Virtual Mobile Nodes for MobileAd HocNetworks
(Extended Abstract)

Shlomi Dolev Seth Gilbert Nancy A. Lynch Elad Schillet
Alex A. Shvartsmah Jennifer Welch

February 24, 2004

Abstract

One of the most significant challenges introduced by molatevarks is the difficulty in coping with
the unpredictablemovement of mobile nodes. If, instead, the mobile nodesdcbel programmed to
travel through the world in a predictable and useful martherfask of designing algorithms for mobile
networks would be significantly simplified. Alas, users ofbil@ devices in the real world are not
amenable to following instructions as to where their devivay travel.

While real mobile nodes may be disinclined to move as desiedpropose executing algorithms
on virtual mobile nodeshat move in a predetermined, predictable, manner throgheal world. In
this paper, we define the Virtual Mobile Node Abstractiond mesent selected algorithms that take
advantage of virtual mobile nodes to simply and efficiendyfprm complicated tasks in highly dynamic,
unpredictable mobilad hocnetworks.

We then present thilobile Point Emulatoyra new algorithm that implements robust virtual mobile
nodes. This algorithm replicates the virtual node at a @it changing set of real nodes, choosing
new replicas as the real nodes move in and out of the path efrtiui@l node. We claim that the Mobile
Point algorithm correctly implements a virtual mobile npdad that it is robust as long as the virtual
node travels through well-populated areas of the network.

Contact Author: Seth Gilbert, 617-283-7502

Contact Address: 70 Pacific Street #666B, Cambridge, MA. 0P

Keywords: mobile networks, ad hoc networks, highly dynamic distributed algorithms, fault-t olerance, location-aware
Pages: 10 page main paper, 2 page bibliography, 4 page appéxd

Students: Seth Gilbert and Elad Schiller are students.

Brief Announcement: Consider for Brief Announcementif not accepted as a regular presentation.

Program Committee: Alex A. Shvartsman is on the program comnittee.

*Ben-Gurion University{dol ev, schi | | er }@s. bgu. ac. i |

fMIT CSAIL, {set hg, | ynch, al ex}@heory.|cs. nmt.edu

tDepartment of Computer Science and Engineering, Uniyes$i€onnecticutaas @se. uconn. edu

$Texas A&M Universitywel ch@s. t anu. edu

IThis work is supported in part by NSF grant CCR-0098305 anBt NR Grant 0121277. Part of the work of the first author and futhor
has been done during visits to MIT and Texas A&M. The first audnd fourth author are partially supported by an IBM facalivard, the Israeli
ministry of defense, NSF, and the Israeli Ministry of Tradel andustry. The second and third authors are partially stipg by AFOSR Contract
#F49620-00-1-0097, DARPA Contract #F33615-01-C-1896 I88ant 64961-CS, NTT Grant MIT9904-12. The fifth author igipy supported

by the NSF Grant 9988304, 0311368 and by the NBREER Award 9984774. The sixth author is partially supported by-N&Bant 0098305 and
Texas Advanced Research Program 000512-0091-2001.

1 Introduction

Devising algorithms for highly dynamic mobile networks &tl. The resulting algorithms have complicated
specifications, are difficult to understand, and challejpgmimplement. It is therefore important to develop
techniques and abstractions that simplify the processv@ldping and implementing algorithms for mobile
networks. In this paper, we propose one such abstractierVittual Mobile Node model.

Compounding the challenges of designing algorithms foicglpdynamic distributed systems, highly
mobile networks introduce the difficulty of dealing with tbempletelyunpredictable motiomf the nodes.
This complication is of course unavoidable: the definingudeaof a mobile network is that the nodes do, in
fact, move. Another difficulty in dynamic settings is thepredictable availabilityof nodes that continually
join and leave the system, whether they do so voluntarilgrerturned on and off, or fail and recover.

The task of designing algorithms would be significantly difrgd if the mobile nodes were reliable
and moved in predictable ways. The mobility of the nodes, dvar also presents an opportunity: if the
mobile nodes were to move inusefulway, it would be possible to take advantage of the motion tigue
algorithms that are even more efficient than those for statiworks. This idea is illustrated by Hatzis et al.
in [11], which defines the notion of @@mpulsoryprotocol, one that requires a subset of the mobile nodes
to move in a specific manner. (In particular, in [11], the reodee required to perform a random walk.)
They present an efficient compulsory protocol for leadect&la, demonstrating the advantages over a non-
compulsory protocol. The routing protocols of Chatzigiakis et al. [6] and Li et al. [18] provide further
evidence that compulsory protocols are simple and efficient

Compulsory protocols deploy dedicated nodes that are ctigunio certain patterns of motion, and
this may be a very strong requirement for highly dynamic elkyonous mobile settings where nodes may
fail or be diverted from the prescribed path. Thus the ouedije is(a) to retain the effectiveness of the
compulsory protocols, ang) achieve this without imposing requirements on the motiothefnodes. In
this paper we introduce an approach to building distribageglications that achieves both objectives.

Our Contributions. In this paper we introduce the Virtual Mobile Node Abstrantiand show how it
can be used to build distributed applications for dynaatichocnetworks, thus demonstrating the utility of
our approach. We also demonstrate the feasibility of ourcagah by showing how to implement the Virtual
Mobile Node Abstraction.

Virtual Mobile Nodes. We propose designing distributed algorithms to runvintual mobile nodes
(VMNSs), abstract nodes that move in a predetermined, ptagle manner. In this new abstraction, VMNs
are simulated by real nodes in the network. The motion of a isietermined in advance, and is known
to the programs executing on the VMNs. For example, a VMN mayetse the plane in a regular pattern,
or it may perform a pseudorandom walk.

To be effective, we allow the motion of the virtual nodes taubeorrelated with the motion of the real
nodes: even if all the real nodes are going in one directtmyirtual nodes are able to travel in the opposite
direction. Consider, for example, an application to manitaffic on a highway: even though all the cars
are moving in one direction, a VMN could move in the oppositeation, notifying oncoming cars of the
traffic ahead.

