
IOA: A Language for Spe
ifying, Programming, and ValidatingDistributed Systems1Stephen J. Garland, Nan
y A. Lyn
h, and Mandana VaziriMIT Laboratory for Computer S
ien
e2O
tober 5, 2001

1Editorial note: Notes in this do
ument allude to potential
hanges in this do
ument, as well as in theIOA language. Additional details
on
erning the formal semanti
s of IOA, plus referen
es to papers aboutIOA, will be in
orporated into this do
ument.2Resear
h supported in part by the Advan
ed Resear
h Proje
ts Agen
y of the Department of Defense,monitored by the OÆ
e of Naval Resear
h under
ontra
t N00014-92-J-1795 and by Hans
om Air For
eBase under
ontra
t F19628-95-C-0018, by the National S
ien
e Foundation under grants CCR-9504248 andCCR-9225124, and by the Air For
e OÆ
e of S
ienti�
 Resear
h and the OÆ
e of Naval Resear
h under
ontra
t F49620-94-1-0199.

ContentsI IOA Tutorial 11 Introdu
tion 11.1 I/O automata . 11.2 Exe
utions and tra
es . 41.3 Operations on automata . 41.4 Properties of automata . 42 Using IOA to formalize des
riptions of I/O automata 53 Data types in IOA des
riptions 64 IOA des
riptions for primitive automata 74.1 Automaton names and parameters . 74.2 A
tion signatures . 84.3 State variables . 84.4 Transition relations . 104.4.1 Transition parameters . 104.4.2 Pre
onditions . 104.4.3 E�e
ts . 104.4.4 Choose parameters . 144.5 Tasks . 155 IOA notations for operations on automata 165.1 Composition . 165.2 Spe
ialization . 185.3 Hiding output a
tions in a
omposition . 186 IOA des
riptions of properties of automata 196.1 Invariants . 196.2 Simulation relations . 19II IOA Data Types 217 Built-in primitive types 217.1 Booleans . 217.2 Integers . 227.3 Natural numbers . 227.4 Real numbers . 227.5 Chara
ters . 227.6 Strings . 23
i

8 Built-in type
onstru
tors 238.1 Arrays . 238.2 Finite sets . 238.3 Multisets . 248.4 Sequen
es . 248.5 Mappings . 249 Data type semanti
s 249.1 Axiomati
 spe
i�
ations . 259.2 Axiom s
hemes . 279.3 Combining LSL spe
i�
ations . 289.4 Renaming sorts and operators in LSL spe
i�
ations 289.5 Stating intended
onsequen
es of LSL spe
i�
ations 299.6 Re
ording assumptions in LSL spe
i�
ations . 319.7 Built-in operators and overloading . 329.8 Shorthands . 3310 User-de�ned data types 34III IOA Referen
e Manual 3711 Logi
al preliminaries 3711.1 Syntax . 3711.2 Semanti
s . 3811.3 Further terminology . 3912 Lexi
al syntax 3913 Automaton de�nitions 4014 Type and type
onstru
tor de�nitions 4115 Primitive automata 4215.1 Primitive automaton de�nitions . 4215.2 Automaton states . 4315.3 Automaton transitions . 4415.4 Automaton tasks . 4616 Operations on automata 4717 Statements about automata 48IV LSL Referen
e Manual 5018 Lexi
al syntax 5019 Traits 50ii

20 Sort and operator de
larations 5021 Axioms 5222 Shorthands for sorts 5323 Trait referen
es 5424 Consequen
es 5525 Converts 56V Appendi
es 57A Axioms for built-in data types 57B Software tools for IOA 58C Bibliography 59

iii

iv

Part IIOA TutorialThe Input/Output (I/O) automaton model, developed by Nan
y Lyn
h and Mark Tuttle [9℄, models
omponents in asyn
hronous
on
urrent systems as labeled transition systems. Lyn
h's book,Distributed Algorithms [8℄, des
ribes many algorithms in terms of I/O automata and
ontainsproofs of various properties of these algorithms.IOA is a pre
ise language for des
ribing I/O automata and for stating their properties. It extendsand formalizes the des
riptive notations used in Distributed Algorithms, uses Lar
h spe
i�
ations[7℄ to de�ne the semanti
s of abstra
t data types and I/O automata, and supports a variety ofanalyti
 tools. These tools range from light weight tools, whi
h
he
k the syntax of automatondes
riptions, to medium weight tools, whi
h simulate the a
tion of an automaton, and to heavierweight tools, whi
h provide support for proving properties of automata.The do
ument is organized as follows. Part I
ontains an informal introdu
tion to I/O automataand a tutorial for IOA. The tutorial
onsists largely of examples that illustrate di�erent aspe
ts ofthe language; reading it should be suÆ
ient to begin writing
omplete IOA des
riptions. Part IIdes
ribes the data types available for use in IOA des
riptions. Finally, Parts 10 and IV present theformal syntax and semanti
s of the language.1 Introdu
tionI/O automata provide a mathemati
al model suitable for des
ribing asyn
hronous
on
urrent sys-tems. The model provides a pre
ise way of des
ribing and reasoning about system
omponentsthat intera
t with ea
h other and that operate at di�erent speeds. It also permits
omponents thathave been des
ribed as I/O automata to be
omposed into larger automata.1.1 I/O automataAn I/O automaton is a simple type of state ma
hine in whi
h the transitions are asso
iated withnamed a
tions. The a
tions are
lassi�ed as either input, output, or internal. The inputs andoutputs are used for
ommuni
ation with the automaton's environment, whereas internal a
tionsare visible only to the automaton itself. The input a
tions are assumed not to be under theautomaton's
ontrol, whereas the automaton itself
ontrols whi
h output and internal a
tions shouldbe performed.
Pi

init(v)i

decide(v)i

send(m)i,j

receive(m)i,jFigure 1: A pro
essA typi
al example1 of an I/O automaton is a pro
ess in an asyn
hronous distributed system.Figure 1 shows the interfa
e of one su
h pro
ess. The
ir
le represents the automaton, named Pi,1This example is essentially the same as the example in Distributed Algorithms [8℄, Chapter 8.

where i is a pro
ess index, and the arrows represent input and output a
tions. An in
oming arrowis an input a
tion, and an outgoing arrow is an output a
tion. Internal a
tions are not shown.Pro
ess Pi
an re
eive inputs of the form init(v)i, ea
h of whi
h represents the re
eipt of an inputvalue v, and it
an produ
e outputs of the form de
ide(v)i , ea
h of whi
h represents a de
isionon the value of v. In order to rea
h a de
ision, pro
ess Pi may
ommuni
ate with other pro
essesusing a message passing system. Pi's interfa
e to the message system
onsists of output a
tionsof the form send(m)i;j , ea
h of whi
h represents sending a message m to some pro
ess named Pj ,and input a
tions of the form re
eive(m)i;j , ea
h of whi
h represents re
eiving a message m frompro
ess Pj . When Pi performs any of the indi
ated a
tions (or any internal a
tion), it may also
hange state.
Ci,j

send(m)i,j receive(m)i,j

Figure 2: A
hannelAnother example of an I/O automaton is a FIFO message
hannel. Figure 2 shows the interfa
eof a typi
al
hannel automaton, Ci;j, where i and j are pro
ess indi
es. Its input a
tions have theform send(m)i;j , and its output a
tions have the form re
eive(m)i;j .Pro
ess and
hannel automata
an be
omposed as shown in Figure 3, by mat
hing the outputa
tions of one automaton with the input a
tions of another. Thus, ea
h output a
tion send(m)i;jof a pro
ess automaton is mat
hed and performed together with an input a
tion send(m)i;j of some
hannel automaton, and ea
h input a
tion re
eive(m)i;j of a pro
ess automaton is mat
hed andperformed together with an output a
tion re
eive(m)i;j of some other
hannel automaton. A
tionsare performed one at a time, indivisibly, in any order.More pre
isely, an I/O automaton A
onsists of the following �ve
omponents:� a signature, whi
h lists the disjoint sets of input, output, and internal a
tions of A,� a (not ne
essarily �nite) set of states, usually des
ribed by a
olle
tion of state variables,� a set of start (or initial) states, whi
h is a non-empty subset of the set of all states,� a state-transition relation, whi
h
ontains triples (known as steps or transitions) of the form(state, a
tion, state), and� an optional set of tasks, whi
h partition the internal and output a
tions of A.An a
tion � is said to be enabled in a state s if there is another state s0 su
h that (s; �; s0) is atransition of the automaton. Input a
tions are enabled in every state; i.e., automata are not ableto \blo
k" input a
tions from o

urring. The external a
tions of an automaton
onsist of its inputand output a
tions.The transition relation is usually des
ribed in pre
ondition-e�e
t style, whi
h groups togetherall transitions that involve a parti
ular type of a
tion into a single pie
e of
ode. The pre
onditionis a predi
ate on the state indi
ating the
onditions under whi
h the a
tion is permitted to o

ur.The e�e
t des
ribes the
hanges that o

ur as a result of the a
tion, either in the form of a simpleprogram or in the form of a predi
ate relating the pre-state and the post-state (i.e., the statesbefore and after the a
tion o

urs). A
tions are exe
uted indivisibly.2

C1,2

P1

send(m)1,2

receive(m)1,2

decide(v)2

init(v)2

P2 P3

C2,1

C3,2

C2,3

C3,1

C1,3

send(m)3,1

send(m)2,3 receive(m)2,3

receive(m)3,1

send(m)2,1

send(m)3,2receive(m)3,2

receive(m)2,1 send(m)1,3

receive(m)1,3

decide(v)1init(v)1

decide(v)3

init(v)3

Figure 3: Composing
hannel and pro
ess automata

3

1.2 Exe
utions and tra
esAn exe
ution fragment of an I/O automaton is either a �nite sequen
e s0, �1, s1, �2, . . . , �n, sn, oran in�nite sequen
e s0, �1, s1, �2, . . . , of alternating states si and a
tions �i su
h that (si; �i+1; si+1)is a transition of the automaton for every i � 0. An exe
ution is an exe
ution fragment that beginswith a start state. A state is rea
hable if it o

urs in some exe
ution. The tra
e of an exe
ution isthe sequen
e of external a
tions in that exe
ution.The task partition is an abstra
t des
ription of \tasks" or \threads of
ontrol." It is used tode�ne fairness
onditions on an exe
ution of the automaton; these
onditions require the automatonto
ontinue, during its exe
ution, to give fair turns to ea
h of its tasks. A task is said to be enabledin a state if some a
tion in the task is enabled in that state. In a fair exe
ution, whenever some taskremains enabled, some a
tion in that task will eventually be performed. Thus, in fair exe
utions,a
tions in one task partition do not prevent a
tions in another from o

urring. If no task partitionis spe
i�ed, then all a
tions are assumed to belong to a single task.1.3 Operations on automataThe operation of
omposition allows an automaton representing a
omplex system to be
onstru
tedby
omposing automata representing individual system
omponents. The
omposition identi�esa
tions with the same name in di�erent
omponent automata. When any
omponent automatonperforms a step involving an a
tion �, so do all
omponent automata that have � in their sig-natures. The hiding operation \hides" output a
tions of an automaton by re
lassifying them asinternal a
tions; this prevents them from being used for further
ommuni
ation and means thatthey are no longer in
luded in tra
es. The renaming operation
hanges the names of an automa-ton's a
tions, to fa
ilitate
omposing that automaton with others that were de�ned with di�erentnaming
onventions.1.4 Properties of automataAn invariant of an automaton is any property that is true in all rea
hable states of the automaton.An automaton A is said to implement an automaton B provided that A and B have the sameinput and output a
tions and that every tra
e of A is a also tra
e of B. In order to show that Aimplements B, one
an use a simulation relation, as follows.For the purpose of the following de�nitions, we assume that A and B have the same input andoutput a
tions. A relation R between the states of A and B is a forward simulation2 with respe
tto invariants IA and IB of A and B if� every start state of A is related (via R) to a start state of B, and� for all states s of A and u of B satisfying the invariants IA and IB su
h that R(s; u), and forevery step (s; �; s0) of A, there is an exe
ution fragment � of B starting with u,
ontainingthe same external a
tions as �, and ending with a state u0 su
h that R(s0; u0).A general theorem is that A implements B if there is a forward simulation from A to B.Similarly, a relation R between the states of A and B is a ba
kward simulation3 with respe
t toinvariants IA and IB of A and B if� every state of A that satis�es IA
orresponds (via R) to some state of B that satis�es IB ,2In some previous work su
h relations are
alled weak forward simulations.3In some previous work su
h relations are
alled weak ba
kward simulations.4

� if a start state s of A is related (via R) to a state u of B that satis�es IB, then u is a startstate of B, and� for all states s; s0 of A and u0 of B satisfying the invariants su
h that R(s0; u0), and for everystep (s; �; s0) of A, there is an exe
ution fragment � of B ending with u0,
ontaining the sameexternal a
tions as �, and starting with a state u satisfying IB su
h that R(s; u).Another general theorem is that A implements B if there is an image-�nite ba
kward simulationfrom A to B. Here, a relation R is image-�nite provided that for any x there are only �nitely manyy su
h that R(x; y). Moreover, the existen
e of any ba
kward simulation from A to B implies thatall �nite tra
es of A are also tra
es of B.2 Using IOA to formalize des
riptions of I/O automataWe illustrate the nature of I/O automata, as well as the use of the language IOA to de�ne theautomata, by a few simple examples. Figure 4
ontains a simple IOA des
ription for an automaton,Adder, that gets two integers as input and subsequently outputs their sum. The �rst line de
laresthe name of the automaton. The remaining lines de�ne its
omponents. The signature
onsistsof input a
tions add(i, j), one for ea
h pair of values of i and j, and output a
tions result(k),one for ea
h value of k. The type Int, used to represent integers, is a built-in type in IOA (seeSe
tion 7.2).automaton Addersignatureinput add(i, j: Int)output result(k: Int)statesvalue: Int,ready: Bool := falsetrans i t ionsinput add(i, j)e f f value := i + j;ready := trueoutput result(k)pre k = value ^ readye f f ready := falseFigure 4: IOA des
ription of an adderThe automaton Adder has two state variables: value is an integer that is used to hold a sum,and ready is a boolean that is set to true whenever a new sum has been
omputed. The initialvalue of value is arbitrary sin
e it is not spe
i�ed; ready is initially false.The transitions of the automaton Adder are given in pre
ondition/e�e
t style. The input a
tionadd(i, j) has no pre
ondition, whi
h is equivalent to its having true as a pre
ondition. This isthe
ase for all input a
tions; that is, every input a
tion in every automaton is enabled in everystate. The e�e
t of add(i, j) is to
hange value to the sum of i and j and to set ready to true.The output a
tion result(k)
an o

ur only when it is enabled, that is, only in states where itspre
ondition k = value ^ ready is true. Its e�e
t is to set ready ba
k to false. Tra
es of Adderare sequen
es of external a
tions su
h as 5

