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Part IIOA TutorialThe Input/Output (I/O) automaton model, developed by Nany Lynh and Mark Tuttle [9℄, modelsomponents in asynhronous onurrent systems as labeled transition systems. Lynh's book,Distributed Algorithms [8℄, desribes many algorithms in terms of I/O automata and ontainsproofs of various properties of these algorithms.IOA is a preise language for desribing I/O automata and for stating their properties. It extendsand formalizes the desriptive notations used in Distributed Algorithms, uses Larh spei�ations[7℄ to de�ne the semantis of abstrat data types and I/O automata, and supports a variety ofanalyti tools. These tools range from light weight tools, whih hek the syntax of automatondesriptions, to medium weight tools, whih simulate the ation of an automaton, and to heavierweight tools, whih provide support for proving properties of automata.The doument is organized as follows. Part I ontains an informal introdution to I/O automataand a tutorial for IOA. The tutorial onsists largely of examples that illustrate di�erent aspets ofthe language; reading it should be suÆient to begin writing omplete IOA desriptions. Part IIdesribes the data types available for use in IOA desriptions. Finally, Parts 10 and IV present theformal syntax and semantis of the language.1 IntrodutionI/O automata provide a mathematial model suitable for desribing asynhronous onurrent sys-tems. The model provides a preise way of desribing and reasoning about system omponentsthat interat with eah other and that operate at di�erent speeds. It also permits omponents thathave been desribed as I/O automata to be omposed into larger automata.1.1 I/O automataAn I/O automaton is a simple type of state mahine in whih the transitions are assoiated withnamed ations. The ations are lassi�ed as either input, output, or internal. The inputs andoutputs are used for ommuniation with the automaton's environment, whereas internal ationsare visible only to the automaton itself. The input ations are assumed not to be under theautomaton's ontrol, whereas the automaton itself ontrols whih output and internal ations shouldbe performed.
Pi

init(v)i

decide(v)i

send(m)i,j

receive(m)i,jFigure 1: A proessA typial example1 of an I/O automaton is a proess in an asynhronous distributed system.Figure 1 shows the interfae of one suh proess. The irle represents the automaton, named Pi,1This example is essentially the same as the example in Distributed Algorithms [8℄, Chapter 8.



where i is a proess index, and the arrows represent input and output ations. An inoming arrowis an input ation, and an outgoing arrow is an output ation. Internal ations are not shown.Proess Pi an reeive inputs of the form init(v)i, eah of whih represents the reeipt of an inputvalue v, and it an produe outputs of the form deide(v)i , eah of whih represents a deisionon the value of v. In order to reah a deision, proess Pi may ommuniate with other proessesusing a message passing system. Pi's interfae to the message system onsists of output ationsof the form send(m)i;j , eah of whih represents sending a message m to some proess named Pj ,and input ations of the form reeive(m)i;j , eah of whih represents reeiving a message m fromproess Pj . When Pi performs any of the indiated ations (or any internal ation), it may alsohange state.
Ci,j

send(m)i,j receive(m)i,j

Figure 2: A hannelAnother example of an I/O automaton is a FIFO message hannel. Figure 2 shows the interfaeof a typial hannel automaton, Ci;j, where i and j are proess indies. Its input ations have theform send(m)i;j , and its output ations have the form reeive(m)i;j .Proess and hannel automata an be omposed as shown in Figure 3, by mathing the outputations of one automaton with the input ations of another. Thus, eah output ation send(m)i;jof a proess automaton is mathed and performed together with an input ation send(m)i;j of somehannel automaton, and eah input ation reeive(m)i;j of a proess automaton is mathed andperformed together with an output ation reeive(m)i;j of some other hannel automaton. Ationsare performed one at a time, indivisibly, in any order.More preisely, an I/O automaton A onsists of the following �ve omponents:� a signature, whih lists the disjoint sets of input, output, and internal ations of A,� a (not neessarily �nite) set of states, usually desribed by a olletion of state variables,� a set of start (or initial) states, whih is a non-empty subset of the set of all states,� a state-transition relation, whih ontains triples (known as steps or transitions) of the form(state, ation, state), and� an optional set of tasks, whih partition the internal and output ations of A.An ation � is said to be enabled in a state s if there is another state s0 suh that (s; �; s0) is atransition of the automaton. Input ations are enabled in every state; i.e., automata are not ableto \blok" input ations from ourring. The external ations of an automaton onsist of its inputand output ations.The transition relation is usually desribed in preondition-e�et style, whih groups togetherall transitions that involve a partiular type of ation into a single piee of ode. The preonditionis a prediate on the state indiating the onditions under whih the ation is permitted to our.The e�et desribes the hanges that our as a result of the ation, either in the form of a simpleprogram or in the form of a prediate relating the pre-state and the post-state (i.e., the statesbefore and after the ation ours). Ations are exeuted indivisibly.2
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1.2 Exeutions and traesAn exeution fragment of an I/O automaton is either a �nite sequene s0, �1, s1, �2, . . . , �n, sn, oran in�nite sequene s0, �1, s1, �2, . . . , of alternating states si and ations �i suh that (si; �i+1; si+1)is a transition of the automaton for every i � 0. An exeution is an exeution fragment that beginswith a start state. A state is reahable if it ours in some exeution. The trae of an exeution isthe sequene of external ations in that exeution.The task partition is an abstrat desription of \tasks" or \threads of ontrol." It is used tode�ne fairness onditions on an exeution of the automaton; these onditions require the automatonto ontinue, during its exeution, to give fair turns to eah of its tasks. A task is said to be enabledin a state if some ation in the task is enabled in that state. In a fair exeution, whenever some taskremains enabled, some ation in that task will eventually be performed. Thus, in fair exeutions,ations in one task partition do not prevent ations in another from ourring. If no task partitionis spei�ed, then all ations are assumed to belong to a single task.1.3 Operations on automataThe operation of omposition allows an automaton representing a omplex system to be onstrutedby omposing automata representing individual system omponents. The omposition identi�esations with the same name in di�erent omponent automata. When any omponent automatonperforms a step involving an ation �, so do all omponent automata that have � in their sig-natures. The hiding operation \hides" output ations of an automaton by relassifying them asinternal ations; this prevents them from being used for further ommuniation and means thatthey are no longer inluded in traes. The renaming operation hanges the names of an automa-ton's ations, to failitate omposing that automaton with others that were de�ned with di�erentnaming onventions.1.4 Properties of automataAn invariant of an automaton is any property that is true in all reahable states of the automaton.An automaton A is said to implement an automaton B provided that A and B have the sameinput and output ations and that every trae of A is a also trae of B. In order to show that Aimplements B, one an use a simulation relation, as follows.For the purpose of the following de�nitions, we assume that A and B have the same input andoutput ations. A relation R between the states of A and B is a forward simulation2 with respetto invariants IA and IB of A and B if� every start state of A is related (via R) to a start state of B, and� for all states s of A and u of B satisfying the invariants IA and IB suh that R(s; u), and forevery step (s; �; s0) of A, there is an exeution fragment � of B starting with u, ontainingthe same external ations as �, and ending with a state u0 suh that R(s0; u0).A general theorem is that A implements B if there is a forward simulation from A to B.Similarly, a relation R between the states of A and B is a bakward simulation3 with respet toinvariants IA and IB of A and B if� every state of A that satis�es IA orresponds (via R) to some state of B that satis�es IB ,2In some previous work suh relations are alled weak forward simulations.3In some previous work suh relations are alled weak bakward simulations.4



� if a start state s of A is related (via R) to a state u of B that satis�es IB, then u is a startstate of B, and� for all states s; s0 of A and u0 of B satisfying the invariants suh that R(s0; u0), and for everystep (s; �; s0) of A, there is an exeution fragment � of B ending with u0, ontaining the sameexternal ations as �, and starting with a state u satisfying IB suh that R(s; u).Another general theorem is that A implements B if there is an image-�nite bakward simulationfrom A to B. Here, a relation R is image-�nite provided that for any x there are only �nitely manyy suh that R(x; y). Moreover, the existene of any bakward simulation from A to B implies thatall �nite traes of A are also traes of B.2 Using IOA to formalize desriptions of I/O automataWe illustrate the nature of I/O automata, as well as the use of the language IOA to de�ne theautomata, by a few simple examples. Figure 4 ontains a simple IOA desription for an automaton,Adder, that gets two integers as input and subsequently outputs their sum. The �rst line delaresthe name of the automaton. The remaining lines de�ne its omponents. The signature onsistsof input ations add(i, j), one for eah pair of values of i and j, and output ations result(k),one for eah value of k. The type Int, used to represent integers, is a built-in type in IOA (seeSetion 7.2).automaton Addersignatureinput add(i, j: Int)output result(k: Int)statesvalue: Int,ready: Bool := falsetrans i t ionsinput add(i, j)e f f value := i + j;ready := trueoutput result(k)pre k = value ^ readye f f ready := falseFigure 4: IOA desription of an adderThe automaton Adder has two state variables: value is an integer that is used to hold a sum,and ready is a boolean that is set to true whenever a new sum has been omputed. The initialvalue of value is arbitrary sine it is not spei�ed; ready is initially false.The transitions of the automaton Adder are given in preondition/e�et style. The input ationadd(i, j) has no preondition, whih is equivalent to its having true as a preondition. This isthe ase for all input ations; that is, every input ation in every automaton is enabled in everystate. The e�et of add(i, j) is to hange value to the sum of i and j and to set ready to true.The output ation result(k) an our only when it is enabled, that is, only in states where itspreondition k = value ^ ready is true. Its e�et is to set ready bak to false. Traes of Adderare sequenes of external ations suh as 5



add(3, 2), result (5), add(1, 2), add(-1, 1), result (0), ...that start with an add ation, in whih every result ation returns the sum omputed by the lastadd ation, and in whih every pair of result ations must be separated by one or more add ations.automaton Channel(M, Index: type, i, j: Index)signatureinput send(m: M, onst i, onst j)output reeive(m: M, onst i, onst j)statesbuffer: Seq[M℄ := {}trans i t ionsinput send(m, i, j)e f f buffer := buffer ` moutput reeive(m, i, j)pre buffer 6= {} ^ m = head(buffer)e f f buffer := tail(buffer)Figure 5: IOA desription of a reliable ommuniation hannelAnother simple automaton, Channel, is shown in Figure 5. This automaton represents a reliableommuniation hannel, as illustrated in Figure 2, whih neither loses nor reorders messages intransit. The automaton is parameterized by the type M of messages that an be in transit onthe hannel, by the type Index of proess indies, and by two values, i and j, whih representthe indies of proesses that use the hannel for ommuniation. The signature onsists of inputations, send(m, i, j), and output ations, reeive(m, i, j), one for eah value of m. The keywordonst in the signature indiates that the values of i and j in these ations are �xed by the valuesof the automaton's parameters.The state of the automaton Channel onsists of a buffer, whih is a sequene of messages (i.e.,an element of type Seq[M℄) initialized to the empty sequene {}. Setion 8.4 desribes the typeonstrutor Seq and operators on sequenes suh as {}, `, head, and tail.The input ation send(m, i, j) has the e�et of appending m to buffer (here, ` is the appendoperator). The output ation reeive(m, i, j) is enabled when buffer is not empty and has themessage m at its head. The e�et of this ation is to remove the head element from buffer.The rest of Part I shows in more detail how IOA an be used to desribe I/O automata.3 Data types in IOA desriptionsIOA enables users to de�ne the ations and states of I/O automata abstratly, using mathematialnotations for sets, sequenes, et., without having to provide onrete representations for theseabstrations. Some mathematial notations are built into IOA; others an be de�ned by the user.The data types Bool, Int, Nat, Real, Char, and String an appear in IOA desriptions withoutexpliit delarations. Setion 7 desribes the operators available for eah of these types.Compound data types an be onstruted using the following type onstrutors and used withoutexpliit delarations. Setion 8 desribes the operators available for types onstruted in any ofthese fashions.� Array[I, E℄ is an array of elements of type E indexed by elements of type I.� Map[D, R℄ is a �nite partial mapping of elements of a domain type D to elements of a rangetype R. Mappings di�er from arrays in that their domains are always �nite, and in that theymay not be totally de�ned. 6



� Seq[E℄ is a �nite sequene of elements of type E.� Set[E℄ is a �nite set of elements of type E.� Mset[E℄ is a �nite multiset of elements of type E.In this tutorial, we desribe operators on the built-in data types informally when they �rstappear in an example.Users an de�ne additional data types, as well as rede�ne built-in types, in one of two ways.First, they an expliitly delare enumeration, tuple, and union types analogous to those found inmany ommon programming languages. For example,type Color = enumeration of red, white, bluetype Msg = tuple of soure, dest: Proess, ontents: Stringtype Fig = union of sq: Square, ir: CirleSetion 9.8 desribes the operators available for eah of these types. Seond, users an refer to anauxiliary spei�ation that de�nes the syntax and semantis of a data type, as inaxioms Queue for Q[__℄ % Supplies axioms for Q[Int℄, Q[Set[Nat℄℄, ...axioms Peano for Nat % Overrides built-in axioms for Nataxioms Graph(V, E) % Supplies axioms for graphsThese auxiliary spei�ations are written in the Larh Shared Language (LSL); see Setions 9 and 10.In this report, some operators are displayed using mathematial symbols that do not appear onthe standard keyboard. The following tables show the input onventions for entering these symbols.The standard meanings of the logial operators are built into LSL and IOA. The meanings of thedatatype operators are de�ned by the LSL spei�ations for the built-in datatypes in Setion 9.Logial Operator Datatype OperatorSymbol Meaning Input8 For all \A9 There exists \E: Not ~6= Not equals ~=^ And /\_ Or \/) Implies =>, If and only if <=>
Symbol Meaning Input� Less than or equal <=� Greater than or equal >=2 Member of \in62 Not a member of \notin� Proper subset of \subset� Subset of \subseteq� Proper superset of \supset� Superset of \supseteq` Append element |-a Prepend element -|4 IOA desriptions for primitive automataPrimitive automata (i.e., automata without subomponents) are desribed by speifying theirnames, ation signatures, state variables, transition relations, and task partitions. All but thelast of these elements must be present in every primitive automaton desription.4.1 Automaton names and parametersThe �rst line of an automaton desription onsists of the keyword automaton followed by the nameof the automaton (see Figures 4 and 5). As illustrated in Figure 5, the name may be followed bya list of formal parameters enlosed within parentheses. Eah parameter onsists of an identi�er7



with its assoiated type (or, as in Figure 5, with the keyword type to indiate that the identi�ernames a type rather than an element of a type).44.2 Ation signaturesThe signature for an automaton is delared in IOA using the keyword signature followed by lists ofentries desribing the automaton's input, internal, and output ations. Eah entry ontains a nameand an optional list of parameters enlosed in parentheses. Eah parameter onsists of an identi�erwith its assoiated type, or of an expression following the keyword onst; entries annot have typeparameters. Eah entry in the signature denotes a set of ations, one for eah assignment of valuesto its non-onst parameters.It is possible to plae onstraints on the values of the parameters for an entry in the signatureusing the keyword where followed by a prediate, that is, by a boolean-valued expression. Suhonstraints restrit the set of ations denoted by the entry. For example, the signaturesignatureinput add(i, j: Int) where i > 0 ^ j > 0output result(k: Int) where k > 1ould have been used for the automaton Adder to restrit the values of the input parameters topositive integers and the value of the output parameter to integers greater than 1.4.3 State variablesAs in the above examples, state variables are delared using the keyword states followed by aomma-separated list of state variables and their types. State variables an be initialized using theassignment operator := followed by an expression or by a nondeterministi hoie. The order inwhih state variables are delared makes no di�erene: state variables are initialized simultaneously,and the initialization given for one state variable annot refer to the value of any other state variable.A nondeterministi hoie, indiated by the keyword hoose following the assignment operator:=, selets an arbitrary value for the named variable that satis�es the prediate following thekeyword where. When a nondeterministi hoie is used to initialize a state variable, there mustbe some value of the named variable that satis�es this prediate. If this prediate is true for allvalues of the named variable, then the e�et is the same as if no initial value had been spei�ed forthe state variable.automaton Choiesignatureoutput result(i: Int)statesnum: Int := hoose n where 1 � n ^ n � 3,done: Bool := falsetrans i t ionsoutput result(i)pre :done ^ i = nume f f done := trueFigure 6: Example of nondeterministi hoie of initial value for state variable4Later versions of IOA may also allow us to parameterize automata by operations (e.g., ordering relations) on adata type.
8