Algorithms for Virtual Mobile NodesTo demonstrate the utility of the new approach, we present se
lected algorithms that use VMNSs to solve interesting prnoldlesimply and efficiently. We first consider the
problem of routing messages. We describe two schemes fablsebtielivering messages: one relies on the
compulsory protocols of Chatzigiannakis et al. [6] to rontessages among the real nodes; the other deliv-
ers messages only to virtual nodes. The second scenarioreghe problem of collecting and evaluating
real-time data in mobiled hocsensor networks. In the third, we consider a number of gksersaices,

such as group communication services (e.g., as in [10, 3 ab8 an atomic memory service. We solve
these problems using approaches developed by Dolev ef ah@@Dolev et al. [7].

Implementing Virtual Mobile Nodesve present thiélobile Pointalgorithm, a new algorithm that imple-
ments robust virtual mobile nodes, thus demonstratingehsilbility of our approach. The main idea of the
algorithm is to allow real nodes traveling near the locatiba virtual node to emulate that VMN. In order
to achieve robustness, the algorithm replicates the stateviotual node at a number of real mobile nodes.
As the execution proceeds, the algorithm continually meslithe set of replicas for each mobile node so
that the replicas always remain near the desired path ofitheavnode. We use a replicated state machine
approach, augmented to support joins, leaves, and recdawanaintain the consistency of the replicas.

A virtual node is prone to “crash-reboot” failures. As lorgjthe path of the virtual node travels through
dense areas of the network, the virtual node does not fdibwfever, the VMN is directed to an empty spot,
a failure may occur. The Mobile Point algorithm, howevelpws the VMN to recover to an initial state,
if it again reenters a dense area. In this way, the VMN abtstratakes advantage of dense regions of the
network to perform arbitrary computation.

To summarize, this paper contains three main contributibirst, we define the VMN abstraction. Second,
we present selected algorithms based on VMNSs that are quilglescompared to previous algorithms.
Third, we present an algorithm to implement robust virtuabite nodes.

Other Related Work. The Mobile Point algorithm for implementing VMNSs is similar many ways to
the GeoQuorums algorithm [7, 8]. Dolev et al. define a FocattRabstraction that allows mobile nodes to
use predetermined locations in the network to simulate @tohjects. The Virtual Mobile Node Abstraction
extends the Focal Point abstraction in four ways. FirsthenGeoQuorums algorithm, the virtual entities
(i.e., the focal points) are static: they are limited to fixpredetermined locations. In this paper, we extend
the abstraction technique to allow each virtual entity torenon an arbitrary, predetermined path. Second,
the Focal Point abstraction limits the virtual entities sdiomic objects. In this paper, the virtual entities
can emulate any arbitrary automaton. Third, the GeoQuomlgwithm does not allow the virtual entities
to recover, should they fail, whereas we support recoveourth, the GeoQuorums algorithm inherently
depends on a GeoCast service that allows potentially mgrenskwe long-distance communication. In this
paper, we can implement the Virtual Mobile Node Abstracteawen when the available communication
services only allow local communication.

This paper also generalizes some results presented by Be&| [n which he defines RersistentNode
abstraction. A PersistentNode is a virtual entity thatetsnaround a static (rather than mobile) sensor
network. It can carry with it some state, but the consistan@rantees are relatively weak.

The work of Nath and Niculescu [21] also takes advantage etalculated paths to forward messages
in dense networks. Messages are routed along trajectariese nodes on the path forward the messages.
Similarly, prior GeoCast work (for example, [22, 5]) atteimpo route data geographically. In many ways,
these strategies are ad hoc attempts to emulate some kinavefing node. We provide a more general
framework to take advantage of dense areas of the networlrform arbitrary computation. A significant
focus of these prior papersdgtermininggood trajectories, a problem that we do not address (butriagt
be useful in determining a good path for VMNS).

Document Structure. In the first part of the paper, we show how to use virtual mahddes to simplify
the design of algorithms for mobibed hocnetworks. We describe the underlying system model in Se&tjio
and the Virtual Mobile Node model in Section 3. Then, in Set#, we describe selected algorithms that
take advantage of the VMN abstraction. In the second patteopaper, we show how to implement robust
virtual mobile nodes, using the Mobile Point algorithm ircéen 5. Selected algorithms are given in the
appendix.

2 Basic System Model

In this section, we present the underlying system modelwbamsists of physical mobile nodes moving in
a bounded region of a two-dimensional plane. Each mobile iodssigned a unique identifier from a det,
The mobile nodes may join and leave the system, and may failyetime. (We treat leaves as failures.) The
real mobile nodes can move on any continuous path in the platiespeed bounded by a constant,, .

The Geosensois a component of the environment that maintains the cutoeation of each mobile
node. It also maintains the current real time. The Geosaraobe implemented in real systems by a Global
Positioning System (GPS) receiver, or (for indoor usagé€yieket [24] device.

Basic Communication Services. The mobile nodes support a basic broadcast communicativitee
LocalCast, which is parameterized by a radifts, The R-LocalCast service delivers a message to every
mobile node within a radiug of the sender. The service has the following propertiefRRéljable Delivery
Assume that the mobile nodgerforms docalcast(m); action. Then for every mobile nogethat is within
distanceR of the location ofi when the message is sent, and remains within dist&hoé that location
forever thereaftérand does not fail, #ocalcast-rcv(m) ; event eventually occurs, delivering the message
to nodej. (ii) Integrity: For any LocalCast message and mobile node, if a localcast-rcv(m); event
occurs, then éocalcast(m), event precedes it, for some mobile ndde In Section 5, we assume that every
message, that is delivered, is delivered wittlitime. We assumd is fixed for the rest of the paper. This
service can be implemented in real systems as lonf &snot too large. Many typical wireless broadcast
protocols, augmented with error correction, should satiisése requirements. In Section 6 we briefly
discuss some weaker alternatives that can tolerate oocedlyidelayed and lost messages; these alternatives
are even more realistic models of real systems.

3 Virtual Mobile Nodes

The VMN Abstraction consists of both
physical mobile nodes (PMNs, also re
ferred to as “real nodes”) and virtual mo
bile nodes (VMNSs, also referred to as “vir
tual nodes”). Throughout this paper, th
termmobile nodeefers to any node in the|
system, be it real or virtual. Mobile nodes
may fail and recover; when a node recoy-
ers, it begins again in an initial state.
The virtual nodes are equivalent to the rep
nodes, with a few exceptions. Most im
portantly, they move in a predictable, pre
determined path, rather than an arbitra

path.
Each virtual node is designed to execute a regular 1/0 autnh419]. The VMN System Model

supports the LocalCast service, with the same basic spg®ins as the underlying system model. In this
case, the broadcast service does not distinguish betweeahand real nodes, delivering messages to all
mobile nodes within the specified vicinity. The LocalCaspmarted by the VMN model, however, may
delay messages from being sent or received, and may repgat@mer messages (even if the underlying
LocalCast service does not).

