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Abstract

The Maximal Independent Set (MIS) problem is one of the
basics in the study of locality in distributed graph algo-
rithms. This paper presents a very simple randomized algo-
rithm for this problem providing a near-optimal local com-
plexity, which incidentally, when combined with some known
techniques, also leads to a near-optimal global complexity.

Classical MIS algorithms of Luby [STOC’85] and Alon,
Babai and Itai [JALG’86] provide the global complexity
guarantee that, with high probability1, all nodes terminate
after O(logn) rounds. In contrast, our initial focus is on
the local complexity, and our main contribution is to provide
a very simple algorithm guaranteeing that each particular
node v terminates after O(log deg(v) + log 1/ε) rounds,
with probability at least 1 − ε. The degree-dependency
in this bound is optimal, due to a lower bound of Kuhn,
Moscibroda, and Wattenhofer [PODC’04].

Interestingly, this local complexity smoothly transitions
to a global complexity: by adding techniques of Barenboim,
Elkin, Pettie, and Schneider [FOCS’12; arXiv: 1202.1983v3],
we2 get an MIS algorithm with a high probability global
complexity of O(log ∆) + 2O(

√
log logn), where ∆ denotes

the maximum degree. This improves over the O(log2 ∆) +

2O(
√
log logn) result of Barenboim et al., and gets close to the

Ω(min{log ∆,
√

logn}) lower bound of Kuhn et al.

Corollaries include improved algorithms for MIS in
graphs of upper-bounded arboricity, or lower-bounded girth,
for Ruling Sets, for MIS in the Local Computation Algo-
rithms (LCA) model, and a faster distributed algorithm for
the Lovász Local Lemma.

1 Introduction and Related Work

Locality sits at the heart of distributed computing
theory and is studied in the context of problems such
as Maximal Independent Set (MIS), Maximal Matching
(MM), and Coloring. Over time, MIS has been of
special interest as the others reduce to it. The story
can be traced back to the surveys of Valiant [Val82] and
Cook [Coo83] in the early 80’s which mentioned MIS as

1As standard, we use the phrase with high probability (w.h.p.)

to indicate that an event has probability at least 1− 1/nc, for an
arbitrary constant c > 1.

2quasi nanos, gigantium humeris insidentes

an interesting problem in non-centralized computation,
shortly after followed by (poly-)logarithmic algorithms
of Karp and Wigderson [KW84], Luby [Lub85], and
Alon, Babai, and Itai [ABI86]. Since then, this problem
has been studied extensively. We refer the interested
reader to [BEPSv3, Section 1.1], which provides a
thorough and up to date review of the state of the art.

In this article, we work with the standard dis-
tributed computation model called LOCAL [Pel00]: the
network is abstracted as a graph G = (V,E) where
|V | = n; initially each node only knows its neighbors;
communications occur in synchronous rounds, where in
each round each node can exchange information only
with its graph neighbors.

Note that in the LOCAL model, all that a node can
learn in k rounds is the subgraph induced by its k-hop
neighborhood (and the random bits of the nodes in it).
Because of this, the round complexity of a problem has a
purely graph-theoretic meaning: it identifies the radius
up to which one needs to look to determine the output
of each node, e.g., its color in a coloring. For instance,
results of [Lub85,ABI86] imply that looking only at the
O(log n)-hop neighborhood suffices, w.h.p.

1.1 Local Complexity Despite the local nature of
the MIS problem, classically the main focus has been
on the global complexity, i.e., the time until all nodes
terminate. Moreover, somewhat strikingly, essentially
all the standard analyses also take a non-local approach
by considering the whole graph and showing guarantees
on how the algorithm makes a global progress towards
it local objectives. A prominent example is the analysis
of [Lub85, ABI86] which show that per round, in ex-
pectation, half of the edges of the whole network get re-
moved, hence leading to the global complexity guarantee
that after O(log n) rounds, w.h.p., the algorithm termi-
nates everywhere. See [MR10, Section 12.3], [Pel00, Sec-
tion 8.4], [Lyn96, Section 4.5] for textbook treatments
or [Win04] for a simpler analysis.

This issue seemingly suggests a gap in our under-
standing of locality. The starting point in this paper is
to question whether this global mentality is necessary.



Particularly, can we provide an analysis that only looks
at a node and some small neighborhood of it, and pro-
vides a guarantee for that node independent of n? To
be concrete, our starting question is:

Local Complexity Question: How long does it
take till each particular node v terminates, and
knows whether it is in the (eventual) MIS or not,
with probability at least 1− ε?