For example, in the automaton Choie (Figure 6), the state variable num is initialized nondeter-ministially to some value of the variable n that satis�es the prediate 1 � n ^ n � 3, i.e., to oneof the values 1, 2, or 3 (the value of n must be an integer beause it is onstrained to have the sametype, Int, as the variable num to whih it will be assigned). The automaton Choie an return theseleted value at most one in an output ation.It is also possible to onstrain the initial values of all state variables taken together, whether ornot initial values are assigned to any individual state variable. This an be done using the onstrutso that followed by a prediate (involving state variables and automaton parameters), as illustratedby the de�nition of the automaton Shuffle in Figure 7.5 Here, the initial values of the variableut and the array name of strings are onstrained so that name[1℄, . . . , name[52℄ are sorted in twopiees, eah in inreasing order, with the piee after the ut ontaining smaller elements than thepiee before the ut. Note that the sope of the so that lause is the entire set of state variabledelarations.type ardIndex = enumeration of 1, 2, 3, ..., 52automaton Shufflesignatureinternal swap(i, j: ardIndex)output deal(a: Array[ardIndex, String℄)statesdealt: Bool := false,name: Array[ardIndex, String℄,ut: ardIndex,temp: Stringso that 8 i: ardIndex (i 6= 52 ^ i 6= ut ) name[i℄ < name[su(i)℄)^ name[52℄ < name[1℄trans i t ionsinternal swap(i, j)pre :dealte f f temp := name[i℄;name[i℄ := name[j℄;name[j℄ := tempoutput deal(a)pre :dealt ^ a = namee f f dealt := trueFigure 7: Example of a onstraint on initial values for state variablesIn Figure 7, values of type Array[ardIndex, String℄ are arrays indexed by elements of typeardIndex and ontaining elements of type String (see Setion 8.1). The swap ations transposepairs of strings, until a deal ation announes the ontents of the array; then no further ationsour. Note that the onstraint following so that limits only the initial values of the state variables,not their subsequent values.When the type of a state variable is an Array or a tuple (Setion 9.8), IOA also treats theelements of the array or the �elds in the tuple as state variables, to whih values an be assignedwithout a�eting the values of the other elements in the array or �elds in the tuple.5At present, users must expand the . . . in the de�nition of the type ardIndex by hand; IOA will eventuallyprovide more onvenient notations for integer subranges. 9



4.4 Transition relationsTransitions for the ations in an automaton's signature are de�ned following the keyword transi-tions. A transition de�nition onsists of an ation type (i.e., input, internal, or output), an ationname with optional parameters and an optional where lause, an optional list of additional \hooseparameters," an optional preondition, and an optional e�et.4.4.1 Transition parametersThe parameters aompanying an ation name in a transition de�nition must math those aom-panying the name in the automaton's signature, both in number and in type. However, parameterstake a simpler form in a transition de�nition than they do in the signature. The simplest way toonstrut the parameter list for an ation name in a transition de�nition is to erase the keywordonst and the type modi�ers from the parameter list in the signature; thus, in Figure 5,input send(m: M, onst i, onst j)in the signature of Channel is shortened to input send(m, i, j) in the transition de�nition. SeeSetion 15.3 for the atual set of rules.More than one transition de�nition an be given for an entry in an automaton's signature. Forexample, the transition de�nition for the swap ations in the Shuffle automaton (Figure 7) an besplit into two omponents:internal swap(i, j) where i 6= jpre :dealte f f temp := name[i℄;name[i℄ := name[j℄;name[j℄ := tempinternal swap(i, i)pre :dealtThe seond of these two transition de�nitions does not hange the state, beause it has no e�lause.4.4.2 PreonditionsA preondition an be de�ned for a transition of an output or internal ation using the keywordpre followed by a prediate, that is, by a boolean-valued expression. Preonditions annot bede�ned for transitions of input ations. All variables in the preondition must be parameters ofthe automaton, be state variables, appear in the parameter list for the transition de�nition, behoose parameters, or be quanti�ed expliitly in the preondition. If no preondition is given, it isassumed to be true.An ation is said to be enabled in a state if the preondition for its transition de�nition is truein that state for some values of the hoose parameters. Input ations, whose transitions have nopreonditions, are always enabled.4.4.3 E�etsThe e�et of a transition, if any, is de�ned following the keyword e�. This e�et is generally de�nedin terms of a (possibly nondeterministi) program that assigns new values to state variables. Theamount of nondeterminism in a transition an be limited by a prediate relating the values of statevariables in the post-state (i.e., in the state after the transition has ourred) to eah other and totheir values in the pre-state (i.e., in the state before the transition ours).If the e�et is missing, then the transition has none; i.e., it leaves the state unhanged.10



Using programs to speify e�ets A program is a list of statements, separated by semiolons.Statements in a program are exeuted sequentially. There are three kinds of statements:� assignment statements,� onditional statements, and� for statements.Assignment statements An assignment statement hanges the value of a state variable.The statement onsists of a state variable followed by the assignment operator := and either anexpression or a nondeterministi hoie (indiated by the keyword hoose). (As noted in Setion 4.3,the elements in an array used as a state variable, or the �elds in a tuple used as a state variable, arethemselves onsidered as separate state variables and an appear on the left side of the assignmentoperator.)The expression or nondeterministi hoie in an assignment statement must have the same typeas the state variable. The value of the expression is de�ned mathematially, rather than omputa-tionally, in the state before the assignment statement is exeuted. The value of the expression thenbeomes the value of the state variable in the state after the assignment statement is exeuted.Exeution of an assignment statement does not have side-e�ets; i.e., it does not hange the valueof any state variable other than that on the left side of the assignment operator.axioms Subsequene for Seq[__℄automaton LossyChannel(M: type)signatureinput send(m: M),rashoutput reeive(m: M)statesbuffer: Seq[M℄ := {}trans i t ionsinput send(m)e f f buffer := buffer ` minput rashe f f buffer := hoose b where b � bufferoutput reeive(m)pre buffer 6= {} ^ m = head(buffer)e f f buffer := tail(buffer)Figure 8: IOA desription of a lossy ommuniation hannelThe de�nition of the rash ation in the LossyChannel automaton (Figure 8) illustrates the useof the hoose . . . where onstrut to onstrain the new value of the state variable buffer to be anondeterministially hosen subsequene of the old value. LossyChannel is a modi�ation of thereliable ommuniation hannel (Figure 5) in whih the additional input ation rash may ausethe sequene buffer to lose messages (but not to reorder them).The axioms statement at the beginning of Figure 8 identi�es an auxiliary spei�ation (Fig-ure 9), whih overrides the default axioms for the built-in type onstrutor Seq[E℄ for the sequenedata type (see Setion 8.4) to add a de�nition for the subsequene relation � appearing in the11



de�nition of transitions for the rash ation. Beause this relation is not one of the built-in op-erators provided by IOA for the sequene data type, we must supply a spei�ation to de�ne itsproperties, namely, that a subsequene does not reorder elements, and that it need not ontainonseutive elements from the larger sequene. Figure 9 onveys this information by presenting areursive de�nition for �. Setion 9 provides more information about how to read suh auxiliaryspei�ations.Subsequene(E): t r a i tinludes Sequene(E)introdues __�__: Seq[E℄, Seq[E℄ ! Boolasserts with e, e1, e2: E, s, s1, s2: Seq[E℄{} � s;:((s ` e) � {});(s1 ` e1) � (s2 ` e2) , (s1 ` e1) � s2 _ (s1 � s2 ^ e1 = e2)Figure 9: Auxiliary spei�ation with reursive de�nition of subsequene operatorAn abbreviated form of nondeterministi hoie an be used in the assignment statement toexpress the fat that a transition an hange the value of a state variable, without speifying whatthe new value may be. Suh a nondeterministi hoie onsists of the keyword hoose alone, withouta subsequent variable or where lause. The statement x := hoose is equivalent to the somewhatlonger statement x := hoose y where true. Both of these statements give a transition a lienseto hange the value of the state variable x. As desribed below, onstraints on the new values formodi�ed variables, if any, an be given in a so that lause for the entire e�et.Conditional statements A onditional statement is used to selet whih of several programsegments to exeute in a larger program. It starts with the keyword if followed by a prediate,the keyword then, and a program segment; it ends with the keyword�. In between, there an beany number of elseif lauses (eah of whih ontains a prediate, the keyword then, and a programsegment), and there an be a �nal else lause (whih also ontains a program segment). Figure 10illustrates the use of a onditional statement in de�ning an automaton that distributes input valuesinto one of three sets. Setion 8.2 desribes the set data type and the operators {} and insert.For statements A for statement is used to perform a program segment one for eah valueof a variable that satis�es a given ondition. It starts with the keyword for followed by a variable,a lause desribing a set of values for this variable, the keyword do, a program segment, and thekeyword od.Figure 11 illustrates the use of a for statement in a high-level desription of a multiast algo-rithm. Its �rst line de�nes the Paket data type to onsist of triples [ontents, soure, dest℄, inwhih ontents represents a message, soure the Node from whih the message originated, and destthe set of Nodes to whih the message should be delivered. The state of the multiast algorithmonsists of a multiset network, whih represents the pakets urrently in transit, and an array queue,whih represents, for eah Node, the sequene of pakets delivered to that Node, but not yet read bythe Node.The mast ation inserts a new paket in the network; the notation [m, i, I℄ is de�ned by thetuple data type (Setion 9.8) and the insert operator by the multiset data type (Setion 8.3). Thedeliver ation, whih is desribed using a for statement, distributes a paket to all nodes in itsdestination set (by appending the paket to the queue for eah node in the destination set and12



automaton Distributesignatureinput get(i: Int)statessmall: Set[Int℄ := {},medium: Set[Int℄ := {},large: Set[Int℄ := {},bound1: Int,bound2: Intso that bound1 < bound2trans i t ionsinput get(i)e f f i f i < bound1 then small := insert(i, small)e l s e i f i < bound2 then medium := insert(i, medium)e l se large := insert(i, large)f i Figure 10: Example of a onditional statement
type Paket = tuple of ontents: Message, soure: Node, dest: Set[Node℄automaton Multiastsignatureinput mast(m: Message, i: Node, I: Set[Node℄)internal deliver(p: Paket)output read(m: Message, j: Node)statesnetwork: Mset[Paket ℄ := {},queue: Array[Node, Seq[Paket℄℄so that 8 i: Node (queue[i℄ = {})trans i t ionsinput mast(m, i, I)e f f network := insert([m, i, I℄, network)internal deliver(p)pre p 2 networke f f for j: Node in p.dest do queue[j℄ := queue[j℄ ` p od;network := delete(p, network)output read(m, j)pre queue[j℄ 6= {} ^ head(queue[j℄).ontents = me f f queue[j℄ := tail(queue[j℄)Figure 11: Example showing use of a for statement
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then deleting the paket from the network). The read ation reeives the ontents of a paket at apartiular Node by removing that paket from the queue of delivered pakets at that Node.In general, the lause desribing the set of values for the ontrol variable in a for statementonsists either of the keyword in followed by an expression denoting a set (Setion 8.2) or multiset(Setion 8.3) of values of the appropriate type, or of the keywords so that followed by a prediate.The program following the keyword do is exeuted one for eah value in the set or multisetfollowing the keyword in, or one for eah value satisfying the prediate following the keywords sothat. These versions of the program are exeuted in an arbitrary order. However, IOA restritsthe form of the program so that the e�et of the for statement is independent of the order in whihthe versions of the program are exeuted.Using prediates on states to speify e�ets The results of a program an be onstrainedby a prediate relating the values of state variables after a transition has ourred to the valuesof state variables before the transition began. Suh a prediate is partiularly useful when theprogram ontains the nondeterministi hoose operator. For example,input rashe f f buffer := hooseso that buffer 0 � bufferis an alternative, but equivalent way of desribing the rash ation in LossyChannel (Figure 8). Theassignment statement indiates that the rash ation an hange the value of the state variablebuffer. The prediate in the so that lause onstrains the new value of buffer in terms of its oldvalue. A primed state variable in this prediate (i.e., buffer0) indiates the value of the variablein the post-state; an unprimed state variable (i.e., buffer) indiates its value in the pre-state. Foranother example,e f f name[i℄ := hoose;name[j℄ := hooseso that name 0 [i℄ = name[j℄ ^ name 0 [j℄ = name[i℄is an alternative way of writing the e�et lause of the swap ation in Shuffle (Figure 7). Theassignment statements indiate that the array name may be modi�ed at indies i and j, and theso that lause onstrains the modi�ations. This notation allows us to eliminate the temp statevariable needed previously for swapping.There are important di�erenes between where and so that lauses. A where lause an beattahed to a nondeterministi hoose operator in a single assignment statement to restrit thevalue hosen by that operator; variables appearing in a where lause denote values in the statebefore the assignment statement is exeuted. A so that lause an be attahed to an entire e�lause; unprimed variables appearing in a so that lause denote values in the state before thetransition represented by the entire e� lause ours, and primed variables denote values in thestate after the transition has ourred.4.4.4 Choose parametersTwo kinds of parameters an be spei�ed for a transition: ordinary parameters, orresponding tothose in the automaton's signature, and additional \hoose parameters," whih provide a onvenientway to relate the postondition for a transition to its preondition. Figure 12 illustrates the use ofhoose parameters.The automaton LossyBuffer represents a message hannel that loses a message eah time ittransmits one. The state of the automaton onsists of a multiset buff of messages of type M. Theinput ation for the hannel, get(m), simply adds the message m to buff. The output ation, put(m),delivers m while dropping another message, given by the hoose parameter n. The preondition14