LocalCast Service

~5—|
~5—|

Iocalcast—rci localcast localcast-n IocaIcasIocaIcasl—rc& localcast localcast-n| localc

Client;

[¢)

Virtual Node j

Physical Node i

geo-update

geo-update

Geosenso{

_Figure 1:VMN System Model, representing a virtual node and a
,yreal node sending messages to each other via LocalCasteser

As soon as the message is delivered, the receiver can moye lithe broadcast latency is bounded, this is effectiveypand
on the speed of the mobile nodes.
2\We expect that it is a simple extension to support timed afmitiyirtual nodes, instead of just regular 1/O automata.

3

(@) (b) ()
S D

C0aD

M

A A A A

Figure 2: The diagrams represent one or more VMNSs travetitige plane. The arrows indicate the direction
of motion. (a) A single virtual mobile node scans an area.Mbltiple virtual mobile nodes cooperate to
scan an area. Neighboring VMNs move counterclockwise, imgeince per cycle to exchange messages.
(c) Messenger VMNV ferries messages from source VMo destination VMND.

Since the automaton being executed is running on a (virtmalpile node, we allow it to commu-
nicate only by sending and receiving messages, and by megeipdates from the Geosensor. That is,
we limit the input and output actions of virtual nodeto localcast-rcv(msg)y,, localcast(msg)y,, and
geo-update(time, loc)y,.

As before, the LocalCast service is parameterized by asaffiuln order to implement the VMN Ab-
straction with anR-LocalCast communication service, we assume through@ip#per that the underlying
model support@ R-LocalCast.

4 Solving Problems with Virtual Mobile Nodes

In this section we discuss some scenarios in which virtudeadacilitate the design of algorithms, and
discuss simple algorithms that address these situatidhtefalgorithms in this section depend only on the
LocalCast service, although some may be simplified usingaO@st service (as in [22, 5]), which delivers
messages to a specific location (and any nodes that happerthere).

Routing. We first consider the problem of routing messages. NeitherLtbcalCast service nor the
GeoCast service delivers messages to specified nodes; lupthgate messages to the mobile nodes in a
well-defined region. Most algorithms that allow a client t@kcitly specify a destination node (such as
DSR [12, 13] and AODV [23]) are forced to either track the libma of every mobile node, or flood the
entire network with messages. Both approaches can be gpiénsive, and optimizations are difficult.

The PMN Routing Schemis based on the compulsory protocol of Chatzigiannakis lf6jts simplest
version, a single VMN travels through the network, collegtand delivering messages, as in Figure 2.a.
(Pseudocode for such an algorithm is presented in Appendixnforder to send a message, a real nade,
examines its current location and calculates the curremttion of the virtual node that is carrying out the
protocol. Node: then waits until the virtual node is nearby and sends it thesage using the LocalCast
service. The virtual node collects messages that it hasvezbe Nodes that want to receive messages
perform a similar protocol: if some real nodg,discovers that the VMN is nearby, it sends it a request for
messages; if the VMN has any messages destinef] fouses the LocalCast service to send them.

As presented, the algorithm has a low cost, where each messsiges at only a single VMN; however
a message might take a long time to be delivered. Using mor&l¥May shorten the average message
latency, while increasing the cost. For example, the VMNghhimove as described in Figure 2.b. Whenever
two VMNSs pass each other, they send each other their storeses$ages. In this way, all the messages
spread to all the VMNs. A more space efficient algorithm migge the scheme developed in [6], where the
VMNs form a snake, winding through the network in a pseuddoam path, thus regularly visiting every
populated region of the network and delivering messagdsetoetsident nodes.

Compared to typical routing schemes (such as DSR and AOD¥3getalgorithms are easier to tune, in
terms of space versus latency trade-offs: by increasingungber of VMNSs, and thus the space, messages

4

are more rapidly delivered. Unlike DSR and AODYV, the costt¢éirms of message latency and space usage)
of these algorithms scales with the number of VMNSs and the sfzhe region being covered, rather than
the number of nodes.

Notice that the scheme described in Figure 2.b could alsoskd to implement a general GeoCast
service using LocalCast. In this case, instead of each messzentually propagating to every VMN, a
message only propagates to the VMN that travels along thedmal coordinate specified in the message.
Augmenting the system with vertical-traveling VMNSs furthecreases the efficiency.

Since the motion of VMNSs is known in advance, we can devisan awere efficient algorithms for
routing messages only among virtual nodes. VMN Routing Schemedlows any VMN to send a message
to any other VMN. (Pseudocode for such an algorithm is piteseim Appendix A.) Consider sending
a messagemn, from the virtual node S, to the virtual node,D. This task is performed by an additional
messengeYMN, M. The nodeM ferries messages from sour§do destinationD (see Figure 2.c, where
the solid lines represent the paths of the virtual nodes)emthe node5 is nearM,, it sends message to
M. WhenM is nearD, it relays message: to D. (This is similar to a scheme presented in [4], that uses
“buses” to carry data securely through a network.)

Although the paths intersect, we must ensure that the mgsseantually meets nodésandD. There-
fore we choose the path @ff such that the nodes meet periodically (for example, evemg fif intersect
the path ofS or D, it pauses until the expected node arrives).

The reliability of communication depends on the reliabitf the messenger VMN. Moreover, since the
paths ofS, D, andM are predetermined, the message latency can be predicted.

Data Collection Algorithm. A common use of mobil@d hocnetworks is to monitor environmental
sensors. For example, one might wish to evaluate the avéeaggerature, the average remaining battery
charge, or the number of nodes in various regions of the n&twi@he latter application might be used to
track animals or cars, or to determine the density of molildes for other uses.)

