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Abstract

In this thesis, we study the local broadcast problem in two well-studied wireless network models.
The local broadcast problem is a theoretical approach for capturing the contention management is-
sue in wireless networks; it assumes that processes are provided messages, one by one, that must be
delivered to their neighbors. We study this problem in two theoretical models of wireless networks,
the classical radio network model and its more recent generalization, the dual graph model which
includes the possibility of unreliable time-changing links. Both these models are synchronous; the
execution proceeds in lock-step rounds and in each round, each node either transmits a message
or listens. In each round of the dual graph model, each unreliable link might be active or inactive,
whereas in the classical model, all the links are always active. In each round, each node receives a
message if and only if it is listening and exactly one of its neighbors, with respect to the the active
links of that round, transmits.

The time complexity of the local broadcast algorithms is measured by two bounds, the ac-
knowledgment bound and the progress bound. Roughly speaking, the former bounds the time
it takes each broadcasting node to deliver its message to all its neighbors and the latter bounds
the time it takes a node to receive at least one message, assuming it has a broadcasting neighbor.
Typically these bounds depend on the maximum contention and the network size.

The standard local broadcast strategy is the Decay protocol introduced by Bar-Yehuda et al. [19]
in 1987. During the 25-years period in which this strategy has been used, it has remained an
open question whether it is optimal. In this paper, we resolve this long-standing question. We
present lower bounds on progress and acknowledgment bounds in both the classical and the dual
graph model and we show that, with a slight optimization, the Decay protocol matches these lower
bounds in both models. However, the tight progress bound of the dual graph model is exponen-
tially larger than the progress bound in the classical model, in its dependence on the maximum
contention. This establishes a separation between the two models, proving that progress in the
dual graph model is strictly and exponentially harder than its classical predecessor. Combined, our
results provide an essentially complete characterization of the local broadcast problem in these two
important models.

Thesis Supervisor: Nancy Lynch
Title: Professor
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Chapter 1
Introduction

Wireless networks have become an important part of communications networks. This trend is get-
ting more and more pronounced with mobile computation devices like laptops, notebooks, and
smart-phones, which use wireless communications and make wireless networks essentially ubig-
uitous. Wireless networks are distinguished from the wired networks by two main characteristics:
their broadcast-type communication and their interference-prone nature. More precisely, on one
hand, when a node transmits a message, this message can potentially reach all of its neighbors; on
the other, when two or more neighbors of a node transmit messages simultaneously, these trans-
missions interfere and this node does not receive either of the messages. In this case, we say the
transmitted messages are lost due to collision. These two characteristics give rise to a form of
contention between nearby nodes on accessing the shared medium.

This contention makes the task of designing higher-level applications and algorithms chal-
lenging. It is convenient and preferable to separate the challenge of wireless network contention
management from the challenges of solving the higher-level problems that rely on it. The practical
community of wireless networks addresses this issue by numerous Medium Access Control (MAC)
layer designs [1, 2, 3, 5, 6, 4]. The theory community abstracts this issue as the local broadcast
problem [31, 35, 36, 38, 40].

In this thesis, we study the local broadcast problem and characterize its complexity with re-
spect to certain measures. We explain the local broadcast problem and the related measures in

Section 1.2. Before that, we first present an informal description of the models.

1.1 The Models

We consider two synchronous multi-hop radio network models: the classical radio network model
and the dual graph model.

The classical radio network model was introduced by Bar-Yehuda et al. [19] and is arguably
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the most widely-used model in the study of wireless network algorithms in distributed computing
community. It describes the communication topology of a multi-hop radio network by a graph
and allows each node to broadcast a message to all its neighbors in each round with the restriction
that concurrent broadcasts by two or more neighbors of a node u lead to message loss at u, due to
collisions.

The dual graph model was introduced more recently by Kuhn et al. [31, 33] and generalizes the
classical model by allowing some edges in the communication graph to be unreliable, and therefore
to drop messages in an adversarial manner. The addition of these unreliable edges is intended to
match the reality of radio communication, where links can behave unpredictably due to various

reasons such as dynamic fading and ambient interference.

1.2 The Local Broadcast Problem

The informal description of the local broadcast problem is as follows: we have a set of processes,
which abstract the local broadcast modules of the wireless nodes. On the other hand, we have an
environment, which abstracts the higher layers of these wireless nodes, i.e., the modules that are
trying to solve higher layer problems. The environment sends some messages to the processes, one
at a time for each process, and the processes must deliver these messages to their neighbors.

Similar to [31, 38], we characterize the efficiency of a local broadcast algorithm by two metrics:
(1) an acknowledgment bound, which measures the time for a process that has a message for
broadcast to deliver its message to all of its neighbors, and (2) a progress bound, which measures
the time for a process to receive at least one message, assuming that it has at least one neighbor
with a message for transmission.

The acknowledgment bound is obviously interesting. The progress bound has also been shown
to be very important for tightly analyzing algorithms for several problems. For instance, this
bound plays a crucial role in analyzing the global message broadcast algorithms [31] where the
reception of any message is usually sufficient to advance the algorithm. The progress bound was
first introduced and explicitly specified in [31, 36] but it had already been implicitly used in (the
analysis of) many previous works [19, 23, 24, 25, 26, 29]. Both acknowledgment and progress

bounds typically depend on two parameters, the maximum contention A and the network size n.

1.3 The Standard Approach: the Decay Protocol

The standard approach for contention management in mutli-hop radio networks is the Decay pro-
tocol introduced by Bar-Yehuda, Goldreich and Itai in 1987 [19]. The core idea in the Decay
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| | Classical Model | Dual Graph Model |
Ack. Upper | O(Alogn)** O(A’logn)**
Ack. Lower Q(Alogn)* Q(A"logn)*
Prog. Upper | O(log Alogn) O(A’logn)**
Prog. Lower | Q(log A log n)** Q(A"logn)*

Figure 1-1: A summary of our upper and lower bound results for acknowledgment and progress for the local
broadcast problem. Results that are new, or significant improvements over the previously best known result, are
marked with an “*” while a “**” marks results that where obtained from prior work via minor tweaks.

protocol is that nodes cycle through a number of exponentially decreasing transmission probabil-
ities, with the hope that one of these transmission probabilities will be appropriate for the current
level of contention. In more detail, the Decay protocol works as follows: Let A be the maximum
contention. Rounds are divided into phases, each consisting of [log A] consequent rounds, and in
each phase, processes that have a message for transmission transmit their messages based on the
following probabilistic rule: for each i € [1, [log A]], each process that has a message for trans-
mission transmits its message with probability 27¢, and remains silent otherwise. One can easily
see that with this transmission rule, in each phase, each process that has at least one neighbor with
a message for transmission receives at least one message, with probability at least a positive con-
stant. Therefore, in ©(logn) phases, each process that has at least one neighbor with a message
for transmission receives at least one message with high probability. This means that the Decay
protocol has a progress bound of O(log A logn) rounds. From this fact, and noting the symmetry
of the probabilities for different sender processes, one can conclude that the Decay protocol has an
acknowledgment bound of O(A log Alogn) rounds.

This simple, randomized and distributed protocol was first introduced in [19] as a submodule
for solving the global broadcast problem. It was subsequently adapted to resolve contention in
numerous wireless algorithms (e.g., [29, 31, 38]). Then, in [36], this commonly-used strategy was

formalized as a solution to the local broadcast problem in the classical model.

1.4 Our Results

The simplicity of the Decay protocol, and the fact that it is the commonly-accepted standard con-
tention management technique for classical radio networks raises the important question that (1)
“Is Decay-style contention management optimal for classical radio networks?”

Moreover, one might ask (2) “Can similar strategies solve the local broadcast problem when
unreliability is admitted, e.g., in the dual graph model?” Also, it is interesting to ask (3) “Are there

major differences between the time bounds of the local broadcast algorithms in unreliable versus
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reliable radio networks?” This last question is important because any major difference would iden-
tify cases in which one should be careful about trusting solutions analyzed in the classical model
to work correctly or efficiently in a real world deployment where unreliable links are unavoidable.

In this thesis, we answer the above questions and essentially provide a complete characteriza-
tion of the local broadcast problem. We do this by providing matching upper and lower bounds for
both the acknowledgment and the progress bounds, and in both the classical radio network model

and the dual graph model. Figure 1-1 shows a summary of these bounds.

1.4.1 Lower Bounds

As our main technical contribution, we present lower bounds for both progress and acknowledg-
ment bounds in both the classical and the dual graph model. All these lower bounds hold even for
centralized algorithms.

In Corollary 11.1.6 we show a 2(log A log n) lower bound for progress in the classical model.
In Corollary 11.1.7, we show that 2(Alogn) is a lower bound on the acknowledgment in the
classical model. These two bounds show that the Decay strategy is almost optimal for both progress
and acknowledgment in the classical model. This answers the question (1) above in the affirmative.

Second, we turn our attention to lower bounds for dual graph model. We show in Corol-
lary 11.1.8 and Corollary 11.1.8 that 2(A’logn) is a lower bound for both the progress and the
acknowledgement in the dual graph model, where A’ is the maximum contention in the dual graph

network.

1.4.2 Upper Bounds

To cement our lower bounds and complete the picture, we show in Chapter 10 that a variant of the
Decay protocol achieves upper bounds that match these lower bound, in both the classical and the
dual graph model.

As previously mentioned, in the classical model, the original Decay protocol has progress and
acknowledgment bounds of O(log Alogn) and O(Alog Alogn), respectively. Corollary 11.1.6
shows that this progress bound is already optimal. We present a slightly optimized version of the
Decay protocol that, while keeping the progress bound unchanged, achieves the acknowledgment
bound O(A log n), in the classical model (Theorem 10.2.1). This acknowledgment bound matches
Corollary 11.1.7.

We also show that our optimized variant of the Decay protocol achieves the progress bound
O(A’logn) and the acknowledgment bound O(A’log n), in the dual graph model (Theorem 10.2.1).
These upper bounds match the lower bounds of Corollary 11.1.8 and Corollary 11.1.8, respectively.
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The upper bound results for the dual graph model answer question (2) above in affirmative.
Moreover, the O(log A log n) progress upper bound of classical model along with the (A logn)
lower bound of the dual graph model demonstrate an exponential gap between the progress bounds
in two models. This provides a positive response for the question (3) above and implies that
progress is provably harder (slower) in the face of unreliability.

We remark here that the main results in this thesis are based on a joint work with Bernhard

Haeupler, Calvin Newport and Nancy Lynch [41, 42].

1.5 Organization

The local broadcast problem, in its full generality, assumes that different processes can keep re-
ceiving broadcast requests (i.e., messages to be broadcast to their neighbors) as time continues.
This describes the practical reality of contention management, which is an ongoing process. Our
algorithm works in this general setting. To present the core of our lower bounds in a cleaner format,
we use a simplified setting which we call the single-shot setting: the network is a bipartite network
composed of two sides, called senders and receivers. Each sender has a message (from the start)
and it has to deliver it to all of its receiver neighbors in the reliable part of the network. Therefore,
in particular, this single-shot setting does not include an environment (which generates broadcast
requests continuously). This setting is significantly simpler than the general ongoing case of the
local broadcast problem, which we call the multi-shot setting. Thanks to this single-shot setting,
we are able to present the core of our lower bounds away from the complications needed for the
generality of the local broadcast problem. We later show that these lower bounds carry over to the
multi-shot setting. Having this in mind, the organization of the main body of the thesis is divided
into two parts: Part I, where we present the simplified single-shot setting and the related lower
bounds, and Part II, where we present the general multi-shot setting and the related upper and
lower bounds.

The more specific organization of the thesis is as follows. We start with presenting some
mathematical notations and basic probabilistic inequalities in Chapter 2. These are used in both

parts of the thesis. Then, the rest of the thesis is divided into two parts:

e Part I: In Chapter 3, we present the models that we use for the single-shot setting. Chapter
4 presents the statement of the local broadcast problem in this setting and the measures that
we use for analyzing the performance of the related algorithms. Chapters 5 and 6 presents
our lower bounds for the single-shot setting of the classical and the dual graph models,

respectively.

e Part II: In Chapter 7, we present the models that we use for the multi-shot setting. Chapter
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8 presents the statement of the local broadcast problem in the multi-shot setting and the
measures that we use for analyzing the performance of the related algorithms. In Chapter 9,
we present the related work. In Chapter 10, we present our local broadcast algorithm for both
the classical and the dual graph models of this general setting. In Chapter 11, we explain
how the lower bounds of the single-shot setting, presented in Chapters 5 and 6, extend to the

general multi-shot setting.

We conclude this thesis in Chapter 12.

14



Chapter 2
Mathematical Preliminaries

In this chapter, we define the notations used throughout this thesis and we also review some prob-

ability inequalities.

2.1 Notations

e We use the notations R and R™ to denote the set of real numbers and the set of positive real

numbers, respectively. We also use the notation N to denote the set of all positive integers.

e We use the notation [r, 7’|, for integers r and ' > r, to indicate the sequence {r,...,r’'}. We

also use the notation [r] for integer r to indicate [1, r|.
e We use the notation 2° to denote the power set of set S, i.e., the set of all subsets of S.

e We use the notation g to denote the set of all finite length sequences over set .S, i.e., se-

quences {ag }ren such that for each i € [1, k], a; € S.

e For a graph H = (V, E), for each node v € V, the notation Ny (u) describes the set of
neighbors of u in H. Moreover, we define N} (u) = Ny (u) U {u}.

e We use symbols | and T to indicate two special values. These special values respectively
indicate silence and collision. For example, transmitting | means remaining silent. We
explain the meaning and the usage of these symbols in Section 7.4. We use M to denote the
set of all messages and we assume that M N {L, T} = (). We use notations M and M+
to denote sets M U {L} and M U {L, T}, respectively.

e We use the notation w.h.p. (with high probability) to indicate a probability at least 1 — %,
where n is the number of the nodes in the network. We present the details of the graph model

of the network in Section 7.1
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2.2 Some Probability Inequalities

Theorem 2.2.1 (Union Bound). For any probability space and arbitrary events £y, &, ..., & in

this space, we have

k k
Pr| J&) < Priel]
i=1 i=1
Theorem 2.2.2 (Chernoff Bound). Let X, X, ..., X be independent Poisson trials such that
foreachi € [1,k], Pr[X; = 1] = p;, where p; € (0,1). Let X = > | X;, and pn = E[X]. For any
0 > 0, we have

pé?

PriX >1+0)p <e 3

and
2
PriX <(1—8)p <e T
Next, we present a theorem by Fortuin, Kasteleyn, Ginibre, commonly referred to as the FKG
inequality [7, Chapter 6], and a simple corollary of it which we use to prove Theorem 5.2.1. We

start by presenting some definitions.

Definition 2.2.3. A finite lattice (L, <p) is a finite set L partially ordered by <y, in which every two
elements x,y € L have a least upper bound, denoted by xV, and a greatest lower bound, denoted
x Ay. A lattice (L, <y,) is distributive if for all x,y, z € L, we have x A (yV z) = (x Ay) V (z A 2).

Definition 2.2.4. Suppose (L, <p) is a finite lattice. A function f : L — R is called non-decreasing
(resp., non-increasing) with respect to <y if v <y y implies f(z) < f(y) (resp., if v <y y implies
f(x) > f(y)).

Definition 2.2.5. Suppose (L, <p) is a finite lattice. A function u : L — R is called log-
supermodular if for all x,y € L, we have p(x)u(y) < p(x Ay)u(z V y).

