
Distributed MIS via All-to-All Communication
Mohsen Ghaffari

ETH Zurich, Switzerland

ghaffari@inf.ethz.ch

ABSTRACT
Computing a Maximal Independent Set (MIS) is a central problem

in distributed graph algorithms. This paper presents an improved

randomized distributed algorithm for computing an MIS in an all-

to-all communication distributed model, known as the congested
clique model, defined as follows: Given a graphG = (V ,E), initially
each node knows only its neighbors. Communication happens in

synchronous rounds over a complete graph, and per round each

node can send O (logn) bits to each other node.

We present a randomized algorithm that computes an MIS in

Õ (log∆/
√
logn + 1) ≤ Õ (

√
log∆) rounds of congested clique, with

high probability. Here ∆ denotes the maximum degree in the graph.

This improves quadratically on theO (log∆) algorithm of [Ghaffari,

SODA’16]. The core technical novelty in this result is a certain

local sparsification technique for MIS, which we believe to be of

independent interest.

CCS CONCEPTS
• Theory of computation→ Distributed algorithms;

KEYWORDS
Distributed Graph Algorithms; Maximal Independent Set (MIS);

Congested Clique

1 INTRODUCTION & RELATEDWORK
Maximal Independent Set (MIS) is a central problem in the area of

distributed graph algorithms, and it has been studied extensively

since the 1980s. In this paper, we present an improved random-

ized distributed MIS algorithm for distributed settings where the

communication is all-to-all. Let us first overview the models.

The Three Models of Distributed Graph Algorithms: There
are three standard synchronous message passing models of dis-

tributed computation:

(1) The CONGEST model [36]: The network is abstracted as an

n-node graph G = (V ,E). There is one processor per node
of the graph, which initially knows only the edges incident

on that node. Per round each processor/node can send one

B-bit message to each of its neighbors, where typically one

assumes B = O (logn).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’17, July 25-27, 2017, Washington, DC, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4992-5/17/07. . . $15.00

https://doi.org/10.1145/3087801.3087830

(2) The LOCALmodel [27, 36]: This is the same as theCONGEST
model, except the relaxation that the message sizes are not

bounded.

(3) The CONGESTED-CLIQUEmodel [29, 30]: This is the same

as the CONGEST model, except the relaxation that the com-

munication is all-to-all, and per round, each node can send

B = O (logn) bits to each other node.

In all three of the models, the solution is output in a distributed

format, which means that each node should know its own part of

the output, e.g., whether it is in the computed maximal independent

set or not. It should be noted that the third model is much younger,

and its study started with the work of [29, 30]. However, nowadays,

there are a wide range of settings where all-to-all communication is

available to the distributed system, which makes the CONGESTED-
CLIQUEmodel far more relevant. As such, this model has attracted

a vast amount of attention over the past few years, see e.g. [6–9, 11–

13, 15–19, 22, 25, 32, 35].

1.1 Related Work

Algorithms in LOCAL andCONGESTmodels: In 1986, Luby[31]
and Alon, Babai, and Itai[3] presented randomized algorithms that

compute an MIS in O (logn) rounds of the CONGEST model, with

high probability
1
. Due to well-known reductions[28], these algo-

rithm directly lead to O (logn) round algorithms for a few other

classic problems, including maximal matching, (∆ + 1)-vertex col-
oring, and (2∆ − 1)-edge coloring, where ∆ denotes the graph’s

maximum degree.

Recently, faster MIS algorithms were presented for graphs with

small maximum degree: Barenboim et al.[5] gave an O (log2 ∆) +

2
O (
√
log logn)

round algorithm, andGhaffari[13] improved the bound

toO (log∆) + 2O (
√
log logn)

. However, it should be noted that these

algorithms work in the LOCAL model and use large messages.

Lower Bounds in LOCAL andCONGESTmodels: The following
lower bounds hold even in the stronger LOCAL model. Linial[27]

showed that Ω(log∗ n) rounds are necessary for computing an MIS,

even on a cycle graph. Kuhn et al. [23, 24] showed that any algo-

rithm for MIS needs Ω(min{
log∆

log log∆ ,

√
logn

log logn }) rounds.

Algorithms in the CONGESTED-CLIQUE model: Clearly, the
O (logn) round MIS algorithms of [3, 31] work in theCONGESTED-
CLIQUEmodel as well. But ideally we would like to see much faster

algorithms in CONGESTED-CLIQUE.
Particularly, since there is no locality limitation here, the afore-

mentioned lower bounds do not apply. Moreover, no other lower

bound is known. Because of that, there has been a general question

lurking around in the area for a while:

1
As standard, “with high probability" indicates probability at least 1 − 1/nc , for a

desirably large constant c ≥ 2.

https://doi.org/10.1145/3087801.3087830

Can we solve any of the classic local problems — MIS,
maximal matching, (∆ + 1)-vertex-coloring, or (2∆ − 1)-
edge-coloring — much faster in the CONGESTED-CLIQUE
model. In particular, can we go below the respective locality-
based lower bounds?

An improvedO (log∆) roundMIS algorithm inCONGESTED-CLIQUE
follows from [13]. By standard reductions (with minor modifica-

tions) [28], this round complexity also extends to the other three

problems. This O (log∆) upper bound avoids the Ω(log∗ n) lower
bound, but in the worst case it is still O (logn). It also does not go

below the Ω(min{
log∆

log log∆ ,

√
logn

log logn }) bound.

Some other related work: It is worth noting that there are few

work in the CONGESTED-CLIQUE model, which do not address

MIS or the other three problems mentioned above, but provide so-

lutions for some weaker forms of the problems. In particular, Berns

et al.[7] presented an algorithm with expected round complexity of

O (log logn) for computing a 2-ruling set, and Hegeman et al.[18]

extended this to an expectedO (log log logn)-round algorithm for 3-

ruling set. A k-ruling set is an independent set S in which any node

of the graph has some S-node within its distance k . Finally, Hege-
man and Pemmaraju[17] presented an algorithm with expected

round complexity O (log log logn) for O (∆)-vertex-coloring. All of
these are significantly more relaxed problems than MIS, and to

the best of our understanding, none of the methods seem to imply

anything for MIS (in general graphs). Moreover, the fact that the

provided complexity guarantees hold only in expectation makes

these results even less related to our problem.

1.2 Our Result and Approach
Theorem 1.1. There is a randomized distributed algorithm that

computes a maximal independent set in O (
log∆ ·log log∆
√
logn

+ log log∆)

rounds of the congested clique model, with high probability.

This improves over the O (log∆) round MIS algorithm of [13]

roughly quadratically, and exponentially if ∆ ≤ 2

√
logn

. Connecting

back to the question stated above, this round complexity provides

the first positive answer for it, by going below the aforementioned

Ω(min{
log∆

log log∆ ,

√
logn

log logn }) lower bound of [24].

OurApproach in a Nutshell: Here, we provide a brief intuition of
our approach. For simplicity, we discuss only an Õ (

√
logn)-round

algorithm for computing an MIS in the congested clique model.

The starting point in our approach is an algorithm of [13], which

computes an MIS inO (logn) rounds of the CONGEST model (with

some additional nice properties). We are now working in a more

powerful model, the congested clique model, which allows all-to-

all communications. Thus, wishfully thinking, we may hope to

simulate the algorithm much faster in this model. In particular,

an ideal case would be if we can simulate each r = O (
√
logn)

rounds of the algorithm, much faster in the CONGESTED-CLIQUE
model, say in merely O (log logn) rounds. Then, we would get an

O (
√
logn · log logn) round MIS algorithm.