Madden et al. [20] design a query language for sensor nesnihikt specifies when, where, and how
often data is sampled. They implement TinyDB, a sensor egpbin that supports these queries. We
propose a quite simple algorithm for addressing similariggén mobile (rather than static) networks. Our
algorithm also has the advantage of being easy to implemettt,the potential to scale well. As in the
case of routing, we direct the virtual nodes to systemdgiedplore the region in question, collecting and
aggregating data. This might use, for example, the pattemabion described in Figure 2.b. A different
topology might lead to different patterns of motion; for exae, if the idea is to collect data about the goose
population on the Charles River (a river separating Cangleridom Boston), the VMNs might be directed
to all start at the west end of the river and sweep in a syniedrfashion to the east, ensuring that all the
geese are discovered.

The primary difference from the routing algorithm is thag tthata may be aggregated, both regionally
and temporally, as it is being collected. The client spexifiehe query what sort of data the sensors should
produce, and how the “network” should aggregate that date MMNSs only return the necessary data to
the clients. We present a simple version of this algorithmppendix C. (This version uses only a single
VMN; as in the case of routing, multiple VMNs can improve thefprmance.)

Other Services. Many other basic services can be implemented using the VMitratiion. For ex-
ample, by extending the GeoQuorums algorithm [7], we carlé@mpntAtomic Read/Write MemoryThe
GeoQuorums algorithm dependsfocal points fixed, densely populated regions, to implement atomic ob-
jects that maintain replicas of the data. Instead, we stggdsy VMNSs to maintain the replicas. If certain
areas of the network are known to be empty at certain times, tine replicas can be programmed to stay
away from the dead spots. (For example, an office building beagmpty at night; the replicas can be pro-
grammed to move in the evening to a nearby bar.) If areas aiehgork tend to issue many operations at

certain times, the replicas can be programmed to move te tHress at these times, improving performance.

In the GeoQuorums algorithm, a GeoCast service is used tacdhe replicas; in this case, the routing
schemes discussed earlier in this section may be used. As Be&oQuorums algorithm, the performance
depends significantly on the distance of the replicas fractient and the efficiency of the GeoCast service
that sends requests to the replicas. The VMN version shbelctfore be at least as efficient as the prior
version; if the VMNs replicas are engineered to travel néarregions where most of the clients issue
requests, it may be even more efficient.

Another example of a useful basic service&Gigup CommunicationDolev et al. [9] show how to im-
plement group communication services (and resource éibojausing a single mobile agent that performs
a random walk of a mobilad hocnetwork. Unfortunately, this agent is a single point of ded. Us-
ing a reliable VMN to perform the data collection and progammimproves robustness. Also, by using a
deterministic traversal, the VMN can visit the network moapidly, thus improving performance.

5 Mobile Point Implementation of the VMN Abstraction

In this section, we present tidobile Pointalgorithm, a robust implementation of the Virtual Mobile déo
Abstraction. We first briefly consider a simple implememgatihat is not robust. We then discuss how the
Mobile Point algorithm uses the LocalCast service to pregasssages in a consistent order, and finally
present the Mobile Point Emulator, a robust implementadibtne VMN abstraction. All the line numbers
in this section refer to Figure 6.

Simple VMN Implementation. The Agent Emulatoiis a simple algorithm to implement fault-prone
VMNSs usingagents An agent is a dynamic process that jumps from one real nodadther, moving in
the direction specified by the VMN path. An agent “hitchesde'tiwith a host that is near to the specified
location of the VMN. This strategy has been used in the pashjpbement various services, such as group
communication (see [9]). It can be generalized to suppditrary I/O automata. (We present code for the
Agent Emulator in Appendix D.)

This simple algorithm meets one of the two goals of a VMN impdatation: the movement of the
virtual node is predictable. However, the host of the agerd single point of failure, and therefore the
VMN is not robust. For some applications, such as simpleimguthis may be sufficient (as a higher level
protocol can retry when messages are lost). For many apiplisa however, this lack of robustness is
undesirable. We solve this problem through replication.

Mobile Points and Consistent Replication. We define anobile pointto be a circular region, of radius
R, that moves along the same path as the virtual node: thercaftiee mobile point at time is exactly
the location of the virtual node at tinte At any given time, every node that resides within a mobil@po
replicates the virtual node.

Since the state of the virtual node is replicated at multipdeles, the mobile point algorithm must
maintain consistency among the replicas. We thereforehesedcalCast communication service and the
synchronized clocks to implement a totally-ordered braatiservice within the region defined by a mobile
point. We use a standard technique (derived from [16]) tauenghat each mobile node processes the
messages in the same order: a timestamp is affixed to eachgeesdegfining a total order; before processing
a message, the mobile node waits until at least tirhas elapsed since the message was sent, ensuring that
all earlier messages are received first. (See, for exanipée26.) The correctness of this scheme depends
on reliable and timely message delivery. In Section 6, weudis alternative algorithms for totally-ordered
broadcast in which only liveness, and not correctness,rikpen the underlying broadcast service.

The Mobile Point Emulator. We now present the[Signature:

Mobile Point Emulator algorithm. The algorithm is baseqnput:

on a replicated state machine technique (originally pre- localcast-rcv(m), ;,me M

sented in [16]), augmented to support joins, leaves, and 'ocalcast-rev({type param oid, (L, j)))n.i
. geo-update(l, t), ;,1 €L, t € R>O

recovery. It uses the total ordering of messages to ensure ’

that the replicas are updated consistently. The signafu@etput:

and state of the algorithm are given in Figures 3 and|4, :ggg}ggig’(‘t‘;gepmagn“fo,d i

and the algorithm itself is in Figure 6. All the code is

presented using 1/O Automata. See Lynch [19] for a fuII”tejL”iﬁ'(s _

description of the IOA formalism. leave(jn.;

Each real node executes one instance of the Mobile ;?;itlgt}giaction(act) acte sigr)
Point Emulator (MPE) for every VMN. The goal of the simu|ate:geo_updat§(’§'m ar
MPE is to replicate the state of the VMN at every nogle process-join()p ;
within the mobile point's region. E:ggg:ﬁg‘;‘z'ﬁ)h

The status of the Mobile Point Emulator can be ong
of four statesidle, indicating that the physical node is ng
within the area specified by the mobile poijdining or
listening, indicating that the physical node is in the prqg
cess of joining the mobile point, active, indicating that
the physical node is actively participating in the mobilénp@mulation.

