

) + e) + 6d � `time(�

0

) + e + 6d: Immediate.

� m

`

is mainstream after max(t

`

; `time(�

0

) + e) + 2d: Shown above.

We therefore onlude that m

`

is mainstream after max(t; `time(�

0

) + e) + 6d. We have

thus shown that for all ` � k, there exists a CMap, m

`

suh that m

`

(`) 6= ? and m

`

is

mainstream after max(t; `time(�

0

) + e) + 6d.

Reall that upgrade-ready(k) is designated as the �rst event after whih (i) all on�g-

urations with index � k have been installed, and (ii) for all ` < k, for all members of

on�guration (k � 1) that do not fail prior to the upgrade event, map(`) 6= ?. The �rst

omponent ours by time t, and therefore by time max(t; `time(�

0

)+e)+6d, by assumption.

We therefore need to show the seond part. Fix some node j 2 members((k � 1)) suh

that j does not fail in �(max(t; `time(�

0

)+e)+6d). Fix some ` < k. We apply Lemma 7.4.2,

where h = (k� 1), t = max(t; `time(�

0

) + e) + 6d, and t

0

is the time at whih on�guration

(k � 1) is proposed:
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� max(t; `time(�

0

) + e) + 6d is � the time at whih on�guration (k � 1) is proposed:

(k � 1) is proposed prior to time t

k�1

(the time at whih on�guration (k � 1) is

installed), whih is � time t � max(t; `time(�

0

) + e) + 6d.

� max(t; `time(�

0

) + e) + 6d � `time(�

0

) + e + 2d: Immediate.

We therefore onlude that members((k�1)) � J(max(t; `time(�

0

)+e)+6d), and therefore

j 2 J(max(t; `time(�

0

) + e) + 6d).

We know from above that m

`

is mainstream after max(t; `time(�

0

) + e) + 6d, whih

implies, by the de�nition of being mainstream, that m

`

� `state(�(max(t; `time(�

0

) + e) +

6d)):map(`)

j

. This in turn implies that `state(�(max(t; `time(�

0

)+e)+6d)):map(`)

j

6= ?,

as required. Therefore upgrade-ready(k) ours in �(max(t; `time(�

0

) + e) + 6d). �

The next lemma diretly relates the time when all quorums of on�guration (k � 1) fail to

the time at whih upgrade-ready(k) ours.

Lemma 7.6.3 Let � be an �

0

-normal exeution satisfying: (i) (�

0

,e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, and (iv) (�

0

; e; 22d)-on�guration-

viability.

Let  be a on�guration with index k, and assume that the upgrade-ready(k) event ours

at time t. Then there exists a read-quorum, R, and a write-quorum, W , of on�guration

(k � 1) suh that no node in R [W fails in �(max(t; `time(�

0

) + e) + 16d).

Proof. Let �

00

be the shortest pre�x of � suh that every on�guration with index � k is

installed in �. Let t

0

= `time(�

00

). Notie that for all ` � k, on�guration (`) is installed in

�(t

0

).

Lemma 7.6.2, where t = t

0

and  and k are as de�ned above, shows that the upgrade-ready(k)

event ours in �(max(t

0

; `time(�

0

) + e) + 6d), that is, t � max(t

0

; `time(�

0

) + e) + 6d.

Con�guration-viability guarantees that there exists a read-quorum, R, and a write-

quorum,W , of on�guration (k�1) suh that either (1) no proess in R[W fails in �, or (2)

there exists a �nite pre�x, �

install

of � suh that for all ` � k, on�guration (`) is installed

in �

install

and no proess in R[W fails in � by time max(`time(�

install

); `time(�

0

)+e)+22d.
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In the former ase, we are done. We now onsider the seond ase. Sine �

00

is the short-

est pre�x of � suh that every on�guration with index � k is installed, we know that �

00

is a pre�x of �

install

, and therefore t

0

= `time(�

00

) � `time(�

install

). Therefore we know

that there exists a read-quorum, R 2 read-quorums((k � 1)), and a write-quorum, W 2

write-quorums((k�1)), suh that no node in R[W fails by time max(t

0

; `time(�

0

)+e)+22d.

Then, max(t; `time(�

0

) + e) + 16d � max(t

0

; `time(�

0

) + e) + 22d, and as a result, no

node in R [W fails by time max(t; `time(�

0

) + e) + 16d. That is, no node in R [W fails in

�(max(t; `time(�

0

) + e) + 16d). �

The �nal lemma shows that if no upgrade-ready(k) ours in �, then on�guration (k � 1)

is always viable.

Lemma 7.6.4 Let � be an �

0

-normal exeution satisfying: (i) (�

0

,e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, and (iv) (�

0

; e; 4d)-on�guration-

viability.

Let  be a on�guration with index k, and assume that no upgrade-ready(k + 1) event

ours in �. Then there exists a read-quorum, R 2 read-quorums(), and a write-quorum,

W 2 write-quorums(), suh that no node in R [W fails in �.

Proof. Assume that for some ` � k + 1, on�guration (`) is not installed in �. By the

de�nition of on�guration-viability, then, there exists a read-quorum, R 2 read-quorums(),

and a write-quorum, W 2 write-quorums(), suh that no node in R [W fails in �.

Assume, instead, that for every ` � k + 1, on�guration (`) is installed in �. Then by

Lemma 7.6.2, an upgrade-ready(k + 1) event ours in �, ontraditing the hypothesis. �

7.7 Con�guration-Upgrade Lateny Results

In this setion we show that on�guration-upgrade operations terminate rapidly, and that

any obsolete on�guration is rapidly removed. In partiular, these results hold in exeutions

that inlude periods of bad behavior. The on�guration-upgrade mehanism in Rambo does

not make these guarantees. The original Rambo lateny analysis required the assumption
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of (�

0

;1)-on�guration-viability

3

for the entire exeution. This is an unrealisti assumption

in a long-lived dynami system. As a result of the new on�guration-upgrade mehanism,

we need to assume only bounded on�guration-viability to ensure liveness.

First we state a lemma about on�guration-upgrade after the system stabilizes and good

behavior resumes.

Lemma 7.7.1 Let � be an �

0

-normal exeution. Let t 2 R

�0

be a time. Let i be a node

that does not fail until after max(t; `time(�

0

) + d) + 4d.

Assume a fg-upgrade(k)

i

event ours in � at time t. Additionally, assume that for

every on�guration (`) suh that upg :map(`)

i

2 C, there exists a read-quorum, R

`

, and a

write-quorum, W

`

, of on�guration (`) suh that no node in R

`

[W

`

fails by time t+ 3d.

Then a fg-upgrade-ak(k)

i

event ours no later than t+ 4d.

Proof. There are two ases to onsider.

Case 1: t > `time(�

0

). At time t, node i begins the on�guration-upgrade, with phase-

number p

1

= upg:pnum

i

. By triggered gossip, node i immediately sends out messages

to every node in world

i

. Therefore for every on�guration (`) suh that upg :map(`)

i

2

C, every node j 2 R

`

[W

`

reeives a message by time t+ d.

By triggered gossip, then, eah of these nodes sends a response with phase-number p

1

.

Eah response is reeived by time t + 2d, at whih point a fg-upg-query-�x(k)

i

event

ours. Node i then hooses a new phase-number, p

2

, and sets upg :pnum

i

= p

2

.

Immediately, by triggered gossip node i sends out messages to every proess in world

i

,

inluding every node in R

`

[W

`

, for every on�guration (`) suh that upg :map(`)

i

2

C. Again, a response is sent by time t+ 3d, and node i reeives a response from eah

with phase-number p

2

by time t + 4d. Immediately, then, a fg-upg-query-�x(k) event

ours. This is followed by a fg-upgrade-ak(k), proving our laim.

Case 2: t � `time(�

0

). At time t, node i begins the on�guration-upgrade, with phase-

number p

1

= upg:pnum

i

. By oasional gossip, i sends out messages to every node in

3

Although we have not formally de�ned (�

0

;1)-on�guration-viability here, one an understand it to

mean (�

0

; e)-on�guration-viability for arbitrarily large e.
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world

i

. Therefore for every on�guration (`) suh that upg :map(`)

i

2 C, every node

j 2 R

`

[W

`

reeives a message by time max(t; `time(�

0

) + d) + d.

By triggered gossip, then, eah of these nodes sends a response with phase-number

p

1

. Eah response is reeived by time max(t; `time(�

0

) + d) + 2d, at whih point a

fg-upg-query-�x(k)

i

event ours. Node i then hooses a new phase-number, p

2

, and

sets upg :pnum

i

= p

2

.

