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Abstract

We present a near-optimal distributed algorithm for (1 + o(1))-approximation of single-commodity
maximum flow in undirected weighted networks that runs in (D +

√
n) · no(1) communication rounds

in the CONGEST model. Here, n and D denote the number of nodes and the network diameter, re-
spectively. This is the first improvement over the trivial bound of O(n2), and it nearly matches the
Ω̃(D +

√
n) round complexity lower bound.

The development of the algorithm contains two results of independent interest:
(i) A (D +

√
n) · no(1)-round distributed construction of a spanning tree of average stretch no(1).

(ii) A (D+
√
n) ·no(1)-round distributed construction of an no(1)-congestion approximator consisting

of the cuts induced byO(log n) virtual trees. The distributed representation of the cut approximator
allows for evaluation in (D +

√
n) · no(1) rounds.

All our algorithms make use of randomization and succeed with high probability.

1 Introduction

Computing a maximum flow is a fundamental task in network optimization. While the problem has a
decades-old history rich with developments and improvements in the sequential setting, little is known in
the distributed setting. In fact, prior to this work, the best known distributed time complexity in the standard
CONGEST model remained at the trivial bound of O(m), which is the time needed to collect the entire
topology and solve the problem locally (see more in Section 1.2). For undirected networks, this paper
improves this unsatisfying state to near-optimality:

Theorem 1.1. On undirected weighted graphs, a (1 + ε)-approximation of a maximum s-t flow can be
computed in (D +

√
n) · no(1)ε−3 rounds of the CONGEST model with high probability.

This round complexity almost matches the Ω̃(D +
√
n) lower bound of Das Sarma et al. [14], which

holds for any non-trivial approximation. Before we proceed, let us formalize the model and the problem.

1.1 Model and Problem

Model. We use the standard CONGEST model of synchronous computation [24]. We are given a simple,
connected, weighted graph G = (V,E, cap), where cap : E → N, cap(e) ∈ polyn, are the edge capac-
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ities.1 By D, we denote the (hop) diameter of G. Each of the n := |V | nodes hosts a processor with a
unique identifier of O(log n) bits, and over each of the m := |E| edges O(log n) bits can be sent in each
synchronous round of communication; we assume that nodes have access to infinite strings of independent
unbiased random bits. We say that an event occurs with high probability (w.h.p.), if it happens with proba-
bility 1−n−c for any desired constant c > 0 specified upfront.2 Initially, each node only knows its identifier,
its incident edges, and their capacities.

Problem. We fix an arbitrary orientation of the edges. In the following, we write (u, v) ∈ E if {u, v} ∈ E
is directed from u to v. An instance of the (single-commodity) max flow problem is given by, in addition to
specifying G, designating a source s ∈ V and a sink t ∈ V . A (feasible) flow is a vector f ∈ RE satisfying:

1. capacity constraints (edges): ∀e ∈ E : |fe| ≤ cap(e) ;
2. preservation constraints (nodes): ∀u ∈ V \ {s, t} :

∑
(u,v)∈E fe −

∑
(v,u)∈E fe = 0 ; and

3.
∑

(s,u)∈E fe −
∑

(u,s)∈E fe = −
∑

(t,u)∈E fe +
∑

(u,t)∈E fe = F ∈ R .
Here, F is the value of f . A max flow is a flow of maximum value. For ε > 0, a (1 + ε)-approximate max
flow is a flow whose value is by at most a factor 1 +ε smaller than that of a max flow. In this work, we focus
on solving the problem of finding a (1 + ε)-approximate max flow in the above model, where it suffices that
each node u learns fe for its incident edges {u, v} ∈ E.

1.2 Related Work

Network flow, being one of the canonical and most useful optimization problems, has been the target of
innumerable research efforts since the 1930s [27] (see, e.g., the classic book [2] and the recent survey [15]).
For the general, directed case, the fastest known sequential algorithm is by Goldberg and Rao and it solves
the max flow problem in time Õ(m · min

{
m1/2, n1/2

}
). Particularly relevant from the point of view of

the present paper are recent efforts to obtain fast algorithms to compute (approximate) max flow solutions
in the undirected case. Using the graph sparsification technique of Benczúr and Karger [11], any graph
can be partitioned into k = Õ(mε2/n) sparse graphs with Õ(n/ε2) edges such that the max flow problem
can be approximately solved by combining max flow solutions for each of these sparse graphs. Using the
algorithm of Golberg and Rao, this results in an algorithm with running time Õ(mn1/2). In [13], Christiano
et al. improved this to Õ(mn1/3) by applying the almost linear-time Laplacian solver of Spielman and Teng
[30] to iteratively minimize a softmax approximation of the edge congestions. Finally, (independently) in
[16] and in [29], two algorithms appeared which allow to compute a (1 + ε)-approximation to an undirected
max flow problem in time almost linear in m.

However, to the dismay of many, and despite the fact that the word “network” even appears in the
problem’s name, only little progress was made over the years from the standpoint of distributed algorithms.
For example, Goldeberg and Tarjan’s push-relabel algorithm, which is very local and simple to implement
in the CONGEST model, requires Ω(n2) rounds to converge, where n is the number of nodes. This is
very disappointing, because in the CONGEST model, any problem whose input and output can be encoded
with O(log n) bits per edge, can be trivially solved in O(m) rounds, where m is the number of edges, by
collecting all input at a single node, solving it there, and distributing the results back.

Early attempts focused, as customary in those days, on reducing the number of messages in asyn-
chronous executions. For example, Segall [28] gives an O(nm2)-messages, O(n2m)-time algorithm for
exact max flow, and Gafni and Marberg [21] give an an algorithm whose message and time complexities are
O(n2m1/2). Awerbuch has attacked the problem repeatedly with the following results. In an early work [6]

1As merely an approximate flow is required, we can reduce the general case to this setting in Õ((
√
n+D) logC) rounds, where

C is an upper bound on the ratio between the largest and smallest capacity.
2Taking the union bound over polynomially many events does not affect this property. We will use this fact frequently and

implicitly throughout the paper.
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he adapts Dinic’s centralized algorithm using a synchronizer, giving rise to an algorithm whose time and
message complexities are O(n3). With Leighton, in [9] they give an algorithm for solving multicommodity
flow approximately in O(`m logm) rounds, where ` < n is the length of the longest flow path. Later he
considers the model where each flow path (variable) has an “agent” which can find the congestion of all
links on its path in constant time. In this model, he shows with Khandekar [7] how to approximate any
positive LP (max flow with given routes included) to within (1− ε) in time polynomial in log(mnAmax/ε)
(here n is the number of variables, which is at least the number of paths considered). The same model is
used with Khandekar and Rao in [8], where they show how to approximate multicommodity flow to within
(1 − ε) in O(` log n) rounds. Using a straightforward implementation of this algorithm in the CONGEST
model results in an Õ(n2)-time algorithm.

Thus, up to the current paper, there was no distributed implementation of a max-flow algorithm which
always requires subquadratic number of rounds. Even an O(n)-time algorithm would have been considered
a significant improvement, even for the 0/1 capacity case.

1.3 Organization of this Article

Our result builds heavily on a few major breakthroughs in the understanding of max flow in the centralized
setting, most notably [29], as well as a few other contributions. We first give an overview of the key concepts
in Sections 2–4. We carefully revisit Sherman’s approach [29] and the main building blocks he relies on in
Section 2. This sets the stage for shedding light on the challenges that must be overcome for its distributed
implementation and presentation of our results in Section 3. There, we also provide a top-level view of
the components of the algorithm, alongside pointers to the detailed proofs in Sections 5–9 showing that we
can implement each of them by efficient distributed algorithms. In Section 4, we outline the distributed
construction of an no(1)-congestion approximator, which is our key technical contribution; the role of a
congestion approximator is to estimate the congestion induced by optimally routing an arbitrary demand
vector very quickly, which lies at the heart of the algorithm. All the details of our distributed algorithm and
all the proofs appear in Sections 5–9.

2 Overview of the Centralized Framework

Sherman’s approach [29] is based on gradient descent (see, e.g., [22]) for congestion minimization with
a clever dualization of the flow conservation constraints. The flow problem is re-formulated as a demand
vector b ∈ Rn such that

∑
i∈V bi = 0. In the case of the s-t flow problem, we have a positive bs and

negative bt with the same absolute value and the demand is zero everywhere else. The objective is to find a
flow f∗ that meets the given demand vector, i.e., the total excess flow in node i is equal to bi, and minimizes
the maximum edge congestion, which is the ratio of the flow over an edge to its capacity. Formally:

minimize
∥∥C−1f∥∥∞ subject to Bf = b , (1)

where C = (Cee′)e,e′∈E is an m×m diagonal matrix with

Cee′ =

{
cap(e) if e = e′

0 else ,

and B = (Bve)v∈V,e∈E is an n×m matrix with

Bve =


1 if e = (u, v) for some u ∈ V
−1 if e = (v, u) for some u ∈ V
0 else .
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Note that given a general (i.e., unconstrained) flow vector f ∈ Rm, (Bf)v is exactly the excess flow at node
v. Hence, by the max-flow min-cut theorem, if we can solve problem (1), a simple binary search will find
an approximate max flow.

Instead of directly solving this constrained system, Sherman allows for general flows and adds a penalty
term for any violation of flow constraints, i.e.,

minimize
∥∥C−1f∥∥∞ + 2α ‖R(b−Bf)‖∞ ,

where α ≥ 1 and the matrix R are chosen so that the optimum of this unconstrained optimization problem
does not violate the flow constraints. As we are interested in an approximate max flow, we can compute an
approximate solution and argue that the violation of the flow constraints will be small, too. Then one simply
re-routes the remaining flow in a trivial manner, e.g. on a spanning tree, to obtain a near-optimal solution.
Finally, to ensure that the objective function is differentiable (i.e., a gradient descent is actually possible),
‖·‖∞ is replaced by the so-called soft-max.

The Congestion Approximator R. The congestion of an edge e (for a given flow f ) is defined as the ratio
|fe|/cap(e). When referring to the congestion of a cut in a given flow, we mean the ratio between the net
flow crossing the cut to the total capacity of the cut. Suppose for a moment that α = 1 and R contains one
row for each cut of the graph, chosen such that each entry of the vector RBf equals the congestion of the
corresponding cut. In particular, R would correctly reproduce the congestion of min cuts (which give rise
to maximal congestion). Moreover, the vector Rb describes the inevitable congestion of the cuts for any
feasible flow. Thus, the components of R(b− Bf) are the residual congestions to be dealt with to make f
feasible (neglecting possible cancellations). The max-flow min-cut theorem and the factor of 2 in the second
term of the objective function imply that it always improves the value of the objective function to route the
demands arising from a violation of flow constraints optimally. Moreover, the gradient descent concentrates
on the most congested edges and those that are contained in cuts with the top residual congestion. In
particular, flow is pushed over the edges into the cut with the highest residual congestion to satisfy its
demand until other cuts become more important in the second part of the objective. The first part of the
objective impedes flow on edges the more they are congested (on an absolute scale and relative to others).
Thus, approximately minimizing the objective function is equivalent to simultaneously approximating the
minimum congestion and having small violation of flow constraints; solving up to polynomially small error
and naively resolving the remaining violations then yields sufficiently accurate results.

Unfortunately, trying to make R capture congestion exactly is far too inefficient. Instead, one uses an
α-congestion approximator, that is a matrix R such that for any demand vector b, it holds that

‖Rb‖∞ ≤ opt(b) ≤ α ‖Rb‖∞ ,

where opt(b) is the maximum congestion caused on any cut by optimally routing b. Since the second
term in the objective function is scaled up by factor α, we are still guaranteed that optimally routing any
excess demands improves the objective function. However, this implies that the second term of the objective
function may dominate its gradient and thus emphasis is shifted rather to feasiblity than optimality. Sherman
proves that this slows down the gradient descent by at most a factor of α2, i.e., if α ∈ no(1), so is the number
of iterations of the gradient descent algorithm that need to be performed.

Congestion Approximators: Räcke’s Construction. For any spanning tree T of G, deleting an edge
partitions the nodes into two connected components and thus induces an (edge) cut of G. Note that on T ,
this cut contains only the single deleted edge, and in terms of congestion any cut of T is dominated by such
an edge-induced cut: For any cut, the maximum congestion of an edge is at least the average congestion of
the cut, and in T , there is a cut containing only this edge.

These basic properties motivate the question of how well the cut structure of an arbitrary graph can be
approximated by trees. Intuitively, the goal is to find a tree T (not necessarily a subgraph) spanning all nodes
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with edge weights such that routing any demand vector in G and in T results in roughly the same maximal
congestion. Because routing flows on trees is trivial, such a tree T would give rise to an efficient congestion
approximator R: R would consist of one row for each cut induced by an edge (u, v) of T with capacity C,
where the matrix entry corresponding to node w is 1/C if w is on u’s “side” of the cut and 0 otherwise;
multiplying a demand vector with the row then yields the flow that needs to pass through (u, v) divided by
the capacity of the cut.

In a surprising result [26], Räcke showed that, using multiplicative weight updates (see e.g. [5, 25, 31])
one can construct a distribution of Õ(m) trees so that (i) in each tree of the distribution, each cut has at least
the same capacity as in G and (ii) given any cut of G of total capacity C, sampling from the distribution
results in a tree T where this cut has expected capacity O(αC); here α is the approximation ratio of a low
average stretch spanning tree algorithm Räcke’s construction uses as subroutine. Note that this bound on the
expectation implies that for any cut of capacity C, there must be a tree in the distribution for which the cut
has capacity O(αC). Hence, the cuts given by all trees in the distribution give rise to an O(α)-congestion
approximator R with Õ(mn) rows.

