Liveness in Timed and Untimed Systems *

Rainer Gawlick®’ ~ Roberto Segala’ Jgrgen Sggaard-Andersen’?
Nancy Lynch!

! Laboratory for Computer Science, MIT
? Department of Computer Science, Technical University of Denmark

Abstract. We present a coordinated pair of general labeled transition system
models for describing timed and untimed concurrent systems. Both of the models
incorporate liveness properties as well as safety properties. The models are related
via an embedding of the untimed model into the timed model, which preserves all
the interesting attributes of the untimed model. Both models include notions of
environment-freedom, which express the idea that the liveness properties can be
guaranteed by the system, independently of the behavior of the environment in
which it operates. These environment-freedom conditions are used to prove com-
positionality results for both models. This pair of models, which generalize several
existing models, is intended to comprise a general formalism for the verification
of timed and untimed concurrent systems.

1 Introduction

The increasing need for reliable software has led the scientific community to develop
many formalisms for verification. Particularly important are formalisms that can model
distributed and concurrent systems and those that can model real time systems, i.e., sys-
tems that rely on time constraints in order to guarantee correct behavior. Formalisms
should be able to support the verification of both safely and liveness properties [3].
Roughly speaking, a liveness property specifies that certain desirable events will even-
tually occur, while a safety property specifies that certain undesirable events will never
occur.

In this paper, we present a coordinated formalism that permits modeling and ver-
ification of safety and liveness properties for both timed and untimed systems. The
formalism consists of two models, one timed and one untimed, with an embedding of the
untimed model into the timed model. Both models come equipped with notions of exter-
nal behavior and of implementation, which are based simply on traces. The formalism is
intended to support a variety of verification techniques, including simulation methods,
compositional reasoning, algebraic methods, and temporal logic methods.

The Input/Output (I/O) automaton model of Lynch and Tuttle [10] and it timed ex-
tension by Merritt, Modugno and Tuttle [13], have been used successfully in the past as
a formalism for verification. I/O automata are state machines with a labeled transition
relation where the labels, also called actions, model communication. A key feature of
I/O automata is the explicit distinction between inpuil and oulput actions, which char-
acterize the events under the control of the environment and those under the control

* Full report appears as [8]. Supported by NSF grant CCR-92-25124, DARPA contract N00014-
92-J-4033, ONR contract N00014-91-J-1046, and by the Danish Technical Research Council.

of the automaton, respectively. I/O automata include a special type of liveness prop-
erty called fairness, also known as weak fairness. An 1/O automaton behaves fairly if it
gives infinitely many turns to each of its subcomponents; a fair trace is a sequence of
actions that occur during a fair execution. The distinction between input and output is
used to justify the use of the simple notion of fair trace inclusion as a notion of imple-
mentation, which in turn is important to the simulation based proof methods [10-12].
The generalization to the timed case adds upper and lower time bounds for some of the
subcomponents and augments the traces to include time information.

Unfortunately, I/O automata do not quite meet our needs. The problem is that there
are some liveness properties that cannot be expressed naturally using just the simple
notion of I/O automaton fairness; see [15] for an example. This motivates the attempt
to generalize the I/O automaton model to handle more general liveness properties, while
retaining an implementation notion based on some form of trace inclusion.

A simple and natural generalization is suggested by the work of Abadi and Lamport
[2], which models a machine as a pair (A, L) consisting of an automaton A and a subset
L of its executions satisfying the desired liveness property. The implementation notion
can then be expressed by live trace inclusion just as fair trace inclusion expresses im-
plementation for I/O automata. Unfortunately, if L is not restricted, simple examples
show that live trace inclusion is not compositional (c.f. Example 3).

In this paper, we identify the appropriate restrictions on L, in the untimed and the
timed model, so that live trace inclusion is compositional for the pair (A, L). A pair
(A, L) satisfying these restrictions on L is called a live I/O automaton in the untimed
model and a live timed I/O automaton in the timed model. The restrictions on L are
given by a property called environment-freedom, which captures the intuitive idea that
a live (timed) I/O automaton may not constrain its environment. The environment-
freedom property is defined, using ideas from Dill [7], by means of a two-person game
between a live (timed) I/O automaton and its environment. Specifically, the environment
provides any input, while the system tries to react so that it behaves according to its
liveness property L. A live (timed) I/O automaton has a winning strategy against its
environment if it has a way to behave according to L independently of its environment.
If a live (timed) I/O automaton has a winning strategy it is said to be environment-free.