Immediately, by triggered gossip node i sends out messages to every proess in world

i

,

inluding every node in R

`

[W

`

, for every on�guration (`) suh that upg :map(`)

i

2

C. Again, a response is sent by time max(t; `time(�

0

) + d) + 3d, and node i reeives a

response from eah with phase-number p

2

by time max(t; `time(�

0

))+4d. Immediately,

then, a fg-upg-query-�x(k) event ours. This is followed by a fg-upgrade-ak(k),

proving our laim.

�

Next, we provide a onditional guarantee that a on�guration is viable: if for some time

t every earlier fg-upgrade operation ompletes rapidly within 4d, then every on�guration

that is extant at time t will remain viable until t + 3d.

We do this in four steps. First, Lemma 7.7.2 demonstrates that a node with ertain good

properties exists. Seond, Lemma 7.7.3 shows that this ertain node with good properties

will begin an upgrade operation, in ertain situations. Third, Lemma 7.7.4 shows that soon

after a on�guration is upgrade-ready(k), some node ompletes an upgrade operation on

on�guration (k). Finally, Lemma 7.7.5 uses these preliminary lemmas to show that under

ertain onditions, on�gurations remain viable suÆiently long.

Lemma 7.7.2 Let � be an �

0

-normal exeution satisfying (i) (�

0

, e)-join-onnetivity, (ii)(�

0

; e)-

reon-readiness, (iii) (�

0

; e)-upgrade-readiness, (iv) (�

0

; 2d)-reon-spaing-1, (v) (�

0

; e; 22d)-

on�guration-viability.

Assume that an upgrade-ready(k

2

) event ours at time t for some on�guration 

2

and

assume that k

2

� 1. Let k

1

= k

2

� 1, and 

1

= (k

1

). Then there exists a node i suh that

the following hold:
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1. i is a member of on�guration 

1

,

2. i does not fail in �(max(t; `time(�

0

) + e+ d) + 10d),

3. i 2 J(max(t; `time(�

0

) + e+ d) + 8d),

4. i 2 J(max(t; `time(�

0

) + e+ 2d)),

5. i performs a join-ak prior to the upgrade-ready(k

2

) event in �.

Proof. Lemma 7.6.3, applied with  = 

2

, k = k

2

, and t as de�ned above, implies

that there exists a read-quorum, R, of on�guration 

1

suh that no member of R fails in

�(max(t; `time(�

0

)+e)+16d). Then we know that no member ofR fails in �(max(t; `time(�

0

)+

e + d) + 14d). We therefore hoose a node i 2 R � members(

1

). We know that i does not

fail in �(max(t; `time(�

0

) + e + d) + 10d). This i satis�es Parts 1 and 2.

Let t



1

be the time at whih on�guration 

1

is proposed. Notie that max(t; `time(�

0

)+

e+2d) � t



1

, beause t, the time of the upgrade-ready(k

2

), annot be smaller than t



1

, the time

at whih on�guration 

1

is proposed (sine an upgrade-ready(k

2

) event annot our until

after a reon(

1

; 

2

) event, whih annot our until after a reon(�; 

1

) event). Therefore,

Lemma 7.4.2, applied where h = 

1

, t

0

= t



1

, and t = max(t; `time(�

0

) + e+ 2d), guarantees

that members(

1

) � J(max(t; `time(�

0

) + e + 2d)). Sine i 2 members(

1

), we know that

i 2 J(max(t; `time(�

0

) + e+ 2d)), satisfying Part 4.

Sine max(t; `time(�

0

) + e + 2d) � max(t; `time(�

0

) + e + d) + 10d (sine `time(�

0

) +

e + 2d � `time(�

0

) + e + 10d), Lemma 7.4.1, applied where t = max(t; `time(�

0

) + e + 2d)

and t

0

= max(t; `time(�

0

) + e + d) + 10d, implies that J(max(t; `time(�

0

) + e + 2d)) �

J(max(t; `time(�

0

)+e+d)+10d), and thus i 2 J(max(t; `time(�

0

)+e+d)+10d), satisfying

Part 3.

Finally, notie that reon-readiness requires that i performs a join-ak prior to the

reon(�; 

1

) event, and therefore prior to the fg-upgrade(k

2

) event. This satis�es Part 5.

�

The next lemma laims that when a on�guration is upgrade-ready, and a node with ertain

properties (as in Lemma 7.7.2) exists, then either the on�guration is removed or an upgrade

operation begins.

91



Lemma 7.7.3 Let � be an �

0

-normal exeution satisfying (i) (�

0

, e)-join-onnetivity, (ii)(�

0

; e)-

reon-readiness, (iii) (�

0

; e)-upgrade-readiness, (iv) (�

0

; 2d)-reon-spaing-1, (v) (�

0

; e; 22d)-

on�guration-viability.

Assume upgrade-ready(k

2

) ours at time t and k

2

� 1. Let k

1

= k

2

�1 and 

1

= (k�1).

Further, assume that node i has the following properties:

1. i is a member of on�guration 

1

,

2. i does not fail in �(max(t; `time(�

0

) + e+ d) + 10d),

3. i 2 J(max(t; `time(�

0

) + e+ d) + 8d),

4. i 2 J(max(t; `time(�

0

) + e+ 2d)),

5. i performs a join-ak prior to the upgrade-ready(k

2

) event.

Let t

0

be a time suh that t � t

0

< max(t; `time(�

0

) + e + d) + 13d. Let �

00

be a pre�x of

� suh that:

1. t

0

= `time(�

00

),

2. an upgrade-ready(k

2

) event is in �

00

,

3. `state(�

00

):upg :phase

i

= idle.

Then either:

1. `state(�(t

0

)):map(k

1

)

i

= �, or

2. i performs a fg-upgrade(k

0

)

i

at time t

0

, for some k

0

� k

2

.

Proof. If `state(�

00

):map(k

1

)

i

= �, then the onlusion holds, sine �

00

is a pre�x of �(t

0

):

by Lemma 7.5.3, `state(�(t

0

)):map(k

1

)

i

= �. Assume, then, that `state(�

00

):map(k

1

)

i

6= �.

We examine in turn the preonditions for fg-upgrade(k

0

)

i

just after �

00

(from Figure 3-1):

1. :`state(�

00

):failed

i

: By Part 2 of the assumption on i, we know that i does not fail in

�(max(t; `time(�

0

) + e+ d) + 10d). However, t

0

< max(t; `time(�

0

) + e+ d) + 10d, and

thus i does not fail in �(t

0

). Sine �

00

is a pre�x of �(t

0

), i does not fail in �

00

.
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2. `state(�

00

):status

i

= ative: By Part 5 of the assumption on i we know that i performs

a join-ak prior to the upgrade-ready(k

2

) event.

3. `state(�

00

):upg :phase

i

= idle: By assumption, this holds.

4. 8` 2 N ; ` � k

2

: `state(�

00

):map(`)

i

6= ?: It suÆes to show that by the point

in the exeution at whih the upgrade-ready(k

2

) event ours, node i has already

learned of on�guration 

2

and all on�gurations with smaller indies. Let �

000

be

the pre�x of � ending in the upgrade-ready(k

2

) event. Part (ii) of the de�nition of the

upgrade-ready(k

2

) event guarantees that: for all ` � k

2

, for all j 2 members(

1

) that

do not fail in �

000

, `state(�

000

):map(`)

j

6= ?. Notie that by Part 1 of the assumption

about i, i 2 members(

1

) and that by Part 2 of the assumption about i, i does not fail

in �

000

, sine `time(�

000

) = t � max(t; `time(�

0

) + e+ d). Therefore we an onlude by

part (ii) that for all ` � k

2

, `state(�

000

):map(`)

i

6= ?. Sine �

000

is a pre�x of �

00

(by

assumption that upgrade-ready(k

2

) is inluded in �

00

), by Lemma 7.5.2 we know that

for all ` � k

2

, `state(�

00

):map(`)

i

6= ?, as desired.

5. `state(�

00

):map(k

2

)

i

2 C: By assumption, `state(�

00

):map(k

1

)

i

6= �. Invariant 4.3.3

then implies that `state(�

00

):map(k

2

)

i

6= �, sine k

1

< k

2

. Part 4, above, shows that

`state(�

00

):map(k

2

)

i

6= ?, thus implying the desired result.

6. `state(�

00

):map(k

1

)

i

2 C: By assumption, `state(�

00

):map(k

1

)

i

6= �. Part 4, above,

shows that `state(�

00

):map(k

1

)

i

6= ?, sine k

1

� k

2

, thus implying the desired result.

