
Liveness in Timed and Untimed Systems ?Rainer Gawlick1 Roberto Segala1 J�rgen S�gaard-Andersen1;2Nancy Lynch11 Laboratory for Computer Science, MIT2 Department of Computer Science, Technical University of DenmarkAbstract. We present a coordinated pair of general labeled transition systemmodels for describing timed and untimed concurrent systems. Both of the modelsincorporate liveness properties as well as safety properties. The models are relatedvia an embedding of the untimed model into the timed model, which preserves allthe interesting attributes of the untimed model. Both models include notions ofenvironment-freedom, which express the idea that the liveness properties can beguaranteed by the system, independently of the behavior of the environment inwhich it operates. These environment-freedom conditions are used to prove com-positionality results for both models. This pair of models, which generalize severalexisting models, is intended to comprise a general formalism for the veri�cationof timed and untimed concurrent systems.1 IntroductionThe increasing need for reliable software has led the scienti�c community to developmany formalisms for veri�cation. Particularly important are formalisms that can modeldistributed and concurrent systems and those that can model real time systems, i.e., sys-tems that rely on time constraints in order to guarantee correct behavior. Formalismsshould be able to support the veri�cation of both safety and liveness properties [3].Roughly speaking, a liveness property speci�es that certain desirable events will even-tually occur, while a safety property speci�es that certain undesirable events will neveroccur.In this paper, we present a coordinated formalism that permits modeling and ver-i�cation of safety and liveness properties for both timed and untimed systems. Theformalism consists of two models, one timed and one untimed, with an embedding of theuntimed model into the timed model. Both models come equipped with notions of exter-nal behavior and of implementation, which are based simply on traces. The formalism isintended to support a variety of veri�cation techniques, including simulation methods,compositional reasoning, algebraic methods, and temporal logic methods.The Input/Output (I/O) automaton model of Lynch and Tuttle [10] and it timed ex-tension by Merritt, Modugno and Tuttle [13], have been used successfully in the past asa formalism for veri�cation. I/O automata are state machines with a labeled transitionrelation where the labels, also called actions, model communication. A key feature ofI/O automata is the explicit distinction between input and output actions, which char-acterize the events under the control of the environment and those under the control? Full report appears as [8]. Supported by NSF grant CCR-92-25124, DARPA contract N00014-92-J-4033, ONR contract N00014-91-J-1046, and by the Danish Technical Research Council.



of the automaton, respectively. I/O automata include a special type of liveness prop-erty called fairness, also known as weak fairness. An I/O automaton behaves fairly if itgives in�nitely many turns to each of its subcomponents; a fair trace is a sequence ofactions that occur during a fair execution. The distinction between input and output isused to justify the use of the simple notion of fair trace inclusion as a notion of imple-mentation, which in turn is important to the simulation based proof methods [10{12].The generalization to the timed case adds upper and lower time bounds for some of thesubcomponents and augments the traces to include time information.Unfortunately, I/O automata do not quite meet our needs. The problem is that thereare some liveness properties that cannot be expressed naturally using just the simplenotion of I/O automaton fairness; see [15] for an example. This motivates the attemptto generalize the I/O automaton model to handle more general liveness properties, whileretaining an implementation notion based on some form of trace inclusion.A simple and natural generalization is suggested by the work of Abadi and Lamport[2], which models a machine as a pair (A;L) consisting of an automaton A and a subsetL of its executions satisfying the desired liveness property. The implementation notioncan then be expressed by live trace inclusion just as fair trace inclusion expresses im-plementation for I/O automata. Unfortunately, if L is not restricted, simple examplesshow that live trace inclusion is not compositional (c.f. Example 3).In this paper, we identify the appropriate restrictions on L, in the untimed and thetimed model, so that live trace inclusion is compositional for the pair (A;L). A pair(A;L) satisfying these restrictions on L is called a live I/O automaton in the untimedmodel and a live timed I/O automaton in the timed model. The restrictions on L aregiven by a property called environment-freedom, which captures the intuitive idea thata live (timed) I/O automaton may not constrain its environment. The environment-freedom property is de�ned, using ideas from Dill [7], by means of a two-person gamebetween a live (timed) I/O automaton and its environment. Speci�cally, the environmentprovides any input, while the system tries to react so that it behaves according to itsliveness property L. A live (timed) I/O automaton has a winning strategy against itsenvironment if it has a way to behave according to L independently of its environment.If