Using ∆ to denote the maximum degree, one can
obtain answers such as O(log2 ∆ + log 1/ε) rounds for
Luby’s algorithm, or O(log ∆ log log ∆ + log ∆ log 1/ε)
rounds for (a parameter optimized version) of the
variant of Luby’s used by Barenboim, Elkin, Pet-
tie, and Schneider [BEPSv3] and Chung, Pettie, and
Su [CPS14]. However, both of these bounds seem to be
off from the right answer; e.g., we cannot get from them
the standard O(log n) high probability global complex-
ity bound. In both, the bound becomes O(log2 n) when
one sets ∆ = nδ for a constant δ > 0 and ε = 1/n.

We present an extremely simple algorithm that
overcomes this problem and provides a local complexity
of O(log ∆ + log 1/ε). More formally, we prove that:

Theorem 1.1. There is a randomized distributed MIS
algorithm such that for each node v, the probability that
v has not made its decision after the first O(log deg(v)+
log 1/ε) rounds is at most ε. Furthermore, this holds
even if the bits of randomness outside the 2-hop neigh-
borhood of v are determined adversarially.

The perhaps surprising fact that the bound only de-
pends on the degree of node v, even allowing its neigh-
bors to have infinite degree (as n → ∞), demonstrates
the truly local nature of this algorithm. The logarith-
mic degree-dependency in the bound is optimal, follow-
ing a lower bound of Kuhn, Moscibroda and Watten-
hofer [KMWv1], e.g., in the following sense: As indi-
cated by [Kuh15], with minor changes in the arguments
of [KMWv1], one can prove that there are graphs in
which, the time until each node v can know if it is in MIS
or not with constant probability is at least Ω(log ∆).

Finally, we note that the fact that the proof has a
locality of 2-hop—meaning that the analysis only looks
at the 2-hop neighborhood and particularly, that the
guarantee relies only on the coin tosses within the 2-
hop neighborhood of node v—will prove vital as we
move to global complexity. This might be interesting
for practical purposes as well.

1.2 Global Complexity Notice that Theorem 1.1
easily recovers the standard result that after O(log n)
rounds, w.h.p., all nodes have terminated, but now with

a local analysis. In light of the Ω(min{log ∆,
√

log n})
lower bound of Kuhn et al. [KMWv1], it is interesting
to find the best possible upper bound, specially when
log ∆ = o(log n). The best known bound prior to

this work was O(log2 ∆) + 2O(
√

log logn) rounds, due to
Barenboim et al. [BEPSv3].

The overall plan is based on the following nice
and natural intuition, which was used in the MIS
results of Alon et al. [ARVX12] and Barenboim et
al. [BEPSv3]. We note that this general strategy is
often attributed to Beck, as he used it first in his
breakthrough algorithmic version of the Lovász Local
Lemma [Bec91]. Applied to MIS, the intuition is
that, when we run any of the usual randomized MIS
algorithms, nodes get removed probabilistically more
and more over time. After running this base algorithm
for a certain number of rounds, a graph shattering
phenomenon occurs, where what remains of the graph is
a number of “small” components. Here, small might be
in regard to size, (weak) diameter, the maximum size of
some specially defined independent sets, or some other
measure. Once the graph is shattered, one switches to
a deterministic algorithm to finish off the problem in
these remaining small components.

Since we are considering graphs with max degree
∆, even ignoring the troubling probabilistic dependen-
cies (which are actually rather important), a simplistic
intuition based on Galton-Watson branching processes
tells us that the graph shattering phenomena starts to
show up around the time that the probability ε of each
node being left falls below 1/∆3. Alon et al. [ARVX12]
used an argument of Parnas and Ron [PR07], show-
ing that Luby’s algorithm reaches this threshold after
O(∆ log ∆) rounds. Barenboim et al. [BEPSv3] used
a variant of Luby’s, with a small but clever modifi-
cation, and showed that it reaches the threshold af-
ter O(log2 ∆) rounds. As Barenboim et al. [BEPSv3]
show, after the shattering, the remaining pieces can
be solved deterministically, via the help of known de-
terministic MIS algorithms (and some other ideas), in

log ∆ · 2O(
√

log logn) rounds. Thus, the overall complex-
ity of [BEPSv3] is O(log2 ∆) + log ∆ · 2O(

