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Abstract 
This paper considers the problems of admission control 
and virtual circvit muting in high performance com- 
puting and communication systems. Admission con- 
trol and virtual circuit muting problems arise in nu- 
merous applications, including video-servers, real-time 
database servers, and the provision of permanent vir- 
tual channels in large-scale communicaiions networks. 
The paper describes both upper and lower bounds on 
the competitive ratio of algorithms for admission con- 
trol and virtual circuit muting in trees, arrays, and 
hypercubes (the networks most commonly used in con- 
junction with high performance computing and com- 
munication). Our results include optimal algorithms 
for admission control and virtual circuit routing in 
trees, as well as the first competitive algorithms for 
these problems on non-tree networks. A key result 
of our research is the development of on-line algo- 
rithms that substantially outperform the greedy-based 
approaches that are used in practice. 

1 Introduction 

1.1 The Problem 
This paper considers the problems of admission con- 
trol and virtual circuit routing in networks for high 
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performance computing and communication. Admie 
sion control and virtual circuit routing problems can 
ariee whenever there ia a request to send a large 
amount of data from one node in a network to another 
node. The admission control aepect of the problem is 
to decide whether or not the network can or should 
accommodate the request, and the virtual circnit rout- 
ing aspect of the problem is to decide how to route the 
data if the request is t o  be accommodated. (The data 
is routed by establishing a path, called a virtual cir- 
cuit, through the network that connects the two nodes 
that wish to communicate. The data packets can then 
be sent in a pipelined fashion along the path. In some 
networks, the bandwidth along the path is explicitly 
reserved .) 

The admission control and virtual circuit routing 
problems arise in a variety of applications. For exam- 
ple, in parallel supercomputers, it is often necessary to 
have fast acta to potentially large amounts of data 
that is stored remotely. Hence there needs to  be a 
communications network embedded in the supercom- 
puter that is capable of supporting such requests for 
data. In some supercomputers this data is routed us- 
ing some form of virtual circuit routing. (In the past, 
many supercomputers have used packet routing where 
each packet uses its own path and no bandwidth reser- 
vations can be made. While this approach works for 
cooperative scientific applications, it may not be ef- 
fective in commercial applications where the various 
tasks may not be cooperating. By reserving a certain 
amount of bandwidth on a virtual circuit, a particular 
task can be assured good performance.) 

A large-scale video server can be constructed by 
using a supercomputer network to connect a large 
disk farm to a set of telecommunications linea. The 
network of the supercomputer is then used to route 
video (e.g. movies) to subscribers in real time. Or- 
acle’s Media Server, which currently runs on the 
NCube supercomputer, is an example of such a sys- 
tem [Buck94]. Each customer has a virtual circuit 
through the NCube that connects the disk containing 
the customer’s movie to the customer’s telecommu- 
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nications port. (This application demonstrates why 
circuit routing is better than packet routing for many 
tasks. Using packet routing, packets can arrive out 
of order, some packet can be seriously delayed, and 
performance guarantees are not possible. All of these 
issues can have a serious negative effect on the quality 
of the movie transmission.) 

Real-time database servers represent another im- 
portant application area. Many database applications, 
such as the join of large tables in a relational database, 
require the exchange of substantial amounts of data. 
Virtual circuit routing is useful in such applications 
since the operation, once it commences, can rely on a 
particular level of service from the network. 

Admission control and virtual circuit routing also 
arise in the sale of bandwidth in telecommunica- 
tions networks. In this situation, there is a company 
that owns a large telecommunications network and 
subscribers that purchase permanent virtual circuits, 
which they can then use at their discretion [GKR94]. 
(This is an example of where the bandwidth for the 
virtual circuit is explicitly reserved.) 

Finally, we note that the supercomputer commu- 
nity has recently shown interest in constructing s y s  
tems by interconnecting workstation-like nodes via 
high speed LANs [Lei93]. IBM’s SP-2 is an exam- 
ple of such a supercomputer system. In view of the 
emergence of the ATM standard, which is based on 
virtual circuit routing, as the preferred architecture 
for high speed data networks, virtual circuit routing 
algorithms may become increasingly important for fu- 
ture supercomputers. 

In all of these applications, the admission control 
and routing decisions need to be made in an on-line 
fashion. In particular, each decision must be made 
without knowledge of future requests. The on-line na- 
ture of the problem is a significant complication since 
a long virtual circuit path could block many poten- 
tial short virtual circuit paths. Generally, systems at- 
tempt to maximize the number of requests that can 
be served. Thus complications due to the on-line na- 
ture of the problem arise when a request for a long 
path comes in just before several conflicting requests 
for short paths. 

In practice, the greedy algorithm is typically used 
for admission control (i.e., if the bandwidth needed 
for a requested virtual circuit is available, then it is 
allocated). This greedy strategy seems natural espe- 
cially when nothing is known about future requests. 
This paper shows, however, that the greedy strat- 
egy is often suboptimal over the long term. (Linear 
lower bounds for virtual circuit routing in the absence 

of admission control in general networks appear in 
[GKR94].) 

In this paper we focus on the development of op- 
timal (or near optimal) on-line admission control al- 
gorithms for trees, arrays, and hypercubes. We have 
chosen to focus on these networks for several reasons. 
First, these networks (or close variations thereof) form 
the architectural basis of most high performance com- 
munications networks. Second, the structure of these 
networks is rich enough 80 that the task of designing 
optimal algorithms for admission control and circuit 
routing is nontrivial. As a consequence, the networks 
provide a framework within which novel approaches 
to these problems can be exhibited. Lastly, the task 
of solving the admission control and circuit routing 
problems for general networks is currently beyond our 
reach. Indeed, any solution to these problems for gen- 
eral networks would provide an approximation algo- 
rithm for the maximum disjoint path problem, which 
appears to be very difficult even if the on-line con- 
straint is lifted. (Given a graph G with a collection 
of source nodes SI, 5 2 ,  . . . , s, and terminating nodes 
t l , t 2 , .  . . , t ,  the Maximum Disjoint Path Problem is 
to connect as many of the sources to their respective 
sinks as possible using edge disjoint paths in C.) 