Low Average Stretch Spanning Trees. In order to perform Räcke’s construction, one requires an efficient
algorithm for computing low average stretch spanning trees. More precisely, given a graph G = (V,E, `)
with polynomially bounded lengths ` : E → N, the goal is to construct a spanning tree T of G so that∑

{u,v}∈E

dT (u, v) ≤ α
∑
{u,v}∈E

`({u, v}) ,

where dT (u, v) is the sum of the lengths of the unique path from u to v in T and α is the stretch factor.
Sherman’s algorithm builds on a sophisticated low average stretch spanning tree algorithm that achieves

α ∈ O(log n log2 log n) within Õ(m) centralized steps [1]. We use a simpler approach providing α ∈
2O(
√
logn log logn) [3] that has been shown to parallelize well, i.e., has an efficient implementation in the

PRAM model [12].

Congestion Approximators: Madry’s Construction. Räcke’s construction has the drawback that one
needs to sequentially compute a linear number of trees, which is prohibitively expensive from our point
of view. Madry generalized Räcke’s approach to a construction that results in a distribution over Õ(m/j)
so-called j-trees [19], where j is a parameter. A j-tree consists of a forest of j connected components (trees)
and a core graph, which is an arbitrary connected graph with j nodes: one from each tree (see Figure 1).

Figure 1: A j-tree for j = 5. The
core links are depicted in brown.

The properties of the distribution are the same as for Räcke’s: sam-
pling from the distribution preserves cut capacities up to an expected
O(α)-factor, where α is the stretch of the utilized spanning tree algo-
rithm. Likewise, using all (dominant) cuts of all j-trees in the distribu-
tion to construct R yields an O(α)-congestion approximator. Note that
any cut in a j-tree is dominated by either a cut induced by an edge of
the forest, or by a cut of the core, in the following sense: Consider any
demand vector and any “mixed” cut. If there is an edge in the forest
crossing the cut that has at least the same congestion as the whole cut,
then the cut induced by the forest edge dominates the mixed cut. Oth-
erwise, we can remove all forest edges from the mixed cut without reducing its congestion. As routing
demands in the forest part of the graph is trivial, Madry’s construction can be seen as an efficient reduction
of the problem size.

Congestion Approximators: Combining Cut Sparsifiers with Madry’s Construction. Using j-trees,
Sherman derives a suitable congestion approxmiator, i.e., one with α ∈ no(1) that can be constructed and
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evaluated in Õ(m+ n1+o(1)) rounds, as follows. First, a cut sparsifier is applied to G. A (1 + ε)-sparsifier
computes a subgraph of G with modified edge weights so that the capacities of all cuts are preserved up
to factor 1 + ε. It is known how to compute a (1 + o(1))-sparsifier with Õ(n) edges in Õ(m) steps using
randomization [11]. As the goal is merely to compute a congestion approximator with α ∈ no(1), the
multiplicative 1 + o(1) approximation error is negligible. Hence, this essentially breaks the problem of
computing a congestion approximator down to the same problem on sparse graphs.

Next, Sherman applies Madry’s construction with j = n/β, where β = 2
√
logn. This yields a distribu-

tion of Õ(β) many n/β-trees. The issue is now that the cores are arbitrary graphs, implying that it may be
difficult to evaluate congestion for cuts in the cores. However, the number of nodes in the core is n′ = n/β.
Thus, recursion does the trick: apply the cut sparsifier to the core, use Madry’s construction on the resulting
graph (with j′ = n′/β = n/β2), rinse and repeat. In total, there are logβ n =

√
log n levels of recursion

until the core becomes trivial, i.e., we arrive at a tree. For each level of recursion, the approximation ratio
deteriorates by a multiplicative α ∈ polylogn, where α is the stretch factor of the low-stretch spanning
tree algorithm, and a multiplicative 1 + o(1), for applying the cut sparsifier. This yields an α′-congestion
approximator with

α′ ∈ ((1 + o(1))α)
√
logn ⊂ 2O(

√
logn log logn) ⊂ no(1) .

While the total number of constructed trees is still Õ(βlogβ n) = Õ(n), the number of nodes in a graph (i.e.,
a core from the previous level) on the ith level of recursion is only n/βi−1. The cut sparsifier ensures that
the number of edges in this graph is reduced to Õ(n/βi−1) before recursing. Since the number of edges in
the core is (trivially) bounded by the number of edges of the graph in Madry’s construction, the total number
of sequential computation steps for computing the distribution is thus bounded by

Õ(m) +

logβ n∑
i=1

Õ(βi · n/βi−1) ⊂ Õ(m+ n1+o(1)) .

Step Complexity of the Flow Algorithm. The above recursive structure can also be exploited to evaluate
the α′-congestion approximator Sherman uses in n1+o(1) steps. As mentioned earlier, the cuts of a j-tree
are dominated by those induced by edges of the forest and those which are crossed by core edges only
(cf. Figure 1). In the forest component, routing demands is unique, takes linear time in the number of nodes
(simply start at the leaves), and results in a modified demand vector at the core on which is recursed.

Sherman proves that his algorithm obtains a (1 + ε)-approximate flow in O(ε−3α2 log2 n) gradient
descent steps, provided R is an α-congestion approximator.3 It is straightforward to see (cf. Section 9.1)
that each of these steps requires O(m) computational steps besides doing two matrix-vector multiplications
withR andRᵀ, respectively. Using the above observation and plugging in the time to construct the (implicit)
representation of R, one arrives at a total step complexity of Õ(mno(1)).

3 Distributed Algorithm: Contribution and Key Ideas

The Distributed Toolchain. For a distributed implementation of Sherman’s approach, many subproblems
need to be solved (sufficiently fast) in the CONGEST model. We summarize them in the following list,
where stars indicate that these components are readily available from prior work.

* Decomposing trees into O(
√
n) components of strong diameter O(

√
n), within Õ(

√
n+D) rounds.

This can, e.g., be done by techniques pioneered by Kutten and Peleg for the purpose of minimum-
weight spanning tree construction [18].

3Sherman points out that using Nesterov’s accelerated gradient descent method [23], this can be improved to O(ε−2α log2 n).
For both his and our results, this difference is insubstantial, as α ∈ no(1) ⇔ α2 ∈ no(1).
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* Constructing cut sparsifiers. Koutis [17] provides a solution that completes in polylogn rounds of the
CONGEST model. In Section 6, we give a simulation result for use in the recursive construction.

1. Constructing low average stretch spanning trees on multigraphs (Section 7).
2. Applying Madry’s construction in the CONGEST model, even when recursing in the context of

Sherman’s framework (Section 8).
3. Sampling from the recursively constructed distribution (Section 8).
4. Avoiding the use of the entire distribution for constructing the congestion approximator (see below).
5. Performing a gradient descent step. This involves, e.g., matrix-vector multiplications with R, Rᵀ and
C−1, evaluation of the soft-max, etc. (Section 9).

We next present some additional description for the items 1 to 5 in the above list.

1. Low Average Stretch Spanning Trees. In Section 7, we prove the following theorem.

Theorem 3.1. Suppose H is a multigraph obtained from G by assigning arbitrary edge lengths in [2n
o(1)

]
to the edges of G (known to incident nodes) and performing an arbitrary sequence of contractions. Then we
can compute a spanning tree of H of expected stretch 2O(

√
logn log logn) within (

√
n+D)no(1) rounds.

To obtain this theorem, we translate a PRAM algorithm by Blelloch et al. [12] to the CONGEST
model. The main issue when transitioning from the PRAM to the CONGEST model is that in the PRAM
model, information about distant parts of the graph may be readily accessed. In the CONGEST model, we
handle this by pipelining long-distance communication over a global breadth-first-search (BFS) tree of G;
communication over O(

√
n) hops is handled using the edges that have already been selected for inclusion

into the spanning tree and spanning trees of the contracted regions of G.

2. Implementing Madry’s Scheme. This is technically the most challenging part. Also here, we have to
overcome the difficulty of potentially needing to communicate a large amount of information over many
hops; doing this naively results in too much contention and thus slow algorithms. We approach this by
modifying Madry’s construction so that:
• Instead of “aggregating” edges so that the core becomes a graph, we admit a multigraph as core.
• We do not explicitly construct the core. Instead, we simulate both the sparsifier and the low average

stretch spanning tree algorithm using the abstraction of cluster graphs (see Section 5).
• In doing so, we maintain that every core edge is also a graph edge. This enables to handle all commu-

nication over this edge by using the corresponding graph edge.
• In this context, clusters are the forest components rooted at core nodes. We will maintain that forest

components have depth Õ(
√
n). While this is not strictly necessary, it simplifies the description of the

corresponding distributed algorithms, as the communication within each cluster can then be performed
via its (previously constructed) spanning tree.
• The cluster hierarchy that is established during the construction allows for a straightforward recursive

evaluation of the corresponding congestion approximator.
Section 8 gives the details of the construction.

3. Sampling from the Distribution. This is now straightforward, because for each sample, on each level of
the recursion we need to construct only no(1) different j-trees for some j. This is also discussed in Section 8,
in which the formal version of the following theorem is proved.

Theorem 3.2 (Informal). Within Õ((
√
n+D)β) rounds of the CONGEST model, we can sample a virtual

tree from the distribution used in Sherman’s framework, where Õ(β) is the number of j-trees in the distribu-
tion constructed when recursing on a core. The distributed representation allows to evaluate the dominant
cuts of the tree when using it in a congestion approximator within Õ(

√
n+D) rounds.
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4. Avoiding the use of the entire distribution for constructing the congestion approximator. While
Sherman can afford to use all trees in the (recursively constructed) distribution, the above theorem is not
strong enough to allow for fast evaluation of all Θ̃(n) trees. As Madry points out [19], it suffices to sample
and use O(log n) j-trees from the distribution he constructs to speed up any β-approximation algorithm
for an “undirected cut-based minimization problem”, at the expense of an increased approximation ratio of
2αβ, where α is the approximation ratio of the congestion approximator corresponding to the distribution
of j-trees. The reasoning is as follows:
• The number of cuts that need to be considered for such a problem is polynomially bounded.
• The expected approximation ratio for any fixed cut when sampling from the distribution is α. By

Markov’s bound, with probability at least 1/2 it is at most 2α.
• For O(log n) samples, the union bound shows that w.h.p. all relevant cuts are 2α-approximated.
• Applying a β-approximation algorithm relying on the samples only, which can be evaluated much

faster, results in a 2αβ-approximation w.h.p.
Recall that the problem of approximating a max flow was translated to minimizing congestion for demands
F and −F at s and t and performing binary search over F . The max-flow min-cut theorem implies the
respective congestion to be the function of a single cut, which can be used to verify that the problem falls
under Madry’s definition.

Unfortunately, applying the sampling strategy as indicated by Madry is infeasible in Sherman’s frame-
work. As the goal is a (1 + ε)-approximation, applying it to the above problem directly will yield a too
inaccurate approximation. Alternatively, we can apply it in the construction of a congestion approximator.
However, a congestion approximator must return a good approximation for any demand vector. There are
exponentially many such vectors even if we restrict b ∈ {−1, 0, 1}V , and we are not aware of any result
showing that the number of min-cuts corresponding to the respective optimal flows is polynomially bounded.

We resolve this issue with the following simple, but essential insight, at the expense of squaring the
approximation ratio of the resulting congestion approximator.

Lemma 3.3. Suppose we are given a distribution of polyn trees so that given any cut of G of capacity C,
sampling from the distribution results in a tree whose corresponding cut has at least capacity C and at most
capacity αC in expectation. Then samplingO(log n) such trees and constructing a congestion approximator
from their single-edge induced cuts results in a 2α2-congestion approximator of G w.h.p.

Proof. Recall that a cut approximator estimates the maximum congestion when optimally routing an arbi-
trary demand. Consider any demand vector and denote by C the capacity of the corresponding cut that is
most congested when routing the demand. As sampling from the distribution yields approximation factor α
in expectation, there must be some tree T in the distribution whose corresponding cut has capacity at most
αC. However, this means that when routing the demand via T , there is some edge in T that experiences at
least 1/α times the maximum congestion when routing the demand optimally in G. As the capacity of the
edge is at least that of the corresponding cut in G, it follows that the corresponding cut of G has congestion
at least 1/α of that of the min-cut when routing the demand.

As there are polyn trees, each of which has n − 1 edges, this shows that for any demand vector there
is one of polynomially many cuts of G that experience at least 1/α times the maximum congestion when
optimally routing the demand vector. By Markov’s bound and the union bound, w.h.p. the congestion on
each of these cuts will be approximated up to another factor of 2α when using O(log n) samples.

5. Performing a gradient descent step. Most of the high-level operations required for executing a gradi-
ent descent algorithm are straightforward to implement using direct communication between neighbors or
broadcast and convergecast operations on a BFS tree. The most involved part is multiplying the (implicitly
constructed) congestion approximator R with an arbitrary demand vector b, and multiplying the transposed
of the approximator matrix, Rᵀ, with a given vector that specifies a cost for each edge of the trees.
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Multiplying byR is done by exploiting that routing on trees is trivial and using standard techniques: dur-
ing the construction, we already decomposed each tree into O(

√
n) components of strong diameter O(

√
n),

which can be used to solve partially by contracting components, making the resulting tree of O(
√
n) nodes

globally known, then determine modified demand vectors for the components out of the now locally com-
putable partial solution, and finally resolve these remaining demands within each component. Multiplication
with Rᵀ is implemented using similar ideas. We refer to Section 9 for a detailed discussion of these proce-
dures. Plugging the building blocks outlined in this section into this machinery, we obtain our main result
Theorem 1.1.