Towards that hope, let us recall a well-known locality property

of distributed models, as observed by Linial[27, 28]: In any r -round

algorithm in the CONGEST model, each node v can learn at most

the information known at the beginning to the nodes within its

r -hop neighborhood, that is, the topology induced by the r -hop
neighborhood of v and the bits of randomness in those nodes. This

simple property has been used extensively by the lower bounds,

and also by some algorithmic results, for instance by Parnas and

Ron [34] and the follow up work to transform distributed graph

algorithms into sublinear centralized algorithms or local computation
algorithms as introduced by Alon et al. [4] and Rubinfeld et al. [38].

Having this property in mind, if we could somehow make each

node v learn its r -hop neighborhood fast, afterward node v would

be able to simulate the r -round algorithm locally and compute its

own output. However, that is not so feasible! This neighborhood

can be quite large, e.g., it can include even up toO (n2) edges. Thus,
learning the r -hop neighborhood is hopeless.

So what do we do? In a rough sense, we design a certain local
graph sparsification method, coupled with a new O (logn)-round
MIS algorithm in the CONGEST model — which builds on the

algorithm of [13] — such that the following holds: We can make

each node v simulate r = O (
√
logn) rounds of the latter algorithm

if it knows its r -hop neighborhood in a locally sparse graph G∗
generated by the local sparsification procedure. The sparsification

is such that, this whole r -neighborhood is small has size at most

nδ for a desirably small constant δ > 0. In particular, the maximum

degree inG∗ is bounded to 2
O (
√
logn)

. Designing these two coupled

algorithms, the sparsification and the corresponding MIS algorithm,

is the core technical novelty of this paper.

We also explain a simple approach which allows each node to

learn its r -hop neighborhood in a locally-sparse graph G∗, with
sufficient sparsity, in only O (log r) rounds of the congested clique

model. In short, the method works by making each node learn

its 2-hop neighborhood in O (1) rounds, and then applying this

procedure recurisvely on the G2
i
∗ powers of the base graph G∗.

Putting the above pieces together, we can simulate each r =

O (
√
logn) rounds of the new CONGEST-model MIS algorithm in

log r = O (log logn) rounds of CONGESTED-CLIQUE, hence lead-
ing to a O (

√
logn · log logn) round MIS algorithm in this model.

We believe that the particular local sparsificationmethodology set

forth here, where the sparsification is coupled with a corresponding

algorithm for the graph problem at hand and can be used to simulate

the algorithm more efficiently, can be of interest beyond this work.

Intuitively, one may be able to design similar procedures for some

of the other local problems. Furthermore, it is conceivable that

such a local sparsification method may lead to more efficient local
computation algorithms [4, 38] in high-degree graphs, a subarea

which remains relatively open.

2 MIS IN Õ (
√
LOG∆) ROUNDS OF CONGESTED

CLIQUE
In this section, we present our randomized distributed algorithm

that proves Theorem 1.1. In particular, it computes an MIS in

Õ (
√
log∆) rounds of the congested clique model.

See Section 1.2 for a high-level explanation of the approach.

As mentioned there, the starting point in our approach is the MIS

algorithm of [13]. We will modify this algorithm, in a series of steps,

such that at the end, we have aCONGEST-model algorithm coupled

with a local sparsification procedure, with the following crucial

property: the CONGEST-model MIS algorithm can be simulated

much faster in the CONGESTED-CLIQUE model by (iterations of)

each node learning its neighborhood in a certain locally sparse

graph generated by the sparsification.

In particular, we present an O (log∆) round algorithm in the

CONGEST model that computes a nearly-maximal independent

set S , with high probability, in the sense that, after removing the

S-nodes and their neighbors from the graph, the remaining graph

has no more than O (n) edges. This is formalized in Lemma 2.11.

We will refer to this still as an MIS algorithm because running it

forO (logn) rounds would indeed generate a maximal independent

set, with high probability. However, instead of doing it that way,

after the first O (log∆) rounds, we will use standard techniques of

the congested clique to solve the remaining graph — i.e., decide

about nodes that remain undecided — in O (1) rounds. This will
add some nodes to S to ensure that it is a maximal independent set.

In the following, the core of our discussion is the O (log∆) round

algorithm in the CONGEST model and its simulation in Õ (
√
log∆)

rounds of congested clique.

Since the final CONGEST-model MIS algorithm and its sparsifi-

cation may seem somewhat unintuitive at a first glance, we present

the algorithm in a number of gradual steps. Interestingly, as we

will point out, each of the intermediate algorithms has some nice

properties, making it interesting on its own. Indeed, the intermedi-

ate MIS algorithm and analysis that we present in Section 2.2 can

be viewed as improving on [1, 39], as we shall clarify.

2.1 A Brief Recap on the MIS Algorithm of [13]
We start with a brief review of the MIS algorithm of [13]:

The MIS Algorithm of [13]: In each round, each node v
gets marked with probability pt (v). If v is marked and none

of its neighbors is marked, then v joins the MIS and gets

removed along with its neighbors. The marking probabilities

are set as follows: Initially p0 (v) = 1/2, and

pt+1 (v) =



pt (v)/2, if dt (v) =
∑
u ∈N (v) pt (u) ≥ 2

min{2pt (v), 1/2}, if dt (v) =
∑
u ∈N (v) pt (u) < 2.

Despite its extreme simplicity, this algorithm is in a sense too dy-
namic/active for our purposes of fast simulation in the congested

clique. To predict whether pt (v) should increase or decrease in one

round, we need to compute dt (v) =
∑
u ∈N (v) pt (u), which itself

means we should know the state (e.g. marking probability) of all the

neighbors in that round. That requires receiving the values from

all the neighbors. Moreover, it in turn essentially requires knowing

the state of all 2-hop neighborhood nodes in round t − 1, and so

on. Keeping track of this rapidly growing topology would require a

message size larger than what the congested clique model admits.

2.2 Intermediate Algorithm (1): The Beeping
MIS Algorithm

Intuition
One observation is that, per round of the above algorithm, each

node u needs to send its pt (u) value to each of its neighbors. This

seems inefficient, given that the objective is to just distinguish

whether dt (v) =
∑
u ∈N (v) pt (u) is large or small. We can even

allow some slack in distinguishing these two situations.

We would like to have a much simpler way to distinguish these

two possibilities. Particularly, we wish to have much less communi-

cation. We use a simple observation: A good indicator of whether

dt (v) is large or not is whether there is a marked node in Nt (v)
or not. If dt (v) is larger than some constant, there is a constant

probability that there is at least one marked neighbor, and if dt (v) is
smaller than some other constant, the chances of having a marked

neighbor are less than a constant. Hence, we can intuitively take the

existence of a marked neighbor as an indicator signal for whether

dt (v) is large or not, and use it to change pt (v) accordingly. An
important property of this method, which we will formalize and

leverage later on, is that when dt (v) is small, the set of “important"

neighbors is locally spare. We will see later that this small dt (v) is
the key regime of interest during the execution. To put the property

in different words, we can say that per round only a small number

of neighbors have a chance to mark themselves, and knowing these

potential marks suffices for simulating the algorithm.