As a performance measure for our algorithms, we 
will use competitive analysis [ST85, KMRS881. The 
competitive ratio of an on-line virtual circuit routing 
algorithm is the maximum over all request sequences 
of the ratio of the number of requests that the opti- 
mal algorithm accepts for that sequence to the num- 
ber of requests that the on-line algorithm accepts on 
the same request sequence. Specifically, for request 
sequence U, let A(u)  be the number of requests ac- 
cepted by algorithm A on U and let O(u) be the opti- 
mal number of requests that can be accepted from U. 
Then the competitive ratio for A is the maximum over 
all U of A ( u ) / O ( u ) .  An algorithm with a low compet- 
itive ratio is one that performs close to the optimal 
algorithm on all request sequences. Since it does not 
make assumptions about the sequence of virtual cir- 
cuit requests offered to the network, the competitive 
ratio provides a very robust performance measure. 

Competitive analysis can be extended to random- 
ized algorithms [BLS87]. Let E[A(u)]  be the expected 
performance of randomized algorithm A on request se- 
quence U. Then the competitive ratio for A is the max- 
imum over all request sequences U of E [ A ( u ) ] / O ( a ) .  
This competitive ratio is called oblivious since the re- 
quest sequence is chosen independently of the random 
choices made by A .  In contrast, an adaptive compet- 
itive ratio permits the chosen sequence to depend on 
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the random choices of the algorithm [RS, BBK+9O]. In 
this paper we will be concerned with oblivious com- 
petitive ratios. We note that all the lower bounds 
on the competitive ratio for deterministic algorithms 
mentioned in this paper are also lower bounds on the 
adaptive competitive ratio for randomized algorithms. 

1.2 Previous Work 
Admission control and virtual circuit routing prob- 
lems have been previously considered in a variety 
of contexts. Garay and Gopal [GG92] and Garay, 
Gopal, Kutten, Mansour, and Yung [GGK+93] devel- 
oped competitive algorithms for these problems in the 
scenario where preemption is allowed and the network 
is constrained to be a straight line. When preemption 
is allowed, the network may decide to terminate any 
virtual circuit at any time. Preemption is undesirable 
in most of the applications (such as videwwrvers and 
the sale of permanent virtual circuits) that we men- 
tioned previously. 

Awerbuch, Azar and Plotkin [AAP93] develop com- 
petitive algorithms for general networks, but with the 
restriction that every virtual circuit request at  most 
1/logn of the capacity of the lowest capacity link. 
They provide an O(1og nT) competitive algorithm, 
where n is the number of nodes in the network and 
T is the ratio of the longest to the shortest duration 
of any virtual circuit. If all virtual circuits have infi- 
nite duration, the competitive ratio of the algorithm 
in [AAP93] is O(1ogn). In many applications, the a% 
sumption that each virtual circuit uaea only 1/ log 2n 
of the bandwidth of each link is unrealistic. For ex- 
ample, permanent virtual circuits may have connec- 
tions that use 45Mbps of bandwidth which is fairly 
large compared to a typical backbone bandwidth of 
155Mbps. Oracle’s Media Server has 7.5Mbps chan- 
nels while an MPEG video stream uaea 1.5Mbps. In 
this case, the algorithm in (AAP931 can support at 
most a 16 node network. 

Aspnes, Azar, Fiat, Plotkin and Waarts [AAF+93] 
consider a slightly different model. Here there is no 
admission control problem since all requests are ac- 
cepted. [AAF+93] presents a competitive algorithm 
that on any link requires at  most O(1ogn) more ca- 
pacity than is required by the optimal off-line algo- 
rithm, where n is the number of nodes in the network. 
Note that the virtual circuits in [AAF+93] all have in- 
finite duration. The result is extended to virtual cir- 
cuit with finite duration in [AKP+93]. Both [AAF+93] 
and [AAP93] use minimumcost routing where the cost 
metric is an exponential function of the used band- 
width [SM90]. 

In [ABFR94] Awerbuch, Bartal, Fiat and Rosen 
consider the admission control and virtual circuit rout- 
ing problem on trees. Their basic algorithm focusea 
on virtual circuita that request the entire bandwidth 
of a link and have infinite duration. The algorithm 
is randomized and has an O(1og n) competitive ratio. 
For the line, they show a matching lower bound of 
O(1ogn). By combining their basic algorithm with 
the algorithm in [AAP93], the authors provide an 
O(logz n) competitive algorithm for virtual circuits of 
arbitrary bandwidth. A previous, unpublished ver- 
sion of the Awerbuch et a1 paper [ABFR93] includes a 
non-greedy randomized admission control and virtual 
circuit routing algorithm whose analysis can be mod- 
ified trivially to give an O(1ogd) competitive ratio on 
trees with radius d .  This algorithm seems restricted 
to virtual circuits that request the entire bandwidth 
of a link. The basic algorithm in [ABFR94] can also 
be extended to deal with finite duration requests at  
the cost of an O(1ogT) multiplicitive term in the com- 
petitive ratio, where T is the ratio of the maximum 
to the minimum duration of a virtual circuit. Blum, 
Fiat, Karloff, and Rabani report a deterministic O(n) 
algorithm for the n x n mesh, a deterministic Q(h) 
lower bound on the n x n mesh, and an O(1og n) deter- 
ministic algorithm with preemption for n node trees 
[BFKR93]. 

1.3 Our Results 
In this paper, we improve upon and extend the work of 
[ABFR94, BFKR931. For simplicity, we initially focus 
on the situation where each virtual circuit requests the 
entire link bandwidth. This is the situation where the 
O(1ogn) algorithm of [AAP93] fails. We also focus on 
the case that the duration is infinite. For several of our 
results, we show how these restrictions can be relaxed. 
In particular our results for trees hold for virtual cir- 
cuits that use a fixed fraction of the link bandwidth. 
In general, the restriction to infinite durations can be 
relaxed using the techniques in [ABFR94] at the cost 
of an O(1ogT) multiplicitive term in the competitive 
ratio, where T is the ratio of the maximum duration 
to the minimum duration of a virtual circuit. 

