
Brief Announcement: Near-Optimal BFS-tree Construction
in Radio Networks

Mohsen Ghaffari
MIT, CSAIL

32 Vassar Street
Cambridge, MA 02139
ghaffari@mit.edu

Bernhard Haeupler
Microsoft Research

1065 La Avenida
Mountain View, CA 94043
haeupler@cs.cmu.edu

ABSTRACT
We present the first improved construction of a Breadth First
Search tree (BFS-tree) in the radio network model.

Computing a BFS-tree, or the hop-distance to a source,
was one of the first problems solved in the radio network
model. Particularly, more than 20 years ago, Bar-Yehuda
et al. showed how to compute a BFS-tree in O(D log2 n)
rounds in any n-node network of diameter D. Since then
this BFS-tree algorithm has been used extensively for con-
structing a substrate over which communications can be co-
ordinated efficiently. However, the O(D log2 n) dependence
on the diameter has become a running time bottleneck in
many of these applications, and no faster construction was
found. Recently, trying to circumvent this barrier, approx-
imate variants of BFS-trees were introduced which can be
used in a similar manner but be computed faster. Still, the
question whether exact BFS-tree could be computed faster
remained open.

Here we present a simple randomized distributed algo-
rithm that computes a BFS-tree in O(D log n log log n +
log3 n

log logn
) rounds, with high probability. This running time is

optimal up to an O(log log n) factor for most values of D, in
particular for all D ∈ [log2 n, n1−ε] for any constant ε > 0.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Non-numerical Algorithms and Problems—Computa-
tions on Discrete Structures; G.2.2 [Discrete Mathemat-

ics]: Graph Theory—Network Problems

Keywords
Wireless networks; Radio Networks; Breadth First Search

1. INTRODUCTION
Wireless networks are inherently broadcast networks, yet

interference of simultaneous transmissions make the efficient

Permission to make digital or hard copies of part or all of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this workmust be
honored. For all other uses, contact the owner/author(s). Copyright is held bythe
author/owner(s).
PODC’14, July 15–18, 2014, Paris, France.
ACM 978-1-4503-2944-6/14/07.
http://dx.doi.org/10.1145/2611462.2611507.

use of the shared medium a hard problem in multi-hop net-
works. This is particularly true in distributed settings in
which the participants are unaware of the network topol-
ogy. The radio network model [4] was introduced to capture
these characteristics and has been intensely studied since
then (see [12] for a survey). In this model the network is
given by an undirected graph G = (V,E) with n = |V |
nodes and diameter D. Nodes communicate in synchronous
rounds in which each node can decide to listen or to send a
packet. A listening node u receives a packet sent by a neigh-
bor v if and only if v is the only neighbor of u sending. If on
the other hand multiple neighbors of u send simultaneously,
then the transmissions interfere and form a collision at u.
We are concerned with the standard setting in which such
collisions cannot be detected, that is, distinguished from no
neighbor sending.

It was observed very early on that for many distributed
communication problems it is useful to first structure the
radio network. In particular, Bar-Yehuda et al. [3] showed
how to compute a BFS-tree from a given node in O(D log2 n)
time. They then used this BFS-tree to efficiently solve sev-
eral multi-message communication problems on top of it,
such as, broadcasting k messages from a source to all nodes
in a network. Many subsequent works, such as [5–7, 9, 10],
also applied this strategy. Interestingly, many protocols used
on top of the BFS-trees have an O(D log n) dependency on
the diameter, making the simple BFS-tree computation the
running-time bottleneck of quite sophisticated algorithms.
Despite this, the twenty years old O(D log2 n) BFS-tree con-
struction of [3] remained the best known. Recently, in an at-
tempt to circumvent this predicament, in [8] the authors in-
troduced a relaxation of BFS-trees, called pseudo BFS-trees,
and showed that this relaxation is good enough to be used
in many applications. The paper [8] also contains a sophis-
ticated recursive algorithm that computes a pseudo BFS-
tree in near-optimal time, namely, in O(D log n

D
+ log2+ε n)

rounds, for any constant ε > 0. However, the question
whether a BFS-tree or exact node distances to the source
could be computed in less than Θ(D log2 n) rounds remained
open.