The Algorithm
We present the algorithm in the terminology of the (full-duplex)

beeping model, which is a very basic distributed model. See [10]

for one of the early works introducing (the half-duplex) variant

of this model. In the full-duplex beeping model, per round each

node either beeps or listens, and each node can distinguish only

whether zero or at least one of its neighbors is beeping. A node

cannot distinguish the number of beeping neighbors, if there is at

least one. This model and its close variants are known to capture a

wide range of wireless networks [1, 10, 14] and biological networks

— see e.g., [2] and the follow up theoretical work[1, 33, 39].

The algorithm is a simple and natural dynamic. It is essentially

the same algorithm as [39], and also somewhat close to the algo-

rithms presented in [13]. Our novelty here is in the analysis.

The Beeping MIS Algorithm: The algorithm works in iter-

ations, each made of two rounds:

(R1) In the first round of iteration t , each node v beeps
with probability pt (v) and remains silent otherwise.

Initially p1 (v) = 1/2. If v beeps and all its neighbors

are silent, then v joins the MIS. Node v updates its

beeping probability for the next iteration as follows:

pt+1 (v) =



pt (v)/2, if some neighbor of v beeps,

min{2pt (v),
1

2
}, otherwise.

(R2) In the second round of iteration t , all nodes in the MIS

beep. If a non-MIS node hears a beep, it learns that it

has an MIS neighbor. MIS nodes and their neighbors

get removed from the problem, for the next iterations.

The Analysis
In Theorem 2.1 we show that afterO (log∆+ log 1/ε) rounds of this
algorithm, each node is removed with probability at least 1−ε . This
can be viewed as an improvement/refinement of the analysis of

Scott, Jeavons, and Xu[39], which proved an O (logn) global round
complexity, with high probability

2
.

To analyze the algorithm, we focus on an arbitrary node v . Sup-
pose that deg(v) denotes the degree of node v at the beginning of

the algorithm. We prove that:

Theorem 2.1. For each nodev , duringT = C (log deg(v)+log 1/ε)
rounds, where C is a large enough constant, with probability at least
1 − ε , either node v or a neighbor of v is added to MIS. Furthermore,
this guarantee holds independent of the randomness outside 2-hop
neighborhood of v .

This theorem implies that the expected time for removal of each

nodev is at mostO (log deg(v)), and perhaps more importantly, we

have an exponential decay of the probability of remaining after that

point. Thus, after O (log∆) rounds, the probability of node v re-

maining is at most ε = 1/ poly(∆). This, in addition to the stated in-

dependence property, allows us to prove that afterO (log∆) rounds,
the graph is shattered, the remaining components are “small", and at

most O (n) edges remain. See Lemma 2.11 for the formal statement.

For the analysis, we focus on the first rounds of the iterations;

the second rounds are the basic clean up steps for removing MIS

nodes and their neighbors. In fact, ignoring those second rounds

per iteration, and with a slight abuse of terminology, in the sequel,

we use rounds to refer to the first rounds of the corresponding

iterations.

We start with some notations. Define dt (v) =
∑
u ∈N (v) pt (v).

We call a node v in iteration t heavy, moderate, and light if we
have dt (v) > 10, 0.01 ≤ dt (v) ≤ 10, and dt (v) < 0.01, respec-

tively. Also we define d ′t (v) to be the summation of the beep-

ing probabilities over non-heavy neighbors of v , that is, d ′t (v) =∑
u ∈N (v), dt (u)≤10 pt (u). We also define two types of golden rounds:

Golden Type-1 Round: pt (v) = 1/2 and dt (v) ≤ 0.02, or

Golden Type-2 Round: dt (v) > 0.01 and d ′t (v) ≥ 0.01dt (v).

One can see with simple calculations that in each golden round,

node v gets removed with at least a positive constant probability.

This is because of node v joining MIS, or a neighbor joining MIS,

in type-1 and type-2 golden rounds, respectively. This statement

is captured by the following lemma, the proof of which is left as a

simple exercise.

Lemma 2.2. In each golden round, node v gets removed with at
least a constant probability γ > 0.

As the core of the analysis, we prove Lemma 2.3, stated below.

This lemma shows that during the first T rounds, with probability

at least 1− ε/2, there are at least 0.05T golden rounds for v . Having
this, we can conclude that the probability of v remaining after all

these golden rounds is at most ε/2 + (1 − γ)0.05T < ε/2 + ε/2 = ε ,
where the inequality holds by choosing a large enough constant

2
We emphasize that the algorithm that we discuss works in the full-duplex variant

of the beeping model, where each node v can detect whether any of its neighbors

are beeping or not, even if v is beeping at the same time. We refer the interested

reader to a recent work of Holzer and Lynch [20, 21], which discusses a beeping MIS

algorithm in the half-duplex model—where only a listening node can detect whether

any of its neighbors are beeping or not. Their analysis gives the guarantee that each

node decides afterO ((log∆+ log 1/ε) log 1/ε) rounds with probability at least 1− ε .

C in the definition of T . Thus, to prove Theorem 2.1, it suffices to

prove the following key lemma.

Lemma 2.3. For each node v , during T = C (log deg(v) + log 1/ε)
rounds, where C is a large enough constant, with probability at least
1 − ε/2, there are at least 0.05T golden rounds.

To prove Lemma 2.3, we first present two simple helper lemmas,

Lemma 2.4 and Lemma 2.5, which intuitively state that the system is

far more likely to move in the desirable direction. Let us say we have

a wrong move if one of the following two holds: (1) dt (v) ≤ 0.02

and pt+1 (v) = pt (v)/2, or (2) dt (v) > 0.01 and d ′t (v) < 0.01dt (v)
but dt+1 (v) > 0.6dt (v). In the following two lemmas, we show that

the probability of a wrong move is at most 0.02. Then, we use these

two lemmas to prove Lemma 2.3.

Lemma 2.4. If dt (v) ≤ 0.02, then with probability at least 0.98,
we have pt+1 (v) = min{2pt (v),

1

2
}.

Proof of Lemma 2.4. Suppose that dt (v) ≤ 0.02. If no neighbor

of v beeps, then pt+1 (v) = min{2pt (v),
1

2
}. The probability that no

neighbor of v beeps is∏
u ∈N (v)

(1 − pt (u)) ≥ 4
−
∑
u∈N (v) pt (u) = 4

−dt (v) ≥ 0.98.

�

Lemma 2.5. If dt (v) > 0.01 and d ′t (v) < 0.01dt (v), with proba-
bility 0.98, we have dt+1 (v) ≤ 0.6dt (v).

Proof of Lemma 2.5. Suppose that dt (v) > 0.01 and d ′t (v) <
0.01dt (v). Hence, a 0.99 fraction of dt (v) is contributed by heavy

neighbors ofv . Let us call a heavy neighboru bad if it has no beeping

neighbor and thus sets pt+1 (u) = min{2pt (u),
1

2
}. We would like

to upper bound dt+1 (v). The contributions to dt+1 (v) comes from

three sources: (1) bad heavy neighbors, which will at most double

their probability (2) good heavy neighbors, which will halve their

probability, (3) non-heavy neighbors, which will at most double

their probability. The contribution of the last two categories to

dt+1 (v) is at most 0.5dt (v) + 0.02dt (v) = 0.52dt (v), and this holds

deterministically. What is crucial to analyze is the contribution

of the first group, that is, bad heavy neighbors. For each heavy

neighboru ofv , the probability thatu is bad—that is, the probability

that no neighbor of u beeps—is∏
w ∈N (v)

(1 − pt (w)) < e−
∑
w∈N (u) pt (u)

= e−dt (v) < e−10 < 0.0001.