a live (timed) I/O automaton has a winning strategy it is said to be environment-free.The environment-freedom property for the timed model is a natural extension of theone for the untimed model up to some technical details involving the so-called Zenoexecutions. The close relation between the two de�nitions allows the timed and untimedmodels to be tied together, thus (for example) permitting the veri�cation for timed im-plementations of untimed speci�cations. Speci�cally, we de�ne an embedding, similar tothe patient transducer of [17], that converts live I/O automata into live timed I/O au-tomata without timing constraints. The embedding, which is omitted from this abstract(see [8]), preserves the environment-freedom property and the trace preorder relations ofthe untimed model. Furthermore, it commutes with the parallel composition operator.Our model is closely related to several others in the literature. It captures the I/Oautomata of [10], the failure free complete trace structures of [7], and the timed I/Oautomata of [13]. It generalizes the notion of strong I/O feasibility introduced in [17].The untimed model is similar to the model of [2]. However, the generalization of [2] tothe timed case [1] is very complex, possibly because of the absence of a clear role fortime in the interaction between the automaton and its environment. In contrast, ourgeneralization to the timed case is simple, and follows naturally from the untimed case.It is already clear that our formalism supports a wide range of proof methods, in-cluding simulation methods as described in [11,12] (and extended to handle liveness in[8, 16]), compositional reasoning as justi�ed by the theorems of this paper, and tempo-



ral logic methods, as described in [16]. An extensive veri�cation project that uses theformalism described in this paper can be found in [9, 15, 16]; in fact, that veri�cationproject provided a major impetus to the development of our formalism.The paper is divided in two main sections, dealing with the untimed and timed model,respectively. The two sections have a similar structure: �rst they present the basic safemodels, taken from [10] and [12], respectively, then they present the live model along withthe main theorems and some examples showing that our environment-freedom conditioncannot easily be relaxed. Finally, there is a comparison with existing work.2 The Untimed Setting2.1 Safe AutomataA safe automaton is simply a state machine with labeled transitions. A safe automatonA consists of four components: a set states(A) of states, a nonempty set start(A) �states(A) of start states, an action signature (ext(A); int(A)), where ext(A) and int(A)are disjoint sets of external and internal actions, and a transition relation steps(A) �states(A)�acts(A)�states(A), where acts(A) denotes the set ext(A)[ int(A) of actionsof A. An action a of safe automaton A is said to be enabled in state s i� there existssome state s0 such that the step (s; a; s0) is an element of steps(A).An execution fragment � = s0a1s1a2s2 � � � of a safe automaton A is a (�nite orin�nite) sequence of alternating states and actions starting with a state and, if thesequence �nite, ending in a state, where each (si; ai+1; si+1) 2 steps(A). An execution isan execution fragment whose �rst state is a start state. Denote by exec�(A) and exec(A)the sets of �nite and all execution of A, respectively.A �nite execution fragment �1 = s0a1s1 � � �ansn of A and an execution fragment�2 = snan+1sn+1 � � � of A can be concatenated . The concatenation, written �1 a �2, isthe execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. An execution fragment �1 of A isa pre�x of an execution fragment �2 of A, written �1 � �2, if either �1 = �2 or �1 is�nite and there exists an execution fragment �01 of A such that �2 = �1 a �01.The trace of an execution fragment � of an automaton A, written traceA(�), or justtrace(�) when A is clear from context, is the list obtained by restricting � to the setof external actions of A, i.e., trace(�) = � � ext(A). For a set S of executions of anautomaton A, denote by tracesA(S), or just traces(S) when A is clear from context, theset of traces of the executions in S. We say that � is a trace of an automaton A if thereis an execution � of A with trace(�) = �. Denote by traces(A) the set of traces of A.Safe automata A1; : : : ; AN are compatible if for all 1 � i; j � N , with i 6= j, int(Ai)\acts(Aj) = ;. The parallel composition A1 k � � � k AN of compatible safe automataA1; : : : ; AN is the safe automaton A whose states and start states are the cross productof the states and start states, respectively, of its components, whose internal and externalactions are the union of the internal and external actions, respectively, of its components,and whose transition relation is such that ((s1; : : : ; sN ); a; (s01; : : : ; s0N )) 2 steps(A) i� forall 1 � i � N , if a 2 acts(Ai) then (si; a; s0i) 2 steps(Ai), and if a =2 acts(Ai) then si = s0i.Let A = A1 k � � � k AN . Let � = s0a1s1a2s2 � � � be an alternating sequence ofstates and actions such that si 2 states(A) and ai 2 acts(A) for all i, and let �dAi bethe sequence obtained from � by projecting each state into its ith component and byremoving each subsequence ajsj whenever aj =2 acts(Ai). Then it is easy to show that�dAi 2 exec(Ai) for all Ai i� � 2 exec(A). This property will be used to compose liveautomata in parallel.