√
log logn) =

O(log2 ∆) + 2O(
√

log logn).
To improve this, we use our new MIS algorithm

as the base, instead of Luby’s,, which as Theorem 1.1
suggests, reaches the shattering threshold afterO(log ∆)
rounds. This is formalized in Section 4. We will also use
some minor modifications for the post-shattering phase

3In truth, the probability threshold is 1/poly(∆), because

of some unavoidable dependencies. But due to the exponential

concentration, the time to reach the 1/ poly(∆) threshold is within
a constant factor of that of the 1/∆ threshold. We will also need

to establish some independence. See Section 4.



to reduce its complexity from log ∆ · 2O(
√

log logn) to
2O(
√

log logn). The overall result thus becomes:

Theorem 1.2. There is a randomized distributed MIS
algorithm that terminates after O(log ∆) + 2O(

√
log logn)

rounds, with probability at least 1− 1/n.

This improves the best-known bound for MIS and
gets close to the Ω(min{log ∆,

√
log n}) lower bound

of Kuhn et al. [KMWv1], which at the very least,
shows that the upper bound is provably optimal when
log ∆ ∈ [2

√
log logn,

√
log n]. Besides that, the new result

matches the lower bound in a stronger and much more
instructive sense: as we will discuss in point (C2) below,
it perfectly pinpoints why the current lower bound
techniques cannot prove a lower bound better than
Ω(min{log ∆,

√
log n}).

1.3 Other Implications Despite its extreme sim-
plicity, the new algorithm turns out to lead to several
implications, when combined with some known results
and/or techniques:

(C1) Combined with the finish-off phase results of
Barenboim et al. [BEPSv3], we get MIS algo-
rithms with complexity O(log ∆) + O(min{λ1+ε +
log λ log log n, λ + λε log log n, λ + (log log n)1+ε})
for graphs with arboricity λ. Moreover, combined
with the low-arboricity to low-degree reduction of
Barenboim et al. [BEPSv3], we get an MIS algo-
rithm with complexity O(log λ+

√
log n). This im-

proves on some results of [BEPSv3,BE10,LW11].

(C2) The new results highlight the barrier of the cur-
rent lower bound techniques. In the known
locality-based lower bound arguments, including
that of [KMWv1], to establish a T -round lower
bound, it is necessary that within T rounds, each
node sees only a tree. That is, each T -hops neigh-
borhood must induce a tree, which implies that
the girth must be at least 2T + 1. Since any

g-girth graph has arboricity λ ≤ O(n
2
g−2 ), from

(C1), we get an O(
√

log n)-round MIS algorithm
when g = Ω(

√
log n). More precisely, for any

graph with girth g = Ω(min{log ∆,
√

log n}), we

get an O(min{log ∆ + 2O(
√

log logn),
√

log n})-round
algorithm. Hence, the Ω(min{log ∆,

√
log n}) lower

bound of [KMWv1] is essentially the best-possible
when the topology seen by each node within the
allowed time must be a tree. This means, to prove
a better lower bound, one has to part with these
“tree local-views” topologies. However, that gives
rise to intricate challenges and actually, to the best
of our knowledge, there is no distributed locality-

based lower bound, in fact for any (local) problem,
that does not rely on tree local-views.

(C3) We get an O(
√

log n)-round MIS algorithm for
Erdös-Rényi random graphs G(n, p). This is be-

cause, if p = Ω( 2
√

logn

n ), then w.h.p. the graph
has diameter O(

√
log n) hops (see e.g. [CL01]) and

when p = O( 2
√

logn

n ), with high probability, ∆ =

O(2
√

logn) and thus, the algorithm of Theorem 1.2
runs in at most O(

√
log n) rounds.

(C4) Combined with a recursive sparsification method
of Bisht et al. [BKP14], we get a (2, β)-ruling-

set algorithm with complexity O(β log1/β ∆) +

2O(
√

log logn), improving on the complexities of
[BEPSv3] and [BKP14]. An (α, β)-ruling set S is
a set where each two nodes in S are at distance at
least α, and each node v ∈ V \ S has a node in
S within its β-hops. So, a (2, 1)-ruling-set is sim-

ply an MIS. The term O(β log1/β ∆) is arguably
best-possible for the current method, which roughly
speaking works by computing the ruling set itera-
tively using β successive reductions of the degree.

(C5) In the Local Computation Algorithms (LCA)
model of Rubinfeld et al. [RTVX11] and Alon
et al. [ARVX12], we get improved bounds for
computing MIS. Namely, the best-known time
and space complexity improve from, respectively,
2O(log3 ∆) log3 n and 2O(log3 ∆) log2 n bounds of
[LRY15] to 2O(log2 ∆) log3 n and 2O(log2 ∆) log2 n.