Theorem 2.2.6 (FKG Inequality). Ler (L, <) be a finite distributive lattice and let ji : L — R™
be a log-supermodular function. If f,g : L — R are both non-decreasing functions with respect

to <;, then we have

(X f@)g@u(@) - (D u@) = (D fl@)p@) - (Y gl@)u(@))

zeL €L zeL €L

Corollary 2.2.7. Consider an arbitrary integer K > 0 and suppose that A, to A, are { fixed
arbitrary subsets of set [K|. Choose a subset B C |K] as follows: for each k € [K|, include k in
set B independently with probability p € [0, 1]. We have

14
i=1
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Proof. We first show that for each j € [2, /], we have

Pr[A mB;&(Z)‘vZe —1,AinB#0| > Pr[A; N B # (]

Let L be the set of all subsets of [K] ordered by inclusion, i.e., for each two subsets S, S" C
K], we have S <, S’ iff S C S’. With this order, for each two subsets S, S C [K], we
have SA S = SUS and S Vv S = S NS Thus, for each three subsets 5,5, 5" C [K],
SAS'VS)=SUS'NS")=SusS)N(SUS")=(SAS)V(SAS"), which shows that
L with the given order is a distributive lattice. Consider the function x4 : L — [0, 1] where for any
S C [K], we have u(S) = p/*l(1 — p)X~I5I. Tt is easy to check that y is log-supermodular. That is

because, for each two subsets S, 5" C [K],

p(S)u(S) = (P = p)KS) (1 = p)KITy = pISIHS (1 — )2 ISIlS]
— plSIHISI=ISNS"|plsns'] (1- p)K—(IS\HS’I—ISmS’l)(l B p)K—(lsnS’D
<p|SUS’ p) —(|SUS,|)) <p|SﬁS,|(1 . p)K—(|SﬂS,|))

= u(SUSHu(SNS") =u(SAS S VS

Note that the function y is chosen such that ;(S) = Pr[B = S].

Now, fix any j € [2, (] and consider indicator functions f,g : L — {0, 1} as follows: for each
set S C [K], f(S)=1iff SNA; # 0andg(S) =1iff Vi € [1,j — 1], we have A; N B # 0.
Clearly, f and g are both non-decreasing with respect to the inclusion order. With these definitions,
it follows from the FKG inequality (Theorem 2.2.6) that

Prfvie Ll AnB£0) -1 = (X folsouta) - (S uto)

zeL zeL
> (S f@u@) - (3 g(@u(@) = PrlA;nB £0]-Pr {vze[ U, AN B A
z€eL z€eL
Now dividing the two sides by Pr {Vz €l,j—1,ANB# @] we have
Pr[A ﬂB;«é@‘vze ]AmB¢®]>Pr[A N B # ()]
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Given this inequality for any j € [2, /], we can complete the proof of the corollary easily as follows:
Pr [Vz’ € [1,{,ANDB# (Z)}

¢
= PrAnB#£0-[]Pr {Aij%@

J=2

Vie[l,j—1,A4,NB#0

0 l
> PrANB#0]- [[Pr[A;n B # 0] =[[Pr[4, N B #0]
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Part 1

The Simplified Single-Shot Setting and
Lower Bounds
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Chapter 3

The Models in The Single-Shot Setting

In this chapter, we present the definitions of the models that we use for the simplified single-shot
setting. We use almost the same models in the second part of the thesis when studying the general
multi-shot case of the problem, with the exception of a small number of changes which we briefly
mention in this chapter and we explain in detail in Chapter 7.

As mentioned in the introduction, we use two models, namely the classical radio network
model (also known as the radio network model) and the dual graph model. The former model has
been extensively studied since the late 1980s [19]-[29], [31, 36, 40] and assumes that all connec-
tions in the network are reliable. The latter model was introduced recently in 2009 [31, 33], and
is more general in that it includes the possibility of unreliable edges. Since the former model is
simply a special case of the latter, we use the dual graph model for defining both models, and also
when describing the problem statement in the next chapter. However, in some places, we indicate
how a certain result or property changes when we focus on the special case of the classical radio
network model.

In the dual graph model of the single-shot setting, a distributed system is composed of a set of
processes that are connected to each other via a network, and an adversary that controls the commu-
nications on this network to a certain extent (to be explained in Section 3.3). The main difference
between this model and the model for the multi-shot setting that we explain in Chapter 7 is that,
in the multi-shot version, the distributed system also includes an environment. This environment
is an abstraction of the higher levels of the wireless nodes that interact with the local broadcast
module (abstracted as processes here). In Chapter 7, we present the details of the definition of the
environment and explain the interactions between the environment and the processes.

The rest of this chapter is organized as follows: In Section 3.1, we present the network connec-
tion assumptions for the dual graph model. We explain what a process in this model is in Section
3.2. In Section 3.3, we explain how a distributed system in the single-shot setting works as a whole,

i.e., what are the executions of an algorithm in this model and what is the role of the adversary. In

21



all Sections 3.1 to 3.3, we try to present the model as general as possible, in order to keep it similar
to its counterpart in the multi-shot setting (Chapter 7). However, in our lower bounds (all results in

Chapters 5 and 6), we use a stronger model, centralized setting, which we explain in Section 3.4.

3.1 Network Connections

In the dual graph model, radio networks have some reliable links and potentially some unreliable
links. In the dual graph model, we define a network (G, G’) to consist of two undirected finite
graphs, G = (V, E) and G’ = (V, E’), where we have £ C FE’. Intuitively, set £ is the set of
reliable edges while £’ is the set of all edges (both reliable and unreliable). We assume that the
communications on the unreliable edges, i.e., the edges in set E’\ E, are controlled by an adversary.
We explain this issue in more detail in Section 3.3. When restricting attention to the special case of
the classical radio network model, there are no unreliable edges and thus, we simply have G = G,
i.e., E = E’. We define the size of the network to be n = |V/|. We remark that graphs G and G’
can be disconnected.

We assign processes to graph nodes of the network (G,G”). This assignment is defined by
an injective function id() from V' to the set of process ids [N] (refer to Section 3.2 for process
definitions.). That is, for each v € V, id(v) indicates the id of the process assigned to graph node
v. For each v € V, we use notation proc(v) to indicate the process with id id(v), i.e., the process
that is assigned to graph node v. We sometimes abuse notation by using the notation process u, or
sometimes just u, for some graph node u € V/, to refer to proc(u). We refer to a network (G, G)
and a mapping id() from graph nodes to processes as a setting.

Processes can potentially know the network (G, G’) or have some partial knowledge about it'.
This means that processes could have a full description of the network or some information about
it built into their states, and the related distributed algorithm is required to work only if this full
description matches the description of the network or if this partial information is consistent with
the description of the network. To strengthen our results, we remark that lower bounds (all results
in Chapters 5 and 6) allow full knowledge of the network graphs (G, G’).

3.2 Distributed Algorithms and Processes

We define a distributed algorithm A to be a collection of N randomized processes, where N is
an arbitrary positive integer. Processes are described by probabilistic automata and intuitively, in

each process, we have two types of transitions: (1) probabilistic transitions that take the state at the

I'This is because, in many real world settings, it is reasonable to assume that devices can make some assumptions
or inference about the structure of the network.
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beginning of a round to an intermediate state and a message to be transmitted on the channel (or
silence), (2) deterministic transitions that take an intermediate state and a message received from
the channel (or a special value L or T) to the state at the end of a round.

The formal definition of processes is as follows: Each process in A is a 6-tuple (i, Q°, P*, S§, F*, G")

and we have:
e | € [N] is the unique identifier of this process.

e Q' and P! are two sets of states, and we have Q' N P* = (). We refer to states in these two

sets respectively as O-states and P-states.
e Si € Q'is asingle starting state.

e F'is a function that captures the probabilistic transitions of the process. For each state
S € Q) function F(S) : P" x M, — [0,1] is a probability distribution function over
Pt x M . That is, for each state S’ € Q', and each m € M, F'(S)(S’,m) is the
probability that, given that the process with id ¢ is in state .S, it makes a transition to state
S’ and transmits m if m # 1 and remains silent if m = 1. Note that, as mentioned in

Section 2.1, in this notation, symbol L means remaining silent.

e G': Pl x M 1 — Q'is a function that captures the deterministic transitions of the process.
For each state S’ € P’ and each m’ € M+, G'(S',m') is a state in Q', and we have the
following: if the process with id 7 is in P-state S” and it receives m’ from the channel, then

it makes a transition to state G*(.S", m/).

For simplicity, we sometimes use process i to refer to the process with id 7.

3.3 Executions in the Dual Graph Model

As mentioned at the start of this chapter, in a distributed system in the dual graph model, a set
of processes are connected to each other via a network as described in Section 3.1, where the
communications over this network are controlled by an adversary. In this section, we explain how
this system works as a whole by describing the executions of a distributed algorithm in this model
and explaining the role of the adversary. An execution of an algorithm A in network (G, G’)
proceeds as follows:

The execution proceeds in synchronous lock-step rounds 1, 2, ..., where all the participating
processes start in the first round. At the start of each round r, every process proc(u),u € V is in
a state S € Q', where i = id(u). In particular, at the start of the first round, proc(u) is in state

S¢. Then, using function F*(S), proc(u) performs its probabilistic state transition to a P-state
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S’ € P¢, and it also determines a value m € M. If m’ # L, then proc(u) transmits message m’
in round r. Otherwise (i.e., if m’ # L), proc(u) remains silent in round r. That is, as explained in
Section 3.2, choosing m’ = 1 during this transition means that process 7 remains silent in round r.

Next, the adversary chooses a reach set that consists of £ and a subset, potentially empty, of
edges in E' — E. This reach set potentially affects what message (or value L or T) each process
receives. Intuitively, this reach set describes the links that are active in this round. We emphasize
that when focusing on the special case of the classical model, set £’ — F is empty and therefore, the
reach set is just £. In the dual graph model, we assume that the adversary is ‘adaptive offline’ [8]
meaning that it has full knowledge of the history of the execution and in particular the state of the
network when it is determining the reach sets. This means that when choosing the reach set of
round r, the adversary knows everything that happened up to round r of the execution including
the outcome of the random coins used for the transition of round r. In particular, the adversary
knows which processes are transmitting in round r. Moreover, we assume that the adversary can
also make randomized decisions.

After the adversary determines the reach set of round r, depending on this reach set and which
processes are transmitting, each process i receives exactly one value in set M | + from the channel.
For a graph node v, let B, , be the set of all graph nodes u such that proc(u) transmits in r and
edge e = {u, v} is in the reach set for this round. What proc(v) receives in round r is determined

by the following rules:
(A) If proc(v) broadcasts in round r, then it receives only its own message.

(B) If proc(v) does not broadcast, and |B,, .| = 0 or |B,,| > 1, then proc(v) receives L (indi-

cating silence).

(C) If proc(v) does not broadcast, and |B, | = 1, then proc(v) receives the message sent by

proc(u), where v is the single node in B, ,.

The rule (A) intuitively means that each process cannot send and receive simultaneously. We
remark that the rule (B) means that we do not assume any collision detection mechanism in this
model. To strengthen our results, we present our lower bounds (all results in Chapters 5 and 6) in
the stronger model with collision detection, i.e., where the rule (B) is replaced with the following

rule

(B’) If proc(v) does not broadcast, and | B, .| = 0, then proc(v) receives L. If proc(v) does not

broadcast, and |B, | > 1, then proc(v) receives T (indicating collision).

After receiving the messages of round r, every process proc(u),u € V' makes its deterministic

transition using function G’, where i = id(u). That is, suppose process proc(u),u € V is in a
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P-state S’ € P, where ¢ = id(u) and it receives m’ € M+ from the channel. Then proc(u)
makes a transition to O-state gi(S ’,m’). We remark that at the end of each round, the state of the

whole system consists of just O-states for all processes.

3.4 Centralized Setting For Lower Bounds

In our lower bounds (all results in Chapters 5 and 6), we consider the stronger model of central-
ized algorithms. We define a centralized algorithm to be the same as the distributed algorithms
explained in this chapter, with two modifications: (1) the processes know the graph (G, G’) and
the mapping id() from the beginning of the execution; and (2) when the processes are making their
transitions, they know the full history of the execution and thus, their transitions are a function
of the full history of the execution. This history in particular includes the current state of all the
processes in the network.

Finally notice that in the centralized setting, since each process knows the full history of the
execution, in each round r, each process knows exactly which set of its neighbors transmitted.
Thus, each process knows whether zero or two or more of its neighbors transmitted in that round.

Thus, in the centralized setting, the models with and without collision detection are equivalent.
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Chapter 4

The Local Broadcast Problem in The
Single-Shot Setting

The intuitive description of the local broadcast problem in the single-shot setting is as follows:
The nodes of the network are divided into two groups, the senders and the receivers. Moreover,
no two senders are neighbors and no two receivers are neighbors. The objective of the problem is
that, each sender should deliver a special message that it has to all of its receiver neighbors. In this
chapter, we present the formal definition of this problem, and present the time bounds that we use

to measure the performance of the algorithms that solve this problem.

4.1 The Local Broadcast Problem

In this single-shot setting, the processes, the network and the executions are as presented in Chap-

ter 3. In the version of the local broadcast problem tailored to this setting, we moreover have:

1. The network (G, G’) consists of two undirected finite bipartite graphs, G = (V, F) and
G' = (V,E'), where we have: V. = SUR, SNR =10,|S| > 1, |R| > 1, |V| = n, and
E C E'. Moreover, each edge e € F’ is an unordered pair {v, u} such thatv € S and u € R.

The nodes in sets S and R are respectively called the senders and the receivers. Moreover,
the processes assigned to the sender nodes and the receiver nodes are respectively called the

sender processes and the receiver processes.

2. Each process 7 has one special message m; € M (encoded in all of its states, and particularly
its starting state S) and for each i, j € N such that ¢ # j, we have m; # m;.

3. Each process i has a boolean variable ack; € {False, True} (in each of its states). In

starting state S¢, we have ack; = False. Each process i can change the value of variable
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ack; at most once and thus, only from a F'alse value to a T'rue value. Moreover, this change
can only happen during a transition from a P-state to a Q-state (the second transition of a
round). Formally these two conditions mean that (1) there is no transition from a Q-state () to
a P-state P such that the value of ack; in states () and P is different, and (2) there is no state

transition from the P-states in which ack; = True to the Q-states in which ack; = False.

The informal description of the local broadcast problem in this setting is that for each sender
node v € S, process proc(v) should eventually deliver special message m;, where i = id(v), to all
of its receiver GG-neighbors, with high probability. This is formalized as follows: We say that an
algorithm A solves the local broadcast problem provided that, when A operates in any dual graph
(G,G"), we have:

(A) In every execution, for each sender node v € S, process proc(v) eventually sets ack; =

True, where i = id(v).

(B) For each particular sender node v € S and each round r, if process proc(v) has ack; = T'rue,
where i = id(v), at the end of round r, then with high probability, for each (receiver) node
u € Ng(v), process proc(u) has received message m; by the end of round r. Here, the
probability space is based on all the probabilistic choices of the algorithm and the adversary.
Moreover, the probability distribution in this requirement is conditional on the event that

proc(v) has ack; = True at the end of round .

An algorithm A that solves the local broadcast problem is called a local broadcast algorithm.

4.2 The Time Bounds

We measure the performance of a local broadcast algorithm by two bounds: the acknowledgment
bound and the progress bound. For any given local broadcast algorithm .4 and any fixed single-shot

setting (G, G'), these bounds are defined as follows:

1. A number ¢ € N is an acknowledgment bound for A in (G, G") if for each sender process
proc(v), at the end of round ¢, with high probability, proc(v) has ack; = True, where
i =id(v).

2. A number ¢t € N is a progress bound for A in (G,G") if for each receiver process proc(u)
such that node | N (u)| > 1, with high probability, proc(u) has received at least one special

message m; for an 4 such that process i = id(v) and v € Ng(v), by the end of round ¢.