4 Outline of Distributed Congestion Approximator Construction

In this section, we outline how to adapt Madry’s construction to its recursive application in the distributed
setting. In Section 8, we formally prove that we achieve the same guarantees as Madry’s distribution [19] in
each recursive step and that our distributed implementation is fast. Here, we focus on presenting the main
ideas of the required modifications to Madry’s scheme and its distributed implementation; to this end, it
suffices to consider the construction of a single step of the recursion.

Centralized Algorithm. As a starting point, let us summarize the main steps of one iteration of the cen-
tralized construction. We state a slightly simplified variant of Madry’s construction, which offers the same
worst-case performance and is a better starting point for what follows. From the previous step of construct-
ing the distribution, an edge length function `e is known (in the distributed setting, this knowledge will be
local). Given j ≤ n− 1, the following construction yields a Θ(j)-tree.

1. Compute a spanning tree T of G of stretch α.
2. For each edge e = {v, w} ∈ E of the graph G, route cap(e) units of a commodity come from v to w

on (the unique path from v to w in) T .4 Denote by f the vector of the sum of absolute flows passing
through the edges of T . Recall that maxe∈E{cap(e)} ∈ polyn and thus ‖f‖∞ ∈ poly(n).

3. For e ∈ T , define the relative load of e as rload(e) := |fe|/cap(e) ∈ polyn. We decompose the edge
set of T into O(log n) subsets Fi, i ∈ {1, . . . , dlog(‖f‖∞+ 1)e}, where e ∈ T is in Fi if rload(e) ∈
(R/2i, R/2i−1] forR := maxe∈T {rload(e)}. As T has n−1 ≥ j edges, there must be some Fi with
Ω(j/ log n) edges; let i0 be minimal with this property. Define F := {e ∈ T | rload(e) > 2i0−1}.
Note that |F| ≤ j.

4. T \ F is a spanning forest of at most j + 1 components. Define H as the graph on node set V whose
edge set is the union of T \ F and all edges of G between different components of (V, T \ F).

5. For componentsC andC ′ of (V, T \F), pick arbitrary v ∈ C andw ∈ C ′ and denote by p(C,C ′) ∈ C
the last node from C on the v-w path in T ; note that p(C,C ′) does not depend on the choice of v and
w. Denote by P the set of such portals. Replace all edges between different components C,C ′ of
(V, T \ F) by parallel edges {p(C,C ′), p(C ′, C)} (of the same weight).

6. In the resulting multigraph, iteratively delete nodes from V \P of degree 1 until no such node remains.
Note that the leaves of the induced subtree of T must be in P , showing that the number of remaining
nodes in V \ P of degree larger than 2 is bounded by |P | − 1 < 2j. Add all such nodes to P .

7. For each path with endpoints in P and no inner nodes in P , delete an edge of minimum capacity and
replace it by an edge of the same capacity between its endpoints.

8. Re-add the nodes and edges of T \ F that have been deleted in Step 6.
9. For any p, q ∈ P , merge all parallel edges {p, q} into a single one whose capacity is the sum of the

individual capacities. The result is a j′-tree for j′ = |P | < 4j.

4The difference to a single commodity is simply that flows in opposing directions do not cancel out. This means that any given
feasible (i.e., congestion-1) flow in G can be routed on T with at most the congestion of this multi-commodity flow.
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In his paper, Madry provides a scheme for updating the edge lengths between iterations so that this construc-
tion results in a distribution on Õ(m/j) Θ(j)-trees that approximate cuts up to an expected O(α)-factor,
where α is the stretch of the spanning tree construction. Updating the edge length function poses no chal-
lenges, so we will focus on the distributed implementation of the above steps in this section.

Differences to the Centralized Algorithm. Before we come to the distributed algorithm, let us first discuss
a few changes we make to the algorithm in centralized terms. These do not affect the reasoning underlying
the scheme, but greatly simplify its distributed implementation.
• We will omit the last step of the algorithm and instead operate on cores that are multigraphs. This

changes the computed distribution, as we formally use a different graph as input to the recursion.
However, Räcke’s arguments (and Madry’s generalization) work equally well on multigraphs, as one
can see by replacing each edge of the multigraph by a path of length 2, where both edges have the
same capacity as the original edge. This recovers a graph of 2m edges from a multigraph of m edges
without affecting the cut structure, and the resulting trees can be interpreted as trees on the multigraph
by contraction of the previously expanded edges. Similarly, both the low average stretch spanning
tree construction and the cut sparsifier work on multigraphs without modification.
• After computing the spanning tree, we will immediately delete a subset of Õ(

√
n) edges to ensure that

the new clusters will have low-depth spanning trees. The deleted edges are replaced by all edges of G
crossing the corresponding cuts and will end up in the core. The same procedure is, in fact, applied to
all edges selected into F in Step 3 of the centralized routine; Madry’s arguments show that removing
any subset of edges of T and replacing it this way can only improve the quality of cut approximation.
The main point of his analysis is that choosing F in the way he does guarantees that, in terms of
constructing the final distribution of j-trees, progress proportional to the number of edges in Ri0 is
made. We will apply the construction to cores of size n′ � Õ(

√
n), which implies that removing the

additional edges has asymptotically no effect on the progress guarantee.
• In the counterpart to Step 6 in Madry’s routine, also nodes from P may be removed if their degree

becomes 1. Also here, there is no asymptotic difference in the worst-case performance of our routine
from Madry’s.

To simplify the presentation, in this section we will assume that all trees involved in the construction
have depth Õ(

√
n). This means that we can omit the deletion of Õ(

√
n) additional edges and further

related technicalities. The general case is handled by standard techniques for decomposing trees intoO(
√
n)

components of depth Õ(
√
n) and relying on a BFS tree to communicate “summaries” of the components to

all nodes in the graph within Õ(
√
n + D) rounds (full details are given in Section 8). This approach was

first used for MST construction [18]; we use a simpler randomized variant (cf. Lemma 8.2).

Cluster Graphs. Recall that we will recursively call (a variant of) the above centralized procedure on the
core. We need to simulate the algorithm on the core by communicating on G. To this end, we will use
cluster graphs (see Section 5), in which G is decomposed into components that play the role of core nodes.
We will maintain the following invariants during the recursive construction:

1. There is a one-to-one correspondence between core nodes and clusters.
2. Each cluster c has a rooted spanning tree of depth Õ(

√
n).

3. No other edges exist inside clusters. Contracting clusters yields the multigraph resulting from the
above construction without Step 9. From now on, we will refer to this multigraph as the core.

4. All edges in the (non-contracted) graph are also edges of G, and their endpoints know their lengths
from the previous.

Overview of the Distributed Routine. We follow the same strategy as the centralized algorithm, with
the modifications discussed above. This implies that the core edges for the next recursive call will simply
be the graph edges between the newly constructed clusters. The following sketches the main steps of the
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Figure 2: Illustration of the underlying idea of the aggregation scheme for the cut capacities. The cut corresponding
to edge (c, ĉ) of the tree has a total capacity given by all graph edges leaving the subtree Tc. By labeling the endpoint
of graph edge by “+” if it leaves the subtree and by “-” if it connects to a descendant, the cut capacity is thus the sum
of all capacities of edges labeled “+” minus all those of edges labeled “-” within Tc.

distributed implementation of our overall approach.
1. Compute a spanning tree T of stretch α of the core. This is done by the spanning tree algorithm of

Theorem 3.1, which can operate on the cluster graph.
2. For each edge e ∈ T , determine its absolute flow |fe| (and thus rload(e) = |fe|/cap(e)) as follows

(cf. Figure 2).
(*) For each cluster c, consider the cut induced by the edge to its parent. For each “side” of the cut,

we want to determine the total capacity of all edges incident to nodes of c that connect to the
respective side of the cut. Denote by c+ the total “outgoing” capacity of cluster c towards the
root’s side and by c− the “incoming” capacity.

(a) Each cluster c learns its ancestor clusters in the spanning tree of C.
(b) Observe that for a cluster c, an edge does contribute to c− if and only if it connects to a node

within its subtree Tc. From the previous step, this information is known to one of the endpoints
of the edge. We communicate this and determine in each cluster c the values c+ and c− by
aggregation on its spanning tree.

(c) Suppose e ∈ T is the edge from cluster c to its parent. Using aggregation on the spanning tree
of C, we compute

|fe| =
∑
c′∈Tc

c′+ − c′− .

3. Determine the index i0 (as in Step 3 of the centralized routine). Given that rload(e) for each e ∈ T is
locally known, this is performed in Õ(D) rounds using binary search in combination with converge-
and broadcasts on a BFS tree. We set F := {e ∈ T | rload(e) > 2i0−1}.

4. Define P as the set of clusters incident to edges in F . A simple broadcast on the cluster spanning
trees makes membership known to all nodes of each cluster c ∈ P .

5. Iteratively mark clusters c /∈ P with at most one unmarked neighboring cluster, until this process
stops. Add all unmarked clusters that retain more than 2 unmarked neighboring clusters to P .

6. For each path with endpoints in P whose inner nodes are unmarked clusters not in P , find the edge
e ∈ T \ F of minimal capacity and add it to F . This disconnects any two clusters c, c′ ∈ P , c 6= c′,
in T \ F .

7. Each component of T \F and the spanning trees of clusters induce a spanning tree of the correspond-
ing component of G. Each such component is a new cluster. Make the identifier of the unique c ∈ P
of each cluster known to its nodes and delete all edges between nodes in the cluster that are not part
of its spanning tree.
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If all trees have depth Õ(
√
n), all the above steps can be completed in Õ(

√
n+D) rounds. Clearly, the first

3 stated invariants are satisfied by the given construction. As mentioned earlier, it is also straightforward
to update the edge lengths, i.e., establish the fourth invariant. Once the distribution on the current level of
recursion is computed, one can hence sample and then move on to the next level.

For the detailed description of the algorithm, the recursion, a formal statement of Theorem 3.2, and the
respective proofs, we refer to Section 8.

5 Cluster Graphs

On several levels, our distributed congestion approximator construction is done in a hierarchical way. As a
consequence many of the distributed computations used by our algorithm have to be run on a graph induced
by clusters of the network graph. In order to be able to deal with such cluster graphs in a systematic way, we
formally define cluster graphs and we describe how to simulate distributed computations on a cluster graph
by running a distributed algorithm on the underlying network graph.

Definition 5.1 (Distributed Cluster Graph). Given a n-network graph G = (V,E), a distributed N -node
cluster graph G = (V, E ,L,T, ψ) of size n is defined by a set of N clusters V = {S1, . . . , SN} partitioning
the vertex set V , a set (or multi-set) of edges E ⊆

(V
2

)
, a set of cluster leaders L, a set of cluster trees

T, as well as a function ψ that maps the edges E of the cluster graph to edges in E. Formally, the tuple
(V, E ,L,T, ψ) has to satisfy the following conditions.

(I) The clusters V = (S1, . . . , SN ) form a partition of the set of vertices V of the network graph, i.e.,
∀i ∈ [N ] : Si ⊆ V , ∀1 ≤ i < j ≤ N : Si ∩ Sj = ∅, and

⋃N
i=1 Si = V .

(II) For each cluster Si, |Si ∩L| = 1. Hence, each cluster has exactly one cluster leader `i ∈ L∩Si. The
ID of the node `i also serves as the ID of the cluster Si and for the purpose of distributed computations,
we assume that all nodes v ∈ Si know the cluster ID and the size ni := |Si| of their cluster Si.

(III) Each cluster tree Ti = (Si, Ei) is a rooted spanning tree of the subgraph G[Si] of G induced by Si.
The root of Ti is the cluster leader `i ∈ Si ∩ L. We assume that each node of u ∈ Si \ {`i} knows its
parent node v ∈ Si in the tree Ti.

(IV) The function psi : E → E maps each edge {Si, Sj} ∈ E to an (actual) edge {vi, vj} ∈ E connecting
the clusters Si and Sj , i.e., it holds that vi ∈ Si and vj ∈ Sj . The two nodes vi and vj know that the
edge {vi, vj} is used to connect clusters Si and Sj . If the cluster graph is weighted, the two nodes vi
and vj also know the weight of the edge {Si, Sj}.

Note that (III) in particular implies that the subgraph of G induced by each cluster Si is connected. When
dealing with a concrete distributed cluster graph G, we use GV , GE , GL, GT, and Gpsi to denote the corre-
sponding sets of clusters, edges, etc. Further, when only arguing about the cluster graph and not its mapping
toG, we only use the pair (V, E) to refer to it. In the following, we say that a cluster S ∈ V knows something
if all nodes v ∈ S know it. That is, e.g., the last part of condition (II) says that every cluster knows its ID
and its size.

We next define a weak version of the (synchronous) CONGEST model and we show that algorithms in
this model can be efficiently simulated in distributed cluster graphs.

Definition 5.2 (B-Bounded Space CONGEST Model). Let B = Ω(log n) be a given parameter. The B-
Bounded Space CONGEST model is a computation model which restricts the CONGEST(B) model by
requiring, for any d ≥ 0, that each step of a node v in theB-Bounded Space can be emulated inO(d) rounds
by any tree T (v) of depth d, where the edges incident on v are incident on nodes of T (v) in the emulation.
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The definition of theB-Bounded Space model is directed toward emulation. The definition immediately
implies that if each node is emulated by a tree, then emulating a global step in time proportional to the
maximal tree depth (which could be Ω(n)) is trivial. However, the following lemma shows that this can
actually be done in time O(D +

√
n).