automaton LossyBuffer(M: type)signatureinput get(m: M)output put(m: M)statesbuff: Mset[M℄ := {}trans i t ionsinput get(m)e f f buff := insert(m, buff)output put(m)hoose n: Mpre m 2 buff ^ n 2 buff ^ (m 6= n _ ount(n, buff) > 1)e f f buff := delete(m, delete(n, buff))Figure 12: Example of the use of hoose parametersensures that both m and n a remembers of the multiset buff and, if m and n happen to be the samemessage, that buff ontains two opies of this message.Choose parameters provide syntati sugar for de�ning transitions. It is possible to de�netransitions without them by using expliit quanti�ation. For example, the transition for the putation in Figure 12 an be rewritten as follows:output put(m)pre 9 n: M (m 2 buff ^ n 2 buff ^ (m 6= n _ ount(m, buff) > 1))e f f buff := hooseso that 9 n: M (m 2 buff ^ n 2 buff ^ (m 6= n _ ount(m, buff) > 1)^ buff 0= delete(m, delete(n, buff)))In general, to eliminate hoose parameters, one quanti�es them expliitly in the preonditionfor the transition, and then repeats the quanti�ed preondition as part of the e�et.4.5 TasksA �nal, but optional part in the desription of an I/O automaton is a partition of the automaton'soutput and internal ations into a set of disjoint tasks. This partition is indiated by the keywordtasks followed by a list of the sets in the partition. If the keyword tasks is omitted, and no taskpartition is given, all output and internal ations are presumed to belong to the same task.To see why tasks are useful, onsider the automaton Shuffle desribed in Figure 7. The traesof this automaton an be either in�nite sequenes of swap ations, a �nite sequene of swap ations,or a �nite sequene of swap ations followed by a single deal ation: nothing in the desription inFigure 7 requires that a deal ation ever our. By addingtasks{swap(i, j) for i: ardIndex, j: ardIndex};{deal(a) for a: Array[ardIndex, String℄}to the desription of Shuffle, we an plae all swap ations in one task (or thread of ontrol) andall deal ations in another. The de�nition of a fair exeution of an I/O automaton requires that,whenever a task remains enabled, some ation in that task will eventually be performed. Thus thistask partition for Shuffle prevents swap ations from starving a deal ation in any fair exeution.There are no fairness requirements, however, on the ations within the same task: the desriptionof Shuffle does not require that every pair of elements in the array will eventually be interhanged.Variables appearing in task de�nitions must be introdued using the keyword for, either withinthe braes de�ning individual tasks (as illustrated for Shuffle) or outside the braes. For example15



the task partitiontasks {deliver(p) for p: Paket }; {read(m, j) for m: Message} for j: Nodefor the Multiast automaton plaes the read ations for di�erent nodes in di�erent tasks, so thatthe exeution of read ations for one node annot starve exeution of reeive ations for another.The values of variables appearing in task de�nitions an be onstrained further by where lausesfollowing the for lauses.Editorial note: Do we want to allow more general set-theoreti notations for de�ning tasks???For example, do we want to allow {foo(i) for i: I} [ {bar(i) for i: I} in addition to or inplae of {foo(i), bar(i) for i: I}?5 IOA notations for operations on automataWe often wish to desribe new automata in terms of previously de�ned automata. IOA providesnotations for omposing several automata, for hiding some output ations in an automaton, andfor speializing parameterized automata.65.1 CompositionWe illustrate omposition by desribing the LeLann-Chang-Roberts (LCR) leader eletion algorithmas a omposition of proess and hannel automata.In this algorithm, a �nite set of proesses arranged in a ring elet a leader by ommuniatingasynhronously. The algorithm works as follows. Eah proess sends a unique string representingits name, whih need not have any speial relation to its index, to its right neighbor. When aproess reeives a name, it ompares it to its own. If the reeived name is greater than its ownin lexiographi order, the proess transmits the reeived name to the right; otherwise the proessdisards it. If a proess reeives its own name, that name must have traveled all the way aroundthe ring, and the proess an delare itself the leader.Figure 13 desribes suh a proess, whih is parameterized by the type I of proess indies andby a proess index i. The assumes lause identi�es an auxiliary spei�ation, RingIndex (Figure 14),that imposes restritions on the type I. This spei�ation requires that there be a ring strutureon I indued by the operators first, right, and left, and that name provide a one-one mappingfrom indies of type I to names of type String.The type delaration on the �rst line of Figure 13 delares Status to be an enumeration (Se-tion 9.8) of the values waiting, eleted, and announed.The automaton Proess has two state variables: pending is a multiset of strings, and statushas type Status. Initially, pending is set to {name(i)} and status to waiting. The input ationreeive(m, left(i), i) ompares the name reeived from the Proess automaton to the left ofthis automaton in the ring and the name of the automaton itself. There are two output ations:send(m, i, right(i)), whih simply sends a message in pending to the Proess automaton on theright in the ring, and leader(m, i), whih announes suessful eletion. The two kinds of outputations are plaed in separate tasks, so that a Proess automaton whose status is eleted musteventually perform a leader ation.Editorial note: Should we say something about why the transitions are spei�ed as send(m, i, j)and reeive(m, j, i)? The signature of the automaton restrits the values of j to be left(i) andheking to ensure that this onvention is being respeted?6Eventually IOA will also provide notations for renaming ations.16



type Status = enumeration of waiting, eleted, announedautomaton Proess(I: type, i: I)assumes RingIndex(I, String)signatureinput reeive(m: String , onst left(i), onst i)output send(m: String, onst i, onst right(i)),leader(m: String, onst i)statespending: Mset[String ℄ := {name(i)},status: Status := waitingtrans i t ionsinput reeive(m, j, i)e f f i f m > name(i) then pending := insert(m, pending)e l s e i f m = name(i) then status := eletedf ioutput send(m, i, j)pre m 2 pendinge f f pending := delete(m, pending)output leader(m, i)pre status = eleted ^ m = name(i)e f f status := announedtasks{send(m, j, right(j)) for m: String, j: I};{leader(m, j) for m: String , j: I}Figure 13: IOA spei�ation of eletion proessRingIndex(I, J): t r a i tintroduesfirst: ! Ileft, right: I ! Iname: I ! Jasserts with i, j: Isort I generated by first, right;9 i (right(i) = first);right(i) = right(j) , i = j;left(right(i)) = i;name(i) = name(j) , i = jimplies with i: Iright(left(i)) = iFigure 14: Auxiliary spei�ation for a �nite ring of proess identi�ersautomaton LCR(I: type)assumes RingIndex(I, String)omponentsP[i: I℄: Proess(I, i);C[i: I℄: Channel(String, I, i, right(i))Figure 15: IOA spei�ation of LCR algorithm17



The full LCR leader eletion algorithm is desribed in Figure 15 as a omposition of a set ofproess automata onneted in a ring by reliable ommuniation hannels (Figures 2 and 5). Theassumes statement on the �rst line repeats the assumption about the type I of proess indiesin Figure 13. The keyword omponents introdues a list of named omponents: one Proessautomaton, P[i℄, and one Channel automaton, C[i℄, for eah element i of type I. The omponentC[i℄ is obtained by instantiating the type parameters M and Index for the Channel automaton(Figure 5) with the atual types String and I of messages and proess indies, and the parametersi and j with the values i and right(i), so that hannel C[i℄ onnets proess P[i℄ to its rightneighbor. The output ations send(m, i, right(i)) of P[i℄ are identi�ed with the input ationssend(m, i, right(i)) of C[i℄, and the input ations reeive(m, left(i), i) of P[i℄ are identi�edwith the output ations reeive(m, left(i), i) of C[left(i)℄, beause RingIndex implies thatright(left(i)) = i. Sine all input ations of the hannel and proess subautomata are identi�edwith output ations of other subautomata, the omposite automaton ontains only output ations.5.2 SpeializationA parameterized automaton desription de�nes a set of automata rather than a single automaton.For example, LCR de�nes a set of automata, operating on rings of varying size, rather than a singleautomaton, operating on a ring with a �xed size. We an use the omposition mehanism in IOAto �x, for example, the size of the ring at 4. In Figure 16, the type statement expliitly identi�esabd as an enumerated type with four elements, and the axioms statement de�nes a ring strutureon these four elements, whih disharges the assumption in the de�nition of the single omponent.type abd = enumeration of a, b, , daxioms RingIndex(abd, String)automaton LCR4omponents theOnly: LCR(abd)Figure 16: IOA spei�ation of four-proess LCR algorithmEven though the desription of LCR4 is not parameterized, it still de�nes a set of automatarather than single automaton: Figure 16 says nothing about how names are assigned to automata.We ould pin down suh details by reating and referring to an additional auxiliary spei�ation,whih de�nes the values of name(a), name(b), name(), and name(d). But often it is not neessary topin details down to suh an extent, beause the properties of an algorithm that are most of interestdo not depend on these details.5.3 Hiding output ations in a ompositionIOA allows us to relassify some (or all) of the output ations in a omposite automaton as internalations. Thus, for example, if we wish to hide the send and reeive ations leading to the eletionof a leader in LCR4, we an use a hidden statement, as in Figure 17.automaton LCR4aomponents theOnly: LCR4hidden reeive(m, i, j), send(m, i, j)Figure 17: IOA spei�ation with hidden ations18



6 IOA desriptions of properties of automataIOA permits users to desribe state invariants of I/O automata or simulation relations betweenI/O automata.6.1 InvariantsInvariants are desribed using the keywords invariant of followed by the name of an automaton,a olon, and then a prediate. For example, the following invariant for the LCR automaton statesthat at most one proess is ever eleted as the leader.invariant of LCR: P[i℄.status = eleted ^ P[j℄.status = eleted ) i = jA state in a omposite automaton is named by the name of the omponent to whih it belongsfollowed by a dot followed by the state variable name, as shown in the invariant desribed above.When there is no ambiguity (i.e., when only one omponent has a state variable with a given name),the name of the automaton may be omitted.6.2 Simulation relationsSimulation relations provide a onvenient mehanism for showing that one automaton implementsanother, i.e., that every trae one is a trae of the other. In order to illustrate various simula-tion relations, we desribe a modi�ation, DelayedLossyChannel (Figure 18), of the LossyChannel(Figure 8) automaton. In DelayedLossyChannel, the rash ation does not result in the immediateloss of messages from the queue; rather, it marks messages as losable by subsequent internal loseations.axioms MarkedMessage for Mark[__℄automaton DelayedLossyChannel(M: type)signatureinput insert(m: M), rashoutput remove(m: M)internal losestates buffer: Seq[Mark[M℄℄ := {}trans i t ionsinput insert(m)e f f buffer := buffer ` [m, false℄output remove(m)pre buffer 6= {} ^ head(buffer).msg = me f f buffer := tail(buffer)input rashe f f buffer := mark(buffer)internal losee f f buffer := hooseso that subseqMarked(buffer 0 , buffer)Figure 18: Spei�ation of an implementation of a lossy hannelThe axioms statement in Figure 18 identi�es a user-written spei�ation (Figure 27) that de�nesa type onstrutor Mark[__℄ for types suh as Mark[M℄ or Mark[String℄ of \marked messages." Thisspei�ation de�nes a marked message to be a pair [m, b℄ of a message and a boolean value, theomponents of whih an be extrated by the operators .msg and .mark. It also de�nes an operator19



mark that sets all marks in a sequene to true, an operator messages that given a sequene of markedmessages returns the orresponding sequene of messages, and a relation subseqMarked that holdswhen the only messages missing from a sequene have marks of true.The automaton DelayedLossyChannel implements the automaton LossyChannel, beause all ofits traes are also traes of LossyChannel. One way of showing that this is the ase is to de�ne arelation between the states of DelayedLossyChannel and those of LossyChannel and to show thatthis relation is a forward simulation (see Setion 1.4). The following assertion in IOA de�nes suha relation.forward simulation from DelayedLossyChannel to LossyChannel:messages(DelayedLossyChannel.buffer) = LossyChannel.bufferIt is also true that every trae of LossyChannel is a trae of DelayedLossyChannel, i.e., that thetwo automata have the same set of traes. One way to show this reverse inlusion is to de�ne arelation between the states of LossyChannel and those of DelayedLossyChannel and to show thatthis relation is a bakward simulation. The following assertion desribes suh a relation.bakward simulation from LossyChannel to DelayedLossyChannel:9 s: Seq[MM℄ ( subseqMarked(s, DelayedLossyChannel.buffer)^ LossyChannel.buffer = messages(s))In order to establish that relations de�ned in these fashions are atually forward and bakwardsimulation relations, the user must demonstrate that these relations satisfy the de�nitions givenfor simulation relations in Setion 1.4. The key element in suh a demonstration is usually theidenti�ation, for eah step of one automaton, of an exeution fragment of the other that ontainsthe same external ations.Editorial note: Need to add example of suh an identi�ation here, together with the formalsyntax for desribing identi�ations in the referene manual. In general, the identi�ation is ade�nition by ases.
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Part IIIOA Data TypesIOA spei�ations an employ various data types, both built-in and user-de�ned. We list here theoperators available for the built-in types; Appendix A de�nes their properties formally via setsof axioms in multisorted �rst-order logi (see Setion 11). Data types and operators are de�nedabstratly, not in terms of any partiular representation or implementation. In partiular, operatorsare de�ned without any referene to a \state" or \store," so they annot have \side-e�ets."� The primitive data types Bool, Int, Nat, Real, and Char an be used without expliit delara-tions. Setion 7 desribes the operators available for eah of these types.� Other primitive data types an be introdued as type parameters to automaton de�nitions,as in the hannel automaton desribed in Figure 5, whih is parameterized by the types Mand Index.� Compound data types formed using the type onstrutors Array, Set, Mset, Seq, and Map anbe used without expliit delarations. Setion 8 desribes the operators available for thesetypes.� Compound data types formed using the keywords enumeration, tuple, and union an beused with expliit delarations, as intype Color = enumeration of red, white, bluetype Msg = tuple of soure , dest: Proess, ontents: Stringtype Fig = union of sq: Square, ir: CirleSetions 9.8 and 22 desribe the operators available for these data types.� User-de�ned data types, as well as additional operators on the above primitive and ompounddata types, an be introdued (or required to have ertain properties) by indiating auxiliaryspei�ations, as inaxioms RingIndex(abd, String)axioms Stak for Stak[__℄assumes TotalOrdering(T, <)These auxiliary spei�ations, whih users write as traits in the Larh Shared Language (LSL),provide both the syntax and semantis for all operators introdued in this fashion. Setions 9and 10 desribe how to write LSL traits and how to inorporate them into IOA spei�ationsby means of the axioms statement.The equality (__=__), inequality (__6=__), and onditional ( if __ then __ else) operators areavailable for all data types in IOA (the __'s are plaeholders for the arguments of these operators).7 Built-in primitive typesThe following built-in primitive types and operators require no delaration.7.1 BooleansThe boolean data type, bool, provides onstants and operators for the set ftrue; falseg of logialvalues. Syntatially, the operators ^ and _ bind more tightly than ), whih binds more tightlythan ,. 21