In the following lemma, we show that progress bound is less than or equal to acknowledgment

bound. The formal statement is as follows:
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Lemma 4.2.1. For any local broadcast algorithm A, any single-shot setting (G,G"), and any
T € N, if 7 is also an acknowledgment bound for A in (G, G'"), then T is a progress bound for A in
(G,G").

Proof. Consider an arbitrary local broadcast algorithm .4, a single-shot setting (G, G’), and a
7 € N such that 7 is an acknowledgment bound for A in (G, G’). Following the definition of
acknowledgment bound, we get that in each execution of .4, by the end of round 7, for each sender
process with id ¢ we have ack; = T'rue. Moreover, following the definition of the local broadcast
problem, we get that in executions of .4, by the end of round 7, with high probability we have that
each receiver process proc(u) has received the special message m;, for every 7 such that ¢ = id(v)
and v € Ng(u). Thus, by the end of round 7, with high probability, we have that each receiver
process proc(u) such that node |[Ng(u)| > 1 has received at least one special message m; for an i
such that process i = id(v) and v € Ng(v). Comparing this with the definition of progress bound
shows that 7 is a progress bound for A in (G, G"). O

The acknowledgment and the progress time bounds defined above often depend on the maxi-

mum contention of the network, which is defined as follows:

Definition 4.2.2. In the single-shot setting, the maximum contention A’ (resp., A in the classical
model) is equal to the maximum G'-degree (resp., G-degree in the classical model) of the receiver

nodes.

We sometimes use the phrase the maximum receiver degree instead of the maximum contention.
The definition of the maximum contention in the multi-shot setting has similarities to this defini-
tion, but is more complicated and requires careful definitions for the amount of contention in each

round and for each node. We present that definition in Chapter 8.5.
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Chapter 5

Lower Bounds in the Classical Radio
Broadcast Model

In this chapter, we focus on the problem of local broadcast in the single-shot setting of the classical
model (for formal definitions of this setting, refer to Chapters 3 and 4). We present lower bounds
for both the progress and the acknowledgment time bounds. We emphasize that all these lower
bounds are presented for centralized algorithms and also, in the model where processes are pro-
vided with a collision detection mechanism. Note that these points only strengthen these results.
In Chapter 11 we explain that since the single-shot setting can be viewed as a special case
of the multi-shot setting, these lower bounds extend to the multi-shot setting as well. Thus, they
prove that the optimized decay protocol for the general multi-shot setting, which we present in
Chapter 10, is optimal with respect to progress and acknowledgment times in the classical model.
These lower bounds also show that the existing constructions of Ad Hoc Selective Families [27, 28]
are optimal. Moreover, in Chapter Chapter 6, we use the lower bound on the acknowledgment time
in the classical model that we present here as a basis for deriving lower bounds for progress and

acknowledgment times in the dual graph model.

5.1 Progress Time Lower Bound

In this section, we remark that, following the proof of the Q(log2 n) lower bound of Alon et al.
[21] on the time needed for global broadcast of one message in radio networks, and with slight
modifications, one can get a lower bound of {2(log A log n) on the progress bound in the classical

model.

Theorem 5.1.1. For any sufficiently large n and any A < n, there exists a single-shot setting in

the classical model with a bipartite network H(n, A) of size n and maximum contention of at most
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A, such that for any local broadcast algorithm, the progress bound in H(n,A) is greater than
Q(log Alogn) rounds.

Proof Outline. The proof is an easy extension of [21] to networks with maximum contention A.
This proof uses the probabilistic method [7] to show that such a network #(n, A) exists. The only
change from [21] is that instead of choosing the receiver degrees to vary between n%* and n%¢, we
choose the degrees between O(A/*) and ©(A'/2). This leads to O(log A) (instead of O(logn))
different classes of degrees, and in turn, to the stated bound. The rest of the proof remains the same
as in [21]. ]

5.2 Acknowledgment Time Lower Bound

In this section, we present our lower bound on the acknowledgment time in the classical radio

broadcast model.

0.1]

Theorem 5.2.1. For any sufficiently large n and any A € [20logn,n"'|, there exists a single-shot

setting in the classical model with a bipartite network H(n, A) of size n and maximum contention

of at most A, such that the acknowledgment bound of any algorithm in H(n, A) is greater than

Alogn

00 rounds.

In the proof of this theorem, instead of showing directly that randomized algorithms have low
success probability, we show a stronger variant, by proving an impossibility result: In Lemma 5.2.2,
we prove that there exists a single-shot setting with a bipartite network H(n, A) of size n and max-

imum contention at most A in which, even with a centralized algorithm, it is not possible to sched-

Alogn
100

each of its neighboring senders. In particular, this result shows that in H(n, A), for any randomized

ule transmissions of nodes in at most

rounds such that each receiver receives the message of

Alogn
100

message of each of its sender neighbors is zero. In proof of Theorem 5.2.1 (presented at the end of

local broadcast algorithm, the probability that in at most rounds, each receiver receives the

this section), we argue that this means that no local broadcast algorithm has an acknowledgment

Alogn -
bound of at most =55 in H(n, A).

To present Lemma 5.2.2, we first present some definitions. A transmission schedule o of length
L(o) for a bipartite network is a sequence 01, ...,0.(,) C S of sets of senders. Having a sender
u € o, indicates that at round r the sender u is transmitting its message. For a network G, we
say that transmission schedule o covers G if for every u € R and every v € Ng(u), there exists
a round 7 such that o, N Ng(u) = {v}, that is, using transmission schedule o each receiver node
receives the message of each of its sender neighbors. Now we are ready to see the main lemma

which proves our bound.
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Lemma 5.2.2. For any sufficiently large n and any A € [201og n, n"!|, there exists a single-shot

setting with a bipartite network H(n, A) with size n and maximum receiver degree at most A,

for which there does not exist a transmission schedule o such that L(c) < %

H(n, A).

and o covers

We next present the proof of Lemma 5.2.2. As in the previous section, our proof uses tech-
niques similar to those of [20, 21, 22] and utilizes the probabilistic method [7] to show the existence

of the network H(n, A) mentioned in Lemma 5.2.2.

Proof Outline. First, we fix a sufficiently large n and A € [20logn,n®!] and let n = n%!? and
n' = n® = n%%. Note that if n is sufficiently large, we have 20logn < n®!. Next, we present a
probability distribution over a particular family G of bipartite networks. The common structure of
this graph family G is as follows. All networks of G have a fixed set of nodes V. Moreover, V is
partitioned into two nonempty disjoint sets .S and R, which are respectively the set of senders and
the set of receivers. We have |S| = n and |R| = n — 7. Note that for any sufficiently large n, we
have |R| = n — n%1? > n%% =/, where the inequality holds because n is sufficiently large.

In order to define the probability distribution of these graphs, we describe the process that
chooses a random network from G. We create a random network from G by independently putting
an edge between any s € S and r € R with probability %.

We use the following definitions. Let B.AD; be the event in the probability space of graphs
that the maximum receiver degree of the graph G € G is greater than A. For each transmission
schedule o, call o short if L(o) < Allggn. Let BAD; be the set of graphs G € G such that that
there exists a short transmission schedule that covers G.

We first show in Lemma 5.2.3 that Pr[BAD;] < n% Then we show in Lemma 5.2.4 that
Pr[BAD,] < ;. A union bound then shows that with probability at least 1 — 2 > 0, neither of the

two events BAD; and BAD, happen. This means there exists a graph in G that has the maximum
receiver degree at most A and no short transmission schedule covers it, and thus completes the

proof. =
Lemma 5.2.3. Pr[BAD,| < -

Proof. We show that the probability that the maximum receiver degree of a random graph G € G
is greater than A is at most # For each receiver € R, let X(r) denote the degree of receiver r
in graph G € G. Then, E[X(r)] =7 - % = %. Moreover, since edges are added independently,
we can use a Chernoff bound (Theorem 2.2.2) and obtain that Pr[X¢(r) > A] < e~ 5. Using a

union bound over all choices of receiver node r, and noting that |R| < n and A > 20logn, we
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complete the proof as follows:

A
6

Pr[3r € R s.t. X¢g(r) > A] < n-e % < plogn—3

< elogn—dlogn — e—?logn < =
n2

Lemma 5.2.4. Pr[BAD,] < 2

Proof Outline. For each transmission schedule o, let £, be the event in the probability space of
graphs that o covers graph G € G. Also, let us denote the set of all short transmission schedules by
SHOTRT. Having these definitions, the probability that there exists a short transmission schedule
o that covers G € G is Pr|[UyesnorT &5|. That is, Pr[BAD;| = Pr[UyesuorT &5|. Thus, using
a union bound, we can infer that Pr[BAD;y] < > sy 0orr Pr(&,;]. Having this inequality in
mind, we first show in Lemma 5.2.5 that for each 0 € SHORT, Pr[&,] < e~ Then, we
show in Lemma 5.2.7 that |[SHORT| < on®* At the end, we use the inequality Pr[BAD,| <
Y wesuort Pri€s) along with Lemmas 5.2.5 and 5.2.7 to complete the proof. O

0.72

Lemma 5.2.5. For each o € SHORT, Prl&,| <e™

Proof. Fix an arbitrary short transmission schedule o. For each round ¢ of o, let N (¢) denote the
number of senders that transmit in round . Also, call round ¢ an isolator if N(t) = 1. For each

sender s € S, if there exists an isolator round in o where only s transmits in that round, then call

. Alogn n%1logn nV-12
sender s lost. Since L(0) < =pa% < FB % <

0.1 0.12 . .
- légg” < 5= holds because n is sufficiently large.
1

For each not-lost sender s, we define a potential function ®(s) = >, 10) where T is the

set of rounds in which sender s transmits. Note, that for each round ¢, the total potential given to

1 - = 1. Hence, the total potential when summed

= g, there are at least 121 senders that are not

lost. We remark that inequality

not-lost senders in that round is at most N ()

"N
over all rounds is at most Allggn = AIIOQg". Therefore, since there are at least g not-lost senders,
there exists a not-lost sender s* for which ®(s*) < A%ng”. For the rest of the proof, fix a non-lost

sender s* such that ®(s*) < %ﬁg”. Now we focus on sender s* and rounds 7s-. We show the

following claim:

Claim 5.2.6. For each receiver r € R, the probability that receiver r is a neighbor of s* and it

does not receive the message of s* is at least %

Proof. Consider an arbitrary receiver r. For each round ¢ € T+, we say receiver 7 is blinded in
round ¢ if 7 is connected to at least one sender node other than s* that transmits in round ¢. Having

this definition, the proof of Claim 5.2.6 is based on two facts as follows:
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(F1) Pr|ris a neighbor of s*] = % >

(F2) Pr|Vt € Ty, r is blinded in round t| > %
In order to prove fact (F2), we use the FKG inequality [7, Chapter 6] and particularly its
simplified form presented in Corollary 2.2.7. In particular, in this application of Corollary
2.2.7, set [ K] is the set of senders other than s*, the set B is the set of sender neighbors of

receiver r other than sender s*, p = A ¢y = | T
2n

, and the A set are: for each round t € T,
we have one set A; which is equal to the set of all senders other than s* that transmit in round

t. Thus, using Corollary 2.2.7, we get that

Pr|[Vt € Ty, ris blinded in round t| > H Pr[r is blinded in round t|.

teT «

Now for each t € T+, we have

A
Pr[r is blinded in round t] =1 — (1 — 2—)N(t)_1 >1— ¢ = (NO-D
n

g) 1-— efﬁ'N(t) > e

where inequality (1) holds because N (t) > 2 as s* is not-lost, and inequality (1) holds as for

any x > 0, we have e™* + e~/ < 1. Hence, we have

Pr|[Vt € Ty, r is blinded in round t| > H Pr[r is blinded in round t]

tGTS*
> 1] RN — o DT BN = R0(s)
teT «
By choice of s*, we have ®(s*) < Alﬁ‘;]g”. Thus,
. . . —4n.p(s%) _4logn —2/3\logn 1 logn 1
Pr[Vt € Ty, ris blinded in round t] > e~ & >e o o= (e?) > (5) =—.
Ui

Now note that whether 7 is connected to each sender other than s* is independent of whether it is
connected to s*. Thus, the two events considered in parts (F1) and (F2) are independent. Hence,
for each receiver r, the probability that r is a neighbor of s* and in each round ¢ € T+, r is blinded
is at least % : % = n% This means that the probability that r is a neighbor of s* but it never receives

the message of s* is at least n% This completes the proof of Claim 5.2.6. [l

Now we use Claim 5.2.6 to complete the proof of Lemma 5.2.5. Since edges of different

receivers are chosen independently, we get that the probability that there does not exist a receiver r
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that is a neighbor of s* but never receives the message of s* is less than (1 — n—12)|R‘ <(1- n%)ng <

e~"". Here, the first inequality holds because |R| > 7%. Hence, the probability that with schedule
o, each receiver receives the message of each of its sender neighbors is less than e, Thus,

Pr[&,] < e = e """ which completes the proof of Lemma 5.2.5. O

Lemma 5.2.7. |[SHORT| < on"* i e. the total number of distinct short transmission schedules

. 3 0.36
is at most 2" = 2",

Proof. In each round, there are 2" options for selecting which subset of senders transmit. On the

Alogn
100

. . . . . 3 0.36
number of ways in which one can choose a short transmission schedule is at most 27 = 2", []

other hand, each short transmission schedule has at most < 772 rounds. Therefore, the total

Proof of Lemma 5.2.4. From Lemma 5.2.5, we know that for each 0 € SHORT, Pr[&,] <
=n"™ " On the other hand, from Claim 5.2.7, we know that |[SHORT| < 2"°*. Hence, not-
ing that n is sufficiently large, we conclude the proof of Claim 5.2.4 as follows

. 4 . . 1

PI‘[BADQ] _ Pr[UaesHORT gg] < Z Pr[&,} < 2n0 36‘6_710 72 < eno 36_,0.72 < 6—210gn < —
c€SHORT n
[

Having proven Lemmas 5.2.3 and 5.2.4, we now finish the proof of Lemma 5.2.2.

Proof of Lemma 5.2.2. The proof follows from Lemmas 5.2.3 and 5.2.4 and a union bound. Using
a union bound, we get that Pr[BAD; U BAD,] < Pr[BAD,| + Pr[BAD,] < % < +. Thus, with
probability at least 1 — %, neither of the two events BAD; and BAD; happen. This means that for
arandom graph G € G, with probability at least 1 — %, we have that G has the maximum receiver
degree at most A and no short transmission schedule covers GG. Thus, following the probabilistic
method [7], we can infer that there exists a network H(n, A) such that H(n, A) has the maximum
receiver degree of at most A and no short transmission schedule covers H(n, A). This completes
the proof of Lemma 5.2.2. [

We now conclude this section by presenting the proof of the main result of this section, i.e.,

Theorem 5.2.1, which is mainly based on Lemma 5.2.2.

Proof of Theorem 5.2.1. Fix a sufficiently large n and A € [20log n, n%!], and let H(n, A) be the
network proven to exist by Lemma 5.2.2. For the sake of contradiction, suppose that there exists
an algorithm .4 such that A has acknowledgment bound of at most % in H(n, A). Fix one such
algorithm .4 and consider the executions of .4 on H(n, A).
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Alogn
100 °

have ack; = False, where i = id(v). By the assumption that .4 has acknowledgment bound of at

most Allggn in H(n, A) (refer to Section 4.2), we get that Pr[€,] < <.