Thus, by linearity of the expectation, the expected contribution of

bad heavy neighbors to dt+1 (v) is at most 0.0002dt (v), as each at

most doubles its probability. By Markov’s inequality, the probability

that this contribution is more than 0.01dt (v) is at most 0.02. In other

words, with probability at least 0.98, the contribution is no more

than 0.01dt (v). Therefore, considering all the three categories, with
probability at least 0.98, we have dt+1 (v) ≤ (0.52 + 0.01) · dt (v) <
0.6dt (v). �

Now that we are equipped with these two helper lemmas, we go

back to proving Lemma 2.3.

Proof of Lemma 2.3. By Lemma 2.4 and Lemma 2.5, the proba-

bility of a wrong move is at most 0.02. Each wrong move depends

only on the randomness of the its own round. Thus, the events of

wrong moves in different rounds are independent. Therefore, using

a Chernoff bound, we can infer that overT = C (log deg(v)+log 1/ε)
rounds, with probability at least 1 − ε/2, we have at most 0.04T
wrong moves. In the rest of this proof, we assume that the number

of wrong moves is no more than 0.04T . The ε/2 probability of the

incorrectness of this assumption is handled via a union bound.

Let д1 and д2 be the number of golden rounds of type-1 and

type-2, respectively. Also, let h be the number of rounds in which

dt (v) > 0.02. We show that, assuming at most 0.04T wrong moves,

д2 < 0.05T implies h < 0.27T , which in turn implies д1 > 0.05T ,
hence proving the lemma.

Small д2 implies small h: Suppose that д2 ≤ 0.05T . Consider
rounds in which dt (v) ≥ 0.01. Divide these rounds into two cat-

egories: (A1) those in which d ′t (v) ≥ 0.01dt (v) and (A2) those in

which d ′t (v) < 0.01dt (v). Note that the (A1) rounds are the same

as golden type-2 rounds. In each (A1) round or an (A2) round with

a wrong move, dt (v) increases by at most a 2 factor. There are

at most 0.09T rounds such rounds, because д2 ≤ 0.05T and the

number of wrong moves are upper bounded to 0.04T . In each (A2)

round without a wrong move, dt decreases by a 0.6 factor. Each 2

factor increase cancels the effect of at most two rounds with 0.6

factor decrease, because (0.6)2 < 1/2. Thus, there are at most 0.18T
rounds in (A2) without a wrong move. Therefore, in total, we have

at most 0.27T rounds in which dt (v) > 0.02. That is, h < 0.27T .

Small h implies large д1: Assume that h < 0.27T , which means

that in at least 0.73T rounds, we have dt (v) ≤ 0.02. In each of

these rounds, if we have a wrong move, pt+1 (v) = pt (v)/2, and
otherwise, pt+1 (v) = min{2pt (v),

1

2
}. Thus, overall, we have at

most 0.31T rounds in which pt+1 (v) = pt (v)/2. This includes the
at most 0.27T rounds in which dt (v) > 0.01. Now, every round of

halving pt (v) cancels the effect of at most one round of doubling

pt (v). Since we start with p1 (v) = 1/2, we can conclude that there

are at least (1 − 2 × 0.31)T rounds in which p1 (v) = 1/2. That

is, there are at least 0.38T such rounds. Among these, at most

h < 0.27T can be rounds in which dt (v) > 0.02. Therefore, there

are at least (0.38 − 0.27)T > 0.05T rounds in which pt (v) = 1/2

and dt (v) ≤ 0.02. These are golden rounds of type-1 by definition.

Hence, д1 ≥ 0.05T . �

2.3 Intermediate Algorithm (2): The Sparsified
Beeping MIS Algorithm

Intuition
In the algorithm presented in the previous subsection, there is a

clear difference between the amount of beeps in neighborhoods

with small dt (v) and those with large dt (v). The former are good,

because in a rough sense, the communications in those neighbor-

hoods are sparse. On the other hand, the latter might be problematic,

unless we do something about them. Here we explain intuitively

what we want to do about each branch of this dichotomous sit-

uation. We then formalize this intuition in the algorithm and its

analysis. We imagine that we divide the rounds of the algorithm

into phases, each having R =
√
δ logn/10 rounds for a desirably

small constant δ > 0.

Sparsely Marked Neighborhoods: Consider one phase made of

R =
√
δ logn rounds, starting at a round t0. Imagine a node v

that has a small dt0 (v) ≤ L for L = 2

√
δ logn/5

. In each round

t of this phase, each neighbor u gets marked with probability

pt (v) ≤ min{1/2, 2Rpt0 (u)}. This is because, per round their mark-

ing probability at most doubles. Hence, if at the beginning of

the phase, for each round t in this phase, we sample the node

u with probability min{1/2, 2Rpt0 (u)}, the set of sampled neighbors

stochastically dominates the set of the nodes that will be actually

marked. That is—in a sense to be formalized—the sampled set con-

tains all the marked nodes, though potentially also much more

other nodes.

On the positive side, this sampled set has size at most at most

2
3

√
δ logn/10

. Thus, if we locally gather these sampled sets, and then

carefully work through the simulation of the markings only among

these sampled nodes, we will be able to simulate the marking pro-

cess in these neighborhoods with small dt (v). Since the sampled

set has size at most 2
3

√
δ logn/10

, gathering the local topology in-

duced by sampled nodes is essentially similar to learning the local

topology in a graph with maximum degree 2
3

√
δ logn/10

. As we see

later, this level of sparsity is sufficient for us.

Stabilizing Super-Heavy Neighborhoods: But what do we do

about nodeswith largedt (v)? For these, the set of marked neighbors

per round can be quite large. Let us call a node v super-heavy
in a phase if in the first round t of that phase, we have dt (v) =∑
u ∈N (v) pt (u) ≥ L for L = 2

√
δ logn/5

. We argue that for each

such super-heavy nodev , to determine the behavior ofv , we do not
really need to simulate the markings of the neighbors of v within

this phase — instead we can just assume that v always has beeping

neighbors.

During the R =
√
δ logn/10 rounds of this phase, some of neigh-

bors of v might get removed because of joining the MIS or having

a neighbor join. But let us ignore that possibility for the moment.

Then, per round dt (v) shrinks at most by a 2 factor, which means

throughout the whole period, dt (v) ≥ 2

√
δ logn/10 ≫ Θ(logn).

Hence, indeed in each of those rounds at least one neighbor of v is

marked, w.h.p. Thus, v practically has no chance of entering the

MIS during this phase.

For each node v that is super-heavy in a given phase, we will

hedge our bets and assume that v will see marked neighbors in all

rounds of this phase. Because of that, v has a perfectly predictable

change in its pt (v). Namely, pt (v) decreases by a 2 factor in each

round of this phase. This means we do not need to really simulate

the effect of markings of the neighbors of v to compute its pt (v)
throughout the phase. Recall that the above ignores the possibility

of many neighbors of v getting kicked out during the phase, which

could imply that v has rounds with no marked neighbor. We will

show later in the analysis that ignoring this possibility does not

slow us down significantly.