Our Contribution: We give the first improved BFS-tree
construction:

Theorem 1.1. Assume a radio network G = (V,E) with
n nodes, diameter D and a designated source node s ∈ V .
There is a randomized distributed algorithm that computes a

BFS-tree rooted at s in O(D log n log log n+ log3 n

log logn
) rounds,

with high probability.

This round complexity is near-optimal, considering the
lower bound of Ω(D log n

D
+ log2 n) [1, 11]1. Particularly,

it is within O(log log n) factor of the lower bound for D ∈
[log2 n, n1−ε] for any constant ε > 0.

2. THE DECAY PROTOCOL
We first present the decay protocol of [2]. This protocol

was initially used for spreading one message from the source
to all nodes, in O(D log n + log2 n) rounds. It is also the
base for the O(D log2 n) round BFS-tree construction of [3].
Decay can be view as a coordinated random exponential

back-off strategy. It divides the time into phases, each con-
sisting of log n + 1 rounds. In the kth round of each phase,
each node that has a message to send transmits it with prob-
ability 2−(k−1).

Lemma 2.1. (Decay’s Progress Lemma [2]) Consider
a node v and a phase r. If there is at least one neighbor
u of v that has a message to send in phase r, then with
probability at least 1/8, node v receives a message in this
phase (although not necessarily from u).

Proof. Suppose that the number of neighbors of v that have
a message to send in phase r is x. The case x = 1 is taken
care of by the first round of the phase. Suppose x ≥ 2 and
let k∗ = ⌈log2 x⌉. In round k∗ of phase r, the probability
that v receives a message from one of its neighbors is at least
x · 2−k∗+1(1− 2−k∗+1)x−1 ≥ 1/4.

The method of [3] for computing a BFS is as follows: di-
vide time into epochs, each having 10 log n decay phases.
The source sends a message in the round of the first epoch.
When a node v receives a message for the first time in epoch
r, it records r as its estimate d̃v of its distance dv from
the source. Moreover, v sends a message in every epoch
r′ ≥ r + 1. From Lemma 2.1 we get that in any epoch a
node, with high probability, receives a message if at least
one of its neighbors is sending in this epoch. It follows di-
rectly that for every node d̃v = dv with high probability.

3. THE ALGORITHM
We explain an algorithm for computing a BFS in networks

with diameter at most d = 100 log2 n

log2 logn
using T = Θ(log3 n

log logn
)

rounds. A pseudocode is presented in Algorithm 1. Con-
structing a BFS-tree in a networks with larger diameter can
be done by essentially just repeating this algorithm.
We first explain the concept of a wave, which computes

distance upper bounds with some weak probabilistic guar-
antees. By pipelining logarithmically many such waves and
taking the best/lowest upper bound we obtain the correct
distance, with high probability.

3.1 One Wave
Similar to [3] we divide time into epochs. However our

epochs contain only 40 log log n phases of decay each. The
wave starts at the source s, with the source sending a mes-
sage in all rounds of the first epoch. Whenever a node
v receives a message for the first time, say in epoch i, v
records d̃v = i as its guess about distance dv of v from the

1We note that this lower bound was presented for the single-
message broadcast problem but it also applies to the BFS
construction.

source, computed in this wave. Furthermore, node v sends
the message containing d̃v starting with the next epoch and
for 5 logn

log logn
epochs.

Lemma 3.1. For each node v with distance dv ≤ 100 log2 n

log2 logn

from the source, we have the following three properties: (1)

a deterministic guarantee that d̃v ≥ dv, (2) with probability

at least 1 − 1
log2 n

, we have d̃v = dv, (3) with probability at

least 1− 1
n2 , we have d̃v ≤ dv + logn

log logn
.