In the case of trees, we give tight (up to a con- 
stant factor) upper and lower bounds for all trees. For 
trees with radius d, we show bounds of 8(logd) on the 
competitive ratio of randomized algorithms for virtual 
circuit routing. If virtual circuits are requested be- 
tween leaves only, we show tight bounds of 8(1ogd’), 
where d‘ is the radius of the tree derived from the orig- 
inal network by shrinking degree2 vertices. We show 
that these results hold even for trees with arbitrary 
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link capacity, as long as all links have the same capac- 
ity. Thus, we extend the unpublished O(1ogd) result 
of [ABFR93] to new domains. (Note, our algorithm 
uses different techniques than the O(1og d) algorithm 
of [ABFR93].) Our randomized algorithms overcome 
the trivial R(d) lower bound on the competitive ratio 
for deterministic algorithms on trees. 

For an n x n tree of meshes we develop a random- 
ized algorithm that achieves an O(log1og n) competi- 
tive ratio. This matches the R(log1ogn) lower bound 
we give. 

The algorithm for the n x n tree of meshes can be 
used to provide a randomized algorithm that achieves 
a competitive ratio of O(lognlog1ogn) on an n x n 
mesh. Our algorithm overcomes the R ( f i )  lower 
bound on the competitive ratio for deterministic al- 
gorithms on an n x n mesh [BFKR93]. We also show 
how to achieve a deterministic competitive ratio of 
O(log2n) for the hex, which is surprising given the 
lower bound of R(*) on the competitive ratio of an 
R x n mesh. Our competitive algorithms for the grid 
and hex are the first competitive algorithms for admis- 
sion control and circuit routing on non-tree networks. 
(We also improve the upper bound on the determin- 
istic competitive ratio for the mesh to O(fi), but 
we have omitted the details since the algorithm is not 
particularly useful.) In addition, we are able to show 
an R(1ogn) lower bound on the competitive ratio for 
randomized algorithms for the n x n mesh. 

Our technique for proving lower bounds on the com- 
petitive ratio for randomized algorithms extends nat- 
urally to several other networks. In particular, we 
observe an R( 3 log n) lower bound for a k dimensional 
mesh with n nodes, an R(log1ogn) lower bound for 
an n2-leaf tree of meshes, and an R(log1ogn) lower 
bound for the log n dimensional hypercube. Finally, 
we observe that there is an O( 1) competitive random- 
ized algorithm for routing permutations on the O(1)- 
dilated hypercube, using a result of Aiello, Leighton, 
Maggs, and Newman [ALMNSl]. 

The remainder of the paper is organized as follows. 
Our algorithms for trees are presented in Section 2. 
Section 3 presents our algorithm for an n x n tree of 
meshes. The algorithm for n x n meshes is presented in 
Section 4. All lower bounds are presented in Section 5. 

2 An Optimal Algorithm for 
Trees 

This section presents our algorithm for virtual circuit 
routing and admission control on trees. Let n be the 

number of nodes in the tree, let d be its diameter, 
and let d’ be the diameter after shrinking degree-2 
vertices. We describe in detail the algorithm for rout- 
ing between leaves, then show how to extend it to the 
case of routing between any pairs of vertices. In what 
follows we assume that degree-2 vertices are already 
shrunk. If the remaining tree has a single edge, ac- 
cept the first request that comes in. The optimal off- 
line algorithm accepts at most one call. So, we may 
assume that the tree contains a non-leaf node. For 
convenience, root the tree a t  one of its non-leaf nodes, 
denoted r .  This induces, for every vertex U # r ,  a 
unique parent, which we denote by P ( u ) .  Also, for 
every pair of nodes u , u ,  denote their least common 
ancestor in the rooted tree by LCA(u,u) .  Denote by 
PATH(u,  U) the unique path connecting U and U. 

First, we introduce the concept of a roadblock. In 
response to a virtual circuit request, our algorithm 
may place roadblocks at edges of the tree. The exis- 
tence of a roadblock on an edge blocks future requests 
whose paths use that edge, and causes them to be re- 
jected. 

Somewhat surprisingly, we will find that by denying 
some requests at random and by also denying all fu- 
ture requests that significantly overlap some denied 
requests (where the measure of significance is also 
random), we can significantly improve overall perfor- 
mance. In other words, by denying requests in a spe- 
cial randomized way, we will be able to accommodate 
more requests overall. 

2.1 The Algorithm 

Consider a particular virtual circuit request p = 
{U, U}. If PATH(u,  U) either crosses a roadblock or 
intersects with another virtual circuit request that 
was accepted, reject it. Otherwise, p is a candidate .  
If the request becomes a candidate, accept it with 
probability 1/2. Otherwise, reject it and place road- 
blocks as follows. Pick a random integer !? uniformly 
in [l,logd’+ 11. Consider PATH(u,u) .  Number the 
edges 1,  2, . . . along the path from U to U (where we 
assume wlog that U < v ) .  Place a roadblock on edges 
numbered i2‘ for all 0 < i 5 d’/2‘-’. The roadblocks 
partition PATH(u,  U) into segments of equal length 
(except, perhaps, for the last segment). Also, place 
an extra roadblock on the edge between LCA(u,u)  
and P(LCA(u,u)) .  We call this roadblock an edra 
roadblock. 
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2.2 The Analysis 
Consider any request sequence U = ulup .ulol. De- 
note ui = {uj, u i } .  Define C* to be the set of requests 
accepted by the optimal off-line strategy for this se 
quence. We call the requests in C' the optimal re- 
quests. For the purpoee of analyzing the algorithm 
we maintain a feasible subset C C C' that is updated 
each time a candidate request is handled. Let CO = C' 
be the initial value of C. Let Ci, i = 1,2, .  . ., la1 be 
the value of the subset after the ith request is handled. 
For C C C' and a request p, let C n p denote the set 
of calls in C whose path intersects the path of p at 
an edge. We also use tokens as a bookkeeping tool for 
the analysis. The algorithm is not aware of their ex- 
istence. Tokens are distributed by candidate requests 
that are not accepted. A candidate request gives at  
most one token in each of the segments its path gets 
partitioned into by the roadblocks. 