Sine enabled events our in zero time (by assumption), either the event beomes disabled,

in whih ase `state(�(t

0

)):map(k

1

)

i

= �, satisfying Part 1 of the onlusion, or at time

t

0

= `time(�

00

) a fg-upgrade event for some on�guration  with index k

0

� k

2

ours,

satisfying Part 2 of the onlusion. �

The next lemma onditionally guarantees that soon after a new on�guration is upgrade-

ready, the old on�guration is removed.
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Lemma 7.7.4 Let � be an �

0

-normal exeution satisfying (i) (�

0

, e)-join-onnetivity, (ii)(�

0

; e)-

reon-readiness, (iii) (�

0

; e)-upgrade-readiness, (iv) (�

0

; 2d)-reon-spaing-1, (v) (�

0

; e; 22d)-

on�guration-viability.

Assume that t 2 R

�0

is a time suh that t > `time(�

0

) + e + 14d. Assume that 

1

is a

on�guration, and for some �nite pre�x �

00

of �, where t = `time(�

00

), for some node i 2 J(t)

that does not fail in �

00

, for some index k

1

, `state(�

00

):map(k

1

)

i

= 

1

.

Also, we assume the Upgrades-Complete Hypothesis: for every fg-upgrade(�)

j

event that

ours in � at some time t

upg

< t at some node j 2 J(max(t

upg

; `time(�

0

) + e + 2d)) where

j does not fail in �(max(t

upg

; `time(�

0

) + e+ d) + 4d), a mathing fg-upg-ak(�)

j

ours by

time max(t

upg

; `time(�

0

) + e+ d) + 4d.

Assume that an upgrade-ready(k

1

+ 1) event ours at time t

0

< t� 13d. Let k

2

= k

1

+ 1

and 

2

= (k

2

). Then for some node i

0

2 J(max(t

0

; `time(�

0

)+e+d)+8d) that does not fail in

�(max(t

0

; `time(�

0

)+e+d)+10d), `state(�(max(t

0

; `time(�

0

)+e+d)+8d)):map(k

1

)

i

0

= �.

Proof. We �rst identify a node, i

0

, that is suitable. Then we show that i

0

ompletes an

upgrade operation in the alotted time.

We apply Lemma 7.7.2, where t = t

0

, and therefore onlude that there exists a node i

0

with the following �ve properties:

1. i

0

is a member of on�guration 

1

,

2. i

0

does not fail in �(max(t

0

; `time(�

0

) + e+ d) + 10d),

3. i

0

2 J(max(t

0

; `time(�

0

) + e + d) + 8d),

4. i

0

2 J(max(t

0

; `time(�

0

) + e + 2d)),

5. i

0

performs a join-ak prior to the upgrade-ready(k

2

) event.

Notie that Part 2 and Part 3 satisfy the �rst two requirements for i

0

in the onlusion of

this lemma. It remains to show that i

0

marks on�guration 

1

as � at the appropriate point.

We onsider what happens at time max(t

0

; `time(�

0

)+e+d). Let �

000

be the pre�x of � that

is the longer of the following two pre�xes: (i) �(`time(�

0

)+e+d), or (ii) the shortest pre�x of
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� that inludes the fg-upgrade(k

2

) event. Notie that `time(�

000

) = max(t

0

; `time(�

0

)+e+d),

and that the fg-upgrade(k

2

) event is in �

000

.

If `state(�

000

)):map(k

1

)

i

0

= �, then the laim is immediate: Lemma 7.5.2 implies that

`state(�

000

):map

i

0

� `state(�(max(t

0

; `time(�

0

) + e + d) + 8d)):map

i

0

, sine `time(�

000

) =

max(t

0

; `time(�

0

)+e+d) < max(t

0

; `time(�

0

)+e+d)+8d. Therefore, if `state(�

000

):map(k

1

)

i

0

=

�, then `state(�(max(t

0

; `time(�

0

) + e + d) + 8d)):map(k

1

)

i

0

= �.

We thus assume that `state(�

000

):map(k

1

)

i

0

6= �, and onsider what happens at time

max(t

0

; `time(�

0

) + e+ d). There are now two ases to onsider:

1. `state(�

000

):upg :phase

i

0

= idle or

2. `state(�

000

):upg :phase

i

0

6= idle.

Case 1: Assume that `state(�

000

):upg :phase

i

0

= idle. We apply Lemma 7.7.3, where t = t

0

,

t

0

= max(t

0

; `time(�

0

) + e + d), �

00

= �

000

, and i

0

is as hosen above:

� t

0

� max(t

0

; `time(�

0

) + e+ d) < max(t

0

; `time(�

0

) + e+ d) + 13d: immediate,

� i

0

satis�es the riteria, by the properties of i

0

above,

� `time(�

000

) = max(t

0

; `time(�

0

) + e + d) and upgrade-ready(k

2

) ours in �

000

: by

the way in whih �

00

was hosen,

� `state(�

000

):upg :phase

i

0

= idle: by the ase assumption.

From this lemma, we onlude that either:

1. `state(�(max(t

0

; `time(�

0

) + e + d))):map(k

1

)

i

0

= �, or

2. i

0

performs a fg-upgrade(k

0

)

i

0

at time max(t

0

; `time(�

0

)+ e+d), for some k

0

� k

2

.

In the �rst ase, where `state(�(max(t

0

; `time(�

0

) + e + d))):map(k

1

)

i

0

= �, we are

done: Lemma 7.5.3 implies that `state(�(max(t

0

; `time(�

0

)+e+d)+8d)):map(k

1

)

i

0

=

�. Consider the seond ase, that is, i

0

performs a fg-upgrade(k

0

)

i

0

at time max(t

0

; `time(�

0

)+

e+ d), for some k

0

� k

2

.

We then apply the Upgrades-Complete Hypothesis, where j = i

0

and t

upg

= t

0

; notie

that:
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� i

0

2 J(max(t

0

; `time(�

0

) + e+ 2d)): by 4

t

h property of i

0

,

� i

0

does not fail in �(max(t

0

; `time(�

0

)+e+d)+4d): by Part 2 of the way in whih

i

0

was hosen, and

� max(t

0

; `time(�

0

)+e+d) < t: t

0

+13d < t, by assumption, and `time(�

0

)+e+14d <

t, by assumption, and therefore max(t

0

; `time(�

0

) + e+ d) + 13d < t.

Therefore, by the Upgrades-Complete Hypothesis we onlude that a fg-upg-ak(k

0

)

i

0

ours by time max(t

0

; `time(�

0

) + e + d) + 4d. Sine k

0

� k

2

, then by the preon-

dition of a fg-upg-ak operation we know that `state(�(max(t

0

; `time(�

0

) + e + d) +

4d):map(k

1

)

i

0

= �. Lemma 7.5.3 implies that `state(�(max(t

0

; `time(�

0

) + e + d) +

8d):map(k

1

)

i

0

= �, as desired.

Case 2: Assume that `state(�

000

):upg :phase

i

0

6= idle. For this to our, a fg-upgrade(k

0

)

i

0

event must our prior to the upgrade-ready(k

2

) event in � with no mathing fg-upg-ak(k

0

)

i

0

event prior to the upgrade-ready(k

2

) event, where k

0

= `state(�

00

):upg :target

i

0

. Other-

wise, if there were no ongoing upgrade operation, i

0

would be idle. Let t

1

be the time

at whih this earlier fg-upgrade(k

0

)

i

0

operation ours.

We an then apply the Upgrades-Complete Hypothesis, where j = i

0

and t

upg

= t

1

;

notie that:

� i

0

2 J(max(t

1

; `time(�

0

)+ e+2d)): Lemma 7.4.3, applied where t = t

1

and i = i

0

,

shows that i

0

2 J(max(t

1

; `time(�

0

) + e + 2d)).

� i

0

does not fail in �(max(t

1

; `time(�

0

)+e+d)+4d): By Part 2 of the way in whih

i

0

was hosen, i

0

does not fail in �(max(t

0

; `time(�

0

) + e + d) + 10d). Notie that

t

1

� max(t

0

; `time(�

0

) + e+ d), sine the earlier upgrade event ours in �

000

prior

to the upgrade-ready(k

2

) event. Therefore i

0

does not fail in �(max(t

1

; `time(�

0

)+

e + d) + 4d).

� max(t

1

; `time(�

0

) + e + d) < t: Again, notie that max(t

1

; `time(�

0

) + e + d) �

max(t

0

; `time(�

0

) + e + d), sine t

1

� t

0

. Also, t

0

+ 13d < t, by assumption, and

`time(�

0

)+ e+14d < t, by assumption. Therefore, max(t

0

; `time(�

0

)+ e+ d) < t,

implying that max(t

1

; `time(�

0

) + e+ d) < t.
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We an then onlude that a fg-upgrade-ak(k

0

)

i

0

ours in � by time max(t

1

; `time(�

0

)+

e + d) + 4d � max(t

0

; `time(�

0

) + e + d) + 4d. If k

0

� k

2

, then by the preondition of

the fg-upgrade-ak(k

0

) ation, i

0

marks map(k

1

) = �, and we are done.