The environment-freedom property for the timed model is a natural extension of the
one for the untimed model up to some technical details involving the so-called Zeno
ezecutions. The close relation between the two definitions allows the timed and untimed
models to be tied together, thus (for example) permitting the verification for timed im-
plementations of untimed specifications. Specifically, we define an embedding, similar to
the patient transducer of [17], that converts live I/O automata into live timed 1/0 au-
tomata without timing constraints. The embedding, which is omitted from this abstract
(see [8]), preserves the environment-freedom property and the trace preorder relations of
the untimed model. Furthermore, it commutes with the parallel composition operator.

Our model is closely related to several others in the literature. It captures the I/0O
automata of [10], the failure free complete trace structures of [7], and the timed 1/0
automata of [13]. Tt generalizes the notion of strong I/O feasibility introduced in [17].
The untimed model is similar to the model of [2]. However, the generalization of [2] to
the timed case [1] is very complex, possibly because of the absence of a clear role for
time in the interaction between the automaton and its environment. In contrast, our
generalization to the timed case is simple, and follows naturally from the untimed case.

It is already clear that our formalism supports a wide range of proof methods,; in-
cluding simulation methods as described in [11,12] (and extended to handle liveness in
[8,16]), compositional reasoning as justified by the theorems of this paper, and tempo-

ral logic methods, as described in [16]. An extensive verification project that uses the
formalism described in this paper can be found in [9,15,16]; in fact, that verification
project provided a major impetus to the development of our formalism.

The paper 1s divided in two main sections, dealing with the untimed and timed model,
respectively. The two sections have a similar structure: first they present the basic safe
models, taken from [10] and [12], respectively, then they present the live model along with
the main theorems and some examples showing that our environment-freedom condition
cannot easily be relaxed. Finally, there is a comparison with existing work.

2 The Untimed Setting

2.1 Safe Automata

A safe automaton is simply a state machine with labeled transitions. A safe automaton
A consists of four components: a set states(A) of states, a nonempty set start(4) C
states(A) of start states, an action signature (ext(A), int(A)), where ext(A) and int(A)
are disjoint sets of external and internal actions, and a transition relation steps(A) C
states(A) x acts(A) x states(A), where acts(A) denotes the set ezt(A)Uint(A4) of actions
of A. An action a of safe automaton A is said to be enabled in state s iff there exists
some state s’ such that the step (s, a,s’) is an element of steps(A).

An ezecution fragment o = Spaisiasss--- of a safe automaton A is a (finite or
infinite) sequence of alternating states and actions starting with a state and, if the
sequence finite, ending in a state, where each (s;, a;41, si41) € steps(A). An execution is
an execution fragment whose first state is a start state. Denote by ezec™(A) and exec(A)
the sets of finite and all execution of A, respectively.

A finite execution fragment oy = sga1s1 -+ ans, of A and an execution fragment
a9 = Spdpy15n41 - - - of A can be concatenated. The concatenation, written o ™ a, is
the execution fragment sga1s1 - - UnSpdny15n41 -~ An execution fragment oy of A is
a prefiz of an execution fragment as of A, written a; < as, if either a; = a3 or a; is
finite and there exists an execution fragment o} of A such that as = ay ™ «f.

The trace of an execution fragment « of an automaton A, written trace (), or just
trace(a) when A is clear from context, is the list obtained by restricting « to the set
of external actions of A, i.e., trace(or) = a | ext(A). For a set S of executions of an
automaton A, denote by tracesa(S), or just traces(S) when A is clear from context, the
set of traces of the executions in S. We say that [is a trace of an automaton A if there
is an execution « of A with trace(o) = 8. Denote by traces(A) the set of traces of A.

Safe automata Ay, ..., Ay are compatible if for all 1 <4, j < N, with ¢ # j, int(A;)N
acts(A;) = 0. The parallel composition Ay || --- || Ay of compatible safe automata
A1, ..., Ay 1s the safe automaton A whose states and start states are the cross product
of the states and start states, respectively, of its components, whose internal and external
actions are the union of the internal and external actions, respectively, of its components,
and whose transition relation is such that ((s1,...,sn),a,(s],...,s%y)) € steps(A) iff for
alll1 < i< N,ifa € acts(A;) then (s;,a,st) € steps(A4;),and if a ¢ acts(A;) then s; = s..

Let A = A1 || -+ || An. Let @ = spais1assa--- be an alternating sequence of
states and actions such that s; € states(A) and a; € acts(A) for all ¢, and let «[A; be
the sequence obtained from « by projecting each state into its i'" component and by
removing each subsequence a;s; whenever a; ¢ acts(A;). Then it is easy to show that
alA; € exec(A;) for all A; iff o € exec(A). This property will be used to compose live
automata in parallel.