Operators for bool Sample input Meaningtrue, false true, false The values true and false: ~p Negation (not)^, _ p /\ q, p \/ q Conjuntion (and), disjuntion (or)) p => q Impliation (implies), p <=> q Logial equivalene (if and only if)7.2 IntegersThe integer data type, Int, provides onstants and operators for the set of (positive and negative)integers. Operators for Int Sample input Meaning0, 1, . . . 123 Non-negative integers- -x Additive inverse (unary minus)abs abs(x) Absolute valuepred, su su(x) Predeessor, suessor+, -, * x + (y*z) Addition, subtration, multipliationmin, max min(x, y) Minimum, maximumdiv, mod mod(x, y) Integer quotient, modulus<, �, >, � x <= y Less (greater) than (or equal to)Syntatially, all binary operators bind equally tightly, so that expressions must be parenthe-sized, as in ((x*y) + z) > 3, to indiate the arguments to whih operators are applied.7.3 Natural numbersThe natural number data type, Nat, provides onstants and operators for the set of non-negativeintegers. The operators and onstants are as for Int, exept that there are no unary operators - orabs, there is an additional operator ** for exponentiation, and the value of x-y is de�ned to be 0if x < y. Syntatially, integer onstants (e.g., 1) and operators (e.g., -) are distint from naturalnumber onstants and operators that have the same typographial representation. Sometimes suhoverloaded operators an be distinguished from ontext (e.g., the 1 in the expression abs(-1) mustbe an integer onstant, beause abs and unary - are operators over the integers, but not over thenatural numbers). At other times, users must distinguish whih operators or onstants are meantby qualifying expressions with types, as in x > 0:Nat.7.4 Real numbersThe real number data type, Real, provides onstants and operators for the set of real numbers.Again, the operators and onstants are as for Int, exept that there are no operators pred, su,div, and mod, and there are additional operators / and ** for division and exponentiation.7.5 CharatersThe harater data type, Char, provides onstants and operators for letters and digits.77Additional harater onstants will be provided in a future version of IOA.
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Operators for Char Sample input Meaning0A0, . . . , 0Z0, 0a 0, . . . , 0z0, 000, . . . , 09 0 'J' Letters and digits<, �, >, � 'A' <= 'Z' ASCII ordering7.6 StringsThe string data type, String, provides onstants and operators for lexiographially ordered se-quenes of haraters. It provides operators as desribed for Seq[Char℄ (see Setion 8.4) as well asthe ordering relations <, �, >, and �.8 Built-in type onstrutorsThe following built-in type onstrutors and operators require no delaration.8.1 ArraysThe array data types, Array[I, E℄ and Array[I, I, E℄, provide onstants and operators for one-and two-dimensional arrays of elements of some type E indexed by elements of some type I.Operators for Array[I, E℄ Meaningonstant(e) Array with all elements equal to ea[i℄ Element indexed by i in array aassign(a, i, e) Array a 0 equal to a exept that a 0[i℄ = eOperators for Array[I, I, E℄ Meaningonstant(e) Array with all elements equal to ea[i, j℄ Element indexed by i, j in array aassign(a, i, j, e) Array a 0 equal to a exept that a 0[i, j℄ = eThe array (one- or two-dimensional) denoted by onstant(e) is determined by ontext, as inonstant(e)[i℄, or by an expliit quali�ation, as in onstant(e):Array[I,I,E℄.8.2 Finite setsThe set data type, Set[E℄, provides onstants and operators for �nite sets of elements of some typeE. Operators for Set[E℄ Sample input Meaning{} {} Empty set{...} {e} Set ontaining e aloneinsert insert(e, s) Set ontaining e and all elements of sdelete delete(e, s) Set ontaining all elements of s, but not e2 e \in s True i� e is in s[, \, - (s \U s') - (s \I s') Union, intersetion, di�erene�, �, �, � s \subseteq s' (Proper) subset (superset)size size(s) Size (an Int) of s
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8.3 MultisetsThe multiset data type, Mset[E℄, provides onstants and operators for �nite multisets of elementsof some type E. Its operators are those for Set[E℄, exept that there is an additional operator ountsuh that ount(e, s) is the number (an Int) of times an element e ours in a multiset s.8.4 SequenesThe sequene data type, Seq[E℄, provides onstants and operators for �nite sequenes of elementsof some type E.Operators for Seq[E℄ Sample input Meaning{} {} Empty sequene` s |- e Sequene with e appended to sa e -| s Sequene with e prepended to sk s || s' Conatenation of s, s02 e \in s True i� e is in shead, last head(s) First (last) element in sequeneinit, tail tail(s) All but �rst (last) elements in sequenelen len(s) Length (an Int) of s...[...℄ s[n℄ nth (an Int) element in s8.5 MappingsThe mapping data type, Map[D, R℄, provides onstants and operators for �nite partial mappingsof elements of some domain type D to elements of some range type R. Finite mappings di�er fromarrays in two ways: they may not be de�ned for all elements of D, and their domains are always�nite.Operators for Map[D, R℄ Sample input Meaningempty empty Empty mapping...[...℄ m[d℄ Image of d under mdefined defined(m, d) True if m[d℄ is de�nedupdate update(m, d, r) Mapping m0 equal to m exept that m0[d℄ = r9 Data type semantisIOA desribes the semantis of abstrat data types by means of axioms expressed in the the LarhShared Language (LSL). Users need refer to LSL spei�ations only if they have questions aboutthe preise mathematial meaning of some operator or if they wish to introdue new operators ordata types.8This setion provides a tutorial introdution to LSL. It is taken from Chapter 4 of [7℄, but hasbeen updated to reet several hanges to LSL, most signi�antly the addition of expliit quan-ti�ation. LSL is a member of the Larh family of spei�ation languages [7℄, whih supports atwo-tiered, de�nitional style of spei�ation. Eah spei�ation has omponents written in twolanguages: LSL, whih is independent of any programming language, and a so-alled interfae lan-guage tailored spei�ally for a programming language (suh as C) or for a mathematial model of8Some tool builders may wish to provide other, equivalent de�nitions for the built-in data types, e.g., using someother mathematial formalism or in terms of proedures written in some programming language.24



omputation (suh as I/O automata). Interfae languages are used to speify interfaes betweenprogram omponents and the e�ets of exeuting those omponents. By tailoring interfae lan-guages to programming languages or mathematial models, Larh makes it easy to desribe thedetails of an interfae (e.g., how program modules ommuniate) in a fashion that is familiar tousers.Sequenes(E): t r a i tintrodues{}: ! Seq[E℄__a__: E, Seq[E℄ ! Seq[E℄last: Seq[E℄ ! Einit: Seq[E℄ ! Seq[E℄asserts with s: Seq[E℄, e: Esort Seq[E℄ generated f ree ly by {}, a;last(e a s) = ( i f s = {} then e e l se last(s));init(e a s) = ( i f s = {} then {} e l se e a init(s));implies with s1, s2: Seq[E℄, e1, e2: Ee1 a s1 = e2 a s2 , e1 = e2 ^ s1 = s2;e1 a s1 6= {} Figure 19: Simpli�ed LSL spei�ation for sequenesInterfae languages rely on de�nitions from auxiliary spei�ations, written in LSL, to providesemantis for the data types a program manipulates. An LSL spei�ation, known as a trait, de-sribes a olletion of sorts (i.e., non-empty sets of elements) and operators (i.e., funtions mappingtuples of elements to elements), by means of axioms written in �rst-order logi. For example, theSequenes trait shown in Figure 19 desribes some properties of �nite sequenes of elements ofa sort E. The introdues lause lists the sorts and operators being spei�ed, the asserts lausede�nes their properties, and the implies lause alls attention to some (purported) onsequenes ofthese properties. In the introdues lause, the __'s are plaeholders for the arguments of the in�xoperator a. In the asserts lause, the generated freely by axiom asserts that all sequenes an beobtained by prepending a �nite number of elements (using the operator a) to the empty sequene{}, and the remaining axioms provide indutive de�nitions of the last and init operators; notethat last({}) and init({}) are not de�ned. The implies lause alls attention to the fat thattwo elements of the freely generated sort Seq[E℄ are equal if and only if they were generated in thesame fashion; this property distinguishes sequenes from sets, where it does not matter in whihorder elements are inserted.Larh distinguishes the idealized sorts of elements desribed in LSL (suh as arbitrarily longsequenes) from the atual types of elements involved in a omputation (suh as sequenes of somelimited length). Larh also distinguishes between mathematial operations on sorts (suh as last,whih is not spei�ed ompletely) and omputational proedures (suh as one that returns the �rstelement in a sequene, whih may either return an \error" element or raise an exeption if thesequene is empty). Eah data type in a program is interpreted as a sort in LSL, and the resultsof omputations are spei�ed in terms of operators whose meanings have been de�ned in LSL.9.1 Axiomati spei�ationsLSL's basi unit of spei�ation is a trait. Consider, for example, the spei�ation for some proper-ties of sets given in Figure 20. This spei�ation is similar to onventional algebrai spei�ations,as would be written in many languages [1, 3℄. The trait has a name, Set0, whih is independent of25



the names appearing in it for data abstrations (e.g., Set[E℄) or for operators (e.g., 2).Set0: t r a i tintrodues{}: ! Set[E℄insert: E, Set[E℄ ! Set[E℄__2__: E, Set[E℄ ! Boolsize: Set[E℄ ! Int0, 1: ! Int__+__: Int, Int ! Int__�__: Int, Int ! Boolasserts with s, s 0 : Set[E℄, e, e 0 : E8 e (e 2 s , e 2 s 0 ) ) s = s 0 ;:(e 2 {});e 2 insert(e 0 , s) , e = e 0 _ e 2 s;size({}) = 0;size(insert(e, s)) = size(s) + ( i f e 2 s then 0 e l se 1)Figure 20: A trait speifying some properties of setsThe part of the trait following the keyword introdues delares a list of operators, eah withits signature (the sorts of its domain and range). An operator is a total funtion that maps a tupleof values of its domain sorts to a value of its range sort. Every operator used in a trait must bedelared; signatures are used to sort-hek terms in muh the same way as expressions are type-heked in programming languages. Primitive sorts are denoted by identi�ers (suh as E and Int);sorts onstruted from other sorts (in a manner de�ned by the trait) are denoted by identi�ers forsort onstrutors (suh as Set) applied to the other sorts (as in Set[E℄). All sorts are delaredimpliitly by their appearane in signatures.Double undersores (__) in an operator delaration indiate that the operator will be usedin mix�x terms. For example, 2, +, and � are delared as binary in�x operators. In�x, pre�x,post�x, and braketing operators (suh as __+__, -__, __!, {__}, __[__℄, and if __ then __ else __)are integral parts of many familiar mathematial and programming notations, and their use anontribute substantially to the readability of spei�ations.LSL's grammar for mix�x terms is intended to ensure that legal terms parse as readers expet|even without studying the grammar. LSL has a simple preedene sheme for operators:� post�x operators that onsist of a dot followed by an identi�er (as in �eld seletors suh as.first) bind most tightly;� braketing operators that begin with a left delimiter (e.g., [) and end with a right delimiter(e.g., ℄) bind more tightly than� the logial quanti�ers 8 (for all) and 9 (there exists), whih bind more tightly than� other user-de�ned operators and the built-in propositional operator : (not), whih bind moretightly than� the built-in equality and inequality operators = and 6= whih bind more tightly than� the built-in propositional operators ^ (and) and _ (or), whih bind more tightly than� the built-in propositional operator )(implies), whih binds more tightly than26



� the built-in propositional operator , (if and only if), whih binds more tightly than� the built-in onditional operator if __ then __ else __.For example, the term p , x + w.a.b = y _ z an be written without parentheses and is equiv-alent to the fully parenthesized term p , (((x + ((w.a).b)) = y) _ z). LSL allows unparen-thesized in�x terms with multiple ourrenes of an operator at the same preedene level, butnot di�erent operators; it assoiates suh terms from left to right. Fully parenthesized terms arealways aeptable. Thus x ^ y ^ z is equivalent to (x ^ y) ^ z, but x _ y ^ z must be writtenas (x _ y) ^ z or as x _ (y ^ z), depending on whih is meant.The part of the trait following the keyword asserts onstrains the operators by means of formu-las, that is, by terms of sort bool onstruted from variables delared following the keyword with,operators delared in the trait, built-in operators, and quanti�ers. The last three formulas in thetrait Set0 are equations, whih onsist of two quanti�er-free terms of the same sort, separated by= or ,.Eah trait de�nes a theory (a set of formulas) in multisorted �rst-order logi (see Setion 11).Eah theory ontains the trait's assertions, the onventional axioms of �rst-order logi, everythingthat follows from them, and nothing else. This loose semanti interpretation guarantees thatformulas in the theory follow only from the presene of assertions in the trait|never from theirabsene. This is in ontrast to algebrai spei�ation languages based on initial algebras [6℄ or �nalalgebras [14℄. Using the loose interpretation ensures that all theorems proved about an inompletespei�ation remain valid when it is extended.Eah trait should be onsistent: it must not de�ne a theory ontaining the formula false.Consisteny is often diÆult to prove and is undeidable in general. Inonsisteny is often easierto detet and an be a useful indiation that there is something wrong with a trait.9.2 Axiom shemesAt times, it an be diÆult to �nd adequate sets of axioms that assert some property of interest.Consider, for example, the problem of asserting that the set Nat of natural numbers ontains theintegers 0, 1, 2, . . . and nothing else. A natural approah is to assert that the set Nat is the smallestset ontaining 0 and losed under the suessor operation su (de�ned by su(n) = n+1):8 s:Set[Nat℄ (0 2 s ^ 8 n:Nat (n 2 s ) su(n) 2 s) ) 8 n:Nat (n 2 s))However, the axioms in the trait Set0 do not imply the existene of enough elements of sort Set[E℄to give this assertion about its intended meaning: these axioms remain true if Set[E℄ is interpretedas ontaining only �nite sets of elements of sort E, in whih ase no element of Set[Nat℄ is losedunder su and the assertion about Nat is vauously true.There are several ways to remedy this problem. One is to posit some speial, unaxiomatizedrelationship between the sort Set[E℄ and the sort E (i.e., that Set[E℄ ontains all sets of elementsof E). However, this approah reates another problem, namely, whether to posit other speial rela-tionships between similar notations suh as Seq[E℄ or Map[E,E℄ and the sort E. Another approah,whih avoids this problem, is to enlarge Set0 with axioms like 9 s:Set[Nat℄ 8 n:Nat (n 2 s) thatfore Set[E℄ to ontain suÆiently many sets of elements of E. Unfortunately, no �nite set of axiomssuÆes to fore the existene of all potentially interesting sets of elements of E.For reasons suh as this, LSL provides another statement, the generated by statement, for usein de�ning theories that would otherwise require in�nitely many axioms. A generated by statement(suh as the �rst axiom in the trait Sequenes) asserts that a list of operators is a omplete set ofgenerators for a sort. That is, eah value of the sort is equal to one that an be desribed usingjust those operators. For example, the statement27