add(3, 2), result (5), add(1, 2), add(-1, 1), result (0), ...that start with an add a
tion, in whi
h every result a
tion returns the sum
omputed by the lastadd a
tion, and in whi
h every pair of result a
tions must be separated by one or more add a
tions.automaton Channel(M, Index: type, i, j: Index)signatureinput send(m: M,
onst i,
onst j)output re
eive(m: M,
onst i,
onst j)statesbuffer: Seq[M℄ := {}trans i t ionsinput send(m, i, j)e f f buffer := buffer ` moutput re
eive(m, i, j)pre buffer 6= {} ^ m = head(buffer)e f f buffer := tail(buffer)Figure 5: IOA des
ription of a reliable
ommuni
ation
hannelAnother simple automaton, Channel, is shown in Figure 5. This automaton represents a reliable
ommuni
ation
hannel, as illustrated in Figure 2, whi
h neither loses nor reorders messages intransit. The automaton is parameterized by the type M of messages that
an be in transit onthe
hannel, by the type Index of pro
ess indi
es, and by two values, i and j, whi
h representthe indi
es of pro
esses that use the
hannel for
ommuni
ation. The signature
onsists of inputa
tions, send(m, i, j), and output a
tions, re
eive(m, i, j), one for ea
h value of m. The keyword
onst in the signature indi
ates that the values of i and j in these a
tions are �xed by the valuesof the automaton's parameters.The state of the automaton Channel
onsists of a buffer, whi
h is a sequen
e of messages (i.e.,an element of type Seq[M℄) initialized to the empty sequen
e {}. Se
tion 8.4 des
ribes the type
onstru
tor Seq and operators on sequen
es su
h as {}, `, head, and tail.The input a
tion send(m, i, j) has the e�e
t of appending m to buffer (here, ` is the appendoperator). The output a
tion re
eive(m, i, j) is enabled when buffer is not empty and has themessage m at its head. The e�e
t of this a
tion is to remove the head element from buffer.The rest of Part I shows in more detail how IOA
an be used to des
ribe I/O automata.3 Data types in IOA des
riptionsIOA enables users to de�ne the a
tions and states of I/O automata abstra
tly, using mathemati
alnotations for sets, sequen
es, et
., without having to provide
on
rete representations for theseabstra
tions. Some mathemati
al notations are built into IOA; others
an be de�ned by the user.The data types Bool, Int, Nat, Real, Char, and String
an appear in IOA des
riptions withoutexpli
it de
larations. Se
tion 7 des
ribes the operators available for ea
h of these types.Compound data types
an be
onstru
ted using the following type
onstru
tors and used withoutexpli
it de
larations. Se
tion 8 des
ribes the operators available for types
onstru
ted in any ofthese fashions.� Array[I, E℄ is an array of elements of type E indexed by elements of type I.� Map[D, R℄ is a �nite partial mapping of elements of a domain type D to elements of a rangetype R. Mappings di�er from arrays in that their domains are always �nite, and in that theymay not be totally de�ned. 6

� Seq[E℄ is a �nite sequen
e of elements of type E.� Set[E℄ is a �nite set of elements of type E.� Mset[E℄ is a �nite multiset of elements of type E.In this tutorial, we des
ribe operators on the built-in data types informally when they �rstappear in an example.Users
an de�ne additional data types, as well as rede�ne built-in types, in one of two ways.First, they
an expli
itly de
lare enumeration, tuple, and union types analogous to those found inmany
ommon programming languages. For example,type Color = enumeration of red, white, bluetype Msg = tuple of sour
e, dest: Pro
ess,
ontents: Stringtype Fig = union of sq: Square,
ir
: Cir
leSe
tion 9.8 des
ribes the operators available for ea
h of these types. Se
ond, users
an refer to anauxiliary spe
i�
ation that de�nes the syntax and semanti
s of a data type, as inaxioms Queue for Q[__℄ % Supplies axioms for Q[Int℄, Q[Set[Nat℄℄, ...axioms Peano for Nat % Overrides built-in axioms for Nataxioms Graph(V, E) % Supplies axioms for graphsThese auxiliary spe
i�
ations are written in the Lar
h Shared Language (LSL); see Se
tions 9 and 10.In this report, some operators are displayed using mathemati
al symbols that do not appear onthe standard keyboard. The following tables show the input
onventions for entering these symbols.The standard meanings of the logi
al operators are built into LSL and IOA. The meanings of thedatatype operators are de�ned by the LSL spe
i�
ations for the built-in datatypes in Se
tion 9.Logi
al Operator Datatype OperatorSymbol Meaning Input8 For all \A9 There exists \E: Not ~6= Not equals ~=^ And /_ Or \/) Implies =>, If and only if <=>
Symbol Meaning Input� Less than or equal <=� Greater than or equal >=2 Member of \in62 Not a member of \notin� Proper subset of \subset� Subset of \subseteq� Proper superset of \supset� Superset of \supseteq` Append element |-a Prepend element -|4 IOA des
riptions for primitive automataPrimitive automata (i.e., automata without sub
omponents) are des
ribed by spe
ifying theirnames, a
tion signatures, state variables, transition relations, and task partitions. All but thelast of these elements must be present in every primitive automaton des
ription.4.1 Automaton names and parametersThe �rst line of an automaton des
ription
onsists of the keyword automaton followed by the nameof the automaton (see Figures 4 and 5). As illustrated in Figure 5, the name may be followed bya list of formal parameters en
losed within parentheses. Ea
h parameter
onsists of an identi�er7

with its asso
iated type (or, as in Figure 5, with the keyword type to indi
ate that the identi�ernames a type rather than an element of a type).44.2 A
tion signaturesThe signature for an automaton is de
lared in IOA using the keyword signature followed by lists ofentries des
ribing the automaton's input, internal, and output a
tions. Ea
h entry
ontains a nameand an optional list of parameters en
losed in parentheses. Ea
h parameter
onsists of an identi�erwith its asso
iated type, or of an expression following the keyword
onst; entries
annot have typeparameters. Ea
h entry in the signature denotes a set of a
tions, one for ea
h assignment of valuesto its non-
onst parameters.It is possible to pla
e
onstraints on the values of the parameters for an entry in the signatureusing the keyword where followed by a predi
ate, that is, by a boolean-valued expression. Su
h
onstraints restri
t the set of a
tions denoted by the entry. For example, the signaturesignatureinput add(i, j: Int) where i > 0 ^ j > 0output result(k: Int) where k > 1
ould have been used for the automaton Adder to restri
t the values of the input parameters topositive integers and the value of the output parameter to integers greater than 1.4.3 State variablesAs in the above examples, state variables are de
lared using the keyword states followed by a
omma-separated list of state variables and their types. State variables
an be initialized using theassignment operator := followed by an expression or by a nondeterministi

hoi
e. The order inwhi
h state variables are de
lared makes no di�eren
e: state variables are initialized simultaneously,and the initialization given for one state variable
annot refer to the value of any other state variable.A nondeterministi

hoi
e, indi
ated by the keyword
hoose following the assignment operator:=, sele
ts an arbitrary value for the named variable that satis�es the predi
ate following thekeyword where. When a nondeterministi

hoi
e is used to initialize a state variable, there mustbe some value of the named variable that satis�es this predi
ate. If this predi
ate is true for allvalues of the named variable, then the e�e
t is the same as if no initial value had been spe
i�ed forthe state variable.automaton Choi
esignatureoutput result(i: Int)statesnum: Int :=
hoose n where 1 � n ^ n � 3,done: Bool := falsetrans i t ionsoutput result(i)pre :done ^ i = nume f f done := trueFigure 6: Example of nondeterministi

hoi
e of initial value for state variable4Later versions of IOA may also allow us to parameterize automata by operations (e.g., ordering relations) on adata type.
8

For example, in the automaton Choi
e (Figure 6), the state variable num is initialized nondeter-ministi
ally to some value of the variable n that satis�es the predi
ate 1 � n ^ n � 3, i.e., to oneof the values 1, 2, or 3 (the value of n must be an integer be
ause it is
onstrained to have the sametype, Int, as the variable num to whi
h it will be assigned). The automaton Choi
e
an return thesele
ted value at most on
e in an output a
tion.It is also possible to
onstrain the initial values of all state variables taken together, whether ornot initial values are assigned to any individual state variable. This
an be done using the
onstru
tso that followed by a predi
ate (involving state variables and automaton parameters), as illustratedby the de�nition of the automaton Shuffle in Figure 7.5 Here, the initial values of the variable
ut and the array name of strings are
onstrained so that name[1℄, . . . , name[52℄ are sorted in twopie
es, ea
h in in
reasing order, with the pie
e after the
ut
ontaining smaller elements than thepie
e before the
ut. Note that the s
ope of the so that
lause is the entire set of state variablede
larations.type
ardIndex = enumeration of 1, 2, 3, ..., 52automaton Shufflesignatureinternal swap(i, j:
ardIndex)output deal(a: Array[
ardIndex, String℄)statesdealt: Bool := false,name: Array[
ardIndex, String℄,
ut:
ardIndex,temp: Stringso that 8 i:
ardIndex (i 6= 52 ^ i 6=
ut) name[i℄ < name[su

(i)℄)^ name[52℄ < name[1℄trans i t ionsinternal swap(i, j)pre :dealte f f temp := name[i℄;name[i℄ := name[j℄;name[j℄ := tempoutput deal(a)pre :dealt ^ a = namee f f dealt := trueFigure 7: Example of a
onstraint on initial values for state variablesIn Figure 7, values of type Array[
ardIndex, String℄ are arrays indexed by elements of type
ardIndex and
ontaining elements of type String (see Se
tion 8.1). The swap a
tions transposepairs of strings, until a deal a
tion announ
es the
ontents of the array; then no further a
tionso

ur. Note that the
onstraint following so that limits only the initial values of the state variables,not their subsequent values.When the type of a state variable is an Array or a tuple (Se
tion 9.8), IOA also treats theelements of the array or the �elds in the tuple as state variables, to whi
h values
an be assignedwithout a�e
ting the values of the other elements in the array or �elds in the tuple.5At present, users must expand the . . . in the de�nition of the type
ardIndex by hand; IOA will eventuallyprovide more
onvenient notations for integer subranges. 9

4.4 Transition relationsTransitions for the a
tions in an automaton's signature are de�ned following the keyword transi-tions. A transition de�nition
onsists of an a
tion type (i.e., input, internal, or output), an a
tionname with optional parameters and an optional where
lause, an optional list of additional \
hooseparameters," an optional pre
ondition, and an optional e�e
t.4.4.1 Transition parametersThe parameters a

ompanying an a
tion name in a transition de�nition must mat
h those a

om-panying the name in the automaton's signature, both in number and in type. However, parameterstake a simpler form in a transition de�nition than they do in the signature. The simplest way to
onstru
t the parameter list for an a
tion name in a transition de�nition is to erase the keyword
onst and the type modi�ers from the parameter list in the signature; thus, in Figure 5,input send(m: M,
onst i,
onst j)in the signature of Channel is shortened to input send(m, i, j) in the transition de�nition. SeeSe
tion 15.3 for the a
tual set of rules.More than one transition de�nition
an be given for an entry in an automaton's signature. Forexample, the transition de�nition for the swap a
tions in the Shuffle automaton (Figure 7)
an besplit into two
omponents:internal swap(i, j) where i 6= jpre :dealte f f temp := name[i℄;name[i℄ := name[j℄;name[j℄ := tempinternal swap(i, i)pre :dealtThe se
ond of these two transition de�nitions does not
hange the state, be
ause it has no e�
lause.4.4.2 Pre
onditionsA pre
ondition
an be de�ned for a transition of an output or internal a
tion using the keywordpre followed by a predi
ate, that is, by a boolean-valued expression. Pre
onditions
annot bede�ned for transitions of input a
tions. All variables in the pre
ondition must be parameters ofthe automaton, be state variables, appear in the parameter list for the transition de�nition, be
hoose parameters, or be quanti�ed expli
itly in the pre
ondition. If no pre
ondition is given, it isassumed to be true.An a
tion is said to be enabled in a state if the pre
ondition for its transition de�nition is truein that state for some values of the
hoose parameters. Input a
tions, whose transitions have nopre
onditions, are always enabled.4.4.3 E�e
tsThe e�e
t of a transition, if any, is de�ned following the keyword e�. This e�e
t is generally de�nedin terms of a (possibly nondeterministi
) program that assigns new values to state variables. Theamount of nondeterminism in a transition
an be limited by a predi
ate relating the values of statevariables in the post-state (i.e., in the state after the transition has o

urred) to ea
h other and totheir values in the pre-state (i.e., in the state before the transition o

urs).If the e�e
t is missing, then the transition has none; i.e., it leaves the state un
hanged.10

Using programs to spe
ify e�e
ts A program is a list of statements, separated by semi
olons.Statements in a program are exe
uted sequentially. There are three kinds of statements:� assignment statements,�
onditional statements, and� for statements.Assignment statements An assignment statement
hanges the value of a state variable.The statement
onsists of a state variable followed by the assignment operator := and either anexpression or a nondeterministi

hoi
e (indi
ated by the keyword
hoose). (As noted in Se
tion 4.3,the elements in an array used as a state variable, or the �elds in a tuple used as a state variable, arethemselves
onsidered as separate state variables and
an appear on the left side of the assignmentoperator.)The expression or nondeterministi

hoi
e in an assignment statement must have the same typeas the state variable. The value of the expression is de�ned mathemati
ally, rather than
omputa-tionally, in the state before the assignment statement is exe
uted. The value of the expression thenbe
omes the value of the state variable in the state after the assignment statement is exe
uted.Exe
ution of an assignment statement does not have side-e�e
ts; i.e., it does not
hange the valueof any state variable other than that on the left side of the assignment operator.axioms Subsequen
e for Seq[__℄automaton LossyChannel(M: type)signatureinput send(m: M),
rashoutput re
eive(m: M)statesbuffer: Seq[M℄ := {}trans i t ionsinput send(m)e f f buffer := buffer ` minput
rashe f f buffer :=
hoose b where b � bufferoutput re
eive(m)pre buffer 6= {} ^ m = head(buffer)e f f buffer := tail(buffer)Figure 8: IOA des
ription of a lossy
ommuni
ation
hannelThe de�nition of the
rash a
tion in the LossyChannel automaton (Figure 8) illustrates the useof the
hoose . . . where
onstru
t to
onstrain the new value of the state variable buffer to be anondeterministi
ally
hosen subsequen
e of the old value. LossyChannel is a modi�
ation of thereliable
ommuni
ation
hannel (Figure 5) in whi
h the additional input a
tion
rash may
ausethe sequen
e buffer to lose messages (but not to reorder them).The axioms statement at the beginning of Figure 8 identi�es an auxiliary spe
i�
ation (Fig-ure 9), whi
h overrides the default axioms for the built-in type
onstru
tor Seq[E℄ for the sequen
edata type (see Se
tion 8.4) to add a de�nition for the subsequen
e relation � appearing in the11