Lemma 5.1. Given an underlying n-node graph G = (V,E) and a cluster graph G = (V, E ,L,T, psi), a
t-round distributed algorithm A in G in the B-bounded space CONGEST model can be simulated in the
(ordinary) CONGEST model in G with messages of size at most B in O

(
(D +

√
n) · t

)
rounds, where D

is the diameter of G.

Proof Sketch. We assume that we are given a global BFS tree ofG. If such a BFS tree is not available, it can
be computed in O(D) rounds in the CONGEST model. We simulate the algorithm A in a round-by-round
manner. Consider the end of the simulation of round r−1 and assume that in each cluster Si ∈ V , the leader
node `i knows the message Mi to be sent in round r. (For r = 1, we assume that this is true at the beginning
of the simulation.)

To start the simulation of round r, we first make sure that for every Si ∈ V , every node v ∈ Si knows the
message Mi to be sent to the neighbors in round r. In clusters Si of size at most

√
n, this can be done in at

most
√
n rounds by broadcasting Mi on the spanning tree Ti of G[Si]. For larger clusters, we use the global

BFS tree to disseminate the information. We first send all the messages Mi of clusters Si of size larger than√
n to the root of the global BFS tree. Because the BFS tree has radius at most D and because there are at

most
√
n clusters of size larger than

√
n, this can be done in D +

√
n rounds (using pipelining). Now, in

another D +
√
n rounds, all these messages can be broadcast to all nodes of G (and thus also to the nodes

of the clusters that need to know them).
Now, for every two clusters Si and Sj such that {Si, Sj} ∈ E , let {ui, uj} = psi({Si, Sj}) be the

physical edge connecting Si and Sj . The node ui ∈ Si sends the message Mi to uj and the node uj ∈ Sj
sends Mj to ui. This step can be done in a single round. Now, in each cluster Si, each incoming message
of round r is known by one node in Si and we need to aggregate these messages in order to compute the
outgoing message of each cluster. In clusters of size at most

√
n, this can again be done locally inside

the cluster (by Definition 5.2). Also, for the at most
√
n clusters of size larger than

√
n, we again use the

global BFS tree. Since in a tree of depth D, k independent convergecasts of broadcasts can be done in time
D + k, the messages of the large clusters can be computed in disseminated to the cluster leaders in time
O(D +

√
n).

6 Distributed Construction of Cut Sparsifiers

Lemma 6.1. In a weighted N -node distributed cluster graph of size n, for any ε > 0, it is possible to
compute a spectral (1 + ε)-sparsifier with O(N · (ε−1 · logN)O(1)) edges (w.h.p.) in the CONGEST model
in time O

(
(D+

√
n) · (ε−1 · logN)O(1)

)
. When the algorithm terminates, each of the edges of the sparsifier

is directed such that the out-degree of each cluster is upper bounded by O((ε−1 · logN)O(1)) and such that
each cluster knows all its outgoing edges.

Proof. We prove the lemma using the algorithm PARALLELSPARSIFY of Koutis [17], and then orient the
edges. Koutis’s algorithm relies on the O(log n)-stretch spanner construction algorithm of Baswana and
Sen [10], which we henceforth refer to as BS. See Figure 3 for a description of the BS algorithm.

We start by showing how to emulate a step of node v in BS by a depth-d tree Tv in O(d + logN) time
(w.h.p.). We may assume w.l.o.g. the existence of a root in each tree (because we can select one in O(d)
time); Step 2a is carried out by the root and the result is broadcast over the tree. For Step 2b, we note that
w.h.p., |Qv| = O(logN) and hence making it known to all node Tv takes O(d+ logN) time using standard
convergecast-broadcast. Step 3 is straightforward given that each node knows its cluster.
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1. R0 := {{v} | v ∈ V }.
2. For i := 1 to logN do:

(a) Mark each cluster of Ri−1 independently with probability 1
2 ; let Ri := {S is marked | S ∈ Ri−1}.

(b) If v ∈ S for some S ∈ Ri−1 \Ri:
i. Define Qv to be the set of edges that consists of the lightest edge from v to each of the clusters

in Ri v is adjacent to.
ii. If v has no neighbor in a cluster in Ri, then v adds to the spanner all edges in Qv .

iii. Otherwise, let u be the closest neighbor of v in a marked cluster. Then
• v joins the cluster of u (i.e., if u is in cluster S′ ∈ Ri, then S′ := S′ ∪ {v}).
• v adds to the spanner the edge {v, u}, and also all edges {v, w} ∈ Qv with W (v, w) <
W (v, u) (breaking ties by ID).

3. Each node v adds, for each cluster S ∈ RlogN it is adjacent to, the lightest edge connecting it to S.

Figure 3: The BS algorithm for O(logN) spanner construction given an N -node weighted graph G = (V,E,W ).
The output is a subset of E.

Next, given a tree T (v) for each node, we assume that the depth of all trees is at least c logN for
some appropriate constant c > 0. If this assumption does not hold we extend T (v) with a dummy path:
clearly T (v) can emulate the extended tree without any slowdown. However this extension may increase
the number of nodes by an O(logN) factor. Now, under this assumption and the emulation above, we may
apply Lemma 5.1 to conclude that BS can be executed in time O((D +

√
N logN) logN).

Going back to the algorithm of Koutis [17], we note that it consists of (log n/ε)O(1) invocations of BS,
and some independent random selection and reweighting of edges. The former is discussed above, and the
latter is trivial to emulate locally.

Finally, for edge orientation, we give a little algorithm that, given an N -node, D-diameter graph with
average degree dav, orients all edges such that the out degree of all nodes is O(dav). The algorithm runs in
O(D + log n) steps in the space-bounded CONGEST model. The algorithm is as follows. First compute
the average degree in O(D) time, and then repeat the following procedure log n times at each node v:
• If the number of unoriented edges incident on v is less than 2dav, then v orients all unoriented edges

outward, informs its neighbors, and halts.
The correctness of the procedure follows from the fact that throughout the execution, at most half the non-
halted nodes have degree larger than 2dav. The lemma now follows from the fact that the graph generated
by Koutis’ algorithm has average degree ( logNε )O(1).

7 Distributed Construction of Low Average-Stretch Spanning Trees

Theorem 3.1. (restated and rephrased) Suppose H is a multigraph obtained from G by assigning arbitrary
edge lengths in 2n

o(1)
to the edges of G (known to incident nodes) and performing an arbitrary sequence

of contractions. Then we can compute a rooted spanning tree of H of expected stretch 2O(
√
logn log logn)

within (
√
n+D)no(1) rounds, where the edges of the tree in H and their orientation is locally known to the

endpoints of the corresponding edges in G.

Proof. We follow [12]: the high-level algorithm is by Alon et el. [3], which uses Algorithm Partition (of
[12]) for unweighted graphs. We describe the algorithm bottom-up. The main component in Algorithm
Partition is Algorithm SplitGraph, reproduced in Figure 4. The basic action of Algorithm SplitGraph is
growing BFS trees, an action in which emulating a single node by a tree is trivial. In SplitGraph we may
have contending BFS growths, but note that if two or more BFS traversals collide, only the winning ID
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1. G1 = (V 1, E1) := G; C := ∅.
2. For t = 1 to 2 logN do:

(a) Let St random subset of V t of 122t/2

n |V
t| nodes; if V t is smaller than n

12·2t/2 , St := V t.
(b) C := C ∪

{
{s} | s ∈ St

}
.

(c) Each s ∈ St draws a random delay δts uniformly from [0, bρ/(2 logN)c].
(d) Each s ∈ St waits δts rounds and then initiates a BFS for ρ(1− t−1

2 logN )− δts rounds in Gt.
(e) A node covered by a BFS is added to cluster Cs, where s is the source of the first BFS to visit it,

breaking ties by ID.
(f) V t+1 := V \ {v | v ∈ C for some C ∈ C}; Gt+1 := Gt[V t+1].

Figure 4: Algorithm SplitGraph. The input is an unweighted graph G = (V,E) and a target radius ρ.

needs to proceed, and hence there are no collisions because no edge needs to carry more than a single BFS
traversal in each direction. Regarding the tree construction, we first note that the BFS growth naturally
creates a spanning tree for each cluster. Moreover, we can make all nodes know the complete path to the
root of their respective cluster in additional O(ρ) steps, by letting each node send its ith ancestor to all
its children in round i. The running time of Algorithm SplitGraph is clearly O(ρ logN) in the bounded-
space CONGEST model, and therefore, using Lemma 5.1, we conclude that we can run SplitGraph in time
O(ρ logN(D +

√
N)) in the CONGEST model.

Algorithm SplitGraph is called by Algorithm Partition, whose input is an unweighted graph with an ar-
bitrary partition of the edges into K classes. Algorithm Partition applies Algorithm SplitGraph disregarding
classes, and then checks whether there exists a class where too many edges were split in different clusters.
If there is such an over-split class, the algorithm is restarted. We can implement each checking and restart
in the CONGEST model in O(D + K) time using a global BFS tree. Since the number of restarts is
bounded by O(logN) w.h.p. [12], and in our implementation we shall have K = O(

√
N), the overall time

for running Algorithm Partition is O(ρ log2N(D +
√
N)) in the CONGEST model.

The outermost algorithm is the one by Alon et al. [3], whose input is a weighted graph. The algorithm
first partitions the edges into O(

√
logN) classes by weight, where class Ei contains all edges whose weight

is in [zi−1, zi) for a certain value z = Θ̃(2
√
6 logN ·log logN ). Then the algorithm proceeds in iterations until

the graph is a single node, where iteration j is as follows.
1. Call Algorithm Partition with edges E1, . . . , Ej and target radius ρ = z/4. Obtain clusters {Ci}.
2. Output a BFS tree for each cluster Ci.
3. Contract each resulting cluster Ci to a single node. Remove all self loops, but leave parallel edges in

place. The resulting multigraph, augmented with edge class Ej+1, is the input to iteration j + 1.
For the distributed implementation, note that edge contraction is trivial given that the endpoints know the
identity of the cluster they belong to, and that edge classification is purely local given z (which can be
communicated to all in O(D) time units). It can be shown [12] that w.h.p., the number of iterations is
O(log ∆/

√
logN log logN), and hence the running time of the algorithm is O(ρ log ∆ logO(1)N(D +√

N)) = log ∆ · 2O(
√
logN log logN) because ρ = Θ̃(2

√
6 logN ·log logN ).

The claimed stretch follows from [12].

8 Distributed Construction of j-Trees

From the distributed implementation point of view, the core technical challenge is to efficiently compute
a congestion approximator in a distributed way. As already pointed out, the congestion approximator is
constructed based on applying the j-tree construction of Madry [19] recursively. In the following, we review
Madry’s construction and we show how to implement an adapted version of it in a distributed network. The
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main objective of the construction is to approximate the flow structure of a given graph by a distribution of
graphs from a simpler class of graphs (i.e., j-trees). Formally, the similarity of the flow structure of two
graphs is captured by the following definition from [19].

Definition 8.1 (Graph Embeddability). [19] We are given β ≥ 1 and two (multi)-graphs G = (V,E, cap)
and G′ = (V,E′, cap′) on the same set of nodes and with edge capacities cap(e) and cap′(e′) for edges
e ∈ E and e′ ∈ E′. We say that graph G is β-embeddable into G′ if there exists a multicommodity
flow f ′ = (f ′e)e∈E such that for every edge e ∈ E of G connecting nodes u and v, f ′e is a flow on
(V,E′, β cap′) that routes cap(e) units of flow between u and v, and for every edge e′ ∈ E′ of G′, it holds
that |f ′(e′)| :=

∑
e∈E |(f

′
e)(e

′)| ≤ β cap′(e′).

Intuitively, a graph G is β-embeddable into a graph G′, if for every (multicommodity) flow problem, there
is a solution in G′ such that the maximum relative congestion of all edges is by at most a factor β larger than
for the optimal solution in G. As a generalization of the cut-based graph decompositions of Räcke [26],
Madry defines the notion of an (α,G)-decomposition.

Definition 8.2 ((α,G)-Decomposition [19]). Given a (multi-)graph G = (V,E, cap) and a family G of
graphs on the nodes V , an (α,G) of G is a set of pairs {(λi, Gi)}i∈I satisfying that:
• ∀i ∈ I : λi > 0;
•
∑

i∈I λi = 1;
• ∀i ∈ I : Gi = (V,Ei, capi) is a graph in G;
• ∀i ∈ I : G is 1-embeddable into G; and
• the graph defined by the convex combination5 ∑

i∈I λi ·Gi is α-embeddable into G.
In words, {(λi, Gi)}i∈I is a distribution on I graphs from G, each of which can be 1-embedded into G, such
that the distribution α-embeds into G.

Observe that such a decomposition can form the basis for a good congestion approximator: 1-embeddability
of each Gi into G guarantees that congestion is never overestimated, and the embeddability of the convex
combination ensures when sampling from the distribution, the expected factor by which we underestimate
congestion on a cut is at most α. Our goals are now to choose G and the distribution such that
• α is small,
• we can construct the distribution efficiently, and
• we can evaluate the induced congestion when routing demand optimally on a graph from the distribu-

tion efficiently.

The Plan. Let G = (V,E, cap) be a weighted (multi-)graph, 0 ≤ j ≤ |V | be an integer and let J be the
family of j-trees over the node set V . In [19], it is shown that based on a protocol for computing spanning
trees with average stretch α, there exists an (α, J)-decomposition of G. This is shown in several steps. It is
first shown that a sparse (α,H)-decomposition exists for a graph family H which contains graphs that are
closer to the original graph G and it is then shown that every graph H ∈ H can be O(1)-embedded into a
j-tree and vice versa.

