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Abstract

In the directed single-source reachability problem, input is a directed graph G = (V, E') and a source
s € V, and the objective is to identify nodes ¢ for which there is a directed path in G from s to t. Recently
Nanongkai [2] presented a distributed algorithm that solves this problem in O(D + /nD'?) rounds, where
D and n respectively denote the network diameter and the number of nodes.

This note presents an algorithm that improves the round complexity to O(D + \/ﬁDl/ 4), thus getting
closer to the Q(D + /) lower bound of Das Sarma et al. [1].

1 Problem

Given a directed graph G = (V, E) and a source node s, we want a distributed algorithm that identifies nodes ¢
for which there is a directed path from s to £. We use n and D to denote, respectively, the number of nodes and
the undirected hop-diameter of G.

The communication model we use is the standard CONGEST model, where communications occur in syn-
chronous rounds and per round, O(log n) bits can be sent over each edge. Moreover, following Nanongkai [2],
we assume that the communication network itself is undirected.

2 Nanongkai’s Reachability Algorithm

Nanongkai [2] gives a distributed algorithm for 1 4 o(1) approximation of undirected weighted Single-Source
Shortest Path (SSSP) problem, in O(D + min{n?/3, \/nD'/*}) rounds. He then notes that some of the compo-
nents in his algorithm can be used for the single-source reachability problem, yielding a O(D+min{n2/ 3 /nD I3
round algorithm. This reachability algorithm is roughly as follows:

1. Sampling: Every node v samples itself w.p. «/n where v = max{n'/3,\/n/D}. Let S be the set of
sampled nodes and also add source s to S. We know |S| = O(«), w.h.p.
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2. h-hop Distances and Skeleton: Every S-node runs an h-hop outgoing BFS, for h = ©(%25%)

O©(min{n?/3,v/nD}). These BFSs are performed all (essentially) in parallel, in O(h + n/h) rounds,
using the standard random delays technique to control the congestion on edges. Given the range of h,
this is equal to O(h) rounds. At the end of the process, every node u knows for each sampled node
v € S whether there is directed path with at most h-hops from v to w or not. Construct a skeleton graph
G’ = (S, Eg) where for each two nodes v, u € S, node v puts a directed edge from wu to v if there is a
directed path with at most h-hops from u to v. Using a similar method but with running the BFSs in the
reverse direction, node u will also know if it has a directed path to v with at most h-hops. Thus, each
node in S knows its incoming and outgoing G’ neighbors.

3. Total Broadcast, or BFS on Skeleton: If v = n!/?, broadcast all the skeleton edges, in O(D + o?)
rounds. From these, each node ¢ can locally figure out whether it is reachable from s. If « = \/n/D,



simulate « rounds of directed outgoing BFS from s on the skeleton G’,in O(Da) rounds. Then broadcast
the names of all sampled nodes reachable from s, in at most O(D + «) rounds.

3 AnO(D + /nD"*) algorithm
In this section, we explain our algorithm which leads to the following result:

Theorem 3.1. There is a distributed algorithm that solves the single-source reachability problem in O(D +
min{n?/3,\/nDY*,}) rounds of the CONGEST model, with high probability.

We only describe the algorithm with round complexity O(D + \/ﬁDl/ 4). Interleaving it with Nanongkai’s
O(D + n?/ 3) algorithm, one can easily achieve the best of the two. We do steps 1 and 2 as above with
o = \/n/D'/*. Then, instead of running the full BFS on the Skeleton graph G’ which takes O(Da) rounds to
simulate, we will perform a BFS-like procedure with active short-cutting.

In the algorithm, we only talk about the sampled nodes S, and transmissions over the virtual graph G’ will
be broadcast to all nodes. We call a node active if it knows a path from s to itself, in G’. Initially, only s is
active. The algorithm proceeds in phases and in each phase, a few more nodes become active. At the end, all
S-nodes reachable from source s will be active and their ids will be publicly known. Hence, each node of the
graph G can determine if it’s reachable from s. The algorithm works as follows:

Reachability Algorithm on G’, to be simulated via broadcasts on G:
1. Activate node s.
2. Repeat phases, where in each phase, the following steps occur in sequence:
(a) Announcing Newly Activated Nodes: All nodes activated in the previous phase broadcast their

ids. In the first phase, announce the id of s. If no id is announced, terminate.

(b) Shortcutting: Every node with at most v/ D inactive outgoing neighbors broadcasts the corre-
sponding (< v/ D) outgoing edges.
(c) New Activations: Each inactive node w that discovers that it is reachable from s becomes active.