2.2 Live Automata

A safe automaton A can be thought of as expressing safety properties. Liveness prop-
erties can be expressed by a subset L of its executions, as suggested in [3]. In order to
ensure that the set L of executions does not introduce additional safety restrictions, it
should not be possible to violate L in a finite number of steps. Thus, any finite execution
of A must be extendible to an execution in L. This requirement is closely related to the
liveness relative to a safety property of [6] and to the machine-closure of [2].

Definition1. A liveness condition L for an automaton A is a subset of the executions of
A such that any finite execution of A4 is a prefix of an execution in L. A live automaton is
a pair (A, L) where A is an automaton and L is a liveness condition for A. The executions
of L are called the live executions of A. [|

Informally, a liveness condition can be used to express (at least) two intuitively different
requirements. First, a liveness condition can specify assumptions about the execution of
a system that are based on its physical structure, e.g., that individual physical processors
continue to operate. Second, a liveness condition can specify additional properties that
a system is required to satisfy, e.g., that every message sent is eventually delivered. We
simply think of a liveness condition as representing the set of executions that a system
can exhibit whenever it is “working properly”.

The most natural extensions of the notion of implementation used for I/O automata,
fair trace inclusion, are the following preorders, where the safe preorder coincides with
the unfair preorder of [10], and the live preorder generalizes the fair preorder of [10].

Definition2. Given two live automata (Ay, L1) and (A2, L2) with the same external
action signature, define the following preorders:

Safe: (A1, L1) Cs (A2, La) iff traces(Ay) C traces(As)
Live: (A1, L1) Cr (A2, L2) iff traces(Ly) C traces(Ls) []

2.3 Safe I/0O Automata

A safe I/0 automalon A is an automaton augmented with an external action signature,
(in(A), out(A)), which partitions ext(A) into input and output actions. A must be input
enabled, i.e., each input action is enabled from each state. The internal and output
actions of A are referred to as the locally-controlled actions of A, written local(A). The
compatibility requirement for safe I/O automata is strengthened by forbidding common
output actions; the output actions of the parallel composition of safe I/O automata are
given by the union of the output actions of each component.

2.4 Live I/O Automata

For /O automata, input enabling achieves the independence from the environment re-
quired for the compositionality result. However, for general liveness, the following exam-
ple shows that input enabling is not enough for such independence.

Fzample 1. Let A be a safe I/O automaton with a unique state s, a unique input action
7, a unique output action o, and a self-loop step on s for ¢ and o. Let L be the set of
executions of A containing at least five occurrences of action i. L is trivially a liveness
condition for A. However, the live automaton (A, L) would not behave properly if the
environment does not provide more than four 7 actions. [|

A similar problem is noted in [2,7], leading to the notion of receptiveness. Intuitively,
a system 1is receptive if it behaves properly independently of the inputs provided by
its environment. The interaction between a system and its environment is represented
as a two person game where the environment moves consist of providing an arbitrary
finite number of inputs, and the system moves consist of performing at most one local
step. A system is receptive if it has a way to win the game (i.e., to behave properly)
independently of the moves of its environment. The fact that an environment move
can contain at most finitely many actions represents the natural requirement that the
environment cannot be infinitely faster than the system.

The behavior of the system during the game is determined by a strategy. In our
setting, a strategy consists of a pair of functions (g, f). Function g specifies which state
the system reaches in response to any given input action; function f determines the next
move of the system, which can be a local step or no step (L).

Definition3. Let A be a safe I/O automaton. A strategy defined on A is a pair of
functions (g, f) where g : ezec*(A) x in(A) — states(A) and f : exec*(A) — (local(A) x
states(A)) U {L} such that

1. g(e,a) = s implies avas € exec™(A)
2. f(a) = (a, s) implies avas € exec*(A) []

The strategies of [2,7] consist of function f only, since in [7] there is no notion of state,
and in [2] the environment moves by changing the state of the system.

The moves of the environment can be represented as an infinite sequence 7, called
an environment sequence, of input actions interleaved with infinitely many A symbols,
where A represents the points at which the system is allowed to move. The occurrence
of infinitely many A symbols in 7 guarantees that each environment move consists of
only finitely many input actions. Let the game start after a finite execution «. Then the
outcome of a strategy (g, f), given « and an environment sequence 7, is the extension
of a obtained by applying g at each input action in Z and f at each A in Z.

Definition4. Let A be asafe I/O automaton, « a finite execution of A, (g, f) a strategy
defined on A, and let Z be an environment sequence for A. Consider the chain of exe-
cutions (a”),>0, ordered by prefix, constructed inductively as follows: (a®,7°) = (a,Z)
and for each n > 0

(aas, IVt I" = AT', f(a™) = (a,s)

(@ TL 7Y = (o, T') U IM = AT, f(a™) =L
(a"bs, I') if I" = bI', g(a” b) =s

~—

The outcome O, y(a, T) of the strategy (g, f) given a and 7 is the execution lim,, .o, o™,
where the limit is taken under prefix ordering.]

