Random Contractions and Sampling for
Hypergraph and Hedge Connectivity

Mohsen Ghaffari*

Abstract

We initiate the study of hedge connectivity of undirected graphs,
motivated by dependent edge failures in real-world networks. In
this model, edges are partitioned into groups called hedges that
fail together. The hedge connectivity of a graph is the minimum
number of hedges whose removal disconnects the graph. We give
a polynomial-time approximation scheme and a quasi-polynomial
exact algorithm for hedge connectivity. This provides strong
evidence that the hedge connectivity problem is tractable, which
contrasts with prior work that established the intractability of the
corresponding s—t min-cut problem. Our techniques also yield new
combinatorial and algorithmic results in hypergraph connectivity.
Next, we study the behavior of hedge graphs under uniform random
sampling of hedges. We show that unlike graphs, all cuts in the
sample do not converge to their expected value in hedge graphs.
Nevertheless, the min-cut of the sample does indeed concentrate
around the expected value of the original min-cut. This leads
to a sharp threshold on hedge survival probabilities for graph
disconnection. To the best of our knowledge, this is the first
network reliability analysis under dependent edge failures.

1 Introduction

In this paper, we initiate the study of hedge connectivity of
undirected graphs. Consider an n-vertex graph (or multi-
graph) G = (V, E) whose m edges have been partitioned
into groups we call hedges. We say G is k-hedge-connected
if it is necessary to remove at least k edge groups (hedges)
in order to disconnect GG. This definition generalizes classi-
cal graph connectivity (where each hedge is a single edge)
and hypergraph connectivity (where each hedge is a span-
ning subgraph on the vertices of a hyperedge). It is broader
because a hedge can span multiple unconnected hyperedges.

The main motivation for our study of hedge connectivity
comes from the dependence among edge failures observed
in real world networks. Hedges model the simplest form of

" *Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology. Email: ghaffari@mit.edu.

fComputer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology. Email: karger@mit .edu. This work
was supported in part by NSF Award CCF-1117381.

fDepartment of Computer Science, Duke University. Email:
debmalya@cs.duke.edu. This work was supported in part by NSF
Awards CCF-1527084 and CCF-1535972.

David R. Karger'

Debmalya Panigrahi*

aI: :i b

c d
Figure 1: A simple hedge graph showing that the hedge cut
function may not be submodular. The dashed edges represent

edges of one hedge, and the solid edges represent the edges
of the other hedge. Notice that f({a,b})—f({a}) =1-2<

2-1=f({a,b,c}) = f{a,c}).

dependence — that sets of edges fail together. The classical
notion of graph connectivity — the minimum number of
edges whose removal disconnects a graph — can be a very
weak approximation of the robustness of a graph in this
scenario. Hypergraphs address part of this weakness but
require all the dependent edges to be connected to each other,
while hedges do not. In fact, our techniques yield results in
hypergraph connectivity as well.

We also note that by insisting on the fact that the hedges
are disjoint, we are not losing any generality. If hedges
overlap on an edge, modeling the fact that the edge can fail
as part of multiple groups, we can replace the edge by a
path where each edge on the path belongs to a unique hedge.
This transformation does not affect the hedge connectivity of
the graph since removing any of the hedges containing the
original edge disconnects the path in the transformed graph.

In this paper, we use random contraction techniques to
study hedge connectivity. A hedge is said to be in a cut if
at least one edge from the hedge crosses the cut. To avoid
confusion, we use the term hedge-cut to denote the set of
hedges in a cut, while the term cut continues to represent
the set of edges (respectively hyperedges) crossing the cut.
A min-hedge-cut is a hedge-cut with a minimum number
of hedges. An a-minimum hedge-cut is a hedge-cut with
at most « times the number of hedges in a min-hedge-cut.
These definitions are extended to weighted hedge graphs by
defining the value of a cut to be the sum of weights of hedges
crossing the cut.

Recall that a hedge is more general than a hyperedge:

a hyperedge is equivalent to a hedge all of whose edges
form a single connected component. In general, a single
hedge can involve more than one connected component. In
fact, we first show that this distinction is fundamental in the
following sense: while cuts in graphs and hypergraphs are
symmetric submodular functions,' hedge-cuts are symmetric
but not necessarily submodular (see Fig. 1 for an example of
a non-submodular hedge cut function). This distinction is
crucial from an algorithmic standpoint since the problem of
minimizing a symmetric submodular functions is in P, which
certifies that the connectivity of graphs and hypergraphs is
polynomial-time solvable.

But what about hedge connectivity? Previously, it was
shown by Zhang er al. [23] that the problem of finding a min-
imum s-t hedge cut — a hedge-cut of minimum value that
separates a given pair of vertices s and ¢ — is NP-hard.? In
sharp contrast, we use randomized contraction techniques to
give a quasi-polynomial time algorithm for finding a global
min-hedge-cut, thereby providing strong evidence that this
problem is in P. We also provide a quasi-polynomial bound
on the number of min-hedge-cuts in a graph. Our quasi-
polynomial algorithm is obtained by setting parameters ap-
propriately in a more general polynomial time approxima-
tion scheme, which finds a (1 4 €)-minimum hedge-cut in
n©U0g(1/€)) time. This is also a sharp departure from the s-t
cut problem, which has strong inapproximability results.

We also consider random sampling and reliability in
hedge graphs. It is well known [11] that random sampling
in graphs yields cut sparsifiers — sparser graphs on the
same set of vertices where the size of all cuts concentrate
around their respective expected values. This relies on
the key observation that a graph has a bounded number of
approximately minimum cuts which means that most cuts
are extremely unlikely to diverge from their expectation.
We first show that a corresponding result is ruled out for
hedge graphs by giving a simple example where there are
exponentially many near-minimum hedge cuts and, as a
result, random sampling does not preserve the sizes of all
hedge-cuts. Nevertheless, we introduce a new notion of
cut representatives that reflects the connectivity structure
of a hedge graph and show that a hedge graph has few
approximately minimum cut representatives. We use this to
show that while all hedge-cuts need not concentrate around
their expected size, the min-hedge-cut in the sample is
concentrated around the expected value of the min-hedge-cut
in the original graph. In other words, the values of cuts can

TA set function is said to be submodular if it has decreasing marginal
gain, i.e., A C Bimplies f(A+z) — f(A) < f(B+) — f(B). Itis
symmetric if f(A) = f(A).

2They studied the problem under the title of Minimum Label Cut, where
each edge of a multigraph has a label, and the cut size is defined as the
number of different labels, for which at least one edge with that label crosses
the cut.

be smaller than their own expected value in general, but they
are not smaller than the expected value of the min-hedge-cut.
This property has been useful in graph connectivity in many
different applications such as efficient min-cut algorithms,
graph sparsification, etc. and we hope that it is so for hedge
connectivity as well. As a first application, we derive a sharp
threshold on hedge survival probabilities for a hedge graph
to remain connected — to the best of our knowledge, this is
the first result in network reliability under dependent edge
failures.