2.2 Live AutomataA safe automaton A can be thought of as expressing safety properties. Liveness prop-erties can be expressed by a subset L of its executions, as suggested in [3]. In order toensure that the set L of executions does not introduce additional safety restrictions, itshould not be possible to violate L in a �nite number of steps. Thus, any �nite executionof A must be extendible to an execution in L. This requirement is closely related to theliveness relative to a safety property of [6] and to the machine-closure of [2].De�nition1. A liveness condition L for an automatonA is a subset of the executions ofA such that any �nite execution of A is a pre�x of an execution in L. A live automaton isa pair (A;L) where A is an automaton and L is a liveness condition for A. The executionsof L are called the live executions of A.Informally, a liveness condition can be used to express (at least) two intuitively di�erentrequirements. First, a liveness condition can specify assumptions about the execution ofa system that are based on its physical structure, e.g., that individual physical processorscontinue to operate. Second, a liveness condition can specify additional properties thata system is required to satisfy, e.g., that every message sent is eventually delivered. Wesimply think of a liveness condition as representing the set of executions that a systemcan exhibit whenever it is \working properly".The most natural extensions of the notion of implementation used for I/O automata,fair trace inclusion, are the following preorders, where the safe preorder coincides withthe unfair preorder of [10], and the live preorder generalizes the fair preorder of [10].De�nition2. Given two live automata (A1; L1) and (A2; L2) with the same externalaction signature, de�ne the following preorders:Safe: (A1; L1) vS (A2; L2) i� traces(A1) � traces(A2)Live: (A1; L1) vL (A2; L2) i� traces(L1) � traces(L2)2.3 Safe I/O AutomataA safe I/O automaton A is an automaton augmented with an external action signature,(in(A); out (A)), which partitions ext(A) into input and output actions. A must be inputenabled , i.e., each input action is enabled from each state. The internal and outputactions of A are referred to as the locally-controlled actions of A, written local(A). Thecompatibility requirement for safe I/O automata is strengthened by forbidding commonoutput actions; the output actions of the parallel composition of safe I/O automata aregiven by the union of the output actions of each component.2.4 Live I/O AutomataFor I/O automata, input enabling achieves the independence from the environment re-quired for the compositionality result. However, for general liveness, the following exam-ple shows that input enabling is not enough for such independence.Example 1. Let A be a safe I/O automaton with a unique state s, a unique input actioni, a unique output action o, and a self-loop step on s for i and o. Let L be the set ofexecutions of A containing at least �ve occurrences of action i. L is trivially a livenesscondition for A. However, the live automaton (A;L) would not behave properly if theenvironment does not provide more than four i actions.



A similar problem is noted in [2, 7], leading to the notion of receptiveness. Intuitively,a system is receptive if it behaves properly independently of the inputs provided byits environment. The interaction between a system and its environment is representedas a two person game where the environment moves consist of providing an arbitrary�nite number of inputs, and the system moves consist of performing at most one localstep. A system is receptive if it has a way to win the game (i.e., to behave properly)independently of the moves of its environment. The fact that an environment movecan contain at most �nitely many actions represents the natural requirement that theenvironment cannot be in�nitely faster than the system.The behavior of the system during the game is determined by a strategy . In oursetting, a strategy consists of a pair of functions (g; f). Function g speci�es which statethe system reaches in response to any given input action; function f determines the nextmove of the system, which can be a local step or no step (?).De�nition3. Let A be a safe I/O automaton. A strategy de�ned on A is a pair offunctions (g; f) where g : exec�(A)� in(A)! states(A) and f : exec�(A)! (local(A)�states(A)) [ f?g such that1. g(�; a) = s implies �as 2 exec�(A)2. f(�) = (a; s) implies �as 2 exec�(A)The strategies of [2, 7] consist of function f only, since in [7] there is no notion of state,and in [2] the environment moves by changing the state of the system.The moves of the environment can be represented as an in�nite sequence I, calledan environment sequence, of input actions interleaved with in�nitely many � symbols,where � represents the points at which the system is allowed to move. The occurrenceof in�nitely many � symbols in I guarantees that each environment move consists ofonly �nitely many input actions. Let the game start after a �nite execution �. Then theoutcome of a strategy (g; f), given � and an environment sequence I, is the extensionof � obtained by applying g at each input action in I and f at each � in I.De�nition4. Let A be a safe I/O automaton,� a �nite execution of A, (g; f) a strategyde�ned on A, and let I be an environment sequence for A. Consider the chain of exe-cutions (�n)n�0, ordered by pre�x, constructed inductively as follows: (�0; I0) = (�; I)and for each n � 0(�n+1; In+1) =8<: (�nas; I0) if In = �I0; f(�n) = (a; s)(�n; I0) if In = �I0; f(�n) = ?(�nbs; I 0) if In = bI0; g(�n; b) = sThe outcome O(g;f)(�; I) of the strategy (g; f) given � and I is the execution limn!1�n,where the limit is taken under pre�x ordering.De�nition5. A pair (A;L), where A is a safe I/O automaton and L � exec(A), isenvironment-free if there exists a strategy (g; f) de�ned on A such that for any �niteexecution � of A and any environment sequence I for A, the outcome O(g;f)(�; I) 2 L.The strategy (g; f) is called an environment-free strategy for (A;L).De�nition6. A live I/O automaton is a pair (A;L), where A is a safe I/O automatonand L � exec(A), such that (A;L) is environment-free.