sort Nat generated f ree ly by 0, suasserts that all values of sort Nat an be onstruted by �nitely many appliations of the operatorsu to the onstant 0. In addition, the keyword freely indiates that the generators for Nat provideunique representations for the natural numbers. Similary, the statementsort Set[E℄ generated by {}, insertasserts that all values of sort Set[E℄ an be onstruted by �nitely many appliations of insert to{}, that is, that all values of sort Set[E℄ are �nite sets. In this ase, the absene of the keywordfreely suggests that the generators for Set[E℄ do not provide unique representations for sets ofelements of E.A generated by statement justi�es a indution shema for proving properties of a sort. Forexample, to prove 8 s:Set[E℄ (size(s) � 0) from the axioms of Set0 and the generated by state-ment for Set[E℄, we ould (try to) onstrut a proof by indution with the struture� Basis step: size({}) � 0� Indution step: 8 s:Set[E℄ 8 e:E (size(s) � 0 ) size(insert(e, s)) � 0)In general, a generated by statement is equivalent to an in�nite set of formulas, one for eahproperty (suh as size(s) � 0) that an be expressed in �rst-order logi.99.3 Combining LSL spei�ationsThe trait Set0 ontains four operators that it does not de�ne: 0, 1, +, and �. Without moreinformation about these operators, the de�nition of size is not partiularly useful, and we annotprove \obvious" properties suh as size(s) � 0. We ould add assertions to Set0 to de�ne theseoperators, but it is usually better to speify suh operators in a separate trait that is inludedby referene. This makes the spei�ation more strutured and makes it easier to reuse existingspei�ations. Hene we might remove the expliit introdutions of these operators from Set0 andinstead add an external refereneinludes Integerto a separate trait Integer (see Appendix A), whih both introdues these operators and de�nestheir properties.The theory assoiated with a trait ontaining an inludes lause is the theory assoiated withthe assertions of that trait and all (transitively) inluded traits.It is often onvenient to ombine several traits dealing with di�erent aspets of the same op-erator. This is ommon when speifying something that is not easily thought of as a data type.For example, both the trait PartialOrder1 and the less strutured trait PartialOrder2 in Figure 21de�ne a partial order to be an irreexive, transitive order.9.4 Renaming sorts and operators in LSL spei�ationsThe trait PartialOrder1 relies heavily on the use of the same operator symbol, <, and the samesort identi�er, T, in the two inluded traits. In the absene of suh happy oinidenes, renaming9LSL provides an additional axiom sheme in the form of a partitioned by statement, whih asserts that a listof operators is a omplete set of observers for a sort: all distint values of the sort an be distinguished using justthese operators. For example, the statement sort Set[E℄ partitioned by 2 asserts that terms indistinguishableby the observer 2 denote the same value of sort Set[E℄. This statement is equivalent to the �rst axiom in the traitSet0. In general, partitioned by statements do not inrease the desriptive power of LSL, beause they an bereformulated as single axioms that ontain expliit quanti�ers. However, they an be used to provide proof tools withautomati methods of dedution. 28



Irreflexive: t r a i tintrodues __<__: T, T ! Boolasserts with x: T:(x < x)Transitive: t r a i tintrodues __<__: T, T ! Boolasserts with x, y, z: Tx < y ^ y < z ) x < zPartialOrder1: t r a i tinludes Irreflexive, TransitivePartialOrder2: t r a i tintrodues __<__: T, T ! Boolasserts with x, y, z: T:(x < x);x < y ^ y < z ) x < zFigure 21: Spei�ations of kinds of relationsan be used to make names oinide, to keep them from oiniding, or simply to replae them withmore suitable names, as ininludes Transitive(� for <)whih we an use to assert that some operator other than < is transitive.In general, a trait referene is a phrase Tr(name1 for name2, . . . ) that stands for the trait Trwith every ourrene of name2 (whih must be a sort, a sort onstrutor, or an operator) replaedby name1, et. If name2 is a sort or a sort onstrutor, this renaming hanges the signatures of alloperators in Tr in whose signatures name2 appears. For example, the signature of the operator ahanges to Int,Seq[Int℄!Seq[Int℄ in the trait referene inludes Sequenes(Int for E).Any sort or operator in a trait an be renamed when that trait is referened in another trait.Some, however, are more likely to be renamed than others. It is often onvenient to single these outso that they an be renamed positionally. For example, the header Sequenes(E): trait in Figure 19makes the referene inludes Sequenes(Int) equivalent to inludes Sequenes(Int for E).9.5 Stating intended onsequenes of LSL spei�ationsIt is not possible to prove the \orretness" of a spei�ation, beause there is no absolute standardagainst whih to judge orretness. But sine spei�ations an ontain errors, spei�ers need helpin loating them. LSL spei�ations annot, in general, be exeuted, so they annot be testedin the way that programs are ommonly tested. LSL sari�es exeutability in favor of brevity,larity, exibility, generality, and abstration. To ompensate, it provides other ways to hekspei�ations.This setion briey desribes ways in whih spei�ations an be augmented with redundantinformation to be heked during validation. Chekable properties of LSL spei�ations fall intothree ategories: onsisteny, theory ontainment, and ompleteness. As disussed earlier, therequirement of onsisteny means that any trait whose theory ontains the formula false is illegal.An implies lause makes laims about theory ontainment. Suppose we think that a onsequeneof the assertions of Set0 is that the order in whih elements are inserted in a set makes no di�erene.To formalize this laim, we ould the following lause to Set0:29



implies with e1, e2: E, s: Set[E℄insert(e1, insert(e2, s)) = insert(e2, insert(e1, s))Properties laimed to be implied an be spei�ed using the full power of LSL, inluding formulas,generated by statements, and referenes to other traits. Attempting to verify that propertiesare atually implied an be helpful in error detetion. Impliations also help readers on�rmtheir understanding. Finally, they an provide useful lemmas that will simplify reasoning aboutspei�ations that use the trait.LSL does not require that eah trait de�ne a omplete theory, that is, one in whih eah fullyquanti�ed formula is either true or false. Many �nished spei�ations (intentionally) do not fullyde�ne all their operators. Furthermore, it an be useful to hek the ompleteness of some de�nitionslong before �nishing the spei�ation they are part of. Therefore, instead of building in a single testof ompleteness that is applied to all traits, LSL provides a way to inlude within a trait spei�hekable laims about ompleteness, using onverts lauses. Adding the lauseimplies onverts 2to Set0 makes the laim that the trait's axioms fully de�ne the operator 2. This laim meansthat, if the interpretations of all the other operators are �xed, there is only one interpreta-tion of 2 that satis�es the axioms. (This laim annot be proved from the axioms in Set0alone, but an be proved from those axioms together with the indution shema assoiated withsort Set[E℄ generated by {}, insert.)The laim implies onverts last, init annot be veri�ed from the axioms for Sequenes inFigure 19, whih de�ne the meaning of last(s) and init(s) only when s 6= {}. This inompletenessin Sequenes an be resolved by adding other axioms to the trait, perhaps last({}) = errorVal.But it is generally better not to add suh axioms. The spei�er of Sequenes should not be on-erned with whether the sort E has an errorVal and should not be required to introdue irrelevantonstraints on __a__. Extra axioms give readers more details to assimilate; they may preludeuseful speializations of a general spei�ation; and sometimes there simply is no reasonable axiomthat would make an operator onvertible (onsider division by 0). Error onditions and unde�nedvalues are treated best in interfae spei�ations, as disussed below.LSL provides an exempting lause for listing terms that are not laimed to be de�ned (whihis di�erent from \that are laimed not to be de�ned"). The laimimplies with d: Donverts last, init exempting last({}), init({})means that last and init are fully de�ned by the trait's axioms, interpretations for the otheroperators ({} and a), and interpretations for the two terms last({}) and init({}). This laim anbe proved by indution from the axioms of Sequenes.In IOA spei�ations, preonditions for ations should ensure that their e�ets do not dependon the values of unde�ned terms. If an ation has a nondeterministi e�et, that e�et should bespei�ed using the hoose operator or a so that lause. For example, the IOA spei�ationoutput pik1(x: Int, s: Set[Int℄)pre s 6= {}e f f x := hoose e where e 2 sdesribes an ation that is enabled for any pair (x, s) suh that x 2 s. Attempting to speify theation using an underspei�ed LSL operator will not produe the same result. For example, theIOA spei�ationoutput pik2(x: Int, s: Set[Int℄)pre s 6= {}e f f x := someElement(s)desribes an ation that, for any nonempty set s, is enabled for exatly one pair (x, s), namely,(s, someElement(s)). A trait ontaining 30



asserts with s: Set[Int℄s 6= {} ) someElement(s) 2 sdoes muh more than onstrain the value of someElement(s) to one appropriate for a hoose oper-ator: it onstrains the value of someElement(s) to be the same eah time that term is used in anIOA spei�ation.9.6 Reording assumptions in LSL spei�ationsSome traits are suitable for use in all ontexts and some only in ertain ontexts. Just as we writepreonditions that desribe the ontexts in whih a proedure may be alled, we write assumptionsin traits that desribe the ontexts in whih the traits may be inluded. As with preonditions,assumptions impose proof obligations on the lient (i.e., the inluding trait), and they may bepresumed true within the inluded trait.Consider, for example, speializing the Sequenes trait to desribe sequenes of strings by om-bining Sequenes with a separate trait that de�nes operators for the data type String:StringSequenes: t r a i tinludes Sequenes(String ), StringThe interations between String and Sequenes are limited. Nothing in Sequenes(String) dependson any partiular operators being introdued in inluding traits, let alone their having any speialproperties. Therefore Sequenes needs no assumptions.OrderedSequenes0(E): t r a i tinludes Sequenesintrodues__<__: E, E ! Bool__� __: Seq[E℄, Seq[E℄ ! Boolasserts with s, s1, s2: Seq[E℄, e, e1, e2: E{} � (e a s);:(s � {});(e1 a s1) � (e2 a s2) , e1 < e2 _ (e1 = e2 ^ s1 � s2)Figure 22: Preliminary spei�ation of ordered sequenesConsider, however, speializing the Sequenes trait to desribe lexiographially ordered se-quenes, as in Figure 22. As written, OrderedSequenes0 says nothing about whether the operator< de�nes an ordering over E; hene there is no reason to believe that the operator � de�nes anordering over Seq[E℄. It is inappropriate to de�ne < within OrderedSequenes0, both beause itsde�nition would depend on properties of the sort E (whih are not spei�ed in OrderedSequenes0)and beause to de�ne < there would overly restrit the utility of OrderedSequenes0. What we needis an assumes lause, as in the trait OrderedSequenes in Figure 23.Sine OrderedSequenesmay presume its assumptions, its theory is the same as if it had inludedTransitive rather than assumed it: OrderedSequenes inherits all the delarations and assertionsof Transitive. Therefore, the assumption of Transitive an be used to derive various propertiesof OrderedSequenes, for example, that � is itself transitive, as laimed in the implies lause.The di�erene between assumes and inludes appears when OrderedSequenes is used in an-other trait. Whenever a trait with assumptions is inluded or assumed, its assumptions must bedisharged. For example, inStringSequenes1: t r a i tinludes String , OrderedSequenes(String)31



OrderedSequenes(E): t r a i tassumes Transitive(E for T)inludes Sequenesintrodues__<__: E, E ! Bool__� __: Seq[E℄, Seq[E℄ ! Boolasserts with s, s1, s2: Seq[E℄, e, e1, e2: E{} � (e a s);:(s � {});(e1 a s1) � (e2 a s2) , e1 < e2 _ (e1 = e2 ^ s1 � s2)implies t r a i t Transitive(Seq[E℄ for T, � for <)Figure 23: Spei�ation of ordered sequenesthe assumption to be disharged is that the (renamed) theory assoiated with Transitive is a subsetof the theory assoiated with the rest of StringSequenes1 (i.e., is a subset of the theory assoiatedwith the trait String).9.7 Built-in operators and overloadingIn our examples, we have freely used the propositional operators together with three heavily over-loaded operators, if __ then __ else __, =, and 6=, whih are built into LSL. This allows theseoperators to have appropriate syntati preedene. More importantly, it guarantees that they haveonsistent meanings in all LSL spei�ations, so readers an rely on their intuitions about them.Similarly, LSL an reognize deimal numerals, suh as 0, 24, and 1997, without expliit dela-rations and de�nitions. In priniple, eah numeral ould be de�ned within LSL, but suh de�nitionsare not likely to advane anyone's understanding of the spei�ation. DeimalLiterals is a prede-�ned quasi-trait that impliitly de�nes all the numerals that appear in a spei�ation; it is inludedin the standard numeri traits Natural, Integer, and Real that are built into IOA (see Appendix A).In addition to the built-in overloaded operators and numerals, LSL provides for user-de�nedoverloadings. Eah operator must be delared in an introdues lause and onsists of an iden-ti�er (e.g., update) or operator symbol (e.g., __<__) and a signature. The signatures of mostourrenes of overloaded operators are deduible from ontext. Consider, for example, the traitOrderedSequenes(< for �), in whih the symbol < denotes two di�erent operators, one relatingterms of sort E, and the other, terms of sort Seq[E℄. The ontexts in whih this symbol is useddetermine unambiguously whih operator is whih.LSL provides notations for disambiguating overloaded operators when ontext does not suÆe.Any subterm of a term an be quali�ed by its sort. For example, a:S in a:S = b expliitly indiatesthat a is of sort S. Furthermore, sine the two operands of = must have the same sort, thisquali�ation also impliitly de�nes the signatures of = and b. These notations an be used todisambiguate the overloaded operator symbol < in the last axiom in OrderedSequenes(< for �)expliitly, as in(e1 a s1):Seq[E℄ < (e2 a s2):Seq[E℄ ,e1:E < e2:E _ (e1:E = e2:E ^ s1:Seq[E℄ < s2:Seq[E℄)t1:T < t2:T _ (t1:T = t2:t ^ s1:Seq[T℄ < s2:Seq[T℄)In ontexts other than terms, overloaded operators an be disambiguated by diretly aÆxing theirsignatures, as in implies onverts <:Seq[E℄,Seq[E℄!Bool.
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9.8 ShorthandsEnumerations, tuples, and unions provide ompat, readable representations for ommon kinds oftheories. They are syntati shorthands for things that ould be written in LSL without them.EnumerationsThe enumeration shorthand de�nes a �nite ordered set of distint onstants and an operator thatenumerates them. For example,Status enumeration of waiting, eleted, announedis equivalent to inluding a trait with the body appearing in Figure 24.SampleEnumeration: t r a i tintrodueswaiting, eleted, announed: ! Statussu: Status ! Statusassertssort Status generated f ree ly by waiting, eleted, announed;su(waiting) = eleted;su(eleted) = announedFigure 24: Expansion of an enumeration shorthandTuplesThe tuple shorthand is used to introdue �xed-length tuples, similar to reords in many program-ming languages. For example,Paket tuple of ontents: Message, soure: Node, dest: Set[Node℄is equivalent to inluding a trait with the body appearing in Figure 25. Eah �eld name (e.g.,soure) is inorporated in two distint operators (e.g., __.soure and set_soure).SampleTuple: t r a i tintrodues[__, __, __℄: Message, Node, Set[Node℄ ! Paket__.ontents: Paket ! Message__.soure: Paket ! Node__.dest: Paket ! Set[Node℄set_ontents: Paket, Message ! Paketset_soure: Paket, Node ! Paketset_dest: Paket, Set[Node℄ ! Paketasserts with m, m1: Message, n, n1: Node, s, s1: Set[Node℄sort Paket generated by [__, __, __℄;sort Paket partitioned by .ontents, . soure , .dest;[m, n, s℄.ontents = m;[m, n, s℄.soure = n;[m, n, s℄.dest = s;set_ontents([m, n, s℄, m1) = [m1, n, s℄;set_soure([m, n, s℄, n1) = [m, n1, s℄;set_dest([m, n, s℄, s1) = [m, n, s1℄Figure 25: Expansion of a tuple shorthand33