Definition5. A pair (A, L), where A4 is a safe I/O automaton and L C exec(A), is
environment-free if there exists a strategy (g, f) defined on A such that for any finite
execution a of A and any environment sequence Z for A, the outcome O, ;y(a,Z) € L.
The strategy (g, f) is called an environment-free strategy for (A, L). []

Definition6. A live I/O automaton is a pair (A4, L), where A is a safe I/O automaton
and L C exec(A), such that (A, L) is environment-free. []

Fzample 2. Consider the safe I/O automaton A described by the transition diagram

S1
/Oz‘
o
86 S5 <t 54 <t 55— >5) 2553
(O SIRS!

The unique start state of A is sg. Action ¢ is an input action and action o is an output

action. Let L be the set of executions of A with at least one occurrence of action o. The
pair (4, L) is not environment-free. Specifically, consider the finite execution « = sgisy
and the environment sequence Z = AXA - - .. Performing action o after reaching state s4
requires receiving an input ¢. Therefore, there is no strategy whose outcome given « and
7 is an execution in L.

Define a new automaton A’ from A by removing states s4, s5, 56, and let L’ be the
set of executions of A’ containing at least one occurrence of action o, then the pair
(A, L'y is environment-free. Function f chooses to perform action o whenever applied
to an execution ending in sg or sy and chooses | otherwise; function ¢ always moves to
the only possible next state. In [2] the pair (A4, L) is said to be realizable and is identified
with its realizable part (A’, L'). Realizability can be defined in our model by considering
only those outcomes O, fy(«,Z) where « consists of a start state. However, the approach
of [2] implies that state s4 should never be reached in (A, L), thus adding new safety
requirements to A via L. It is the requirement of our environment-freedom condition
that O, 7y(a,) C L for all o € exec*™(A) which ensures that L does not introduce any
new safety properties. [|

Definition7. N live I/O automata are compatible iff their safe components are compat-

ible. The parallel composition (A1, L1) || -+ || (An, Ln) of compatible live I/O automata
(A1, L1), ..., (AN, Ln) is defined to be the pair (A, L) where A = Ay || --- || Ax and
L={a€ erec(A) |a[A1 € L1,...,a[AN € Ln}. []

Our key theorems about live I/O automata are the following compositionality results.

Theorem 8. Let (A1, L1),...,(An, Ln) be compatible live I/0 automata.
Then (A1, L1) || -+ || (An, L) is a live I/O automaton. [|

Theorem 9. Define (A1, L1),...,(An, Ln) and (A}, LY),..., (A, L), to be N-tuples
of compatible live I/O automata, and let Cx be either Cg or Cr,. If, for each ¢, (A;, L;) Cx
(A7, Lj), then (A1, Ly)l| - - I(An, L) Ex (Ay, LI+ - [[(Ay, Liy)- L

Environment-freedom and I/O distinction are crucial properties of live I/O automata.
If a pair (A, L) is not environment-free, the parallel composition operator may generate
pairs that are not even live automata, and the compositionality of the live preorder
would fail. Clearly, the same problems arise if the I/O distinction is removed.

Fzample 3. Let Ay, Ay and Az be the safe /O automata

Ay =51 <250 —Ls 8o Ay S0 Az s
@ @ at at

where @ and b are output actions for A; and Az and are input actions for Az. Let Ly (resp.
L2) be the set of executions of Aj(resp. A3) containing at least one occurrence of a or
one occurrence of b and let L3 be the set of executions of A3 containing at least one
occurrence of action a immediately followed by an occurrence of action b. It 1s easy to
check that (A1, L) and (As, L) are both environment-free, but (As, Ls) is not.
Observe that (A1, L1) Cr, (A2, L2) and that (Aa, L2)||(As, Ls) is environment-free
and thus a live I/O automaton. However, (A1, L1)||(As, Ls) is not a live I/O automaton
since Ay can never perform an action a immediately followed by an action b. This provides
an example where in absence of environment-freedom an implementation (A;, L1) cannot
be safely substituted for its specification (Aq, L2). []

3 The Timed Setting

3.1 Safe Timed Automata

A safe timed automaton A [12] is a safe automaton whose set of external actions contains
a special time-passage action v. Define the set wis(A) of wisible actions to be ext(A)\
{r}. As an additional component, a safe timed automaton contains a mapping .now 4 :
states(A) — R20 (called .now when A is clear from context), indicating the current time
in a given state. Finally, A must satisfy the following five axioms:

S1 If s € start(A) then s.now = 0.

S2 If (s,a,s') € steps(A) and a # v, then s'.now = s.now.

S3 If (s,v,s") € steps(A) then s'.now > s.now.