Our ideas also yield results for traditional hypergraph
connectivity. Recently, Kogan and Krauthgamer [18] used
random contraction to show that for an r-uniform hyper-
graph (every hyperedge has r vertices) and for any half-
integer o > 1, the number of a-minimum cuts® is O(nz"‘ .
2%7). The first term is tight even for graphs, and they show
that the exponential dependence on r in the second term is
necessary for « > 1, by giving a hypergraph with Q(m - 2")
a-minimum cuts for any o > 1. In contrast, we show
that every hypergraph (not just r-uniform ones) has at most
(3) = O(n?) min-cuts. We obtain this result by introduc-
ing sampling bias in the random contraction process which
helps us avoid hyperedges of large cardinality that are intu-
itively more likely to span the two sides of a cut and there-
fore should not be contracted. We remark that a quadratic
bound on the number of min-cuts in hypergraphs can also
be derived from structural characterizations of hypergraphs
by Cheng [3], although our proof is much simpler. Further-
more, our randomized contraction strategy also yields a new
algorithm for hypergraph connectivity that runs in O(M n?)
time, where M is the sum of degrees of vertices in the hy-
pergraph. Further optimizations improve the running time to
O((m+nk)n?) for unweighted hypergraphs, which matches
the best previous bounds of O(Mn) [17, 19] for small values
of k. (Here, k is the number of hyperedges in the min-cut.)
Parallel to our work, and appearing in the same conference
proceedings, is a new deterministic algorithm for hypergraph
min-cut that runs in O(M + n?k) time[2]. The running time
of this algorithm strictly dominates our running time. Nev-
ertheless, our algorithm is quite simple compared to the de-
terministic algorithms, and only performs a sequence of hy-
peredge contractions chosen from a carefully defined distri-
bution.

1.1 Related Work. The study of graph min-cuts has a
long and rich history, dating back to the work of Gomory
and Hu in the 60s [8]. Till the early 90s, the preferred ap-
proach was to use a sequence of carefully constructed s — ¢
min-cut instances [9] or dual tree packings [7]. Closer to

3n all cut counting results for hypergraphs or hedge graphs, two cuts

are distinct if they do not contain the same set of hyperedges or hedges.
Counting distinct vertex bipartitions would be meaningless, e.g., in a
hypergraph where all hyperedges contain all vertices.

this paper is the line of work, starting with the contraction
algorithm [11], that focused on randomized techniques for
finding min-cuts in undirected graphs [16, 14]. This line
of work also seeded the study of random sampling in graph
connectivity [12], eventually leading to cut sparsifiers [1, 6]
that are random samples of a graph where all cuts concen-
trate near their expected value. The techniques that we em-
ploy in this paper are reminiscent of the first results in both
these lines of work — in random contraction, it follows the
(non-recursive) contraction approach of Karger [11] and in
random sampling, it follows the uniform sampling approach
of Karger [12]. However, we require several new ideas to
overcome the existence of an exponential number of near-
minimum cuts in both random contraction and random sam-
pling. In particular, for the latter, we devise a new theory of
cut representatives that might have independent applications.

Random sampling in graphs is useful in the study of
network reliability under random edge failures. For inde-
pendent edge failures, Karger [13] gave an FPTAS for esti-
mating the probability of disconnection of the graph. The
running time of this algorithm was improved by Harris and
Srinivasan [10], and further by Karger recently [15]. Our
work on random sampling in hedge graphs studies network
reliability under dependent edge failures. Here, the most ba-
sic question is: can we estimate the probability of disconnec-
tion of a graph if groups of edges (hedges) fail together? In
this work, we show that if the hedge survival probabilities are
large enough that the expected value of the min-hedge-cut re-
mains at least Q(log2 n), then the graph remains connected
with high probability. Conversely if the expectation is < 1,
the graph likely becomes disconnected. Indeed, for indepen-
dent edge failures, a similar result [12] showing a threshold
of Q(logn) on the expected size of the min-cut for the graph
to stay connected laid the foundation for the network relia-
bility algorithms.

Min-cuts have also been studied in hypergraphs, start-
ing with the work of Queyranne [20] who used the submod-
ularity of the cut function to give an O(Mn?) time algo-
rithm. (Recall that M denotes the sum of degrees of ver-
tices in the hypergraph.) In subsequent work, the running
time has been improved to O(Mn) [17, 19] and very re-
cently, to O(M + n?k), where k is the number of hyper-
edges in a min-cut [2]. In a different direction, Rizzi [21]
generalized Queyrenne’s result to a larger set of symmetric
set functions. Unfortunately, the example in Figure 1 shows
that hedge cuts do not fit Rizzi’s framework. Closer to our
work in terms of techniques is the recent work of Kogan and
Krauthgamer [18], who used uniform random contraction to
bound the number of near-minimum cuts in a r-uniform hy-
pergraph. Their bounds are exponential in r, which they
show is required for near-minimum cuts. In contrast, we use
non-uniform contraction to show a bound of (g) on the num-
ber of exact min-cuts in any hypergraph.

As noted earlier, we initiate the study of global min-cuts
for hedge graphs, and give a quasi-polynomial time exact al-
gorithm and a polynomial time approximation scheme for it.
In contrast, previous work by Zhang et al. [23] for the s-t
min-cut problem in hedge graphs showed that it is NP-hard

to obtain an approximation better than 298"/ "**'** " n for
any constant ¢ < 1/2, and gave an O(y/m)-approximation
algorithm. Moreover, Fellows et al. [5] showed that even in
graphs with constant pathwidth, the problem is W[2]-hard
when parameterized by m, and W[1]-hard when parameter-
ized by k.

Roadmap. We first give the min-cut algorithm for hedge
graphs in Section 2. The analysis of hedge connectivity
under random sampling appears next in Section 3. The (72’)
bound on the number of hypergraph min-cuts appears in
Section 4. Finally, we give the new randomized algorithm
for the hypergraph min-cut problem in Section 5.

2 Random Contraction for Hedge Connectivity

In this section, we give a randomized contraction algorithm
that returns, for any ¢ > 0, a hedge-cut of value at most
(1 + €) times that of the min-hedge-cut with high proba-
bility in time (no(log(l/ E))). This gives a polynomial-time
approximation scheme for the hedge connectivity problem.
For unweighted hedge graphs, choosing € < 1/k where k
is the number of hedges in a min-hedge-cut, gives a quasi-
polynomial Monte Carlo algorithm for the exact min-hedge-
cut problem that runs in n©°€%) time.

Let G = (V,E) be an undirected hedge graph with
m hedges on n vertices. Each hedge in E is defined by a
set of disjoint components in V' called hedge components,
where each component contains at least 2 vertices. Note
that this way of defining a hedge is equivalent to the “set of
edges” definition used earlier, where the hedge components
correspond to the (non-singleton) connected components
of the edge set. The total number of vertices in these
components is called the cardinality of the hedge, and is
denoted |e|. A hedge is said to cross a cut if at least one
component of the hedge has vertices on both sides of the cut.

The main contribution of this section is a random con-
traction process that returns a hedge-cut of value at most
(1 4 €)k with probability at least 1/n°01°8(1/€) for any
e € (0,1). Here, k denotes the value of a min-hedge-cut.
While our results can be directly derived for weighted hedge
graphs, we prefer to demonstrate them for unweighted hedge
graphs in this section. For weighted hedge graphs, the only
change in our random process is to choose a hedge from a
set with probability proportional to its weight instead of uni-
formly at random.