Otherwise, we apply Lemma 7.7.3 to show that another fg-upgrade operation begins:

let t

2

be the time at whih the fg-upgrade-ak(k

0

)

i

0

ours and �

2

be the pre�x of �

ending in the fg-upgrade-ak(k

0

)

i

0

event. Notie that:

� t

0

� max(t

2

; `time(�

0

) + e + d): By the way in whih the fg-upgrade(k

0

) was

hosen, it has to omplete no earlier than t

0

.

� max(t

2

; `time(�

0

) + e+ d) < max(t

0

; `time(�

0

) + e+ d) + 13d: Above, we showed

that that fg-upgrade-ak(k

0

)

i

0

ours by max(t

0

; `time(�

0

) + e + d) + 4d, that is,

t

2

� max(t

1

; `time(�

0

) + e + d) + 4d � max(t

0

; `time(�

0

) + e + d) + 4d, sine

t

1

� t

0

. Therefore, t

2

< max(t

0

; `time(�

0

)+ e+d)+13d. Also, `time(�

0

)+ e+d <

`time(�

0

) + e+ 14d.

Then we apply Lemma 7.7.3 with t = t

0

, t

0

= max(t

2

; `time(�

0

) + e+ d), �

00

= �

2

, and

i

0

as hosen above:

� t

0

� max(t

2

; `time(�

0

)+e+d) < max(t

0

; `time(�

0

)+e+d)+13d: as shown above,

� i

0

satis�es the riteria, by the properties of i

0

above,

� `time(�

2

) = max(t

2

; `time(�

0

) + e + d) and upgrade-ready(k

2

) ours in �

00

: by

the way in whih �

2

was hosen and the fat that the fg-upgrade-ak(k

0

)

i

0

must

ome after the upgrade-ready(k

2

) event,

� `state(�

2

):upg :phase

i

0

= idle: by the e�et of the fg-upg-ak(k

0

)

i

0

event that is

the last event in �

000

.

We then onlude that either:

1. `state(�(max(t

2

; `time(�

0

) + e+ d))):map(k

1

)

i

0

= �, or

2. i

0

performs a fg-upgrade(k

00

)

i

0

at time max(t

2

; `time(�

0

)+e+d), for some k

00

� k

2

.
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Again, if the �rst ase holds, we are done: sine t

2

� max(t

0

; `time(�

0

) + e + d) + 8d,

Lemma 7.5.3 implies that `state(�(max(t

0

; `time(�

0

) + e + d) + 8d)):map(k

1

)

i

0

= �.

Therefore, we an assume that the seond part holds, and i

0

performs a fg-upgrade(k

00

)

i

0

at time max(t

2

; `time(�

0

) + e + d), for some k

00

� k

2

.

One more, we apply the Upgrades-Complete Hypothesis, where j = i

0

and t

upg

= t

2

;

notie that:

� i

0

2 J(max(t

2

; `time(�

0

)+e+2d)): Reall that i

0

2 J(max(t

1

; `time(�

0

)+e+2d)),

above. Sine max(t

1

; `time(�

0

)+e+2d) � max(t

2

; `time(�

0

)+e+2d) (i.e., the up-

grade begins before it ompletes), by Lemma 7.4.1, where t = max(t

1

; `time(�

0

)+

e + 2d) and t

0

= max(t

2

; `time(�

0

) + e + 2d), J(max(t

1

; `time(�

0

) + e + 2d)) �

J(max(t

2

; `time(�

0

) + e+2d)), implying that i

0

2 J(max(t

2

; `time(�

0

) + e+ 2d)).

� i

0

does not fail in �(max(t

2

; `time(�

0

) + e + d) + 4d): By Part 2 of the way

in whih i

0

was hosen, i

0

does not fail in �(max(t

0

; `time(�

0

) + e + d) + 10d).

Notie that t

2

� max(t

0

; `time(�

0

) + e + d) + 4d, as shown above. Therefore

max(t

2

; `time(�

0

) + e+ d) + 4d � max(t

0

; `time(�

0

) + e+ d) + 8d, and as a result

i

0

does not fail in �(max(t

2

; `time(�

0

) + e+ d) + 4d).

� max(t

2

; `time(�

0

) + e + d) < t: Again, notie that max(t

2

; `time(�

0

) + e + d) �

max(t

0

; `time(�

0

)+e+d)+4d. Also, t

0

+13d < t, by assumption, and `time(�

0

)+

e + d + 13d < t, by assumption. Therefore, max(t

0

; `time(�

0

) + e + d) + 13d < t.

Therefore, max(t

2

; `time(�

0

) + e+ d) � max(t

0

; `time(�

0

) + e+ d) + 4d < t� 9d,

as desired.

We an then onlude that a fg-upgrade-ak(k

00

)

i

0

ours in � by time max(t

2

; `time(�

0

)+

e+d)+4d � max(t

0

; `time(�

0

)+e+d)+8d. Sine k

00

� k

2

, then by the preondition of

the fg-upgrade-ak(k

0

) ation, i

0

marks map(k

1

) = �, and Lemma 7.5.3 implies that

`state(�(max(t

0

; `time(�

0

) + e+ d) + 8d)):map(k

1

)

i

0

= �.

�

In the next lemma, we provide a onditional guarantee that a on�guration remains viable.
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Lemma 7.7.5 Let � be an �

0

-normal exeution satisfying (i) (�

0

, e)-join-onnetivity, (ii)(�

0

; e)-

reon-readiness, (iii) (�

0

; e)-upgrade-readiness, (iv) (�

0

; 2d)-reon-spaing-1, (v) (�

0

; e; 22d)-

on�guration-viability.

Assume that t 2 R

�0

is a time suh that t > `time(�

0

) + e + 14d. Assume that 

1

is a

on�guration, and for some �nite pre�x �

00

of �, where t = `time(�

00

), for some node i 2

J(max(t; `time(�

0

)+e+2d)) that does not fail in �

00

, for some index k

1

, `state(�

00

):map(k

1

)

i

=



1

.

Also we assume the Upgrades-Complete Hypothesis: for all fg-upgrade(�)

j

events that

our in � at some time t

upg

< t at some node j 2 J(max(t

upg

; `time(�

0

) + e + 2d)) where

j does not fail in �(max(t

upg

; `time(�

0

) + e+ d) + 4d, a mathing fg-upg-ak(�)

j

ours by

time max(t

upg

; `time(�

0

) + e+ d) + 4d.

Then there exists a read-quorum, R 2 read-quorums(

1

), and a write-quorum, W 2

write-quorums(

1

), suh that no node in R [W fails in �(t+ 3d).

Proof. Let k

2

= k

1

+1, and let 

2

= (k

2

). First, onsider the ase where no upgrade-ready(k

2

)

event ours in �. We apply Lemma 7.6.4, where  = 

1

and k = k

1

; this implies,

then, that there exists a read-quorum, R 2 read-quorums(

1

), and a write-quorum, W 2

write-quorums(

1

), suh that no node in R [W fails in �.

Next, onsider the ase where an upgrade-ready(k

2

) event ours in �. Let t

0

be the time

at whih the upgrade-ready(k

2

) event ours. We laim that upgrade-ready(k

2

) ours no

earlier than t� 13d. That is, t

0

+ 13d � t.

Assume, in ontradition, that t

0

+ 13d < t. We now apply Lemma 7.7.4 to on-

lude that there exists a node i

0

2 J(max(t

0

; `time(�

0

) + e + d) + 8d) that does not fail in

�(max(t

0

; `time(�

0

)+e+d)+10d) suh that `state(�(max(t

0

; `time(�

0

)+e+d)+8d)):map(k

1

)

i

0

=

�.

We now show that the information about on�guration 

1

's removal is propagated from

node i

0

to node i. That is, we show the following:

Claim: `state(�

00

):map(k

1

)

i

= �.

Proof of laim: We do this in three steps. First, we show that `state(�(max(t

0

; `time(�

0

)+

e + d) + 8d)):map

i

0

is mainstream after max(t

0

; `time(�

0

) + e+ d) + 10d. Seond, we show
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that `state(�(max(t

0

; `time(�

0

) + e + d) + 8d)):map

i

0

is mainstream after t� d. Third, we

onlude that `state(�

00

):map(k

1

)

i

= �.

Step 1: We already know that i

0

2 J(max(t

0

; `time(�

0

)+ e+d)+8d), and does not fail in

�(max(t

0

; `time(�

0

)+e+d)+10d). We then apply Lemma 7.5.4, where t = max(t

0

; `time(�

0

)+

e+ d) + 8d, and i = i

0

:

� max(t

0

; `time(�

0

) + e+ d) + 8d � `time(�

0

) + e: Immediate.