de�nition of transitions for the
rash a
tion. Be
ause this relation is not one of the built-in op-erators provided by IOA for the sequen
e data type, we must supply a spe
i�
ation to de�ne itsproperties, namely, that a subsequen
e does not reorder elements, and that it need not
ontain
onse
utive elements from the larger sequen
e. Figure 9
onveys this information by presenting are
ursive de�nition for �. Se
tion 9 provides more information about how to read su
h auxiliaryspe
i�
ations.Subsequen
e(E): t r a i tin
ludes Sequen
e(E)introdu
es __�__: Seq[E℄, Seq[E℄ ! Boolasserts with e, e1, e2: E, s, s1, s2: Seq[E℄{} � s;:((s ` e) � {});(s1 ` e1) � (s2 ` e2) , (s1 ` e1) � s2 _ (s1 � s2 ^ e1 = e2)Figure 9: Auxiliary spe
i�
ation with re
ursive de�nition of subsequen
e operatorAn abbreviated form of nondeterministi

hoi
e
an be used in the assignment statement toexpress the fa
t that a transition
an
hange the value of a state variable, without spe
ifying whatthe new value may be. Su
h a nondeterministi

hoi
e
onsists of the keyword
hoose alone, withouta subsequent variable or where
lause. The statement x :=
hoose is equivalent to the somewhatlonger statement x :=
hoose y where true. Both of these statements give a transition a li
enseto
hange the value of the state variable x. As des
ribed below,
onstraints on the new values formodi�ed variables, if any,
an be given in a so that
lause for the entire e�e
t.Conditional statements A
onditional statement is used to sele
t whi
h of several programsegments to exe
ute in a larger program. It starts with the keyword if followed by a predi
ate,the keyword then, and a program segment; it ends with the keyword�. In between, there
an beany number of elseif
lauses (ea
h of whi
h
ontains a predi
ate, the keyword then, and a programsegment), and there
an be a �nal else
lause (whi
h also
ontains a program segment). Figure 10illustrates the use of a
onditional statement in de�ning an automaton that distributes input valuesinto one of three sets. Se
tion 8.2 des
ribes the set data type and the operators {} and insert.For statements A for statement is used to perform a program segment on
e for ea
h valueof a variable that satis�es a given
ondition. It starts with the keyword for followed by a variable,a
lause des
ribing a set of values for this variable, the keyword do, a program segment, and thekeyword od.Figure 11 illustrates the use of a for statement in a high-level des
ription of a multi
ast algo-rithm. Its �rst line de�nes the Pa
ket data type to
onsist of triples [
ontents, sour
e, dest℄, inwhi
h
ontents represents a message, sour
e the Node from whi
h the message originated, and destthe set of Nodes to whi
h the message should be delivered. The state of the multi
ast algorithm
onsists of a multiset network, whi
h represents the pa
kets
urrently in transit, and an array queue,whi
h represents, for ea
h Node, the sequen
e of pa
kets delivered to that Node, but not yet read bythe Node.The m
ast a
tion inserts a new pa
ket in the network; the notation [m, i, I℄ is de�ned by thetuple data type (Se
tion 9.8) and the insert operator by the multiset data type (Se
tion 8.3). Thedeliver a
tion, whi
h is des
ribed using a for statement, distributes a pa
ket to all nodes in itsdestination set (by appending the pa
ket to the queue for ea
h node in the destination set and12

automaton Distributesignatureinput get(i: Int)statessmall: Set[Int℄ := {},medium: Set[Int℄ := {},large: Set[Int℄ := {},bound1: Int,bound2: Intso that bound1 < bound2trans i t ionsinput get(i)e f f i f i < bound1 then small := insert(i, small)e l s e i f i < bound2 then medium := insert(i, medium)e l se large := insert(i, large)f i Figure 10: Example of a
onditional statement
type Pa
ket = tuple of
ontents: Message, sour
e: Node, dest: Set[Node℄automaton Multi
astsignatureinput m
ast(m: Message, i: Node, I: Set[Node℄)internal deliver(p: Pa
ket)output read(m: Message, j: Node)statesnetwork: Mset[Pa
ket ℄ := {},queue: Array[Node, Seq[Pa
ket℄℄so that 8 i: Node (queue[i℄ = {})trans i t ionsinput m
ast(m, i, I)e f f network := insert([m, i, I℄, network)internal deliver(p)pre p 2 networke f f for j: Node in p.dest do queue[j℄ := queue[j℄ ` p od;network := delete(p, network)output read(m, j)pre queue[j℄ 6= {} ^ head(queue[j℄).
ontents = me f f queue[j℄ := tail(queue[j℄)Figure 11: Example showing use of a for statement

13

then deleting the pa
ket from the network). The read a
tion re
eives the
ontents of a pa
ket at aparti
ular Node by removing that pa
ket from the queue of delivered pa
kets at that Node.In general, the
lause des
ribing the set of values for the
ontrol variable in a for statement
onsists either of the keyword in followed by an expression denoting a set (Se
tion 8.2) or multiset(Se
tion 8.3) of values of the appropriate type, or of the keywords so that followed by a predi
ate.The program following the keyword do is exe
uted on
e for ea
h value in the set or multisetfollowing the keyword in, or on
e for ea
h value satisfying the predi
ate following the keywords sothat. These versions of the program are exe
uted in an arbitrary order. However, IOA restri
tsthe form of the program so that the e�e
t of the for statement is independent of the order in whi
hthe versions of the program are exe
uted.Using predi
ates on states to spe
ify e�e
ts The results of a program
an be
onstrainedby a predi
ate relating the values of state variables after a transition has o

urred to the valuesof state variables before the transition began. Su
h a predi
ate is parti
ularly useful when theprogram
ontains the nondeterministi

hoose operator. For example,input
rashe f f buffer :=
hooseso that buffer 0 � bufferis an alternative, but equivalent way of des
ribing the
rash a
tion in LossyChannel (Figure 8). Theassignment statement indi
ates that the
rash a
tion
an
hange the value of the state variablebuffer. The predi
ate in the so that
lause
onstrains the new value of buffer in terms of its oldvalue. A primed state variable in this predi
ate (i.e., buffer0) indi
ates the value of the variablein the post-state; an unprimed state variable (i.e., buffer) indi
ates its value in the pre-state. Foranother example,e f f name[i℄ :=
hoose;name[j℄ :=
hooseso that name 0 [i℄ = name[j℄ ^ name 0 [j℄ = name[i℄is an alternative way of writing the e�e
t
lause of the swap a
tion in Shuffle (Figure 7). Theassignment statements indi
ate that the array name may be modi�ed at indi
es i and j, and theso that
lause
onstrains the modi�
ations. This notation allows us to eliminate the temp statevariable needed previously for swapping.There are important di�eren
es between where and so that
lauses. A where
lause
an beatta
hed to a nondeterministi

hoose operator in a single assignment statement to restri
t thevalue
hosen by that operator; variables appearing in a where
lause denote values in the statebefore the assignment statement is exe
uted. A so that
lause
an be atta
hed to an entire e�
lause; unprimed variables appearing in a so that
lause denote values in the state before thetransition represented by the entire e�
lause o

urs, and primed variables denote values in thestate after the transition has o

urred.4.4.4 Choose parametersTwo kinds of parameters
an be spe
i�ed for a transition: ordinary parameters,
orresponding tothose in the automaton's signature, and additional \
hoose parameters," whi
h provide a
onvenientway to relate the post
ondition for a transition to its pre
ondition. Figure 12 illustrates the use of
hoose parameters.The automaton LossyBuffer represents a message
hannel that loses a message ea
h time ittransmits one. The state of the automaton
onsists of a multiset buff of messages of type M. Theinput a
tion for the
hannel, get(m), simply adds the message m to buff. The output a
tion, put(m),delivers m while dropping another message, given by the
hoose parameter n. The pre
ondition14

automaton LossyBuffer(M: type)signatureinput get(m: M)output put(m: M)statesbuff: Mset[M℄ := {}trans i t ionsinput get(m)e f f buff := insert(m, buff)output put(m)
hoose n: Mpre m 2 buff ^ n 2 buff ^ (m 6= n _
ount(n, buff) > 1)e f f buff := delete(m, delete(n, buff))Figure 12: Example of the use of
hoose parametersensures that both m and n a remembers of the multiset buff and, if m and n happen to be the samemessage, that buff
ontains two
opies of this message.Choose parameters provide synta
ti
 sugar for de�ning transitions. It is possible to de�netransitions without them by using expli
it quanti�
ation. For example, the transition for the puta
tion in Figure 12
an be rewritten as follows:output put(m)pre 9 n: M (m 2 buff ^ n 2 buff ^ (m 6= n _
ount(m, buff) > 1))e f f buff :=
hooseso that 9 n: M (m 2 buff ^ n 2 buff ^ (m 6= n _
ount(m, buff) > 1)^ buff 0= delete(m, delete(n, buff)))In general, to eliminate
hoose parameters, one quanti�es them expli
itly in the pre
onditionfor the transition, and then repeats the quanti�ed pre
ondition as part of the e�e
t.4.5 TasksA �nal, but optional part in the des
ription of an I/O automaton is a partition of the automaton'soutput and internal a
tions into a set of disjoint tasks. This partition is indi
ated by the keywordtasks followed by a list of the sets in the partition. If the keyword tasks is omitted, and no taskpartition is given, all output and internal a
tions are presumed to belong to the same task.To see why tasks are useful,
onsider the automaton Shuffle des
ribed in Figure 7. The tra
esof this automaton
an be either in�nite sequen
es of swap a
tions, a �nite sequen
e of swap a
tions,or a �nite sequen
e of swap a
tions followed by a single deal a
tion: nothing in the des
ription inFigure 7 requires that a deal a
tion ever o

ur. By addingtasks{swap(i, j) for i:
ardIndex, j:
ardIndex};{deal(a) for a: Array[
ardIndex, String℄}to the des
ription of Shuffle, we
an pla
e all swap a
tions in one task (or thread of
ontrol) andall deal a
tions in another. The de�nition of a fair exe
ution of an I/O automaton requires that,whenever a task remains enabled, some a
tion in that task will eventually be performed. Thus thistask partition for Shuffle prevents swap a
tions from starving a deal a
tion in any fair exe
ution.There are no fairness requirements, however, on the a
tions within the same task: the des
riptionof Shuffle does not require that every pair of elements in the array will eventually be inter
hanged.Variables appearing in task de�nitions must be introdu
ed using the keyword for, either withinthe bra
es de�ning individual tasks (as illustrated for Shuffle) or outside the bra
es. For example15

the task partitiontasks {deliver(p) for p: Pa
ket }; {read(m, j) for m: Message} for j: Nodefor the Multi
ast automaton pla
es the read a
tions for di�erent nodes in di�erent tasks, so thatthe exe
ution of read a
tions for one node
annot starve exe
ution of re
eive a
tions for another.The values of variables appearing in task de�nitions
an be
onstrained further by where
lausesfollowing the for
lauses.Editorial note: Do we want to allow more general set-theoreti
 notations for de�ning tasks???For example, do we want to allow {foo(i) for i: I} [{bar(i) for i: I} in addition to or inpla
e of {foo(i), bar(i) for i: I}?5 IOA notations for operations on automataWe often wish to des
ribe new automata in terms of previously de�ned automata. IOA providesnotations for
omposing several automata, for hiding some output a
tions in an automaton, andfor spe
ializing parameterized automata.65.1 CompositionWe illustrate
omposition by des
ribing the LeLann-Chang-Roberts (LCR) leader ele
tion algorithmas a
omposition of pro
ess and
hannel automata.In this algorithm, a �nite set of pro
esses arranged in a ring ele
t a leader by
ommuni
atingasyn
hronously. The algorithm works as follows. Ea
h pro
ess sends a unique string representingits name, whi
h need not have any spe
ial relation to its index, to its right neighbor. When apro
ess re
eives a name, it
ompares it to its own. If the re
eived name is greater than its ownin lexi
ographi
 order, the pro
ess transmits the re
eived name to the right; otherwise the pro
essdis
ards it. If a pro
ess re
eives its own name, that name must have traveled all the way aroundthe ring, and the pro
ess
an de
lare itself the leader.Figure 13 des
ribes su
h a pro
ess, whi
h is parameterized by the type I of pro
ess indi
es andby a pro
ess index i. The assumes
lause identi�es an auxiliary spe
i�
ation, RingIndex (Figure 14),that imposes restri
tions on the type I. This spe
i�
ation requires that there be a ring stru
tureon I indu
ed by the operators first, right, and left, and that name provide a one-one mappingfrom indi
es of type I to names of type String.The type de
laration on the �rst line of Figure 13 de
lares Status to be an enumeration (Se
-tion 9.8) of the values waiting, ele
ted, and announ
ed.The automaton Pro
ess has two state variables: pending is a multiset of strings, and statushas type Status. Initially, pending is set to {name(i)} and status to waiting. The input a
tionre
eive(m, left(i), i)
ompares the name re
eived from the Pro
ess automaton to the left ofthis automaton in the ring and the name of the automaton itself. There are two output a
tions:send(m, i, right(i)), whi
h simply sends a message in pending to the Pro
ess automaton on theright in the ring, and leader(m, i), whi
h announ
es su

essful ele
tion. The two kinds of outputa
tions are pla
ed in separate tasks, so that a Pro
ess automaton whose status is ele
ted musteventually perform a leader a
tion.Editorial note: Should we say something about why the transitions are spe
i�ed as send(m, i, j)and re
eive(m, j, i)? The signature of the automaton restri
ts the values of j to be left(i) and
he
king to ensure that this
onvention is being respe
ted?6Eventually IOA will also provide notations for renaming a
tions.16

type Status = enumeration of waiting, ele
ted, announ
edautomaton Pro
ess(I: type, i: I)assumes RingIndex(I, String)signatureinput re
eive(m: String ,
onst left(i),
onst i)output send(m: String,
onst i,
onst right(i)),leader(m: String,
onst i)statespending: Mset[String ℄ := {name(i)},status: Status := waitingtrans i t ionsinput re
eive(m, j, i)e f f i f m > name(i) then pending := insert(m, pending)e l s e i f m = name(i) then status := ele
tedf ioutput send(m, i, j)pre m 2 pendinge f f pending := delete(m, pending)output leader(m, i)pre status = ele
ted ^ m = name(i)e f f status := announ
edtasks{send(m, j, right(j)) for m: String, j: I};{leader(m, j) for m: String , j: I}Figure 13: IOA spe
i�
ation of ele
tion pro
essRingIndex(I, J): t r a i tintrodu
esfirst: ! Ileft, right: I ! Iname: I ! Jasserts with i, j: Isort I generated by first, right;9 i (right(i) = first);right(i) = right(j) , i = j;left(right(i)) = i;name(i) = name(j) , i = jimplies with i: Iright(left(i)) = iFigure 14: Auxiliary spe
i�
ation for a �nite ring of pro
ess identi�ersautomaton LCR(I: type)assumes RingIndex(I, String)
omponentsP[i: I℄: Pro
ess(I, i);C[i: I℄: Channel(String, I, i, right(i))Figure 15: IOA spe
i�
ation of LCR algorithm17