The Algorithm
Wenowpresent the sparsified variant of the algorithm. The concrete

advantage of this sparsified algorithm will become clear later when

we simulate it quickly in the congested clique model.

The Sparsified MIS Algorithm: The algorithm works in

phases, each made of P =
√
δ logn/10 iterations and one

additional round. At the beginning each phase, before the iter-

ations, we have one round where each node sends its pt (v) to
its neighbors. Then, node v sets dt (v) =

∑
u ∈N (v) pt (u) and

if dt (v) ≥ 2

√
δ logn/5

, we call nodev super-heavy throughout

this phase. The algorithm then proceeds in iterations, each

having two rounds, as follows:

(R1) In the first round of iteration t , each node v beeps
with probability pt (v) and remains silent otherwise.

As before, initially p1 (v) = 1/2. Now a node v joins

MIS if three conditions are satisfied: (A) v is not super-

heavy, (B) v beeps, and (C) all its neighbors are silent.

Node v updates its beeping probability for the next

iteration as follows:

pt+1 (v) =




pt (v)/2, if node v is super-heavy, or if

at least one neighbor beeped

min{2pt (v),
1

2
}, otherwise.

(R2) In the second round of iteration t , all nodes in the MIS

beep. If a non-MIS node hears a beep, it learns that it

has an MIS neighbor. MIS nodes and their neighbors

get removed from the problem, for the next iterations.

The Analysis
Again, the analysis will focus only on the first rounds of the itera-

tions, and will ignore the second rounds which are there for basic

clean up operations. With a slight abuse of terminology, in the se-

quel, we use rounds to refer to the first rounds of the corresponding
iterations.

Theorem 2.6. For each nodev , duringT = C (log deg(v)+log 1/ε)
rounds, where C is a large enough constant, with probability at least
1 − ε , either node v or a neighbor of v is added to MIS. Furthermore,
this guarantee holds independent of the randomness outside 2-hop
neighborhood of v .

We start with redefining some notations. We use the notation

v ∈ SHt to indicate that node v is super-heavy, that is, it had

dt ′ (v) ≥ 2

√
δ logn/5

at the first round t ′ of the corresponding phase.
We call a node v in round t heavy if either v ∈ SHt or dt (v) > 10.

Define d ′t (v) to be the summation of the beeping probabilities over

non-heavy neighbors of v in round t , that is,

d ′t (v) =
∑

u ∈N (v), u<SHt , dt (u)≤10

pt (u).

Golden rounds are redefined as follows:

Golden Type-1 Round: pt (v) = 1/2,v < SHt , & dt (v) ≤ 0.02,

Golden Type-2 Round: dt (v) > 0.01 and d ′t (v) ≥ 0.01dt (v).

One can see that these new definitions give us the property that, in

the new algorithm, node v gets removed with at least a constant

probability per golden round.

Lemma 2.7. In each golden round, node v gets removed with at
least a constant probability γ > 0.

As before, the heart of the argument is to prove that there are

many golden rounds for nodev , whichwe show in Lemma 2.8. Then,

Theorem 2.6 follows directly from Lemma 2.8 and Lemma 2.7.

Lemma 2.8. For each node v , during T = C (log deg(v) + log 1/ε)
rounds, where C is a large enough constant, with probability at least
1 − ε/2, there are at least 0.05T golden rounds.

To prove Lemma 2.8, as before, we have two helper lemmas,

Lemma 2.9 and Lemma 2.9, which show that the system is more

likely to move in the desired direction. In other words, they show

that some wrong moves have small probability. Though, the state-

ments are slightly different.

Lemma 2.9. If dt (v) ≤ 0.02 and v < SHt , then with probability
at least 0.98, we have pt+1 (v) = min{2pt (v),

1

2
}.

Proof. Suppose that dt (v) ≤ 0.01 and v < SHt . If no neighbor

of v beeps, then pt+1 (v) = min{2pt (v),
1

2
}. The probability of that

is

∏
u ∈N (v) (1 − pt (u)) ≥ 4

−
∑
u∈N (v) pt (u) ≥ 0.98. �

Lemma 2.10. If dt (v) > 0.01 and d ′t (v) < 0.01dt (v), then with
probability at least 0.98, we have dt+1 (v) ≤ 0.6dt (v).

Proof. Suppose thatdt (v) > 0.01 andd ′t (v) < 0.01dt (v). Hence,
a 0.99 fraction of dt (v) is contributed by heavy neighbors of v . No-
tice that now a node u is heavy either because u ∈ SHt or because

dt (u) > 10. The first category will reduce their pt (u) by a 1/2 factor,
as the algorithm indicates. The behavior of the second category is

as analyzed before, they are more likely to reduce their pt (u) by a

1/2 factor, but they also have a small chance of not doing that, and

instead, even raising it up by to a 2 factor. The worst case of the

increase in dt+1 (v) would be if all heavy neighbors actually are in

the second category, in which case the analysis follows the exact

proof of Lemma 2.5, concluding that with probability at least 0.98,

we have dt+1 (v) < 0.6dt (v). �

Now that we are equipped with these two helper lemmas, we go

back to proving Lemma 2.8.

Proof of Lemma 2.8. First note that by Lemma 2.4 and Lemma 2.5,

the probability of a wrong move is at most 0.02. Each wrong

move depends only on the randomness of the corresponding round.

Thus, the events of wrong moves in different rounds are indepen-

dent. Therefore, using a Chernoff bound, we can infer that over

T = C (log deg(v)+ log 1/ε) rounds, with probability at least 1−ε/2,
we have at most 0.04T wrong moves. In the rest of this proof, we

assume that the number of wrong moves is no more than 0.04T .
The ε/2 probability of the incorrectness of the assumption is taken

into account later via a union bound.

Let д1 and д2 be the number of golden rounds of type-1 and

type-2, respectively. Also, let h be the number of rounds in which

dt (v) > 0.02 or v ∈ SHt . We show that, assuming at most 0.04T

wrong moves, д2 < 0.05T implies h < 0.27T , which in turn implies

д1 > 0.05T .

Small д2 implies small h: Suppose that д2 ≤ 0.05T . We prove

that, assuming at most 0.04T wrong moves, this implies h < 0.27T .
Notice that h counts the number of rounds in which v ∈ SHt
or dt (v) > 0.01. Let us first examine super-heavy rounds. For

each phase in which v is super-heavy, if there is at least one round

during the phase in whichdt (v) ≤ 0.02, call that phase a drop phase.
Notice that in a drop phase, at the beginning of the phase, we have

dt (v) ≥ 2

√
δ logn/5

and at the end of the phase, we have dt (v) ≤

0.02 · 2
√
δ logn/10 ≪ 2

√
δ logn/10

. Hence, the phase observes a

significant drop — at least a 2

√
δ logn/10

factor — in the value of

dt (v). Amortized, this is even stronger than a 1/2 factor decrease

per each round of the phase. For the sake of our bookkeeping in the

next paragraph, we bundle all these rounds together and simply

imagine that each round of a drop phase gives a 1/2 factor decrease

in dt (v).
Aside from the rounds of drop phases, what remains in the

count h are rounds which have dt (v) > 0.02 (which may be in

super-heavy phases or not). We consider two (slightly broader)

classes of rounds, as before: (A1) rounds in which dt (v) > 0.01

and d ′t (v) ≥ 0.01dt (v) and (A2) rounds in which rounds in which

dt (v) > 0.01 and d ′t (v) < 0.01dt (v). Note that the (A1) rounds are
the same as golden type-2 rounds and their count is д2. In each (A1)

round or an (A2) round with a wrong move, dt (v) increases by at

most a 2 factor. There are at most 0.09T rounds such rounds. In each

(A2) round without a wrong move, dt (v) decreases by a 0.6 factor.