S4 If (s,v,s") € steps(A) and (s',v,s"”) € steps(A), then (s,v,s"”) € steps(A).

To state the last axiom, the following auxiliary definition is needed. Let I be an interval
of R20% Then an A-trajectory is a function w : [— states(A), such that

1. w(t).now =t for allt € I, and
2. (w(t),v,w(t)) € steps(A) for all t,#' € T with ¢t < t’.

That is, w assigns to each time ¢ in the interval I a state having the given time ¢ as its
now component. The assignment is done in such a way that time-passage steps can span
between any pair of states in the range of w. Denote inf(I) and sup(I) by ftime(w) and
ltime(w), respectively. If T is left closed, then denote w(ftime(w)) by fstate(w). Similarly,
if T is right closed, then denote w(ltime(w)) by Istate(w). If T is closed, then w is said to
span from state fstate(w) to state Istate(w). A trajectory w whose domain dom(w) is a
singleton set [¢,¢] is also denoted by the set {w(t)}.

S5 If (s,v,s") € steps(A) then there exists an A-trajectory from s to s'.

Axioms S1-S4 are self-explanatory; axiom S5 says that if time can pass from ¢ to t/,
then it is possible to associate states with all times in interval [¢,¢] in a consistent way.

A timed execution fragment X = woaiwiasws - - - of a timed automaton A is a (finite
or infinite) sequence of alternating trajectories and actions in vis(A)Uint(A), starting in
a trajectory and, if the sequence is finite, ending in a trajectory, such that the following
holds for each index :

1. If w; is not the last trajectory in X, then its domain is a closed interval. If w; 1s the
last trajectory of X' (when X is a finite sequence), then its domain is a left-closed
interval (and either open or closed to the right).

2. If w; is not the last trajectory of X, then (Istate(w;), aiy1, fstate(w;y1)) € steps(A).

A timed execution is a timed execution fragment whose first state is a start state.

If ¥ = wpaqwy - - - is a timed execution fragment, then define ftime(X) and fstate(X)
to be ftime(wy) and fstate(wg), respectively. Also, define ltime(X) to be the supremum
of the times of the states in X. If X is a finite sequence and the domain of the last
trajectory w is closed, then define Istate(X) to be lstate(w).

A timed execution (fragment) X is finite, if it is a finite sequence and the do-
main of the last trajectory is closed. A timed execution (fragment) X is admissible
if ltime(X) = oo. Finally, a timed execution (fragment) X is Zeno if it is neither finite
nor admissible. Note that Zeno timed executions can be of two types: those containing
infinitely many occurrences of non-time-passage actions in a finite amount of time, and
those containing finitely many occurrences of non-time-passage actions and for which
the domain of the last trajectory is right-open and bounded. Denote by t-exec*(A),
t-exec™(A), and t-exec(A) the sets of finite, admissible, and all timed executions of A.

A finite timed execution fragment Xy = wpajwy -+ -apw, of A and a timed execu-
tion fragment X'y = W/, dp41Wn418nta2wnta - - of A can be concatenated if Istate(X) =
fstate(Xs). The concatenation, written X' ~ Xy, is defined to be ¥ = wgajwy - - - ap(wp ™
Wh)n41Wn410n42wnta - - -, Where w ™ w'(t) is defined to be w(t) if ¢ is in dom(w), and
Ww'(t) if ¢ is in dom(w')\dom(w). A timed execution fragment Xy of A is a t-prefiz of a
timed execution fragment Xy of A, written Xy <; X5, if either X = Xy or X is finite
and there exists a timed execution fragment 2 of A such that ¥y = X} ~ 2. Likewise,
X1 is a t-suffic of Xy if there exists a finite timed execution fragment Xf such that
Yo = X1 " Xy Define X<t read “X before t”, for all ¢ > ftime(X), to be the t-prefix of
27 that includes exactly all states with times not bigger than ¢. Likewise, define X & ¢,
read “X after t”, for all ¢ < lime(X) or all t < lime(X) when X is finite, to be the
t-suffix of X that includes exactly all states with times not smaller than ¢.

Let ¥ = wpajwiasws - - - be a timed execution fragment of a timed automaton A. For
each a;, define the time of occurrence ¢; to be ltime(w;_1), or equivalently, ftime(w;).
Then, define t-seq(X) = (a1,t1)(az,t2) -+ to be the sequence consisting of the actions
in X paired with their time of occurrence. Then {-trace(X), the timed trace of X is
defined to be the pair (t-seq(X) | (vis(A) x R2Y), time(Y)). Thus, t-trace(X) records the
occurrences of wistble actions together with their time of occurrence; and the limit time
of the timed execution fragment. Denote by t-traces(A) the set of timed traces of A.