The full LCR leader ele
tion algorithm is des
ribed in Figure 15 as a
omposition of a set ofpro
ess automata
onne
ted in a ring by reliable
ommuni
ation
hannels (Figures 2 and 5). Theassumes statement on the �rst line repeats the assumption about the type I of pro
ess indi
esin Figure 13. The keyword
omponents introdu
es a list of named
omponents: one Pro
essautomaton, P[i℄, and one Channel automaton, C[i℄, for ea
h element i of type I. The
omponentC[i℄ is obtained by instantiating the type parameters M and Index for the Channel automaton(Figure 5) with the a
tual types String and I of messages and pro
ess indi
es, and the parametersi and j with the values i and right(i), so that
hannel C[i℄
onne
ts pro
ess P[i℄ to its rightneighbor. The output a
tions send(m, i, right(i)) of P[i℄ are identi�ed with the input a
tionssend(m, i, right(i)) of C[i℄, and the input a
tions re
eive(m, left(i), i) of P[i℄ are identi�edwith the output a
tions re
eive(m, left(i), i) of C[left(i)℄, be
ause RingIndex implies thatright(left(i)) = i. Sin
e all input a
tions of the
hannel and pro
ess subautomata are identi�edwith output a
tions of other subautomata, the
omposite automaton
ontains only output a
tions.5.2 Spe
ializationA parameterized automaton des
ription de�nes a set of automata rather than a single automaton.For example, LCR de�nes a set of automata, operating on rings of varying size, rather than a singleautomaton, operating on a ring with a �xed size. We
an use the
omposition me
hanism in IOAto �x, for example, the size of the ring at 4. In Figure 16, the type statement expli
itly identi�esab
d as an enumerated type with four elements, and the axioms statement de�nes a ring stru
tureon these four elements, whi
h dis
harges the assumption in the de�nition of the single
omponent.type ab
d = enumeration of a, b,
, daxioms RingIndex(ab
d, String)automaton LCR4
omponents theOnly: LCR(ab
d)Figure 16: IOA spe
i�
ation of four-pro
ess LCR algorithmEven though the des
ription of LCR4 is not parameterized, it still de�nes a set of automatarather than single automaton: Figure 16 says nothing about how names are assigned to automata.We
ould pin down su
h details by
reating and referring to an additional auxiliary spe
i�
ation,whi
h de�nes the values of name(a), name(b), name(
), and name(d). But often it is not ne
essary topin details down to su
h an extent, be
ause the properties of an algorithm that are most of interestdo not depend on these details.5.3 Hiding output a
tions in a
ompositionIOA allows us to re
lassify some (or all) of the output a
tions in a
omposite automaton as internala
tions. Thus, for example, if we wish to hide the send and re
eive a
tions leading to the ele
tionof a leader in LCR4, we
an use a hidden statement, as in Figure 17.automaton LCR4a
omponents theOnly: LCR4hidden re
eive(m, i, j), send(m, i, j)Figure 17: IOA spe
i�
ation with hidden a
tions18

6 IOA des
riptions of properties of automataIOA permits users to des
ribe state invariants of I/O automata or simulation relations betweenI/O automata.6.1 InvariantsInvariants are des
ribed using the keywords invariant of followed by the name of an automaton,a
olon, and then a predi
ate. For example, the following invariant for the LCR automaton statesthat at most one pro
ess is ever ele
ted as the leader.invariant of LCR: P[i℄.status = ele
ted ^ P[j℄.status = ele
ted) i = jA state in a
omposite automaton is named by the name of the
omponent to whi
h it belongsfollowed by a dot followed by the state variable name, as shown in the invariant des
ribed above.When there is no ambiguity (i.e., when only one
omponent has a state variable with a given name),the name of the automaton may be omitted.6.2 Simulation relationsSimulation relations provide a
onvenient me
hanism for showing that one automaton implementsanother, i.e., that every tra
e one is a tra
e of the other. In order to illustrate various simula-tion relations, we des
ribe a modi�
ation, DelayedLossyChannel (Figure 18), of the LossyChannel(Figure 8) automaton. In DelayedLossyChannel, the
rash a
tion does not result in the immediateloss of messages from the queue; rather, it marks messages as losable by subsequent internal losea
tions.axioms MarkedMessage for Mark[__℄automaton DelayedLossyChannel(M: type)signatureinput insert(m: M),
rashoutput remove(m: M)internal losestates buffer: Seq[Mark[M℄℄ := {}trans i t ionsinput insert(m)e f f buffer := buffer ` [m, false℄output remove(m)pre buffer 6= {} ^ head(buffer).msg = me f f buffer := tail(buffer)input
rashe f f buffer := mark(buffer)internal losee f f buffer :=
hooseso that subseqMarked(buffer 0 , buffer)Figure 18: Spe
i�
ation of an implementation of a lossy
hannelThe axioms statement in Figure 18 identi�es a user-written spe
i�
ation (Figure 27) that de�nesa type
onstru
tor Mark[__℄ for types su
h as Mark[M℄ or Mark[String℄ of \marked messages." Thisspe
i�
ation de�nes a marked message to be a pair [m, b℄ of a message and a boolean value, the
omponents of whi
h
an be extra
ted by the operators .msg and .mark. It also de�nes an operator19

mark that sets all marks in a sequen
e to true, an operator messages that given a sequen
e of markedmessages returns the
orresponding sequen
e of messages, and a relation subseqMarked that holdswhen the only messages missing from a sequen
e have marks of true.The automaton DelayedLossyChannel implements the automaton LossyChannel, be
ause all ofits tra
es are also tra
es of LossyChannel. One way of showing that this is the
ase is to de�ne arelation between the states of DelayedLossyChannel and those of LossyChannel and to show thatthis relation is a forward simulation (see Se
tion 1.4). The following assertion in IOA de�nes su
ha relation.forward simulation from DelayedLossyChannel to LossyChannel:messages(DelayedLossyChannel.buffer) = LossyChannel.bufferIt is also true that every tra
e of LossyChannel is a tra
e of DelayedLossyChannel, i.e., that thetwo automata have the same set of tra
es. One way to show this reverse in
lusion is to de�ne arelation between the states of LossyChannel and those of DelayedLossyChannel and to show thatthis relation is a ba
kward simulation. The following assertion des
ribes su
h a relation.ba
kward simulation from LossyChannel to DelayedLossyChannel:9 s: Seq[MM℄ (subseqMarked(s, DelayedLossyChannel.buffer)^ LossyChannel.buffer = messages(s))In order to establish that relations de�ned in these fashions are a
tually forward and ba
kwardsimulation relations, the user must demonstrate that these relations satisfy the de�nitions givenfor simulation relations in Se
tion 1.4. The key element in su
h a demonstration is usually theidenti�
ation, for ea
h step of one automaton, of an exe
ution fragment of the other that
ontainsthe same external a
tions.Editorial note: Need to add example of su
h an identi�
ation here, together with the formalsyntax for des
ribing identi�
ations in the referen
e manual. In general, the identi�
ation is ade�nition by
ases.

20

Part IIIOA Data TypesIOA spe
i�
ations
an employ various data types, both built-in and user-de�ned. We list here theoperators available for the built-in types; Appendix A de�nes their properties formally via setsof axioms in multisorted �rst-order logi
 (see Se
tion 11). Data types and operators are de�nedabstra
tly, not in terms of any parti
ular representation or implementation. In parti
ular, operatorsare de�ned without any referen
e to a \state" or \store," so they
annot have \side-e�e
ts."� The primitive data types Bool, Int, Nat, Real, and Char
an be used without expli
it de
lara-tions. Se
tion 7 des
ribes the operators available for ea
h of these types.� Other primitive data types
an be introdu
ed as type parameters to automaton de�nitions,as in the
hannel automaton des
ribed in Figure 5, whi
h is parameterized by the types Mand Index.� Compound data types formed using the type
onstru
tors Array, Set, Mset, Seq, and Map
anbe used without expli
it de
larations. Se
tion 8 des
ribes the operators available for thesetypes.� Compound data types formed using the keywords enumeration, tuple, and union
an beused with expli
it de
larations, as intype Color = enumeration of red, white, bluetype Msg = tuple of sour
e , dest: Pro
ess,
ontents: Stringtype Fig = union of sq: Square,
ir
: Cir
leSe
tions 9.8 and 22 des
ribe the operators available for these data types.� User-de�ned data types, as well as additional operators on the above primitive and
ompounddata types,
an be introdu
ed (or required to have
ertain properties) by indi
ating auxiliaryspe
i�
ations, as inaxioms RingIndex(ab
d, String)axioms Sta
k for Sta
k[__℄assumes TotalOrdering(T, <)These auxiliary spe
i�
ations, whi
h users write as traits in the Lar
h Shared Language (LSL),provide both the syntax and semanti
s for all operators introdu
ed in this fashion. Se
tions 9and 10 des
ribe how to write LSL traits and how to in
orporate them into IOA spe
i�
ationsby means of the axioms statement.The equality (__=__), inequality (__6=__), and
onditional (if __ then __ else) operators areavailable for all data types in IOA (the __'s are pla
eholders for the arguments of these operators).7 Built-in primitive typesThe following built-in primitive types and operators require no de
laration.7.1 BooleansThe boolean data type, bool, provides
onstants and operators for the set ftrue; falseg of logi
alvalues. Synta
ti
ally, the operators ^ and _ bind more tightly than), whi
h binds more tightlythan ,. 21

Operators for bool Sample input Meaningtrue, false true, false The values true and false: ~p Negation (not)^, _ p /\ q, p \/ q Conjun
tion (and), disjun
tion (or)) p => q Impli
ation (implies), p <=> q Logi
al equivalen
e (if and only if)7.2 IntegersThe integer data type, Int, provides
onstants and operators for the set of (positive and negative)integers. Operators for Int Sample input Meaning0, 1, . . . 123 Non-negative integers- -x Additive inverse (unary minus)abs abs(x) Absolute valuepred, su

 su

(x) Prede
essor, su

essor+, -, * x + (y*z) Addition, subtra
tion, multipli
ationmin, max min(x, y) Minimum, maximumdiv, mod mod(x, y) Integer quotient, modulus<, �, >, � x <= y Less (greater) than (or equal to)Synta
ti
ally, all binary operators bind equally tightly, so that expressions must be parenthe-sized, as in ((x*y) + z) > 3, to indi
ate the arguments to whi
h operators are applied.7.3 Natural numbersThe natural number data type, Nat, provides
onstants and operators for the set of non-negativeintegers. The operators and
onstants are as for Int, ex
ept that there are no unary operators - orabs, there is an additional operator ** for exponentiation, and the value of x-y is de�ned to be 0if x < y. Synta
ti
ally, integer
onstants (e.g., 1) and operators (e.g., -) are distin
t from naturalnumber
onstants and operators that have the same typographi
al representation. Sometimes su
hoverloaded operators
an be distinguished from
ontext (e.g., the 1 in the expression abs(-1) mustbe an integer
onstant, be
ause abs and unary - are operators over the integers, but not over thenatural numbers). At other times, users must distinguish whi
h operators or
onstants are meantby qualifying expressions with types, as in x > 0:Nat.7.4 Real numbersThe real number data type, Real, provides
onstants and operators for the set of real numbers.Again, the operators and
onstants are as for Int, ex
ept that there are no operators pred, su

,div, and mod, and there are additional operators / and ** for division and exponentiation.7.5 Chara
tersThe
hara
ter data type, Char, provides
onstants and operators for letters and digits.77Additional
hara
ter
onstants will be provided in a future version of IOA.
22

Operators for Char Sample input Meaning0A0, . . . , 0Z0, 0a 0, . . . , 0z0, 000, . . . , 09 0 'J' Letters and digits<, �, >, � 'A' <= 'Z' ASCII ordering7.6 StringsThe string data type, String, provides
onstants and operators for lexi
ographi
ally ordered se-quen
es of
hara
ters. It provides operators as des
ribed for Seq[Char℄ (see Se
tion 8.4) as well asthe ordering relations <, �, >, and �.8 Built-in type
onstru
torsThe following built-in type
onstru
tors and operators require no de
laration.8.1 ArraysThe array data types, Array[I, E℄ and Array[I, I, E℄, provide
onstants and operators for one-and two-dimensional arrays of elements of some type E indexed by elements of some type I.Operators for Array[I, E℄ Meaning
onstant(e) Array with all elements equal to ea[i℄ Element indexed by i in array aassign(a, i, e) Array a 0 equal to a ex
ept that a 0[i℄ = eOperators for Array[I, I, E℄ Meaning
onstant(e) Array with all elements equal to ea[i, j℄ Element indexed by i, j in array aassign(a, i, j, e) Array a 0 equal to a ex
ept that a 0[i, j℄ = eThe array (one- or two-dimensional) denoted by
onstant(e) is determined by
ontext, as in
onstant(e)[i℄, or by an expli
it quali�
ation, as in
onstant(e):Array[I,I,E℄.8.2 Finite setsThe set data type, Set[E℄, provides
onstants and operators for �nite sets of elements of some typeE. Operators for Set[E℄ Sample input Meaning{} {} Empty set{...} {e} Set
ontaining e aloneinsert insert(e, s) Set
ontaining e and all elements of sdelete delete(e, s) Set
ontaining all elements of s, but not e2 e \in s True i� e is in s[, \, - (s \U s') - (s \I s') Union, interse
tion, di�eren
e�, �, �, � s \subseteq s' (Proper) subset (superset)size size(s) Size (an Int) of s
23