When a node is active in the mobile point, it maintains a oeypdéid copy of the state of the virtual
node, val. This replicated state is modified only when the physicalenoeteives a message indicating
that a particular action should be performed. Since we enthat all mobile nodes process the LocalCast
messages in the same order, all nodes active in the emufatioriain consistent replicas. If the virtual node
performs docalcast(m) action, then the real node itself sends

There are two scenarios that lead to the VMN taking a steafimputation, both of which begin with
an active physical node sending a LocalCast message tolteereplicas specifying the desired action. In
the first scenario, an active node receives a message fraanatolthe VMN (lines 1-4). The physical node
sends a LocalCast message to all the replicas, ensuringltiretve received this message. Each replica,
on receiving the rebroadcast (lines 20-35), updates theagd state as if the VMN had performed a
localcast-rcv action (lines 33-34).

In the second scenario, an active node may examine the tstegta of the VMN (i.e.pal) and discover
that some action is enabled, that is, ready to be perforneas(1L2—18). The replica then sends a broadcast
to all the other replicas instructing them to take a step efdbmputation. When an active node receives

1%

tFigure 3:MPE Signature for Nodéand VMN &
for I/O automaton = (sig, states, start, J)

State
statuse {idle,joining,listening,active}, initially active if node is inmp-location andidle otherwise
val € stateg7), holds current state of the simulated 1/0O automaton, iiyitistart(7)
msgqueue a queue of messages to be sent by the communication seniiicdly (
anweredjoin-reqgs set of ids of join requests that have already been answigigdlly ()
join-id € T, unique id for current join request, initiall§o, o)
pendingactions set of messages waiting to be processed, initially
completedactions queue of actions that have been simulated, initi@lly
mp-location € L, continuous, location defining the center of the mobile poder consideration
clock€ R29, the current time, initially 0, continuously updated by theosensor
location € L, the current physical location, continuously updated fey@&eosensor

Figure 4:MPE State for Nodé and VMN A for I/O automatonr = (sig, states, start,)

such an instruction, it performs the step of the computatfdhe action is still valid (lines 20-35).

Joining a Mobile PointWhenever a physical node is within the perimeter defined byrtbbile point, it
initiates a join protocol (lines 65—72); whenever a phylsicale is outside of a mobile point, it executes the
leave protocol, which reinitializes its states and setstatus tadle (lines 100-112). The maximum speed
of the mobile point is determined by the latency of the joiatpcol and the speed of the real physical nodes:
the mobile point must move slowly enough so that new nodegnter and join the mobile point before the
old nodes leave.

Assume that nodéis attempting to join. The join protocol begins whebroadcasts #in-req to all
the replicas requesting a copy of the current state. Wheer nogteives its own join request, it enters the
listening state (lines 81-82). This indicates that it can begin to moorithe messages in the system. In
particular, it saves any LocalCast messages that tempdodlthw its join request inpending-actions.

When some other active nodg, receives the join request, it sends a join acknowledgnjeint,ack.
This acknowledgment includes a copy of its replica of théeudgirnode val ;. Whens receives the acknowl-
edgment, it makes a copy of the replicated state, and begipsotess ityending-actions (lines 87-98).
Notice that by the time receives the copy of the replicated state, the copy may befaste. Fortunately,
the messages storedpanding-actions are sufficient to bringal; up to date.

RecoveryA mobile point may fail when it reaches a depopulated arehefietwork. As soon as all the

nodes leave the mobile point, it loses its state. The Moli@tFEmulator contains a recovery mechanism
that allows the virtual node to be restarted in this case. Méneeal node enters the mobile point and
cannot communicate with any other active nodes, it can loastidreset message (lines 43-47); every node
receiving a recover message reinitializes its state (H8%3). If multiple nodes try to initiate a recovery
at the same time, the last node to send the recover messages the recovery.

Correctness.We claim that the Mobile Point Emulator correctly implenweiiie Virtual Mobile Node
Abstraction, in that any service built on the VMN abstraatians correctly on the Mobile Point Emulator:

Theorem 5.1 Let A be a system consisting of client automata and a virtual nedere alllocalcast and
localcast-rcv actions are hidden. Lef be a system consisting of client automata composed with tielé/
Point Emulator, which implements the virtual node. Agaidehthelocalcast andlocalcast-rcv actions inS.

Thentraces(S) C traces(A).

VMN LivenessThe Mobile Point algorithm ensures that the VMN fails onlyemtit enters a depopulated
region of the network. Therefore, while we make no assumptabout the motion of the real mobile nodes,
we do assume that certain (time varying) regions are uslatlyulated” by real nodes. That is, we assume
that at all times, at least one node resides in the regionetefay a ball of radiu® around the location
of the virtual node: there is always at least one real nodaémiobile point. Further, we assume that real
nodes entering and leaving the mobile point overlap in tiar¢gufficiently long”, i.e., enough time for the
departing real nodes to transmit the state to the enteridgsio

If the mobile point becomes depopulated at any point, theiaiimode fails. If it becomes repopulated
at a later point, however, it can be restored, beginningraigaits initial state.

We claim that, in the real world, this density assumptioneissonable. There often exist regions that
are almost always populated — such as highways, office bgsdiand shopping malls. Furthermore, these
areas tend to have predictable patterns of density. Forgeammobile point that spends its days exploring
the highways may move to a more populated area at night.

6 Discussion and Concluding Remarks

The VMN framework, and the algorithms presented in this paijpéroduce new horizons for further re-
search. One significant path of investigation is to devisthéur applications for the new robust primitive

8

presented in this paper: the algorithms given in Sectionly bagin to examine the possible uses of this
abstraction. And it will be quite interesting to experimeiith a real implementation of VMNSs, to determine
if the real utility of VMNs outweighs the overhead of implentimg them. We focus in this section on a
second area of ongoing investigation: alternate impleatiemts of virtual mobile nodes. We consider four
improvements: (i) more dynamic VMNSs, (ii) self-stabiligi¥ MN implementations, (iii) a VMN implemen-
tation for a more asynchronous environment, and (iv) combithe Mobile Point and Agent algorithms to
implement an even more efficient VMN.