When a hedge is contracted, the vertices in each com-
ponent of the hedge are separately unified into single ver-
tices. Hence, the decrease in the number of vertices is equal

to the difference between the cardinality of the hedge and
the number of components in it. The main difficulty with
hedge contractions vis-a-vis edge contractions (or indeed hy-
peredge contractions) is the following: both Karger’s origi-
nal analysis for edge contraction and our analysis for hyper-
edge contraction heavily rely on the fact that the cardinality
of a (hyper)edge and the decrease in the number of vertices
on its contraction differs by exactly 1. Unfortunately, this
is not true in general for a hedge — contracting a hedge of
cardinality ¢ only guarantees a decrease of /2 vertices in
the graph since each component of the hedge might contain
exactly 2 vertices.

Consider, for instance, an unweighted regular hedge
graph on n vertices with £ 4 ¢ hedges for some constant c,
where each hedge forms a perfect matching on the vertices
of the graph. The probability of contracting a hedge outside
a fixed min-hedge-cut is only O(1/k). However, the number
of vertices does not decrease by n — 2, but only by n/2, in
such a contraction. Nevertheless, our key observation is that
in any run, at most O(logn) such “large” hedges may be
contracted, and their cumulative contribution to the success
probability is 1/k°(°8™) All other contractions must be of
“small” hedges, for which we show that the gap between
le] — 1 and |e|/2 is small enough for the proof to work.
Of course, there are both large and small hedges in a hedge
graph in general, requiring us to combine the two arguments
in a single random contraction process.

2.1 The Algorithm. Formally, we categorize hedges into
three groups (here n denotes the number of vertices in the
current graph): a hedge e is said to be (a) large if |e| > n/2,
(b) moderate if |e| > n/4, but le| < n/2, and (c) small if
le] < /4. A hedge graph G is said to be large if it contains
at least one large hedge; else it is said to be small. Note that
small hedge graphs may contain both small and moderate
hedges.

The randomized contraction algorithm is then defined
recursively as given in Figure 2. The algorithm iteratively
performs the following steps until there are only two ver-
tices: If the hedge graph is small, i.e., contains only small
and moderate hedges, then a hedge chosen uniformly at ran-
dom is contracted. On the other hand, if the hedge graph is
large, i.e., contains at least one large hedge, then the algo-
rithm branches with equal probability to one the following:
either all large and moderate hedges are removed from the
graph and added to the output set of hedges, or one of these
large or moderate hedges is contracted uniformly at random.
The intuition behind this branching is that either the min-cut
contains a high fraction of the large and moderate hedges
or it does not. In the former case, the entire set of large and
moderate hedges is a good approximation of the ones that are
in the min-cut. Therefore, the branch where all the large and
moderate hedges are added to the output cut is the “good”

branch. On the other hand, if the min-cut does not contain
a high fraction of the large and moderate hedges, then the
other branch is “good” since the probability that a randomly
chosen hedge from this set is in the min-cut is quite low. Of
course, the algorithm does not know which of these cases
it is in, and therefore, choses randomly between these op-
tions. However, recall that the number of times the algorithm
will branch is only logarithmic, and therefore, even though it
chooses the right branch only with probability 1/2, the over-
all impact of this in the success probability of the algorithm
is 1/n° for some constant ¢ depending on the base of the log-
arithm. Interestingly, the algorithm does not depend on the
approximation parameter e, although the probability of the
algorithm returning an (1 + €)-approximate min-hedge-cut
decreases with the value of e.

2.2 The Analysis. We will give the analysis in two steps:
first, we bound the number of branchings in any run of the
algorithm, and then derive the desired lower bound on the
probability that the algorithm returns a fixed min-hedge-cut.

Branchings. We show that the contraction algorithm en-
counters O(logn) large graphs G, and therefore performs
O(log n) branchings, in any run. This follows from two ob-
servations: (1) the branch for H; only has small edges which
can become large only after the number of vertices decreases
by a constant factor, and (2) the branch for H, contracts a
moderate or large edge thereby reducing the number of ver-
tices by a constant factor. A formal inductive proof follows.

LEMMA 2.1. The total number of large graphs G that the
Contract algorithm encounters, and therefore the total
number of branching steps, in any particular run is at most

logg /7 1.

Proof. We prove this lemma inductively. Clearly, the lemma
holds for n = 2, since the algorithm terminates in this
case. Now, suppose n > 2, and the inductive hypothesis
asserts that the lemma holds for all n’ < n. If G is not
large, then the inductive hypothesis implies the lemma since
logg /7 n < logg,7 n. Now, suppose G is large. Then, in the
two branches, the following happen:

1. H; is a graph where every hedge e is small, i.e., |e| <
n/4. Coupled with the fact that hedge cardinalities do
not increase during a run of the Contract algorithm,
it follows that the next branching step can happen only
when the number of vertices has decreased to n/2 or
smaller. Using the inductive hypothesis at the next
branching step, we can claim that the total number
of branching steps after the current one is at most
logg /7(n/2) < logg,zn — 1. The lemma follows by
adding in the current branching step, thereby obtaining
an overall bound of logg 7 n.

The Contraction Algorithm for Hedge Graphs

Input: Hedge graph G
Output: Set of hedges S = Contract(G)

1. If G has two vertices, then S = E.
2. else, if G is a small hedge graph, then

(a) contract a hedge e chosen uniformly at random from E, and delete all resulting hedge
components containing a single vertex. Call this new hedge graph H.

(b) S = Contract(H).
3. else, (G is a large hedge graph, let L be the set of large and moderate hedges in G)

(a) In G, remove all large and moderate hedges (i.e., the set L). Call this new hedge graph H.

(b) In G, contract a hedge e chosen uniformly at random from L, and delete all resulting hedge
components of cardinality 1. Call this new hedge graph Ho.

(c) With probability 1/2 each, (We call this a branching step.)

e S = LU Contract(H;), or
e S = Contract(Hy).

Figure 2: The contraction algorithm for hedge graphs.

2. Hs is a graph where a randomly chosen hedge of car-
dinality at least n/4 has been contracted. This con-
traction reduces the number of vertices by at least n/8,
i.e., Ho has at most 7n/8 vertices. Using the inductive
hypothesis on H> yields a bound of logg7(7n/8) =
logg/zn — 1 on the remaining number of branching
steps. The lemma now follows by adding in the cur-
rent branching, thereby obtaining an overall bound of

logg /7 n.

Success Probability. Our goal, in this analysis, is to lower
bound the probability that the algorithm outputs a near-
minimum hedge-cut of value at most (1 + €)k. We call
this the probability of success, and denote it g, » for an n-
vertex graph with ¢ branching steps (the above lemma asserts
that £ < logg,7n). To gain intuition into the analysis,
let us consider the special case of ¢ < 1/k, i.e., when
we are actually calculating the probability of the algorithm
returning an exact min-hedge-cut C. The analysis consists
of two parts. First, consider the branching steps. In each
branching step, either all the large and moderate hedges are
in C' — then the first branch succeeds — or at least one large
or moderate hedge is not in C — then the second branch
succeeds with probability at least 1/k. Since there are at
most O(logn) branching steps in any run, their cumulative
contribution to the success probability is 1/kC (08 7),

Now, consider the case where the hedge graph is small.
In this case, let us consider a further special case where all
hedges have cardinality ¢ < n/4, and the number of vertices
decreases by ¢/2 on contraction. Note that every degree
hedge-cut — the set of hedges containing a fixed vertex
in their hedge components — contains at least k hedges.
Hence, the sum of hedge cardinalities is at least nk, which
implies that the number of small hedges must be at least
nk/t. Therefore, the probability that the algorithm does
not contract a hedge in C'is (1 — ¢/n) and this contraction
reduces the number of vertices to n — t/2. Inductively, if the
probability of success of this random process for «y vertices
is denoted f(7), then we get the recurrence

f(n) = (@ =t/n)- f(n—1t/2).