UnionsThe union shorthand orresponds to the tagged unions found in many programming languages. Forexample,Figure union of sq: Square, ir: Cirleis equivalent to inluding a trait with the body appearing in Figure 26. Eah �eld name (e.g.,ir) is inorporated in three distint operators (e.g., ir:!Figure_tag, ir:Cirle!Figure,and __.ir:Figure!Cirle).SampleUnion: t r a i tFigure_tag enumeration of sq, irintroduessq: Square ! Figureir: Cirle ! Figure__.sq: Figure ! Square__.ir: Figure ! Cirletag: Figure ! Figure_tagasserts with s: Square, : Cirlesort Figure generated by sq, ir;sort Figure partitioned by tag, .sq, .ir;tag(sq(s)) = sq;tag(ir()) = ir;sq(s).sq = s;ir().ir =  Figure 26: Expansion of a union shorthandEditorial note: Consider inluding tips on writing axioms from LP user's guide.10 User-de�ned data typesUsers an de�ne additional data types and type onstrutors, de�ne additional operators for thebuilt-in data types or type onstrutors, or ompletely rede�ne the built-in data types or typeonstrutors, by providing sets of axioms (as desribed in Setion 9) for the new data types andoperators.De�ning new data types To de�ne and use a new abstrat data type, one writes axioms for thedata type in LSL and inorporates these axioms into an IOA spei�ation using either an axiomsor an assumes statement. For example, the index data type used in the leader eletion example(Setion 5.1) is de�ned by the axioms in the trait RingIndex (Figure 14). This trait providesnotations for two sorts (I and J) and �ve operatorsfirst: ! Ileft, right: I ! Iname: I ! JIt also provides �ve axioms that onstrain the properties of these operators (e.g., by requiring thatdi�erent elements of type I have di�erent names). However, it does not ompletely de�ne theseoperators (e.g., it does not provide any onrete representation for the elements of type J).The statement axioms RingIndex(abd, String) appearing before the de�nition of the automa-ton LCR4 (Figure 16) instantiates the parameters I and J in the trait RingIndex by the atual typesabd and String, thereby introduing notations for the operators34



first: ! abdleft, right: abd ! abdname: abd ! Stringand �ve axioms that de�ne their properties. Again, the axioms do not ompletely de�ne theoperators; for example, they do not speify whih element of abd is the �rst (it need not be a), andthey do not speify whih strings are used to name the elements of abd. When reasoning aboutLCR4, one an rely only on the properties of the operators given by the trait RingIndex.As in LSL (see Setion 9.6), the statement assumes RingIndex(I, String) appearing in thede�nition of the automata Proess (Figure 13) and LCR (Figure 15 both provides (and de�nes)notations for use in the de�nitions of those automata and also imposes proof obligations that mustbe disharged whenever they are used as omponents of other automata. When Proess is used asa omponent of LCR, the assumes statement in the de�nition of LCR disharges this obligation byrepeating the assumption ontained in the de�nition of Proess. When LCR is used as a omponentof LCR4, the axioms statement ited above disharges this proof obligation by de�ning the typeabd to have the required properties.De�ning new type onstrutors The statement axioms MarkedMessage for Mark[__℄ appear-ing before the de�nition of the automaton DelayedLossyChannel (Figure 18) enables IOA to reog-nize types suh as Mark[M℄ in that de�nition, and it provides notations and axioms for operatorssuh as .msg and mark appearing in that de�nition. These notations and axioms are found in thetrait MarkedMessage (Figure 27), whih has a single type parameter orresponding to the plaeholder__ for the single argument of the type onstrutor Mark.MarkedMessage(M): t r a i tMark[M℄ tuple of msg: M, mark: Boolinludes Sequene(Mark[M℄), Sequene(M)introduesmark: Seq[Mark[M℄℄ ! Seq[Mark[M℄℄messages: Seq[Mark[M℄℄ ! Seq[M℄subseqMarked: Seq[Mark[M℄℄, Seq[Mark[M℄℄ ! Boolasserts with mm, mm1, mm2: Mark[M℄, mms, mms1, mms2: Seq[Mark[M℄℄mark({}) = {};mark(mms ` mm) = mark(mms) ` [mm.msg, true℄;messages({}) = {};messages(mms ` mm) = messages(mms) ` mm.msg;subseqMarked(mms, {}) , mms = {};subseqMarked({}, mms ` mm) , subseqMarked({}, mms) ^ mm.mark;subseqMarked(mms1 ` mm1, mms2 ` mm2) ,(subseqMarked(mms1 ` mm1, mms2) ^ mm2.mark) _(subseqMarked(mms1, mms2) ^ mm1 = mm2)implies with m: M, mms, mms1, mms2, mms3: Seq[Mark[M℄℄subseqMarked(mms, mms);subseqMarked(mms, mms ` [m, true℄);(subseqMarked(mms1, mms2) ^ subseqMarked(mms2, mms3))) subseqMarked(mms1, mms3);Figure 27: De�nition of type onstrutor Mark[__℄Rede�ning built-in type onstrutors The statement axioms Subseqene for Seq[__℄ ap-pearing before the de�nition of the automaton LossyChannel (Figure 8) overrides the built-in de�-35



nition of the type onstrutor Seq[__℄. Ordinarily, axioms for that type onstrutor are obtainedfrom a built-in trait Sequene(E). In the presene of this axioms statement, axioms for Seq[__℄ areobtained instead from the trait Subsequene. Sine Subsequene inludes Sequene, the new de�ni-tion atually extends the old: it introdues a single new operator, �, and de�nes its properties.
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Part IIIIOA Referene ManualAn IOA spei�ation ontains four di�erent kinds of units.� Type de�nitions, used to represent state omponents or indies for automata (see Setion 14).� Automaton de�nitions (see Setions 13, 15, and 16).� Assertions about automata, e.g., invariant and simulation relations (see Setion 17).� Axiomatizations of abstrat data types, formalized in the Larh Shared Language (LSL),whih provide the syntax and semantis for types and operators appearing in the other threekinds of units (see Part IV).This referene manual desribes the syntax, stati semantis, and logial semantis both ofIOA spei�ations and of assertions about IOA spei�ations. The syntax for IOA desribes, usinga ontext-free (BNF) grammar, the notations that appear in IOA spei�ations and assertions.Stati semantis impose restritions on the notations allowed by this BNF grammar. A statiheker an be used to detet when these restritions are violated. The logial semantis for IOAdesribes, in mathematial terms, the meaning of spei�ations and assertions. Proof tools anprovide assistane in heking assertions.11 Logial preliminariesThe logial semantis of IOA (and LSL) are formalized in multisorted �rst-order logi, whih servesto model preise mathematial usage. This setion provides a brief, abstrat overview of �rst-orderlogi.11.1 SyntaxWe start by desribing an abstrat syntax for mathematial expressions, that is, for expressions inmultisorted �rst-order logi.A voabularly V for �rst-order logi is a set of symbols that denote two kinds of objets: sorts,denoted by symbols in Vsorts , and operators, denoted by symbols in Vops .10 In IOA and LSL, symbolssuh as Bool, Set[Int℄, and T denote sorts, and symbols suh as 0:!Int, __+__:Int,Int!Int,f:T!T, and __6=__:S,S!Bool denote operators.V�sorts is the set of all �nite sequenes of elements of Vsorts , inluding the zero-length sequene.The set Vsigs of signatures for a voabulary V is the set of all pairs hdomain ; rangei in whihdomain 2 V�sorts and range 2 Vsorts .Assoiated with eah operator, op, in a voabulary V is an identi�er, op:id , and a signature,op:sig , in Vsigs . For example, in IOA and LSL, 0, +, f, and 6= are operator identi�ers and !Int,Int,Int!Int, T!T, and S,S!Bool are signatures (the sequene of sort symbols preeding the !onstitutes the domain, and the sort symbol following the ! is the range). The arity of an operatoris the number of sort symbols in its domain. A onstant is an operator of arity 0.In general, we restrit attention to voabularies V that ontain the sort symbol Bool, the 0-aryoperators true and false with signature !Bool, the unary operator : with signature Bool!Bool,and the binary operators ^, _, ), and , with signature Bool; Bool!Bool. Furthermore, we10A logi in whih Vsorts ontains more than one symbol is alled multisorted.37



generally restrit attention to voabularies V that ontain, for every sort S in Vsorts , the binaryoperators = and 6= with signature S; S!Bool.11A variable is a symbol, v, with whih is assoiated an identi�er, v:id , and a sort, v:sort ; v is avariable over V if v:sort is in Vsorts . In IOA, symbols suh as n:Int and x:Set[Int℄ are variables.For any voabulary V, a V-term is an expression onstruted, as desribed below, from theoperators in Vops and some (in�nite) set of variables over V. Assoiated with eah term is a sortknown as the sort of that term.� Any variable v over V is a V-term. Its sort is v:sort .� For any operator op in Vops with signature T1; : : : ; Tn!T and for any terms t1; : : : ; tn of sortsT1; : : : ; Tn, the expression op(t1; : : : ; tn) is a V-term. Its sort is the range sort of op.� For any V-term t of sort Bool and any variable v over V, the expressions 8v t and 9v t areV-terms. Their sort is Bool. (The symbols 8 and 9 are quanti�er symbols, and the term t isthe sope of the quanti�ers 8v and 9v.)An ourrene of a variable in a term is free if it does not our within the sope of any quanti�erover that variable. An ourrene of a variable in a term is bound if it ours within the sope of aquanti�er over that variable.For any term t, any variable v, and any term s with no free variables, t[v  s℄ is the termobtained from t by replaing eah free ourrene of v by s.A formula is a term of sort Bool. A sentene is a formula with no free variables.11.2 SemantisGiven a preise syntax for expressions in multisorted �rst-order logi, we now provide a preisesemantis. Readers may wish to skim this setion, whih essentially de�nes expressions to meanwhat they seem to mean. The point here is that \meaning" has meaning only with respet topartiular mathematial objets, alled strutures. For example, an expression x � y might denotethe produt of two numbers, the omposition of two funtions, or the onatentation of two strings,and a statement suh as 8x8y(x < y ) 9z(x < z ^ z < y)) might be true about some strutures(e.g., the rational or real numbers), but false about others (e.g., the integers).For any voabulary V, a V-struture S is a map [[� � �℄℄S with domain V suh that� for eah sort T in V, [[T ℄℄S is a nonempty set (alled the arrier of T ) that is disjoint from[[T 0℄℄S for any other sort T 0 in V, and� for eah operator symbol op with signature T1; : : : ; Tn ! T in V, [[op℄℄S is a (total) funtionfrom [[T1℄℄S � � � � � [[Tn℄℄S to [[T ℄℄S .When a voabulary V ontains the symbols Bool, true, false, :, ^, _, ), ,, =, or 6=, asdesribed in Setion 11.1, we restrit our attention to V-strutures that interpret these symbols asin Figure 28.For any voabulary V, any V-struture S, and any V-term t with no free variables, the denotation[[t℄℄S of t is de�ned reursively, as follows:� [[op(t1; : : : ; tn)℄℄S = [[op℄℄S([[t1℄℄S ; : : : ; [[tn℄℄S)11Logis that ontain the operator = are alled logis with equality. We do not onsider logis without equality.38



[[Bool℄℄S = ftrue ; falseg[[true℄℄S = true[[false℄℄S = false[[:℄℄S(x) = true i� x = false[[^℄℄S(x; y) = true i� x = true and y = true[[_℄℄S(x; y) = true i� x = true or y = true[[)℄℄S (x; y) = true i� x = false or y = true[[,℄℄S (x; y) = true i� x = y[[=℄℄S (x; y) = true i� x = y[[6=℄℄S (x; y) = true i� x 6= yFigure 28: Standard interpretation of boolean sort and logial operators� [[9v t0℄℄S = true i� [[t0[v  v℄℄℄S0 = true for some (V [ fvg)-struture S 0 that agrees with Son V, where v is a onstant symbol not in Vops that has sort v:sort .� [[8v t0℄℄S = true i� [[t0[v  v℄℄℄S0 = true for all (V [ fvg)-strutures S 0 that agree with S onV, where v is a onstant symbol not in Vops that has sort v:sort .11.3 Further terminologyIn the following de�nitions, V is a voabulary, � is a V-sentene, and T and T 0 are sets of Vsentenes.S is a model of � i� � is true in S, that is, i� [[�℄℄S = true.T is onsistent i� there is a V-struture that is a model of every sentene in T .� is a (logial) onsequene of T i� � is true in every model of T .T is a theory i� it is losed under logial onsequene. It is easy to see that, if T is a theory,then T is onsistent i� false 62 T .A theory T is an extension of a theory T 0 i� T 0 � T . It is easy to see that T is an extension ofT 0 i� every sentene in T 0 is a onsequene of T .An extension T of T 0 is onservative i� T 0 is a set of V 0 sentenes for some V 0 � V and everyV 0-sentene in T is also in T 0. In other words, an extension T of T 0 is onservative i� the voabularyof T inludes that of T 0, but all onsequenes of T in the voabulary of T 0 are already onsequenesof T 0.When S is lear from the ontext, we write [[� � �℄℄ for [[� � �℄℄S .12 Lexial syntaxWe use the following onventions to desribe the syntax of IOA (and also the syntax of LSL).Upperase words and symbols enlosed in single quotation marks are terminal symbols in a BNFgrammar. All other words are nonterminal symbols. If x and y are grammatial units, then thefollowing notations have the indiated meanings.
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Notation Meaningx y an x followed by a yx j y an x or a yx? an optional xx� zero or more x'sx+ one or more x'sx; � and x; � zero or more x's, separated by ommas or semiolonsx;+ and x; + one or more x's, separated by ommas or semiolonsThe lexial grammar of IOA uses the following symbols:� Puntuation marks: , : ; ( ) { } [ ℄ __ :=� Reserved words: assumes, automaton, axioms, bakward, by, hoose, omponents, onst,do, e�, else, elseif, enumeration, �, for, forward, from, hidden, if, in, input, internal,invariant, od, of, output, pre, signature, simulation, so, states, tasks, that, then, to,transitions, tuple, type, union, where.� Beginning omment harater: %� IDENTIFIERs for variables, types, and funtions: sequenes of letters, digits, apostrophes, andundersores (exept that two undersores annot our onseutively). The LaTeX identi�ersfor the Greek letters an also be used as identi�ers, as an the two strings \bot and \top.� OPERATORs: sequenes of the haraters - ! # $ & * + . < = > ? � ^ | ~ / or a bak-slash (\) followed by one of these haraters, by one of the haraters _ \ %, or by an identi�er(other than a name of a Greek letter, \bot, or \top).� Whitespae: spae, tab, newline.� Reserved for future use: ` "13 Automaton de�nitionsAn automaton an be a primitive automaton or a omposition of other automata. Its name an beparameterized by a list of types and/or onstants.Syntax of automaton de�nitionsspeifiation ::= trait | ioaSpeioaSpe ::= (axioms | typeDef | automatonDef | assertion)+automatonDef ::= 'automaton' automatonName automatonFormals?assumptions? (simpleBody | omposition)automatonName ::= IDENTIFIERautomatonFormals ::= '(' automatonFormal,+ ')'automatonFormal ::= IDENTIFIER,+ ':' (type | 'type')assumptions ::= 'assumes' traitRef,+The spei�ation of a trait T is kept in a �le named T.lsl. Eah ioaSpe is kept in a �le witha name of the form <filename>.ioa. 40