� i

0

2 J(max(t

0

; `time(�

0

) + e+ d) + 8d+ 2d): i

0

2 J(max(t

0

; `time(�

0

) + e+ d) + 8d), as

shown above, therefore this follow from Lemma 7.4.1, where t = max(t

0

; `time(�

0

) +

e+ d) + 8d and t

0

= max(t

0

; `time(�

0

) + e + d) + 10d.

� i

0

does not fail in �(max(t

0

; `time(�

0

) + e + d) + 8d + d), sine i

0

does not fail in

�(max(t

0

; `time(�

0

) + e + d) + 8d+ 2d) as shown above.

Therefore we an onlude that `state(�(max(t

0

; `time(�

0

)+e+d)+8d)):map

i

0

is mainstream

after max(t; `time(�

0

) + e+ d) + 10d.

Step 2: We have assumed above that t

0

< t � 13d, that is, t

0

+ 10d < t � d � 2d. Also,

we have assumed that `time(�

0

) + e+ 14d < t, that is, `time(�

0

) + e+ d+ 10d < t� d� 2d.

Therefore, max(t

0

; `time(�

0

) + e + d) + 10d < t � 3d. We now apply Lemma 7.5.11, where

t = max(t

0

; `time(�

0

) + e + d) + 10d, t

0

= t � d, and m = `state(�(max(t

0

; `time(�

0

) + e +

d) + 8d)):map

i

0

:

� e+ 2d � max(t

0

; `time(�

0

) + e + d) + 10d,

� max(t

0

; `time(�

0

) + e+ d) + 10d � t� 3d,

� `state(�(max(t

0

; `time(�

0

)+e+d)+8d)):map

i

0

is mainstream after max(t; `time(�

0

)+

e+ d) + 10d.

We therefore onlude that `state(�(max(t

0

; `time(�

0

) + e+ d) + 8d)):map

i

0

is mainstream

after t� d.

Step 3: Notie, then, that by assumption i 2 J(t) and i does not fail in �(t� d). There-

fore by the de�nition of mainstream, `state(�(max(t

0

; `time(�

0

) + e + d) + 8d)):map

i

0

�
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`state(�(t�d)):map

i

. Lemma 7.5.3 then implies that `state(�(t�d)):map

i

� `state(�

00

):map

i

,

sine �(t�d) is a pre�x of �

00

. Therefore, `state(�(max(t

0

; `time(�

0

)+e+d)+8d)):map

i

0

�

`state(�

00

):map

i

. Sine `state(�(max(t

0

; `time(�

0

)+ e+ d)+ 8d)):map(k

1

)

i

0

= � (as shown

above), this means that `state(�

00

):map(k

1

)

i

= �, as laimed above, onluding Step 3.

This laim that `state(�

00

):map(k

1

)

i

= �, though, leads to a ontradition: by assump-

tion of this lemma, `state(�

00

):map(k

1

)

i

= 

1

. Therefore, we onlude that our assumption

that t

0

< t � 13d is inorret: that is, we must have t

0

� t � 13d. That is, we have shown

that the upgrade-ready(k

2

) event ours at most 13d prior to time t.

We now apply Lemma 7.6.3, where  = 

2

, k = k

2

, and t = t

0

, to onlude that there

exists a read-quorum, R, and a write-quorum, W , of on�guration 

1

suh that no node in

R[W fails in �(max(t

0

; `time(�

0

)+ e) + 16d). Above we showed that t

0

+13d � t, therefore

t

0

+ 16d � t + 3d, whih implies that max(t

0

; `time(�

0

) + e) + 16d � t + 3d. Therefore, we

an onlude that there exists a read-quorum, R, and a write-quorum, W , of on�guration



1

suh that no node in R [W fails in �(t+ 3d). �

The next two lemmas laim that every on�guration-upgrade operation ompletes soon

after it begins, or soon after the network stabilizes. The �rst lemma handles the ase where

the upgrade begins before the network stabilizes, or during stabilization. The seond lemma

handles the general ase, for all t.

Lemma 7.7.6 Let � be an �

0

-normal exeution satisfying: (i) (�

0

, e)-join-onnetivity,

(ii) (�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, (iv) (�

0

; e; 22d)-on�guration-

viability.

Assume that t 2 R

�0

is a time suh that t � `time(�

0

)+e+14d, and that a fg-upgrade(k)

i

ours at time t at node i. Assume that node i 2 J(t) and that i does not fail in �(max(t; `time(�

0

)+

d) + 4d).

Then a fg-upg-ak(k)

i

ours no later than time max(t; `time(�

0

) + d) + 4d.

Proof. Let  be the on�guration-upgrade operation assoiated with the fg-upgrade(k)

ation. Lemma 7.7.1 shows that proving the following is suÆient to prove the lemma: for

every on�guration in removal-set() there exists a read-quorum, R and a write-quorum,

W , suh that no node in R [W fail by time max(t; `time(�

0

) + d) + 3d.
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Consider any on�guration, 

1

with index k

1

in removal-set(). If t

1

is the time at whih

on�guration (k

1

+1) is installed, on�guration-viability ensures that on�guration 

1

does

not fail until max(t

1

; `time(�

0

) + e) + 22d. Notie that `time(�

0

) + e + 22d > t + 3d, sine

t � `time(�

0

) + e + 14d. Therefore, this guarantees that there exists a read-quorum, R,

and a write-quorum, W for on�guration 

1

suh that no node in R [ W fails until after

`time(�

0

) + e + 22d > max(t; `time(�

0

) + d) + 3d. �

Lemma 7.7.7 Let � be an �

0

-normal exeution satisfying: (i)(�

0

, e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, (iv) (�

0

; e; 22d)-on�guration-viability.

Assume that t 2 R

�0

is a time, and that a fg-upgrade(k)

i

ours in � at time t at node

i. Assume that node i 2 J(t) and that i does not fail in �(max(t; `time(�

0

) + e + d) + 4d).

Then a fg-upg-ak(k)

i

ours no later than time max(t; `time(�

0

) + e + d) + 4d.

Proof. We prove this lemma by proving a stronger statement by strong indution on the

number of fg-upgrade events in �: if a fg-upgrade(�)

j

event ours in � at some time t

upg

� t

at some node j 2 J(t

upg

), and j does not fail in �(max(t

upg

; `time(�

0

) + e+ d) + 4d), then a

mathing fg-upg-ak(�)

j

ours no later than time max(t

upg

; `time(�

0

) + e+ d) + 4d.

As this is strong indution, we now examine the indutive step. Consider on�guration-

upgrade , the k + 1

st

upgrade operation in � that ours at time t

upg

� t at node j 2 J(t)

that does not fail in �(max(t

upg

; `time(�

0

) + e + d) + 4d). Assume, indutively, that if 

0

is

one of the �rst k upgrade operations that ours at time t

0

� t at some node j

0

2 J(t

0

) that

does not fail in �(max(t

0

; `time(�

0

)+ e+ d) + 4d), then a mathing fg-upg-ak(�) ours no

later than time max(t

0

; `time(�

0

) + e + d) + 4d. There are two ases to onsider.

Case 1: t

upg

� `time(�

0

) + e+ 14d.

Reall that the fg-upgrade event ours at node j 2 J(t

upg

) where j does not fail in

�(max(t

upg

; `time(�

0

)+ e+ d)+ 4d). Lemma 7.7.6 shows that a fg-upg-ak(k)

j

ours

by time max(t

upg

; `time(�

0

) + d) + 4d � max(t

upg

; `time(�

0

) + e+ d) + 4d.

Case 2: t

upg

> `time(�

0

) + e + 14d.

Lemma 7.7.1 shows that proving the following is suÆient to prove the lemma: for every

on�guration in removal-set() there exists a read-quorum, R and a write-quorum,W ,
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suh that no node in R[W fails in �(max(t

upg

; `time(�

0

)+d)+3d). Let �

00

be the pre�x

of � ending with the fg-upgrade event . Fix some on�guration  2 removal-set()

with index k; that is, `state(�

00

):map(k)

j

= . We now apply Lemma 7.7.5, where



1

= , k

1

= k, �

00

is as just de�ned, and t = t

upg

:

� t

upg

> `time(�

00

) + e+ 14d.

� t

upg

= `time(�

00

).

� `state(�

00

):map(k)

j

= , sine  2 removal-set() and �

00

is the exeution ending

with the event .

� j 2 J(max(t

upg

; `time(�

0

) + e+ 2d)), sine j 2 J(t

upg

) and t

upg

> `time(�

0

) + e+

14d.