Solving this recurrence gives f(n) =
enough constant c.

We now draw upon the above intuition to give a formal
analysis of the algorithm. We will restrict the definition of
success of the Contract algorithm to cases where it outputs
a set of hedges S containing at most ek hedges not in C,
where C is any min-hedge-cut that we fix. (This is a stronger
notion than approximate min-hedge-cuts, that we will call
representatives later in Section 3.) We now state our main
lemma.

1/n¢ for a large

LEMMA 2.2. The probability of the contraction algorithm

returning a (1 + €)-approximate min-hedge-cut is at least
1/nO0os(1/€)),

The rest of this section is devoted to proving this lemma.
First, note that there are two types of contraction steps in
the Contract algorithm, depending on whether G is small
or large. If GG is small, the algorithm succeeds if: (1) the
contracted hedge is not in C, and (2) the algorithm succeeds
on H. Recall that if a hedge e is selected for contraction,
then the number of vertices reduces by at least |e|/2 in this
step. Therefore, we can write the following recurrence:

1
E : Z Gn—|e|/2,0-

e¢C

2.1 Ine 2

The more involved situation is if the current step is a branch-
ing, i.e., G is large. We distinguish between two cases:

e Case 1: Of the hedges in L, suppose at least a § = 1
fraction are not in C, i.e., - |L|. In this
case, consider the branch given by graph H;. The
cardinality of the contracted hedge is at least n/4, hence
the number of vertices in H is at most 7n/8. Thus,
we can write the following recurrence, where the factor
of 1/2 is the probability that the algorithm chooses the
right branch among cases 1 and 2:

0 q7n/8,0—1-

DN | =

(22 Ine 2

. Case 2: Of the hedges in L suppose less than a § =
-|L|. Then,
|L \ C| <eLNC| In thls case, consider the branch
given by graph H;. We can charge the hedges in L \ C
to those in LNC since we are allowed an approximation
factor of (1 + €¢). Thus, we can write the following
recurrence, again having a factor of 1/2 to represent the
probability that the algorithm chooses the right branch:

(23) qn,e > “Qn—1-

We have now established the recurrence relations that
we will use in inductively proving Lemma 2.2. We now want
to claim that for some constant o« > 1 that we will fix later,
the following holds:

5 14
2.4 G =m""- (2> .

To show Eq. (2.4), we use induction on the values of
n and ¢. Clearly, it holds for n = 2 and any ¢, since the
probability of success for a graph on 2 vertices is 1. Let us
now consider n > 2 and any value of £. We need to address
the following three scenarios:

1. G is small: In this case, we will need lower bounds on

the number and cardinality of hedges outside C.
LEMMA 2.3. If G is small, then:

(a) the sum of cardinalities of hedges not in a min-
hedge-cut C'is at least nk /2, i.e.,

Z le] > nk/2.
e¢C
(b) the total number of hedges m > 2k.

Proof. First, we prove the cardinality lower bound:
Skl = X lel - 3 Il = k2,
e¢C ecE eeC

Note that we used:

(@) Y .cplel > nk since the number of hedges
containing any vertex is at least the number of
hedges in a min-cut k.

(b) > .¢c lel < nk/2 since C contains k hedges and
all these hedges are small or moderate, given that
G is small.

Since all hedges are small or moderate, the above bound

implies that m > EEE/EM > "/kQ > 2k.

Now, from Eq. (2.1), we have

dn,¢
> Y
= E : An—|e|/2,¢
e¢C
. m—k Qn—|e|/2,¢
N m Z m—k
e¢C
m—k 1 le|]\™ " [§ ¢
> . . S N
- m Z m—k (n 2) <2)
e¢C
(using the inductive hypothesis)
4 —«
L mzk (0N [Degelel
- m 2 2(m — k)
(by convexity of the function n~“ for @ > 1)
m—k (6\° nk/2\ "
> 2 [Z) (e 22
- m 2 2m

(by property 1 in Lemma 2.3 and m — k < m)

())

_ é ‘ n=° l—2z
\2 (1—xz/4)~
(for x = k/m € (0,1/2] by property 2 in Lemma 2.3)

0

¢
> (2> -n~% forany a > 6.

2. G is large, Case 1 above: In this case, from Eq.(2.2),

we have
qn.0
> L
= 3 q7n/8,0—1
- -1
> 1.5. @ . §
- 2 8 2

(using the inductive hypothesis)

()0

3. G is large, Case 2 above: In this case, from Eq. (2.3),

we have
qn,e
S L,
= 5 et
> 1-71_&-(5)6_1
- 2 2

(using the inductive hypothesis)
5\ ¢
> —a (2
> e (3)
. €
(51nce6: — < 1>.
1+e€

We have now established that the probability of success
of the Contract algorithm is at least

5 4 5 logg /7 n
n (=) >n% (= .
(z) =)

If e > 1, then 6 > 1/2, which implies that the probability
of success is inverse polynomial in n. So, we will only
consider the case when ¢ < 1. In this case, § = lie > ¢/2.
Therefore, the probability of success is at least

— (E)k’gs”" _ ,,Ollog(1/e)).
4
This completes the proof of Lemma 2.2.
The next theorem now follows by running the
Contract algorithm n©(°8(1/9) times and returning the
hedge-cut of minimum value returned by any run.

THEOREM 2.1. There is an n®1°81/)) time randomized
approximation scheme for the min-hedge-cut problem in
undirected hedge graphs.

For unweighted hedge graphs, we obtain a quasi-polynomial
time exact algorithm by setting ¢ < 1/k in the above
theorem. Correspondingly, we also obtain a bound on the
number of min-hedge-cuts.

THEOREM 2.2. There is an n°1°8%)_time randomized al-
gorithm for the min-hedge-cut problem in undirected, un-
weighted hedge graphs. Furthermore, the number of distinct
min-hedge-cuts defined as a set of hedges in an undirected,
unweighted hedge graph is n©1°g%),

We remark that we are not aware of any hedge graph with
a superpolynomial number of hedge cuts; in fact, the best
lower bound we know of is the ©(n?) lower bound on
graphs.

3 Random Sampling in Hedge Graphs

In this section, we will consider uniform random sampling
of hedges in a hedge graph. Ideally, one would like to lift
the analysis of sampling in graphs (see, e.g., Karger [12])
to hedge graphs and claim that if we independently sample

logn
k

hedge graph, then with high probability the value of every
cut is close to its expectation. The analysis for graphs
crucially relies on bounding the number of a-minimum
cuts by n?@) and arguing that each deviates from its
expectation with probability n~%, thereby allowing a union
bound. Unfortunately, there is no corresponding bound on
the number of a-minimum hedge-cuts. Consider a graph
with & — 1 hedges each consisting of a spanning tree, and
n — 1 other single-edge hedges that form a single spanning
tree. The hedge connectivity is &k (the k—1 large hedges must
be removed, and any singleton hedge can then be removed to
disconnect the graph). However, we can create a 2-minimum
hedge-cut by removing the £ — 1 large hedges and any k
single-edge hedges. And there are (2) ways of choosing
the k singleton hedges to remove, each defining a distinct
2-minimum hedge-cut.