(C6) We get a Weak-MIS algorithm with complexity
O(log ∆), which thus improves the round complex-
ity of the distributed algorithmic version of the
Lovász Local Lemma presented by Chung, Pettie,
and Su [CPS14] from O(log 1

ep(∆+1)
n · log2 ∆) to

O(log 1
ep(∆+1)

n · log ∆). Roughly speaking, a Weak-

MIS computation should produce an independent
set S such that for each node v, with probability
at least 1 − 1/ poly(∆), v is either in S or has a
neighbor in S.

(C7) We get an O(log ∆ + log log log n)-round MIS algo-
rithm for the CONGESTED-CLIQUE model where
per round, each node can send O(log n)-bits to each
of the other nodes (even those not adjacent to it):
After running the MIS algorithm of Theorem 1.1
for O(log ∆) rounds, w.h.p., if ∆ ≥ n0.1, we are al-
ready done, and otherwise, as Lemma 4.2 shows, all
leftover components have size o(n0.5). In the lat-
ter case, using the algorithm of [HPP+15], we can
make all nodes know the leader of their compo-
nent in O(log log log n) rounds, and using Lenzen’s



routing [Len13], we can make each leader learn the
topology of its whole component, solve the related
MIS problem locally, and send back the answers,
all in O(1) rounds.

2 Warm Up: Luby’s Algorithm

Here, we briefly review Luby’s algorithm [Lub85,
ABI86]. The main purpose is to point out the chal-
lenge in (tightly) analyzing the local complexity of this
algorithm, which the algorithm of the next section tries
to bypass. The reader can choose to skip this section.

Luby’s Algorithm “In each round, each node
picks a random number4 uniformly from [0, 1];
strict local minimas join the MIS, and get removed
from the graph along with their neighbors.”

Each round of the algorithm can be implemented in 2
communication rounds on G, one for exchanging the
random numbers and the other for informing neighbors
of newly joined MIS nodes. Ignoring this 2 factor, in
the sequel, a round means one round of the algorithm.

2.1 Local Analysis: Take 1 To analyze the algo-
rithm’s local complexity, the natural idea is to say that
over time, each local neighborhood gets “simplified”,
e.g., that the degrees shrink with time. The following
observation is the base tool in this argument, the proof
of which is left as a simple excercise.

Lemma 2.1. Consider a node u, let d(u) be its degree
and dmax be the maximum degree among its neighbors,
at a particular round. The probability that u gets

removed in this round is at least d(u)+1
d(u)+dmax

.

From this lemma, we get that in O(1) rounds from
the start, with probability at least 1/2, either u is
removed or its degree falls below ∆/2. We would like
to continue this argument and say that in every O(1)
rounds, u’s degree shrinks by another 2 factor, thus
getting a bound of O(log ∆). However, this is not
straightforward as u’s degree drops might get delayed
because of delays in the degree drops of u’s neighbors.
In fact the issue is rather sever as the degree drops of
different nodes can be positively correlated.

One can try to handle these dependencies in a
pessimistic way, using union bound. An argument based
on this approach can be given which shows a local
complexity of O(log2.5 ∆ + log ∆ log 1/ε). The author
has also found a stronger (and much more complex)
analysis that improves the bound to O(log2 ∆+log 1/ε).
However, even with this bound which has the desirable
ε-dependency, the O(log2 ∆) term is undesirable.

4One can easily see that a precision of O(log ∆) bits suffices.

2.2 Local Analysis: Take 2 Here, we briefly ex-
plain (a variant of) the modification of Luby’s algorithm
that Barenboim et al. [BEPSv3] use. The key is the fol-
lowing clever idea: they manually circumvent the prob-
lem of nodes having a lag in their degree drops, that is,
they kick out nodes that their degree drops is lagging
significantly out of the algorithm.

Formally, they divide time into phases of
Θ(log log ∆ + log 1/ε) rounds and require that by the
end of phase k, each node has degree at most ∆/2k.
At the end of each phase, each node that has a degree
higher than the allowed threshold is kicked out. The al-
gorithm is run for log ∆ phases. From Lemma 2.1, we
can see that the probability that a node that has sur-
vived up to phase i − 1 gets kicked out in phase i is at
most 2−Θ(log log ∆+log 1/ε) = ε

log ∆ . Hence, the probabil-
ity that a given node v gets kicked out in one of the
log ∆ phases is at most ε. This means, by the end of
Θ(log ∆ log log ∆+log ∆ log 1/ε) rounds, with probabil-
ity 1 − ε, node v is not kicked out and thus has joined
or has a neighbor in the MIS.