Example 2. Consider the safe I/O automaton A described by the transition diagrams1s6 s5 s4 s0 s2 s3"!i OO# i !OO ooo # i !OO ioo ioo i //o||||||>> "!i OO o // "!i OOThe unique start state of A is s0. Action i is an input action and action o is an outputaction. Let L be the set of executions of A with at least one occurrence of action o. Thepair (A;L) is not environment-free. Speci�cally, consider the �nite execution � = s0is4and the environment sequence I = ��� � � �. Performing action o after reaching state s4requires receiving an input i. Therefore, there is no strategy whose outcome given � andI is an execution in L.De�ne a new automaton A0 from A by removing states s4; s5; s6, and let L0 be theset of executions of A0 containing at least one occurrence of action o, then the pair(A0; L0) is environment-free. Function f chooses to perform action o whenever appliedto an execution ending in s0 or s2 and chooses ? otherwise; function g always moves tothe only possible next state. In [2] the pair (A;L) is said to be realizable and is identi�edwith its realizable part (A0; L0). Realizability can be de�ned in our model by consideringonly those outcomes O(g;f)(�; I) where � consists of a start state. However, the approachof [2] implies that state s4 should never be reached in (A;L), thus adding new safetyrequirements to A via L. It is the requirement of our environment-freedom conditionthat O(g;f)(�; I) � L for all � 2 exec�(A) which ensures that L does not introduce anynew safety properties.De�nition7. N live I/O automata are compatible i� their safe components are compat-ible. The parallel composition (A1; L1) k � � � k (AN ; LN ) of compatible live I/O automata(A1; L1), : : : ; (AN ; LN ) is de�ned to be the pair (A;L) where A = A1 k � � � k AN andL = f� 2 exec(A) j �dA1 2 L1; : : : ; �dAN 2 LNg.Our key theorems about live I/O automata are the following compositionality results.Theorem8. Let (A1; L1); : : : ; (AN ; LN ) be compatible live I/O automata.Then (A1; L1) k � � � k (AN ; LN ) is a live I/O automaton.Theorem9. De�ne (A1; L1); : : : ; (AN ; LN ) and (A01; L01); : : : ; (A0N ; L0N ), to be N -tuplesof compatible live I/O automata, and let vX be either vS or vL. If, for each i, (Ai; Li) vX(A0i; L0i), then (A1; L1)k � � �k(AN ; LN ) vX (A01; L01)k � � �k(A0N ; L0N ).Environment-freedom and I/O distinction are crucial properties of live I/O automata.If a pair (A;L) is not environment-free, the parallel composition operator may generatepairs that are not even live automata, and the compositionality of the live preorderwould fail. Clearly, the same problems arise if the I/O distinction is removed.Example 3. Let A1; A2 and A3 be the safe I/O automataA1 : s1 s0 s2 A2 : s0 A3 : s0! a# // aoo b // !b"oo  !a;b"oo  !a;b"oo



where a and b are output actions for A1 and A2 and are input actions for A3. Let L1(resp.L2) be the set of executions of A1(resp. A2) containing at least one occurrence of a orone occurrence of b and let L3 be the set of executions of A3 containing at least oneoccurrence of action a immediately followed by an occurrence of action b. It is easy tocheck that (A1; L1) and (A2; L2) are both environment-free, but (A3; L3) is not.Observe that (A1; L1) vL (A2; L2) and that (A2; L2)k(A3; L3) is environment-freeand thus a live I/O automaton. However, (A1; L1)k(A3; L3) is not a live I/O automatonsince A1 can never perform an action a immediately followed by an action b. This providesan example where in absence of environment-freedom an implementation (A1; L1) cannotbe safely substituted for its speci�cation (A2; L2).3 The Timed Setting3.1 Safe Timed AutomataA safe timed automaton A [12] is a safe automaton whose set of external actions containsa special time-passage action �. De�ne the set vis(A) of visible actions to be ext(A) nf�g. As an additional component, a safe timed automaton contains a mapping :nowA :states(A)! R�0 (called :now when A is clear from context), indicating the current timein a given state. Finally, A must satisfy the following �ve axioms:S1 If s 2 start(A) then s:now = 0.S2 If (s; a; s0) 2 steps(A) and a 6= �, then s0:now = s:now .S3 If (s; �; s0) 2 steps(A) then s0:now > s:now .S4 If (s; �; s0) 2 steps(A) and (s0; �; s00) 2 steps(A), then (s; �; s00) 2 steps(A).To state the last axiom, the following auxiliary de�nition is needed. Let I be an intervalof R�0. Then an A-trajectory is a function ! : I ! states(A), such that1. !(t):now = t for all t 2 I, and2. (!(t); �; !(t0)) 2 steps(A) for all t; t0 2 I with t < t0.That is, ! assigns to each time t in the interval I a state having the given time t as itsnow component. The assignment is done in such a way that time-passage steps can spanbetween any pair of states in the range of !. Denote inf (I) and sup(I) by ftime(!) andltime(!), respectively. If I is left closed, then denote !(ftime(!)) by fstate(!). Similarly,if I is right closed, then denote !