8.3 MultisetsThe multiset data type, Mset[E℄, provides
onstants and operators for �nite multisets of elementsof some type E. Its operators are those for Set[E℄, ex
ept that there is an additional operator
ountsu
h that
ount(e, s) is the number (an Int) of times an element e o

urs in a multiset s.8.4 Sequen
esThe sequen
e data type, Seq[E℄, provides
onstants and operators for �nite sequen
es of elementsof some type E.Operators for Seq[E℄ Sample input Meaning{} {} Empty sequen
e` s |- e Sequen
e with e appended to sa e -| s Sequen
e with e prepended to sk s || s' Con
atenation of s, s02 e \in s True i� e is in shead, last head(s) First (last) element in sequen
einit, tail tail(s) All but �rst (last) elements in sequen
elen len(s) Length (an Int) of s...[...℄ s[n℄ nth (an Int) element in s8.5 MappingsThe mapping data type, Map[D, R℄, provides
onstants and operators for �nite partial mappingsof elements of some domain type D to elements of some range type R. Finite mappings di�er fromarrays in two ways: they may not be de�ned for all elements of D, and their domains are always�nite.Operators for Map[D, R℄ Sample input Meaningempty empty Empty mapping...[...℄ m[d℄ Image of d under mdefined defined(m, d) True if m[d℄ is de�nedupdate update(m, d, r) Mapping m0 equal to m ex
ept that m0[d℄ = r9 Data type semanti
sIOA des
ribes the semanti
s of abstra
t data types by means of axioms expressed in the the Lar
hShared Language (LSL). Users need refer to LSL spe
i�
ations only if they have questions aboutthe pre
ise mathemati
al meaning of some operator or if they wish to introdu
e new operators ordata types.8This se
tion provides a tutorial introdu
tion to LSL. It is taken from Chapter 4 of [7℄, but hasbeen updated to re
e
t several
hanges to LSL, most signi�
antly the addition of expli
it quan-ti�
ation. LSL is a member of the Lar
h family of spe
i�
ation languages [7℄, whi
h supports atwo-tiered, de�nitional style of spe
i�
ation. Ea
h spe
i�
ation has
omponents written in twolanguages: LSL, whi
h is independent of any programming language, and a so-
alled interfa
e lan-guage tailored spe
i�
ally for a programming language (su
h as C) or for a mathemati
al model of8Some tool builders may wish to provide other, equivalent de�nitions for the built-in data types, e.g., using someother mathemati
al formalism or in terms of pro
edures written in some programming language.24

omputation (su
h as I/O automata). Interfa
e languages are used to spe
ify interfa
es betweenprogram
omponents and the e�e
ts of exe
uting those
omponents. By tailoring interfa
e lan-guages to programming languages or mathemati
al models, Lar
h makes it easy to des
ribe thedetails of an interfa
e (e.g., how program modules
ommuni
ate) in a fashion that is familiar tousers.Sequen
es(E): t r a i tintrodu
es{}: ! Seq[E℄__a__: E, Seq[E℄ ! Seq[E℄last: Seq[E℄ ! Einit: Seq[E℄ ! Seq[E℄asserts with s: Seq[E℄, e: Esort Seq[E℄ generated f ree ly by {}, a;last(e a s) = (i f s = {} then e e l se last(s));init(e a s) = (i f s = {} then {} e l se e a init(s));implies with s1, s2: Seq[E℄, e1, e2: Ee1 a s1 = e2 a s2 , e1 = e2 ^ s1 = s2;e1 a s1 6= {} Figure 19: Simpli�ed LSL spe
i�
ation for sequen
esInterfa
e languages rely on de�nitions from auxiliary spe
i�
ations, written in LSL, to providesemanti
s for the data types a program manipulates. An LSL spe
i�
ation, known as a trait, de-s
ribes a
olle
tion of sorts (i.e., non-empty sets of elements) and operators (i.e., fun
tions mappingtuples of elements to elements), by means of axioms written in �rst-order logi
. For example, theSequen
es trait shown in Figure 19 des
ribes some properties of �nite sequen
es of elements ofa sort E. The introdu
es
lause lists the sorts and operators being spe
i�ed, the asserts
lausede�nes their properties, and the implies
lause
alls attention to some (purported)
onsequen
es ofthese properties. In the introdu
es
lause, the __'s are pla
eholders for the arguments of the in�xoperator a. In the asserts
lause, the generated freely by axiom asserts that all sequen
es
an beobtained by prepending a �nite number of elements (using the operator a) to the empty sequen
e{}, and the remaining axioms provide indu
tive de�nitions of the last and init operators; notethat last({}) and init({}) are not de�ned. The implies
lause
alls attention to the fa
t thattwo elements of the freely generated sort Seq[E℄ are equal if and only if they were generated in thesame fashion; this property distinguishes sequen
es from sets, where it does not matter in whi
horder elements are inserted.Lar
h distinguishes the idealized sorts of elements des
ribed in LSL (su
h as arbitrarily longsequen
es) from the a
tual types of elements involved in a
omputation (su
h as sequen
es of somelimited length). Lar
h also distinguishes between mathemati
al operations on sorts (su
h as last,whi
h is not spe
i�ed
ompletely) and
omputational pro
edures (su
h as one that returns the �rstelement in a sequen
e, whi
h may either return an \error" element or raise an ex
eption if thesequen
e is empty). Ea
h data type in a program is interpreted as a sort in LSL, and the resultsof
omputations are spe
i�ed in terms of operators whose meanings have been de�ned in LSL.9.1 Axiomati
 spe
i�
ationsLSL's basi
 unit of spe
i�
ation is a trait. Consider, for example, the spe
i�
ation for some proper-ties of sets given in Figure 20. This spe
i�
ation is similar to
onventional algebrai
 spe
i�
ations,as would be written in many languages [1, 3℄. The trait has a name, Set0, whi
h is independent of25

the names appearing in it for data abstra
tions (e.g., Set[E℄) or for operators (e.g., 2).Set0: t r a i tintrodu
es{}: ! Set[E℄insert: E, Set[E℄ ! Set[E℄__2__: E, Set[E℄ ! Boolsize: Set[E℄ ! Int0, 1: ! Int__+__: Int, Int ! Int__�__: Int, Int ! Boolasserts with s, s 0 : Set[E℄, e, e 0 : E8 e (e 2 s , e 2 s 0)) s = s 0 ;:(e 2 {});e 2 insert(e 0 , s) , e = e 0 _ e 2 s;size({}) = 0;size(insert(e, s)) = size(s) + (i f e 2 s then 0 e l se 1)Figure 20: A trait spe
ifying some properties of setsThe part of the trait following the keyword introdu
es de
lares a list of operators, ea
h withits signature (the sorts of its domain and range). An operator is a total fun
tion that maps a tupleof values of its domain sorts to a value of its range sort. Every operator used in a trait must bede
lared; signatures are used to sort-
he
k terms in mu
h the same way as expressions are type-
he
ked in programming languages. Primitive sorts are denoted by identi�ers (su
h as E and Int);sorts
onstru
ted from other sorts (in a manner de�ned by the trait) are denoted by identi�ers forsort
onstru
tors (su
h as Set) applied to the other sorts (as in Set[E℄). All sorts are de
laredimpli
itly by their appearan
e in signatures.Double unders
ores (__) in an operator de
laration indi
ate that the operator will be usedin mix�x terms. For example, 2, +, and � are de
lared as binary in�x operators. In�x, pre�x,post�x, and bra
keting operators (su
h as __+__, -__, __!, {__}, __[__℄, and if __ then __ else __)are integral parts of many familiar mathemati
al and programming notations, and their use
an
ontribute substantially to the readability of spe
i�
ations.LSL's grammar for mix�x terms is intended to ensure that legal terms parse as readers expe
t|even without studying the grammar. LSL has a simple pre
eden
e s
heme for operators:� post�x operators that
onsist of a dot followed by an identi�er (as in �eld sele
tors su
h as.first) bind most tightly;� bra
keting operators that begin with a left delimiter (e.g., [) and end with a right delimiter(e.g., ℄) bind more tightly than� the logi
al quanti�ers 8 (for all) and 9 (there exists), whi
h bind more tightly than� other user-de�ned operators and the built-in propositional operator : (not), whi
h bind moretightly than� the built-in equality and inequality operators = and 6= whi
h bind more tightly than� the built-in propositional operators ^ (and) and _ (or), whi
h bind more tightly than� the built-in propositional operator)(implies), whi
h binds more tightly than26

� the built-in propositional operator , (if and only if), whi
h binds more tightly than� the built-in
onditional operator if __ then __ else __.For example, the term p , x + w.a.b = y _ z
an be written without parentheses and is equiv-alent to the fully parenthesized term p , (((x + ((w.a).b)) = y) _ z). LSL allows unparen-thesized in�x terms with multiple o

urren
es of an operator at the same pre
eden
e level, butnot di�erent operators; it asso
iates su
h terms from left to right. Fully parenthesized terms arealways a

eptable. Thus x ^ y ^ z is equivalent to (x ^ y) ^ z, but x _ y ^ z must be writtenas (x _ y) ^ z or as x _ (y ^ z), depending on whi
h is meant.The part of the trait following the keyword asserts
onstrains the operators by means of formu-las, that is, by terms of sort bool
onstru
ted from variables de
lared following the keyword with,operators de
lared in the trait, built-in operators, and quanti�ers. The last three formulas in thetrait Set0 are equations, whi
h
onsist of two quanti�er-free terms of the same sort, separated by= or ,.Ea
h trait de�nes a theory (a set of formulas) in multisorted �rst-order logi
 (see Se
tion 11).Ea
h theory
ontains the trait's assertions, the
onventional axioms of �rst-order logi
, everythingthat follows from them, and nothing else. This loose semanti
 interpretation guarantees thatformulas in the theory follow only from the presen
e of assertions in the trait|never from theirabsen
e. This is in
ontrast to algebrai
 spe
i�
ation languages based on initial algebras [6℄ or �nalalgebras [14℄. Using the loose interpretation ensures that all theorems proved about an in
ompletespe
i�
ation remain valid when it is extended.Ea
h trait should be
onsistent: it must not de�ne a theory
ontaining the formula false.Consisten
y is often diÆ
ult to prove and is unde
idable in general. In
onsisten
y is often easierto dete
t and
an be a useful indi
ation that there is something wrong with a trait.9.2 Axiom s
hemesAt times, it
an be diÆ
ult to �nd adequate sets of axioms that assert some property of interest.Consider, for example, the problem of asserting that the set Nat of natural numbers
ontains theintegers 0, 1, 2, . . . and nothing else. A natural approa
h is to assert that the set Nat is the smallestset
ontaining 0 and
losed under the su

essor operation su

 (de�ned by su

(n) = n+1):8 s:Set[Nat℄ (0 2 s ^ 8 n:Nat (n 2 s) su

(n) 2 s)) 8 n:Nat (n 2 s))However, the axioms in the trait Set0 do not imply the existen
e of enough elements of sort Set[E℄to give this assertion about its intended meaning: these axioms remain true if Set[E℄ is interpretedas
ontaining only �nite sets of elements of sort E, in whi
h
ase no element of Set[Nat℄ is
losedunder su

 and the assertion about Nat is va
uously true.There are several ways to remedy this problem. One is to posit some spe
ial, unaxiomatizedrelationship between the sort Set[E℄ and the sort E (i.e., that Set[E℄
ontains all sets of elementsof E). However, this approa
h
reates another problem, namely, whether to posit other spe
ial rela-tionships between similar notations su
h as Seq[E℄ or Map[E,E℄ and the sort E. Another approa
h,whi
h avoids this problem, is to enlarge Set0 with axioms like 9 s:Set[Nat℄ 8 n:Nat (n 2 s) thatfor
e Set[E℄ to
ontain suÆ
iently many sets of elements of E. Unfortunately, no �nite set of axiomssuÆ
es to for
e the existen
e of all potentially interesting sets of elements of E.For reasons su
h as this, LSL provides another statement, the generated by statement, for usein de�ning theories that would otherwise require in�nitely many axioms. A generated by statement(su
h as the �rst axiom in the trait Sequen
es) asserts that a list of operators is a
omplete set ofgenerators for a sort. That is, ea
h value of the sort is equal to one that
an be des
ribed usingjust those operators. For example, the statement27

sort Nat generated f ree ly by 0, su

asserts that all values of sort Nat
an be
onstru
ted by �nitely many appli
ations of the operatorsu

 to the
onstant 0. In addition, the keyword freely indi
ates that the generators for Nat provideunique representations for the natural numbers. Similary, the statementsort Set[E℄ generated by {}, insertasserts that all values of sort Set[E℄
an be
onstru
ted by �nitely many appli
ations of insert to{}, that is, that all values of sort Set[E℄ are �nite sets. In this
ase, the absen
e of the keywordfreely suggests that the generators for Set[E℄ do not provide unique representations for sets ofelements of E.A generated by statement justi�es a indu
tion s
hema for proving properties of a sort. Forexample, to prove 8 s:Set[E℄ (size(s) � 0) from the axioms of Set0 and the generated by state-ment for Set[E℄, we
ould (try to)
onstru
t a proof by indu
tion with the stru
ture� Basis step: size({}) � 0� Indu
tion step: 8 s:Set[E℄ 8 e:E (size(s) � 0) size(insert(e, s)) � 0)In general, a generated by statement is equivalent to an in�nite set of formulas, one for ea
hproperty (su
h as size(s) � 0) that
an be expressed in �rst-order logi
.99.3 Combining LSL spe
i�
ationsThe trait Set0
ontains four operators that it does not de�ne: 0, 1, +, and �. Without moreinformation about these operators, the de�nition of size is not parti
ularly useful, and we
annotprove \obvious" properties su
h as size(s) � 0. We
ould add assertions to Set0 to de�ne theseoperators, but it is usually better to spe
ify su
h operators in a separate trait that is in
ludedby referen
e. This makes the spe
i�
ation more stru
tured and makes it easier to reuse existingspe
i�
ations. Hen
e we might remove the expli
it introdu
tions of these operators from Set0 andinstead add an external referen
ein
ludes Integerto a separate trait Integer (see Appendix A), whi
h both introdu
es these operators and de�nestheir properties.The theory asso
iated with a trait
ontaining an in
ludes
lause is the theory asso
iated withthe assertions of that trait and all (transitively) in
luded traits.It is often
onvenient to
ombine several traits dealing with di�erent aspe
ts of the same op-erator. This is
ommon when spe
ifying something that is not easily thought of as a data type.For example, both the trait PartialOrder1 and the less stru
tured trait PartialOrder2 in Figure 21de�ne a partial order to be an irre
exive, transitive order.9.4 Renaming sorts and operators in LSL spe
i�
ationsThe trait PartialOrder1 relies heavily on the use of the same operator symbol, <, and the samesort identi�er, T, in the two in
luded traits. In the absen
e of su
h happy
oin
iden
es, renaming9LSL provides an additional axiom s
heme in the form of a partitioned by statement, whi
h asserts that a listof operators is a
omplete set of observers for a sort: all distin
t values of the sort
an be distinguished using justthese operators. For example, the statement sort Set[E℄ partitioned by 2 asserts that terms indistinguishableby the observer 2 denote the same value of sort Set[E℄. This statement is equivalent to the �rst axiom in the traitSet0. In general, partitioned by statements do not in
rease the des
riptive power of LSL, be
ause they
an bereformulated as single axioms that
ontain expli
it quanti�ers. However, they
an be used to provide proof tools withautomati
 methods of dedu
tion. 28