In each round in a drop phase, dt (v) decreases by a 1/2 < 0.6 factor.

Each 2 factor increase cancels the effect of at most two rounds

with a 0.6 factor decrease, because (0.6)2 < 1/2. Thus, there are at

most 0.18T rounds in (A2) without a wrong move or in drop phases.

Therefore, in total, we have at most 0.27T rounds in whichv ∈ SHt
or dt (v) > 0.01. That is, h < 0.27T .

Small h implies large д1: Assume that h < 0.27T . This implies

that in at least 0.73T rounds, we have dt (v) ≤ 0.02 and v < SHt . In

each of these rounds, if we have a wrong move, pt+1 (v) = pt (v)/2,
and otherwise, pt+1 (v) = min{2pt (v),

1

2
}. Thus, overall, we have at

most 0.31T rounds in which pt+1 (v) = pt (v)/2. This includes the at
most 0.27T rounds in which dt (v) > 0.02 or v ∈ SHt . Now, every

round of halving pt (v) cancels the effect of at most one round of

doubling pt (v). Since we start with p1 (v) = 1/2, we can conclude

that there are at least (1 − 2 × 0.31)T rounds in which pt (v) = 1/2.

That is, there are at least 0.38T such rounds. Among these, at most

h < 0.27T can be rounds in which dt (v) > 0.02 or v ∈ SHt .

Therefore, there are at least (0.38−0.27)T > 0.05T rounds in which

we have the following three properties: pt (v) = 1/2, v < SHt ,

and dt (v) ≤ 0.02. These are golden rounds of type-1 by definition.

Hence, д1 ≥ 0.05T . �

Lemma 2.11. The graph remaining after Θ(log∆) rounds of the
sparsified MIS algorithm has at most O (n) edges, w.h.p.

Proof. As can be inferred from Theorem 2.6, after Θ(log∆)
rounds, each vertex remains with probability at most 1/∆50

. If

∆ ≥ n0.1, w.h.p., no edge remains. Suppose ∆ ≤ n0.1. Then, we

expect at most
n∆
∆50
≪ n remaining edges.Whether a nodev remains

is independent of the randomness outside its 2-hop neighborhood.

Thus, each edge’s event of remaining depends on no more than

2∆5 ≤ n0.6 edges. By applying the extension of the Chernoff bound

to settings with bounded dependency[37], we get that, w.h.p., at

most O (n) edges remain. �

2.4 Simulation in Congested Clique
We now describe our distributed algorithm that computes an MIS in

Õ (
√
log∆) rounds of congested clique, thus proving Theorem 1.1.

Overall, the algorithm has two parts. The first part is the main

ingredient, the second is a simple and standard clean up step. In

the first part, we simulateO (log∆) rounds of the sparsified variant

of the beeping-based MIS algorithm, presented in Section 2.3, but

much faster, in just Õ (
√
log∆) rounds of congested clique. The first

part may leave a small graph, which as proven by Lemma 2.11 can

have at most O (n) edges, with high probability. In the second part,

we explain how to solve this remaining graph in O (1) additional
rounds of the congested clique.

The First Part of the Congested Clique Algo.
As outlined above, the heart of the algorithm is the first part, that

is, faster simulation of the sparsified algorithm in the congested

clique. Recall that the sparsified algorithm is made of phases, each

having

√
δ logn/10 rounds. We explain how to simulate each of

these phases in merelyO (log log∆) rounds of the congested clique.

Thus, overall, simulating O (log∆) rounds of the sparsified algo-

rithm takes O (
log∆ ·log log∆
√
δ logn

) rounds in the congested clique model.

We next explain how the simulation of each phase works.

Before that, we remark that in this subsection, without loss of

generality, we will assume that log log∆ = Θ(log logn). This is
without loss of generality, because in the complementary case,

there is a simpler variant of our approach that solves the problem

in O (log log∆) rounds of the congested clique, see Lemma 2.15.

Simulating One Phase in Θ(log logn) = O (log log∆) Rounds:
The first round of the phase, which is simply exchanging the initial

values of pt (v), can be performed in one round. We explain how to

simulate the rest of the phase, which is made of

√
δ logn
10

iterations,

in O (log log∆) rounds. At the end of the simulation, we want each

node v to know two things about its configuration at the end of the

phase: (1) whether v is in the MIS or not, (2) the value of pt (v) for
the last round of the phase. Given this, in one additional round, we

can remove the MIS nodes and those adjacent to them, and then

proceed to simulating the next iteration.

We now discuss how we simulate the iterations. Since we are

dealing with randomized algorithms, it is crucial to be formal what a

simulation means. We disentangle the randomness from the simula-

tion, as follows: note that the only randomized step in the algorithm

is deciding whether to beep or not, with probability pt (v) for beep-
ing. We imagine that for this, node v has a random variable rt (v)
chosen uniformly at random from [0, 1], with Θ(log∆) bits of preci-
sion. Then, if rt (v) ≤ pt (v), nodev beeps, and otherwise, it remains

silent. To separate the randomness from the simulation, we imagine

that each node v draws all of its random values rt (v) for all rounds
t of this phase at the beginning of the phase. Having fixed these

values, we are left with simulating a deterministic procedure.

First, notice that the simulation for the super-heavy nodes is

straightforward. For each super-heavy node v , its pt (v) will de-
crease by a 2 factor in each round. Let each super-heavy node

locally calculate its pt (v) for the rounds of this phase, and then

determine whether it beeps or not in each round, according to

these calculated probabilities pt (v) and its random values rt (v) by
checking whether rt (v) ≤ pt (v) or not. These outcomes of these

decisions can be represented in a binary string of

√
δ logn/10 bits,

one bit per round. We call this the beep vector of node v for this

phase. We use one round to have super-heavy nodes send their

beep vectors to all their neighbors.

What remains is simulating other nodes, who are not super heavy

and thus at the beginning of the phase have dt (v) ≤ 2

√
δ logn/5

.

Consider the following subset S of vertices. Let t0 be the first round
the phase. Include each nodev in S if there is at least one round t of

this phase for which rt (v) ≤ 2

√
δ logn/10pt0 (v). Notice that ifv < S ,

then v does not beep during this phase. However, the converse is

not true and it is possible that v is included in the set but does not

beep in this phase. Therefore, S is a super-set of nodes that beep

during this phase. In particular, S includes all nodes that join the

MIS, but most likely also many other nodes.

The set S has one extremely useful property: with high prob-

ability, the subgraph G[S] induced by S is locally sparse and in

particular, it has a small maximum degree.

Lemma 2.12. W.h.p., each node s ∈ S has nomore than 21+
√
δ logn/2

neighbors in S .