(ltime(!)) by lstate(!). If I is closed, then ! is said tospan from state fstate(!) to state lstate(!). A trajectory ! whose domain dom(!) is asingleton set [t; t] is also denoted by the set f!(t)g.S5 If (s; �; s0) 2 steps(A) then there exists an A-trajectory from s to s0.Axioms S1-S4 are self-explanatory; axiom S5 says that if time can pass from t to t0,then it is possible to associate states with all times in interval [t; t0] in a consistent way.A timed execution fragment � = !0a1!1a2!2 � � � of a timed automaton A is a (�niteor in�nite) sequence of alternating trajectories and actions in vis(A)[ int (A), starting ina trajectory and, if the sequence is �nite, ending in a trajectory, such that the followingholds for each index i:1. If !i is not the last trajectory in �, then its domain is a closed interval. If !i is thelast trajectory of � (when � is a �nite sequence), then its domain is a left-closedinterval (and either open or closed to the right).



2. If !i is not the last trajectory of �, then (lstate(!i); ai+1; fstate(!i+1)) 2 steps(A).A timed execution is a timed execution fragment whose �rst state is a start state.If � = !0a1!1 � � � is a timed execution fragment, then de�ne ftime(�) and fstate(�)to be ftime(!0) and fstate(!0), respectively. Also, de�ne ltime(�) to be the supremumof the times of the states in �. If � is a �nite sequence and the domain of the lasttrajectory ! is closed, then de�ne lstate(�) to be lstate(!).A timed execution (fragment) � is �nite, if it is a �nite sequence and the do-main of the last trajectory is closed. A timed execution (fragment) � is admissibleif ltime(�) = 1. Finally, a timed execution (fragment) � is Zeno if it is neither �nitenor admissible. Note that Zeno timed executions can be of two types: those containingin�nitely many occurrences of non-time-passage actions in a �nite amount of time, andthose containing �nitely many occurrences of non-time-passage actions and for whichthe domain of the last trajectory is right-open and bounded. Denote by t-exec�(A),t-exec1(A), and t-exec(A) the sets of �nite, admissible, and all timed executions of A.A �nite timed execution fragment �1 = !0a1!1 � � �an!n of A and a timed execu-tion fragment �2 = !0nan+1!n+1an+2!n+2 � � � of A can be concatenated if lstate(�1) =fstate(�2). The concatenation, written �1 a�2, is de�ned to be � = !0a1!1 � � �an(!na!0n)an+1!n+1an+2!n+2 � � �, where ! a !0(t) is de�ned to be !(t) if t is in dom(!), and!0(t) if t is in dom(!0)ndom(!). A timed execution fragment �1 of A is a t-pre�x of atimed execution fragment �2 of A, written �1 �t �2, if either �1 = �2 or �1 is �niteand there exists a timed execution fragment �01 of A such that �2 = �1 a�01. Likewise,�1 is a t-su�x of �2 if there exists a �nite timed execution fragment �01 such that�2 = �01 a�1. De�ne �2 t, read \� before t", for all t � ftime(�), to be the t-pre�x of� that includes exactly all states with times not bigger than t. Likewise, de�ne � 3 t,read \� after t", for all t < ltime(�) or all t � ltime(�) when � is �nite, to be thet-su�x of � that includes exactly all states with times not smaller than t.Let � = !0a1!1a2!2 � � � be a timed execution fragment of a timed automaton A. Foreach ai, de�ne the time of occurrence ti to be ltime(!i�1), or equivalently, ftime(!i).Then, de�ne t-seq(�) = (a1; t1)(a2; t2) � � � to be the sequence consisting of the actionsin � paired with their time of occurrence. Then t-trace(�), the timed trace of �, isde�ned to be the pair (t-seq(�)� (vis(A)�R�0); ltime(�)). Thus, t-trace(�) records theoccurrences of visible actions together with their time of occurrence, and the limit timeof the timed execution fragment. Denote by t-traces(A) the set of timed traces of A.The parallel composition operator for safe timed automata is de�ned similarly to thecorresponding operator for the untimed model. In the composition, time is allowed topass by a certain amount only if all component automata allow the same amount of timeto pass. Also, at each state of the composition all the components must agree on the time.The :now mapping of the composition is then de�ned to be the :now mapping of anyof the components. The timed executions of the parallel composition A = A1k � � � kANcan be characterized by means of projections as in the untimed case. For any function !from an interval of time to states(A), de�ne !dAi to be obtained from ! by projectingevery state in the range of ! to Ai. Let � = !0a1!1a2!2 � � � be an alternating sequenceof functions from intervals of time to states(A) and actions from acts(A)nf�g such that� does not end in an action if it is a �nite sequence. The projection �dAi of � ontoAi is obtained by projecting each !k of � onto Ai, removing each action aj that is notan action of Ai, and concatenating each pair of (projected) functions !k, !k+1 whoseinterleaved action is removed. Then, �dAi 2 t-exec(Ai), for all Ai, i� � 2 t-exec(A).As for the untimed model, two preorder relations are de�ned. The de�nition of a livetimed automaton is given in the same way as for live automata.