Proof. The first property is trivial as the wave proceeds
at most one hop in each epoch. For the other properties,
first notice that a node v stopping sending messages after
5 logn

log logn
epochs does not have any effect, with high probabil-

ity. This is because after 5 logn

log logn
epochs, which has 5 log n

decay phases, any neighbor of u has with high probability
received a message.

For the second property, consider a node v and a shortest
path Pv from the source s to node v of length dv. This path
has the from s = w0, w1, . . . wdv = v with length dv. If in
each epoch, the message makes exactly one hop of progress
along Pv, we have d̃v = dv. Consider one hop wj to wj+1 of
this path and suppose that wj is sending in an epoch. Let us
say the jth hop failed in this epoch if wj+1 does not receive a
message (from anyone) in the epoch that wj is sending. The
probability that the jth hops fails (in a given epoch) is at
most (1 − 1

8
)40 log logn ≤ 1

log5 n
. Hence, a union bound over

all dv ≤ 100 log3 n

log logn
hops of path Pv shows that none of them

fails—i.e., v will receive a message after dv epochs—with
probability at least

1−
100 log2 n

log2 log n
·

1

log5
≥ 1−

1

log2 n
,

thus completing the proof of the second property.
For the third property, note that if we have d̃v ≥ dv +
logn

log logn
, it means that we have had at least k = logn

log logn
hop

failures along some path Pv (note that each hop might fail
more than once). These failures have happened during the
epochs of this wave, which, counting rather pessimistically,

is at most 100 log2 n

log2 logn
· logn

log logn
= O(log3 n). The probability of

having k hop failures is thus as at most

(

O(log3 n)

k

)

(

1

log5 n

)k

≤

(

O(log3 n)
logn

log logn

·
1

log5 n

)
log n

log log n

≤

(

1

log2 n

)
log n

log log n

=
1

n2
.

3.2 Pipelining Waves
We now explain how to strengthen Lemma 3.1 by having

many waves that are pipe-lined. The source starts one new
wave every 10 logn

log logn
epochs and repeats this for 10 logn

log logn
waves.

We show in Lemma 3.2 that the waves will always be well-
separated and they will not interfere with each other. Each
node v takes its final guess d′v about its distance from the
source to be the smallest guess d̃v that it has had over all
the 10 logn

log logn
waves. We show in Lemma 3.3 that, with high

probability, we have d′v = dv for every node v. Each node in
the network is done with the transmissions of the last wave

Algorithm 1 BFS run at node u

1: if u = source then

2: for i = 1 to 10 log n/ log logn do

3: transmit 0 for one epoch
4: listen for 10 log2 n/ log log n epochs

5: else

6: active← 0
7: d̃u ←∞

⊲ each iteration of this loop is one epoch
8: for i = 1 to 200 log2 n/ log2 logn do

9: rec = false
10: for j = 1 to 40 log logn do

11: for k = 1 to logn+ 1 do

12: if active > 0 then

13: With probability 2−(k−1), transmit d̃u
14: Otherwise listen for one round
15: else

16: listen for one round
17: if received d′ then
18: d̃u ← min{d̃u, d′ + 1}
19: rec← true ⊲ first time reception

20: if rec = true then

⊲ transmit for 5 logn/ log logn epochs
21: active← 5 logn/ log logn
22: rec← false
23: else if active > 0 then

24: active← active− 1

at most at the end of epoch 10 logn

log logn
· 10 logn

log logn
+ 100 log2 n

log2 logn
=

200 log2 n

log2 logn
, which means that after at most T = Θ(log3 n

log logn
)

rounds, thus proving the round complexity claim.

Lemma 3.2. For any i, and any two nodes u and v within
distance at most 3 logn

log logn
hops from each other, node v is

done with its transmissions in the ith wave before the (i+1)th

wave arrives at u.