The syntax and semantis for the onstruts mentioned here an be found in Setion 14(onstrutorDef, type, typeDef), Setion 15 (simpleBody), Setion 16 (omposition), Setion 17(assertion), Setion 19 (trait), and Setion 23 (traitRef).Stati semantisAn automatonFormal that ontains the keyword type denotes a sequene of formal types, eah ele-ment of whih is simple sort (f. Setion 20) orresponding to an IDENTIFIER in the automatonFormal.An automatonFormal that ontains a type denotes a sequene of formal parameters, eah elementof whih is a onstant of the sort assoiated with the type. An automatonFormals denotes the se-quene of automaton formals obtained by onatenating the sequenes of formal types and formalparameters in its automatonFormals.The voabulary, Vspe , of an ioaSpe is the union of the voabularies of its typeDefs and itsaxioms. The voabulary, VA, of an automatonDef for an automaton named A in an ioaSpe is theunion of Vspe with the voabularies of the traitRefs in its assumptions, enrihed by the automatonformals of the automatonDef.The losure, l(V), of a voabulary V is V enrihed by all built-in sorts, by all sorts obtainedfrom the built-in sorts and sorts in V using sort onstrutors that are either built-in or de�ned byaxioms, and by all operators on these sorts that are either built-in or de�ned by axioms.� There an be at most one automatonDef for an automatonName in an ioaSpe.� The automaton formals in eah automatonDef must be distint.� The sort assoiated with a formal type in an automatonDef must not be in Vspe .� The sort of eah formal parameter in an automatonDef must be in l(V). (This ensures thatl(VA) satis�es the losure properties in Setion 11.2.)Logial semantisThe global theory of an ioaSpe is the union of the theories of its typeDefs and its axioms.The loal theory of an automatonDef is the union of the theories of the typeDefs in its assumptionswith the global theory of the ioaSpe.Editorial note: These de�nitions need to take aount of the theory assoiated with l(VA), notjust with VA.� The global theory of an ioaSpe must be onsistent.14 Type and type onstrutor de�nitionsA type an be a primitive or a ompound type. The syntax and semantis of eah type is given bya built-in or user-supplied LSL trait (see Setions 9 and 19).Syntax of type delarationstype ::= simpleType | ompoundTypesimpleType ::= IDENTIFIERompoundType ::= typeConstrutor '[' type,+ '℄'typeConstrutor ::= IDENTIFIER 41



typeDef ::= 'type' type '=' shorthandaxioms ::= 'axioms' axiomSet,+axiomSet ::= traitRef| traitId 'for' typeConstrutor '[' '__',* '℄'The syntax and semantis for shorthand and traitRef an be found in Setion 9.8 and 23.Stati semantisWith eah type is assoiated a sort, namely, the sort that is lexially idential to the type.The voabulary of an axioms is the union of the voabularies of its traitRefs. (The traits namedby the traitIds it assoiates with typeConstrutors do not ontribute to this voabulary.) Thevoabulary of a typeDef is the voabulary of its shorthand.� A type an be de�ned in at most one shorthand in an ioaSpe. Editorial note: Have front-endtool hek this. What about a de�nition inside a trait?� A typeConstrutor an be de�ned in at most one axiomSet in an ioaSpe.� The arity of a typeConstrutor de�ned in an axiomSet is the number of __ plaeholdersbetween the brakets following the typeConstrutor. The trait named by a traitId in anaxiomSet must have the same number of traitFormals as the arity of the typeConstrutor;eah of those traitFormals must name a sort in the referened trait.Logial semantisThe theory of an axioms is the union of the theories of its traitRefs. (The traits named by thetraitIds it assoiates with typeConstrutors do not ontribute to this theory.) The theory of atypeDef is the theory of its shorthand.15 Primitive automata15.1 Primitive automaton de�nitionsA primitive automaton is de�ned by its ation signature, its states, its transitions, and (optionally)a partition of its ations into tasks.Syntax of primitive automaton de�nitionssimpleBody ::= 'signature' formalAtionList+ states transitions tasks?formalAtionList ::= ationType formalAtion,+ationType ::= 'input' | 'output' | 'internal'formalAtion ::= ationName (ationFormals where?)?ationName ::= IDENTIFIERationFormals ::= '(' ationFormal,+ ')'ationFormal ::= IDENTIFIER,+ ':' type | 'onst' termwhere ::= 'where' prediateThe syntax and semantis of states, transitions, and tasks are given in Setions 15.2, 15.3and 15.4, respetively. The syntax and semantis of terms and prediates are given in Setion 21.42



Stati semantisEah ationFormal denotes a sequene of terms. If the ationFormal ontains the keyword onst,this sequene ontains the single term following the keyword. Otherwise, this sequene ontains aformal parameter (i.e., a onstant) of the sort assoiated with the type in the ationFormal for eahIDENTIFIER in the ationFormal.The ation pattern of a formalAtion onsists of its ationName, the sequene of sorts of itsationFormals, and its ationType (input, output, or internal).� An ationName an appear in at most one ation pattern with eah of the three ationTypesin a simpleBody.� An ationName must be assoiated with the same sequene of sorts in eah ation pattern inwhih it appears.� Eah formal parameter must be distint from any other formal parameter of the same typein the same ationFormals, as well as from any automatonFormal.� The type of eah ationFormal must be in l(VA).� Eah identi�er in a term following the keyword onst in an ationFormal, or in a prediate in awheremust be an ationFormal in that ation, in l(VA), or a bound variable (f. Setion 11.1).� The type of a term used as a onst ationFormal annot be type.Logial semantis� A formalAtion of the form name(x: S, onst t), where the term t has type T, is equivalentto the formalAtion name(x: S, y: T) where y = t.15.2 Automaton statesStates are reords of state variables. An initial value for eah variable an be spei�ed by anexpression; instead, or in addition, the initial values of all state variables an be restrited by aprediate. Expressions and prediates are terms.Syntax of state variable de�nitionsstates ::= 'states' state,+ ('so 'that' prediate)?state ::= IDENTIFIER ':' type (':=' value)?value ::= term | hoiehoie ::= 'hoose' (variable 'where' prediate)?The syntax and semantis of prediate, term, and variable are given in Setion 21.Stati semantis� Eah state variable (that is, eah IDENTIFIER quali�ed by a type in a state) must be distintfrom all other state variables and from all formal parameters of the automaton and its ations.� The type of the initial value assigned to a state variable must be the same as the type of thatvariable. 43



� Eah identi�er in a term assigned as the initial value of a state variable must be a boundvariable or in l(VA).� Eah identi�er in the prediate in a hoie is similarly limited, exept that the variablefollowing the keyword hoose an also appear in the prediate. The type of this variable, ifspei�ed, must be the same as the type of the state variable. The identi�er for this variablemust be distint from the parameters and state variables of the automaton.� Eah identi�er in the prediate restriting the initial values of the state variables is similarlylimited, exept that state variables an also appear in the prediate.� The type of eah state variable must be in l(VA).Logial semantis� The set of start states, determined by the assignments and/or allowed by the prediates, mustbe nonempty. Editorial note: Phrase formal semantis in terms of \For any model ...".15.3 Automaton transitionsTransitions are spei�ed using preondition/e�et notation. Preonditions are boolean-valued pred-iates. E�ets an be desribed in terms of simple programs and/or restrited by prediates relatingthe poststate to the prestate.Syntax of transition relationstransitions ::= 'transitions' transition+transition ::= ationHead hooseFormals? preondition? effet?ationHead ::= ationType ationName (ationAtuals where?)?ationAtuals ::= '(' term,+ ')'hooseFormals ::= 'hoose' varDl,+preondition ::= 'pre' prediateeffet ::= 'eff' program ('so' 'that' prediate)?program ::= statement;+statement ::= assignment | onditional | loopassignment ::= lvalue ':=' valuelvalue ::= variable| lvalue '[' term,+ '℄'| lvalue '.' IDENTIFIERonditional ::= 'if' prediate 'then' program('elseif' prediate 'then' program)*('else' program)? 'fi'loop ::= 'for' IDENTIFIER qualifiation('in' | 'so' 'that') term 'do' program 'od'The syntax and semantis of prediate, qualifiation, variable, and term are given in Se-tion 21.
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Stati semantis� Transitions must be spei�ed for all ationNames in the signature of the automaton.� The ationNames for whih transitions are spei�ed must be in the signature of the automa-ton.� The ationAtuals for eah transition must math, both in number and in type, the ation-Formals for the ationName.� The types of variables appearing in ationAtualsmust be determined uniquely by the typesof the ationAtuals. These variables are delared impliitly by their ourrene in theationAtuals and have no relation to variables used as ationFormals.� No preondition is allowed for an input ation.� The variables in the hooseFormals, if any, must be distint from eah other, from allautomatonFormals, from all variables in the ationAtuals of the ation, and from all statevariables.� All operators, onstants, and identi�ers in a prediate in a preondition or onditional, orin a lvalue or value in an assignment, must be{ in l(VA),{ variables introdued in the ationAtuals,{ hooseFormals of the ation,{ state variables of the automaton,{ variables introdued in a loop ontaining the prediate or term, or{ variables in the sope of a quantifier in the prediate or term.� All identi�ers in the prediate in a so that lause must satisfy the same restritions or beprimed state variables that are modi�ed by some assignment in the program in the effetlause. For example, if queue is a state variable that appears on the left side of an assignment,then both queue and queue0 are allowed in the prediate.� The type of the variable in a loop (i.e., the type assoiated with the qualifiationmust be inl(VA). The variable itself must be distint from all variables in the automatonFormals, usedas state variables, in the ationAtuals, or in the hooseFormals.Logial semantis� The where lause in eah transition de�nition is impliitly onjoined with the where lause forthe orresponding entry in the signature.� Eah transition de�nes a binary relation between states of the automaton. This relation isde�ned by the formula 9h : : : (pre(s) ^ e� (s; s0) ^ soThat(s; s0))where{ h : : : are the hoose formals, if any, in the transition,45



{ pre(s) is the prediate in the preondition,{ e� (s; s0) is a formula obtained by translating the program, if any, in the effet, asdesribed below, and{ soThat(s; s0) is the prediate, if any, in the so that lause in the effet.� The semantis of a program P is de�ned by translating it into a so that lause e� P , asindiated in the following table. In that table, s and s0 represent states, v is a state variable(with value s:v in state s), w is an arbitrary state variable distint from v, t is a term, p is aprediate, and P1 and P2 are programs.program P e� Pv := t s0:v = t ^ s0:w = s:wP1; P2 9s00(e� P1(s; s00) ^ e� P2(s00; s0))if p then P1 � (p! e� P1(s; s0)) ^ (:p! s0 = s)if p then P1 else P2 � (p! e� P1(s; s0)) ^ (:p! e� P2(s; s0))for v in t do P1 od 8x(v 2 x) e� v:=x;P1(s; s0))� The formula e� (s; s0) obtained by translating a program in an effet must be onsistent.� Identi�ers for state variables in so that lauses refer to the values of the variables in theprestate, i.e., in the state before the transition is exeuted. Primed versions of these identi�ersrefer to the values of the variables in the poststate, i.e., in the state after the transition isexeuted.Note that:� Statements in a program are exeuted sequentially, not in parallel as in UNITY [2℄.� State variables that do not appear on the left side of an assignment in a branh through theprogram in an effet lause are assumed to be unhanged on that branh.15.4 Automaton tasksTasks de�ne a partition of the ations of an automaton.Syntax of taskstasks ::= 'tasks' task;+task ::= '{' ationSet '}' forClause?ationSet ::= atualAtion,+ forClause?atualAtion ::= ationName ationAtuals?for ::= 'for' (IDENTIFIER ':' type),+ where?Stati semantis� Eah ationName in a task must be an internal or output ation of the automaton.� The number of ationAtuals for an ationName must equal the number of ationFormals inthe automaton's signature for that ationName.� The type of eah ationAtual must be the same as that of the orresponding ationFormal.46



� All operators, onstants, and identi�ers in a term in an ationAtual or in a where lausemust be in l(VA) or de�ned exatly one in a for lause assoiated with the task. Editorialnote: hek this.Logial semantis� The task de�nitions must de�ne a partition of the set of all non-input ations.� If no tasks is present, then all non-input ations are treated as belonging to a single task.16 Operations on automataAutomata an be onstruted from previously de�ned automata by the operations of ompositionand hiding. Composite automata identify ations with the same name in di�erent omponentautomata; when any omponent automaton performs a step involving an ation �, so do all om-ponent automata that have � in their signatures. The hiding operator relassi�es output ationsas internal ations.Syntax of omposite automata de�nitionsomposition ::= 'omponents' omponent;+ ('hidden' ationSet)?omponent ::= omponentTag (':' omponentDef)? where?omponentTag ::= omponentName omponentFormals?omponentName ::= IDENTIFIERomponentFormals ::= '[' variableList,+ '℄'omponentDef ::= automatonName automatonAtuals?automatonAtuals ::= '(' (term | type),+ ')'Stati semantis� If a omponent does not ontain a omponentDef, it is assumed to have one in whih theautomatonName is the same as the omponentName and the automatonAtuals are the variables(onsidered as terms) in the omponentFormals.� The identi�ers used as omponentFormals must be distint from eah other and from anyautomatonFormal.� The type of eah omponentFormal must be in l(VA).� Eah automatonName must have been de�ned previously in an automatonDef.� The numbers and types of the automatonAtuals must math those of the orrespondingautomatonFormals.� All identi�ers in terms used as automatonAtuals parameter must be in l(VA), bound vari-abless, or omponentFormals.� Similarly named ations in di�erent omponent automata must have the same number andtypes of parameters.� The set of internal ations for eah omponent must be disjoint from the set of all ations foreah of the other omponents. 47