This happens if the union of the set of G’-edges broadcasted so far with the incoming edges of
u, known to w itself, include a path from an active node to w.

Notice that the length of a phase, and even the length of each of the steps, is not fixed and it depends on
the number of messages broadcast in the phase. However, simply by adding a step-start and step-end broadcast
from s, which can be done in O(D), we can keep all nodes consistently aware of which step is happening.
Furthermore, the only steps that use communication are steps 2(a) and 2(b). Using standard broadcast routines,
each of these steps can be implemented in O(D + k) rounds, where k is the number of messages to be broadcast
in that step.

Lemma 3.2. Once the algorithm terminates, a node is active if and only if it is reachable from s.

Proof. A node becomes active only if it discovers that there is a path from s to it, or from a node activated in
an earlier phase. Hence, activated nodes are reachable from s. On the other hand, so long as there is a node u
that is reachable from s but it has not become active, in each phase, at least one more node along the path from
s to u becomes active in step 2(c¢). This means that the algorithm will not terminate at least until the node u has
been activated as well. That is, all reachable nodes will be activated. O

Lemma 3.3. The algorithm terminates after at most O(D + /nD'Y*) rounds.



Proof. Clearly the i*" phase takes O(D + b;) rounds where b; is the total number of messages broadcast in
steps 2(b) and 2(c). That is, the number of nodes activated in phase i — 1 plus the number of edges reported
from nodes that have less than v/D inactive neighbors. Hence, the summation of the running time of all phases
has an O(D) term for each phase, plus each node can contribute at most /D + 1 to the summation of b; values
over all phases. Thus, the total running time is at most

p-O(D)+O(vn/D'*) - (VD +1) = p- O(D) + O(v/nD'*),

where p is the total number of phases. Therefore, to complete the proof, it suffices to show that p = O(\/ﬁ /D34,
We prove this by roughly speaking showing that in each phase the size of the set of active nodes grows by
at least /D, amortized. Hence, the total number of phases p is at most O(y/n/D'/*)/\/D = O(y/n/D3/%).
Consider an outgoing BFS in G’ rooted in s and let us call the set of nodes at a given depth 7 of this BFS—
i.e., distance i from s—its i layer and use L; to denote this set. Define the first block to be the set of nodes in
layers 0 to By, where Bj is the layer number such that ZzB:lo |Li| < v/D and Zf:lar Y|L;| > v/D. Then, notice
that in the first phase, all nodes of layers 0 to B; — 1 will announce all their outgoing edges (if B; > 1). This is
simply because, these nodes cannot have any outgoing edge to layers above B;. Therefore, at the end of phase
one, all nodes of the first block are active, which means that at the end of phase 2, all nodes in blocks 0 to B; +1
are active. That is, after 2 phases, at least v/D nodes became active. We can now repeat a similar argument
for the next phases. Particularly, define B; to be such that Z?:jo |Li| < jv/D and Zij; ! |Li| > jv/D. Now
that we know that by the end of phase 2, all nodes in layers 0 to By + 1 are active, using a similar argument
as above, we can conclude that by the end of phase 3, all nodes in layers 0 to By are active, which means at
the end of phase 4, all nodes in layers 0 to By + 1 are active. Repeating this argument, we know all nodes in
layers O to B; are active by the end of phase 25 — 1. Since there are only O(\/ﬁ / DY 4) nodes, there are only
O(y/n/D?/*) blocks, which means by the end of phase O(y/n/D3/4), all reachable nodes are active. O

4 Discussion: Extension to the Weighted (Directed) Shortest Path problem

A natural question about the algorithm above is whether it can be modified to solve the more general problem
of finding the shortest paths from s on a weighted virtual directed graph G, with similar runtime.

Note that as described above the algorithm need not even find paths from s with minimum hops to reach-
able nodes. In fact the very process of active shortcutting, which helps cut down the runtime, hampers this
by possibly reaching nodes, that are otherwise a few hops away from s, through a longer path which was
broadcast/revealed sooner due to shortcutting.

An intermediate step would be to extend the algorithm to find shortest paths on G’ when all edge weights
are equal. We claim without proof that in fact with a minor change, our algorithm can address this problem
with the same runtime guarantee. The idea is essentially to not activate nodes until we are sure that the shortest
path has been found, which would behave like a BFS for the virtual graph. However, the primary obstacle in
generalizing this idea further is that our runtime analysis relies on the number of nodes in graph G’ and this
seems to obstructs us (or at least complicate) using ideas such as the rounding technique in [2, Algorithm 3.2].
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