The parallel composition operator for safe timed automata is defined similarly to the
corresponding operator for the untimed model. In the composition, time is allowed to
pass by a certain amount only if all component automata allow the same amount of time
to pass. Also, at each state of the composition all the components must agree on the time.
The .now mapping of the composition is then defined to be the .now mapping of any
of the components. The timed executions of the parallel composition A = A]|---||4n
can be characterized by means of projections as in the untimed case. For any function w
from an interval of time to states(A), define w[A4; to be obtained from w by projecting
every state in the range of w to A;. Let X = wpajwyasws - - - be an alternating sequence
of functions from intervals of time to states(A) and actions from acts(A)\ {v} such that
X does not end in an action if it is a finite sequence. The projection X[A; of X onto
Aj; 1s obtained by projecting each wy, of X onto A;, removing each action a; that is not
an action of A;, and concatenating each pair of (projected) functions wy, wi+1 whose
interleaved action is removed. Then, X[A; € t-exec(A;), for all A;, iff X € t-exec(A).

As for the untimed model, two preorder relations are defined. The definition of a live
timed automaton is given in the same way as for live automata.

Definition10. Given two live timed automata (Aq, L) and (A2, L2) with the same
external action signature, define:

Safe: (A1, L1) Cst (A2, L2) iff t-traces(A1) C t-traces(Az).
Live: (A1, L1) Crt (Ag, Lo) iff t-traces(L1) C t-traces(L2). []

3.2 Safe Timed I/O Automata

A safe timed I/0 automaton is defined similarly to the untimed case. This time the pair
(in(A), out(A)) is a partition of vis(A), and is called the wisible action signature of A.

3.3 Live Timed I/O Automata

The definition of live timed I/O automata, is considerably more complicated than the
definition of live I/O automata, because the presence of time in the model has a strong
impact on the type of interactions that can occur between a timed automaton and its
environment. In the untimed model, the relative speed of the system with respect to its
environment is determined by the environment moves; in the timed model the relative
speed is determined by the explicit time associated with each action. In the untimed
model a strategy is not allowed to base its decisions on any future input actions from
the environment. In the timed model, not only is the strategy not allowed to know
about the occurrence of future input actions, but the strategy is also not allowed to
know anything about the fiming of such input actions, e.g., that no inputs will arrive in
the next € time units. Thus, if a strategy in the timed model decides to let time pass,
it is required to specify explicitly all intermediate states. In this way the current state
of the system will always be known should the time-passage step be interrupted by an
input action.

A strategy in the timed model is again a pair of function (g, f). Function f takes a fi-
nite timed execution and specifies how the system behaves until its next locally-controlled
action, assuming that no input 1s received in the meantime. Function g specifies what
state 1s reached whenever some input is received.

Definition11. Let A be a any safe timed I/O automaton. A sirategy defined on A is a
pair of functions (g, f) where ¢ : t-exec*(A) x in(A) — states(A) and f : t-exec*(A) —
(traj(A) x local(A) x states(A)) Utraj(A), where traj(A) denotes the set of trajectories
of A, such that

¢(X, a) = s implies Da{s} € t-exec*(A)

f(X) = (w,a,s) implies ¥~ wa{s} € t-exec*(A)

F(X) =w implies ¥ ™ w € t-exec®™(A)

[is consistent, i.e., if f(X) = (w,a,s), then, for each ¢, ftime(w) < t < lime(w),
F(E7" (wot)) = (weta,s), and, if f(X) = w, then, for each ¢, flime(w) <t <
ltime(w), f(¥ " (wot)) =wet.

N N

Let f(X).trj denote the trajectory part of f(X). []

The consistency condition of Definition 11 is needed for technical reasons; it has the
intuitive meaning that a strategy’s decision cannot change in the absence of inputs.
The game between the system and the environment works as follows. The environ-
ment can provide any input at any time, while the system lets time pass and provides
locally-controlled actions based on its strategy. At any point in time the system decides

its next move using function f. If an input comes, the system will perform its current
step just until the time at which the input occurs, and then uses function ¢ to compute
the state reached as a result of the input. A problem arises when the system decides to
perform an action at the same real time as the environment is providing some input.
Such a situation is modeled as a nondeterministic choice. As a consequence, the outcome
for a timed strategy is a set of timed executions rather than just a single execution.