As a particular consequence, if we sample each hedge

every hedge with probability O (in a k-connected

logn

of this graph with probability p = O (=), we end up
sampling only O(logn) of the singleton hedges. Therefore,
almost all of the 2-minimum hedge-cuts will have none of
their singleton hedges sampled, and will therefore diverge
significantly (by at least 1/2) from their expectation. On
the other hand, a Chernoff bound shows that with high
probability, we will include pk of the large hedges, meaning
that the hedge connectivity of the sample will be close to its
expectation pk with high probability. Thus, in this example,
while we cannot hope to prove that all hedge-cuts are near
their expectation with high probability, the minimum hedge-
cut of the sample is indeed as expected. We will now
generalize this argument, and show that in any k-hedge-
connected graph, the value of the minimum hedge-cut in the
sample is near the expected value of the min-hedge-cut with
high probability. To do so, we need a new technique, since
we have just seen that a union bound over all cuts deviating
from their expectation cannot work.

3.1 Representatives. While there can be many a-
minimum hedge-cuts, we will argue that they have a small
set of representatives. A representative for a given hedge-cut
C'is a hedge-cut C’ most of whose edges are also in C. Note
that the property is not symmetric, i.e., C' might have many
hedges that are not in C’. Now, if too few hedges from C are
sampled, then it must be the case that too few hedges from
(" are sampled as well since C’ does not have many hedges
outside C'. Since the number of representatives is small, we
will use the union bound technique to prove that this is un-
likely to happen to any representative; from this we conclude
that it is unlikely to happen to any hedge-cut at all.

We now formalize these ideas. We fix a parameter J to
be set later. We define a §-representative for a hedge-cut C
to be a hedge-cut C’ such that at most 0k hedges of C” are
not in C.

LEMMA 3.1. For any a > 1 and any § < 1, there is a
set of n9(/9) hedge-cuts containing a -representative for
every a-minimum hedge-cut of an undirected n-verted hedge
graph G.

Proof. We prove this lemma via a hedge contraction process
defined by a sequence of contraction phases starting with
graph GG. In each phase, we contract each hedge in the
current contracted graph independently with probability 1/k.
We repeat for ©((logn)/d) phases or until there is single
vertex left, whichever happens earlier. Each phase produces
a set of (at most n) newly contracted vertices. Let the
degree hedge-cut of each such vertex v be the set of hedges
that contain an edge with exactly one endpoint in v; it
corresponds to a hedge-cut in G. The total number of
contracted vertices, and corresponding degree hedge-cuts in
a particular run of the randomized contraction process, is
O(n); these are the representatives.

Consider any particular hedge-cut C' of G of value at
most ak. The probability that in one phase we contract no
hedge in C'is (1 — 1/k)®* < e~. Over the course of the
O((logn)/d) phases, the probability that we never contract
a hedge in C' is n=©(/9)

Let us condition the randomized contraction process on
the event that no hedge in C is contracted. This conditional
randomized process is identical to the unconditional one
where all the hedges in C' have been removed from G at the
outset. This can be visualized as graph G being partitioned
into multiple (at least two) disconnected components, on
which the randomized contraction process is being run.
There is dependence between the components because of
hedges spanning multiple components, but this will not
matter in our analysis.

If the degree of any vertex at any stage of this condi-
tioned contraction process is at most &k, then the correspond-
ing degree hedge-cut is a d-representative for C. Thus, we
arrive at our crucial observation: in each phase, either C' has

a §-representative among the degree hedge-cuts, or else the
probability that each vertex of C' gets contracted in the next
phaseis 1—(1—1/k)%* ~ §, which means that the number of
vertices in each component decreases by a factor (1—4/2) in
expectation. Thus, after O((logn)/d) such phases, either C
has a representative at some stage among the degree hedge-
cuts, or the expected number of vertices in each component
is 1 4+ o(1). In the latter scenario, using the Markov bound,
we can claim that with constant probability, there is some
component that has a single vertex. The degree hedge-cut
corresponding to this singleton component is then a repre-
sentative for C'. So, we have shown that with constant prob-
ability, there is a d-representative for C' among the degree
hedge-cuts produced by the randomized contraction process,
conditioned on the fact that no hedge from C'is contracted at
any stage.

We
n_o(

have therefore proven that with probability
/%) one of our phases produces a representative for C'.
Thus, if we repeat our entire procedure nOa/d) times, the
probability that we fail to generate a representative is only
a constant, and if we repeat a factor of O(n) times more,
the probability that we fail to produce a representative for
a given cut drops to 27". Since there are at most 2" dis-
tinct hedge-cuts (each corresponding to a vertex bi-partition)
we can conclude that with constant probability, the graphs
produced will contain a representative for every a-minimum
hedge-cut. Our n®(®/%) repetitions produce, in total, a col-
lection of n9(®/%) hedge-cuts that form our set of represen-
tatives. Finally, we also need to add the n cuts defined by
degree hedges-cuts of the original graph G itself, in case one
of those hedge-cuts is already a representative for some cuts.

Ideally, we would like to claim that each representative
is close to its expected value after sampling and therefore
provides a lower bound on the sizes of all the hedge-cuts it
represents. However, this cannot be claimed directly from
the lemma above, since the number of representatives is
being bounded by the values of the hedge-cuts they represent
rather than their own value. For instance, it is possible that
the representatives for all values of « are min-hedge-cuts,
which being small are more likely to deviate, so that there are
too many of them to use a union bound. In the next lemma,
we show this is not the case, but in doing so, we get a weaker
bound on the number of representatives.

LEMMA 3.2. Forany 6 < 1 and o > 1, there is a set of
0-representatives for all hedge-cuts of value at most O(nk)
that contains at most n©(1°8/9) yepresentatives of value at
most ak.

Proof. For a given cut, consider the chain of representatives
consisting of the cut, its representative, the representative of
that representative, and so on. Call each d-representative
large if its value is at least half the value of the cut it is

representing in this chain. Then, every large representative
of value at most ak must represent a hedge-cut of value at
most 2ak, and by Lemma 3.1, there are only n0(@/9) guch
representatives. On the other hand, if every representative
in the chain is small then, since each must have half the
size of the cut its represents, the O(logn)th representative
in the chain will have value at most 2k. The representative
of this cut must be large since the representative has value
at least k. Each representative in the chain differs from
the cut it represents by only 6k hedges; thus the final,
large representative differs from the initial cut by O(6logn)
hedges—i.e., it is an O(d log n)-representative. The lemma
follows by defining the new ¢ as the previous ¢ log n.

3.2 Sampling. Given our set of representative hedge-cuts,
we now proceed to prove our sampling result. The first claim
is that the representatives are close to their expected value
after sampling. Fix any set of §-representatives of all hedge-
cuts of value at most nk as given by Lemma 3.2. Then, the
following holds for this set of representatives.

LEMMA 3.3. Forany e € (0,1), if every hedge is sampled
with probability p > C - l(fgkn independently, where C'is a
large enough constant, then the value of each representative

after sampling is at least (1 — €)pk with high probability.