We decorate the vertices of G[S] with some additional informa-

tion, and call the resulting decorated graph G∗[S]. For each node

v ∈ S , in G∗[S], we record two additional items of information,

besides the edges of v : (1) the bit-wise OR of the beep vectors that

v received from its super-heavy neighbors, and (2) the values of

rt (v) for all the rounds of this phase. Notice that overall this is no
more than O (log2 n) bits of information per node. It is convenient

to imagine that these bits are appended to the ID of the vertices,

and we now have a graphG∗[S] with IDs of sizeO (log2 n) bits. The
next lemma shows that once a node s ∈ S learns a small neighbor-

hood around itself inG∗S , it can simulate its behavior in this phase

locally. The proof appears in Lemma 2.13.

Lemma 2.13. If each node s ∈ S learns its
√
δ logn/10-hop neigh-

borhood in G∗[S], then node s can simulate its behavior in this phase
locally. In particular, node s learn two things: (1) whether s joined the
MIS in this phase or not, (2) the value of pt (s) at the end of the phase.

Proof of Lemma 2.13. The proof is by a simple induction. We

argue that for any k , the behavior of each node v ∈ S in the first k
rounds of the phase can be determined from itsk-hop neighborhood
in G∗[S]. The base of the induction where k = 0 is trivial. To know

the behavior of node v in the first k + 1 rounds, we need to know

two things: (1) the behavior of node v in the first k rounds, and (2)

for each neighbor u of v in G, whether u beeps in the (k + 1)th of

the phase or not. The latter can be divided into three categories: (A)

if u is super-heavy, then node v already has the beeping vector of u

and thus it knows whether u beeps in the (k + 1)th round or it. (B)

if u is not super-heavy and u < S , then u clearly does not beep in

any round of the phase and thus also not in the (k + 1)th round of

the phase. (C) if u ∈ S , then whether u beeps or not in the (k + 1)th

round can be determined by knowing the behavior of u in the first

k rounds, which dictates pt (u) in that round, and rt (u). The latter
is in the decoration of u, and the former can be learned from the

k-hop neighborhood of u in G∗[S], by the induction assumption.

Hence, by knowing the k + 1-hop neighborhood ofv inG∗[S], node
v can determine its behavior in the first k + 1 rounds. �

Lemma 2.14. There is anO (log logn) round algorithm that allows
each node s ∈ S to learns its

√
δ logn/10-hop neighborhood in G∗[S].

We have been informed that the simple graph exponentiation idea
that we use for proving this lemma has been used before, and in

this regard, one can view as reproving a brief announcement result

of Lenzen and Wattenhofer [26]. Regardless, to be self-contained,

we include a proof here, especially as it is short and simple.

Proof Lemma 2.14. First notice that the size of the neighbor-

hood to be learned by each node is at most(
2
1+
√
δ logn/2 · log2 n

)
2

√
δ logn/10

≪ nδ /5.

Let H be an arbitrary n-node graph with maximum degree at

most nδ /4 and suppose that each node v knows its neighbors, i.e.

the edges incident on it. We first explain how in O (1) rounds, we
can make each node v know all the edges incident on its neighbors.

This will in particular all the node to know H2
, the graph where

there is an edge between each two nodes with distance at most 2.

The procedure on H is as follows: each vertex v with degree

deд(v) prepares deд2 (v) packets, each describing one of its edges,

and to be sent to one of its neighbors. Thus, each vertex v is the

source of (deд(v))2 ≤ nδ /2 packets. Moreover, each node v is the

destination for at most n packets, as node v has at most deд(v) ≤

nδ /4 neighbors and v is the destination for deд(u) ≤ nδ /4 packets
beginning at each neighbor u of v . Thus, each node is the source

or destination for at most nδ /2 packets. We apply Lenzen’s routing

method[25] to deliver all these packets from their sources to their

destinations in just O (1) round of the congested clique.

We apply the above procedure recursively on graphs G∗[S],
G2

∗[S], G
4

∗[S], G
8

∗[S] . . . , G
κ
∗ [S], where κ is the least power of 2 no

less than

√
δ logn/10. The procedure is applicable as the maximum

degree in each of these graphs is at most (21+
√
δ logn/2 · log2 n)κ ≤

nδ /4. At the end, each node learns its

√
δ logn/10-neighborhood in

G∗[S]. Moreover, this whole scheme takes O (logκ) = O (log logn)
rounds, that is, O (1) rounds for each recursive application. �

The Second Part of the Congested Clique Algo.
After simulating O (log∆) rounds of the CONGEST-model algo-

rithm, which computes a nearly-maximal independent set S , a num-

ber of nodes may remain. Let B be these remaining nodes. The set B
is the set of all nodes who have no neighbor in the computed nearly-

maximal independent set independent set S . Note that each node

has probability at most 1/∆10
to be in B. As Lemma 2.11 proves,

the subgraph induced by B has at mostO (n) edges. This remaining

graph G[B] can be handled easily, via a standard idea in the con-

gested clique. In particular, we make each node in B send its G[B]
edges to the leader node (which can be elected inO (1) round). This
can be done inO (1) rounds, using Lenzen’s routing method[25]. At

the end, the leader computes an MIS SB of G[B] and informs those

MIS nodes. Then, the overall MIS is S ∪ SB .

2.5 Faster MIS in Low-Degree Graphs
Lemma 2.15. Suppose that ∆ ≤ 2

c
√
δ logn for a sufficiently small

constant c . Then, there is a distributed algorithm that computes an
MIS in merely O (log log∆) rounds of the congested clique.

Proof Sketch. Each node can learn its O (log∆)-hop neighbor-

hood in G via Lemma 2.14 in O (log log∆) rounds. This is possible

because the related O (log∆) neighborhood has size at most nδ .
Then, the nodes can simulateO (log∆) rounds of the MIS algorithm

of [13] locally. The remaining graph would have O (n) edges and
could be solved using O (1) rounds as explained in the second part

of the algorithm. �

Acknowledgment: I am grateful to Merav Parter. Our discus-

sions about her recent work with Keren Censor-Hillel and Gre-

gory Schwartzman[9] — which presents an O (log∆ logn) round
congested clique derandomization of the O (log∆) round MIS algo-

rithm of [13] — reignited my interest in looking for a sublogarithmic

MIS algorithm in the congested clique model. I am also thankful

to Stephan Holzer and Nancy Lynch. Our discussions about their

(half-duplex) beeping model MIS algorithm [20] and its local com-
plexity guarantees made me try to find a (tighter) characterization

of the local complexity of the beeping MIS algorithm of [39], as

discussed in Section 2.2. Though, at the time, I did not expect that

this improvement and more generally a beeping MIS algorithm

could be useful as an intermediate step towards a faster congested

clique algorithm; in fact, even in hindsight, I find this extraordinary.

I am also thankful for the valuable feedback and comments by the

anonymous reviewers of PODC17.

REFERENCES
[1] Yehuda Afek, Noga Alon, Ziv Bar-Joseph, Alejandro Cornejo, Bernhard Haeu-

pler, and Fabian Kuhn. 2013. Beeping a maximal independent set. Distributed
computing 26, 4 (2013), 195–208.

[2] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama Barkai, and Ziv

Bar-Joseph. 2011. A biological solution to a fundamental distributed computing

problem. science 331, 6014 (2011), 183–185.
[3] Noga Alon, László Babai, and Alon Itai. 1986. A fast and simple randomized

parallel algorithm for the maximal independent set problem. Journal of algorithms
7, 4 (1986), 567–583.