Next we explain how C is updated and how tokens 
are distributed. Consider a request ui. There are three 
cases: 

Case 1. ui is not a candidate. 

Case 2. ui is a candidate that is accepted. 
In this case Ci = Ci-1 and no tokens are distributed. 

Let C := Ci-1 and then remove from C the calls in 
Ci-1 n 0 , .  Furthermore, for any previously rejected 
candidate U, that ai intersects, consider the segment 
of u j ' s  path in which the intersection occurs (there 
cannot be more than one segment, otherwise ai would 
pass across a roadblock). If there is a call in Ci-1 
that has tokens, intersects uj in the same segment, 
and received its last token from U,, we remove it  from 
C. Now Ci := C. No tokens are distributed. 

Case 9. ui is a candidate that is rejected. 
In this case uj '9 path is divided by the roadblocks into 
disjoint segments of equal length (except, perhaps the 
last segment). For each segment, we give a token to 
at most one optimal request in Ci- 1 nu,.. The optimal 
requests that receive a token are determined as follows. 
For every p E Ci-1 n ui, p is of level j if it will not 
be blocked by roadblocks spaced 2' apart, but will be 
blocked by roadblocks spaced 2J-1 apart on ui. If l is 
the random spacing picked for ni, we give a token to 
every level L optimal request in Ci-1 nui. Now define 
C := Cj using the construction of Ci given for an 
accepted candidate request. Return to C the optimal 
requests that receive a token. If one of these requests 
is blocked by the extra roadblock, remove it from C. 

We introduce some notation. Let a' = lC*l. Let 
a be the number of requests accepted by the a l p  
rithm. Let c be the number of candidates. Let t be 

NOW, set Ci := C. 

the number of optimal requests that received tokens 
(notice that a call may receive more than one token, 
but we ignore multiple tokens). Let b be the number 
of optimal requests that were removed by extra road- 
blocks. Let f be the number of optimal requests that 
did not intersect any other candidate and were not 
even removed by extra roadblocks (notice that they 
must have been candidates themselves). Notice that 
a, c, t ,  b, and f are random variables By the definition 
of the algorithm 

Fact 1 E[a] = $[cl. ~ 

Lemma 2 

Proof. Consider any optimal request p. Consider the 
event that it was not removed by an extra roadblock, 
but it was overlapped by candidate requests. Consider 
the first candidate ai that overlapped p. Obviously, 
p E Ci-1. With probability 1/2, aj was accepted and 
p does not get any tokens. Otherwise, with probability 
l/(logd' + l) ,  the level picked is p's level, and it gets 
a token. In the complement event, p contributes 1 to 
the sum b + f .  

Lemma 3 
1 %I 2 ;IE[21. 

Proof. Consider a candidate ai from uj to V i .  We 
show that it removes at most 4 calls with tokens from 
Ci-1. ai might have tokens itself. The extra roadblock 
ui lays may remove one call with tokens. So, it is suf- 
ficient to show that at  most two additional calls with 
tokens are removed. Let z = LCA(ui, vi). We show 
that each of the two parts of Ujl P A T H ( u j , z )  and 
PATH(ui,z) ,  can cause the removal of at  most one 
call with tokens. Without loss of generality, consider 
PATH(uj, 2). Notice that since PATH(ui ,  z) cannot 
cross any extra roadblock, all previous rejected can- 
didates it intersects must share the topmost edge of 
PATH(ui ,  z), and therefore they all intersect among 
themselves in the same segments that PATH(ui ,  z) 
intersects with them. Therefore, there is at most one 
surviving (i.e., not yet removed from C) call whose 
last token was assigned from one of these segments, 
namely, the one (if any) from the latest rejected can- 
didate encountered. We consider several cases. 

Case 1. PATH(ui, z) does not intersect any call 
with tokens. The above argument shows that we r e  
move at most one call with tokens. 
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Case 2. PATH(ui , z )  intersects calls with tokens. 
Follow the path starting at U; until it first intersects 
a call p = { U ,  U }  in Ci-1 with tokens. There are two 
possibilities: 

Case &a. The remainder of P A T H ( u i , z )  is con- 
tained in P A T H ( u , v ) .  In this case, since calls with 
tokens belong to the optimal set C', we cannot in- 
tersect any other call with tokens. Furthermore, ei- 
ther we have not encountered any rejected candidates, 
or p must be the call with tokens from the latest re- 
jected candidate encountered, since the topmost edge 
of PATH(u;,  z) is contained in p .  

Case 2%. P A T H ( u ; , z )  extends beyond w = 
LCA(U, U ) .  The previous case shows that the portion 
PATH(u;,  w )  does not remove any other calls with 
tokens. Since the edge e = ( w , P ( w ) )  must be con- 
tained in the rejected candidate U, that gave p its last 
token (otherwise p or U; would have been blocked by 
the extra roadblock), the entire portion PATH(w,  z) 
is contained in uj's path. Since U, would have re- 
moved any other optimal call intersecting the segment 
containing both PATH(w,  x) and the intersection of 
U, with p (notice that e cannot delimit a segment), 
PATH(w , z) cannot intersect any other non-removed 
call with tokens. It is clear that U, is the latest re- 
jected candidate encountered, since all other rejected 
candidates encountered intersect U, in the same seg- 
ment that contains p ,  and if anyone would have come 
later, it either would have removed p or would have 
placed a token on p .  