This Θ(log ∆ log log ∆ + log ∆ log 1/ε) local com-
plexity has an improved ∆-dependency. However, its
ε-dependency is undesirable, due to the log ∆ factor.
Note that this is exactly the reason that the shattering
threshold in the result of [BEPSv3] is O(log2 ∆) rounds.

3 Our Algorithm and Its Local Complexity

Here we present a very simple and clean algorithm that
guarantees for each node v that after O(log ∆+log 1/ε)
rounds, with probability at least 1 − ε, node v has
terminated and it knows whether it is in the (eventual)
MIS or it has a neighbor in the (eventual) MIS.

The Intuition: Recall that the difficulty in locally
analyzing Luby’s algorithm is that the degree-dropping
progresses of a node v can be delayed by those of
its neighbors, which in turn can be delayed by their
own neighbors, and so on. To bypass this, we try to
completely disentangle the “progress” of v from that of
nodes that are far away, e.g., those at distance above 2.

The intuitive base of the algorithm is as follows:
There are two scenarios in which a node v has a good
chance of being removed: either (1) v is trying to join
the MIS and it does not have too many competing
neighbors, in which case v has a chance to join the MIS,
or (2) a large number of neighbors of v are trying to
join the MIS each of which does not have too much
competition, in which case it is likely that one of them
joins the MIS and thus v gets removed. These two cases
also depend only on v’s 2-neighborhood. Our key idea is
to create an essentially deterministic dynamic which has
these two scenarios as its more stable points and makes



each node v spend a significant amount of time in these
two scenarios, unless it has been removed already.

The Algorithm: In each round t, each node v has
a desire-level pt(v) for joining MIS, which initially
is set to p0(v) = 1/2. We call the total sum of the
desire-levels of neighbors of v it’s effective-degree
dt(v), i.e., dt(v) =

∑
u∈N(v) pt(u). The desire-

levels change over time as follows:

pt+1(v) =

{
pt(v)/2, if dt(v) ≥ 2

min{2pt(v), 1/2}, if dt(v) < 2.

The desire-levels are used as follows: In each round,
node v gets marked with probability pt(v) and if no
neighbor of v is marked, v joins the MIS and gets
removed along with its neighbors5.

Each round of the algorithm can be implemented in
2 communication rounds, one for exchanging the desire-
levels and marks, and the other for informing neighbors
of newly joined MIS nodes. In fact 2-bit messages
suffice (for desire-levels, it’s enough to report per round
whether pt(v) decreased or not). In the sequel, each
round means a round of the algorithm.

The Analysis: The correctness is clear as the set of
nodes that join the MIS is an independent set and the
algorithm terminates at a node only if the node is either
in MIS or adjacent to a node in MIS. We next argue that
each node v is likely to terminate quickly.

Theorem 3.1. For each node v, the probability that v
has not made its decision within the first β(log deg +
log 1/ε) rounds, for a large enough constant β and where
deg denotes v’s degree at the start of the algorithm, is
at most ε. This holds even if the outcome of the coin
tosses outside N+

2 (v) are determined adversarially.

Let us say that a node u is low-degree at time t if
dt(u) < 2, and high-degree otherwise. Considering the
intuition discussed above, we define two types of golden
rounds for a node v: (1) rounds in which dt(v) < 2 and
pt(v) = 1/2, (2) rounds in which dv(t) ≥ 1 and at least
dt(v)/10 of it is contributed by low-degree neighbors.
These are called golden rounds because, as we will see,

5There is a version of Luby’s algorithm which also uses a
similar marking process. However, at each round, letting deg(v)

denote the number of the neighbors of v remaining at that time,

Luby’s sets the marking probability of each node v to be 1
deg(v)+1

.

In our algorithm, we change the probability dynamically/flexibly
over time, trying to push towards the two desirable scenarios

mentioned in the intuition, and this simple dynamic is the key
ingredient of the new algorithm.

in the first type, v has a constant chance of joining the
MIS and in the second type there is a constant chance
that one of those low-degree neighbors of v joins the
MIS and thus v gets removed. For the sake of analysis,
let us imagine that node v keeps track of the number of
golden rounds of each type it has been in.

Lemma 3.1. By round β(log deg+log 1/ε), either v has
joined or has a neighbor in the MIS, or at least one of
its golden round counts reached β

13 (log deg + log 1/ε).