Moreover, for each sender process proc(v), let £ be the event that at the end of round Allggn,

we have ack; = True, where i = id(v), but there exists a receiver neighbor u of v such that u

For each sender process proc(v), let £/, let £, be the event that at the end of round we

Alogn
100

definition of a local broadcast algorithm (refer to Section 4.1), we get that for each sender process
proc(v), Pr[&] < L
Therefore, using a union bound, we get

has not received the message of v by the end of round 22" Following the property (B) in the

012

PI‘[(Usendervgv)U(Usendervg:;)]S Z Pl'[gv]—i— Z PI‘[(C:/ Z __'_ Z %:

sender v sender v sender v sender v

where the equality follows because the number of senders of H(n, A) is n%12. This shows that with

probability at least 1 — =*— > O none of the events &, or £ (for each sender v) happen. Thus,

Alogn
100 >

received the message of each of its neighboring senders. This shows that there exists an execution

each receiver has

with probability at least 1 — =*— > 0, we have that by the end of round

of Ain H(n, A) during which by the end of round £]%” each receiver has received the message of

each of its neighboring senders. Let o be such an execution and let ¢ be the transmission schedule

of the first Allg(g)" rounds of «.

By the choice of « and thus o, we get that when we run short transmission schedule o in

H(n, A), each receiver receives the message of each of its neighboring senders. That is, short
transmission schedule o covers H(n, A). This is in contradiction with Lemma 5.2.2. From this
contradiction, we conclude that no algorithm .4 such that .A has acknowledgment bound of at most

21087 in H(n, A) exists. This completes the proof. =
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Chapter 6

Lower Bounds in the Dual Graph Model

In this section, we present our lower bounds for the single-shot setting of the dual graph model. We
show a lower bound of 2(A’logn) on the progress time of the local broadcast algorithms in this
setting. Moreover, this progress lower bound directly yields a lower bound with the same value on
the acknowledgment time in the single-shot setting of the dual graph model. We emphasize that all
these lower bounds are presented for centralized algorithms and also, in the model where processes
are provided with a collision detection mechanism. Note that these points only strengthen these
results.

We explain in Chapter 11 that since the single-shot setting can be viewed as a special case of
the multi-shot setting, these lower bounds also extend to the multi-shot setting. These extensions
show that the optimized decay protocol for the general multi-shot setting, which we present in

Chapter 10, has optimal acknowledgment and progress bounds in the dual graph model.

6.1 Progress Time Lower Bound

Recall that in Theorem 5.2.1 of Section 5.2, we proved a lower bound of (A logn) for the ac-
knowledgment time in the classical radio broadcast model. As a core part of the proof of Theo-
rem 5.2.1, we showed in Lemma 5.2.2 that for any sufficiently large n and any A € [20logn, n°!],
there exists a single-shot setting with a bipartite network H(n, A) with size n and maximum

receiver degree at most A, for which there does not exist a transmission schedule ¢ such that

L(o) < Allgg” and o covers H(n, A). In this section, we use Lemma 5.2.2 to show a lower bound
of Q(A’logn) on the progress time in the dual graph model, where A’ is the maximum receiver
degree in graph G’. For that purpose, we first present some definitions.

For each algorithm A and each network (G, G’) in the single-shot setting of the dual graph
model (for formal definitions of this setting, refer to Chapters 3 and 4), we say that an execution «

of Ais progressive in (G, G') if during this execution, every receiver receives at least one message.
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Now we are ready to see the main result of this section.

Theorem 6.1.1. For any sufficiently large n and each A’ € [20logn, nTll], there exists a multi-
shot setting in the dual graph model with a bipartite network H*(n, A') of size n and maximum
contention of at most A', such that the progress bound of any algorithm in H*(n, A') is greater

Allogn
than 2 rounds.

Proof Outline. In order to prove this lower bound, in Lemma 6.1.2, we show a reduction from
the acknowledgment bound in the bipartite networks of the classical model to the progress bound
in the bipartite networks of the dual graph model. In particular, this means that if there exists

1 logny

an algorithm that has progress bound at most 2 20

model with size n; and maximum receiver G'-degree A, then for any bipartite network H in the

in any single-shot setting of the dual graph

classical model with size n, and maximum receiver degree at most A,, there exists a transmission
schedule o(H ) with length smaller than % that covers H. Then, we use Lemma 5.2.2 to

complete the lower bound. 0

Lemma 6.1.2. Consider arbitrary ny and Ay and let ny = ny(Ag + 1) and A} = As. Suppose
that in the dual graph model, for each bipartite network with n, nodes and maximum receiver
G'-degree at most A}, there exists a local broadcast algorithm A with progress bound of at most
f(n1, AY). Then, for each bipartite network H with ny nodes and maximum receiver degree at most
Ay in the classical radio broadcast model, there exists a transmission schedule oy with length at
most f(ns(Ag + 1), As) that covers H.

Proof. Consider an arbitrary ny and As and let n; = ny(Ag+1) and A = A,. Suppose that in the
dual graph model and for each bipartite network with n; nodes and maximum receiver G’-degree
at most A}, there exists a local broadcast algorithm A for this network with progress bound of
at most f(nq, A}). Let H be an arbitrary network in the classical radio broadcast model with ny
nodes and maximum receiver degree at most Ay. We show a transmission schedule o of length
at most f(ngo(As + 1), Ay) that covers H.

For this, using network H, we first construct a special bipartite network Dual(H) = (G, G") in
the dual graph model that has n; nodes and maximum receiver GG’-degree at most A’. Then, by the
above assumption, we know that there exists a local broadcast algorithm A for this network with
progress bound at most f(ny, A}) = f(na(As + 1), Ay) rounds. We define transmission schedule
oy by emulating what algorithm A does in the network Dual(H) and in the presence of a special
adversary. Then, we argue that o covers H.

The network Dual(/) in the dual graph model is constructed as follows: The set of sender
nodes in the Dual(H) is exactly the same as those in H. Let n be the number of senders of H

and let m be the number of edges of H. We first add n; —  — m isolated receivers in Dual(H).
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u; Proxies of u,
Vi u, Proxies of u,
Va
A Uz Proxies of uy
u, Proxies of u,
Network H Network Dual(H)

Figure 6-1: An example of the construction of the network Dual(/)

These receivers are isolated in Dual(H), i.e., there is no G’-edge incident on any of these isolated
receivers. Now for each receiver u of H, let dy(u) be the degree of node w in graph H. Also, let
us call the senders that are adjacent to u the associates of u. In the network Dual(H), we replace
receiver u with dgy(u) receivers and we call these new receivers the proxies of u. In graph G of
Dual(H), we match proxies of u with associates of u, i.e., we connect each proxy to exactly one
associate and vice versa. These connections are the only ones in G. In graph G’ of Dual(H), we

connect all proxies of u to all associates of u. These connections are the only ones in G’.

Figure 6-1 presents an example of the construction of network Dual(H), without showing
the isolated receivers. The left side shows the network [ and the right side shows the network
Dual(H). On the right side, the black lines show the reliable edges £ and the orange dashed lines
show the unreliable edges £’ — F.

Note that because of the construction, we have that the maximum degree of the receivers in G’
is at most A,. Also, since each receiver u is replaced by dy(u) proxies (new receiver nodes), the
total number of proxies iS ) ..., du(w) = m. Moreover, the number of senders is 7 and the
number of isolated receivers is ny — 1 — m. Thus, the total number of nodes in Dual(H) is exactly
n+m-+(ng—n—m)=n.

We remark here that clearly the local broadcast problem does not impose any requirement for
delivering any message to any of the isolated receiver nodes. These isolated receivers are used only

for making the number of nodes of Dual(/H) exactly n;.

Now, we present our special adversary. In particular, we present a set of deterministic rules for
determining the reach set (the set of active edges) of each round in the Dual( /) network: For each

round r and each receiver node w of Dual(H),
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1. if exactly one G'-neighbor of w transmits, then the adversary activates only the edges be-

tween w and its G-neighbors,
2. otherwise, the adversary activates all the edges between w and its G’-neighbors.

Intuitively, these rules try to make the number of successful message deliveries as small as possible.
In particular, it is easy to see that each receiver can receive messages only from its G-neighbors.
We use this fact in the rest of the proof.

Now we focus on the executions of algorithm A in the Dual(H) network and in the presence
of the aforementioned special adversary and consider the space of these executions. For each
receiver v in Dual(H), let £, be the event that receiver u does not receive a message by the end of
round f(na(As + 1), As). By the assumption that A has progress bound f(ns(Ay + 1), Ay) for
network Dual(H), we get that Pr[€] < n% Using a union bound we get that Pr[U,cceiver «Eu] <
Y PTES <> nL1 < 1, where the last strict inequality follows because Dual(/)
has and thus, that strictly less at least one sender n; receivers. Since Pr[U,cceiver u€u] < 1, there
is a positive probability that none of events £, happens. Thus, there exists at least one progressive
execution a of A with length at most f(n2(As + 1), Ay) rounds, in the presence of the special
adversary adversary. Let transmission schedule oy be the transmission schedule of execution a.
In order to complete the proof, we show that in the classical model oy covers H. Consider an
arbitrary receiver node v in H and let v be an arbitrary sender neighbor of v in /. We show that
when we run o7 on H, u receives the message of v.

We know that in the network Dual(H), there exists a receiver w that is a proxy of u such that
in graph G of Dual(H), w is matched to v. Since « is progressive, in «, w receives at least one
message. On the other hand, because of the rules used by our special adversary, in execution o, w
can receive messages only from v (its only G-neighbor). Thus, there exists a round r such that w
receives the message of v in round r of . Now, note that because of the second rule used by the
special adversary, if in round r of «, receiver w receives the message of a node v, that means that
no other G'-neighbor of w transmits in round r of «. Thus, no sender neighbor of « in graph H
transmits in round r of transmission schedule 0. Hence, using transmission schedule o in the
classical radio broadcast model in graph H, node u receives the message of sender v in round r
of 0. Therefore, using transmission schedule o in the classical broadcast model and in network

H, u receives the message of v. [

Proof of Theorem 6.1.1. The proof follows from Lemma 5.2.2 and Lemma 6.1.2. Fix an arbitrary
1
sufficiently large n; and A} € [20logn,,nj']. Note that for a sufficiently large n;, we have

20logn; < nlfll. Let ny = and A, = A. By Lemma 5.2.2, we know that in the classical

n
T
radio broadcast model, there exists a bipartite network H (ns, Ay) with ny nodes and maximum
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Ao logng

T rounds

receiver degree at most A, such that no transmission schedule with length at most

covers H(ny, Ay). In Lemma 6.1.2, set

Aflog (n1 /(A7 +1)) _ Allog (ni/(nf" +1)) - A log (n}o/n) _ A’ log ny

Al = >
f(m, 4) 100 = 100 100 120

We can conclude that there exists a bipartite network with n; nodes and maximum receiver G’'-
degree at most A/ such that there does not exist a local broadcast algorithm with progress bound
at most f(ny, A}) in this network. Calling this network H*(ny, A)) finishes the proof of Theo-
rem 6.1.1. ]

6.2 Acknowledgment Time Lower Bound

In this section, we mention that as a simple corollary of the progress time lower bound Theo-
rem 6.1.1, we get an acknowledgment lower bound for the single-shot setting in the dual graph

model.

Theorem 6.2.1. For any sufficiently large n and each A’ € [201logn, nﬁ], there exists a single-
shot setting in the dual graph model with a bipartite network H*(n, A") of size n and maximum

contention of at most A', such that the acknowledgment bound of any algorithm in H*(n, A’) is
A’logn

36 rounds.

greater than

Proof. The proof follows directly from Lemma 4.2.1 and Theorem 6.1.1. Fix an arbitrary suffi-
ciently large n and A" € [201logn, nTll]. Note that for a sufficiently large n, we have 20logn <
nit. Let H* (n, A’) be the single-shot setting proven to exist in Theorem 6.1.1. Consider an arbi-

trary local broadcast algorithm A. If A has an acknowledgment bound at most A’11200gn in H*(n, A'),

. A’logn - *
then using Lemma 4.2.1, we get that A also has a progress bound at most 1125; in H*(n, A").

However, from Theorem 6.1.1, we know that no such local broadcast algorithm exists. Hence, the

A’logn
120

acknowledgment bound of A is greater than rounds. [
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Part 11

The General Multi-Shot Setting
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Chapter 7

The Models in The Multi-Shot Setting

In this chapter, we present the definitions of the models for the multi-shot setting. Similar to the
single-shot setting (refer to Chapter 3), we use two models, namely the classical radio network
model (also known as the radio network model) and the dual graph model. The main difference
between the models in the multi-shot setting and the models in the single-shot setting is that,
in the multi-shot setting, the system also includes an environment automaton. Intuitively, the
environment abstracts the higher layers of the wireless nodes which solve higher level problems

and for that, they interact with the local broadcast module.

Similar to Chapter 3, and since the classical model is a special case of the dual graph model,
we use the dual graph model for defining the models in the multi-shot setting, and also when
describing the problem statement in the next chapter. However, in some places, we indicate how a
certain result or property changes when we focus on the special case of the classical radio network

model.

In the multi-shot dual graph model, a distributed system is composed of a set of processes
that are connected to each other via a network and that also interact with an environment. In the
particular case of the local broadcast problem, intuitively, the processes abstract the local broadcast
modules of the wireless nodes and the environment abstracts the higher layers of these wireless
nodes. In Section 7.1, we present the network connections assumptions for the dual graph model.
We explain the environment in Section 7.2. In Section 7.3, we explain what a process in this
model is. In Section 7.4, we explain how a distributed system works as a whole, i.e., what are
the executions of an algorithm in this model. For out lower bounds, we use a stronger model,
centralized setting, which we explain in Section 7.5. We remark here that Sections 7.1 and 7.5 are
exactly the same as their counterparts in single-shot setting (Sections 3.1 and 3.4, respectively),
but Section 7.2 is new (i.e., does not have a single-shot counterpart) and Sections 7.3 and 7.4 are

different than their counterparts in the single-shot setting (Sections 3.2 and 3.3, respectively).
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7.1 Network Connections

In the dual graph model, radio networks have some reliable links and potentially some unreliable
links. We define a network (G, G’) to consist of two undirected finite graphs, G = (V, E) and
G' = (V,E’), where we have E C E’. Intuitively, set E is the set of reliable edges while E’
is the set of all edges (both reliable and unreliable). We assume that the communications on the
unreliable edges, i.e., the edges in set £’ \ F, are controlled by an adversary. We explain this issue
in more detail in Section 7.4. When restricting attention to the special case of the classical radio
network model, there are no unreliable edges and thus, we simply have G = G, i.e., E = E'. We
define the size of the network to be n = |V/|. Finally, graphs G and G’ can be disconnected.

We assign processes to graph nodes of the network (G, G’). This assignment is defined by an
injective function id() from V' to the set of process ids [IV]. (We define processes in Section 3.2.)
That is, for each v € V, id(v) indicates the id of the process assigned to graph node v. For
each v € V, we use notation proc(v) to indicate the process with id id(v), i.e., the process that
is assigned to graph node v. We sometimes abuse notation by using the notation process u, or
sometimes just u, for some graph node u € V/, to refer to proc(u). We refer to a network (G, G')
and a mapping id() from graph nodes to processes as a setting.

Processes can potentially know the network (G, G’) or have some partial knowledge about it'.
This means that processes could have a full description of the network or some information about
it built into their states, and the related distributed algorithm is required to work only if this full
description matches the description of the network or if this partial information is consistent with
the description of the network. To strengthen our results, we remark that our upper bounds make
no assumptions about (G, G”) other than knowing a polynomial bound on the size n of the network
and a constant-factor bound on the maximum contention (explained in Chapter 8), while our lower

bounds allow full knowledge of the network graphs (G, G").

7.2 The Environment

In this section, we present the definition of an environment. Informally, the environment is a
probabilistic automaton that interacts with the processes assigned to graph nodes through a set of
input and output actions. Recall that we explained the process mapping to graph nodes, described
by function id(), in Section 7.1.