Theorem 4 The above algorithm achieves a compet- 
itive ratio of O(1og d'). 

Proof. 
with Fact 1 and Lemmas 2 and 3 we get: 

Obviously, c 2 b and c 2 f .  Combining this 

2 

In order to handle requests between interior nodes, 
we reduce the problem to the special case of requests 
between leaves. Given a tree of diameter d, consider 
every non-leaf node U .  Let {el, e2, . . . , e k }  be the set of 
edges adjacent to U .  For every edge e, in that set, add 
a new leaf U ,  connected to U .  This does not increase 
the diameter of the tree. Consider a request sequence. 
In any request that has an interior node v as one of 
its endpoints, find the edge ej adjacent to U through 
which the path of this request must go, and replace U 

in that request by U , .  

The algorithm can also be extended to handle vir- 
tual circuits that request leas than the entire band- 
width of a link. Let the capacity of each link in the 
tree be k .  In other words, k virtual circuits can si- 
multaneously use any link. The algorithm views such 
a tree as k virtud trees, TI , .  ..,Tk, where each link 
in each of the virtual trees has capacity one. When a 
request p arrives, find a tree Ti such that p is a can- 
didate in T,. If no such ?;. exists, reject p .  Otherwise, 
proceed with p on Ti as in the algorithm for capacity 
one trees. A constant fraction of the optimal requests 
can be accepted on these virtual trees. (To see that, 
notice that the optimal requests can be colored with 
2k colors so that no two overlapping requests have the 
same color. There is a subset of k colors that con- 
tains at least half of the optimal requests.) With this 
assignment of optimal requests to virtual trees, the 
analysis proceeds essentially the same as the analysis 
for the capacity one tree. 

3 Algorithm for Tree of Meshes 
For n a power of 2, the n x n tree of meshes has 
the following structure. The network has a total of 
2n210gn nodes. These are arranged in 2logn levels, 
each containing n2 nodes. The levels are numbered 
0 through 2logn - 1. Links connect nodes in the 
same level or in adjacent levels. Level i is a collec- 
tion of disjoint m; x ni meshes, where m; = 5 and 
ni = Notice that for even i m; = ni = mi-1, 
and for odd i 2mi = ni = ni-1. Each level i mesh 
is connected to a unique pair of level i + 1 meshes. 
For even i, nodes (1 ,  l ) ,  (1,2), . . ., (1, ni) of the 
level i mesh are connected to nodes (1, l ) ,  (1,2), . . ., 
(1, n,+l), respectively, of one of the level i+ 1 meshes, 
and nodes (mi, l ) ,  (m;,2), . . ., (mi,n;) of the level 
i mesh are connected to nodes (m;+l, l ) ,  (m;+l, 2), 
. . ., (m;+l, ni+l), respectively, of the other level i + 1 
mesh. For odd i, nodes (1 ,  1), (2, l) ,  . . ., (mi, 1)  of 
the level i mesh are connected to nodes (1, l ) ,  (2, l), 
. . ., (m;+l, l ) ,  respectively, of one of the level i + 1 
meshes, and nodes ( l ,n i ) ,  (2,n;), . . ., (m;,ni) of the 
level i mesh are connected to nodes ( 1 ,  tli+l), (2, n;+l), 
. . ., (mi+l, ni+l), respectively, of the other level i + 1 
mesh. 

Essentially, on-line routing and admission control 
of requests between leaves (level 2 log n - 1 nodes) of 
the n x n tree of meshes is equivalent, up to constant 
factors in the competitive ratio, to routing on the fol- 
lowing binary tree. Take a complete binary tree of 
height 2logn - 1 (the tree has n2 leaves). The root 
(level 0 node) is connected to each of its children by 
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an edge with capacity n. In general, level i nodes are 
connected to each of their children by an edge of ca- 
pacity n/2'I2, if i is even, or by an edge of capacity 
n/2(i-1)/2, if i is odd. The idea is that routes taken 
on this tree can be duplicated on the tree of meshes 
using the intermediate meshes as croesbars. 

Viewing the routing problem on the tree of meshes 
this way, it is easy to see that a deterministic greedy 
algorithm is O(1og n) competitive. This is because the 
path of any accepted request is O(1ogn) long, and 
therefore may block at most O(1og n) optimal requests. 
Our algorithm improves over the greedy algorithm by 
achieving an O(log1og n) competitive ratio. We show 
a matching lower bound in Section 5. 

The description of our algorithm also views the tree 
of meshes as the above detailed binary tree. We divide 
requests into local and long distance requests. For a 
local request, the height of the lowest common ances- 
tor must not be greater than 4 logloglogn (the factor 
of 4 is an overshoot). All requests that are not local 
are long distance requests. Notice that the bandwidth 
for all links above a node of height 4 log log log n is at 
least (loglogn)2. View the subtrees rooted at  nodes 
of height 4logloglogn as virtual nodes and call the 
tree whose leaves are these virtual nodes the long dis- 
tance tree. We will use the algorithm in [AAP93] to 
route long distance requests in the long distance tree. 
To see that [AAP93] is applicable to our situation, 
we note that the analysis in [AAP93] can be modified 
easily to show that their algorithm achieves a com- 
petitive ratio of O(1og d) for connections which use at 
most a 1/ log2d fraction of the bandwidth, where d is 
the length of the longest simple path in the network. 
For our long distance network d 5 2logn. Our al- 
gorithm proceeds as follows. Flip an unbiased coin. 
With probability 1/2 route only local requests using 
greedy admission control. With the remaining prob& 
bility route only long distance requests. Upon arrival 
of a long distance request, check if it is blocked in 
either of the two virtual nodes that contain its end 
points (in which case it has to be rejected). If not, use 
the algorithm in [AAP93] to do the admission control 
in the long distance tree. 
Analysis. 
Consider any request sequence. Let a* be the num- 
ber of optimal requests; i.e., the number of requests 
the optimal off-line algorithm accepts. Let af be the 
number of local optimal requests, and let a; be the 
number of long distance optimal requests. Define the 
following random variables. Let U be the number of re- 
quests accepted by our algorithm, let a, be the number 
of accepted local requests, and let at be the number of 

accepted long distance requests. Finally, let ai be the 
number of long distance optimal requests that the al- 
gorithm feeds to the [AAP93] algorithm. (Notice that 
with probability 1/2, U; = 0.) 