Proof. We focus only on the first β(log deg + log 1/ε)
rounds. Let g1 and g2 be, respectively, the number of
golden rounds for v of types 1 and 2, during this period.
We assume that by the end of round β(log deg+log 1/ε),
node v is not removed and g1 ≤ β

13 (log deg + log 1/ε),
and we conclude that, then it must have been the case
that g2 >

β
13 (log deg + log 1/ε).

Let h be the number of rounds during which dt(v) ≥
2. Notice that the changes in pt(v) are governed by
the condition dt(v) ≥ 2 and the rounds with dt(v) ≥
2 are exactly the ones in which pt(v) decreases by
a 2 factor. Hence, there are (exactly) h rounds in
which pt(v) decreases by a 2 factor. Furthermore, the
number of 2 factor increases in pt(v) can be at most
equal to the number of 2 factor decreases in it, as
pt(v) is capped to 1/2. Hence, the total number of
rounds in which pt(v) increases or decreases (by a 2
factor) is at most 2h. Therefore, there are at least
β(log deg + log 1/ε) − 2h rounds in which pt(v) = 1/2.
Now out of these rounds, at most h of them can be when
dt(v) ≥ 2. Hence, β(log deg + log 1/ε) − 3h ≤ g1. As
we have assumed g1 ≤ β

13 (log deg+log 1/ε), we get that

β(log deg + log 1/ε) − 3h ≤ β
13 (log deg + log 1/ε). We

thus get h ≥ 4β
13 (log deg + log 1/ε).

Let us consider the changes in the effective-degree
dt(v) of v over time. If dt(v) ≥ 1 and this is not a golden
round of type-2, then we have

dt+1(v) ≤ 2
1

10
dv(t) +

1

2

9

10
dt(v) <

2

3
dt(v).

There are g2 golden rounds of type-2. Except for these,
whenever dt(v) ≥ 1, the effective-degree dt(v) shrinks by
at least a 2/3 factor. In those exceptions, it increases
by at most a 2 factor. Each of these exception rounds
cancels the effect of at most 2 shrinkage rounds, as
(2/3)2 × 2 < 1. Thus, ignoring the total of at most
3g2 rounds lost due to type-2 golden rounds and their
cancellation effects, every other round with dt(v) ≥ 2
pushes the effective-degree down by a 2/3 factor6. This
cannot (continue to) happen more than log3/2 deg times

6Notice the switch to dt(v) ≥ 2, instead of dt(v) > 1. We need
to allow a small slack here, as done by switching to threshold



as that would lead the effective degree to exit the
dt(v) ≥ 2 region. Hence, the number of rounds in
which dt(v) ≥ 2 is at most log3/2 deg + 3g2. That is,

h ≤ log3/2 deg + 3g2. Since h ≥ 4β
13 (log deg + log 1/ε),

we get g2 >
β
13 (log deg + log 1/ε).

Lemma 3.2. In each type-1 golden round, with proba-
bility at least 1/200, v joins the MIS. Moreover, in each
type-2 golden round, with probability at least 1/200, a
neighbor of v joins the MIS. Hence, the probability that v
has not been removed (due to joining or having a neigh-
bor in MIS) during the first β(log deg + log 1/ε) rounds
is at most ε. These statements hold even if the coin
tosses outside N+

2 (v) are determined adversarially.

Proof. In each type-1 golden round, node v gets marked
with probability 1/2. The probability that no neighbor

of v is marked is
∏
u∈N(v)(1−pt(u)) ≥ 4−

∑
u∈N(v) pt(v) =

4−dt(v) > 4−2 = 1/16. Hence, v joins the MIS with
probability at least 1/32 > 1/200.

Now consider a type-2 golden round. Suppose we
walk over the set L of low-degree neighbors of v one
by one and expose their randomness until we reach a
node that is marked. We will find a marked node with
probability at least

1−
∏
u∈L

(1− pu(t)) ≥ 1− e−
∑
u∈L pu(t)

≥ 1− e−dt(v)/10 ≥ 1− e−1/10 > 0.08.

When we reach the first low-degree neighbor u that is
marked, the probability that no neighbor of u is marked
is at least

∏
w∈N(u)(1 − pt(w)) ≥ 4−

∑
w∈N(u) pt(w) ≥

4−dt(u) > 1/16. Hence, with probability at least
0.08/16 = 1/200, one of v’s neighbors joins the MIS.