� The set of output ations for eah omponent must be disjoint from the set of output ationsfor eah of the other omponents.� Eah ationName in an ationSetmust our as the name of an output ation in the signatureof at least one of the omponent automata.Logial semantis� Eah ation of the omposition must be an ation of only �nitely many omponent automata.� The signature of the omposition is the union of the signatures of the omponent automata.� An ation is an output ation of the omposition if it is an output ation of some omponentautomaton.� An ation is an input ation of the omposition if it is an input ation of some omponentautomaton, but not an output ation of any omponent.� An ation is an internal ation of the omposition if it is an internal ation of some omponentautomaton.� The set of states of the omposition is the produt of the sets of states of the omponentautomata.� The set of start states of the omposition is the produt of the sets of start states of theomponent automata.� A triple (s; �; s0) is in the transition relation for the omposite automaton if, for every om-ponent automaton C, (sC ; �; s0C) is a transition of C when � is an ation of C and sC = s0Cwhen � is not an ation of C.Editorial note: This doument needs to desribe the notations that an be used for state variablesof omposite automata in invariants and simulation relations. A preliminary desription of thesenotations an be found at nms.ls.edu/�garland/IOA/stateVars.do.Editorial note: State that one an prove a theorem that allows replaement of one omponentby another that implements it without a�eting the traes of the omposite automaton.17 Statements about automataAssertions about automata make laims about invariants preserved by the ations of the automataor about simulation relations between two automata.Syntax of invariant and simulation relationsassertion ::= invariant | simulationinvariant ::= 'invariant' 'of' automatonName ':' prediatesimulation ::= ('forward' | 'bakward') 'simulation' 'from'automatonName 'to' automatonName ':' prediate
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Stati semantis� Eah automatonName must have been de�ned previously in an automatonDef.� All operators, onstants, and identi�ers in a prediate in an assertion must be{ in l(VA) for (one of) the named automata,{ state variables of (one of) the named automata, or{ variables in the sope of a quantifier in the prediate.Logial semantis� An invariant must be true in all reahable states of the automaton.� The proof obligations for simulation relationships are as de�ned in Setion 1.4.
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Part IVLSL Referene ManualAn LSL spei�ation de�nes a theory in multisorted �rst-order logi. It presents a set of axiomsfor that theory. It may also present laims about the intended onsequenes of these axioms.18 Lexial syntaxThe lexial grammar of LSL is the same as that of IOA (Setion 12), exept that it uses the followinglist of reserved words: asserts, assumes, by, onverts, else, kenumeration, exempting, for, freely,generated, if, implies, inludes, introdues, of, partitioned, sort, then, trait, traits, tuple, type,union, with.19 TraitsThe basi unit of spei�ation in LSL is a trait, whih de�nes a set of axioms for a logial theoryand whih makes laims about the onsequenes of that theory. The header for a trait spei�esits name and an optional list of formal parameters, whih an be used in referenes to other traits(see Setion 23). The body of the trait onsists of optional referenes to subtraits (Setion 23)intermixed with shorthands de�ning sorts (Setion 22), followed by sort and operator delarations(Setion 20), axioms (Setion 21), and laimed onsequenes of the axioms (Setion 24).Syntax of traitstrait ::= traitId traitFormals? ':' 'trait' traitBodytraitId ::= IDENTIFIERtraitBody ::= (subtrait | sort shorthand)* opDls? axioms? onsequenes?20 Sort and operator delarationsSorts in LSL an be simple sorts, whih are named by a single identi�er, or ompound sorts, whihare named by a sort onstrutor applied to a list of simpler sorts. Operator names an be used inseveral di�erent kinds of notations for terms.Operator delaration Form of term Examplef: Int -> Int funtional f(i)min: Int, Int -> Int " min(i; j)0: -> Int " 0__<__: Int, Int -> Bool in�x i < j-__: Int, Int -> Int pre�x �i__!: Int, Int -> Int post�x i!__.last: Seq[Int℄ -> Int " s:last__[__℄: A, Int -> V braketed a[i℄{__}: E -> Set[E℄ " fxg{}: -> Set[E℄ " fgif__then__else__: Bool, S, S -> S onditional if x < 0 then �x else xquanti�ed 8x9y(x < y)50



Plaeholders in operator delarations indiate where the operators arguments are plaed. Sig-natures in operator delarations indiate the sorts of the arguments for an operator (its domainsorts) and the sort of its value (its range sort).Syntax of operator delarationsopDls ::= 'introdues' opDl+opDl ::= name,+ ':' signature ','?name ::= 'if' '__' 'then' '__' 'else' '__'| '__'? OPERATOR '__'?| '__'? openSym '__',* loseSym '__'?| '__'? '.' IDENTIFIER| IDENTIFIERopenSym ::= '[' | '{' | '\(' | '\<'| '\langle' | '\lfloor' | '\leil'loseSym ::= '℄' | '}' | '\)' | '\>'| '\rangle' | '\rfloor' | '\reil'operator ::= name (':' signature)?signature ::= domain '->' rangedomain ::= sort,*range ::= sortsort ::= simpleSort | ompoundSortsimpleSort ::= IDENTIFIERompoundSort ::= sortConstrutor '[' sort,+ '℄'sortConstrutor ::= IDENTIFIEREditorial note: Desribe the parsing preedene for operators.Stati semantis� The optional omma at the end of an opDl is required if the following opDl begins with aleft braket.� The number of __ plaeholders in the name in an opDl must be the same as the number ofsorts in the domain of its signature.� The __ plaeholder annot be omitted from a name of the form __.IDENTIFIER in an opDl.� The signature of the operators true and false must be !Bool. Delarations for theseoperators are built into LSL.� The signature of the logial operators ,, ), ^, and _ must be Bool,Bool!Bool. Delarationsfor these operators are built into LSL.� The signature of the operators = and 6= must be S,S!Bool for some sort S. Delarations forthese operators are built into LSL for eah sort S that ours in an opDl or shorthand (seeSetion 22).� The signature of the operator if__then__else__ must be Bool,S,S!S for some sort S. Adelaration for this operator is built into LSL for eah sort S that ours in an opDl orshorthand (see Setion 22). 51



Logial semantis� A sort denotes a non-empty set of elements.12� Di�erent sorts denote disjoint sets of elements.� An opDl de�nes a list of operators, eah with a given name and signature.� Eah operator denotes a total funtion from tuples of elements in its domain sorts to anelement in its range sort.Formal semantis21 AxiomsAxioms in LSL are either formulas in multisorted �rst-order logi or abbreviations for sets offormulas. A limited amount of operator preedene, as illustrated in the following table, is usedwhen parsing terms. Unparenthesized term Interpretationx� y � z (x� y)� za = b+ ) b < s(a) (a = (b+ ))) (b < s(a))a:b:! ((a:b):)!:p ^ :x:pre (:p) ^ (:(x:pre))9x(x < ))  > 0 (9x(x < ))) ( > 0)8x9y x < y (8x9y x) < ya < b+  Errorp ^ q _ r Errorp) q ) r ErrorSyntax of axiomsaxioms ::= 'asserts' varDls? axiom;+ ';'?varDls ::= 'with' (IDENTIFIER,+ qualifiation)+qualifiation ::= ':' sortaxiom ::= prediate| 'sort' sort ('generated' 'freely'? | 'partitioned')'by' operator,+prediate ::= termterm ::= IF term THEN term ELSE term| subtermsubterm ::= subterm (OPERATOR subterm)+| (quantifier | OPERATOR)* OPERATOR seondary| (quantifier | OPERATOR)* quantifier primary| seondary OPERATOR*quantifier ::= ('\A' | '\E') variablevariable ::= IDENTIFIER qualifiation?seondary ::= primary| primary? braketed ('.'? primary)?12LSL aords syntati, but not semanti, meaning to ompound sorts.52



primary ::= primaryHead (qualifiation | '.' primaryHead)*primaryHead ::= IDENTIFIER ('(' term,+ ')')?| '(' term ')'braketed ::= openSym term,* loseSym qualifiation?Stati semantis� Eah operator in an axiom must be a built-in operator, delared in an operator delaration(Setion 20), introdued by a shorthand for a sort (Setion 22), or delared in a subtrait(Setion 23).� Eah sort in a qualifiation must have been delared.� No variable may be delared more than one in a varDls.� A variable annot be delared to have the same identi�er and sort as a onstant (i.e., as azero-ary operator).� There must be unique assignment of delared operators and variables to the identi�ers,OPERATORs, openSyms, and loseSyms in a term so that the arguments of eah delared op-erator have the appropriate sorts and so that every quali�ed subterm has the appropriatesort.� The sort of a prediate must be Bool.� The sort named in a generated by or a partitioned by must have been delared.� The range of eah operator in a generated by must be the named sort.� At least one of the operators in a generated by must not have the named sort in its domain.� Eah operator in a partitioned by must have the named sort in its domain.� The list of operators in a generated by or partitioned by must not ontain dupliates.Logial semantis� See Setion 9.2 for the semantis of generated by and partitioned by axioms.22 Shorthands for sortsLSL shorthands provide a onvenient way of delaring sorts representing enumerations, tuples, andunions.Syntax of shorthandsshorthand ::= 'enumeration' 'of' IDENTIFIER,+| ('tuple' | 'union') 'of' (IDENTIFIER,+ ':' sort),+
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Stati semantis� The list of identi�ers in an enumeration must not ontain dupliates.� The list of identi�ers orresponding to a �eld of a partiular sort in a tuple or union mustnot ontain dupliates.� Eah sort appearing in a shorthand must di�er from the sort of the shorthand itself.Logial semantis� See Setion 9.823 Trait referenesTraits an inorporate axioms from other traits by inlusion. Traits an also ontain assumptions,whih must be disharged in order for their inlusion in other traits to have the intended meaning.Syntax of trait referenessubtrait ::= ('inludes' | 'assumes') traitRef,+traitRef ::= traitId renaming?traitId ::= IDENTIFIERrenaming ::= '(' traitAtual,+ ')'| '(' traitAtual,* replae,+ ')'replae ::= traitAtual FOR traitFormaltraitAtual ::= name | ompoundSorttraitFormals ::= '(' traitFormal,* ')'traitFormal ::= name signature? | ompoundSortStati semantis� There must not be a yle in the assumes/inludes hierary.� Eah ompoundSort used as a traitFormal must be delared in the trait.� Eah name quali�ed by a signature used as a traitFormal must be delared as an operator inthe trait.� Plaeholders an be omitted from a name in a traitFormal if there is exatly one way to supplyplaeholders so as to math that name with the name of a delared operator.� Eah name used as a traitFormal, but not quali�ed by a signature, must be delared as asimple sort, be delared as a sort onstrutor, or math the name (modulo the addition ofplaeholders) of exatly one delared operator.� When a name used as a traitFormal an be interpreted in more than one way as a simple sort,sort onstrutor, or operator, preferene is given to its intepretation �rst as a simple sort,seond as a sort onstrutor, and third as an operator.� The number of atual parameters in a trait referene must not exeed the number of formalparameters in the de�nition of the trait. 54



� No operator or sort may be renamed more than one in a renaming.� Eah ompoundSort used as a traitAtual must orrespond to a traitFormal that is a sort.� Eah name used as a traitAtualmust be an identi�er if it orresponds to a traitFormal thatis a sort. If the name ontains plaeholders, it must orrespond to a traitFormal that is anoperator with the appropriate number of domain sorts. If the name ontains no plaeholders,there must be a unique way of adding them to math the number of domain sorts for theorresponding traitFormal.Logial semantis� The assertions of a trait inlude the axioms asserted diretly in the trait, together with the(appropriately renamed) axioms asserted in all traits (transitively) inluded in the trait.� The assumptions of a trait inlude the (appropriately renamed) axioms of all traits (transi-tively) assumed by the trait.� When trait A inludes or assumes trait B, the assertions and assumptions of A must implythe assumptions of B.� The assertions and assumptions of any trait must be onsistent.24 ConsequenesLSL traits an ontain hekable redundany in the form of onsequenes that are laimed to followfrom their axioms.Syntax of onsequenesonsequenes ::= 'implies' varDls? onsequene;+ ';'?onsequene ::= axiom | 'trait' traitRef,+ | onversiononversion ::= 'onverts' operator,+ ('exempting' term,+)?Stati semantis� All sorts and operators in a onsequene, inluding those delared in an implied traitFef,must be delared in the implying trait.� Eah name in a onversion must orrespond to exatly one delared operator (in the samemanner as required for traitFormals).� Eah term in an exempting lause must ontain some onverted operator.Logial semantis� The assertions and assumptions of a trait must imply the non-onversion onsequenes ofthat trait.� If a trait T is laimed to onvert a set Ops of operators, then op(x1; : : : ; xn) = op0(x1; : : : ; xn)must be a logial onsequene of T [ T 0 [E for eah op in Ops, where55



{ op0 is a new operator name,{ T 0 is obtained from T by replaing eah ourene of eah op in Ops by op0, and{ E is the set of all formulas of the form t = t0, where t is an exempted term and t0 isobtained from t by replaing eah ourene of eah op in Ops by op0.25 ConvertsEditorial note: Write this.
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Part VAppendiesA Axioms for built-in data typesEditorial note: To be supplied.
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B Software tools for IOAIOA is being developed to enable the onstrution of a variety of software tools that support thedesription and analysis of onurrent algorithms. Among these tools will be the following:� An LSL data type library, whih will supply spei�ations of the data types built into IOA,as well as of other ommon abstrat data types for use in desribing I/O automata. The LSLHandbook [7℄, or a subset thereof, will form the basis for this library. Users will be able toextend the library.� A library of LSL traits that provide preise de�nitions for the semantis of I/O automata andfor relations between automata.� A syntax and stati semanti heker, for heking the well-formedness of desriptions for I/Oautomata.� A prettyprinter, for tidying up desriptions of I/O automata.� A simulator, for testing the behavior of I/O automata.� Proof tools, to assist in the proof of invariants, simulation relations, and temporal properties.One suh tool will be based on the Larh Prover [5℄. Similar tools may be onstruted forother veri�ation systems, suh as PVS [12℄, or for �nite state model hekers, suh as SMV[10℄ and SPIN [11℄.
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