Since local requests have paths of length at  most 
8logloglogn, each such request that is routed may 
block at most that  many optimal local requests. We 
route local requests with probability 1/2. Therefore 
we get: 

0: 
E[aJ O(l0g log log n) * 

With a simple modification of the proof in [AAP93], 
we show that: 

Consider the sum O(loglog1ogn)ac + ai. With prob- 
ability 1/2 this sum is 0. Otherwise, it is at  least 
at, because for each accepted long distance call, the 
portions of its path contained in virtual nodes are of 
total length O(loglog1ogn) and therefore may block 
at  most that many optimal long distance calls (before 
they are fed to the [AAP93] algorithm). Therefore, we 
get: 

(3) 
E[O(log log log n)at + a;] 2 - 4 

2 '  
Therefore, 

Theorem 5 The above algorithm has a competitive 
ratio of O(1og log n). 

Proof. Using 1, 2, and 3, 

a* = U; +a; 

5 2E[O(log log log n)at + a;] + O(l0g log log n)E[as]  
5 O(1og log n)E[at] + O(1og log log n)E[a,] 
5 O(l0g log n)E[af + a,] 
= O(loglogn)E[a]. 

4 Algorithms for Meshes 
The two dimensional m x n mesh has the set of nodes 
{(r,c) I 1 5 r 5 m, 1 5 c 5 n}. Two nodes are 
connected by a link if their Hamming distance is one. 
Where c is some constant, it is easy to embed an m x n 
hex on a cm x cn mesh without reducing the optimal 
throughput by replacing each node of the hex with 
a c x c mesh that is used as a crossbar to route all 
requests that pass through that node. 

We use the tree of meshes to derive an 
O(1og n log log n) competitive randomized algorithm 
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for the mesh. Our algorithm for the mesh is based 
on a 1-1 embedding of the nodes of the n x n tree of 
meshes onto nodes of the nlogn x nlogn hex, such 
that the maximum congestion at an edge is 1 [BL84]. 

To simplify the presentation, we consider a 
K n  log n x K n  log n mesh, where K is some suffi- 
ciently large constant. Divide the mesh into nz dis- 
joint K log n x K log n squares. Divide each square 
into log2n disjoint K x K squares. In each of these 
n2 log2 n constant size squares, pick independently and 
uniformly at random one vertex. Each such vertex 
is an active vertex. Every active vertex controls the 
K x K square it was picked from. 

Now, in each K log n x K log n square, we place 
an H-embedding of a complete binary tree with log2 n 
leaves. We can now connect every active vertex to such 
a binary tree by a path that is contained in the square 
controlled by that active vertex. (That is because ev- 
ery K x K square contains a leaf of the tree.) We 
now embed an n x n tree of meshes in our mesh. Each 
K log n x K log n square contains one leaf of the tree of 
meshes. We connect the root of the complete binary 
tree embedded in such a square to the leaf of the tree 
of meshes in the same square, using a path that does 
not leave the square. Notice that we may have used 
some of the edges of the mesh more than once. How- 
ever, if K is large enough, we can move wires around 
so that every edge gets used at most once. 

Now for the algorithm. Flip an unbiased coin. With 
probability 1/2 consider only requests that have both 
endpoints within the same K log n x K log n square. 
We name these requests local calls. We use a deter- 
ministic algorithm routing those requests. Specifically, 
let the row-column path be the path that travels in 
the row of the source until it reaches the column of 
the destination and then travels in the column of the 
destination. A local call is accepted if its row-column 
path is available. With the remaining probability, i.e. 
1/2, consider only requests that have each endpoint 
in a different square. We name these requests long 
distance calls. Use the following method for these 
calls. When a request comes in, reject it if either of 
its two endpoints u , u  is not an active vertex. Oth- 
erwise, it is considered a candidate. A candidate call 
uses the tree of meshes algorithm of Section 3 to de- 
termine a path from U’S K log n x K log n square to 
U ’ S  K logn x K logn square in the embedded tree of 
meshes. If the tree of meshes algorithm rejects the 
call, the call is rejected for the mesh. If the tree of 
meshes algorithm accepts the call, take the following 
path: from U to the binary tree in its square, then 
along the binary tree to its root, from there to a leaf 

of the tree of meshes, from there to the leaf of the tree 
of meshes in the square containing U ,  from there to the 
root of the binary tree in that square, from there along 
the binary tree to where U connects to the tree, from 
there to U. Note that the path from the endpoints to 
leaves of the tree of meshes can never be blocked since 
each leaf in the tree of meshes can accept at most one 
call. 
Analysis. 
Consider any request sequence. Let a* be the num- 
ber of optimal requests, i.e. the number of requests 
the optimal off-line algorithm accepts. Let a: be the 
number of local optimal requests, and let a; be the 
number of long distance optimal requests. We now 
define some random variables. Let a be the number 
of calls our algorithm accepts. Let a, be the number 
of local calls our algorithm accepts, and let ai be the 
number of long distance calls our algorithm accepts. 
Let c* be the number of optimal long distance requests 
that are candidates. 

Lemma 6 E[c*] = &. 
Proof. With probability 1/2 we choose to route 
only local calls and there are no candidates in that 
case. Otherwise, for every optimal request, each of 
its two endpoints has a probability of 1/K2 to be an 
active vertex. These events for the two end points are 
independent. 

Lemma 7 E[ai] 2 O(lognloglogn)l C*  
where the ezpec- 

tation is ouer the coin tosses of the tree of meshes 
algorithm. 