We now know that in each golden round, v gets
removed with probability at least 1/200, due to joining
MIS or having a neighbor join the MIS. Thus, using
Lemma 3.1, we get that the probability that v does not

get removed is at most (1− 1/200)
β
13 (log deg+log 1/ε) ≤ ε.

4 Improved Global Complexity

Here, we explain how combining the algorithm of the
previous section with some known techniques leads to

dt(v) ≥ 2, in order to avoid the possible zigzag behaviors on
the boundary. This is because, the above argument does not
bound the number of 2-factor increases in dt(v) that start when
dt(v) ∈ (1/2, 1) but these would lead dt(v) to go above 1. This

can continue to happen even for an unlimited time if dt(v) keeps
zigzagging around 1 (unless we give further arguments of the same
flavor showing that this is not possible). However, for dt(v) to

go/stay above 2, it takes increases that start when dt(v) > 1, and
the number of these is upper bounded to g2.

a randomized MIS algorithm with a high probability
global complexity of O(log ∆) + 2O(

√
log logn) rounds.

As explained in Section 1.2, the starting point
is to run the algorithm of the previous section for
Θ(log ∆) rounds. Thanks to the local complexity of
this base algorithm, as we will show, we reach the
shattering threshold after O(log ∆) rounds. The 2-
hop randomness locality of Theorem 3.1, the fact that
it only relies on the randomness bits within 2-hop
neighborhood, plays a vital role in establishing this
shattering phenomena. The precise statement of the
shattering property achieved is given in Lemma 4.2, but
we first need to establish a helping lemma:

Lemma 4.1. Let c > 0 be an arbitrary constant. For
any 5-independent set of nodes S—that is, a set in which
the pairwise distances are at least 5—the probability that
all nodes of S remain undecided after Θ(c log ∆) rounds
of the algorithm of Section 3 is at most ∆−c|S|.

Proof. We walk over the nodes of S one by one: when
considering node v ∈ S, we know from that Theorem
3.1 that the probability that v stays undecided after
Θ(c log ∆) rounds is at most ∆−c, and more impor-
tantly, this only relies on the coin tosses within distance
2 of v. Because of the 5-independence of set S, the
coin tosses we rely on for different nodes of S are non-
overlapping and hence, the probability that the whole
set S stays undecided is at most ∆−c|S|.

From this lemma, we can get the following shat-
tering guarantee. Since the proof is similar to that
of [BEPSv3, Lemma 3.3], or those of [Bec91, Main
Lemma], [ARVX12, Lemma 4.6], and [LRY15, Theorem
3], we only provide a brief sketch.

Let us fix some notation. Let Gx
−

denote the graph
where we put edges between each two G-nodes that have
G-distance at most x. Also, for a given vertex set S, let
G[S] be the subgraph of G induced by nodes in S.

Lemma 4.2. Let c be a large enough constant and B be
the set of nodes remaining undecided after Θ(c log ∆)
rounds of the MIS algorithm of the previous section on
a graph G. Then, with probability at least 1− 1/nc, we
have the following two properties:

(P1) There is no (G4−)-independent (G9−)-connected
subset S ⊆ B s.t. |S| ≥ log∆ n.

(P2) Each connected component of G[B] has each at
most O(log∆ n ·∆4) nodes.

Proof. [Proof Sketch] Let H = G9− \ G4− , i.e., the re-
sult of removing G4− edges from G9−. For (P1), note
that the existence of any such set S would mean H[B]



contains a (log∆ n)-node tree subgraph. There are at
most 4log∆ n different (log∆ n)-node tree topologies and
for each of them, less than n∆9 log∆ n ways to embed it
in H. For each of these trees, by Lemma 4.1, the prob-
ability that all of its nodes stay is at most ∆−2c(log∆ n).
By a union bound over all trees, we conclude that with
probability 1− n(4∆9)log∆ n∆−2c(log∆ n) ≥ 1− 1/nc, no
such such set S exists. For (P2), note that if G[B] has a
component with more than Θ(log∆ n ·∆4) nodes, then
we can find a set S violating (P1): greedily add nodes
to the candidate S one-by-one, and each time discard
all nodes within 4-hops of the newly added node, which
are at most O(∆4) many.