Irreflexive: t r a i tintrodu
es __<__: T, T ! Boolasserts with x: T:(x < x)Transitive: t r a i tintrodu
es __<__: T, T ! Boolasserts with x, y, z: Tx < y ^ y < z) x < zPartialOrder1: t r a i tin
ludes Irreflexive, TransitivePartialOrder2: t r a i tintrodu
es __<__: T, T ! Boolasserts with x, y, z: T:(x < x);x < y ^ y < z) x < zFigure 21: Spe
i�
ations of kinds of relations
an be used to make names
oin
ide, to keep them from
oin
iding, or simply to repla
e them withmore suitable names, as inin
ludes Transitive(� for <)whi
h we
an use to assert that some operator other than < is transitive.In general, a trait referen
e is a phrase Tr(name1 for name2, . . .) that stands for the trait Trwith every o

urren
e of name2 (whi
h must be a sort, a sort
onstru
tor, or an operator) repla
edby name1, et
. If name2 is a sort or a sort
onstru
tor, this renaming
hanges the signatures of alloperators in Tr in whose signatures name2 appears. For example, the signature of the operator a
hanges to Int,Seq[Int℄!Seq[Int℄ in the trait referen
e in
ludes Sequen
es(Int for E).Any sort or operator in a trait
an be renamed when that trait is referen
ed in another trait.Some, however, are more likely to be renamed than others. It is often
onvenient to single these outso that they
an be renamed positionally. For example, the header Sequen
es(E): trait in Figure 19makes the referen
e in
ludes Sequen
es(Int) equivalent to in
ludes Sequen
es(Int for E).9.5 Stating intended
onsequen
es of LSL spe
i�
ationsIt is not possible to prove the \
orre
tness" of a spe
i�
ation, be
ause there is no absolute standardagainst whi
h to judge
orre
tness. But sin
e spe
i�
ations
an
ontain errors, spe
i�ers need helpin lo
ating them. LSL spe
i�
ations
annot, in general, be exe
uted, so they
annot be testedin the way that programs are
ommonly tested. LSL sa
ri�
es exe
utability in favor of brevity,
larity,
exibility, generality, and abstra
tion. To
ompensate, it provides other ways to
he
kspe
i�
ations.This se
tion brie
y des
ribes ways in whi
h spe
i�
ations
an be augmented with redundantinformation to be
he
ked during validation. Che
kable properties of LSL spe
i�
ations fall intothree
ategories:
onsisten
y, theory
ontainment, and
ompleteness. As dis
ussed earlier, therequirement of
onsisten
y means that any trait whose theory
ontains the formula false is illegal.An implies
lause makes
laims about theory
ontainment. Suppose we think that a
onsequen
eof the assertions of Set0 is that the order in whi
h elements are inserted in a set makes no di�eren
e.To formalize this
laim, we
ould the following
lause to Set0:29

implies with e1, e2: E, s: Set[E℄insert(e1, insert(e2, s)) = insert(e2, insert(e1, s))Properties
laimed to be implied
an be spe
i�ed using the full power of LSL, in
luding formulas,generated by statements, and referen
es to other traits. Attempting to verify that propertiesare a
tually implied
an be helpful in error dete
tion. Impli
ations also help readers
on�rmtheir understanding. Finally, they
an provide useful lemmas that will simplify reasoning aboutspe
i�
ations that use the trait.LSL does not require that ea
h trait de�ne a
omplete theory, that is, one in whi
h ea
h fullyquanti�ed formula is either true or false. Many �nished spe
i�
ations (intentionally) do not fullyde�ne all their operators. Furthermore, it
an be useful to
he
k the
ompleteness of some de�nitionslong before �nishing the spe
i�
ation they are part of. Therefore, instead of building in a single testof
ompleteness that is applied to all traits, LSL provides a way to in
lude within a trait spe
i�

he
kable
laims about
ompleteness, using
onverts
lauses. Adding the
lauseimplies
onverts 2to Set0 makes the
laim that the trait's axioms fully de�ne the operator 2. This
laim meansthat, if the interpretations of all the other operators are �xed, there is only one interpreta-tion of 2 that satis�es the axioms. (This
laim
annot be proved from the axioms in Set0alone, but
an be proved from those axioms together with the indu
tion s
hema asso
iated withsort Set[E℄ generated by {}, insert.)The
laim implies
onverts last, init
annot be veri�ed from the axioms for Sequen
es inFigure 19, whi
h de�ne the meaning of last(s) and init(s) only when s 6= {}. This in
ompletenessin Sequen
es
an be resolved by adding other axioms to the trait, perhaps last({}) = errorVal.But it is generally better not to add su
h axioms. The spe
i�er of Sequen
es should not be
on-
erned with whether the sort E has an errorVal and should not be required to introdu
e irrelevant
onstraints on __a__. Extra axioms give readers more details to assimilate; they may pre
ludeuseful spe
ializations of a general spe
i�
ation; and sometimes there simply is no reasonable axiomthat would make an operator
onvertible (
onsider division by 0). Error
onditions and unde�nedvalues are treated best in interfa
e spe
i�
ations, as dis
ussed below.LSL provides an exempting
lause for listing terms that are not
laimed to be de�ned (whi
his di�erent from \that are
laimed not to be de�ned"). The
laimimplies with d: D
onverts last, init exempting last({}), init({})means that last and init are fully de�ned by the trait's axioms, interpretations for the otheroperators ({} and a), and interpretations for the two terms last({}) and init({}). This
laim
anbe proved by indu
tion from the axioms of Sequen
es.In IOA spe
i�
ations, pre
onditions for a
tions should ensure that their e�e
ts do not dependon the values of unde�ned terms. If an a
tion has a nondeterministi
 e�e
t, that e�e
t should bespe
i�ed using the
hoose operator or a so that
lause. For example, the IOA spe
i�
ationoutput pi
k1(x: Int, s: Set[Int℄)pre s 6= {}e f f x :=
hoose e where e 2 sdes
ribes an a
tion that is enabled for any pair (x, s) su
h that x 2 s. Attempting to spe
ify thea
tion using an underspe
i�ed LSL operator will not produ
e the same result. For example, theIOA spe
i�
ationoutput pi
k2(x: Int, s: Set[Int℄)pre s 6= {}e f f x := someElement(s)des
ribes an a
tion that, for any nonempty set s, is enabled for exa
tly one pair (x, s), namely,(s, someElement(s)). A trait
ontaining 30

asserts with s: Set[Int℄s 6= {}) someElement(s) 2 sdoes mu
h more than
onstrain the value of someElement(s) to one appropriate for a
hoose oper-ator: it
onstrains the value of someElement(s) to be the same ea
h time that term is used in anIOA spe
i�
ation.9.6 Re
ording assumptions in LSL spe
i�
ationsSome traits are suitable for use in all
ontexts and some only in
ertain
ontexts. Just as we writepre
onditions that des
ribe the
ontexts in whi
h a pro
edure may be
alled, we write assumptionsin traits that des
ribe the
ontexts in whi
h the traits may be in
luded. As with pre
onditions,assumptions impose proof obligations on the
lient (i.e., the in
luding trait), and they may bepresumed true within the in
luded trait.Consider, for example, spe
ializing the Sequen
es trait to des
ribe sequen
es of strings by
om-bining Sequen
es with a separate trait that de�nes operators for the data type String:StringSequen
es: t r a i tin
ludes Sequen
es(String), StringThe intera
tions between String and Sequen
es are limited. Nothing in Sequen
es(String) dependson any parti
ular operators being introdu
ed in in
luding traits, let alone their having any spe
ialproperties. Therefore Sequen
es needs no assumptions.OrderedSequen
es0(E): t r a i tin
ludes Sequen
esintrodu
es__<__: E, E ! Bool__� __: Seq[E℄, Seq[E℄ ! Boolasserts with s, s1, s2: Seq[E℄, e, e1, e2: E{} � (e a s);:(s � {});(e1 a s1) � (e2 a s2) , e1 < e2 _ (e1 = e2 ^ s1 � s2)Figure 22: Preliminary spe
i�
ation of ordered sequen
esConsider, however, spe
ializing the Sequen
es trait to des
ribe lexi
ographi
ally ordered se-quen
es, as in Figure 22. As written, OrderedSequen
es0 says nothing about whether the operator< de�nes an ordering over E; hen
e there is no reason to believe that the operator � de�nes anordering over Seq[E℄. It is inappropriate to de�ne < within OrderedSequen
es0, both be
ause itsde�nition would depend on properties of the sort E (whi
h are not spe
i�ed in OrderedSequen
es0)and be
ause to de�ne < there would overly restri
t the utility of OrderedSequen
es0. What we needis an assumes
lause, as in the trait OrderedSequen
es in Figure 23.Sin
e OrderedSequen
esmay presume its assumptions, its theory is the same as if it had in
ludedTransitive rather than assumed it: OrderedSequen
es inherits all the de
larations and assertionsof Transitive. Therefore, the assumption of Transitive
an be used to derive various propertiesof OrderedSequen
es, for example, that � is itself transitive, as
laimed in the implies
lause.The di�eren
e between assumes and in
ludes appears when OrderedSequen
es is used in an-other trait. Whenever a trait with assumptions is in
luded or assumed, its assumptions must bedis
harged. For example, inStringSequen
es1: t r a i tin
ludes String , OrderedSequen
es(String)31

OrderedSequen
es(E): t r a i tassumes Transitive(E for T)in
ludes Sequen
esintrodu
es__<__: E, E ! Bool__� __: Seq[E℄, Seq[E℄ ! Boolasserts with s, s1, s2: Seq[E℄, e, e1, e2: E{} � (e a s);:(s � {});(e1 a s1) � (e2 a s2) , e1 < e2 _ (e1 = e2 ^ s1 � s2)implies t r a i t Transitive(Seq[E℄ for T, � for <)Figure 23: Spe
i�
ation of ordered sequen
esthe assumption to be dis
harged is that the (renamed) theory asso
iated with Transitive is a subsetof the theory asso
iated with the rest of StringSequen
es1 (i.e., is a subset of the theory asso
iatedwith the trait String).9.7 Built-in operators and overloadingIn our examples, we have freely used the propositional operators together with three heavily over-loaded operators, if __ then __ else __, =, and 6=, whi
h are built into LSL. This allows theseoperators to have appropriate synta
ti
 pre
eden
e. More importantly, it guarantees that they have
onsistent meanings in all LSL spe
i�
ations, so readers
an rely on their intuitions about them.Similarly, LSL
an re
ognize de
imal numerals, su
h as 0, 24, and 1997, without expli
it de
la-rations and de�nitions. In prin
iple, ea
h numeral
ould be de�ned within LSL, but su
h de�nitionsare not likely to advan
e anyone's understanding of the spe
i�
ation. De
imalLiterals is a prede-�ned quasi-trait that impli
itly de�nes all the numerals that appear in a spe
i�
ation; it is in
ludedin the standard numeri
 traits Natural, Integer, and Real that are built into IOA (see Appendix A).In addition to the built-in overloaded operators and numerals, LSL provides for user-de�nedoverloadings. Ea
h operator must be de
lared in an introdu
es
lause and
onsists of an iden-ti�er (e.g., update) or operator symbol (e.g., __<__) and a signature. The signatures of mosto

urren
es of overloaded operators are dedu
ible from
ontext. Consider, for example, the traitOrderedSequen
es(< for �), in whi
h the symbol < denotes two di�erent operators, one relatingterms of sort E, and the other, terms of sort Seq[E℄. The
ontexts in whi
h this symbol is useddetermine unambiguously whi
h operator is whi
h.LSL provides notations for disambiguating overloaded operators when
ontext does not suÆ
e.Any subterm of a term
an be quali�ed by its sort. For example, a:S in a:S = b expli
itly indi
atesthat a is of sort S. Furthermore, sin
e the two operands of = must have the same sort, thisquali�
ation also impli
itly de�nes the signatures of = and b. These notations
an be used todisambiguate the overloaded operator symbol < in the last axiom in OrderedSequen
es(< for �)expli
itly, as in(e1 a s1):Seq[E℄ < (e2 a s2):Seq[E℄ ,e1:E < e2:E _ (e1:E = e2:E ^ s1:Seq[E℄ < s2:Seq[E℄)t1:T < t2:T _ (t1:T = t2:t ^ s1:Seq[T℄ < s2:Seq[T℄)In
ontexts other than terms, overloaded operators
an be disambiguated by dire
tly aÆxing theirsignatures, as in implies
onverts <:Seq[E℄,Seq[E℄!Bool.
32

9.8 ShorthandsEnumerations, tuples, and unions provide
ompa
t, readable representations for
ommon kinds oftheories. They are synta
ti
 shorthands for things that
ould be written in LSL without them.EnumerationsThe enumeration shorthand de�nes a �nite ordered set of distin
t
onstants and an operator thatenumerates them. For example,Status enumeration of waiting, ele
ted, announ
edis equivalent to in
luding a trait with the body appearing in Figure 24.SampleEnumeration: t r a i tintrodu
eswaiting, ele
ted, announ
ed: ! Statussu

: Status ! Statusassertssort Status generated f ree ly by waiting, ele
ted, announ
ed;su

(waiting) = ele
ted;su

(ele
ted) = announ
edFigure 24: Expansion of an enumeration shorthandTuplesThe tuple shorthand is used to introdu
e �xed-length tuples, similar to re
ords in many program-ming languages. For example,Pa
ket tuple of
ontents: Message, sour
e: Node, dest: Set[Node℄is equivalent to in
luding a trait with the body appearing in Figure 25. Ea
h �eld name (e.g.,sour
e) is in
orporated in two distin
t operators (e.g., __.sour
e and set_sour
e).SampleTuple: t r a i tintrodu
es[__, __, __℄: Message, Node, Set[Node℄ ! Pa
ket__.
ontents: Pa
ket ! Message__.sour
e: Pa
ket ! Node__.dest: Pa
ket ! Set[Node℄set_
ontents: Pa
ket, Message ! Pa
ketset_sour
e: Pa
ket, Node ! Pa
ketset_dest: Pa
ket, Set[Node℄ ! Pa
ketasserts with m, m1: Message, n, n1: Node, s, s1: Set[Node℄sort Pa
ket generated by [__, __, __℄;sort Pa
ket partitioned by .
ontents, . sour
e , .dest;[m, n, s℄.
ontents = m;[m, n, s℄.sour
e = n;[m, n, s℄.dest = s;set_
ontents([m, n, s℄, m1) = [m1, n, s℄;set_sour
e([m, n, s℄, n1) = [m, n1, s℄;set_dest([m, n, s℄, s1) = [m, n, s1℄Figure 25: Expansion of a tuple shorthand33

UnionsThe union shorthand
orresponds to the tagged unions found in many programming languages. Forexample,Figure union of sq: Square,
ir
: Cir
leis equivalent to in
luding a trait with the body appearing in Figure 26. Ea
h �eld name (e.g.,
ir
) is in
orporated in three distin
t operators (e.g.,
ir
:!Figure_tag,
ir
:Cir
le!Figure,and __.
ir
:Figure!Cir
le).SampleUnion: t r a i tFigure_tag enumeration of sq,
ir
introdu
essq: Square ! Figure
ir
: Cir
le ! Figure__.sq: Figure ! Square__.
ir
: Figure ! Cir
letag: Figure ! Figure_tagasserts with s: Square,
: Cir
lesort Figure generated by sq,
ir
;sort Figure partitioned by tag, .sq, .
ir
;tag(sq(s)) = sq;tag(
ir
(
)) =
ir
;sq(s).sq = s;
ir
(
).
ir
 =
 Figure 26: Expansion of a union shorthandEditorial note: Consider in
luding tips on writing axioms from LP user's guide.10 User-de�ned data typesUsers
an de�ne additional data types and type
onstru
tors, de�ne additional operators for thebuilt-in data types or type
onstru
tors, or
ompletely rede�ne the built-in data types or type
onstru
tors, by providing sets of axioms (as des
ribed in Se
tion 9) for the new data types andoperators.De�ning new data types To de�ne and use a new abstra
t data type, one writes axioms for thedata type in LSL and in
orporates these axioms into an IOA spe
i�
ation using either an axiomsor an assumes statement. For example, the index data type used in the leader ele
tion example(Se
tion 5.1) is de�ned by the axioms in the trait RingIndex (Figure 14). This trait providesnotations for two sorts (I and J) and �ve operatorsfirst: ! Ileft, right: I ! Iname: I ! JIt also provides �ve axioms that
onstrain the properties of these operators (e.g., by requiring thatdi�erent elements of type I have di�erent names). However, it does not
ompletely de�ne theseoperators (e.g., it does not provide any
on
rete representation for the elements of type J).The statement axioms RingIndex(ab
d, String) appearing before the de�nition of the automa-ton LCR4 (Figure 16) instantiates the parameters I and J in the trait RingIndex by the a
tual typesab
d and String, thereby introdu
ing notations for the operators34