Dynamic Virtual Mobile NodesiIn this paper we have assumed that the path of a VMN is fixed in
advance, and the set of VMNSs is fixed in advance. In many caisissis not only sufficient, but in fact
advantageous, as the location of a VMN can be knavpniori. However, for some applications it would be
useful if the path of the VMN could be determined on-the-flgr Example, one can imagine using a VMN
to follow a user, either performing a service for that usetracking the location of the user. In addition, the
dynamic path could actively avoid unpopulated areas of gte/ork, thus improving robustness. Similarly,

it may be useful to generate virtual nodes dynamically. @mnsfor example, the security example where
a new VMN is generated to track every intruder that entergtaiocearea.

Self-Stabilizing Mobile PointsLong-term robustness of the VMN abstraction can be impraf/¢ide
virtual nodes were self-stabilizing. We believe that witfear modifications, the Mobile Point algorithm
can be made self-stabilizing.

Broadcast in the Partially Synchronous Mod€he correctness of the Mobile Point Emulator depends
on the reliable and timely delivery of broadcast messagdserelare a number of algorithms, however,
for performing totally-ordered broadcast in partially sfironous environments (for example, [17]). In
these algorithms, correctness does not depend on any tassgmptions; instead, the eventual delivery
of messages depends on eventually timely broadcast. Wevbeti possible to implement a VMN using
such an algorithm (in particular, a variant of an algorithregented in [1]). Alternatively, there may be
other practical ways to implement a sufficient broadcastiser (One other option is discussed in [7], for
example.)

Mobile Points and Agentinally, we observe that it may improve performance to etetiie Mobile
Point Emulator on virtual nodes implemented by unrelialgerds, rather than on real nodes directly. The
agents are quite simple and efficient, but unreliable; theilmpoint emulator is reliable, but not as efficient.
By combining the two algorithms, we can improve the efficiemithout sacrificing the reliability.

Conclusions In this paper, we have presented a new technique for impléngealgorithms in mobile
ad hocnetworks. In general, it is quite difficult to devise algbnits for such a chaotic, unpredictable envi-
ronment. In the VMN Abstraction, however, there exist taka(virtual) nodes that move in a predictable
manner. Algorithms running on virtual nodes can worry |dssu fault-tolerance, and more about solving
the task at hand. And algorithms running on virtual nodeshEassured that the virtual node will not be
confined to undesirable parts of the network. Using onlyllcoanmunication, a VMN is able to partici-
pate in global network affairs. We have presented the Mdbdat Emulator, a new algorithm that takes
advantage of location information and dense areas of thweonleto implement reliable virtual nodes. We
believe that this abstraction, and algorithms in the pgradyf the Mobile Point Emulator, will significantly
simplify the development of algorithms for mobile netwarks

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

Input localcast-rev(m)y, ;
Effect:
if (m¢ pendingactionsU completedactions) then
Enqueugmsgqueue (simulate, (rcv, my, L))

Input localcast-rev({type param oid, (t,)))n,;
Effect:
if ((type param oid, (t,j)) ¢ pendingactiong A
((type param oid, (t, j)) ¢ completedactions)) then
pendingactions<— pendingactionsu {(type param oid, (t, j))}

Internal init-action(act),, ;
Precondition:
status= active
d(act) # L
Effect:
oid < (time, i)
Enqueugmsgqueue (simulate, act, oid))

Internal simulate-action(act),, ;
Precondition:
status## listening
(simulate, act, oid, (t, j)) € pendingactions
V(x, *, %, (t',]')) € pendingactions
(t<t) V((t=t) A <)
t+d > time
Effect:
if (status= active) then
if (d(val, act) # L)then
val « §(val, act)
completedactions«+— completedactionsuU
{(simulate, act, oid, (t,j))}
if (act= (send, m)) then
Enqueugmsg-queue m)
pendingactions« pendingactions\ {(simulate, act, oid, (t, j))}

Internal simulate-geo-update(), ;
Precondition:

None.
Effect:

val +— §(val, (gec-update clock mp-location))

Internal reset(), ;
Precondition:
status= listening
Effect:
Enqueugmsgqueue (reset, L, 1))

Internal simulate-reset(), ;
Precondition:
(reset, *, *, (t,])) € pendingactions
Y{x, =, *, (t',]")) € pendingactions
(t<t)V(t=t) A <)
t+d > time
Effect:
status«— active
val < start(7)
join-id < (0, i)
answeredjoin-regs<— 0
pendingactions«
completedactions«
lbcastqueue« (
geocastqueue«— 0

Internal join()y, ;
Precondition:
| location -mp-location] <R
status= idle
Effect:
join-id < (clock; i)
status«— joining
Enqueugmsgqueue (join-req, L, join-id))

Internal process-join()y ;
Precondition:
(join-req, %, jid, (t,j)) € pendingactions
Y(x, %, *, (t',]")) € pendingactions
(t<t)V(t=t)A(<)
t+d > time
Effect:
if ((status= joining) A (jid = join-id)) then
status« listening
if ((status= active) A (jid ¢ answeredjoin-reqs)) then
Enqueugmsgqueue (join-ack, jid, val))
pendingactions« pendingactions\ {(join-req, L, jid, (t,j))}

Internal process-joinack()p ;
Precondition:
(join-req, v, jid, (t, j)) € pendingactions
V(join-req, , x, (t',j’)) € pendingactions
(t<t)V(t=t) A <))
t+d > time
Effect:
answeredjoin-reqs<— answeredjoin-reqsu {jid }
if ((status= listening) A (jid = join-id)) then
status«+— active
val < v
pendingactions« pendingactions\ {(join-act, v, jid, (t,j))}

Internal leave()y, ;
Precondition:
| location -mp-location| > R
status idle
Effect:
status«— idle
join-id < (0, i)
val < start(r)
answeredjoin-regs<— 0
pendingactions<« (
completedactions« 0
Ibcastqueue«—
geocastqueue«— 0

Output localcast(m)y, ;
Precondition:

Peekmsgqueug = m
Effect:
Dequeu€msgqueug

Output localcast((type param oid, (t, i)))n ;
Precondition:

Pee msgqueug = (type param oid)

t =time
Effect:

Dequeugmsgqueug

Input geo-update(l, t); ;
Effect:

location «— |

clock <+t

Figure 6: Mobile Point that implements VMM executing I/O automaton = (sig, states, start, J)

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BAR-JOSEPH Z., KEIDAR, |., AND LYNCH, N. A. Early-delivery dynamic atomic broadcast. In
Proceedings of the 16th International Symposium on DI&teit Computing2002), pp. 1-16.