� Upgrades-Complete Hypothesis: for every fg-upgrade(�)

j

event that ours in �

at some time t

0

< t

upg

at some node j

0

2 J(max(t

upg

; `time(�

0

) + e + 2d)) where

j

0

does not fail in �(max(t

upg

; `time(�

0

) + e + d) + 4d), a mathing fg-upgrade

j

0

ours by time max(t

upg

; `time(�

0

)+ e+ d)+ 4d: this is the indutive hypothesis,

sine any fg-upgrade ouring at time t

0

< t

upg

must be one of the �rst k upgrade

events.

Therefore, we onlude that there exists a read-quorum, R 2 read-quorums(), and a

write-quorum, W 2 write-quorums(), suh that no node in R [W fails in �(t + 3d).

Sine this is true for all  2 removal-set(), this then shows the desired result.

�

We next present two orollaries that follow from these lemmas. First, we present the unon-

ditional version of Lemma 7.7.5:

Corollary 7.7.8 Let � be an �

0

-normal exeution satisfying (i) (�

0

, e)-join-onnetivity,

(ii)(�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, (iv) (�

0

; e; 22d)-on�guration-

viability.
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Assume that t 2 R

�0

is a time. Assume that  is a on�guration, and for some �nite

pre�x �

00

of � where t = `time(�

00

), some node i 2 J(t) that does not fail in �

00

, for some

index k, `state(�

00

):map(k)

i

= .

Then there exists a read-quorum, R, and a write-quorum, W , suh that no node in R[W

fails in �(max(t; `time(�

0

) + e+ d) + 3d).

Proof. If t > `time(�

0

) + e+ 14d, then we show that the result follows from Lemma 7.7.7

and Lemma 7.7.5. We apply Lemma 7.7.7 where 

1

= , k

1

= k: notie that Lemma 7.7.5

assumes that:

� t > `time(�

0

) + e + 14d: By assumption.

� t = `time(�

00

): By assumption.

� `state(�

00

):map(k)

i

= : By assumption.

� i 2 J(max(t; `time(�

0

) + e+ 2d)): t > `time(�

0

) + e + 14d.

� i does not fail in �

00

: By assumption.

� Upgrade-Completes Hypothesis: Fix some fg-upgrade(�)

j

event that ours at time

t

upg

< t at node j 2 J(max(t

upg

; `time(�

0

)+e+2d) where j does not fail in �(max(t

upg

; `time(�

0

)+

e+d)+4d). We apply Lemma 7.7.7, where t = t

upg

and i = j. (Notie that j 2 J(t

upg

)

by Lemma 7.4.1.) We therefore onlude that a fg-upgrade(�)

j

ours no later than

max(t

upg

; `time(�

0

)+e+d)+4d, as required by the onlusion of the Upgrade-Completes

Hypothesis.

We thus onlude that there exists a read-quorum, R 2 read-quorums() and a write-quorum,

W 2 write-quorums() suh that no node in R [W fails in �(t+ 3d). Sine t > `time(�

0

) +

e+ 14d, this implies that no node in R [W fails in �(max(t; `time(�

0

) + e+ d) + 3d).

Alternatively, if t � `time(�

0

) + e + 14d, on�guration-viability guarantees that there

exists a read-quorum, R, and a write-quorum, W , suh that no node in R [ W fails in

�(`time(�

0

) + e+ 22d), and again the result follows. �
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The seond orollary guarantees the liveness of the system; that is, the following orollary

shows that read and write operations always terminate eventually:

Corollary 7.7.9 Let � be an �

0

-normal exeution satisfying (i) (�

0

, e)-join-onnetivity,

(ii)(�

0

; e)-reon-readiness, (iii) (�

0

; 2d)-reon-spaing-1, (iv) (�

0

; e; 22d)-on�guration-

viability.

Assume that t 2 R

�0

. Assume that at time t, for some i 2 J(t) that does not fail in �

4

,

a read

i

or write

i

ours in �. Then the operation eventually ompletes.

Proof. The read or write operation ompletes if eah phase of the operation ompletes.

Let  be the read

i

, write

i

, query-�x

i

, or rev

i

ation that sets op:map to map, beginning

the phase. Eah phase ompletes when for all ` : op:map(`)

i

2 C, i has sent a gossip

message to an appropriate quorum of nodes in (`), and reeived a response. The only way

an operation an fail to terminate, then, is if there does not exist a non-failed read-quorum

or a write-quorum of some on�guration in op:map.

Assume that  is a on�guration with index k suh that op:map(k)

i

is set to  at some

time t

0

after  , and before the phase ompletes. Then for some �

00

where t

0

= `time(�

00

),

`state(�

00

):map(k)

i

= , sine op:map is set by opying a trunated version of map

i

. By

Corollary 7.7.8, there exists a read-quorum, R, and a write-quorum,W , suh that no node in

R[W fails in �(max(t; `time(�

0

)+e+d)+3d). No later than time max(t; `time(�

0

)+e+d)+d,

node i sends a gossip message to every node in R[W . By time max(t; `time(�

0

)+e+d)+2d

the message is reeived by every node in R[W , and eah node sends a response to i. By time

max(t; `time(�

0

) + e + d) + 3d, node i reeives the response, and R [W � a. Therefore,

for all on�gurations the read and write quorums survive long enough, and so the phase

ompletes. �

4

More spei�ally, we are assuming that i does not fail until after the operation terminates; sine we do

not here bound how long the operation may take, we instead assume that i does not fail in �. Obviously i

failing after the operation ompletes has no e�et on the operation ompleting.
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7.8 Read-Write Lateny Results

In this setion we state and prove the main result of the lateny analysis: if an exeution

ontains a period of time of good behavior, and if this setion of the exeutions is 22d-

on�guration-viable, then all read and write operations terminate, and terminate within 8d.

Notie that in the originalRambo paper, a similar result required the stronger assumption of

1-on�guration-viability , an arbitrarily unbounded failure assumption, depending on events

earlier in the exeution. Here there is no dependeny on earlier events: the algorithm is

guaranteed to stabilize rapidly, as soon as the network stabilizes.

We need one more lemma. This lemma shows that one a report() ation ours for

some on�guration with index k, then soon every node has set map(`) 6= ?, for all ` � k.

This will allow us to show that if a read or write operation begins long enough after a ertain

report() operation, then it annot be interrupted by learning about new on�gurations with

smaller indies.

Lemma 7.8.1 Let � be an �

0

-normal exeution satisfying: (i) (�,e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) 6d-reon-spaing, (iv) (�

0

; e; 4d)-on�guration-viability.

Assume that � ontains deide events for in�nitely many on�gurations. Let ` be a

on�guration index. Let 

1

be the on�guration with index `, and 

2

be the on�guration with

index `+ 1.

Let i be the node at whih the �rst reon(

1

; 

2

) event, �, ours. Let t be the time at

whih the report(

1

)

i

event, �, ours.

Then there exists a CMap, m, suh that:

1. m(`) 6= ?, and

2. m is mainstream after max(t; `time(�

0

) + e+ d) + 6d.

Proof. There are two ases to onsider. In eah ase, we �rst demonstrate an appropriate

m: we identify a node that performs a report(

1

) and does not fail too soon. We then show

that the map of that node is mainstream after max(t; `time(�

0

) + e + d) + 6d.
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Case 1: reon(

1

; 

2

)

i

ours at some time � `time(�

0

) + e + 2d.

In this ase, we use the Reon-Spaing-2 assumption to identify a node with an appro-

priate map, and then use on�guration-viability to show that this node survives long

enough for its map to beome mainstream after `time(�

0

)+ e+4d, whih then allows

us to show that its map is mainstream after max(t; `time(�

0

) + e + d) + 6d.

By the Reon-Spaing-2 assumption, there exists a write-quorum,W 2 write-quorums(

1

),

suh that for every node j 2 W , a report(

1

)

j

ours in � prior to �, the reon event that

proposes on�guration 

2

. By on�guration-viability, there exists some node j 2 W

that does not fail by time `time(�

0

) + e+ 4d, sine there exists some read-quorum, R,

that does not fail by time `time(�

0

) + e+ 4d, and by assumption R \W 6= ;.

We now show that map

j

satis�es Property 1 after `time(�

0

) + e+ 2d. Notie that:

`state(�(time(�))):map(`)

j

6= ?;

sine the report ation noti�es j of the on�guration 

1

prior to �. By assumption we

know that time(�) � `time(�

0

)+ e+2d. Therefore we know that `state(�(`time(�

0

)+

e+ 2d)):map

j

6= ?.

Let m = `state(�(`time(�

0

) + e + 2d)):map

j

. We know, then, that m(`) 6= ?, as

desired.