For consistency, throughout the thesis, we classify actions as inputs or outputs from the view-

point of processes. That is, an input action is an action that the environment performs to pass some

I'This is because, in many real world settings, it is reasonable to assume that devices can make some assumptions
or inference about the structure of the network.
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information to the processes and an output action is an action that a process performs to pass some
information to the environment.

We use notations Z and O to denote the set of input actions and the set of output actions,
respectively. Moreover, we assume that set Z is partitioned into sets Z;, one for each process 7 at
graph node v where i = id(v). Similarly, we assume that set O is partitioned into sets O;, one for
each process i at graph node v where i = id(v). The sets Z; and O; respectively represent the sets
of inputs and outputs at the process with id i at graph node v where i = id(v).

Informally, in the environment automaton we have only one type of transition: probabilistic
transitions that take a state and a sequence of outputs for the process at each graph node to another
state and a sequence of inputs for the process at each graph node. These transitions occur at the
start of the rounds. In the first transition at the start of round 1, the environment starts in an initial
state and the related output sequences are ().

More formally, for each network (G, G’) and a mapping id() from graph nodes to processes,

an environment Env is a 3-tuple (7, 7y, ) and we have:

e 7 is a set of states.
e T, € T is a single starting state

e 7 is a function that captures the probabilistic transitions of the environment. Consider an
arbitrary state S € T. Also, consider a mapping O() from processes at graph nodes to
output sequences. That is, for each process i such that i = id(v) for a graph node v, O(7)
is an output sequence? in ¢, . Then, function H (.S, O) is a probability distribution function
over the space of all states in 7 and all mappings from processes at graph nodes to input
sequences. More precisely, we have: Consider an arbitrary state S’ € 7. Also, consider a
mapping () from processes at graph nodes to output sequences. That is, for each process i
such that ¢ = i¢d(v) for a graph node v, /(7) is an input sequence in ¥z,. Then, (S, O)(5’,I)
is the probability that, given that the environment Env is in state S and for each graph node
v, Env receives the output sequence O(7) from the process i at node v (i.e., i = id(v)), the
environment £nv makes a transition to state S’ and for each graph node v, Env performs

the inputs in sequence /(7) for process 7 at graph v.

Informally, the third bullet above explains that H(S,O)(S’, I) is the probability that, when the
environment Fnv is in state S and receives output sequences determined by O() from processes
(O() determines one sequence of outputs for the process at each graph node), it makes transition to
state S” and generates input sequences determined by /() to be passed to processes (/() determines

one sequence of inputs for the process at each graph node).

ZRecall from Section 2.1 that we use notation X5 to denote the set of finite length sequences over set S.
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7.3 Distributed Algorithms and Processes

The main difference in the definitions of this section with those of Section 3.2 is the introduction
of input and output actions, which are the actions in the interface between the processes and the
environment.

We define a distributed algorithm A to be a collection of N randomized processes, where N
is an arbitrary positive integer. Processes are described by probabilistic automata and informally,
in each process, we have two types of transitions: (1) probabilistic transitions that take the state
at the beginning of a round and a sequence of inputs to an intermediate state and a message to be
transmitted on the channel (or silence), and (2) deterministic transitions that take an intermediate
state and a message received from the channel (or a special value L or T) to the state at the end
of a round and a sequence of outputs, which are returned to the environment. We remark that at
the start of each round, the processes make their probabilistic transitions after the environment has
made its transition. We explain this issue in more details in Section 7.4. The specific definition and
meaning of these actions in the case of the local broadcast problem are presented in Chapter 8.

The formal definition of processes is as follows: Each process in A is a 6-tuple (¢, Q°, P, Qh, F*, G)

and we have:
e i € [N] is the unique identifier of this process.

e Q' and P! are two sets of states, and we have Q' N P* = (). We refer to states in these two

sets respectively as O-states and P-states.
e Q) € Q'is a single starting state.

e F'is a function that captures the probabilistic transitions of the process. For each state
S € Q' and each input sequence [ € Yz, function F'(S, 1) : P' x M, — [0,1] is a
probability distribution function over P* x M . That is, for each state S’ € Q’, and each
m € M, F'(S,I)(S’,m) is the probability that, given that the process with id i is in state
S and it receives the input sequence /, it makes a transition to state S’ and transmits m if
m # | and remains silent if m = 1. Note that as mentioned in Section 2.1, in this notation,

symbol L means remaining silent.

e G': Pl x Myt — Q' x Y, is a function that captures the deterministic transitions of
the process. For each state S’ € P’ and each m’ € M+, G/(S’,m’) determines a state in
Q € Q' and an output sequence O € Yp., and we have the following: if the process with
id 7 is in P-state S’ and it receives m’ from the channel, then it makes a transition to state ()

and performs output sequence O.
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For simplicity, we sometimes use process 1 to refer to the process with id .
We emphasize that the main difference in the definition of the processes in this section with
that of Section 3.2 is in including input and output actions. These changes particularly appear in

the last two bullet-points of the definition of processes presented above.

7.4 Executions in the Dual Graph Model

As mentioned at the start of this chapter, in a distributed system in the multi-shot setting of the
dual graph model, a set of processes are connected to each other via a network, where the commu-
nications on some of connections are controlled by an adversary, and the processes interact with
an environment automaton. In this section, we explain how this system works as a whole by de-
scribing the executions of a distributed algorithm in this model. An execution of an algorithm A
in network (G, G') proceeds as follows:

The execution proceeds in synchronous lock-step rounds 1,2, ..., where all the participating
processes start in the first round.

At the beginning of each round 7, the environment is in a state in 7. Then, the environment
makes its probabilistic state transition using function H and performs some input actions. If r = 1,
then the transition of the environment depends only on its initial state 7. If » > 2, then the
transition of the environment depends on its state at the end of round » — 1 (equivalently right
before the start of round ) and the outputs that the environment receives at the end of round r — 1.
The outputs that the environment receives at the end of round » — 1 are described by a mapping
O"~1() that determines an output sequence O"'(i) € X, for each process i assigned to graph
node v where ¢ = id(v). The inputs that the environment generates at the start of round r are
described by a mapping I"() that determines an input sequence ["(i) € Xz, for each process i
assigned to graph node v where ¢ = id(v).

On the other hand, at the beginning of each round r, every process proc(v),v € V, with
i =id(v) is in a Q-state. As a result of the input actions that the environment performs during its
state transition, each process proc(v), , with i = id(v), receives an input sequence /" (i) € ¥z, from
the environment. Then, using function F* where i = id(v), proc(v) performs its probabilistic state
transition to a P-state, and it also determines what message it transmits in round r or that it remains
silent in this round, by determining m € M . Recall from Section 7.3 that in our notation, during
this transition, choosing m = | means that process 7 remains silent. We moreover emphasize that
at the start of each round, the processes make their probabilistic transitions after the environment
has made its probabilistic transition.

Next, the adversary chooses a reach set that consists of £ and a subset, potentially empty, of

edges in £’ — E. This reach set describes the links that are active in this round. We emphasize that
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when focusing on the special case of the classical model, set £’ — E' is empty and therefore, the
reach set is just £.

In the dual graph model, we assume that the adversary is ‘adaptive offline’ [8] meaning that
it has full knowledge about the processes. This means that when choosing the reach set of round
r, the adversary knows everything about the processes up to round r of the execution including
the input and output actions that processes have received or performed and the outcome of the
random coins used for the transitions of all rounds up to and including round 7. Most importantly,
the adversary knows which processes are transmitting in round r. Moreover, we assume that the
adversary can also make randomized decisions.

After the adversary determines the reach set of round r, depending on this reach set and which
processes are transmitting, each process i receives exactly one value in set M | 1 from the channel.
For a graph node v, let B, , be the set of all graph nodes u such that proc(u) transmits in  and
edge e = {u, v} is in the reach set for this round. What proc(v) receives in round 7 is determined
by the following rules:

(A) If proc(v) broadcasts in round r, then it receives only its own message.

(B) If proc(v) does not broadcast, and |B,, .| = 0 or |B,,| > 1, then proc(v) receives L (indi-

cating silence).

(C) If proc(v) does not broadcast, and | B, | = 1, then proc(v) receives the message sent by

proc(u), where u is the single node in B, ,..

The rule (A) means that each process cannot send and receive simultaneously. We remark that
the rule (B) means that we do not assume any collision detection mechanism in this model. To
strengthen our results, we present our lower bounds (Chapter 11) in the stronger model with colli-

sion detection, i.e., when the rule (B) is replaced with the following rule

(B’) If proc(v) does not broadcast, and | B, .| = 0, then proc(v) receives L. If proc(v) does not
broadcast, and |B, | > 1, then proc(v) receives T (indicating collision).

After receiving the messages of round r, every process proc(v),v € V makes its deterministic
transition using function G*, where 7 = id(v). That is, suppose process proc(v),v € V, is in a P-
state S’ € P?, where i = id(v), and it receives m’ € M, + from the channel. G*(S”, m’) determines
a state in S” € Q' and an output sequence O"(i) € Yp,. Then proc(v) makes a transition to
Q-state S” and performs output sequence O" (7).

The main difference in this section with respect to Section 3.3 is that here, the system also
includes an environment and this environment interacts with the processes through input and output

actions. Thus, the execution includes the state transitions of the environment, which happen at the
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start of each round, the probabilistic transitions of the processes, which are done after the transition
of the environment in that round and depend on the inputs that they receive from the environment,

and the deterministic transitions of the processes, which determine the outputs that they generate.

7.5 Centralized Algorithms

In our lower bounds (Chapter 11), we consider the stronger model of centralized algorithms. We
define a centralized algorithm to be the same as the distributed algorithms explained in this chapter,
with two modifications: (1) the processes know the graph (G, G') and the mapping id() from the
beginning of the execution; and (2) when the processes are making their transitions, they know
the full history of the execution and thus, their transitions are a function of the full history of the

execution. This history in particular includes the current state of all the processes in the network.

51



52



Chapter 8

The Local Broadcast Problem in The
Multi-Shot Setting

In this chapter, we present the definition of the local broadcast problem in the multi-shot setting. As
stated in the introduction, the informal definition of the local broadcast problem in the multi-shot
setting is that processes are given messages, one by one, and they should deliver these messages
to all of their neighbors. In this chapter, we formalize this definition. We remark that this problem
was first introduced by Kuhn, Lynch, and Newport [31, 32] and later generalized to a probabilistic
version by Khabbazian, Kowalski, Kuhn, and Lynch [36, 37]. These papers referred to the local
broadcast problem as abstract MAC. Our definition is similar to that of [36] except that we consider
synchronous rounds.

We start by explaining the interface between each process and the environment, in Section 8.1.
In Section 8.4, we define the local broadcast problem. Section 8.5 presents the time bounds that

we use to measure the performance of a local broadcast algorithm.

8.1 The Interface Between The Processes and The Environ-

ment

The first step in formalizing the problem statement is to fix the input/output interface between each
process assigned to a graph node — each process abstracts the local broadcast module of a wireless
node — and the environment — which abstracts the higher levels all wireless node. As explained
in Section 7.2, the sets of input actions / and output actions O are partitioned into sets respectively
Z; and O;, one for each process proc(v) at graph node v, where ¢ = id(v). The purpose of this
section is to explain what the actions in sets Z; and O; are. The interface for process proc(v), with

i = id(v), consists of three kinds of actions, seen from the viewpoint of proc(v), as follows:
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1. bcast(m);, an input action that provides the process proc(v) with a message m € M that

has to be broadcast to all nodes in ./\fg(v), 1.e., node v’s reliable neighborhood.

2. ack(m);, an output action that proc(v) performs to inform the higher layers that the message
m € M has been delivered to all reliable neighbors of node v successfully. This delivery

guarantee is only probabilistic and is made precise in Section 8.4.

3. rcv(m);, an output action that proc(v) performs to transfer the message m € M, received

through the radio channel, to the higher layers.

We remark that in all these three kinds of actions, the message m is in the set M, which
as presented in Section 2.1, is the set of messages used for the communications on the channel.
That is, the messages in the interactions have the same type as the messages in the lower level
channel communications. Note that this is a restriction on the algorithm as for instance, a message
transmitted on the channel can not be just a part of a message received in a bcast() input or can not

combine two or more (or parts of two or more) messages receive in bcast() inputs.

8.2 Constraints for the Processes

Process proc(v) is allowed to perform action rcv(m);, where i = id(v), at the end of a round r
only if process proc(v) receives message m on the channel from a process proc(u) for u € N/ (v),

in a round " < r. Also process proc(v) outputs rcv(m); at most once.

8.3 Constraints for the Environment

We restrict the behavior of the environment to generate bcast() in a well-formed manner. In-
formally, there should be a strict alternation between bcast(); actions and corresponding ack();
actions, for each process proc(v) that ¢ = id(v). The formal explanation of these constraints is as
follows. For every execution and every process v, with ¢ = id(v), the environment is allowed to

generate a bcast(m); at the start of a round r only if one of the following conditions is satisfied:
1. bcast(m); is the first input to u in the execution;

2. the last input action at v was bcast(m’); and the process proc(v) has already performed

ack(m'); by the end of round r — 1.

We emphasize that there can be any number of rcv(m”); actions between beast(m'); and ack(m’);.
We moreover require that for each process proc(v) at a graph node v and each message m, the

environment does not perform action bcast(m);, where i = id(v), more than once.
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8.4 The Local Broadcast Problem

In this section, we present the definition of the local broadcast problem. Formally, we say that an
algorithm A solves the local broadcast problem if and only if, for every well-formed environment

automaton Enuv, executions of A with Env satisfy the following three properties:

(A) In every execution, for every process v, with i = id(v), for each bcast(m); input, process
v eventually responds with a single ack(m); output, and these are the only ack outputs

generated by v.

(B) In every execution, for each process v, with i = id(v), if process v generates a rcv(m);
output at the end of round r, then there is a neighbor u € N/ (v) with j = id(u), that
receives a bcast(m); input by the start of round » and does not output ack(m), by the end

of round r — 1.

(C) Consider an arbitrary process v and rounds r and r’. Let « be a closed execution of A that
ends right after the probabilistic transition of the environment £nv in round 7 and in which
Env generates a bcast(m); input, where ¢ = id(v), to process v at the start of round r.
Consider the space of all executions that extend « and let £ be the event in this space that the
process v outputs ack(m); at the end of round 7’. Let £’ be the event in the same space that
each process u € Ng(v), with j = id(u) generates output rcv(m); by the end of a round
" <o IfPr(€) > 0, then Pr(&’'|€) > 1 — 2.

Informally, property (C) states that if process proc(v) acknowledges that the message m is de-
livered to all neighbors by outputting ack(m);, where i = id(v), at the end of a round r, then
with high probability, by the end of round r, all G-neighbors u of v have output rcv(m);, where
J =id(u).

An algorithm A that solves the local broadcast problem is called a local broadcast algorithm.

8.5 The Time Bounds

We measure the performance of a local broadcast algorithm with respect to the two bounds first
formalized in [31]: the acknowledgment bound, and the progress bound. These bounds are nor-
mally considered as a functions of the local contention. Before defining these bounds, we first
present the definitions that we use to describe the local contention during a given round interval.

The following are defined with respect to a fixed execution.

(i) We say a process v, with id i = id(v) is active with message m in round r iff it receives a

bcast(m), input at the start of a round < r and does not generate a corresponding ack(m),
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output by the end of a round < r — 1. We furthermore call a message m active in round 7 if

there is a process that is active with it in round r.

(ii) For process v and round r, the local contention ¢(v,r) is equal to the number of active

processes in N, (v) in round r.