BEAL, J. Persistent nodes for reliable memory in geographidaligl networks. Tech. Rep. AIM-
2003-11, MIT, 2003.

BEAL, J. A robust amorphous hierarchy from persistent node®rdaeedings of the International
Conference on Communication Systems and Netw2€as).

BEIMEL, A., AND DOLEV, S. Buses for anonymous message delivdpurnal of Cryptology 161
(2003), 25-29.

Camp, T., AND L1U, Y. An adaptive mesh-based protocol for geocast routiogrnal of Parallel and
Distributed Computing: Special Issue on Mobile Ad-hoc Neking and Computing2002), 196—-213.

CHATZIGIANNAKIS, |., NIKOLETSEAS, S.,AND SPIRAKIS, P. An efficient communication strategy
for ad-hoc mobile networks. IRroc. 15th International Symposium on Distributed Comuif2001),
pp. 320 — 322.

DoLEv, S., GLBERT, S., LYNCH, N. A., SHVARTSMAN, A. A., AND WELCH, J. Geoquorums:
Implementing atomic memory in mobile ad hoc networks. Phoceeding of the 17th International
Conference on Distributed Computii@ctober 2003).

DoLEv, S., GLBERT, S., LYNCH, N. A., SHVARTSMAN, A. A., AND WELCH, J. L. Geoquorums:
Implementing atomic memory in ad hoc networks. Tech. Re[B{IR-900, MIT, 2003.

DoLEv, S., SHILLER, E.,AND WELCH, J. Random walk for self-stabilizing group communication
in ad-hoc networks. IiProceedings of the 21st IEEE Symposium on Reliable Disaitbh$ystems
(2002), pp. 70-79.

Communications of the ACM, Special section on Group Conation SystemgL996), vol. 39(4).

HaATzIS, K. P., FENTARIS, G. P., $IRAKIS, P. G., AMPAKAS, V. T., AND TAN, R. B. Fundamental
control algorithms in mobile networks. IRroc. of the 1th ACM symposium on Parallel Algorithms
and Architectures archivésaint Malo, France, 1999), pp. 251 — 260.

JOHNSON, D. B.,AND MALTZ, D. A. Dynamic source routing in ad hoc wireless networksvibibile
Computing T. Imielinski and H. Korth, Eds. Kluwer Academic Publisket996, ch. 5, pp. 153—-181.

JOHNSON, D. B., MALTZ, D. A., AND BROCH, J. DSR: The dynamic source routing protocol for
multi-hop wireless ad hoc networké&d Hoc Networking2001), 139-172.

KEIDAR, I. A highly available paradigm for consistent object reption. Master's thesis, Hebrew
University, Jerusalem, 1994. URL.: http://www.cs.hujiiggimtransis/publications.html.

KEIDAR, |., AND DoLEv, D. Efficient message ordering in dynamic networksPtaceedings of the
fifteenth annual ACM symposium on Principles of distributedhputing(1996), ACM Press, pp. 68—
76.

11

[16] LAMPORT, L. Time, clocks, and the ordering of events in a distribusgdtem. Communications of
the ACM 217 (july 1978), 558-565.

[17] LAMPORT, L. The part-time parliament. ACM Transactions on Computer Systems 26§1998),
133-169.

[18] L1, Q.,AND Rus, D. Sending messages to mobile users in disconnected aditedess networks. In
Proceedings of the 6th Annual ACM/IEEE International Cogriee on Mobile Computing2000).

[19] LYNCH, N. A. Distributed Algorithms Morgan Kaufman, 1996.

[20] MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND HONG, W. The design of an acquisi-
tional query processor for sensor networksSIGMOD Conferenc€003), pp. 491 — 502.

[21] NATH, B., AND NICULEScU, D. Routing on a curve ACM SIGCOMM Computer Communication
Review 331 (January 2003), 150 — 160.

[22] NavAas, J. C.,AND IMIELINSKI, T. Geocast — geographic addressing and routinQM/IEEE Intl.
Conference on Mobile Computing and Network({§97), pp. 66—76.

[23] PERKINS, C.,AND ROYER, E. M. Ad-hoc on-demand distance vector (AODV) routing.Piioceed-
ings of IEEE WMCSAL999), pp. 90-100.

[24] PRIYANTHA, N. B., CHAKRABORTY, A., AND BALAKRISHNAN, H. The cricket location-support
system. InProc. of the 6th ACM MOBICONAugust 2000), pp. 32—-43.

12

A Physical Mobile Node Routing Scheme

State:
id, constant, physical mobile node identifier
time, continuously changing, the current time
location, continuously changing, the current location of VMN
messengetocation, continuously changing, the current location of the megeeWMN
local-messagesa set of messages to be forwarded, initidlly
delivered a set of messages to deliver, initiafly

Input send(m); ; Output localcast(nbr, i, t, £);
Effect: Precondition:
local-messages— local-messages (i,j,m) | messengetocation — location| <R
t=time
Output rev(m); ; £=location
Precondition: Effect:
m € delivered None.
Effect:
delivered« delivered\ {m} Input localcast-rcv(message, (src,desim)); ;
Effect:
Output localcast(message, m); if (dest=1i) then
Precondition: delivered«— deliveredu {m}

m € local-messages

| messengetocation — location| <R
Effect:

local-messages— local-message§ {m}

IOA code for running on PMN that wants to send and receive messages. The #apdtand the
outputrcv are the external interface to the routing service. The PMiifies the messenger VMR
of itself with anbr message, and sends it messages to deliver.

State:
id, constant, physical mobile node identifier
timeout constant, frequency with which broadcasts occur
time, the current real time, as of the last Geosensor update
location, the current location, as of the last Geosensor update
nbr-loc, set of neighbors, tuples of the forf¥d, time, location), initially 0
local-messagesa set of messages to be forwarded, initidlly
delivered a set of messages to deliver, initiafly

Input localcast-rcv(message, m); ; Output localcast(message, (src, dest m)); ;
Effect: Precondition:
local-messages— local-messages) m (j, 1, £)€ nbr-loc
(R— | location — 4])> (vmae-| time —t|)
Input localcast-rev(nbr, id, time, location) ; ; j = dest
Effect: (src, dest m) € local-messages
nbr-loc < nbr-loc U (id, time, location) Effect:

local-messages— local-messagey (src, dest m)

IOA code for running on messenger VMINThe VMN listens for nearby nodes (i.@br messages
and delivers messages.