Proof. Using Chernoff bounds on a single representative of
value ok yields a failure probability of n~2(*1087/9) Now,
applying the union bound over the representatives of value
ak, we get a bound of n~?(«1087/9) o the probability of
any of these representatives having a value less than (1—¢)pk
in the sample. The lemma now follows by using the union
bound over all values of a.

This lemma implies that for every hedge-cut of size
at most O(nk), the sampled hedge graph contains at least
(1 — €)pk — 0k hedges. From the condition of the lemma,

ok > C - %. Clearly, this implies that p must be at least

2
C- loegz -~ But, what ¢ should be choose in the analysis for
smaller p? Since our additive error is dk, we should set it
log? n Then

e2p
2
the additive error is epk + C - Ioe%p". The error appears to

grow with decrease in the value of p. However, observe that
sampling with probability p is identical to repeated sampling
with probability 1/2 over lg(1/p) phases. The additive errors
over the phases form a geometric series with a total error of

to the smallest value possible, i.e., 0k = C' -

2
at most epk + 2C - lofz . To absorb the second error term in

the first, we choose p > 2C'- 106%1” to get a total additive error
of at most 2epk. For a hedge cut of value Q(nk), Chernoff
bounds give a probability of 27" of its value being less than
pk in the sample. Using a union bound, we can conclude that
with high probability, no cut of value Q(nk) decreases to less

than pk after sampling.

THEOREM 3.1. If a graph with hedge connectivity k is
2

sampled with probability p > C" - k’ﬁikn for a large enough

constant C', then with high probability, the value of every

hedge-cut in the sample is at least (1 — €)pk.

This theorem ensures that the min-hedge-cut after sam-
pling remains tightly concentrated around the expected value
of the min-hedge-cut before sampling, which is analogous
to well-known sampling results in graph connectivity [12].

Note that Q) 10%) is necessary even for graphs, e.g., when
sampling a complete graph. It is not clear whether the addi-
tional log n term in our theorem is an artifact of our proof, or
is necessary for hedge graphs.

COROLLARY 3.1. If in a graph with hedge-connectivity
k all edges survive with probability p > C" - log”n_
then the resulting graph is connected with high probability.
Conversely, if edges survive with probability p < C" -
%, then the resulting graph is disconnected with constant
probability.

This corollary, showing a sharp threshold on the probability
where a hedge graph becomes disconnected, takes a step
towards the natural goal of estimating the reliability of a
hedge network as was done for regular graphs [13].

4 Counting Hypergraph Min-cuts

In this section, we explore randomized contraction in undi-
rected hypergraphs. In particular, we give a random contrac-
tion process that yields any fixed min-cut with probability at
least ﬁ This establishes that the number of min-cuts in a

n
2

hypergraph is at most (5).

Let G = (V, E) be an undirected hypergraph with m
hyperedges and n vertices. The cardinality or rank of a hy-
peredge e, denoted |e|, is the number of vertices it contains.
While our results can be directly derived for weighted hy-
pergraphs, we prefer to demonstrate them for unweighted
hypergraphs in this section. For weighted hypergraphs, the
only change in our random process is that the probability of
choosing a hyperedge needs to be adjusted appropriately ac-
cording to hyperedge weights.

4.1 The Algorithm. We will denote the value of a min-
cut in G — the minimum number of hyperedges crossing
a cut — by k. In this section, we will assume that the
value of k is known, since our goal is to obtain a bound
on the number of hypergraph min-cuts and not to give
a min-cut algorithm. The random contraction process in
Figure 4.1 contracts a sequence of hyperedges with the goal
of identifying a min-cut at the end. In each step, we let
the above notation represent the corresponding parameters in
the current contracted hypergraph. The algorithm iteratively
does the following as long as there are more than two vertices

and at least one hyperedge in the hypergraph: It removes
all spanning hyperedges adding them to the min-cut, and
all hyperedges that have been contracted down to a single
vertex. Then, it chooses a hyperedge e to contract with

probability:
le])
1-k =——).
< EeEE |€|

If the algorithm terminates with two vertices, it adds the
surviving hyperedges to the min-cut.

Note that the probability distribution over the hyper-
edges in any contraction step is valid:

I Sl (e

ecE eclk
1 .(m_k.ze€E|e|)
m—k ZeEE |€|
1

1

pe:m_k_

4.2 The Analysis. To build intuition, let us first analyze
the algorithm for a very special case. Note that if the hyper-
graph at any stage is r-uniform (every hyperedge has rank r),
then the hyperedge being contracted at that stage is chosen
uniformly at random. A hypergraph that was uniform to be-
gin with need not remain so under contractions, but for sim-
plicity in this informal analysis, let us assume it does. Then,
in each step, a hyperedge is chosen uniformly at random.
Now, note that every degree cut — the hyperedges containing
a fixed vertex — contains at least k hyperedges. This implies
that the sum of hyperedge ranks satisfies > . |e| > nk.
Since every hyperedge is of rank r, this implies that the num-
ber of hyperedges m > nk/r. Hence, the probability that a
hyperedge in a fixed min-cut is not chosen in a rank-r step
is:
1—k/m>1-r/n.

After the contraction, the number of vertices decreases to
n—r+1. Cascading these success probabilities over multiple
contractions, where the respective ranks are rq,79,73, ...,
gives an overall success probability of at least

n—ry n—ri—1ro+1
n n—ry+1 .
(Pl +Th—1) — Th—1 ' (re+1) — 1k
' Tk + Th_1 e+ 1
> L
(%)

We now generalize this argument to arbitrary hyper-
graphs. The main difference is that we can no longer assume
the uniformity in hyperedge rank at each step. Let us again
consider a special case where the hypergraph has hyperedges
of only two ranks, ; and ry. Furthermore, suppose there are

exactly m /2 hyperedges of each kind. Again, note that every
degree cut contains at least k hyperedges. This implies that
the sum of hyperedge ranks satisfies

D lel=

eckE

(m/2) - (r1 +72) > nk.

It follows that m > nk/rq,, where 14, = (r1 + 72)/2 is
the average rank of hyperedges. Hence, the probability that
a hyperedge in a fixed min-cut is not chosen in a rank-r step
is:
1—k/m>1—=rq/n.
If q,, is the probability of success with n vertices, this allows
us to write the recurrence:
Z An—le|+15

e¢C

(45) dn Z (1 - rav/n) 1/ m]{

where C'is any fixed min-cut in the hypergraph. Note that
we are aiming to show that ¢, > 1/(7%), which is a convex
function. By using convexity inductively, we can then write
Eq. (4.5) as

— Tav /n) .

qn > (1 anrg)erl?

where 7 is the average rank of hyperedges over the ones
that are not in C. If r((;; > rav, then this product indeed
evaluates to at least 1/(7), but the problem is that 7S, may
be smaller than r,,. In other words, it might be the case that
conditioning on the fact that a min-cut edge is not contracted
actually decreases the progress we make in terms of reducing
the number of vertices in the hypergraph.

Note that this problem arises if the min-cut contains
hyperedges of large rank. This suggests that we should bias
our random contraction toward choose a hyperedge of small
rank. Indeed, this is exactly what we do in the algorithm
described above.

We now proceed to the formal analysis of the algorithm,
where we will need the following fact.

FACT 4.1. Let f(t) = /() for positive integers t > 2.
Then, forany 2 < d <t —

f(t) < (1—f> ft—d+1).