De�nition10. Given two live timed automata (A1; L1) and (A2; L2) with the sameexternal action signature, de�ne:Safe: (A1; L1) vSt (A2; L2) i� t-traces(A1) � t-traces(A2):Live: (A1; L1) vLt (A2; L2) i� t-traces(L1) � t-traces(L2):3.2 Safe Timed I/O AutomataA safe timed I/O automaton is de�ned similarly to the untimed case. This time the pair(in(A); out (A)) is a partition of vis(A), and is called the visible action signature of A.3.3 Live Timed I/O AutomataThe de�nition of live timed I/O automata, is considerably more complicated than thede�nition of live I/O automata, because the presence of time in the model has a strongimpact on the type of interactions that can occur between a timed automaton and itsenvironment. In the untimed model, the relative speed of the system with respect to itsenvironment is determined by the environment moves; in the timed model the relativespeed is determined by the explicit time associated with each action. In the untimedmodel a strategy is not allowed to base its decisions on any future input actions fromthe environment. In the timed model, not only is the strategy not allowed to knowabout the occurrence of future input actions, but the strategy is also not allowed toknow anything about the timing of such input actions, e.g., that no inputs will arrive inthe next � time units. Thus, if a strategy in the timed model decides to let time pass,it is required to specify explicitly all intermediate states. In this way the current stateof the system will always be known should the time-passage step be interrupted by aninput action.A strategy in the timed model is again a pair of function (g; f). Function f takes a �-nite timed execution and speci�es how the system behaves until its next locally-controlledaction, assuming that no input is received in the meantime. Function g speci�es whatstate is reached whenever some input is received.De�nition11. Let A be a any safe timed I/O automaton. A strategy de�ned on A is apair of functions (g; f) where g : t-exec�(A) � in(A) ! states(A) and f : t-exec�(A) !(traj (A)� local(A)� states(A)) [ traj (A), where traj (A) denotes the set of trajectoriesof A, such that1. g(�; a) = s implies �afsg 2 t-exec�(A)2. f(�) = (!; a; s) implies � a !afsg 2 t-exec�(A)3. f(�) = ! implies � a ! 2 t-exec1(A)4. f is consistent , i.e., if f(�) = (!; a; s), then, for each t, ftime(!) � t � ltime(!),f(� a (! 2 t)) = (! 3 t; a; s), and, if f(�) = !, then, for each t, ftime(!) � t <ltime(!), f(� a (! 2 t)) = ! 3 t.Let f(�):trj denote the trajectory part of f(�).The consistency condition of De�nition 11 is needed for technical reasons; it has theintuitive meaning that a strategy's decision cannot change in the absence of inputs.The game between the system and the environment works as follows. The environ-ment can provide any input at any time, while the system lets time pass and provideslocally-controlled actions based on its strategy. At any point in time the system decides



its next move using function f . If an input comes, the system will perform its currentstep just until the time at which the input occurs, and then uses function g to computethe state reached as a result of the input. A problem arises when the system decides toperform an action at the same real time as the environment is providing some input.Such a situation is modeled as a nondeterministic choice. As a consequence, the outcomefor a timed strategy is a set of timed executions rather than just a single execution.De�nition12. Let A be a safe timed I/O automaton, � be a �nite timed executionof A, and (g; f) be a strategy de�ned on A. Let I = (a1; t1); (a2; t2); � � � be a sequenceof input actions of A paired with non-decreasing times such that either I is empty orltime(�) � t1. I is called a timed environment sequence for A compatible with �.Consider the set S of chains (ordered by t-pre�x ) of timed executions (�n)n�0 suchthat (�0; I0) = (�; I), and for each n � 0 one of the following conditions is satis�ed:(�n+1; In+1) = 8>>>>>><>>>>>>: (�n a !afsg; In) if In = "; f(�n) = (!; a; s)(�n a !; In) if In = "; f(�n) = !(�n a !afsg; In) if In = (b; t)I 0; f(�n) = (!; a; s); ltime(!) � t(�n a !0bfs0g; I 0) if In = (b; t)I 0; f(�n):trj = !;ltime(!) � t; !0 = ! 