Proof Sketch. Let c’ be the set of candidate 
calls that would be accepted by an optimal off-line 
algorithm for the embedded tree of meshes. c* 5 
O(1og n)c’. (To see that, notice that by increasing the 
capacity of the tree of meshes by a factor of O(logn), 
all the c* optimal long distance calls that are candi- 
dates can be routed on the tree [LS93]. Now, in gen- 
eral, reducing the capacity of a network by a certain 
factor may reduce the throughput by much more than 
that factor, but this nasty behavior does not happen 
in trees, as follows, e.g., from [GVY93].) Furthermore, 
from Theorem 5 we know that c’ 5 O(loglogn)E[a~]. 
The lemma follows. 

Lemma 8 E[a,] 2 ,,shn. 
Proof. Any row-column path taken by a local call 
blocks at most the calls whose endpoints are in the 
same row and column as the row-column path. Thus, 
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it blocks at most 2K logn optimal calls. The result 
follows from the fact that we accept local calls with 
probability 1/2. 

Theorem 9 The above algoriihm achieves a compei- 
iiiue ratio in O(1og n log log n). 

Proof. Using Lemmas 6 and 7, we have 

a; 
O(1og n log log n) 

- - 

Together with Lemma 8 we get 

E[a] = E[.# +at]  
a: a; 1 

2 

+ o(log n log log n) 
a* 

o(log n log log n) * 

In section 5 we prove an Q(1ogn) lower bound on 
the competitive ratio for any randomized algorithm on 
the n x n mesh. 

5 Lower Bounds 
In this section we give the lower bound for the mesh, 
the tree, the tree of meshes, and the hypercube. These 
lower bounds share a common proof technique. We 
give the details of the proof for meshes, and sketch 
the remaining proofs. 

We prove an n(1ogn) lower bound on the com- 
petitive ratio for any randomized algorithm on the 
n x n mesh. Using the principle of von Neumann (see 
[yao77, BLS87]), it suffices to demonstrate a proba- 
bility distribution over inputs that forces an R(1og n) 
lower bound on the competitive ratio of any determin- 
istic algorithm A. 

Consider an n x n mesh. For simplicity we assume 
that n is a power of 2. For every 0 5 i < logn, we 
divide the mesh into 4' submeshes of size n/2' x n/2'. 
For example, the top left hand submesh of the ith 
division consists of the nodes: 

(1~1)  ... ( ~ $ 2 ~ ~ 1 )  

(1, n/2') . . . (n/2', $ 2 ' )  

Denote by t i  the following requests. For 
each of the 4' squares of size n/2' x n/2' re- 
quest circuits from all top nodes to all bot- 
tom nodes, e.g. ((19 11, (1, n/2')l,{(2,1),(2, n/2')l 

. . . {(n/2', l ) ,  (n/2', 42 ' ) )  for the top left hand 
square, and circuita from all left hand nodes to all right 

. . . {(I, n/2'), (n/2', 42 ' ) )  for the top left hand 
square. Note that routing all requests in Ci would 
use all links in the mesh. 

We generate a random request sequence as follows. 
With probability n-l ,  we give no requests. Otherwise, 
the sequence consists of all requests in CO,.. . , Cx,  
where 0 <, X < logn is an integer random variable 
which satisfies Pr[X = 4 = 4 Pr[X = i - 11, for every 
1 5 i < logn. In other words, for 0 5 i < logn - 1, 
the probability of the sequence Co..  .Ci is 2-'-'. 

Consider an off-line strategy that accepts all the 
requests in Ci given that the request sequence is 
CO.. . Cj. The number of connections in Ci is 
4'2n/2' = 2'+ln. Furthermore, the probability that 
the request sequence generated terminates with the 
requests in Li is 2-'". Thus, the expected number of 
requests routed by this strategy is bounded by 

h a d  nod-, e.g. ((11 I), (n/2', 1)), ( ( 1 1  2)l (n/2', 2)) 

logn-1 

2-'-'2'+'n = n log n. (4) 
i = O  

Next we bound the expected number of connec- 
tions a deterministic on-line algorithm A can accept. 
Notice that any route for any call from Ci consumes 
at  least 4 2 '  - 1 links. Therefore, if k links remain 
unused by calls accepted from C O , . .  . , Ci-1, and r e  
quests from t i  arrive, we can hope to accept at  most 
k/(n/2' - 1) of those calls. Conditioning upon X 2 i ,  
denote by A(i,  k) the maximum expected number of 
calls accepted from Cj, & + I , . .  ., where the maximum 
is taken over all possible ways to  accept calls from 
CO,. . . , Cj-1 so that at  most k links are free. We have 
the following recurrence relation. 

with the initial condition 

A(1ogn- 1,h) 5 h. 

Clearly, A(O,2n(n - 1)) is an upper bound on the ex- 
pected number of calls that the on-line algorithm ac- 
cepts. 

Consider the following claim. 

Claim 10 For all i ,  k, A(i, k) 5 k/(n/2' - 1). 

Proof. The proof is by induction on j = logn - i .  
The base case ( i  = log n - 1) follows immediately from 
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the initial condition on A .  Now, assume that for all 
k, A( i  + 1, k) 5 k/(n/2'+'  - 1). We have that 

max { t + i ~ ( i  + 1, - t (n/2i  - 1))) 
f <k/(n/2'- 1) 

A ( i ,  k) I 

As a corollary we get the following theorem. 

Theorem 11 Any randomized on-line algorithm for 
routing and admission control on n x n meshes has a 
competitive ratio in R(1og n ) .  

Proof. By claim 10, A(O,2n(n - 1)) 5 2n. Together 
with Equation 4, the theorem follows. 

The lower bounds for trees, for the hypercube, and 
for the tree of meshes are derived by an argument 
analogous to the one used for the mesh. We use the 
following structure to describe the proofs for each of 
these networks. To show a lower bound of R(1og D), 
we define 1ogD sets of requests L o ,  c1,. . . , ClogD-1. 
These sets have the following properties. 