Proof. We have

(1-9) e-ar

t—d 2

t (t—d+1)(t—d)
2

tt—d+1)

1

()

(since d > 2).

The Contraction Algorithm for Hypergraphs

1

Pe = Tk

4. Return S.

1. Initialize S, the output set of hyperedges, to an empty set.
2. Repeat while G has more than two vertices and at least one hyperedge:

e Remove all spanning hyperedges (|e| = n) from G, add them to S, and decrease the value of k
by their number. If k£ becomes negative, declare failure and terminate.

e Otherwise, contract exactly one hyperedge e in G selected with probability:

(-tsim)

e Remove all hyperedges of cardinality 1 from G.

3. If the algorithm terminates with two vertices, then add all the hyperedges in G to S.

Figure 3: The random contraction algorithm for hypergraphs

We now prove our main lemma.

LEMMA 4.1. The probability of the contraction algorithm
returning any fixed min-cut is at least 1/ (g)

Proof. Let g, denote the probability of the contraction al-
gorithm returning a fixed min-cut C for an n-vertex hyper-
graph. Note that the algorithm returns C'if it never contracts
a hyperedge in C. Therefore, we can write the following

recurrence:
(4.6) n
= Zpe “Gn—|e|+1
PQC

= — Z(Zeeh)-qnw%

Since the value of every degree cut is at least k, we have
Y ecr le] > nk at any stage of the algorithm. Using this
observation, we can now simplify Eq. (4.6) to

quz< >qn|+1

We will now use induction over n to show that ¢, > 1/(3).
For the base case, g0 = 1 = 1/(;) (Note that since
we remove all the spanning hyperedges in every step, we
never run the risk of contracting down to a single vertex.
Therefore, using n = 2 is valid for a base case.) Using the

4.7

inductive hypothesis on Eq. 4.7, we have

Qn
1—lel/n
= m — k Z n |eH—1
>
> Z
e%C
(using Fact 4.1)

1
(3)
Since any fixed min-cut is output by this algorithm with

probability at least 1/ (g), and the algorithm outputs at most
one cut in each run, the next theorem follows.

THEOREM 4.1. The number of min-cuts in an undirected
hypergraph is at most (g)

Note that this bound exactly matches corresponding
bounds for graphs [4, 11] and is known to be tight, e.g.,
on an n-vertex cycle. It is interesting to contrast this result
with that of Kogan and Krauthgamer [18] who showed that
the number of a-minimum cuts in a hypergraph can be
exponential in the cardinality of of the hyperedges. It is
natural to ask: what if we analyze the probability that our
contraction algorithm returns a fixed a-minimum cut? There
are two reasons why this analysis does not yield polynomial
bounds on the number of a-minimum cuts for o > 1. First,
the algorithm must be terminated once the number of vertices
decreases to ar, where r is the rank, since the probability

of success can decrease to 0 if we continue contracting
hyperedges. At this stage, the algorithm can only output a
random cut, which has probability of success that is inversely
exponential in ar. This difficulty is avoided by us for o = 1
by realizing that the hyperedges whose cardinality equals
the number of vertices are spanning and hence appear in
every cut that has survived till this point. Therefore, we
remove these hyperedges from GG and add them to the output
set, allowing us to continue the contraction process. The
second reason is that the set of a-minimum cuts changes
during our algorithm. Since spanning hyperedges have to be
removed from G (otherwise, contracting such a hyperedge
yields a single vertex graph which is a base case with success
probability 0), the value of the min-cut in G changes. This
does not affect the minimality of an exact min-cut, but a
previously a-minimum cut need not be so after this step.
Therefore, even if the algorithm preserved the hyperedges of
an a-minimum cut till this point, the probability of returning
this cut from this point on can be quite low.

5 A Randomized Algorithm for Hypergraph Min-cut

We start with the algorithm defined by the contraction pro-
cess in Section 4. For weighted hypergraphs where the
weight of hyperedge e is w., we replace m by . we
and multiply the contraction probability of a hyperedge by
w, (this simulates a hypergraph with w, unweighted copies
of hyperedge e, for which our results from Section 4 directly
apply). First, we address the fact that the value of a min-cut
k is unknown to the algorithm, but is used in the probability
distribution for hyperedge contraction. The algorithm runs a
binary search on the min-cut value. The two important ob-
servations are:

e if k is larger than the min-cut value, then at every
contraction step, either) . |e| - we > nk, in which
case the above analysis is valid, or at least one of the
singleton vertex cuts is of value less than k. Hence, the
random contraction algorithm yields a cut of value at
most k with probability at least (i)

n
2

e if k£ is smaller than the min-cut value, the random
contraction process yields a cut of value at most k& with
probability 0.

The sum of edge weights provides an upper bound, and the
minimum weight edge provides a lower bound, these two
bounds differing by at most a polynomial factor if the edge
weights are polynomially bounded. Hence, the number of
steps of binary search is logarithmic. The rest of this section
assumes that the value of & is exactly the min-cut value.
Since the randomized contraction algorithm outputs a

fixed min-cut with probability at least ﬁ, it follows that re-
2

peating the algorithm (g) logn times and selecting the cut
of minimum size among all the runs yields the min-cut with

high probability. A single implementation of randomized
contraction has at most n — 2 rounds of contractions since
each hyperedge contraction reduces the number of vertices
by at least 1. After contracting a hyperedge, the algorithm
must update the set of vertices by unifying the contracted
vertices and also update the size of each hyperedge since it
dictates the sampling probabilities for the next contraction.
A disjoint sets data structure [22] can be used to efficiently
track the partition of vertices into contracted sets. However,
since this is not our bottleneck, we choose to use a simpler
labeling scheme where each vertex is labeled by the con-
tracted set it belongs to and we relabel the smaller of the
sets when two of these sets are merged. (On contracting a
hyperedge, multiple sets are merged into one, but this can
be implemented as a sequence of mergers of two sets each.)
Every vertex is relabeled O(log n) times, and hence the total
time for these updates over all the hyperedge contractions
is O(nlogn). To update hyperedge sizes, we maintain a
boolean matrix of size mn indexed by the m hyperedges
and the labels of contracted vertex sets (whose number is at
most n). Initially, every vertex has a distinct label, and hence
this matrix is simply the adjacency matrix of the hypergraph.
When two sets are merged, all entries of this matrix corre-
sponding to the smaller set are set to 0, and the new entries
for the larger set are set to 1 iff either of the correspond-
ing entries for two sets being merged was 1. We claim that
these updates can be performed in O(M logn) time overall,
where M = > _|e| is the sum of cardinalities of all the hy-
peredges, i.e., the number of 1’s in the adjacency matrix. In
each update, an entry of 1 (corresponding to the smaller of
the two contracted vertex sets being merged) is replaced with
a 0, and a different entry (corresponding to the larger of the
two contracted vertex sets) for the same hyperedge is set to
1. If the entry corresponding to the larger set was already
1 before the contraction, then the update can be charged to
the decrease in the number of 1’s in the matrix. However, if
the entry for the larger set was previously 0, then the number
of 1’s does not decrease. Nevertheless, the number of times
this can happen is at most O(logn) for any original entry of
1, since the size of the contracted vertex set corresponding
to the entry of 1 at least doubles every time. Therefore, the
total number of updates is O(M log n). Therefore, the over-
all running time of the algorithm is O(Mn?log® n) if k is
known, and O(Mn?log® n) if k is unknown.