Proof. The ith wave starts at the source at round 10(i−1) logn

log logn

and, according to Lemma 3.1, it arrives at a node v after
at most dv + logn

log logn
epochs, with high probability. After

the wave is received the nodes v will then send for 5 logn

log logn

additional epochs. After that, that is, at epoch

Endiv ≤
10(i− 1) log n

log log n
+ dv +

6 log n

log log n
,

node v will be done with transmissions of wave i. On the
other hand, the (i + 1)th wave arrives at u no earlier than
after 10i logn

log logn
+ du. That is, in epoch

Startiu ≥
10i log n

log log n
+ dv −

3 log n

log n

=
10(i− 1) log n

log log n
+ dv +

7 log n

log log n
> Endiv.

Lemma 3.3. With high probability, for each node v, we
have d′v = dv at the end.

Proof. First note that in each wave, we have the determinis-
tic guarantee that d̃v ≥ dv. Hence, we have the deterministic
guarantee that d′v ≥ dv. We say a wave failed at v if in that
wave d̃v > dv. If d′v > dv, it should be the case that all
waves failed at v. Given property (2) of Lemma 3.1, the
probability of one wave failing at v is at most 1

log2 n
. From

Lemma 3.2, we know that the waves do not interfere and

thus, their failures are independent. Therefore, the proba-
bility that d′v > dv or equivalently that all waves failed at v

is at most (1
log2 n

)
10 log n

log log n ≤ 1
n5 .

4. REFERENCES
[1] Alon, N., Bar-Noy, A., Linial, N., and Peleg, D.

A lower bound for radio broadcast. Journal of
Computer and System Sciences 43, 2 (1991), 290–298.

[2] Bar-Yehuda, R., Goldreich, O., and Itai, A. On
the time-complexity of broadcast in multi-hop radio
networks: An exponential gap between determinism
and randomization. Journal of Computer and System
Sciences 45, 1 (1992), 104–126.

[3] Bar-Yehuda, R., Israeli, A., and Itai, A. Multiple
communication in multi-hop radio networks. SIAM
Journal on Computing 22, 4 (1993), 875–887.

[4] Chlamtac, I., and Kutten., S. On broadcasting in
radio networks: Problem analysis and protocol design.
IEEE Transactions on Communications 33, 12 (1985),
1240–1246.

[5] Chlebus, B., Kowalski, D., and Radzik, T.

Many-to-many communication in radio networks.
Algorithmica 54, 1 (2009), 118–139.

[6] Christersson, M., Gasieniec, L., and Lingas, A.

Gossiping with bounded size messages in ad hoc radio
networks. In Proc. Colloquium on Automata,
Languages and Programming (2002), 377–389.

[7] Gasieniec, L., Peleg, D., and Xin, Q. Faster
communication in known topology radio networks. In
Proc. ACM Symp. on Principles of Distributed
Computing (2005), 129–137.

[8] Ghaffari, M., and Haeupler, B. Fast structuring
of radio networks for multi-message communications.
In The Proceedings of the International Symposium on
Distributed Computing (DISC) (2013).

[9] Ghaffari, M., Haeupler, B., and Khabbazian,

M. Randomized broadcast in radio networks with
collision detection. In Proceedings of the ACM
Symposium on Principles of Distributed Computing
(2013), PODC, pp. 325–334.

[10] Khabbazian, M., and Kowalski, D. Time-efficient
randomized multiple-message broadcast in radio
networks. In Proc. ACM Symp. on Principles of
Distributed Computing (2011), 373–380.

[11] Kushilevitz, E., and Mansour, Y. An
Ω(D log(N/D)) lower bound for broadcast in radio
networks. SIAM Journal on Computing 27, 3 (1998),
702–712.

[12] Peleg, D. Time-efficient broadcasting in radio
networks: A review. In The Proceedings of The
International Conference on Distributed Computing
and Internet Technologies (2007), pp. 1–18.