We use notation A’ (or A for the classical model) to denote an upper bound on the maximum local
contention c(v, ) over all processes v and all rounds r of the execution that is under consideration.
In our upper bound results, we assume that processes know A’ (or A for the classical model). This
means that the processes have A’ (or A for the classical model) encoded in their states and the
algorithm is required to work if for each round r and each node u, the local contention ¢(v, r) < A'.

Now we go back to defining the time bounds. We first present informal descriptions of these
bounds: Informally, (1) the acknowledgment bound is a bound on the time between a bcast(m);
and the corresponding ack(m);, (2) the progress bound is a bound on the time for a process to
receive at least one message when it has one or more GG neighbors with messages to send.

The acknowledgment bound represents a standard way of measuring the performance of local
communication. The progress bound is less commonly studied but is crucial for obtaining tight
performance bounds in certain classes of applications, such as global broadcast. See [31, 36, 40]
for examples of places where the progress bound is used explicitly. Also, [19, 23, 24, 25, 26, 29]
use the progress bound implicitly throughout their analysis.

We now present the definitions of the acknowledgment bound and the progress bound. For
any given local broadcast algorithm .4 and any fixed multi-shot setting (G, G') with the guranteed

maximum contention A\’, these bounds are defined as follows:

1. A number ¢ € N is an acknowledgment bound for A in (G, G') iff the following holds:

Consider an arbitrary process v, an arbitrary well-formed environment Fnv, and a round
r. Let o be a closed execution of A that ends right after the probabilistic transition of
the environment Env in round r and in which Env generates a bcast(m); input, where
i = id(v), to process v at the start of round r. Consider the space of all executions that
extend a and let £ be the event in this space that the process v outputs ack(m); by the end
of round r + t. Then we have Pr(€) > 1 — <.

2. A number t € N is a progress bound for A in (G, G") iff the following holds: Consider an
arbitrary process v, an arbitrary well-formed environment £nv, and a round . Let o be a
closed execution of A that ends right at the end of round  — 1. Consider the space of all
executions that extend « and let £ be the event in this space that for each round 1" € [r, r 4],
there exists at least one neighbor u € Ng(v) that is active in round /. Also, let £’ be the

event in the same probability space that v generates a rcv(m); output, where i = id(v), by
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the end of round r + ¢ for a message m that was active in N/ (v) in some round in [r, 7 + ¢].
If Pr(£) > 0, then Pr(&’|€) > 1 — 1.

We remark that in the above conditions, the related probability distributions are with respect to

the probabilistic choices of the algorithm, the environment, and the adversary.
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Chapter 9

Related Work

9.1 Single-Hop Networks

The k-selection problem is the restricted case of the local broadcast problem for single-hop net-
works, in the classical model. This problem is defined as follows. The network is a clique of
size n, and k arbitrary processes are active with messages. The problem is for all of these active
processes to deliver their messages to all the nodes in the network. This problem received a vast
range of attention throughout 70’s and 80’s, and under different names, see e.g. [9]- [16]. For
this problem, Tsybakov and Mikhailov [9], Capetanakis [10, 11], and Hayes [12], (independently)
presented deterministic tree algorithms with time complexity of O(k + klog(7)) rounds. Komlos
and Greenberg [17] showed if processes know the value of k, then there exists algorithms that
work with the same time complexity in networks that do not provide any collision detection mech-
anism. Greenberg and Winograd [16] showed a lower bound of Q(%) for time complexity of
deterministic solutions of this problem in the case of networks with collision detection.

On the other hand, Tsybakov and Mikhailov [9], and Massey [13], and Greenberg and Lan-
der [14] present randomized algorithms that solve this problem in expected time of O(k) rounds.
One can see that with simple modifications, these algorithms yield high-probability randomized

algorithms that have time complexity of O(k) + polylog(n) rounds.

9.2 Multi-Hop Networks

Chlamatac and Kutten [18] were the first to introduce the classical radio network model. Bar-
Yehuda et al. [19] studied the theoretical problem of local broadcast in synchronized multi-hop
radio networks as a submodule for the broader goal of global broadcast. For this, they introduced

the Decay protocol, a randomized distributed algorithm that solves the local broadcast problem.
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Since then, the Decay protocol has been the standard method for resolving contention in wireless
networks (see e.g. [29, 31, 36, 38]). In this paper, we prove that a slightly modified version
of Decay protocol achieves optimal progress and acknowledgment bounds in both the classical
radio network model and the dual graph model. A summary of these time bounds is presented in
Figure 1-1.

Deterministic solutions to the local broadcast problem are typically based on combinatorial
objects called Selective Families, see e.g. [24]-[28]. Clementi et al. [26] construct (n, k)-selective
families of size O(k logn) ([26, Theorem 1.3]) and show that this bound is tight for these selective
families ([26, Theorem 1.4]). Using these selective families, one can get local broadcast algorithms
that have progress bound of O(A logn), in the classical model. These families do not provide any
local broadcast algorithm in the dual graph model. Also, in the same paper, the authors construct
(n, k)-strongly-selective families of size O(k?*logn) ([26, Theorem 1.5]). They also show (in
[26, Theorem 1.6]) that this bound is also, in principle, tight for selective families when £ <
v/2n — 1. Using these strongly selective families, one can get local broadcast algorithms with
acknowledgment bound of O(AZ%logn) in the classical model and also, with acknowledgment
bound of O((A’)?log n) in the dual graph model. As can be seen from our results (summarized in
Figure 1-1) and particularly the upper bounds that we present in Theorem 10.2.1, all three of the
above time bounds are far from the optimal bounds of the local broadcast problem. This shows that
when randomized solutions are admissible, solutions based on these notions of selective families
are not optimal.

In [27], Clementi et al. introduce a new type of selective families called Ad-Hoc Selective
Families which provide new solutions for the local broadcast problem, if we assume that processes
know the network and the mapping proc() from graph nodes to processes. Clementi et al. show
in [27, Theorem 1] that for any given collection F of subsets of set [n], each with size in range
[Apin, Amaz], there exists an ad-hoc selective family of size O((1 4 log(Aae/Amin)) - log | F|).
This, under the assumption of processes knowing the network and the mapping proc(), translates
to a deterministic local broadcast algorithm with progress bound of O(log A log n), in the classical
model. This family do not yield any broadcast algorithms for the dual graph model. Also, in [28],
Clementi et al. show that for any given collection F of subsets of set [n], each of size at most A,
there exists a Strongly-Selective version of Ad-Hoc Selective Families that has size O(A log |F'|)
(without using the name ad hoc). This result shows that, again under the assumption of knowledge
of the network and the mapping proc(), there exists a deterministic local broadcast algorithms
with acknowledgment bounds of O(Alogn) and O(A’logn), respectively in the classical and
dual graph models. Our lower bounds for the classical model, which we present in Corollaries
Corollary 11.1.6 and Corollary 11.1.7, show that both of the above upper bounds on the size of
these objects are tight.
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Chapter 10

The Upper Bounds in The Multi-Shot
Setting

In this chapter, we present our local broadcast algorithm for the multi-shot setting of both the
classical model and the dual graph model. We remark that this algorithm is achieved by a small
and simple change to the Decay protocol of Bar-Yehuda, Goldreich and Itai [19]. The Decay
protocol was designed as a sub-module for the global broadcast problem in the classical model.

In Chapter 11, we show our acknowledgment and progress lower bounds for the multi-shot
setting, which show that this optimized variant of the Decay protocol has asymptotically optimal
progress and acknowledgment bounds in both the classical and the dual graph models.

This chapter is organized as follows. In Section 10.1, we present our optimized variant of the

Decay protocol. We present the analysis of this algorithm in Section 10.2.

10.1 The Optimized Decay Protocol

Since the classical model is simply a special case of the dual graph model, we use the dual graph
model for explaining the algorithm.

In the optimized Decay algorithm, the rounds are divided into phases, each consisting of
2log A’ consecutive rounds'. Also, the phases of different processes are synchronized with each
other. When a process v receives an input beast(m);, where i = id(v), at the start of a round r,
it waits till the start of the next phase, i.e., the first phase that starts in a round " > r. Then, for

100 Akl)gloi," phases, processes v tries transmitting message m, according to Algorithm 10.1 in each

phase (explained in the next paragraph). At the end of the last round of the last of these phases, the

process v outputs ack(m);.

!For simplicity, throughout this chapter, we assume that A’ is a power of 2. Otherwise, we can use 2[log A’] as
the length of each phase. It is easy to see that all the calculations remain correct up to a small constant factor.
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If a process v has received input bcast(m);, where i = id(v), by the start of a phase p and v
has not output ack(m); by the same time (the start of phase p), we say that in phase p, process v
is ready with message m or simply ready. During each such phase p, process v runs Algorithm

10.1. In particular, each phase is as follows: in odd rounds, the process v transmits message m

1 1 1
90 42t AT

of 2. In even rounds, the process v transmits message m with probability %. On the other hand,

with exponentially decreasing probabilities Recall that we assumed that A’ is a power
if a process u listens in a round r and receives a message m in that round, and » has not output
rcv(m;), where j = id(u), by the end of round r — 1, then u outputs rcv(m;) at the end of round
T.

We use the odd rounds for achieving a good progress bound in the classical model, whereas all
the other bounds, i.e., the acknowledgment in the classical model and the progress and acknowl-
edgment in the dual graph model, only use the even rounds. This point is made clear in the analysis

of this algorithm in Section 10.2.

Algorithm 1 A phase of the optimized Decay in process v with i = id(v)

for r := 1 to 2log A’ do
if r mod 2 = 1 then
with probability 22 transmit m, otherwise listen
else
with probability % transmit m, otherwise listen
endIf

endfor
output ack(m);

10.2 The Analysis of the Optimized Decay Protocol

In this section, we analyze the optimized Decay protocol and show that this algorithm has progress
and acknowledgment bounds of, respectively, O(log A log n) and O(A log n) in the classical model,
and progress and acknowledgment bounds of, respectively, O(A’log n) and O(A’logn) in the dual
graph model. Specifically, note that the dependence of the progress bound on the maximum con-

tention, A or A, changes exponentially between the classical model and the dual graph model.

Theorem 10.2.1. The optimized Decay algorithm solves the local broadcast problem in both the
classical and the dual graph model. In the classical model, this algorithm has progress and ac-
knowledgment bounds, respectively, 100 log A logn and 300A log n. In the dual graph model, this
algorithm has progress and acknowledgment bounds, respectively, 600A’ log n and 300A’ log n.

We break the theorem into smaller parts and prove these parts separately.
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Lemma 10.2.2. The optimized Decay algorithm solves the local broadcast problem in the dual
graph model and has acknowledgment bound of 300A’ log n.

Proof. Itis clear that the optimized Decay algorithm satisfies properties (A) and (B) of local broad-
cast algorithms (refer to Section 8.4). We first show that the optimized Decay algorithm has ac-
knowledgment bound of 300A’logn. Then in order to complete the proof, we show that the op-
timized Decay algorithm satisfies property (C) of local broadcast algorithms (refer to Section 8.4)
as well.

In order to prove that the optimized Decay algorithm has acknowledgment bound of 300A’ log n,
consider a process v with id ¢ = id(v) and a round r such that v receives an input of bcast(m); in
round r. Let P the set of first 100 Al(;éoi," phases that start in a round > r, i.e., the set of 10010?—',
phases during which v is ready with m. Note that process v acknowledges message m at the end

of (the last round of) the last phase of P. Since each phase has 2log A’ round, and the first phase
of P starts by round r + 2log A’, we get that process v outputs ack(m); by the end of round
r" = r + 200A"logn + 2log A’ < r + 300A’logn. Note that this guarantee is deterministic.
This shows that the optimized Decay algorithm has acknowledgment bound 300A" log n (refer to
Section 8.5). Note that since the optimized Decay algorithm provides a deterministic guarantee on
the time till acknowledging a message, checking the definition of the acknowledgment bound in
this case does not require any conditioning and is considerably simpler than the statement of the
acknowledgment bound in Section 8.5.

Now, in order to conclude the proof, we show that the optimized Decay algorithm satisfies
property (C) of local broadcast algorithms (refer to Section 8.4) as well. Let process v and round
r be defined as above and let « be a closed execution of 4 that ends right after the probabilistic
transition of the environment Env in round r and in which Env generates a bcast(m); input,
where ¢ = id(v), to process v at the start of round r. Let P be defined as above, i.e., P is the set
of first 1005%5" phases that start in a round > r. Note that v outputs ack(m); only at the end of

log A
round 7’ that is the last round of the last phase of P. Thus, we only need to check property (C) for

this particular round /. That is, if we consider the space of all executions that extend «, then the
event £ that v outputs ack(m); at the end of round " happens in every such execution and thus,
conditioning on this event does not change the probabilities. Now let £ be the event in the space
of all executions that extend « that each process u € Ng(v), with j = id(u) generates output
rcv(m); by the end of a round r” < r’. We show that Pr(£') > 1 — 2.

Throughout the rest of this proof, our probabilities are based on the space of all executions that
extend ov. Consider an arbitrary process u € Ng(v). To prove that Pr(€’) > 1 — 1, we show that
by the end of the last phase of P, with probability at least 1 — n%s u receives message m. A union
bound over all nodes in N¢(v) then shows that Pr(£) > 1 — —; > 1 — * and thus completes the

proof.
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To show that u receives m by the end of the last phase of P with probability at least 1 — #

we focus on the even rounds of phases in P. Note that there are at least 100 Alcl)éoi/” ~log A" =

100A’ log n even rounds in phases in P. For each even round 7 in a phase in P, the probability that

u receives the message of v is at least

1 1cur71
E(l _—elwr)

where the first term is the probability of transmission of process v and the other term is the proba-

bility that rest of the active processes in NV, (u) remain silent. We moreover have

1 1 1 1 A 1 1 A 1
_ 1 o C(’U,,T)fl > _ 1 o A'—1 > _ 1 _ A > .
A/ ( A’) A ( A’) A ( A’) VAN

Since there are at least 100A’ logn even round in phases of P, we get that the probability that u
does not receive m in any of these rounds is at most (1 — 1&;)'004" 18" < ¢=251e™ < L Hence,
with probability at least 1 — #, u receives message m by the end of the last phase of P. A union
bound over all nodes u € Ng(v) shows that with probability at least 1 — n—§4, each G-neighbor u
of v receives message m by the end of the last phase of P. Thatis, Pr(€’) > 1 — -4 > 1 — 1,

which completes the proof. [

Corollary 10.2.3. The optimized Decay solves solves the local broadcast problem in the classical
model and has an acknowledgment bound of 300A log n.

Proof. The corollary follows directly from Lemma 10.2.2 by setting G = G'. U

Corollary 10.2.4. The optimized Decay algorithm has progress bound 600A’ logn in the dual
graph model.

Proof. Consider an arbitrary process v and an arbitrary round r. Let « be a closed execution of A
that ends right at the end of round » — 1. Consider the space of all executions that extend «. For
the rest of the proof, we focus on this probability space. Let £ be the event in this space that for
each round 1’ € [r,r + 600A’ log n], there exists at least one neighbor v € Ng(v) that is active in
round 7. Also, let £ be the event in the same probability space that v generates a rcv(m); output,
where i = id(v), by the end of round r + 600A’ logn for a message m that was active in Ng/(v)
in some round in [r, 7 + 600A’ log n]. We show that if Pr(€) > 0, then Pr(€’|€) > 1 — L. Refer
to Section 8.5 to see that this matches the definition of the progress bound.