Definition12. Let A be a safe timed I/O automaton, X be a finite timed execution
of A, and (g, f) be a strategy defined on A. Let 7 = (ay,%1), (as,t2), - be a sequence
of input actions of A paired with non-decreasing times such that either 7 1s empty or
ltime(X) < t;. T is called a timed environment sequence for A compatible with X.
Consider the set S of chains (ordered by t-prefiz) of timed executions (X"),>0 such
that (X°,7%) = (X,7), and for each n > 0 one of the following conditions is satisfied:

(Z™ S wafs}, I™) if I" = ¢, f(X") = (w,qa,s)
(2"~ w, I™) ifI" =¢, f(Z")
(Z" S wafs}, I™) f I" = (b,0)T', f(E") = (w,a,s), lime(w) <t
(X"~ WS I T = (b, 0)T, f(X™)dr) = w,

ltime(w) > 1, W =wot, g(X" "W, b)=7s"
(ZmIm) if X" is not finite

Note, that £™ is finite in the first four cases. The outcome O, (X, Z) of the strat-
egy (g, f) applied to X and 7 is the set of timed executions X’ for which there exists
(Z™)n>0 € S such that X7 = lim, .o, X7. []

The first, second, and third cases of the above inductive definition deal with different
situations in which no input occurs during the system move chosen by f. The fourth
case takes care of the situation where inputs do occur during the system move chosen
by f. Note that the third and fourth cases are both applicable whenever the next input
action of 7 and the local action chosen by f occur at the same time. Finally, the fifth
case of the inductive definition 1s needed for technical convenience, since the second case
generates an admissible timed execution.

A problem due to the explicit presence of time in the model is the capability of a
system to block time. Under the reasonable assumption that it is natural for a system
to require that time advances forever, a timed automaton that blocks time cannot be
environment-free. Thus, we could assume that finite and Zeno timed executions are
not live and that the environment cannot block time. However, as is illustrated in the
following example due to Abadi, Zeno timed executions cannot be ignored completely.

FErample 4. Consider two safe timed I/O automata A, B such that in(A4) = out(B) = {b}
and out(A) = in(B) = {a}. Let A start by performing its output action a and let B
start by waiting for some input. Furthermore, let both A and B reply to their n*® input
with an output action exactly 1/2” time units after the input has occurred.

Consider the following definition of environment-freedom, which assumes that the
environment does not behave in a Zeno manner: a pair (A, L) is environment-free iff
there exists a strategy (g, f) defined on A such that for each finite timed execution X' of
A and any admissible timed environment sequence Z for A compatible with X we have
Oy, 5)(£,Z) C L. Then it is easy to observe that, if L4 and Lp are defined to be the set
of admissible timed executions of A and B, respectively, the pairs (A, L4) and (B, Lp)
are environment-free. However, the parallel composition of A and B yields no admissible
execution, rather it only yields a Zeno timed execution, which blocks time. Thus, the

parallel composition of (A4, L) and (B, Lp) constrains the environment. Observe that
(A, La) and (B, Lp) “unintentionally” collaborate to generate a Zeno timed execution:
each pair looks like a Zeno environment to the other. [|

To eliminate the problem of Example 4 one must ensure that a system does not collab-
orate with its environment to generate a Zeno timed execution. We call Zeno-tolerant
those timed executions where such a collaboration does not arise.

Definition13. Let X be a timed execution of a safe timed automaton A.

— X is environment-Zeno if X is a Zeno timed execution that contains infinitely many
input actions;

— X s system-Zeno if X is a Zeno timed execution that either contains infinitely many
locally-controlled actions or contains finitely many actions;

— X is Zeno-tolerant if it 1s an environment-Zeno, non-system-Zeno timed execution.
Denote by t-ezec?!(A) the set of Zeno-tolerant timed executions of A. [|

Definition14. A strategy (g, f) defined on a safe timed I/O automaton A is Zeno-
tolerant if, for each finite X' € t-exec*(A) and each timed environment sequence 7 for 4
compatible with X', O, #)(X,T) C t-exec™(A) U t-evecZi(A).]

Definition15. A pair (A, L), where A is asafe timed I/O automaton and L C t-ezec(A),
is environment-free iff there exists a Zeno-tolerant strategy (g, f) defined on A such that
for each finite timed execution X of A and each timed environment sequence Z for A
compatible with X, O, #)(X,7) C L.]

A pair (A, L) is environment-free if, after any finite timed execution and with any (Zeno
or non-Zeno) sequence of input actions, it can generate some admissible or Zeno-tolerant
timed execution in L. Note that the environment-freedom of (A, L) does not depend on
the finite or system-Zeno timed executions of L. Also, A may never generate any finite
or system-Zeno timed execution, since this would constrain its environment. Thus, it is
reasonable to exclude system-Zeno timed executions from liveness conditions. Similarly,
we could exclude Zeno-tolerant timed executions, except that they are needed to handle
illegal interactions. This leads to the definition of live timed I/0 automata, where the
liveness condition contains only admissible timed executions, but the strategy is allowed
to yield Zeno-tolerant outcomes when given a Zeno timed environment sequence.