We now optimize our algorithm to improve the running
time for unweighted hypergraphs. The modification in our
algorithm is as follows: at any stage, if M > 3nk, we
contract a hyperedge chosen uniformly at random; else, we
use the random contraction process that we described earlier.
First, we show that the probability of producing a min-cut
remains §2(1/n?) in this modified algorithm.

We only need to consider the case of M > 3nk. As
earlier, let us fix a min-cut C'. Since M > 3nk, the sum

of cardinalities of hyperedges not in C' is at least 2nk, i.e.,
> e¢clel = 2nk. Note that the algorithm succeeds if
it never contracts a hyperedge in C'. As earlier, we can
write the following recurrence, where ¢, is the probability
of success:

1
qn = Zpe “Qn—le|+1 = E ’ Z An—le|+1-

e¢C e¢C

(5.8)

We now use induction on n. Eq. 5.8 gives:

m—k 1 1
An Z : < : § 2)
m m—k e¢c(n—|e|—|—1)
(by the inductive hypothesis)

. (_k>. 1
- m (n_ zegfk\e| +1)2

m

1
(by the convexity of the function 2)
n

(k> 1g
Z 1 - N —2
m (n _ 2egc \€|)
2(m—k)

(since |e| > 2 for all hyperedges ¢)

- (lm>(_)

2(m—k)
(since Z le| > an)
e¢C
1 1

SO .

msont (1=3)

1
> pox

Overall, any run of the contraction algorithm has two
phases: in the first phase, while M > 3nk, the algorithm
performs uniform random contraction of hyperedges, and in
the second phase, when M < 3nk, the algorithm switches
to the non-uniform random contraction process described
previously. To ensure that there is only one transition, the
value of n in the transition threshold is fixed to the number
of vertices in the original graph.

In the first phase, a uniformly random hyperedge can be
chosen in amortized O(1) time by creating a uniformly ran-
dom permutation of hyperedges denoting the contraction se-
quence as a preprocessing step. Note that the algorithm must
discard hyperedges that represent single vertices or span all
the vertices, but this can done lazily if such hyperedges are
encountered in the contraction sequence. Then, the total run-
ning time of all the hyperedge contractions in the first phase
is O(m + nlogn). Since the number of entries in the adja-
cency matrix D is O(nk) in the second phase, the running
time of the second phase is O(nklogn).

But how does the algorithm identify the transition from
the first to the second phase? For this purpose, the algo-
rithm runs a binary search over the length of the prefix of
the random permutation in the first phase. In particular, the
algorithm contracts the first m /2 edges in the random per-
mutation in O(m) time and checks the value of M. If it is
larger than 3nk, then the algorithm does a binary search for
the threshold in the last m /2 edges; else, it does a binary
search in the first m /2 edges. In either case, we get a recur-
rence T'(m) = T(m/2) + O(m), which evaluates to O(m)
for the first phase. Putting together all the pieces, we can
now claim that the running time of a single run of this modi-
fied contraction algorithm is O(m + nk log n), which yields
an overall running time of O((m + nklogn)n?logn) for
known & and O((m + nklogn)n?log® n) for unknown k.

THEOREM 5.1. There is a min-cut algorithm for undirected
hypergraphs that runs in O(Mn? log® n) time. The running
time can be improved to O((m + nk)n? log® n) if the hyper-
graph is unweighted.

References

[1] Andras A Benczir and David R Karger. Approximate s-
t min-cuts in 6(n?) time. SIAM Journal on Computing,
44(2):290-319, 2015.

[2] Chandra Chekuri and Chao Xu. Computing minimum cuts in
hypergraphs. CoRR, abs/1607.08682, 2016.

[3] Eddie Cheng. Edge-augmentation of hypergraphs.
Program., 84(3):443-465, 1999.

[4] Efim A. Dinitz, Alexander V. Karzanov, and Micael V.
Lomonosov. On the structure of a family of minimum
weighted cuts in a graph. In A. A. Fridman, editor, Studies
in Discrete Optimization, pages 290-306. Nauka Publishers,
Moscow, 1976.

[5] Michael R Fellows, Jiong Guo, and Iyad A Kanj. The
parameterized complexity of some minimum label problems.
In Graph-Theoretic Concepts in Computer Science, pages 88—
99. Springer, 2009.

[6] Wai Shing Fung, Ramesh Hariharan, Nicholas JA Harvey,
and Debmalya Panigrahi. A general framework for graph
sparsification. In Proceedings of the forty-third annual ACM
symposium on Theory of computing, pages 71-80. ACM,
2011.

[7] Harold N Gabow. A matroid approach to finding edge con-
nectivity and packing arborescences. Journal of Computer
and System Sciences, 50(2):259-273, 1995.

[8] Ralph E Gomory and Tien Chung Hu. Multi-terminal net-
work flows. Journal of the Society for Industrial and Applied
Mathematics, 9(4):551-570, 1961.

[9] Jianxiu Hao and James B Orlin. A faster algorithm for finding
the minimum cut in a graph. In Proceedings of the third
annual ACM-SIAM symposium on Discrete algorithms, pages
165-174. Society for Industrial and Applied Mathematics,
1992.

Math.

(10]

(11]

[12]

[13]

(14]
[15]

[16]

[17]

(18]

[19]

(20]
[21]
(22]

(23]

David G. Harris and Aravind Srinivasan. Improved bounds
and algorithms for graph cuts and network reliability. In
SODA, pages 259-278, 2014.

David R Karger. Global min-cuts in rnc, and other ramifica-
tions of a simple min-cut algorithm. In SODA, volume 93,
pages 21-30, 1993.

David R Karger. Random sampling in cut, flow, and network
design problems. In Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing, pages 648—657.
ACM, 1994.

David R. Karger. A randomized fully polynomial time
approximation scheme for the all-terminal network reliability
problem. SIAM J. Comput., 29(2):492-514, 1999.

David R Karger. Minimum cuts in near-linear time. Journal
of the ACM (JACM), 47(1):46-76, 2000.

David R. Karger. Faster and simpler network (un)reliability
estimation. In FOCS, 2016.

David R Karger and Clifford Stein. A new approach to
the minimum cut problem. Journal of the ACM (JACM),
43(4):601-640, 1996.

Regina Klimmek and Frank Wagner. A simple hypergraph
min cut algorithm. 1996.

Dmitry Kogan and Robert Krauthgamer. Sketching cuts
in graphs and hypergraphs. In Proceedings of the 2015
Conference on Innovations in Theoretical Computer Science,
pages 367-376. ACM, 2015.

Wai-Kei Mak and DF Wong. A fast hypergraph min-cut
algorithm for circuit partitioning. Integration, the VLSI
Jjournal, 30(1):1-11, 2000.

Maurice Queyranne. Minimizing symmetric submodular
functions. Mathematical Programming, 82(1-2):3-12, 1998.
Romeo Rizzi. NOTE - on minimizing symmetric set func-
tions. Combinatorica, 20(3):445-450, 2000.

Robert Endre Tarjan. Efficiency of a good but not linear set
union algorithm. J. ACM, 22(2):215-225, 1975.

Peng Zhang, Jin-Yi Cai, Lin-Qing Tang, and Wen-Bo Zhao.
Approximation and hardness results for label cut and re-
lated problems. Journal of Combinatorial Optimization,
21(2):192-208, 2011.