Next we show that m is mainstream after `time(�

0

)+ e+4d. We apply Lemma 7.5.4,

where i = j, t = `time(�

0

) + e + 2d:

� j 2 J(`time(�

0

) + e + 4d): If ` = 0, then j = i

0

and we have, by assumption,

that i

0

performs a join-ak

i

0

at time 0, immediately implying the statement by

the de�nition of J .

Otherwise, we apply Lemma 7.4.2, where h = 

1

, t

0

= time(reon((`�1); 

1

)), and

t = `time(�

0

) + e+ 2d. Notie that `time(�

0

) + e+ 2d � time(reon((`� 1); 

1

))

sine `time(�

0

) + e + 2d � time(�), and time(�) � time(reon((`� 1); 

1

)). We

therefore onlude that members(

1

) � J(`time(�

0

) + e+ 2d). In partiular, this
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means that j 2 J(`time(�

0

) + e + 2d). Next we apply Lemma 7.4.1, where t =

`time(�

0

)+e+2d and t

0

= `time(�

0

)+e+4d to see that j 2 J(`time(�

0

)+e+4d).

� `time(�

0

) + e+ 2d � `time(�

0

) + e: Immediate.

� j does not fail in �(`time(�

0

) + e + 3d): as shown above j does not fail in

�(`time(�

0

) + e + 4d), by hoie of j and on�guration-viability.

We then onlude, sine m = `state(�(`time(�

0

) + e + 2d)):map

j

, that m is main-

stream after `time(�

0

) + e+ 4d.

We next apply Lemma 7.5.11, where t = `time(�

0

) + e + 4d, t

0

= max(t; `time(�

0

) +

e+ d) + 6d, and m is as de�ned above:

� e + 2d � `time(�

0

) + e + 4d: Immediate.

� `time(�

0

) + e+ 4d � max(t; `time(�

0

) + e+ d) + 6d� 2d: Immediate.

� m is mainstream after `time(�

0

) + e + 4d: As shown above.

Therefore, we onlude that m is mainstream after max(t; `time(�

0

) + e+ d) + 6d, as

desired.

Case 2: reon(

1

; 

2

)

i

ours at some time > `time(�

0

) + e+ 2d.

We �rst notie that i has been noti�ed of on�guration 

1

and then show that the

map of i is mainstream after max(t; `time(�

0

) + e+ d) + 6d.

Notie that `state(�(t)):map(`)

i

6= ?, sine the report(

1

)

i

event noti�es i of on�gu-

ration 

1

.

We now apply Lemma 7.5.4, where i is as de�ned above and t = max(t; `time(�

0

) +

e+ d), to show that m is mainstream after max(t; `time(�

0

) + e+ d) + 2d:

� max(t; `time(�

0

) + e+ d) + 2d � `time(�

0

) + e: Immediate.

� i 2 J(max(t; `time(�

0

) + e + d) + 2d): We apply Lemma 7.4.2, where h = 

1

,

t

0

is the time at whih 

1

is proposed, and t = max(t; `time(�

0

) + e + d) + 2d.

Notie that max(t; `time(�

0

) + e + d) + 2d is no earlier than the time at whih



1

is proposed, sine a report(

1

) ours prior to max(t; `time(�

0

) + e + d) + 2d.

108



Also, max(t; `time(�

0

) + e+ d) + 2d � `time(�

0

) + e+ 2d. Therefore we onlude

that members(

1

) � J(max(t; `time(�

0

) + e + d) + 2d). This implies that i 2

J(max(t; `time(�

0

) + e + d) + 2d).

� i does not fail in �(max(t; `time(�

0

) + e + d) + d): We know that i does not fail

prior to event �, that is, the reon(

1

; 

2

)

i

event. By Reon-Spaing-1, we know

that time(�) � t + 6d. By assumption of this ase, we know that time(�) >

`time(�

0

) + e+ 2d. Therefore i does not fail in �(max(t; `time(�

0

) + e+ d) + d).

We therefore onlude that m is mainstream after max(t; `time(�

0

) + e+ d) + 2d.

We next apply Lemma 7.5.11, where t = max(t; `time(�

0

)+e+d)+2d, t

0

= max(t; `time(�

0

)+

e+ d) + 6d, and m is as de�ned above:

� e + 2d � max(t; `time(�

0

) + e+ d) + 2d: Immediate.

� max(t; `time(�

0

) + e+ d) + 2d � max(t; `time(�

0

) + e+ d) + 6d� 2d: Immediate.

� m is mainstream after time(�

`

): As shown above.

Therefore, we onlude that m is mainstream after max(t; `time(�

0

) + e+ d) + 6d, as

desired.

�

We �nally prove the main theorem, showing that read and write operations terminate

rapidly. This result requires 12d+�-reon-spaing, and is similar to Theorem 8.17 from [13℄.

This earlier theorem states that in a normal, steady-state ase, with good environmental be-

havior, read and write operations terminate within time 8d. Although the following theorem

allows for more ompliated behavior, deviating from the assumption of good environmental

assumptions, read and write operations still omplete rapidly.

Theorem 7.8.2 Let � be an �

0

-normal exeution satisfying: (i) (�,e)-join-onnetivity, (ii)

(�

0

; e)-reon-readiness, (iii) 12d+�-reon-spaing, (iv) (�

0

; e; 22d)-on�guration-viability.

Let t > `time(�

0

)+e+17d, and assume a read or write operation starts at time t at some

node i. Assume i 2 J(t + 8d), and does not fail until the read or write operation ompletes.
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Also, assume that � ontains deide events for in�nitely many on�gurations. Then node i

ompletes the read or write operation by time t+ 8d.

Proof. Let 

0

; 

1

; 

2

; : : : denote the in�nite sequene of suessive on�gurations deided

upon in �; by in�nite reon�guration, this sequene exists. For eah k � 0, let �

k

be the

�rst reon(

k

; 

k+1

)

�

event in �, let i

k

be the loation at whih this ours, and let �

k

be the

orresponding, preeding report(

k

)

i

k

event. (The speial ase of this notation for k = 0 is

onsistent with our usage elsewhere.)

We show that the time for eah phase of the read or write operation is � 4d { this will

yield the bound we need. Consider one of the two phases, and let  be the read

i

, write

i

or

query-�x

i

event that begins the phase.

We laim that time( ) > time(�

0

) + 8d, that is, that  ours more than 8d time

after the report(0)

i

0

event: We have that time( ) � t, and t > time(join-ak

i

) + 8d by

assumption that i 2 J(t + 8d). Also, time(join-ak

i

) � time(join-ak

i

0

). Furthermore,

time(join-ak

i

0

) � time(�

0

), that is, when join-ak

i

0

ours, report(0)

i

0

ours with no time

passage. Putting these inequalities together we see that time( ) > time(�

0

) + 8d.

Fix k to be the largest number suh that time( ) > time(�

k

) + 8d. The laim in the

preeding paragraph shows that suh k exists.

Next, we show that within zero time of  ourring, map(`)

i

6= ? for all ` � k. It is at

this point that the proof diverges from that of Lemma 8.17 from [12℄.

For the purposes of the next two lemmas, �x any ` � k. We apply Lemma 7.8.1, where

` is as �xed above, t = time(�

`

), � = �

`

, � = �

`

, 

1

= 

`

,and i = i

`

. We therefore onlude

that there exists a CMap m suh that:

1. m(`) 6= ?, and

2. m is mainstream after max(time(�

`

); `time(�

0

) + e+ d) + 6d.

We next apply Lemma 7.5.11, where t = max(time(�

`

); `time(�

0

) + e + d) + 6d, t

0

=

time( ), and m is as above, to show that m is mainstream after time( ):

� e+ 2d � max(time(�

`

); `time(�

0

) + e+ d) + 6d: Immediate.
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� max(time(�

`

); `time(�

0

)+ e+d)+6d � time( )�2d: By the way in whih k is hosen

we know that time(�

k

)+ 8d < time( ). Also, time(�

`

) � time(�

k

): either ` = k, or �

`

preedes �

`

whih preedes �

k

. By assumption we know that `time(�

0

) + e + 8d < t,

and t � time( ).

� m is mainstream after max(time(�

`

); `time(�

0

) + e) + 6d: As shown above.

Therefore, we onlude that m is mainstream after time( ). We know that i 2 J(t), and

t � time( ), so by Lemma 7.4.1, i 2 J(time( )). Also, i does not fail until the read or

write operation ompletes, and therefore either the read or write operation ompletes at

time( ) (in whih ase we have proved the desired bound) or i does not fail in �(time( )).

Therefore by de�nition of a CMap being mainstream, if m is mainstream after time( ),

then m � `state(�(time( ))):map

i

.