first: ! ab
dleft, right: ab
d ! ab
dname: ab
d ! Stringand �ve axioms that de�ne their properties. Again, the axioms do not
ompletely de�ne theoperators; for example, they do not spe
ify whi
h element of ab
d is the �rst (it need not be a), andthey do not spe
ify whi
h strings are used to name the elements of ab
d. When reasoning aboutLCR4, one
an rely only on the properties of the operators given by the trait RingIndex.As in LSL (see Se
tion 9.6), the statement assumes RingIndex(I, String) appearing in thede�nition of the automata Pro
ess (Figure 13) and LCR (Figure 15 both provides (and de�nes)notations for use in the de�nitions of those automata and also imposes proof obligations that mustbe dis
harged whenever they are used as
omponents of other automata. When Pro
ess is used asa
omponent of LCR, the assumes statement in the de�nition of LCR dis
harges this obligation byrepeating the assumption
ontained in the de�nition of Pro
ess. When LCR is used as a
omponentof LCR4, the axioms statement
ited above dis
harges this proof obligation by de�ning the typeab
d to have the required properties.De�ning new type
onstru
tors The statement axioms MarkedMessage for Mark[__℄ appear-ing before the de�nition of the automaton DelayedLossyChannel (Figure 18) enables IOA to re
og-nize types su
h as Mark[M℄ in that de�nition, and it provides notations and axioms for operatorssu
h as .msg and mark appearing in that de�nition. These notations and axioms are found in thetrait MarkedMessage (Figure 27), whi
h has a single type parameter
orresponding to the pla
eholder__ for the single argument of the type
onstru
tor Mark.MarkedMessage(M): t r a i tMark[M℄ tuple of msg: M, mark: Boolin
ludes Sequen
e(Mark[M℄), Sequen
e(M)introdu
esmark: Seq[Mark[M℄℄ ! Seq[Mark[M℄℄messages: Seq[Mark[M℄℄ ! Seq[M℄subseqMarked: Seq[Mark[M℄℄, Seq[Mark[M℄℄ ! Boolasserts with mm, mm1, mm2: Mark[M℄, mms, mms1, mms2: Seq[Mark[M℄℄mark({}) = {};mark(mms ` mm) = mark(mms) ` [mm.msg, true℄;messages({}) = {};messages(mms ` mm) = messages(mms) ` mm.msg;subseqMarked(mms, {}) , mms = {};subseqMarked({}, mms ` mm) , subseqMarked({}, mms) ^ mm.mark;subseqMarked(mms1 ` mm1, mms2 ` mm2) ,(subseqMarked(mms1 ` mm1, mms2) ^ mm2.mark) _(subseqMarked(mms1, mms2) ^ mm1 = mm2)implies with m: M, mms, mms1, mms2, mms3: Seq[Mark[M℄℄subseqMarked(mms, mms);subseqMarked(mms, mms ` [m, true℄);(subseqMarked(mms1, mms2) ^ subseqMarked(mms2, mms3))) subseqMarked(mms1, mms3);Figure 27: De�nition of type
onstru
tor Mark[__℄Rede�ning built-in type
onstru
tors The statement axioms Subseqen
e for Seq[__℄ ap-pearing before the de�nition of the automaton LossyChannel (Figure 8) overrides the built-in de�-35

nition of the type
onstru
tor Seq[__℄. Ordinarily, axioms for that type
onstru
tor are obtainedfrom a built-in trait Sequen
e(E). In the presen
e of this axioms statement, axioms for Seq[__℄ areobtained instead from the trait Subsequen
e. Sin
e Subsequen
e in
ludes Sequen
e, the new de�ni-tion a
tually extends the old: it introdu
es a single new operator, �, and de�nes its properties.

36

Part IIIIOA Referen
e ManualAn IOA spe
i�
ation
ontains four di�erent kinds of units.� Type de�nitions, used to represent state
omponents or indi
es for automata (see Se
tion 14).� Automaton de�nitions (see Se
tions 13, 15, and 16).� Assertions about automata, e.g., invariant and simulation relations (see Se
tion 17).� Axiomatizations of abstra
t data types, formalized in the Lar
h Shared Language (LSL),whi
h provide the syntax and semanti
s for types and operators appearing in the other threekinds of units (see Part IV).This referen
e manual des
ribes the syntax, stati
 semanti
s, and logi
al semanti
s both ofIOA spe
i�
ations and of assertions about IOA spe
i�
ations. The syntax for IOA des
ribes, usinga
ontext-free (BNF) grammar, the notations that appear in IOA spe
i�
ations and assertions.Stati
 semanti
s impose restri
tions on the notations allowed by this BNF grammar. A stati

he
ker
an be used to dete
t when these restri
tions are violated. The logi
al semanti
s for IOAdes
ribes, in mathemati
al terms, the meaning of spe
i�
ations and assertions. Proof tools
anprovide assistan
e in
he
king assertions.11 Logi
al preliminariesThe logi
al semanti
s of IOA (and LSL) are formalized in multisorted �rst-order logi
, whi
h servesto model pre
ise mathemati
al usage. This se
tion provides a brief, abstra
t overview of �rst-orderlogi
.11.1 SyntaxWe start by des
ribing an abstra
t syntax for mathemati
al expressions, that is, for expressions inmultisorted �rst-order logi
.A vo
abularly V for �rst-order logi
 is a set of symbols that denote two kinds of obje
ts: sorts,denoted by symbols in Vsorts , and operators, denoted by symbols in Vops .10 In IOA and LSL, symbolssu
h as Bool, Set[Int℄, and T denote sorts, and symbols su
h as 0:!Int, __+__:Int,Int!Int,f:T!T, and __6=__:S,S!Bool denote operators.V�sorts is the set of all �nite sequen
es of elements of Vsorts , in
luding the zero-length sequen
e.The set Vsigs of signatures for a vo
abulary V is the set of all pairs hdomain ; rangei in whi
hdomain 2 V�sorts and range 2 Vsorts .Asso
iated with ea
h operator, op, in a vo
abulary V is an identi�er, op:id , and a signature,op:sig , in Vsigs . For example, in IOA and LSL, 0, +, f, and 6= are operator identi�ers and !Int,Int,Int!Int, T!T, and S,S!Bool are signatures (the sequen
e of sort symbols pre
eding the !
onstitutes the domain, and the sort symbol following the ! is the range). The arity of an operatoris the number of sort symbols in its domain. A
onstant is an operator of arity 0.In general, we restri
t attention to vo
abularies V that
ontain the sort symbol Bool, the 0-aryoperators true and false with signature !Bool, the unary operator : with signature Bool!Bool,and the binary operators ^, _,), and , with signature Bool; Bool!Bool. Furthermore, we10A logi
 in whi
h Vsorts
ontains more than one symbol is
alled multisorted.37

generally restri
t attention to vo
abularies V that
ontain, for every sort S in Vsorts , the binaryoperators = and 6= with signature S; S!Bool.11A variable is a symbol, v, with whi
h is asso
iated an identi�er, v:id , and a sort, v:sort ; v is avariable over V if v:sort is in Vsorts . In IOA, symbols su
h as n:Int and x:Set[Int℄ are variables.For any vo
abulary V, a V-term is an expression
onstru
ted, as des
ribed below, from theoperators in Vops and some (in�nite) set of variables over V. Asso
iated with ea
h term is a sortknown as the sort of that term.� Any variable v over V is a V-term. Its sort is v:sort .� For any operator op in Vops with signature T1; : : : ; Tn!T and for any terms t1; : : : ; tn of sortsT1; : : : ; Tn, the expression op(t1; : : : ; tn) is a V-term. Its sort is the range sort of op.� For any V-term t of sort Bool and any variable v over V, the expressions 8v t and 9v t areV-terms. Their sort is Bool. (The symbols 8 and 9 are quanti�er symbols, and the term t isthe s
ope of the quanti�ers 8v and 9v.)An o

urren
e of a variable in a term is free if it does not o

ur within the s
ope of any quanti�erover that variable. An o

urren
e of a variable in a term is bound if it o

urs within the s
ope of aquanti�er over that variable.For any term t, any variable v, and any term s with no free variables, t[v s℄ is the termobtained from t by repla
ing ea
h free o

urren
e of v by s.A formula is a term of sort Bool. A senten
e is a formula with no free variables.11.2 Semanti
sGiven a pre
ise syntax for expressions in multisorted �rst-order logi
, we now provide a pre
isesemanti
s. Readers may wish to skim this se
tion, whi
h essentially de�nes expressions to meanwhat they seem to mean. The point here is that \meaning" has meaning only with respe
t toparti
ular mathemati
al obje
ts,
alled stru
tures. For example, an expression x � y might denotethe produ
t of two numbers, the
omposition of two fun
tions, or the
on
atentation of two strings,and a statement su
h as 8x8y(x < y) 9z(x < z ^ z < y)) might be true about some stru
tures(e.g., the rational or real numbers), but false about others (e.g., the integers).For any vo
abulary V, a V-stru
ture S is a map [[� � �℄℄S with domain V su
h that� for ea
h sort T in V, [[T ℄℄S is a nonempty set (
alled the
arrier of T) that is disjoint from[[T 0℄℄S for any other sort T 0 in V, and� for ea
h operator symbol op with signature T1; : : : ; Tn ! T in V, [[op℄℄S is a (total) fun
tionfrom [[T1℄℄S � � � � � [[Tn℄℄S to [[T ℄℄S .When a vo
abulary V
ontains the symbols Bool, true, false, :, ^, _,), ,, =, or 6=, asdes
ribed in Se
tion 11.1, we restri
t our attention to V-stru
tures that interpret these symbols asin Figure 28.For any vo
abulary V, any V-stru
ture S, and any V-term t with no free variables, the denotation[[t℄℄S of t is de�ned re
ursively, as follows:� [[op(t1; : : : ; tn)℄℄S = [[op℄℄S([[t1℄℄S ; : : : ; [[tn℄℄S)11Logi
s that
ontain the operator = are
alled logi
s with equality. We do not
onsider logi
s without equality.38

[[Bool℄℄S = ftrue ; falseg[[true℄℄S = true[[false℄℄S = false[[:℄℄S(x) = true i� x = false[[^℄℄S(x; y) = true i� x = true and y = true[[_℄℄S(x; y) = true i� x = true or y = true[[)℄℄S (x; y) = true i� x = false or y = true[[,℄℄S (x; y) = true i� x = y[[=℄℄S (x; y) = true i� x = y[[6=℄℄S (x; y) = true i� x 6= yFigure 28: Standard interpretation of boolean sort and logi
al operators� [[9v t0℄℄S = true i� [[t0[v
v℄℄℄S0 = true for some (V [f
vg)-stru
ture S 0 that agrees with Son V, where
v is a
onstant symbol not in Vops that has sort v:sort .� [[8v t0℄℄S = true i� [[t0[v
v℄℄℄S0 = true for all (V [f
vg)-stru
tures S 0 that agree with S onV, where
v is a
onstant symbol not in Vops that has sort v:sort .11.3 Further terminologyIn the following de�nitions, V is a vo
abulary, � is a V-senten
e, and T and T 0 are sets of Vsenten
es.S is a model of � i� � is true in S, that is, i� [[�℄℄S = true.T is
onsistent i� there is a V-stru
ture that is a model of every senten
e in T .� is a (logi
al)
onsequen
e of T i� � is true in every model of T .T is a theory i� it is
losed under logi
al
onsequen
e. It is easy to see that, if T is a theory,then T is
onsistent i� false 62 T .A theory T is an extension of a theory T 0 i� T 0 � T . It is easy to see that T is an extension ofT 0 i� every senten
e in T 0 is a
onsequen
e of T .An extension T of T 0 is
onservative i� T 0 is a set of V 0 senten
es for some V 0 � V and everyV 0-senten
e in T is also in T 0. In other words, an extension T of T 0 is
onservative i� the vo
abularyof T in
ludes that of T 0, but all
onsequen
es of T in the vo
abulary of T 0 are already
onsequen
esof T 0.When S is
lear from the
ontext, we write [[� � �℄℄ for [[� � �℄℄S .12 Lexi
al syntaxWe use the following
onventions to des
ribe the syntax of IOA (and also the syntax of LSL).Upper
ase words and symbols en
losed in single quotation marks are terminal symbols in a BNFgrammar. All other words are nonterminal symbols. If x and y are grammati
al units, then thefollowing notations have the indi
ated meanings.
39

Notation Meaningx y an x followed by a yx j y an x or a yx? an optional xx� zero or more x'sx+ one or more x'sx; � and x; � zero or more x's, separated by
ommas or semi
olonsx;+ and x; + one or more x's, separated by
ommas or semi
olonsThe lexi
al grammar of IOA uses the following symbols:� Pun
tuation marks: , : ; () { } [℄ __ :=� Reserved words: assumes, automaton, axioms, ba
kward, by,
hoose,
omponents,
onst,do, e�, else, elseif, enumeration, �, for, forward, from, hidden, if, in, input, internal,invariant, od, of, output, pre, signature, simulation, so, states, tasks, that, then, to,transitions, tuple, type, union, where.� Beginning
omment
hara
ter: %� IDENTIFIERs for variables, types, and fun
tions: sequen
es of letters, digits, apostrophes, andunders
ores (ex
ept that two unders
ores
annot o

ur
onse
utively). The LaTeX identi�ersfor the Greek letters
an also be used as identi�ers, as
an the two strings \bot and \top.� OPERATORs: sequen
es of the
hara
ters - ! # $ & * + . < = > ? � ^ | ~ / or a ba
k-slash (\) followed by one of these
hara
ters, by one of the
hara
ters _ \ %, or by an identi�er(other than a name of a Greek letter, \bot, or \top).� Whitespa
e: spa
e, tab, newline.� Reserved for future use: ` "13 Automaton de�nitionsAn automaton
an be a primitive automaton or a
omposition of other automata. Its name
an beparameterized by a list of types and/or
onstants.Syntax of automaton de�nitionsspe
ifi
ation ::= trait | ioaSpe
ioaSpe
 ::= (axioms | typeDef | automatonDef | assertion)+automatonDef ::= 'automaton' automatonName automatonFormals?assumptions? (simpleBody |
omposition)automatonName ::= IDENTIFIERautomatonFormals ::= '(' automatonFormal,+ ')'automatonFormal ::= IDENTIFIER,+ ':' (type | 'type')assumptions ::= 'assumes' traitRef,+The spe
i�
ation of a trait T is kept in a �le named T.lsl. Ea
h ioaSpe
 is kept in a �le witha name of the form <filename>.ioa. 40