[4] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. 2012. Space-efficient

local computation algorithms. In Pro. of ACM-SIAM Symp. on Disc. Alg. (SODA).
1132–1139.

[5] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2012,

also coRR abs/1202.1983v3. The locality of distributed symmetry breaking. In

Foundations of Computer Science (FOCS) 2012. IEEE, 321–330.
[6] Florent Becker, Antonio Fernandez Anta, Ivan Rapaport, and Eric Reémila. 2015.

Brief Announcement: A Hierarchy of Congested Clique Models, from Broadcast

to Unicast. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC). ACM,

167–169.

[7] Andrew Berns, James Hegeman, and Sriram V Pemmaraju. 2012. Super-fast dis-

tributed algorithms for metric facility location. In the Pro. of the Int’l Colloquium
on Automata, Languages and Programming (ICALP). 428–439.

[8] Keren Censor-Hillel, Petteri Kaski, Janne H. Korhonen, Christoph Lenzen, Ami

Paz, and Jukka Suomela. 2015. Algebraic Methods in the Congested Clique. In

the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC). ACM, 143–152.

[9] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. 2016. Derandom-

izing Local Distributed Algorithms under Bandwidth Restrictions. arXiv preprint
arXiv:1608.01689 (2016).

[10] Alejandro Cornejo and Fabian Kuhn. 2010. Deploying wireless networks with

beeps. In International Symposium on Distributed Computing. Springer, 148–162.

[11] Danny Dolev, Christoph Lenzen, and Shir Peled. 2012. âĂIJTri, Tri AgainâĂİ:

Finding Triangles and Small Subgraphs in a Distributed Setting. In Distributed
Computing. Springer, 195–209.

[12] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. 2014. On the Power of the

Congested Clique Model. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp.
(PODC). ACM, 367–376.

[13] Mohsen Ghaffari. 2016. An Improved Distributed Algorithm for Maximal Inde-

pendent Set. In Pro. of ACM-SIAM Symp. on Disc. Alg. (SODA).
[14] Mohsen Ghaffari and Bernhard Haeupler. 2013. Near optimal leader election

in multi-hop radio networks. In Pro. of ACM-SIAM Symp. on Disc. Alg. (SODA).
748–766.

[15] Mohsen Ghaffari and Merav Parter. 2016. MST in Log-Star Rounds of Congested

Clique. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC).
[16] James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardesh-

mukh, and Michele Scquizzato. 2015. Toward Optimal Bounds in the Congested

Clique: Graph Connectivity and MST. In the Proc. of the Int’l Symp. on Princ. of
Dist. Comp. (PODC). ACM, 91–100.

[17] James W Hegeman and Sriram V Pemmaraju. 2014. Lessons from the congested

clique applied to MapReduce. In the Proceedings of the International Colloquium
on Structural Information and Communication Complexity. Springer, 149–164.

[18] James W Hegeman, Sriram V Pemmaraju, and Vivek B Sardeshmukh. 2014. Near-

constant-time distributed algorithms on a congested clique. In Proc. of the Int’l
Symp. on Dist. Comp. (DISC). Springer, 514–530.

[19] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. 2016. A

deterministic almost-tight distributed algorithm for approximating single-source

shortest paths. In Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing. ACM, 489–498.

[20] Stephan Holzer and Nancy Lynch. 2016. Brief Announcement - Beeping a Maxi-

mal Independent Set Fast. In Proc. of the Int’l Symp. on Dist. Comp. (DISC).
[21] Stephan Holzer and Nancy Lynch. April, 2017. Beeping a Maximal Independent

Set Fast. preprint arXiv:1704.07133 (April, 2017).
[22] Janne H Korhonen. 2016. Deterministic MST Sparsification in the Congested

Clique. arXiv preprint arXiv:1605.02022 (2016).
[23] Fabian Kuhn, Thomas Moscibroda, and Rogert Wattenhofer. 2004. What Cannot

Be Computed Locally!. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp.
(PODC). 300–309.

[24] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. 2016. Local Com-

putation: Lower and Upper Bounds. J. ACM 63, 2, Article 17 (March 2016),

44 pages.

[25] Christoph Lenzen. 2013. Optimal Deterministic Routing and Sorting on the

Congested Clique. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC).
42–50.

[26] Christoph Lenzen and Roger Wattenhofer. 2010. Brief Announcement: Expo-

nential Speed-up of Local Algorithms Using Non-local Communication. In the
Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC). ACM, New York, NY, USA,

295–296.

[27] Nathan Linial. 1987. Distributive graph algorithms Global solutions from local

data. In Proc. of the Symp. on Found. of Comp. Sci. (FOCS). IEEE, 331–335.
[28] Nathan Linial. 1992. Locality in distributed graph algorithms. SIAM J. Comput.

21, 1 (1992), 193–201.

[29] Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. 2005. Minimum-

weight spanning tree construction in O(log logn) communication rounds. SIAM
J. Comput. 35, 1 (2005), 120–131.

[30] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. 2003. MST construc-

tion in O(log logn) communication rounds. In the Proceedings of the Symposium
on Parallel Algorithms and Architectures. ACM, 94–100.

[31] Michael Luby. 1985. A simple parallel algorithm for the maximal independent

set problem. In Proc. of the Symp. on Theory of Comp. (STOC). 1–10.
[32] Danupon Nanongkai. 2014. Distributed Approximation Algorithms for Weighted

Shortest Paths. In Proc. of the Symp. on Theory of Comp. (STOC).
[33] Saket Navlakha and Ziv Bar-Joseph. 2015. Distributed information processing in

biological and computational systems. Commun. ACM 58, 1 (2015), 94–102.

[34] Michal Parnas and Dana Ron. 2007. Approximating the minimum vertex cover in

sublinear time and a connection to distributed algorithms. Theoretical Computer
Science 381, 1 (2007), 183–196.

[35] Boaz Patt-Shamir and Marat Teplitsky. 2011. The round complexity of distributed

sorting. In the Proc. of the Int’l Symp. on Princ. of Dist. Comp. (PODC). 249–256.
[36] David Peleg. 2000. Distributed Computing: A Locality-sensitive Approach. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA.

[37] Sriram V. Pemmaraju. 2001. Equitable Colorings Extend Chernoff-Hoeffding

Bounds. In Pro. of ACM-SIAM Symp. on Disc. Alg. (SODA). 924–925.
[38] R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. 2011. Fast Local Computation

Algorithms. In Proc. 2nd Symp. on Innovations in Computer Science (ICS). 223–238.
[39] Alex Scott, Peter Jeavons, and Lei Xu. 2013. Feedback from nature: an optimal

distributed algorithm for maximal independent set selection. In the Proc. of the
Int’l Symp. on Princ. of Dist. Comp. (PODC). 147–156.

	Abstract
	1 Introduction & Related Work
	1.1 Related Work
	1.2 Our Result and Approach

	2 MIS in (log) Rounds of Congested Clique
	2.1 A Brief Recap on the MIS Algorithm of Ghaffari-MIS
	2.2 Intermediate Algorithm (1): The Beeping MIS Algorithm
	2.3 Intermediate Algorithm (2): The Sparsified Beeping MIS Algorithm
	2.4 Simulation in Congested Clique
	2.5 Faster MIS in Low-Degree Graphs

	References