Having shown this for �xed ` � k, we now know that for all ` � k there exists some

CMap, m, suh that m(`) 6= ? and m is mainstream after time( ), this implies that for

all ` � k, `state(�(time( ))):map(`)

i

6= ?. Therefore we have shown that within zero time

of  ourring, map(`)

i

6= ? for all ` � k.

Now, by hoie of k, we know that time( ) � time(�

k+1

) + 8d. The Reon-Spaing

ondition implies that time(�

k+1

) (the �rst reon event that requests the reation of the

(k + 2)

nd

on�guration) is > time(�

k+1

) + 12d. Therefore, for an interval of time of length

> 4d after  , the largest index of any on�guration that appears anywhere in the system is

k+1. This implies that the phase of the read or write operation that starts with  ompletes

with at most one additional delay (of 2d) for learning about a new on�guration. This yields

a total time of at most 4d for the phase, as laimed.

Finally, by Corollary 7.7.9, the operation eventually terminates, whih guarantees that

ever on�guration in op:map remains viable for long enough. �

This shows that assuming (�

0

; e; 22d)-on�guration-viability is suÆient to guarantee

that read and write operations terminate quikly. As long as the reon�guration algorithm

an guarantee this level of viability, the Rambo II algorithm will ontinue to make progress,

regardless of any bad behavior the network may experiene. Further, while 22d may seem
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a long period of time to ensure viability, it must be remembered that d is typially a small

interval: we have been assuming that d is a single message delay in the network. Note

that simply deiding on a new on�guration to install might take many intervals of d (in

[12℄, it is bounded by 11d). Also, this 22d bound is fairly onservative: by making stronger

assumptions as to who begins on�guration-upgrade operations, and how gossip messages

propagate information about ompleted on�guration-upgrade operations, it is probably

possible to improve this bound. In this thesis we are primarily interested in the fat that it

is a onstant time bound.
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Chapter 8

Implementation and Preliminary

Evaluation

Musial and Shvartsman [16℄ have developed a prototype distributed implementation that in-

orporates both the original Rambo on�guration management algorithm [12℄ and the new

Rambo II algorithm presented in this thesis. The system was developed by manually trans-

lating the Input/Output Automata spei�ation to Java ode. To mitigate the introdution

of errors during translation, the implementers followed a set of preise rules, similar to [2℄,

that guided the derivation of Java ode from Input/Output Automata notation. The system

is undergoing re�nement and tuning, however an initial evaluation of the performane of the

two algorithms has been performed in a loal-area setting.

The platform onsists of a Beowulf luster with 13 mahines running Linux (Red Hat 7.1).

The mahines are Pentium proessors in the range from 90 MHz to 900 MHz, interonneted

via a 100 Mbps Ethernet swith. The implementation of the two algorithms shares most of

the ode and all low-level routines. Any di�erene in performane is traeable to the distint

on�guration management disipline used by eah algorithm.

The mahines vary signi�antly in speed. Given several very slow mahines, Musial and

Shvartsman do not evaluate absolute performane and instead fous initially on omparing

the two algorithms.

The preliminary results in Figure 8-1 show the average lateny of read/write operations
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Figure 8-1: Preliminary empirial evaluation of the average operation lateny (measured

as the number of gossip intervals), as a funtion of reon�guration frequeny, measured as

number of reon�gurations per one reon�guration period.

as the frequeny of reon�gurations grows from about two to twenty reon�gurations per

one gossip period. In order to handle suh frequent reon�gurations, a large gossip interval

(8 seonds) is used. This interval is muh larger than the round-trip message delay, thus

reduing the e�ets of network ongestion enountered when reon�guring very frequently.

The results show that the overall lateny of read/write operations for the new algorithm

progressively improve, as the frequeny of reon�guration inreases. As expeted, the de-

rease in lateny beomes substantial for bursty reon�gurations (at 20 reon�gurations per

gossip interval). For less frequent reon�gurations the lateny is similar, at about 4 gossip

intervals depending on the settings (not shown). This is expeted and onsistent with our

analysis, sine the two algorithms are essentially idential when maps ontain one or two

on�gurations. Figure 8-2 shows the average number of on�gurations in maps as a funtion

of reon�guration frequeny. This further explains the di�erene in performane, sine the

average number of on�gurations in maps is lower in the new algorithm as the frequeny of

reon�gurations inreases.
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Figure 8-2: Preliminary empirial evaluation of the average number of on�gurations in

map's, as a funtion of reon�guration frequeny, measured as number of reon�gurations

per one reon�guration period.

Finally notie that the modest number of mahines used in this study favored the original

algorithm. This is beause the mahines are often members of multiple on�gurations, thus

the number of messages needed to reah �xed-points by the read/write operations of the

original algorithm is muh lower than is expeted when eah proessor is a member of a few

on�gurations.

Also, notie that this evaluation does not examine the e�ets of message loss and lak of

network onnetivity. We hypothesize that, as in the ase of frequent bursty reon�guration,

when there are intervals of time in whih the network is disonneted, the new algorithm

should reover more rapidly. This testing has not yet been performed.

Full performane evaluation is urrently in progress. Shvartsman and Musial are in-

vestigating how the performane depends on the number of mahines and various timing

parameters.
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Chapter 9

Conlusion and Open Problems

In this thesis we have presented a new algorithm, improving on the original Rambo algo-

rithm by Lynh and Shvartsman [12, 13℄. While the original Rambo algorithm is analyzed

primarily in the ontext of good network behavior, we are able to show that our new algo-

rithm funtions well even when the network experienes transient periods of bad behavior,

inluding message loss, lok skews, and arbitrary asynhrony, and when reon�guration is

bursty and uneven.

The key to this improvement is a new rapid on�guration-upgrade mehanism, whih

allows the system to stabilize rapidly after a period of bad network behavior. In the previous

Rambo algorithm, it might take arbitrarily long to reover from a period of bad behavior.

In this new algorithm, however, within a onstant time, the system returns to a steady-state

ondition. This allows the algorithm to funtion more reliably in a long-running, dynami

system: when a system is expeted to funtion for months and years without failure, it is

neessary to rapidly reover from the inevitable transient network failures.

This improvement also makes pratial the design of algorithms to hoose new on�g-

urations. In the earlier version of Rambo, it is unlear what properties a reon�guration

algorithm must support in order for it to be useful. This thesis shows that a reon�guration

automaton must provide exatly (�

0

; 22d)-on�guration-viability .

To design suh a reon�guration algorithm, then, is one of the major open problems

posed by this thesis. In partiular, it seems important to show that if the rate of failure
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is bounded, then the algorithm ontinues to make progress. This is similar to the ideas

introdued by Karger and Liben-Nowell in [10℄, in whih they assume that the system has

a bounded half-life: the time in whih either half the proesses fail or the number of ative

proesses doubles. Under this assumption, they show that their algorithm operates orretly.

By similarly assuming a bounded rate of failures, it should be possible in ertain ases

to design a reon�guration algorithm that guarantees liveness by initiating reon�guration

with some minimum frequeny. By hoosing appropriate quorums and appropriate numbers

of reon�gurations, (�

0

; 22d)-on�guration-viability should be possible.

Other open problems inlude improving the join protool, and designing a leave protool

to allow good detetion of nodes that have exited the system. Currently, the join protool

is quite simple and it would seem bene�ial to require more ommuniation before allowing

a node to initiate operations. And when nodes fail or leave, in the algorithm as stated,

they are just ignored. By introduing a formal protool to leave the system, and a method

for deteting failed nodes, it might be possible to improve the long-run performane of the

system.

Another open problem is to determine how to reover when viability fails (and data is

inevitably lost). More generally, is a self-stabilizing version of Rambo feasible? It would

also be interesting to determine whether a version of Rambo ould be adapted to tolerate

Byzantine faults.

Rambo may also allow the onstrution of other data types, suh as weakly onsistent

memory and sets. It may also be possible to optimize Rambo to return read values more

rapidly, in one phase, in ertain ases. An important question would be to determine the most

powerful data objet that an be implemented using the Rambo tehnique; one suspets

that it is impossible to implement onsensus in this manner.

Finally, it would be interesting to examine how the Rambo algorithm ould be adapted

to spei� platforms. The algorithm is presented in a fairly abstrat fashion. In real im-

plementations, it would be optimized depending on the target platform. In partiular, we

suspet that Rambo should work well in sensor networks, mobile-networks, and peer-to-peer

networks.

In onlusion, this thesis has presented a new algorithm for atomi memory in a highly

118



dynami environment, proved that is always orret, and presented a set of onditions that

guarantee liveness. This provides signi�ant improvements over existing algorithms, rapidly

reovering from transient network problems and bursty reon�guration.
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