As described, we have to apply the j-tree construction recursively to the core graph. Each node in the
core graph is represented by a set of nodes (a cluster) in the network graph. On the network graph, the core
graph therefore corresponds to a graph between clusters of nodes. We therefore have to be able to apply
the j-tree construction on a cluster graph. As we will see, we can construct j-trees such that whenever two
nodes u and v of the core are connected by a (virtual) edge, there also is a physical edge between the two
trees (i.e., clusters of nodes) corresponding to u and v. Throughout our algorithm, we can therefore work

5The sum of two weighted graphsG1 = (V,E1, cap1) andG2 = (V,E2, cap2) is defined asG1+G2 = (V,E1∪E2, cap12),
where for each edge e ∈ E1 ∪E2, cap12(e) is defined as cap12(e) = cap1(e)+ cap2(e) if e ∈ E1 ∩E2 and cap12(e) = capi(e)
if e ∈ Ei \ E3−i for i ∈ {1, 2}.
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with a cluster multigraph such that a) the induced graph of each cluster is connected and b) for every edge
between two clusters c and c′, there are nodes u ∈ c and v ∈ c′ such that u and v are connected by an edge in
the underlying network graph. For doing distributed computations, we assume that each cluster has a leader
and that every node knows the ID of the leader and also its parent in a rooted spanning tree which is rooted at
the leader. In Section 5, we give a precise definition of a distributed cluster graph and we show that several
basic algorithms that we use as building blocks can be run efficiently in distributed cluster graphs.

In the following, we go through Madry’s j-tree construction step-by-step and describe how to adapt it
so that we can implement it efficiently on a distributed cluster graph (i.e., in the CONGEST model in the
underlying network graph).

8.1 Low-Stretch Spanning Trees

In the following, we consider the computation of the (α, J)-decomposition of some core graph. Assume that
the core graph is given as a distributed cluster graph G = (V, E , cap), where for each edge e ∈ E , cap(e)
is the capacity of e. As the time complexity of some of the steps for computing an (α, J)-decomposition
of G depend on the number of edges of G, as a first step, we sparsify G. In Lemma 6.1, it is shown that in
O
(
(D +

√
n) · polylogn

)
rounds, it is possible to compute an (1 + 1/ polylogn)-spectral sparsifier of G

with at most O(|V| · polylogn) edges. Further, for each edge {c, c′} ∈ E of the sparsifier one of the nodes
of the edge manages the edge. As in general G is a cluster graph, c and c′ are clusters of physical nodes and
an edge connecting clusters c and c′ is represented by a physical edge {u, v} for two (network) nodes u ∈ c
and v ∈ c′. We will maintain that every pair of nodes u ∈ c and v ∈ c′ needs to represent at most one edge
between c and c′ in G. The two nodes u and v know about the edge between c and c′ and its capacity.

In the following, we assume that G is the graph after sparsification. If the number of nodes |V| of G is
less than n1/2+o(1), using a global BFS tree of the network graph, the whole structure of G can be collected
in O(D + |V| polylogn) = O(D + n1/2+o(1)) rounds. In that case, we can therefore perform all remaining
operations locally at the nodes. Consequently, we will henceforth assume that |V| ≥ n1/2+o(1).

During the construction of the (α, J)-decomposition of G, each edge e ∈ E is assigned a length `(e). At
the beginning `(e) is proportional to 1/cap(e) and before adding each j-tree, `(e) is adapted for each edge.
As the first step of constructing each j-tree in the decomposition, Madry computes a spanning tree T of G
for which it holds that∑

e={c,c′}∈E

dT (c, c′) · cap(e) =
∑

e={c,c′}∈E

stretchT (e) · `(e) · cap(e) ≤ δα ·
∑

e={c,c′}∈E

`(e) · cap(e) (2)

for a sufficiently small positive constant δ. In the above expression, dT (u, v) denotes the sum of edge lengths
on the path between u and v on T . Hence, T is a spanning tree with a bounded weighted average stretch.
Such a spanning tree can be computed by computing an (unweighted) low average stretch spanning tree
for a multigraph G̃ which is obtained from G by (logically) replacing some of the edges of G with multiple
copies of the same edge (overall, the number of edges is as most doubled) [4, 19].

In our distributed implementation of Madry’s j-tree construction, we adapt the parallel low average
stretch spanning tree algorithm from [12] to our setting. The algorithm of [12] already works in a mostly
decentralized fashion and we can therefore also apply it in a distributed setting. In Section 7, we show how
to run the algorithm of [12] on a distributed cluster graph. We note that the low average stretch spanning
tree algorithm of [12] directly tolerates multi-edges as described above, even if the same physical edge has
to be used to represent multiple edges between the same clusters.

Theorem 3.1. (restated and rephrased) Suppose G is a multigraph obtained from G by assigning arbitrary
edge lengths in 2n

o(1)
to the edges of G (known to incident nodes) and performing an arbitrary sequence

of contractions. Then we can compute a rooted spanning tree of G of expected stretch 2O(
√
logn log logn)
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within (
√
n+D)no(1) rounds, where the edges of the tree in G and their orientation is locally known to the

endpoints of the corresponding edges in G.

Given the spanning tree T = (VT , ET ) of G, we need to compute capacities capT (e) for the spanning
edges such that G is embeddable into T , which essentially boils down to computing a the absolute value
of the multicommodity flow f ′ routing cap(e) units of flow on T for each e ∈ E. As routing is trivial in
trees, f ′ is unique. Once |f ′| is computed, the edge capacities of T can be chosen accordingly and it is
straightforward to pick a suitable λi and update the length function `(e). However, computing the absolute
value of the multicommodity flow fast in the distributed setting requires some work.

Computing the Multicommodity Flow. In the following, assume that the edges of T are oriented towards
the root, i.e., we will write (c, ĉ) ∈ T if ĉ ∈ V is the parent of cluster c ∈ V . Denote by Tc the subtree of T
rooted at c. When embedding G into T , we have to route a total of

|f ′(c, ĉ)| =
∑
c1∈Tc
c2 /∈Tc

∑
{c1,c2}uv∈E

cap({c1, c2}uv)

commodity through the edge {c, ĉ} ∈ T , where we indexed the different edges of the multigraph (V, E) by
using that for each e ∈ E between c1 and c2, ψ maps e to a unique edge {u, v} ∈ E with u ∈ c1 and w ∈ c2.
Note that u and v know that {c1, c2}uv ∈ E , that they are in the clusters c1 and c2, respectively, and what
cap({c1, c2}uv) is. We thus have to solve the task of determining this sum for each edge {c, ĉ} ∈ T via
computations on the graph G underlying (V, E).

Observe that the spanning trees of the clusters together with T induce a (rooted) spanning tree T of G.
Essentially, we would like to perform, for each edge {c, ĉ} ∈ T , an aggregation on T and pipeline these
aggregations to achieve good time complexity. However, as shown in the following lemma, the result is a
running time linear in the depth of the tree, which may be Ω(n) irrespective of D.

Lemma 8.1. If T has depth d, for each edge e = (c, ĉ) ∈ T , c can determine |f ′(e)| within O(d) rounds.

Proof. Consider the following algorithm.
1. For each cluster, all of its nodes learn the ancestors of the cluster in T .
2. For each edge {c1, c2}uv ∈ E , u and v exchange the ancestor lists of c1 and c2.
3. Each node u ∈ c1 ∈ T locally computes for each ancestor c of c1 the value

capc(u) :=
∑

{c1,c2}uv∈E
c is not ancestor of c2

cap({c1, c2}uv).

4. For each edge e = (c, ĉ) ∈ T , we aggregate
∑

u∈Tc capc(u) on Tc, where Tc is the subtree of T
corresponding to Tc.

Observe that, by definition,

|f ′(c, ĉ)| =
∑
c1∈Tc
c2 /∈Tc

∑
{c1,c2}uv∈E

cap({c1, c2}uv) =
∑
u∈Tc

capc(u),

as each edge {c1, c2}uv ∈ E with c1 ∈ Tc and c2 ∈ T \ Tc satisfies that either u ∈ Tc or v ∈ Tc. Hence, it
remains to show that the above routine can be implemented with a running time of O(d).

Clearly, the first step takes d rounds: T has depth d, and we can perform concurrent floodings on
all subtrees without causing contention. The second step requires at most d − 1 rounds, as no node has
more than d − 1 ancestors. The third step requires local computations only. Finally, the fourth step can
be performed in d rounds as well, since we can perform concurrent convergecasts on all subtrees without
causing contention.
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To handle the general case, i.e., d �
√
n, we first decompose T into O(

√
n) parts of small diameter.

There are different ways to achieve such a decomposition of T efficiently in a distributed way (e.g., by
using techniques from [18]). The easiest way is to use randomization. Suppose c′ is the parent cluster
of non-root cluster c. We sample edge e = (c, ĉ) ∈ T into the edge set R with independent probability
qe := min {1, |c|/

√
n}. Then, w.h.p. the forest T \ ψ(R) consists Õ(

√
n) trees of depth Õ(

√
n).

Lemma 8.2. Let T be a rooted spanning tree of a cluster (multi-)graph G and letR be a subset of the edges
chosen at random as described above, and assume that the spanning tree of each cluster has depth at most
d. W.h.p., the forest T \ψ(R) induced by the edges T \R and the cluster spanning trees consists of O(

√
n)

rooted trees of depth d+O(
√
n log n).

Proof. Clearly, the number of trees in the forest induced by ET \ R is equal to |R| + 1. The expected
value for |R| is given by the sum of the probabilities qe and thus E[|R|] ≤

√
n. A standard Chernoff bound

implies that |R| does not exceed
√
n by more than a constant factor with high probability.

To bound the depth of each (rooted) tree in T \ ψ(R), consider a cluster c ∈ T and a path p from the
leader {r} := L ∩ c to some node in the subtree Tr of T rooted at r. The depth of Tr ∩ c is bounded by d.
Denote by Ep the set of edges of p that correspond to edges in T , i.e., each e ∈ Ep satisfies that e = ψ(e′)
for some e′ ∈ T . Denote by c(e) the child cluster of e, i.e., the endpoint further away from the root of T . By
construction, c(e) ∈ e′ is also the cluster further away from the root of T (for the e′ ∈ T with ψ(e′) = e).
Therefore, the length of p is bounded by

d+ |Ep|+
∑
e∈Ep

|c(e)|

i.e., the sum of the number of its edges in c, the number of edges between clusters |Ep|, and the number of
edges in each traversed cluster. For e ∈ Ep, we have that qe = min{1, |c(e)|/

√
n}, yielding that

E[|R ∩ ψ−1(Ep)|] ≤
∑
e∈Ep

|c(e)|√
n
.

Applying Chernoff’s bound shows that E[|R ∩ ψ−1(Ep)|] ∈ O(log n) or |R ∩ ψ−1(Ep)| > 0 w.h.p. The
former implies that (i)

∑
e∈Ep |c(e)| ∈ O(

√
n log n) and (ii) |Ep| ∈ O(

√
n log n), as always |c(e)| ≥ 1; it

follows that the length of p is bounded by d + O(
√
n log n) as claimed. The latter implies that, w.h.p., p

is not contained in T \ ψ(R). As the number of simple paths in a tree is bounded by O(n2), applying the
union bound completes the proof.

For simplicity, in the following we assume that the high probability statements of the above lemma hold
with certainty; the final statements then follow by applying the union bound.

Throughout the construction, we will maintain that edges of R are never retained. As there will be
o(log n) levels of recursion, by inductive use of the above lemma, it follows that clusters always have
spanning trees of depth Õ(

√
n). Exploiting this property together with the small number of connected

components of T \ R, we obtain a fast routine for the general case.

Lemma 8.3. Within Õ(
√
n+D) rounds, for each edge e = (c, ĉ) ∈ T , c can determine |f ′(e)|.

Proof. Denote by C the connected components of T \ R. For c ∈ T , denote by C ∈ C its connected
component. We rewrite the (absolute value of) the multicommodity flow

|f ′(c, ĉ)| =
∑
c1∈Tc
c2 /∈Tc

∑
{c1,c2}uv∈E

cap({c1, c2}uv) = |f ′1(c, ĉ)|+ |f ′2(c, ĉ)| − |f ′3(c, ĉ)|,
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where

|f ′1(c, ĉ)| :=
∑

c1∈Tc\C
c2 /∈Tc\C

∑
{c1,c2}uv∈E

cap({c1, c2}uv),

|f ′2(c, ĉ)| :=
∑

c1∈Tc∩C
c2 /∈Tc

∑
{c1,c2}uv∈E

cap({c1, c2}uv), and

|f ′3(c, ĉ)| :=
∑

c1∈Tc∩C
c2∈Tc\C

∑
{c1,c2}uv∈E

cap({c1, c2}uv).

Note that |f ′1(c, ĉ)| does only depend on the component of c, i.e., we need to determine and make
known only |C| ∈ O(

√
n) values to cover this term. For the other terms, we will reduce the problem to an

aggregation on the spanning tree of C in the vain of Lemma 8.1.
Concerning |f ′1(c, ĉ)|, we employ the following routine.

1. Using its spanning tree, each component C ∈ C determines a unique identifier (say, the smallest
cluster identifier) and makes it known to all its nodes.

2. For each {c1, c2}uv ∈ E , u and v exchange their component identifiers.
3. The list of component identifiers and edges (C, Ĉ) for each (c, ĉ) ∈ R is made known to all nodes.

This enables each node to locally compute the tree resulting from contracing the components C ∈ C
in T .