B Virtual Mobile Node Routing Scheme

State:
id, constant, physical mobile node identifier
location, continuously changing, the current location of VMN
vmnlocation(¢), continuously changing, the current location of VMN
local-messagesa set of messages to be forwarded, initigllly
delivered a set of messages to deliver, initiafly

Input send(m); ;
Effect:
local-messages— local-messages) (i,j,m)

Output rev(m); ;
Precondition:

m € delivered
Effect:

delivered«— delivered\ {m}

Output localcast(message, m);
Precondition:

m € local-messages

(, dest,)=m

£= nexthop(i, des}

| vmntlocation(¢) — location} < R
Effect:

local-messages— local-message§ {m}

Input localcast-rcv(message, (srcdestm)); ;
Effect:
if (dest=1) then
delivered«— deliveredJ {m}
else
local-messages— local-messages) {(src, dest m)}

IOA code for running on VMN that wants to send and deliver rages. Thenext-hop function
determines the next hop in the routing path, determined bging a time-dependent shortest-p
algorithm on the motion paths of the VMNs. Each VMN calcusatee next hop, and waits until
is near the desired VMN. At this point, it passes the messatjfwt virtual node.

ath
it

Simple Data Collection Scheme

State:

id, constant, physical mobile node identifier

result-set current set of results, initiall)

data-set current raw data set, initiall§)

outgoing set of outgoing messages, initially

g, @ query structure, with the following subfields:
area, the geographic area in which the query should be evaluated
freq, the frequency with which the data should be sampled
duration, the duration with which the data should be sampled
eval), an evaluation procedure for the query
comly. . .), procedure that combines two data sets

Input localcast-rcv(query, new-query); ; Output localcast(query, q);, ;
Effect: Precondition:
new-query<— q None.
Effect:
Input localcast-rcv(data, new-data) ; ; None.
Effect:
If data, location, and time meet the requirements of theyquken: Output localcast(m); ;
data-set«— g.comlfdata-set new-data) Precondition:
m € outgoing
Input localcast-rcv(request-data) ; ; Effect:
Effect: outgoing<«— outgoing\ {m}

outgoing<— outgoingU {(output-data, data-seb }
Internal aggregate();
Precondition:
None.
Effect:
result-set«— g.eval(data-sef)

IOA code for running on VMNSs collecting and processing semsda. The VMN spreads the query to a

the PMNs, and collects and aggregates data from the PMNsnWheceives a request for data, it ser
it out.

State:
id, constant, physical mobile node identifier
sensordata, continously updated sensor data
VMN-locationg¢), continuously updated, the locatino of VMN
data-set current accumulated data, initialy
outgoing a set of outgoing localcast messages, initidlly
virtual-nodes set of virtual nodes collecting data, initialfy
g, a query structure, with subfields as above

Input initiate-query(new-query) Output localcast(request-data)
Effect: Precondition:

outgoing<— outgoingu { (query, new-query) } Nodes: wants data

Effect:

Input localcast-rcv(query, new-query); ; None.
Effect:

g < new-query Output localcast(m); ;

virtual-nodes¢«— virtual-nodesU {j} Precondition:

m € outgoing

Input localcast-rcv(output-data, new-data-sef) | VMN-locationgj) — location| <R
Effect: Effect:

Send data to requester outgoing<«— outgoing\ {m}
Output localcast(data, data-sed; ; Internal store-data();
Precondition: Precondition:

j € virtual-nodes location is consistent withy. area

| VMN-locationgj) — location| <R time is consistent withy. freq and q.duration
Effect: Effect:

None. data-set« g.coml{data-set sensordata)

IOA code for running on sensor PMNs. When the sensor PMN wanitsitiate a new query, it send
the query to the nearest VMN. The VMN then propagates theyqoeall the sensors. Each sensor th
stores and aggregates the data, and sends it on to a passiNg VM

[
ds

(7]

en

D Agent Emulator Implementation

Signature:

Input:
rev(myp, ;,me M
rev((neighbor-update, nbr-loc, src));, nbr-loc € RZ%x R20
rcv((agent, v, des});, v € stategr), deste |
geo-update(l, t),p;,;, 1 € L, t € RO

Internal :
simulate-action(), ;
simulate-geo-update(), ;

State:

Output:

send(m)y ;, meM

send((neighbor-update, nbr-loc));, nbr-loc € RZ0 x R20
send((agent, v, des});, v € stateg7), deste |

agentlocation € L, continuous, the location of the VMN at the current time
clocke R29, the current time, initially 0, continuously updated by teosensor
location € L, the current physical location, continuously updated leyghosensor
msgqueue a queue of messages to be sent by the communication seniiicdly (

nbr-set location information on neighbors, initially

statuse {active, idle}, indicates whether the host is emulating the VMN
val € stateg7), holds current state of the simulated I/O automaton, ifyititart()

Transitions:

Input rev(m),, ;
Effect:
if (status= active)
val « §(val, (rcv, m))

Input rev((neighbor-update, nbr-loc, src));
Effect:
nbr-set«— nbr-setuU { (src, nbr-loc, clock) }

Input rcv((agent, v, des});
Effect:
if (dest=1) then
val v

Input geo-update(l, t), ;
Effect:

location < |

clock<«t

Internal simulate-action()y, ;
Precondition:

status= active

d(val, act) # L

act# (send, m)
Effect:

val «— d(val, act)

Output send(m) ;
Precondition:

status= active

d(val, (send, m)) # L
Effect:

val « §(val, (send, m))

Output send(({neighbor-update, nbr-loc, src));
Precondition:

nbr-loc = location

src=i
Effect:

None.

Output send((agent, v, des});
Precondition:

status= active

(dest ¢, ty € nbr-set

R — |location — €] > Umax - |clock —]

R — |agent-location — £] > V - |clock — t|
Effect:

status« idle

Internal simulate-geo-update(), ;
Precondition:
None.
Effect:
val « d(val, (geo-update clock agentlocation))

Agent Emulator Implementation for Nodeand VMN & for I/O automaton = (sig, states, start,)