1. For each set, accepting as many calls as possi- 
ble from that set blocks the entire network (or a 
portion of it that cannot be bypassed). 

2 .  Any call that is accepted from set Ci reduces the 
number of calls that can be accepted from C;+l 
by 2,  from C,+z by 4, etc. 

We then generate a probability distribution over re- 
quest sequences, by requesting all requests in CoUClU 
. . . U C X ,  where 0 I X < log D is an integer random 
variable which satisfies Pr[X = i ]  = $ Pr[X = i - 11, 
for every 1 5 i < logD. The specific bound is 
then proven as it is for the mesh. For each net- 
work, we sketch the proof by giving the definition of 
CO, C1, . . . , C l o g ~ - l  for that network. 

Trees. For simplicity assume that the diameter d 
of the tree is a power of 2 .  Take a path between two 
leaves u , v  whose length equals the diameter of the 
tree. CO consists of the single request {U, v}. To con- 
struct L1, divide P A T H ( u ,  v) into two equal length 
paths and request each of the two. To construct C;, 
divide the path of each request in C,-1 into two equal 
length paths, and request all those paths. Using the 
above arguments gives a lower bound of R(1ogd) in 
this case. A slight modification of this idea gives the 
Q(log d') bound for requests between leaves. (Note 

that this argument also provides an alternative proof 
of the R(1ogn) lower bound of [ABFR94] for admission 
control on an n node line.) 

The hypercube. For simplicity, let n be an inte- 
ger such that log n is a power of 2. Consider the log n 
dimensional hypercube with node set (0, l}logn and 
edges connecting every pair of nodes with Hamming 
distance 1. .CO consists of requests whose endpoints 
are bitwise complements of each other. The resulting 
paths have length logn. Assume that each request 
uses a path that complements bits from left to right. 
We wish to specify a set of requests so that the result- 
ing paths use exactly all of the edges in the hypercube. 
This is the first of the two above mentioned properties 
for CO, L1,. . . , LiogD-l .  We call the property P1. 

Consider the set of requests between every node and 
its bitwise complement. That is, the pairs OOO...OO 
and 111...11, 000.. .01 and 111.. .10,  and so forth. 
(Notice that every pair is requested twice.) We show 
inductively that this request set can be partitioned 
into two equal sized sets, each satisfying P1.  For the 
two dimensional hypercube, the two requests between 
00 and 11 represent one such set and the two requests 
between 01 and 10 the other set. 

Now consider a log n-dimensional hypercube. Con- 
sider the set of requests whose paths originate with a 
node that has a left bit of 0. The paths do not in- 
tersect on the first edge and the remaining edges of 
each path are all in the (log n - 1)-dimensional hyper- 
cube defined by the nodes with a left bit of 1. By the 
induction hypothesis, these paths can be partitioned 
into two equal subsets such that each satisfies P1 in 
(log n - 1)-dimensional hypercube and uses half of the 
edges that connect the (log n - 1)-dimensional hyper- 
cube to the (log n - 1)-dimensional hypercube defined 
by the nodes with a left bit of 0. Pick one of the sub- 
sets. Call it S I .  Now, consider the set of requests 
whose paths originate with a node that has a left bit 
of 1 and where the first edge is not already used by 
the path for a request in S I .  Call it S2. It is easy to 
see that the set of requests in S 2  cover the remaining 
edges in the hypercube. Thus, S1 U S 2  satisfies P1. 
Furthermore, S1 U S 2  consists of exactly half of the 
requests between every node and its bitwise comple- 
ment. The set of requests not in S1 U S 2  together also 
satisfy P1. 

Now, let LO consist of the requests in SI U S2. In 
order to construct C1, divide each of the paths sug- 
gested for the LO requests into two equal length paths, 
then request the two endpoints of each of these shorter 
paths. We can use the shorter paths to route all re- 
quests in C1. In general, to construct Ci take the paths 
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suggested for routing the requests in Li-1, divide each 
of them into two equal length paths and request the 
two endpoints of each of these paths. Use the parti- 
tioned paths to route all requests in Ci. The lowq 
bound we get is n(log1ogn). 

The tree of meshes. Consider the simplified, 
weighted binary tree of height 2logn - 1 repreeen- 
tation of the n x n tree of meshes. Each request we 
give is routed from a leaf to the root of a subtree, from 
there to a leaf in the other branch of that subtree. In 
order to specify our sets of requests, we specify leaf- 
to-root paths. The other half of each request's path is 
implied by symmetry. In each level of the tree, num- 
ber the edges connecting that level's nodes to their 
children from left to  right starting a t  0. We refer to 
the level of an edge as the minimum level of its two 
endpoints. Our CO requests all reach the root of the 
tree. There are n of them. They congest edge 0 in 
level 0, edges 0 and 2 in level 2, edges 0, 2, 8, and 
10 in level 4, and in general, if edge j of level 2i is 
congested, so are edges 4 j  and 4 j  + 2 in level 2(i+ 1). 
Notice that every path participates in the congestion 
of one edge in every even level. 

In order to construct Ll, divide each path into two 
equal length parts, removing the middle edge. We 
want to place, for every path in CO, two paths in Ct, 
one overlapping the bottom part of the CO path and 
the other overlapping the top part. The bottom part 
paths are easy to construct, since they contain a leaf. 
To construct the top part paths, we take a look at the 
logn high subtrees that contain CO congested edges. 
The edge connecting the root to its left child is con- 
gested by LO paths in each subtree. We use the subtree 
rooted at the right child to connect all our top part 
paths to leafs so that there will be no overlap with 
bottom part paths. In general, we use similar ideas to 
construct the set Ci by dividing LO paths into 2' parts 
(removing some of the edges). We leave the formal de- 
tails to the full version of the paper. This gives a lower 
bound of R(log1ogn) for the n x n tree of meshes. 
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