Consider the executions that extend « and in which event £ happens. Let process proc(u) be a
process for a node u € Ng(v) that receives a bcast(m);, where j = id(u), at the start of a round
r’ € [r,r + 300A’logn]. Note that such a process proc(u) exists because event £ happens and

each process is active with one message for at most 200A’ logn + 2log A’logn < 250A’logn
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rounds. In other words, if no such process proc(u) exists, then since each process is active with
one message for at most 250A’ log n rounds, in rounds [r + 250A’logn + 1, r + 300A’ log n] no
G-neighbor of v would be active, which means that £ does not happen. Since we assumed that £
happens, we get that such a process proc(u) exists.

Now we focus on process proc(u) that receives a beast(m);, where j = id(u), at the start of
around r’ € [r,7 4+ 300A’log n|. Moreover, we focus on rounds [, 7" + 300A’ log n]. We show
that with high probability, process v receives message m from w in a round in interval [/, r" +
300A'logn] C [r,7+600A’log n]. This proves that Pr(€'|€) > 1— X, which completes the proof.
The calculations of this part are similar to those in the last paragraph of the proof of Lemma 10.2.2
except for changing the names of w and v. For completeness, we repeat these calculations.

Let P be the set of first 100% phases that start in a round > /. We show that v receives m

by the end of the last phase of P with probability at least 1 — n§5~ For this we focus on the even

A’logn
log A’

phases in P. For each even round 7 in a phase in P, the probability that v receives the message m

rounds of phases in P. Note that there are at least 100 -log A" = 100A’ log n even rounds in

from v is at least
1 1 — i)c(v,r)—l

E( A/

where the first term is the probability of transmission of process u and the other term is the proba-

Y

bility that rest of the active processes in N, (v) remain silent. We moreover have

1 1 1 1 A 1 IOV 1
E (1 _ E)C(’U,T)—l > (1 _ )A —1 > . (1 _ _)A >

= A/ N = A A T AN

Since there are at least 100A’logn even round in phases of P, we get that the probability that
v does not receive m in any of these rounds is at most (1 — &;)!008"len < e=Plogn < L
Hence, with probability at least 1 — # v receives message m by the end of the last phase of P.
Note that we obtained this using the assumption that event £ happens. Thus, if in an execution
extending o event £ happens, then with probability at least 1 — n%, event £ happens as well.

Hence, Pr(£'|€) > 1 — -5 > 1 — 1, which completes the proof. O

Lemma 10.2.5. The optimized Decay algorithm has progress bound 100 log A log n in the classi-

cal model.

Proof. Consider an arbitrary process v and an arbitrary round r. Let « be a closed execution of A
that ends right at the end of round  — 1. Consider the space of all executions that extend «. For the
rest of the proof, we focus on this probability space. Let £ be the event in this space that for each
round 7’ € [r,r + 100log A log n], there exists at least one neighbor u € Ng(v) that is active in
round 7. Also, let £ be the event in the same probability space that v generates a rcv(m); output,

where i = id(v), by the end of round r + 100A log n for a message m that was active in Ng/(v) in
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some round in [r, 7 + 100 log A log n]. We show that if Pr(€) > 0, then Pr(£'|€) > 1 — L. Refer
to Section 8.5 to see that this matches the definition of the progress bound.

Assume that event £ happens. Informally, we show that there are at least 50 log A log n consec-
utive rounds r” in interval [r, 7+100 log A log n| such that in each round r”, at least one G-neighbor
of v is ready. Then we show that in these 50 log A log n rounds, with high probability, v receives
at least one message. This shows that Pr(&'|€) > 1 — % and thus completes the proof.

We divide the proof into two cases as follows: First, we assume that « is such that there exists
at least one G-neighbor w of v that receives a bcast(m);, where j = id(w), by the end of round
r — 1 and w is active till the end of round » + 50 log A log n. Note that since the round in which a
process w outputs ack(m);, where j = id(w), only depends on the round in which w receives the
related bcast(m); and this dependence is deterministic, whether « satisfies the above assumption
only depends on «. In particular, whether « satisfies the above assumption does not depend on
the probabilistic choices after ae. We first prove the claim for the first case, where this assumption
is satisfied, by focusing on rounds [r,r + 50log A log n|. Then, in the second case, we study the
situation where « does not satisfy this assumption. We show that in the second case, since &
happens, there exists at least one G-neighbor w’ of v that receives a bcast(m);,, where j' = id(w’),
in a round in interval [r,r + 50log Alogn + 1]. Having this, we prove the claim for the second

case by focusing on rounds [ + 501log Alogn + 1,r + 100 log A log n).

First Case We assume that « is such that there exists at least one G-neighbor w of v that receives
a beast(m);, where j = id(w), by the end of round r — 1 and w is active till the end of round
r + 50log Alogn. We show that with high probability, £ happens. Let P be the set of phases
that are in round interval [r,r + 50log Alogn]. Let R(v,r) denote the number of processes in
Ng(v) that are ready in round . Consider an arbitrary phase p € P. Note that since a process
becomes ready only at the start of a phase and it acknowledges only at the end of a phase, for each
two round 7,7’ of phase p, we have R(v,r) = R(v,r’). Let k = R(v,r) for a round r of phase
p. Since process w as explained above exists, we have & = R(v,r) > 1. Consider odd round
r = 2[log k] — 1 of phase p. Note that we have that 251 = 2/1°8*1 ¢ [k 2k]. Then, the probability

that v receives a message in round r from some ready node in NVg(v) is at least

k 1

o = 5

ﬁ _l)k1>£4kkl>%_

) - 2k (1 k - 2k

Thus, for each phase p € P, the probability that v receives at least one message during phase p
is at least %. Therefore, the probability that v does not receive a message in any of phases in P is

__50logn
at most (1 — £)*008™ < e~ 7%

probability at least 1 — % Recall that we had assumed that £ happens. Thus, in the first case, we

< e~flsm < 1 Hence, in the first case, event £ happens with
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have Pr[€’|€] > 1 — L. This completes the proof for the first case.

Second Case Now we assume that « is such that there is no GG-neighbor w of v that receives
a beast(m);, where j = id(w), by the end of round » — 1 and w is active till the end of round
r + 50log A logn. Hence, by the end of round 50 log A log n, all the processes w at GG-neighbors
of v have output ack(m);, where j = id(w) for the message m that they received the related
bcast(m); by the end of round r — 1. In this case, since we assumed that £ happens, for each round
r" € [r+50log Alogn + 1,7 + 100log A log n], there must be at least one neighbor v € Ng(v)
that is active in round /. Because of this, we get that there exists at least one G-neighbor w’ of
v that receives a bcast(m);,, where j° = id(w’), in a round in interval [r,r + 50 log Alogn + 1].
Now the calculations of the proof are similar to those in the first case but with focus on rounds
[r +501log Alogn + 1,7 + 100 log Alogn]. Let P’ be the set of phases that are in round interval
[r 4+ 501log Alogn+ 1,7+ 1001log Alogn|. Let R(v, r) denote the number of processes in N (v)
that are ready in round r. Consider an arbitrary phase p € P’. Note that since a process becomes
ready only at the start of a phase and it acknowledges only at the end of a phase, for each two
round 7,7’ of phase p, we have R(v,r) = R(v,r’). Let k = R(v,r) for a round r of phase
p. Since process w’ as explained above exists, we have k = R(v,r) > 1. Consider odd round
r = 2[log k] — 1 of phase p. Note that we have that 2/21 = 2°8*I ¢ [k 2k]. Then, the probability

that v receives a message in round r from some ready node in NVg(v) is at least

k Ly kg Ly ke

gm mgm) 2 ) 2 gy

Thus, for each phase p € P’, the probability that v receives at least one message during phase p is
at least % Therefore, the probability that v does not receive a message in any of phases in P’ is at
most (1 — £)0%sn < e~ R < Blogn L. Hence, in the second case, event £’ happens with
probability at least 1 — % Recall that we had assumed that £ happens. Thus, in the second case,
we have Pr[’|€] > 1 — L. This completes the proof for the second case.

]

Proof of Theorem 10.2.1. Proof follows directly from Lemma 10.2.2, Corollary 10.2.3, Corol-
lary 10.2.4, and Lemma 10.2.5. U
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Chapter 11

The Lower Bounds in The Multi-Shot
Setting

In this chapter, we present our progress and acknowledgment lower bounds for the multi-shot
setting in both the classical and the dual graph models. All these lower bounds match the respective
upper bounds presented in Chapter 10.

Our lower bounds for the multi-shot setting are obtained by extending the lower bounds of the
single-shot setting, presented in Theorems 5.1.1, 5.2.1, 6.1.1, 6.2.1, to the multi-shot setting. These
lower bounds are presented in Corollaries 11.1.6, 11.1.7, 11.1.8, and 11.1.9, respectively.

We remark that the first two corollaries are about the classical model whereas the last two
corollaries are about the dual graph model. Moreover, the first and the third corollaries are about
the progress bound whereas the second and the fourth corollaries are about the acknowledgment
bound.

Corollary 11.1.6. For any sufficiently large n and any A < n, there exists a multi-shot setting in
the classical model with a bipartite network H(n, A) of size n where for each node u and each
round r, the contention c(u,r) < A, and such that the progress bound of any algorithm in H(n, A)
is greater than §)(log A log n) rounds.

Corollary 11.1.7. For any sufficiently large n and any A € [20logn,n®!|, there exists a multi-
shot setting in the classical model with a bipartite network H(n, A) of size n where for each node

u and each round r, the contention c(u,r) < A, and such that the acknowledgment bound of any

Alogn
100

algorithm in H(n, A) is greater than rounds.

Corollary 11.1.8. For any sufficiently large n and each A" € [201logn, nﬁ], there exists a multi-
shot setting in the dual graph model with a bipartite network H*(n, A") of size n where for each

node u and each round r, the contention c(u,r) < A’, and such that the progress bound of any

A’ logn

20 rounds.

algorithm in H*(n, A') is greater than
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Corollary 11.1.9. For any sufficiently large n and each A" € [201logn, nfll], there exists a multi-
shot setting in the dual graph model with a bipartite network H*(n, A") of size n where for each

node u and each round r, the contention c(u,r) < A, and such that the acknowledgment bound

A’logn

26 rounds.

of any algorithm in H*(n, A') is greater than
The proof outline of all these extensions is similar, and is as follows:

Proof outline for Corollaries 11.1.6, 11.1.7, 11.1.8, and 11.1.9: We use the same networks as in
Theorems 5.1.1, 5.2.1, 6.1.1, and 6.2.1. However, we present a particular behavior of the envi-
ronment in the multi-shot setting of these bipartite networks that ‘simulates’ the local broadcast
problem of the single-shot setting. Then, the proof is by contradiction. We show that if there exists
a local broadcast algorithm A that ‘breaks’ Corollary 11.1.6, 11.1.7, 11.1.8, or 11.1.9, i.e., has a
smaller progress or acknowledgment bound in the related network, then there exists a local broad-
cast algorithm B in the single shot setting that, respectively, ‘breaks’ Theorem 5.1.1, 5.2.1, 6.1.1,
or 6.2.1. O

Next, we present the proof of Corollaries 11.1.8 and 11.1.9. The proofs of the Corollaries
11.1.6 and 11.1.7 are respectively similar to the proofs of Corollaries 11.1.8 and Corollary 11.1.9,
with the exception of changing the values of the parameters (e.g., the value of the bound) and
the related reference theorem of the single-shot setting. Thus we skip presenting a full proof for
Corollaries 11.1.6 and 11.1.7.

Proof of Corollary 11.1.8. Fix an arbitrary sufficiently large n and a A’ € [20logn, nﬁ] and let
H*(n, A’) be the network of the single-shot setting proven to exist in Theorem 6.1.1. We use the
same network H*(n, A’), this time in the multi-shot setting.

We first explain the procedure for simulating the single-shot setting of network H*(n, A’) in
the multi-shot setting. In the multi-shot setting, for each sender process proc(v), the environment
performs a beast(m;); input action, where ¢ = id(v), at the start of the first round. Moreover, these
are the only bcast() inputs throughout the whole execution.

It is easy to see in the multi-shot setting with these special bcast() inputs, for each receiver node
v, the contention of process proc(v) is non-increasing in time and in particular, for each round r >
1, we have c(v,r) < c(v, 1). Moreover, for each receiver node v, we have c(v,1) = dg«(n,ar)(v),
where d g+, A7) (v) is the G'-degree of receiver node v in network H*(n, A’). Since the maximum
G'-receiver degree in H*(n, A’) is at most A’, we get that for each round > 1 of the multi-shot
setting problem, c(v,7) < A’. That is, in the multi-shot setting of network H*(n, A’) with the
aforementioned special inputs, the maximum contention is at most A'.

Given the multi-shot setting with these special bcast() inputs, for the sake of contradiction,

A’logn

suppose that there exists a local broadcast algorithm A that has progress bound at most =43¢
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rounds in this multi-shot setting. We show that there exists a local broadcast algorithm B that has

Allogn
120

progress bound at most rounds in the single-shot setting with bipartite network H*(n, A’).

The algorithm B is the same as algorithm 4 except for two changes: (1) processes in algo-
rithm B do not receive input actions and do not perform output actions, (2) for any sender process
proc(v), if in algorithm A, proc(v) performs an action ack(m;); in round r, then in algorithm B,
process proc(v) sets variable ack; = T'rue in round 7.

We next show that B is a local broadcast algorithm for the single-shot setting with bipartite

A’logn
120

First note that since algorithm A satisfies the property (A) of the local broadcast algorithms in

network H*(n, A’) and that 3 has progress bound at most rounds in this setting.

the multi-shot setting (presented in Section 8.4), when running .4 in the multi-shot setting network
H*(n,A’), each sender proc(v) eventually performs an ack(m;); output action, where i = id(v).
Thus, when running algorithm B in the single-shot setting network H*(n, A’), each sender proc(v)
eventually sets ack; = True. This proves that B satisfies property (A) of the local broadcast
algorithms in the single-shot setting (presented in Section 4.1).

We now show that B satisfies property (B) of the local broadcast algorithms in the single-shot
setting (presented in Section 4.1). For this, note that A satisfies the property (C) of the local
broadcast algorithms in the multi-shot setting (presented in Section 8.4). Moreover, because of
the special from of bcast() inputs that happen only at the start of round 1, the set of executions
extending « in the definition of property (C) of local broadcast algorithms in the multi-shot setting
(presented in Section 8.4) is in fact the set of all executions with these special bcast() inputs.
Thus, the space of executions extending « is in fact the space of all executions with these fixed
special bcast() inputs. Because of the property (C) of local broadcast algorithms, we get that if a
sender process proc(v) performs an ack(m;); output action at the end of round 7, then with high
probability, each receiver process proc(u) such that u € Ng(u), where G is the reliable part of
network H*(n,A’), has output rcv(m;);, where j = id(u). Thus, because of the constraints for
the processes in the local broadcast algorithm presented in Section 8.2, we get the following: when
running algorithm /5 in the single-shot setting network H*(n, A’), if a sender process proc(v) sets
ack; = True at the end of round r, then with high probability, each receiver process proc(u) such
that u € Ng(u), where G is the reliable part of network H*(n, A’), has received the message m;
by the end of round r. This proves that B satisfies property (B) of the local broadcast algorithms

in the single-shot setting (presented in Section 4.1).

A’logn
120

with network H*(n,A’). Since this contradicts Theorem 6.1.1, proving this progress bound fin-

Finally, we prove that B has progress bound at most rounds in the single-shot setting

ishes the proof.
First note that similar to the above paragraph, the executions extending « in the definition of

the progress bound of multi-shot setting (presented in Section 8.5) are in fact all the executions
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with the special bcast() inputs described above. Thus, the space of executions extending « is in
fact the space of all executions with these fixed special bcast() inputs.