2 t; g(�n a !0; b) = s0:(�n; In) if �n is not �niteNote, that �n is �nite in the �rst four cases. The outcome O(g;f)(�; I) of the strat-egy (g; f) applied to � and I is the set of timed executions �0 for which there exists(�n)n�0 2 S such that �0 = limn!1�n.The �rst, second, and third cases of the above inductive de�nition deal with di�erentsituations in which no input occurs during the system move chosen by f . The fourthcase takes care of the situation where inputs do occur during the system move chosenby f . Note that the third and fourth cases are both applicable whenever the next inputaction of I and the local action chosen by f occur at the same time. Finally, the �fthcase of the inductive de�nition is needed for technical convenience, since the second casegenerates an admissible timed execution.A problem due to the explicit presence of time in the model is the capability of asystem to block time. Under the reasonable assumption that it is natural for a systemto require that time advances forever, a timed automaton that blocks time cannot beenvironment-free. Thus, we could assume that �nite and Zeno timed executions arenot live and that the environment cannot block time. However, as is illustrated in thefollowing example due to Abadi, Zeno timed executions cannot be ignored completely.Example 4. Consider two safe timed I/O automataA;B such that in(A) = out (B) = fbgand out(A) = in(B) = fag. Let A start by performing its output action a and let Bstart by waiting for some input. Furthermore, let both A and B reply to their nth inputwith an output action exactly 1=2n time units after the input has occurred.Consider the following de�nition of environment-freedom, which assumes that theenvironment does not behave in a Zeno manner: a pair (A;L) is environment-free i�there exists a strategy (g; f) de�ned on A such that for each �nite timed execution � ofA and any admissible timed environment sequence I for A compatible with � we haveO(g;f)(�; I) � L. Then it is easy to observe that, if LA and LB are de�ned to be the setof admissible timed executions of A and B, respectively, the pairs (A;LA) and (B;LB)are environment-free. However, the parallel composition of A and B yields no admissibleexecution, rather it only yields a Zeno timed execution, which blocks time. Thus, the



parallel composition of (A;LA) and (B;LB) constrains the environment. Observe that(A;LA) and (B;LB) \unintentionally" collaborate to generate a Zeno timed execution:each pair looks like a Zeno environment to the other.To eliminate the problem of Example 4 one must ensure that a system does not collab-orate with its environment to generate a Zeno timed execution. We call Zeno-tolerantthose timed executions where such a collaboration does not arise.De�nition13. Let � be a timed execution of a safe timed automaton A.{ � is environment-Zeno if � is a Zeno timed execution that contains in�nitely manyinput actions;{ � is system-Zeno if � is a Zeno timed execution that either contains in�nitely manylocally-controlled actions or contains �nitely many actions;{ � is Zeno-tolerant if it is an environment-Zeno, non-system-Zeno timed execution.Denote by t-execZt(A) the set of Zeno-tolerant timed executions of A.De�nition14. A strategy (g; f) de�ned on a safe timed I/O automaton A is Zeno-tolerant if, for each �nite � 2 t-exec�(A) and each timed environment sequence I for Acompatible with �, O(g;f)(�; I) � t-exec1(A) [ t-execZt(A).De�nition15. A pair (A;L), where A is a safe timed I/O automaton and L � t-exec(A),is environment-free i� there exists a Zeno-tolerant strategy (g; f) de�ned on A such thatfor each �nite timed execution � of A and each timed environment sequence I for Acompatible with �, O(g;f)(�; I) � L.A pair (A;L) is environment-free if, after any �nite timed execution and with any (Zenoor non-Zeno) sequence of input actions, it can generate some admissible or Zeno-toleranttimed execution in L. Note that the environment-freedom of (A;L) does not depend onthe �nite or system-Zeno timed executions of L. Also, A may never generate any �niteor system-Zeno timed execution, since this would constrain its environment. Thus, it isreasonable to exclude system-Zeno timed executions from liveness conditions. Similarly,we could exclude Zeno-tolerant timed executions, except that they are needed to handleillegal interactions. This leads to the de�nition of live timed I/O automata, where theliveness condition contains only admissible timed executions, but the strategy is allowedto yield Zeno-tolerant outcomes when given a Zeno timed environment sequence.De�nition16. A live timed I/O automaton is a pair (A;L), where A is a safe timedI/O automaton, L � t-exec1(A), and (A;L [ t-execZt(A)) is environment-free.The parallel composition for live timed I/O automata is de�ned in the same way as for theuntimed case. Having built up all the requisite machinery, we obtain the compositionalityand substitutivity theorems for the timed case, just as for the untimed case. The proofsare long, but no more di�cult, conceptually, than for the untimed case.Theorem17. Let (A1; L1); : : : ; (AN ; LN ) be compatible live timed I/O automata. Thenthe parallel composition (A1; L1)k : : :k(AN ; LN ) is a live timed I/O automaton.Theorem18. De�ne (A1; L1); : : : ; (AN ; LN ) and (A01; L01); : : : ; (A0N ; L0N ), to be N -tuplesof compatible live timed I/O automata, and let vX be either vSt or vLt. If, for each i,(Ai; Li) vX (A0i; L0i), then (A1; L1)k � � � k(AN ; LN ) vX (A01; L01)k � � �k(A0N ; L0N ).