4. For each C ∈ C, fix an arbitrary c ∈ C. Each node u ∈ Tc \ C locally computes

capC(u) :=
∑

{c1,c2}uv∈E
c2 /∈Tc\C

cap({c1, c2}uv);

we set capc(u) := 0 for all u /∈ Tc \ C (nodes can determine whether they are in Tc \ C based on the
information collected in the previous two steps).

5. For each C ∈ C, make
∑

u∈V capC(u) known to all nodes via a BFS tree of G. For all c ∈ C, we
have that |f ′1(c, ĉ)| =

∑
u∈V capC(u).

As discussed earlier, components’ spanning trees have depth Õ(
√
n) and |C| ∈ O(

√
n). Hence, Step 1 takes

Õ(
√
n) rounds and Steps 3 and 5 takeO(

√
n+D) rounds. Step 2 requires only one round of communication

and Step 4 is local. Overall, the routine requires Õ(
√
n+D) rounds.

To determine |f ′2(c, ĉ)| and |f ′3(c, ĉ)| for each c, we proceed similarly to Lemma 8.2.
1. For each C ∈ C and each c ∈ C, all nodes in c learn the list of ancestors of c that are in C (using the

spanning tree of C in G).
2. For each {c1, c2}uv ∈ E , u and v exchange their component identifiers, as well as the ancestor lists

determined in the previous step.
3. The list of component identifiers and edges (C, Ĉ) for each (c, ĉ) ∈ R is made known to all nodes.
4. For each C ∈ C, c ∈ C, and u ∈ Tc ∩ C, u locally computes

capc(u) :=
∑

{c1,c2}uv∈E
v∈c2 /∈Tc

cap({c1, c2}uv)−
∑

{c1,c2}uv∈E
v∈c2∈Tc\C

cap({c1, c2}uv).6

6If v ∈ C, u can decide whether v ∈ Tc based on the ancestor lists. If v /∈ C, u can decide whether v ∈ Tc based on v’s
component identifier and the information collected in Step 3.
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5. For each edge e = (c, ĉ) ∈ T , we aggregate
∑

u∈Tc∩C capc(u) on Tc ∩ C, where Tc is the subtree of
T (the spanning tree of G) corresponding to Tc.

Note that, by definition of capc(u), we have that∑
u∈Tc∩C

capc(u) = |f ′2(c, ĉ)| − |f ′3(c, ĉ)|.

Hence, it remains to analyze the running time of this second subroutine. Again, using that components’
spanning trees have depth Õ(

√
n) and that |C| ∈ O(

√
n), we can conclude that Steps 1, 2, and 5 take

Õ(
√
n) rounds, while Step 3 takes O(

√
n + D) rounds. As Step 4 requires local computation only, the

resulting running time is Õ(
√
n) rounds. Overall, we conclude that |f ′(c, ĉ)| can be computed for each c

within Õ(
√
n+D) rounds, by running each of the two subroutines and summing up their outputs.

8.2 Approximating G by a Distribution over Simpler Graphs

Using the techniques of [26] and the above construction of low average stretch spanning trees, it is possible
to design a distributed algorithm to compute a distribution of such spanning trees which approximates the cut
structure of the underlying network graph within a factor 2O(

√
logn log logn) (i.e., in the order of the average

stretch of the computed spanning trees). However, when doing this, the number of spanning trees we need
to compute can be linear in the size of G. We follow the same general idea as Sherman, wo applied the
construction by Madry [19] recursively to decrease the step complexity, to avoid this sequential bottleneck
and achieve a small time complexity in the distributed setting.

For each edge e ∈ T , we define rloadT (e) := capT (e)/cap(e) ≥ 1 to be the relative load of e
(edges e ∈ E \ T have rloadT (e) = 0). The construction of [26] builds up a potential for each edge e
of G, where with each new tree added to the distribution, the potential of e grows by a term proportional
to rloadT (e)/maxe′∈E{rloadT (e′)}. The potential of each edge is bounded by α = no(1) and hence with
every additional spanning tree, we are guaranteed to make progress for all edges e ∈ E with rloadT (e) close
to maxe′∈E{rloadT (e′)}. In the worst case, this can just be a single edge for each spanning tree T . The key
idea of Madry [19] is to augment the tree T with additional edges in order to reduce the maximum relative
load so that in the new graph, a large number of edges have a relative load close to the maximum one.

Basically, we can reach a large number of edges with relative load close to the maximum relative load
by repeatedly deleting the edge with largest relative load until a large number of the remaining edges has a
relative load that is within a constant factor of the remaining maximum relative load. When deleting some
edges of T , one has to add back some of the original edges of G in order to maintain the property that G
is embeddable into the resulting graph. Formally, let F ⊆ T be a subset of the spanning tree edges. The
edge set T \ F defines a spanning forest of G consisting of |F| + 1 components. We define a subgraph
H(T ,F) of G as follows. The node set ofH(T ,F) is V . Further,H(T ,F) contains all edges in T \ F and
it contains all edges {c, c′}uv ∈ E of G for which c and c′ are in different components in the forest induced
by the edges in T \ F . Let EH be the set of edges of H. We set the capacities capH(e) of edges e ∈ EH to
be capH(e) := capT (e) if e ∈ T \ F and capH(e) := cap(e) otherwise. Note that this guarantees that G
is 1-embeddable intoH. For the following discussion, we define H[j] to be the set of graphsH(T ,F) for a
spanning tree T of G and a set of edges F of T of size |F| ≤ j.

Assume that the weighted average stretch of the spanning tree T as given by Eq. (2) is upper bounded
by α. Also recall that we assume that all capacities of G are integers that are polynomially bounded in the
number of nodes n. As throughout our construction, each edge capacity always approximately corresponds
to the capacity of some cut inG, it is not hard to guarantee that all capacities of G are integers between 1 and
poly(n). Given a spanning tree T of G, letR := maxe∈T {rloadT (e)} be the largest relative load of all edges
of T . In order to determine the set of edges F , we start by partitioning the edges in T into imax = O(log n)
classes F1, . . . ,Fimax , where class Fi contains all edges with relative load in (R/2i, R/2i−1]. Now, for any
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j0 ≤ |T |, there exists an edge class Fi such that
∣∣⋃

i′<iFi′
∣∣ ≤ j0 and |Fi| ≥ j0/imax = Ω(j0/ log n);

otherwise, |T | =
∣∣⋃

iFi
∣∣ < j0 ≤ |T |, a contradiction. We define F ′ :=

⋃
i′<iFi′ .

In [20], this set of edges is used to construct the graph H(T ,F ′). For the distributed computation,
it will be useful to have a graph H(T ,F) in which all the trees of the forest induced by ET \ F have
small diameter. We therefore rely on the same technique as for computing the capacities of T and remove
a few random additional edges of T . In fact, we can simply use the same subset of edges R ⊆ T that
has been determined and used before, prior to Lemma 8.2. We define F := F ′ ∪ R and use the graph
H = (V, EH, capH) := H(T ,F). Since all the edges of T with rloadT (E) > R/2i−1 are removed, all
edges of H have relative load at most R/2i−1. Further, all the Ω(j/ log n) edges of Fi have relative load
larger than R/2i. Based on Theorem 5.2 and Corollary 5.6 of [20] and on Theorem 3.1, we can show the
following lemma.

Lemma 8.4. Given are a distributed cluster (multi-)graph G = (V, E , capG) consisting of |V| = N clusters
and |E| = N polylog(n) edges and a parameter j ≥ 1 such that that j = ω(

√
n log n). There is a distributed

algorithm to compute an
(
2O(
√
logN log logN),H[j]

)
-distribution of G on 2O(

√
logN log logN) · N/j graphs,

which runs in the CONGEST model on the underlying network graph G in (D+
√
n) · no(1) ·N/j rounds.

Proof. Let α = 2O(
√
logn log logn) be the average stretch guarantee of the spanning tree algorithm. It follows

directly from Theorem 5.2 and Lemma 5.5 in [20] that we can compute an (O(α),H[|E| · α log(n)/s])-
decomposition of G on s graphs in time s · Ttree if the following conditions are satisfied:

(1) The time for computing one low average stretch spanning tree is upper bounded by Ttree.

(2) Given T and the set of edges F as computed above, let rloadmax := maxe∈T \F{rloadT (e)}. The
number of edges ofH(T ,F) with relative load at least rloadmax /2 is Ω(|E|α/s).

As observed above, in T , all edges in the set Fi have relative load between rloadmax /2 and rloadmax.
When constructing H(T ,F), the relative load of edges in T \ F does not change and thus, all nodes in
Fi \ F = Fi \ R have relative load between rloadmax /2 and rloadmax. Recall that |Fi| = Ω(j/ log n).
By Lemma 8.2, with high probability, we have |R| = O(

√
n). Since we assumed that j = ω(

√
n log n),

we have |Fi| = ω(|R|) and thus |F| = Ω(j/ log n). The second condition is now satisfied by choosing
s = Θ(|E|α log(n)/j) = 2O(

√
logN log logN) ·N/j.

Assuming that the time to compute a single low average stretch spanning tree can be upper bounded
by Ttree = (D +

√
n) · no(1), the lemma now follows. By Theorem 3.1, this is guaranteed as long as

all edge lengths are integers between 1 and 2n
o(1)

. Inspecting the construction in [20] and [26], we can
observe that the edge lengths cannot get larger than a value exponential α. By rounding them to integers,
we introduce an additional multiplicative error of factor 2, which does not affect the asymptotic behavior.
As α = 2O(

√
logn log logn), the claim of the lemma follows.

8.3 Transforming H(T ,F) into a j-Tree

Given a graph H(T ,F) ∈ H[j], it remains to transform H(T ,F) into an O(j)-tree J such that the two
graphs are O(1)-embeddable into each other. In the following, we first describe the construction and we
formally prove that the resulting O(j)-tree J and the given graphH(T ,F) are O(1)-embeddable into each
other. We then show how to efficiently construct J in a distributed way.

Assume that we are given a spanning tree T of G and a graphH(T ,F) which is constructed as described
above. Consider the forest induced by the edges in T \ F .

Let P1 ⊆ V be the set of clusters of T \ F which are incident to one of the deleted tree edges in F .
We call P1 the primary portals of T \ F . Given P1, we define the skeleton ST \F of T \ F as follows.
ST \F is obtained from T by repeatedly deleting non-portal clusters of degree 1 until all remaining clusters
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are either in P1 or they have degree at least 2. Denote by P2 all clusters of degree larger than 2 that are not
primary portals; P2 are the secondary portals portals. The set of all portal clusters now is P := P1 ∪ P2.
The skeleton ST \F is thus a forest consisting of a set of portals and paths connecting them, where all inner
clusters of these paths have degree 2.

Given the skeleton ST \F , consider one of these paths P . In the last step, we remove the edge with the
smallest capacity from each such P . In doing so, we split the forest into trees so that each tree contains
exactly one portal. It is straightforward to bound the number of resulting trees in terms of F .

Lemma 8.5. LetH(T ,F) ∈ H[j], i.e., |F| ≤ j. Then, in the above construction, the total number of portal
nodes is less than 4j.

Proof. Clearly, |P1| ≤ 2|F| ≤ 2j. As when computing the skeleton ST \F , non-portal clusters of degree 1
are successively removed, we obtain a forest whose leaves are primary portals. As the sum of the degrees
in an N -node forest is at most 2(N − 1), the number of nodes of degree at least 3 is upper bounded by the
number of leaves minus 2. We conclude that |P2| < |P1| ≤ 2j, and hence |P | < 4j.

Finally, we identify each of the resulting trees with its portal and logically move all edges between
different trees to the portals. For each edge e = {c, c′} ∈ EH\(T \F) (i.e., each non-tree edge ofH(T ,F)),
we add a virtual edge of capacity capG(e) between the portals of the trees containing c and c′, respectively.
Further, let D be the set of edges that were deleted from the paths of degree-2 clusters connecting portals in
the skeleton. For every edge e ∈ D, we add a virtual edge of capacity capH(e) = capT (e) between the two
portals that were connected by the path from which e was deleted.

Let us summarize this part of the construction; see Figure 5 for an example of a possible result. Starting
from a forest T \ F , do as follows:

1. Define P1 as the endpoints of edges in F ;
2. iteratively delete degree-1 clusters that are not in P1 until this process halts;
3. define P2 as the clusters retaining degree larger than 2 that are not in P1 and set P := P1 ∪ P2;
4. delete from each (maximal) path without clusters from P the edge e ∈ D of minimum capacity and

replace it by an edge of the same capacity between its endpoints; and
5. for each edge e ∈ EH between different components of T \ (F ∪D), add an edge of the same capacity

between the unique portals in these components.
Hence, the resulting graph consists of the forest induced by T \(F\D) and (possibly parallel) edges between
the unique portals of the trees of the forest. By Lemma 8.5, the number of such portals is smaller than 4j,
implying that the resulting graph is a 4j-tree. In the following, we denote this 4j-tree by J .

Mutual Embeddability ofH(T ,F) and J . Before discussing how to efficiently construct (and represent)
J in a distributed way, let us first show thatH(T ,F) and J are O(1)-embeddable into each other.

The proofs of the following two lemmas is very similar to the corresponding result by Madry [19].
However, since our j-tree construction slightly deviates from Madry’s, the claims do not readily follow
from any lemma in [19, 20].

Lemma 8.6. H(T ,F) is O(1)-embeddable into J .