Now consider an arbitrary receiver process proc(u) that has at least one sender G-neighbor. We
claim that when we run B in the single-shot setting with network H*(n, A’), with high probability,
proc(u) receives at least one message m; by the end of round %. We prove this claim in two
cases as follows:

First Case Consider the executions of .4 in the multi-shot setting with the special bcast() inputs

described above in which there exists at least one G-neighbor w of w that has outputs ack(m;);,

A’logn
120

algorithms in the multi-shot setting (presented in Section 8.4), which is satisfied by A, we get

with j = id(w), by the end of round . Then following the property (C) of the local broadcast

that in these executions of A, with high probability, process proc(u) outputs rcv(m;);, where

i = id(u), by the end of round A’llggn

broadcast algorithm presented in Section 8.2, this means that in these executions of .4, with high

A’logn
120

in the corresponding executions of B in the single-shot setting with network H*(n, A), with high

. Because of the constraints for the processes in the local

probability, process proc(u) receives at least one message m; by the end of round . Hence,

A’logn

probability, proc(u) receives at least one message m; by the end of round =55

. This completes

the proof of the claim for the first case.

Second Case Now consider the executions of A in the multi-shot setting with the special bcast()
inputs that do not satisfy the assumption of the first case. That is, the executions of A in this

setting in which no G-neighbor w of v has outputs ack(m;);, where j = id(w), by the end of
A’logn

12(;5 :
In each of these executions, all G-neighbors of v are active in each round of interval [1,

A’logn
120

A’logn
120

multi-shot setting with network H*(n, A’) with the special bcast() inputs described above, we get

round

A’ logn]
120 I*

], at least one

Since v has at least one sender G-neighbor, we get that in each round of [1,

rounds in the

G-neighbor of v is active. Having this, since .4 has progress bound at most

that in these executions of .A, with high probability, proc(u) outputs at least one rcv(m;); action,

A’logn
120

local broadcast algorithm presented in Section 8.2, this means that in these executions of A, with

where j = id(u), by the end of round

. Because of the constraints for the processes in the

high probability, process proc(u) receives at least one message m; by the end of round %‘)g’”.
Hence, in the corresponding executions of B in the single-shot setting with network H*(n, A’),
with high probability, proc(u) receives at least one message m; by the end of round %. This

completes the proof of the claim for the second case.

Now we know that when running 5 in the single-shot setting with network H*(n, A’) (in either

of the above two cases), for each arbitrary process proc(u), we have that with high probability,
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A’ logn
120

rounds, in the single-shot setting with network H*(n, A’). This is

proc(u) receives at least one message m; by the end of round

A'logn
120

in contradiction with Theorem 6.1.1 and this contradiction completes the proof of Corollary 11.1.8.
O

This proves that B has

progress bound ! at most

Proof of Corollary 11.1.9. Fix an arbitrary sufficiently large n and a A" € [20logn, nﬁ] and let
H*(n, A’) be the network of the single-shot setting proven to exist in Theorem 6.2.1. We use the
same network H*(n,A’), this time in the multi-shot setting.

We first explain the procedure for simulating the single-shot setting of network H*(n, A’) in
the multi-shot setting. In the multi-shot setting, for each sender process proc(v), the environment
performs a becast(m;); input action, where id = id(v), at the start of the first round. Moreover,
these are the only bcast() inputs throughout the whole execution.

It is easy to see in the multi-shot setting with these special bcast() inputs, for each receiver node
v, the contention of process proc(v) is non-increasing in time and in particular, for each round r >
1, we have c¢(v,r) < ¢(v, 1). Moreover, for each receiver node v, we have c(v,1) = dy«(n,a1)(v),
where dy+(n a7)(v) is the G'-degree of receiver node v in network //*(n, A’). Since the maximum
G'-receiver degree in H*(n, A’) is at most A’, we get that for each round > 1 of the multi-shot
setting problem, c(v,r) < A’. That is, in the multi-shot setting of network H*(n, A’) with the
aforementioned special inputs, the maximum contention is at most A’.

Given the multi-shot setting with these special bcast() inputs, for the sake of contradiction,

suppose that there exists a local broadcast algorithm A that has acknowledgment bound at most

A’logn
120

B that has acknowledgment bound at most
network H*(n, A').

The algorithm B is the same as algorithm .4 except for two changes: (1) processes in algo-

rounds in this multi-shot setting. We show that there exists a local broadcast algorithm
A’ logn

5 rounds in the single-shot setting with bipartite

rithm B do not receive input actions and do not perform output actions, (2) for any sender process
proc(v), if in algorithm A, proc(v) performs an ack(m;); action, where i = id(v), in round r, then
in algorithm B, process proc(v) sets variable ack; = True in round .

We next show that B is a local broadcast algorithm for the single-shot setting with bipartite
network H*(n,A’) and that B has acknowledgment bound at most A/%Ogn rounds in this setting.
We remark that the first part is completely similar to the same part of the proof of Corollary 11.1.8.

First note that since algorithm A satisfies the property (A) of the local broadcast algorithms in
the multi-shot setting (presented in Section 8.4), when running A in the multi-shot setting network
H*(n, A"), each sender proc(v) eventually performs an ack(m;); output action, where i = id(v).

Thus, when running algorithm B in the single-shot setting network H*(n, A"), each sender proc(v)

IRefer to Section 4.2 for the definition of the progress bound in the single-shot setting.
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eventually sets ack; = True. This proves that B satisfies property (A) of the local broadcast
algorithms in the single-shot setting (presented in Section 4.1).

We now show that B satisfies property (B) of the local broadcast algorithms in the single-shot
setting (presented in Section 4.1). For this, note that A satisfies the property (C) of the local
broadcast algorithms in the multi-shot setting (presented in Section 8.4). Moreover, because of the
special from of bcast() inputs that happen only at the start of round 1, executions extending « in
the definition of property (C) of local broadcast algorithms in the multi-shot setting (presented in
Section 8.4) are in fact the set of all executions with these special bcast() inputs. Thus, the space of
executions extending « is in fact the space of all executions with these fixed special bcast() inputs.

Because of the property (C) of local broadcast algorithms, we get that for each sender pro-
cess proc(v) and each round r, if process proc(v) performs an ack(m;); output action, where
i = id(v), at the end of round r, then with high probability, each receiver process proc(u) such
that u € Ng(u), where G is the reliable part of network H*(n,A’), has output rcv(m;);, where
j = id(u). Thus, because of the constraints for the processes in the local broadcast algorithm pre-
sented in Section 8.2, we get the following: when running algorithm B in the single-shot setting
network H*(n, A’), if a sender process proc(v) sets ack; = v at the end of round r, then with high
probability, each receiver process proc(u) such that u € Ng(u), where G is the reliable part of
network H*(n, A’), has received the message m; by the end of round r. This proves that 3 satisfies

property (B) of the local broadcast algorithms in the single-shot setting (presented in Section 4.1).

A’logn
120

setting with network H*(n, A’). Since this contradicts Theorem 6.2.1, proving this acknowledg-

Finally, we prove that B has acknowledgment bound at most rounds in the single-shot
ment bound finishes the proof.

First note that similar to the above paragraph, the set of executions extending « in the definition
of the progress bound of multi-shot setting (presented in Section 8.5) is in fact the set of all execu-
tions with the special bcast() inputs described above. Thus, the space of executions extending « is
in fact the space of all executions with these fixed special bcast() inputs.

Now consider an arbitrary sender process proc(v). Note that algorithm A has acknowledgment

A’logn
120

beast() inputs. Thus, when we run A in this setting, for each sender process proc(v), with high

bound at most

rounds in the multi-shot setting with network H*(n, A’) with the special

.- . . A’logn
probability we have that proc(v) outputs ack(m;);, where i = id(v), by the end of round =53&".

Hence, when we run B in the single-shot setting with network H*(n, A’), for each sender process

proc(v), with high probability we have that proc(v) sets ack; = True, where i = id(v), by the end

A’logn A’logn
120 120

in the single-shot setting with network H*(n, A’). This is in contradiction with Theorem 6.2.1 and

of round . This proves that algorithm B has acknowledgment bound 2 at most rounds,

this contradiction completes the proof of Corollary 11.1.9. [

ZRefer to Section 4.2 for the definition of the acknowledgment bound in the single-shot setting.
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Chapter 12
Conclusion

In this thesis, we studied the local broadcast problem, which is a theoretical approach to capturing
the contention management issue of the radio networks. In the local broadcast problem (in its
general multi-shot case), the processes receive messages one by one, and they should deliver these
messages to all their neighbors. We studied the local broadcast problem in two models, namely,
the classical radio network model and the dual graph model. The former model is a standard and
well-used model for the radio networks. The latter is a more recent model that generalizes the
former by including a set of unreliable adversarially-controlled edges. These unreliable edges try
to capture the reality of the practical radio networks where usually, some of the connections are
unavoidably unreliable.

For these two models, we studied the local broadcast problem with respect to two specific mea-
sures: the acknowledgment bound and the progress bound. Roughly speaking, the acknowledg-
ment bound measures the time it takes each process to deliver its message to all its neighbors in the
reliable graph. This measure is a usual and natural way for capturing the performance of the local
broadcast algorithms. The progress bound however is from a different viewpoint; roughly speak-
ing, it measures the time it takes one process to receive at least one message from its neighbors,
regardless of which message, assuming that there is at least one reliable neighbor that is transmit-
ting. The progress bound has been a crucial tool in getting tighter analysis of many higher-layer
problems such as global broadcast.

The key point in this thesis was showing that a slightly optimized variant of the Decay protocol,
which is a standard solution for the local broadcast problem introduced by Bar-Yehuda, Goldreich,
and Itai [19], achieves asymptotically optimal progress and acknowledgment bounds in both the
classical and the dual graph models. In a closer view, we showed the following results:

It has been known that in the classical model, the acknowledgment bound achieves progress and
acknowledgment bounds, respectively, O(log Alogn) and O(A log A logn) rounds. We showed
in Chapter 10 (particularly Theorem 10.2.1) that by a simple change in this algorithm, we can re-
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duce the acknowledgment bound to O(A log n) rounds while keeping the progress bound O(log A logn)
rounds. In Corollaries 11.1.6 and 11.1.7, we showed that Q(log A log n) and (A log n) rounds are
lower bounds for, respectively, progress and acknowledgment bounds in the classical model. These
lower bounds prove that the optimized variant of the decay algorithm presented in Section 10.1 has
asymptotically optimal progress and acknowledgment bounds in the classical model.

We moreover showed that the analysis of the optimized decay algorithm extend to the dual
graph model, proving that it achieves progress and acknowledgment bounds, respectively, O(A’ logn)
and O(A’"logn). In Corollaries 11.1.8 and 11.1.9, we showed that Q(A’logn) is a lower bound
for both progress and acknowledgment bounds in the dual graph model. These results prove that
the optimized variant of the decay algorithm presented in Section 10.1 achieves optimal progress
and acknowledgment in the dual graph model as well.

The results about the progress bound shed light on an important difference between the classical
model and the dual graph model. In particular, while the optimized decay algorithm achieves
progress bound O(log A logn) in the classical model, the progress bound in the dual graph model
is lower bounded by Q(A’logn). This shows an exponential difference between the dependence
of the progress bounds of the two models on the maximum contention. This proves that in the
presence of unreliability, progress is unavoidably harder (slower). It also has the practical message
that we cannot completely trust the performance analysis of the contention management solutions
when they are based on a reliable model as the classical model but the algorithm is used in the

radio network where unreliability is usually unavoidable.

Future Work There are a number of interesting questions that remain to be studied:

e Perhaps the most important question is regarding the power of the adversary in the dual
graph model. In the dual graph model that we studied in this thesis, the communications on
the unreliable edges are controlled by an offline adaptive adversary [8]. This adversary in
particular knows the outcome of the coin flips that the processes use for deciding whether to
transmit or listen in the current round. It can be argued that this amount of knowledge and
power might be unrealistic for the usual practical radio networks, because the unreliability
of the practical radio network appears to be more oblivious to the random choices of the
processes. This raises the following natural question: “How do the upper and lower bounds
change if we relax the adversary and consider an online adaptive adversary or an oblivous
adversary [8]?7”. An online adaptive adversary does not know the outcome of the coin flips
of the current round. An oblivious adversary has no knowledge about the outcome of the
coin flips used throughout the execution and has to make its decisions at the very start of

execution.
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e Another issue is whether the guarantees provided by the local broadcast algorithms are de-
terministic or probabilistic. Note that a deterministic algorithm would clearly provide deter-
ministic guarantees, guarantees that are correct in every execution. The algorithms that we
studied in this thesis have a probabilistic guarantee: when a process v acknowledges that it
has delivered a message m to all of its neighbors (by outputting ack(m);, where i = id(v)),
there is a small but nonzero probability at most % that the message m is not delivered to all
the neighbors. This might be considered as a deficiency for these randomized algorithms.
Also, this small probability of faulty guarantee might be even intolerable for some higher
layer algorithms that use the local broadcast algorithm as a sub-module and might rely on
the fact that its acknowledgment outputs must guarantee the delivery of the messages deter-
ministically. It is interesting to study the complexity of the local broadcast problem when
the algorithms are required to provide this stronger deterministic guarantee. Note that even
though deterministic algorithms will have deterministic guarantees automatically, this deter-

ministic guarantee can be also achieved by using a randomized algorithms.

e The next question is related to the special structure of the networks used in our lower bound
results. Even though our lower bound results show that there exist networks which require
large progress or acknowledgment bounds in either the classical or the dual graph model, it
can be argued that such bad networks are rather unlikely to appear in practice. Regarding this
point, an important question is to study the complexity of the local broadcast problem when
the network graph is guaranteed to be from a well-behaved family. This family can be chosen
such that it matches the reality of the practical networks better than the general arbitrary
graphs. For instance, it is important to study how the complexity of the problem changes
if the network graph has bounded independence [34]. Bounded independence graphs have

been argued to be close to the reality of practical radio network.

e It is interesting to investigate the complexity of the local broadcast problem in other radio
network models and in particular, in the SINR model [30]. The SINR model has been re-
cently gained more attention in the theory of wireless networks community as many believe

it to be closer to reality.

e The next future work direction is to study the approach of solving the higher layer prob-
lems on top of the local broadcast algorithms. In particular, it is interesting to compare the
performance of the higher layer algorithms that work on top of a local broadcast algorithm
with that of the algorithms that do not rely on such a building block and solve the contention
management issue of the radio networks directly. Since the higher layer algorithms of the
second type solve the contention management issue with the intention of optimizing the so-

lution for a particular problem, we might expect that in many problems, the performance of
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the second type of higher layer algorithms can be better than that of the first type. However,
most likely, this comes at the cost of having a more involved algorithm that deals with the
challenges of the higher layer problem as well as the challenges of contention management.
It is also interesting to see how different definitions of the guarantees that a local broadcast
algorithm provides might affect the performance of the higher layer algorithms that are built

on top of it.

e An important future work direction is about another type of the contention management
issue that is different than the local broadcast problem but is closely related to it. In the
majority of the practical MAC layers deployed today, the MAC layer tries to deliver the
message of the transmitting process to only one particular neighbor of that process. This
is different than the local broadcast problem where the goal is to broadcast the message to
all the neighbors. Also, for many theoretical higher layer problems, such a local message
delivery service might be enough. It is interesting to study the complexity of this weaker
variant of the contention management issue. We think that the techniques used in this thesis
for deriving lower bounds for the local broadcast problem might be useful for obtaining
lower bounds for algorithms that implement this weaker local message delivery service, i.e.,

where the goal is to deliver the message to only one particular neighbor.

In conclusion, we believe that the complete characterization of the local broadcast problem that
we provide in this thesis for the classical and the dual graph radio models can be a good starting
point in further understanding the contention management issue of the radio networks. We hope
that the results and the techniques presented in this thesis might be helpful while studying these

future work directions.
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