4 Related WorkAn I/O automaton M of [10] can be represented in our model as the environment-freepair (A;L) where A is M without the partition of its locally-controlled actions andL is the set of fair executions of M . The environment-free strategy (g; f) for (A;L)simply gives turns (say in a round robin way) to all the components of M that arecontinuously willing to perform some locally-controlled action. In a similar way a timedI/O automaton of [13] can be represented in our timed model.The failure free complete trace structures of [7] are a special case of our model, wherethe state structure of a machine is not considered. However, they are not adequate todescribe systems whenever their state structure is important.The model of [2] is closely related to our model (c.f. Example 2). However, our timedmodel departs from the key ideas of [1], leading to a more natural treatment of time.The work in [17] does not deal with general liveness, and uses �nite and admissibletimed traces inclusion as an implementation relation. The automata of [17] need not beenvironment-free, however, to avoid trivial implementations and guarantee closure undercomposition, [17] assumes some form of I/O distinction and some more restrictive form ofenvironment-freedom, called strong I/O feasibility , at the lower level of implementation.Our notion of environment-freedom solves the same problem in a more general way.It is easy to show, given our de�nition of environment-freedom, that the set of livetraces of any live automaton is union-game realizable according to [14], and thus de-scribable by means of a standard I/O automaton of [10]. However in general the I/Oautomaton description would be extremely unnatural.Acknowledgments:We thank Hans Henrik L�vengreen and Frits Vaandrager for theirvaluable criticism and useful comments.References1. M. Abadi and L. Lamport. An old-fashioned recipe for real time. In [5], pages 1{27.2. M. Abadi and L. Lamport. Composing speci�cations. TOPLAS, 15(1):73{132, 1993.3. B. Alpern and F. Schneider. De�ning liveness. IPL, 21(4):181{185, 1985.4. Proceedings of CONCUR 92, Stony Brook, NY, USA, LNCS 630, 1992.5. Proceedings of the REX Workshop \Real-Time: Theory in Practice", LNCS 600, 1991.6. F. Dederichs and R. Weber. Safety and liveness from a methodological point of view.Information Processing Letters, 36(1):25{30, 1990.7. D. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-Independent Cir-cuits. ACM Distinguished Dissertations. MIT Press, 1988.8. R. Gawlick, R. Segala, J. S�gaard-Andersen, and N. Lynch. Liveness in timed and untimedsystems. Technical Report MIT/LCS/TR-587, November 1993.9. Butler Lampson. Principles for computer system design, 1993. Turing Award Talk.10. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. InProc. PODC, 1987. A full version is available as MIT Technical Report MIT/LCS/TR-387.11. N. Lynch and F. Vaandrager. Forward and backward simulations { part I: Untimed systems.Technical Report MIT/LCS/TM-486, May 1993. Preliminary version in [5].12. N. Lynch and F. Vaandrager. Forward and backward simulations { part II: Timing-basedsystems. Technical Report MIT/LCS/TM-487, September 1993. Preliminary version in [5].13. M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata. In Proceedings CON-CUR 91, Amsterdam, LNCS 527, 1991.14. N. Reingold, D. Wang, and L. Zuck. Games I/O automata play. In [4], pages 325{339.15. J. S�gaard-Andersen, B. Lampson, and N. Lynch. Correctness of at-most-once messagedelivery protocols. In Proc. FORTE 93, 1993.16. J. S�gaard-Andersen, N. Lynch, and B. Lampson. Correctness of communication protocols,a case study. Technical Report MIT/LCS/TR-589, November 1993.17. F. Vaandrager and N. Lynch. Action transducers and timed automata. In [4].