Definition16. A live timed I/0 automaton is a pair (A, L), where A is a safe timed
I/O automaton, I C t-exec™ (A), and (A, L U t-exec??(A)) is environment-free. []

The parallel composition for live timed I/O automata is defined in the same way as for the
untimed case. Having built up all the requisite machinery, we obtain the compositionality
and substitutivity theorems for the timed case, just as for the untimed case. The proofs
are long, but no more difficult, conceptually, than for the untimed case.

Theorem 17. Let (A1, L1),...,(An, Ln) be compatible live timed 1/0 automata. Then
the parallel composition (A1, L1)|| .. ||(An, L) is a live timed I/O automaton.]

Theorem 18. Define (A1, L1),...,(An, Ln) and (A}, L)), ..., (A, L), to be N-tuples
of compatible live timed I/O automata, and lel Cx be either Csy or Crt. If, for each i,
(Ai, Li) Ex (Af, Li), then (Ay, Ly)|| - [[(An, Iv) Ex (A7, LI - [[(Ay, D) u

4 Related Work

An I/O automaton M of [10] can be represented in our model as the environment-free
pair (A, L) where A is M without the partition of its locally-controlled actions and
L is the set of fair executions of M. The environment-free strategy (g, f) for (A, L)
simply gives turns (say in a round robin way) to all the components of M that are
continuously willing to perform some locally-controlled action. In a similar way a timed
I/O automaton of [13] can be represented in our timed model.

The failure free complete trace structures of [7] are a special case of our model, where
the state structure of a machine is not considered. However, they are not adequate to
describe systems whenever their state structure is important.

The model of [2] is closely related to our model (c.f. Example 2). However, our timed
model departs from the key ideas of [1], leading to a more natural treatment of time.

The work in [17] does not deal with general liveness, and uses finite and admissible
timed traces inclusion as an implementation relation. The automata of [17] need not be
environment-free, however, to avoid trivial implementations and guarantee closure under
composition, [17] assumes some form of I/O distinction and some more restrictive form of
environment-freedom, called strong I/0 feasibilily, at the lower level of implementation.
Our notion of environment-freedom solves the same problem in a more general way.

It is easy to show, given our definition of environment-freedom, that the set of live
traces of any live automaton is union-game realizable according to [14], and thus de-
scribable by means of a standard I/O automaton of [10]. However in general the I/0
automaton description would be extremely unnatural.

Acknowledgments: We thank Hans Henrik Lgvengreen and Frits Vaandrager for their
valuable criticism and useful comments.

References

1. M. Abadi and L. Lamport. An old-fashioned recipe for real time. In [5], pages 1-27.

2. M. Abadi and L. Lamport. Composing specifications. TOPLAS, 15(1):73-132, 1993.

3. B. Alpern and F. Schneider. Defining liveness. [PL, 21(4):181-185, 1985.

4. Proceedings of CONCUR 92, Stony Brook, NY, USA, LNCS 630, 1992.

5. Proceedings of the REX Workshop “Real-Time: Theory in Practice”, LNCS 600, 1991.

6. F. Dederichs and R. Weber. Safety and liveness from a methodological point of view.

Information Processing Letters, 36(1):25-30, 1990.
7. D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Cir-
cutts. ACM Distinguished Dissertations. MIT Press, 1988.
8. R. Gawlick, R. Segala, J. Sggaard-Andersen, and N. Lynch. Liveness in timed and untimed
systems. Technical Report MIT/LCS/TR-587, November 1993.
9. Butler Lampson. Principles for computer system design, 1993. Turing Award Talk.
10. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms. In
Proc. PODC, 1987. A full version is available as MIT Technical Report MIT/LCS/TR-387.
11. N. Lynch and F. Vaandrager. Forward and backward simulations — part I: Untimed systems.
Technical Report MIT/LCS/TM-486, May 1993. Preliminary version in [5].
12. N. Lynch and F. Vaandrager. Forward and backward simulations — part II: Timing-based
systems. Technical Report MIT/LCS/TM-487, September 1993. Preliminary version in [5].
13. M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata. In Proceedings CON-
CUR 91, Amsterdam, LNCS 527, 1991.
14. N. Reingold, D. Wang, and L. Zuck. Games I/O automata play. In [4], pages 325-339.
15. J. Sggaard-Andersen, B. Lampson, and N. Lynch. Correctness of at-most-once message
delivery protocols. In Proc. FORTE 93, 1993.
16. J. Sggaard-Andersen, N. Lynch, and B. Lampson. Correctness of communication protocols,
a case study. Technical Report MIT/LCS/TR-589, November 1993.
17. F. Vaandrager and N. Lynch. Action transducers and timed automata. In [4].