From (P2) of Lemma 4.2, it follows that run-
ning the deterministic MIS algorithm of Panconesi and
Srinivasan [PS92], which works in 2O(

√
logn′) rounds

in graphs of size n′, in each of the remaining compo-
nents finishes our MIS problem in 2O(

√
log ∆+log logn)

rounds. However, the appearance of the log ∆ in the
exponent is undesirable, as we seek a complexity of
O(log ∆) + 2O(

√
log logn). To remedy this, we use an

idea similar to [BEPSv3], which tries to leverage (P1):
In a rough sense, the (P1) property of Lemma 4.2

gives that if we “contract nodes that are closer than 5-
hops” (to be made precise), the left over components
would have size at most log∆ n, which would thus avoid
the undesirable log ∆ term in the exponent. We next
formalize this intuition.

The finish-off algorithm is as follows: For the
sake of analysis and our discussions, we will consider
each connected component C of the remaining nodes
separately; the algorithm itself runs in parallel for all
the components. First, run the base MIS algorithm for
an extra Θ(log ∆) rounds. Consider each component C
and let BC be the left over nodes of C after these rounds.
Now, compute a (5, h)-ruling set RC of the set BC of
the remaining nodes, for an h = Θ(log log n), and with
regards to the distances in C. Recall that a (5, h)-ruling
set RC means each two nodes of RC have C-distance
at least 5 while for each node in BC , there is at least
one node in RC within its C-distance of h-hops. This
(5, h)-ruling set RC can be computed in O(log log n)
rounds using the algorithm7 of Schneider, Elkin and
Wattenhofer [SEW13]. See also [BEPSv3, Table 4].
Form clusters around RC-nodes by letting each node
v ∈ BC join the cluster of the nearest RC-node, with

7This is different than what Barenboim et al. did. They

could afford to use the more standard ruling set algorithm,
particularly computing a (5, 32 log ∆ + O(1))-ruling set for their
purposes, because the fact that this 32 log ∆ ends up multiplying

the complexity of their finish-off phase did not change (the
asymptotics of) their overall complexity.

regards to distances in C, and breaking ties arbitrarily.
Then, contract each cluster to a new node. Thus, we get
a new graph G′C on these new nodes, where in reality,
each of these nodes has radius h = O(log log n). Thus, a
communication round on G′C can be simulated by O(h)
communication rounds on C.

From (P1) of Lemma 4.2, we can get that G′C has
at most log∆ n nodes, w.h.p. We here provide a short
sketch for the reasoning of that, see [BEPSv3, Page 19,
Steps 3 and 4] for a more precise description. Even
though RC might be disconnected in G9−, by greedily
adding more nodes of C to it, one by one, we can make it
connected in G9− while keeping it 5-independent. We
note that this is done only for the analysis. Since by
(P1) of Lemma 4.2, the end result should have size at
most log∆ n, with high probability, we conclude G′C has
at most log∆ n nodes, with high probability.

We can now compute an MIS of C, via almost the
standard deterministic way of using network decompo-
sitions. We run the network decomposition algorithm
of Panconesi and Srinivasan [PS92] on G′C . This takes

2O(
√

log log∆ n) rounds and gives G′C-clusters of radius

at most 2O(
√

log log∆ n), colored with 2O(
√

log log∆ n) col-
ors such that adjacent clusters do not have the same
color. We will walk over the colors one by one and
compute the MIS of the clusters of that color, given
the solutions of the previous colors. Each time, we can
(mentally) expand each of these G′C clusters to all the
BC-nodes of the related cluster, which means these BC-

clusters have radius at most log log n · 2O(
√

log log∆ n) in
C. While solving the problem of color-j clusters, we
make a node in each of these clusters gather the whole
topology of its cluster and also the adjacent MIS nodes
of the previous colors. Then, this cluster-center solves
the MIS problem locally, and reports it back. Since each

cluster has radius log log n · 2O(
√

log log∆ n), this takes

log log n · 2O(
√

log log∆ n) rounds per color. Thus, over

all the colors, the complexity becomes 2O(
√

log log∆ n) ·
log log n · 2O(

√
log log∆ n) = 2O(

√
log logn) rounds. In-

cluding the O(log log n) ruling-set computation rounds
and the O(log ∆) pre-shattering rounds, this gives the

promised global complexity of O(log ∆) + 2O(
√

log logn),
hence proving Theorem 1.2.

5 Open Questions

The gap between the upper and lower bounds, which
now shows up when log ∆ = ω(

√
log n), is perhaps the

most interesting open question. We saw in (C2) of
Section 1.3 that if the lower-bound is the one that should
be improved, we need to go away from “tree local-
views” topologies. Another longstanding open problem



is to find a poly(log n) deterministic MIS algorithm.
Combined with our results, that can potentially get us
to an O(log ∆) + poly(log log n) randomized algorithm.
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