Proof. There are three types of edges ofH(T ,F) to distinguish:
a) edges in (T \ F) \ D,
b) edges in D, and
c) the remaining edges from EH connecting different trees of the forest T \ F .
Case a) is the most straightforward, as all these edges are also present in J with the same capacity. Edges
from e ∈ D were deleted from a path P connecting two portals in the skeleton. In J , they can therefore
be routed through the path P and the virtual edge with capacity capT (e) connecting the portal nodes at the
ends of P . Because e is the lowest capacity edge of P , this adds relative load at most 1 to each edge of P .
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(a) (b)

Figure 5: An example j-tree at the second level of recursion. On the left side, green circles indicate the components of
the forest of this j-tree, which are each made of a number of 1-clusters, indicated by blue double-line circular shapes.
Edges inside 1-clusters are not shown. Solid straight green edges indicate virtual edges of level-1 that became edges
of the level-2 forest. For each of these green edges, there is a real edge between some two nodes of the same two
level-1 components (not shown). Brown edges represent (virtual) core edges, and they are mapped (blue arrows) to
corresponding real edges (solid black). On the right side, real edges related to the virtual forest edges are represented
as solid black edges between two nodes of the same connected component.

Finally, let us consider one of the remaining edges e ∈ EH. The edge e = {c1, c2} connects two trees
T1 6= T2 of J . Let us assume that c1 ∈ T1 and c2 ∈ T2. When routing from c1 to c2, we follow

1. the path from c1 in T1 to the first skeleton cluster s1 ∈ T1 on the path to the (unique) portal p1 ∈ T1∩P ,
2. the skeleton path from s1 to p1,
3. the virtual edge corresponding to e between p1 and the (unique) portal p2 ∈ T2 ∩ P ,
4. the skeleton path from p2 to the last skeleton cluster s2 ∈ T2 when going from p2 to c2 in T2, and
5. the path from s2 to c2 in T2.

Let us compare the path from c1 via s1 to p1 with the path on which e is routed on the spanning tree T . The
part from c1 to s1 is also used when routing in T . If from s1 we follow the same direction to p1 as in T , the
two paths are, in fact, identical up the point when we reach p1. In this case, the capacities on this path suffice
by construction, as we defined capT (e′) = |f ′(e′)|. Let us therefore consider the case in which we set out
in the opposite direction from s1 on the skeleton path P 3 s1 connecting p1 to some other portal p2 than we
would in T . In that case, routing on T would cross the edge e′ ∈ D that was deleted from P . Because e′ is
the edge from P of smallest capacity, the contribution to the relative load of all edges crossed on P is upper
bounded by the relative load contributed to e′ when routing on T . Again, summing over all edges from EH
falling under Case c), this may increase their total relative loads only by an additive 1. Trivially, the third
step causes relative load 1 on the virtual edge corresponding to e, since it is not used for routing any other
edge. Reasoning symmetrically for Steps 4 and 5, we can conclude that embedding H(T ,F) into J leads
to constant relative load on all edges.

Lemma 8.7. J is O(1)-embeddable intoH(T ,F).

Proof. All the edges of the trees of J are also present in H(T ,F) with the same capacity; they are hence
straightforward to embed. Let us therefore consider the virtual edges connecting the portals of J . There
are two types of virtual edges, the ones representing edges from D and those that correspond to the non-tree
edges of H(T ,F). We first have a look at a virtual edge e corresponding to an edge e′ ∈ D. The edge e is
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routed by following path from which e′ was removed. Since the capacity of each edge on the path is at least
the capacity of e, this contributes at most 1 to the relative load of each edge.

Now consider a virtual edge e = {c, c′} corresponding to an edge e′ ∈ EH of H(F , T ). The edge e is
routed on the trees of J the clusters c and c′ reside in and via e′. The latter causes relative load 1, as e and e′

have the same capacity and no other edge uses e′. Similarly to the embedding of H(T ,F) into J , the tree
parts of the routing path that are subpaths of the path between c and c′ in T and thus will not cause more
than additive relative load 1 when summing over all edges of this type to embed. If we diverge from this
path, this is because an edge from D lies on the routing path in T ; analogously to Lemma 8.6, following the
skeleton path from which it was deleted to the respective portal increases the maximum relative load by at
most an additional 1.

Distributed Implementation. Let us now move to the distributed implementation of the above 4j-tree
construction. Recall that because F includes the random set of edges R, by Lemma 8.2, all trees in T \ F
have depth Õ(

√
n). With this in mind, constructing the skeleton is fairly simple.

Lemma 8.8. Given are a spanning tree T of a distributed cluster graph and the set of tree edges F as
computed above. We can determine the skeleton ST \F , the set of portals P , and the set of edges D (i.e.,
for {c, c′}uv ∈ D, u and v will learn this) in time O(

√
n log n) in the CONGEST model on the underlying

network graph. In the same time, we can also orient the trees rooted at the portals.

Proof. W.l.o.g., consider a single tree T of the forest T \F . By Lemma 8.2, the induced tree inG has depth
Õ(
√
n). Perform the following steps:
• For each edge e ∈ F , its incident clusters learn7 that they are primary portals, i.e., are in P1.
• Iteratively mark non-portal clusters with at most 1 marked neighboring cluster until this process stops.

Unmarked clusters are in the skeleton.
• Unmarked clusters with more than two unmarked neighboring portals are secondary portals.
• The skeleton paths connecting portals find a minimum capacity edge and add it to D.
• Each tree of T \ (F ∪D) is rooted at its unique portal, whose identifier is made known to all nodes in

the induced tree in G (together with clusters’ spanning trees).
• These identifiers are exchanged with all neighbors in G.

From the gathered information, for each edge {c, c′}uv ∈ J , u and v now can determine its membership
and its capacity in J . Observe that the bound of Õ(

√
n) on the depth of the spanning trees of G leveraged

for communication in the above construction implies that all the above steps can be completed in Õ(
√
n)

rounds, which completes the proof.

The trees rooted at the portals now induce the clusters of the new cluster graph.

Corollary 8.9. Given a graph H(T ,F) ∈ H[j/4] as computed above on a cluster graph whose clusters’
spanning trees have maximum depth d, there is an Õ(D+ d+

√
n)-round distributed algorithm to compute

• a cluster graph whose clusters’ spanning trees have depth d+ Õ(
√
n); and

• a j-tree J on this cluster graph, i.e., for each edge e ∈ J , there is a corresponding graph edge
{u, v} ∈ E whose constituent nodes know that e ∈ J as well as capJ (e); such that
• H(T ,F) is 1-embeddable into J and J is O(1)-embeddable intoH(T ,F); and
• the new clusters are induced by the tree components of J .

Proof. This readily follows from Lemmas 8.2, 8.5, 8.6, 8.7, and 8.8. The only thing left to note is that
clusters can learn the number of nodes they contain by a simple converge- and broadcast operation on their
spanning trees.

7A cluster for which edges to children are in F may not “know” about its incident edges in F as a whole, but determining
whether there is at least one is trivial.
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8.4 Sampling from the Recursively Constructed Distribution

We have now all pieces in place to efficiently sample from a distribution similar to Sherman’s in a distributed
fashion. The difference is that Theorem 3.1 and thus Lemma 8.4 merely give α ∈ 2O(

√
logn log logn), im-

plying that we must use fewer levels of recursion to ensure that the final approximation guarantee of the
congestion approximator will remain in no(1).

Theorem 8.10. W.h.p., within (
√
n + D)no(1) rounds of the CONGEST model, we can sample a tree T

from a distribution of n1+o(1) (virtual) rooted spanning trees on G with the following properties.
• For any cut of G of capacity C, the capacity of the cut in T is at least C.
• For any cut of G of capacity C, the expected capacity of the cut in T is at most αC, where α ∈ no(1).
• The distributed representation of T is given by a hierarchy of cluster graphs Gi = (Vi, Ei,Li,Ti, ψi),
i ∈ {0, . . . , i0}, i0 ∈ o(log n), on network graph G, with the following properties.

– The spanning trees of the clusters of Gi have depth Õ(
√
n).

– |Vi0 | = n1/2+o(1).
– Gi is the (rooted) tree resulting from T by contracting the clusters of Gi.
– For i > 0, Gi is also a cluster graph on network graph Gi−1.
– For i > 0, each cluster ci ∈ Vi of Gi, interpreted as cluster graph on Gi−1, contains a unique

portal cluster p(ci) ∈ Vi−1 of Gi−1 that is incident8 to all edges of Gi containing ci. That is,
Gi−1 is a |Vi|-tree with core p(Vi).

Proof. In the following, we will use w.h.p. statements as if they were deterministic; the result then follows
by taking the union bound over all (polynomially many in n) such statements we use.

Set β := 2log
3/4 n. To start the recursion, we will use G as cluster graph of itself. Formally, G̃0 :=

(V,E, V, {({v}, ∅)}v∈V , id), where id is the identity function. We perform the following construction until
it terminates:

1. Sparsify G̃i−1 using Lemma 6.1 for some fixed constant ε, e.g., ε = 1/2. This takes (
√
n + D)no(1)

rounds. Multiply all edge capacities by 1/(1−ε) (so G̃i−1 can be 1-embedded into the sparser graph).
2. If |Vi−1| /∈ ω(

√
nβ/ log n), set i0 := i and stop. This takes O(D) rounds by communicating over a

BFS tree of G.
3. Apply Lemma 8.4 for j = |Vi−1|/(4β) to the sparsified cluster graph; by the previous step, this choice

of j is feasible. As |Vi−1|/j = 4β ∈ no(1), constructing the distribution requires (
√
n + D)no(1)

rounds in total.
4. Sample a cluster graph from the distribution. This is done inO(D) rounds letting some node broadcast
O(log n) random bits over a BFS tree.

5. Apply Corollary 8.9 to extract a |Vi−1|/β-tree of Gi−1. The corollary also yields a cluster graph G̃i
(which is also a cluster graph on network graph Gi−1) so that each of its clusters ci contains exactly
one portal cluster p(ci) of the |Vi−1|/β-tree on Gi−1. This step completes in Õ(

√
n+D) rounds: there

are fewer than logβ
√
n � log n iterations of the overall construction, as |Vi| ≤ |Vi−1|/β, implying

that d ∈ Õ(
√
n) for each application of Corollary 8.9.

6. Recurse on G̃i, i.e., set i := i+ 1 and go back to Step 1.
When the above construction halts, we have that |Vi0−1| = O(

√
nβ) = n1/2+o(1). Thus, we can make the

(sparsified) cluster graph |Gi0−1| known to all nodes in (
√
n+D)no(1) rounds via a BFS tree of G. We then

continue the construction locally without controlling the size of components, which removes the constraint
on j when applying Lemma 8.8, until the core becomes empty, i.e., we construct a tree.9 We collapse the
cluster graph hierarchy for all locally performed iterations i ≥ i0, which defines the tree Gi0 on clusters Ci0
(this is feasible as each Gi, i > 0, is also a cluster graph on network graph Gi−1).

8Note that the corresponding physical edges in G may still connect to different sub-clusters of ci.
9This is essentially Sherman’s construction on the small constructed cluster graph.
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This completes the description of the algorithm. Summing up the running times of the individual steps
and using that i0 = o(log n), we conclude that the construction takes (

√
n + D)no(1) rounds. The con-

struction also maintained the stated structural properties of the cluster hierarchy. Hence, it remains to show
that (i) we sampled from a distribution of n1+o(1) trees and (ii) the stated cut approximation properties are
satisfied.

Showing these properties now is straightforward. In each step i > 0 of the recursion, by Lemma 8.4
we constructed a distribution on Õ(β) |Vi−1|-trees. The total number of recursive steps (including the local
ones), is bounded by dlogβ ne = O(log1/4 n), as |Vi| ≤ |Vi−1|/β for each i > 0. On each level of recursion,

we compute a distribution on 2O(
√

log |Vi| log log |Vi|)β ≤ 2O(
√
logn log logn)β graphs. Hence, the total number

of virtual trees in the (implicit) distribution of virtual trees from which we sampled is bounded by(
2O(
√
logn log logn)β

)dlogβ ne
= n · 2O(

√
logn log logn log1/4 n) = n1+o(1).

Consider a cut of G of capacity C. By the properties of decompositions and the fact that we multiplied
capacities by 1/(1−ε) whenever we sparsified, G is 1-embeddable into any of the trees we might construct,
implying that the corresponding cut of the sampled tree has capacity at least C. As in each step, we (i) apply
a (1+ε)-sparsifier and multiply capacities by 1/(1−ε) for constant ε, (ii) construct a (2O(

√
logn log logn),H)-

decomposition (for some family H) from which we sample, and (iii) transform the resulting graph into a j-
tree which can be O(1)-embedded into the graph from which it is constructed, we overestimate the capacity
of a given cut by an expected factor of 2O(

√
logn log logn) · O(1) = 2O(

√
logn log logn) in each step. Using

that this bound is uniform and the randomness on each level of recursion is independent, it follows that the
expected capacity of a cut of G of capacity C in the sampled virtual tree is bounded by(

2O(
√
logn log logn)

)dlogβ ne
= 2O(

√
logn log logn log1/4 n) = no(1).

9 The High-Level Algorithm

The algorithm is a distributed implementation of Sherman’s algorithm [29]. It consists of a logarithmic
number of calls to algorithm AlmostRoute, described in Section 9.1, and one computation of a maximum-
weight spanning tree and routing the left-over demand through this tree. Pseudocode for the top-level
algorithm is presented in Algorithm 1.

Algorithm 1 Max Flow. Input: demand vector b ∈ Rn; output: flow vector f ∈ Rm.
1: b0 ← b; f0 ← 0
2: for i← 1 to (logm+ 1) do
3: f i ← AlmostRoute(bi,

1
2 )

4: bi ← bi−1 −Bf i−1.

5: Compute a maximum weight spanning tree T on G, where weights are the capacities of edges.
6: Route the residual demand bt through T ; let fT be the resulting flow.
7: Output fT +

∑1+logm
i=1 f i.

Most of this section is dedicated to explaining how to implement the AlmostRoute algorithm. Let us
first quickly outline how we implement the final steps using standard techniques.

Lemma 9.1. Steps 5–6 Can be implemented in the CONGEST model in Õ(D +
√
n) rounds w.h.p.
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Proof sketch. A maximum weight spanning tree T can be computed in Õ(D +
√
n) rounds using the

minimum weight spanning tree algorithm of Kutten and Peleg [18] (say, by assigning weight w(e) :=
−cap(e) for each edge e). To compute the flow, we use the following observation: if T was rooted at one
of its nodes, then to route the demand bt over T , it would be sufficient for each node v to learn the total
demand dv in the subtree rooted at v. In this case each node v assigns dv units of flow to the edge leading
from v to its parent.

We now show how to root the tree and find the total demand in each subtree in Õ(D+
√
n) rounds. The

algorithm is as follows. Remove each edge of the tree independently with probability 1/
√
n. W.h.p.,

(i) each connected component induced by the remaining edges contains has strong diameter Õ(
√
n),

(ii) O(
√
n) edges are removed, and hence

(iii) the number of components is O(
√
n).

Within each component, all demands are summed up, and this sum is made known to all nodes. The
summation takes Õ(

√
n) rounds due to (i), and we can pipeline the announcement of the sums over a BFS

tree in Õ(
√
n+D) rounds due to (iii).

Moreover, in this time we can also assign unique identifiers to the components (e.g. the minimum iden-
tifier) and make the tree resulting from contracting components globally known. Using local computation
only, nodes then can root this tree (e.g. at the cluster of minimum identifier) and determine the sum the
demands of the clusters that are fully contained in their subtree. Using a simple broadcast, the orientation
of edges within components is determined, and using a convergecast on the components, each node can
determine the sum of demands in its subtree. These steps take another Õ(

√
n) rounds.

9.1 Algorithm AlmostRoute: The Gradient Descent

We now explain how to implement Algorithm AlmostRoute in a distributed setting. The idea is to use
gradient descent with the potential function

φ(f) = smax(C−1f) + smax(2αR(b−Bf)) ,

where the “soft-max” function, defined by

smax(y) = log

(
k∑
i=1

eyi + e−yi

)
for all y ∈ Rk ,

is used as a differentiable approximation to the “max” function.
Given this potential function, AlmostRoute performs O(α2ε−3 log n) updates on f and outputs a flow

f that optimizes the potential function up to a (1 + ε) factor.10 Pseduocode for this algorithm is given in
Algorithm 2.

10Sherman claims that one can save a factor of 1/ε by a more careful scaling [29].
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Algorithm 2 AlmostRoute(b, ε)

1: kb ← 2α ‖Rb‖∞ ε/(16 log n); b← kbb.
2: repeat
3: kf ← 1
4: while φ(f) < 16ε−1 log n do
5: f ← f · (17/16); b← b · (17/16); kf ← kf · (17/16)

6: δ ←
∑
e∈E |cap(e) ∂φ∂fe |

7: if δ ≥ ε/4 then
8: fe ← fe − sgn

(
∂φ
∂fe

)
· cap(e) δ

1+4α2

9: else
10: fe ← fe/kf for all edges e ∈ E.
11: bv ← bv/(kbkf ) for all nodes v ∈ V
12: return
13: until done

To implement this algorithm in a distributed setting, we need to compute R, and to do multiplications
by R or its transpose Rᵀ, distributively. These multiplications are needed for computing φ(f) and and its
partial derivatives. We remark thatR andRᵀ are not constructed explicitly, as we need to ensure a small time
complexity for each iteration. Assuming that we can perform these operations, each step of AlmostRoute
can be completed in Õ(D) additional rounds.

We maintain the invariant that at the beginning of each iteration of the repeat loop, each node v knows
the current flow over each of the links v is incident to, and the current demand at v (i.e., (b−Bf)v). Let us
break the potential function φ in two, i.e.,

φ(f) = φ1(f) + φ2(f) , where φ1(f) = smax(C−1f) and φ2(f) = smax(2αR(b−Bf)) .

We proceed as follows. First, we compute φ1(f): to find smax(C−1f), it suffices to sum exp(fe/cap(e))
and exp(−fe/cap(e)) over all edges e, which can be done in O(D) rounds. As Sherman points out,
φ(f) = Θ(ε−1 log n) due to the scaling, and thus, encoding exp(φ(f)) with sufficient accuracy requires
O(ε−1 log n) bits, which is thereby also a bound on the encoding length of all individual terms in the sums
for φ1 and φ2. The error introduced by rounding theses values to integers is small enough to not affect the
asymptotics of the running time.

For determining φ2(f), we compute the vector y := 2αR(b − Bf) and then do an aggregation on a
BFS tree as for φ1(f). Since Bf can be computed instantly ((Bfv is exactly the net flow into v), this boils
down to multiplying a locally known vector with R. Before we discuss how implement this operation, let us
explain more about the structure of R and how we determine ∂φ

∂fe
, which is required in Lines 6 and 8 of the

algorithm.
The linear operator R is induced by graph cuts. More precisely, in the matrix representation of R, there

is one row for each cut our congestion approximator (explicitly) considers. We will clarify the structure of
R shortly; for now, denote by I the set of row indices of R. Observe that

∂φ

∂fe
=

exp(fe/cap(e))− exp(−fe/cap(e))

cap(e) exp(φ1)
+
∂φ2
∂fe

(3)

and hence, given that φ1 is known, the first term is locally computable. The second term expands to

∂φ2
∂fe

=
∑
i∈I

∂φ2
∂yi
· ∂yi
∂fe

=
∑
i∈I

exp(yi)− exp(−yi)
exp(φ2)

· 2αBi,e
cap(i)

,
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where cap(i) is the capacity of cut i in the congestion approximator and Bi,e ∈ {−1, 0, 1} denotes whether
e is outgoing (−1), ingoing (1), or not crossing cut i.11

The cuts i ∈ I are induced by the edges of a collection of (rooted, virtual, capacitated) spanning trees
T, where for T ∈ T we write (v, v̂) ∈ T if v̂ is the parent of v and denote by Tv the subtree rooted at v. For
each T ∈ T, each edge (v, v̂) ∈ T now induces a (directed) cut (Tv;Tv) with index i(T , (v, v̂)). We denote
the set of edges crossing this cut by by δ(Tv). Let us also define

p(T , v) =
exp(yi(T ,(v,v̂)))− exp(−yi(T ,(v,v̂)))

exp(φ2)
· 2α

capT ((v, v̂))
.

With this notation, we have that

∂φ2
∂fe

=
∑
T ∈T

∑
(v,v̂)∈T
e∈δ(Tv)

p(T , v) ·Bi(T ,(v,v̂)),e.

We call p(T , (v, v̂)) the price of the (virtual) edge (v, v̂) ∈ T . Let Pv,T denote the edge set of the unique
path in T from v to the root of T . We define a node potential for each node v by

πv :=
∑
T ∈T

∑
(w,ŵ)∈Pv,T

p(T , (w, ŵ)) .

For any e = (u, v), the cuts induced by edges in T ∈ T that e crosses correspond to the edges on the unique
path from u to v in T . For all edges (w, ŵ) ∈ T on the path from u to the least common ancestor of u and
v in T , Bi(T ,(w,ŵ)),e = −1, while Bi(T ,(w,ŵ)),e = +1 for the edges on the path between v and this least
common ancestor. Thus,

∂φ2
∂fe

= πv − πu , (4)

and our task boils down to determining the value of the potential πv at each node v ∈ V . To this end, we
need two key subroutines to compute distributively the following quantities.

(1) yi for each cut i. Note that b− Bf is known distributedly, i.e., each node knows its own coordinate of
this vector. For each tree in T ∈ T, we need to aggregate this information from the leaves to the root.
This means to simulate a convergecast on the virtual tree T .

(2) πv for each node v. Provided that each (virtual) tree edge knows its y-value and φ2, the prices can
be computed locally. Then the contribution of each tree to the node potentials can be computed by a
downcast from the corresponding root to its leaves.

With these routines, one iteration of the repeat loop is now executed as follows:
1. Compute φ1, y (local knowledge), and φ2 (aggregation on BFS tree once y is known).
2. Check the condition in Line 4. If it holds, locally update b, f , and kf , and go to the previous step.
3. Compute the potential π (local knowledge).
4. For each e ∈ E, its incident edges determine ∂φ

∂fe
(based on Equations 3 and 4, it suffices to exchange

πu and πv over e).
5. Compute δ (aggregation on BFS tree).
6. Locally update fe and bv for all e ∈ E and v ∈ V .

Note that all of the individual operations except for computation of y and π can be completed in O(D)
rounds. Sherman proved [29] that AlmostRoute terminates after Õ(ε−3α2) iterations. As it is only called
O(log n) times by the max-flow algorithm, Theorem 1.1 follows if we can compute y and π in (

√
n +

D)no(1) rounds for an α-congestion approximator with α = no(1); this is subject of the next subsection.
11Technically, Bi,e =

∑
v∈Si

Bve where Si is the set of nodes defining cut i.
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level-0 cluster = node top-level cluster. 
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each cluster is 
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virtual tree 
edge 𝑒 

physical edge 𝑝(𝑒), 
responsible for virtual 
edge 𝑒 

Figure 6: Hiearchical cluster decomposition of a virtual tree T ∈ T. Black edges are virtual tree edges, which are
represented by a physical edge connecting the top-level clusters they connect (the orange dotted edge p(e) corresponds
to the edge labeled e). Each cluster is spanned by a tree in G of depth Õ(

√
n), which is not shown.

9.2 Congestion Approximation

Our congestion approximator R is defined by the edge-induced cuts of a sample T of virtual trees T from a
recursively constructed distribution. The trees are represented distributedly by a hierarchy of cluster graphs
(see Figure 6 for an illustration and Section 5 for the formal definition of cluster graphs). Intuitively, a
cluster graph partitions the nodes into clusters, each of which has a spanning tree rooted at a leader, and a
collection of edges between clusters that are represented by corresponding graph edges between some nodes
of the clusters they connect. In Section 8, we have shown the following theorem.

Theorem 8.10. (restated) W.h.p., within (
√
n + D)no(1) rounds of the CONGEST model, we can sample

a tree T from a distribution of n1+o(1) (virtual) rooted spanning trees on G with the following properties.
• For any cut of G of capacity C, the capacity of the cut in T is at least C.
• For any cut of G of capacity C, the expected capacity of the cut in T is at most αC, where α ∈ no(1).
• The distributed representation of T is given by a hierarchy of cluster graphs Gi = (Vi, Ei,Li,Ti, ψi),
i ∈ {0, . . . , i0}, i0 ∈ o(log n), on network graph G, with the following properties.

– The spanning trees of the clusters of Gi have depth Õ(
√
n).

– |Vi0 | = n1/2+o(1).
– Gi is the (rooted) tree resulting from T by contracting the clusters of Gi.
– For i > 0, Gi is also a cluster graph on network graph Gi−1.
– For i > 0, each cluster ci ∈ Vi of Gi, interpreted as cluster graph on Gi−1, contains a unique

portal cluster p(ci) ∈ Vi−1 of Gi−1 that is incident12 to all edges of Gi containing ci. That is,
Gi−1 is a |Vi|-tree with core p(Vi).

The first two properties of each T stated in the theorem imply that we can use them to construct a good
congestion approximator R. More precisely, Lemma 3.3 implies the following corollary.

12Note that the corresponding physical edges in G may still connect to different sub-clusters of ci.
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Corollary 9.2. Sampling a collection T of O(log n) virtual trees given by Theorem 3.2 and using them as
congestion approximator R in the way specified in Section 9.1 implies that the total number of iterations of
Algorithm 2 is no(1).

All that remains now is to show that the distributed representation of each sampled T ∈ T allows to
simulate a convergecast and a downcast on T in (

√
n + D)no(1) rounds: then we can implement the key

subroutines (1) and (2) (i.e., compute y and π) outlined in Section 9.1 with this time complexity, and by
Corollary 9.2 the total number of rounds of the computation is bounded by (

√
n+D)no(1).

Fortunately, the recursive structure of the decomposition is very specific. The cluster graphs of the
different levels of recursion are nested, i.e., the clusters of the (i − 1)th level of recursion are subdivisions
of the clusters of the ith level. What is more, each cluster is a subtree of the virtual tree and is spanned
by a tree of depth Õ(

√
n) in G (cf. Figure 6) Hence, while the physical graph edges representing the

virtual tree edges are between arbitrary nodes within the clusters they connect, we can (i) identify each
cluster on each hierarchy level with the root of the subtree induced by its nodes, (ii) handle such subtrees
recursively (both for convergecasts and downcasts), (iii) on each level of recursion but the last, perform the
relevant communication by broadcasting or upcasting on the underlying cluster spanning trees in G of depth
Õ(
√
n), and (iv) communicate over a BFS tree of G on the final level of recursion, where merely n1/2+o(1)

clusters/nodes of the virtual tree remain.

Corollary 9.3. On each virtual tree T ∈ T, we can simulate convergecast and upcast operations in Õ(
√
n+

D) rounds.

Theorem 1.1 now follows from Sherman’s results on the number of iterations of the gradient descent
algorithm [29], the discussion in Section 9.1, and Corollaries 9.2 and 9.3.
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