The syntax and semanti
s for the
onstru
ts mentioned here
an be found in Se
tion 14(
onstru
torDef, type, typeDef), Se
tion 15 (simpleBody), Se
tion 16 (
omposition), Se
tion 17(assertion), Se
tion 19 (trait), and Se
tion 23 (traitRef).Stati
 semanti
sAn automatonFormal that
ontains the keyword type denotes a sequen
e of formal types, ea
h ele-ment of whi
h is simple sort (
f. Se
tion 20)
orresponding to an IDENTIFIER in the automatonFormal.An automatonFormal that
ontains a type denotes a sequen
e of formal parameters, ea
h elementof whi
h is a
onstant of the sort asso
iated with the type. An automatonFormals denotes the se-quen
e of automaton formals obtained by
on
atenating the sequen
es of formal types and formalparameters in its automatonFormals.The vo
abulary, Vspe
 , of an ioaSpe
 is the union of the vo
abularies of its typeDefs and itsaxioms. The vo
abulary, VA, of an automatonDef for an automaton named A in an ioaSpe
 is theunion of Vspe
 with the vo
abularies of the traitRefs in its assumptions, enri
hed by the automatonformals of the automatonDef.The
losure,
l(V), of a vo
abulary V is V enri
hed by all built-in sorts, by all sorts obtainedfrom the built-in sorts and sorts in V using sort
onstru
tors that are either built-in or de�ned byaxioms, and by all operators on these sorts that are either built-in or de�ned by axioms.� There
an be at most one automatonDef for an automatonName in an ioaSpe
.� The automaton formals in ea
h automatonDef must be distin
t.� The sort asso
iated with a formal type in an automatonDef must not be in Vspe
 .� The sort of ea
h formal parameter in an automatonDef must be in
l(V). (This ensures that
l(VA) satis�es the
losure properties in Se
tion 11.2.)Logi
al semanti
sThe global theory of an ioaSpe
 is the union of the theories of its typeDefs and its axioms.The lo
al theory of an automatonDef is the union of the theories of the typeDefs in its assumptionswith the global theory of the ioaSpe
.Editorial note: These de�nitions need to take a

ount of the theory asso
iated with
l(VA), notjust with VA.� The global theory of an ioaSpe
 must be
onsistent.14 Type and type
onstru
tor de�nitionsA type
an be a primitive or a
ompound type. The syntax and semanti
s of ea
h type is given bya built-in or user-supplied LSL trait (see Se
tions 9 and 19).Syntax of type de
larationstype ::= simpleType |
ompoundTypesimpleType ::= IDENTIFIER
ompoundType ::= typeConstru
tor '[' type,+ '℄'typeConstru
tor ::= IDENTIFIER 41

typeDef ::= 'type' type '=' shorthandaxioms ::= 'axioms' axiomSet,+axiomSet ::= traitRef| traitId 'for' typeConstru
tor '[' '__',* '℄'The syntax and semanti
s for shorthand and traitRef
an be found in Se
tion 9.8 and 23.Stati
 semanti
sWith ea
h type is asso
iated a sort, namely, the sort that is lexi
ally identi
al to the type.The vo
abulary of an axioms is the union of the vo
abularies of its traitRefs. (The traits namedby the traitIds it asso
iates with typeConstru
tors do not
ontribute to this vo
abulary.) Thevo
abulary of a typeDef is the vo
abulary of its shorthand.� A type
an be de�ned in at most one shorthand in an ioaSpe
. Editorial note: Have front-endtool
he
k this. What about a de�nition inside a trait?� A typeConstru
tor
an be de�ned in at most one axiomSet in an ioaSpe
.� The arity of a typeConstru
tor de�ned in an axiomSet is the number of __ pla
eholdersbetween the bra
kets following the typeConstru
tor. The trait named by a traitId in anaxiomSet must have the same number of traitFormals as the arity of the typeConstru
tor;ea
h of those traitFormals must name a sort in the referen
ed trait.Logi
al semanti
sThe theory of an axioms is the union of the theories of its traitRefs. (The traits named by thetraitIds it asso
iates with typeConstru
tors do not
ontribute to this theory.) The theory of atypeDef is the theory of its shorthand.15 Primitive automata15.1 Primitive automaton de�nitionsA primitive automaton is de�ned by its a
tion signature, its states, its transitions, and (optionally)a partition of its a
tions into tasks.Syntax of primitive automaton de�nitionssimpleBody ::= 'signature' formalA
tionList+ states transitions tasks?formalA
tionList ::= a
tionType formalA
tion,+a
tionType ::= 'input' | 'output' | 'internal'formalA
tion ::= a
tionName (a
tionFormals where?)?a
tionName ::= IDENTIFIERa
tionFormals ::= '(' a
tionFormal,+ ')'a
tionFormal ::= IDENTIFIER,+ ':' type | '
onst' termwhere ::= 'where' predi
ateThe syntax and semanti
s of states, transitions, and tasks are given in Se
tions 15.2, 15.3and 15.4, respe
tively. The syntax and semanti
s of terms and predi
ates are given in Se
tion 21.42

Stati
 semanti
sEa
h a
tionFormal denotes a sequen
e of terms. If the a
tionFormal
ontains the keyword
onst,this sequen
e
ontains the single term following the keyword. Otherwise, this sequen
e
ontains aformal parameter (i.e., a
onstant) of the sort asso
iated with the type in the a
tionFormal for ea
hIDENTIFIER in the a
tionFormal.The a
tion pattern of a formalA
tion
onsists of its a
tionName, the sequen
e of sorts of itsa
tionFormals, and its a
tionType (input, output, or internal).� An a
tionName
an appear in at most one a
tion pattern with ea
h of the three a
tionTypesin a simpleBody.� An a
tionName must be asso
iated with the same sequen
e of sorts in ea
h a
tion pattern inwhi
h it appears.� Ea
h formal parameter must be distin
t from any other formal parameter of the same typein the same a
tionFormals, as well as from any automatonFormal.� The type of ea
h a
tionFormal must be in
l(VA).� Ea
h identi�er in a term following the keyword
onst in an a
tionFormal, or in a predi
ate in awheremust be an a
tionFormal in that a
tion, in
l(VA), or a bound variable (
f. Se
tion 11.1).� The type of a term used as a
onst a
tionFormal
annot be type.Logi
al semanti
s� A formalA
tion of the form name(x: S,
onst t), where the term t has type T, is equivalentto the formalA
tion name(x: S, y: T) where y = t.15.2 Automaton statesStates are re
ords of state variables. An initial value for ea
h variable
an be spe
i�ed by anexpression; instead, or in addition, the initial values of all state variables
an be restri
ted by apredi
ate. Expressions and predi
ates are terms.Syntax of state variable de�nitionsstates ::= 'states' state,+ ('so 'that' predi
ate)?state ::= IDENTIFIER ':' type (':=' value)?value ::= term |
hoi
e
hoi
e ::= '
hoose' (variable 'where' predi
ate)?The syntax and semanti
s of predi
ate, term, and variable are given in Se
tion 21.Stati
 semanti
s� Ea
h state variable (that is, ea
h IDENTIFIER quali�ed by a type in a state) must be distin
tfrom all other state variables and from all formal parameters of the automaton and its a
tions.� The type of the initial value assigned to a state variable must be the same as the type of thatvariable. 43

� Ea
h identi�er in a term assigned as the initial value of a state variable must be a boundvariable or in
l(VA).� Ea
h identi�er in the predi
ate in a
hoi
e is similarly limited, ex
ept that the variablefollowing the keyword
hoose
an also appear in the predi
ate. The type of this variable, ifspe
i�ed, must be the same as the type of the state variable. The identi�er for this variablemust be distin
t from the parameters and state variables of the automaton.� Ea
h identi�er in the predi
ate restri
ting the initial values of the state variables is similarlylimited, ex
ept that state variables
an also appear in the predi
ate.� The type of ea
h state variable must be in
l(VA).Logi
al semanti
s� The set of start states, determined by the assignments and/or allowed by the predi
ates, mustbe nonempty. Editorial note: Phrase formal semanti
s in terms of \For any model ...".15.3 Automaton transitionsTransitions are spe
i�ed using pre
ondition/e�e
t notation. Pre
onditions are boolean-valued pred-i
ates. E�e
ts
an be des
ribed in terms of simple programs and/or restri
ted by predi
ates relatingthe poststate to the prestate.Syntax of transition relationstransitions ::= 'transitions' transition+transition ::= a
tionHead
hooseFormals? pre
ondition? effe
t?a
tionHead ::= a
tionType a
tionName (a
tionA
tuals where?)?a
tionA
tuals ::= '(' term,+ ')'
hooseFormals ::= '
hoose' varD
l,+pre
ondition ::= 'pre' predi
ateeffe
t ::= 'eff' program ('so' 'that' predi
ate)?program ::= statement;+statement ::= assignment |
onditional | loopassignment ::= lvalue ':=' valuelvalue ::= variable| lvalue '[' term,+ '℄'| lvalue '.' IDENTIFIER
onditional ::= 'if' predi
ate 'then' program('elseif' predi
ate 'then' program)*('else' program)? 'fi'loop ::= 'for' IDENTIFIER qualifi
ation('in' | 'so' 'that') term 'do' program 'od'The syntax and semanti
s of predi
ate, qualifi
ation, variable, and term are given in Se
-tion 21.
44

Stati
 semanti
s� Transitions must be spe
i�ed for all a
tionNames in the signature of the automaton.� The a
tionNames for whi
h transitions are spe
i�ed must be in the signature of the automa-ton.� The a
tionA
tuals for ea
h transition must mat
h, both in number and in type, the a
tion-Formals for the a
tionName.� The types of variables appearing in a
tionA
tualsmust be determined uniquely by the typesof the a
tionA
tuals. These variables are de
lared impli
itly by their o

urren
e in thea
tionA
tuals and have no relation to variables used as a
tionFormals.� No pre
ondition is allowed for an input a
tion.� The variables in the
hooseFormals, if any, must be distin
t from ea
h other, from allautomatonFormals, from all variables in the a
tionA
tuals of the a
tion, and from all statevariables.� All operators,
onstants, and identi�ers in a predi
ate in a pre
ondition or
onditional, orin a lvalue or value in an assignment, must be{ in
l(VA),{ variables introdu
ed in the a
tionA
tuals,{
hooseFormals of the a
tion,{ state variables of the automaton,{ variables introdu
ed in a loop
ontaining the predi
ate or term, or{ variables in the s
ope of a quantifier in the predi
ate or term.� All identi�ers in the predi
ate in a so that
lause must satisfy the same restri
tions or beprimed state variables that are modi�ed by some assignment in the program in the effe
t
lause. For example, if queue is a state variable that appears on the left side of an assignment,then both queue and queue0 are allowed in the predi
ate.� The type of the variable in a loop (i.e., the type asso
iated with the qualifi
ationmust be in
l(VA). The variable itself must be distin
t from all variables in the automatonFormals, usedas state variables, in the a
tionA
tuals, or in the
hooseFormals.Logi
al semanti
s� The where
lause in ea
h transition de�nition is impli
itly
onjoined with the where
lause forthe
orresponding entry in the signature.� Ea
h transition de�nes a binary relation between states of the automaton. This relation isde�ned by the formula 9h : : : (pre(s) ^ e� (s; s0) ^ soThat(s; s0))where{ h : : : are the
hoose formals, if any, in the transition,45

{ pre(s) is the predi
ate in the pre
ondition,{ e� (s; s0) is a formula obtained by translating the program, if any, in the effe
t, asdes
ribed below, and{ soThat(s; s0) is the predi
ate, if any, in the so that
lause in the effe
t.� The semanti
s of a program P is de�ned by translating it into a so that
lause e� P , asindi
ated in the following table. In that table, s and s0 represent states, v is a state variable(with value s:v in state s), w is an arbitrary state variable distin
t from v, t is a term, p is apredi
ate, and P1 and P2 are programs.program P e� Pv := t s0:v = t ^ s0:w = s:wP1; P2 9s00(e� P1(s; s00) ^ e� P2(s00; s0))if p then P1 � (p! e� P1(s; s0)) ^ (:p! s0 = s)if p then P1 else P2 � (p! e� P1(s; s0)) ^ (:p! e� P2(s; s0))for v in t do P1 od 8x(v 2 x) e� v:=x;P1(s; s0))� The formula e� (s; s0) obtained by translating a program in an effe
t must be
onsistent.� Identi�ers for state variables in so that
lauses refer to the values of the variables in theprestate, i.e., in the state before the transition is exe
uted. Primed versions of these identi�ersrefer to the values of the variables in the poststate, i.e., in the state after the transition isexe
uted.Note that:� Statements in a program are exe
uted sequentially, not in parallel as in UNITY [2℄.� State variables that do not appear on the left side of an assignment in a bran
h through theprogram in an effe
t
lause are assumed to be un
hanged on that bran
h.15.4 Automaton tasksTasks de�ne a partition of the a
tions of an automaton.Syntax of taskstasks ::= 'tasks' task;+task ::= '{' a
tionSet '}' forClause?a
tionSet ::= a
tualA
tion,+ forClause?a
tualA
tion ::= a
tionName a
tionA
tuals?for ::= 'for' (IDENTIFIER ':' type),+ where?Stati
 semanti
s� Ea
h a
tionName in a task must be an internal or output a
tion of the automaton.� The number of a
tionA
tuals for an a
tionName must equal the number of a
tionFormals inthe automaton's signature for that a
tionName.� The type of ea
h a
tionA
tual must be the same as that of the
orresponding a
tionFormal.46

� All operators,
onstants, and identi�ers in a term in an a
tionA
tual or in a where
lausemust be in
l(VA) or de�ned exa
tly on
e in a for
lause asso
iated with the task. Editorialnote:
he
k this.Logi
al semanti
s� The task de�nitions must de�ne a partition of the set of all non-input a
tions.� If no tasks is present, then all non-input a
tions are treated as belonging to a single task.16 Operations on automataAutomata
an be
onstru
ted from previously de�ned automata by the operations of
ompositionand hiding. Composite automata identify a
tions with the same name in di�erent
omponentautomata; when any
omponent automaton performs a step involving an a
tion �, so do all
om-ponent automata that have � in their signatures. The hiding operator re
lassi�es output a
tionsas internal a
tions.Syntax of
omposite automata de�nitions
omposition ::= '
omponents'
omponent;+ ('hidden' a
tionSet)?
omponent ::=
omponentTag (':'
omponentDef)? where?
omponentTag ::=
omponentName
omponentFormals?
omponentName ::= IDENTIFIER
omponentFormals ::= '[' variableList,+ '℄'
omponentDef ::= automatonName automatonA
tuals?automatonA
tuals ::= '(' (term | type),+ ')'Stati
 semanti
s� If a
omponent does not
ontain a
omponentDef, it is assumed to have one in whi
h theautomatonName is the same as the
omponentName and the automatonA
tuals are the variables(
onsidered as terms) in the
omponentFormals.� The identi�ers used as
omponentFormals must be distin
t from ea
h other and from anyautomatonFormal.� The type of ea
h
omponentFormal must be in
l(VA).� Ea
h automatonName must have been de�ned previously in an automatonDef.� The numbers and types of the automatonA
tuals must mat
h those of the
orrespondingautomatonFormals.� All identi�ers in terms used as automatonA
tuals parameter must be in
l(VA), bound vari-abless, or
omponentFormals.� Similarly named a
tions in di�erent
omponent automata must have the same number andtypes of parameters.� The set of internal a
tions for ea
h
omponent must be disjoint from the set of all a
tions forea
h of the other
omponents. 47

� The set of output a
tions for ea
h
omponent must be disjoint from the set of output a
tionsfor ea
h of the other
omponents.� Ea
h a
tionName in an a
tionSetmust o

ur as the name of an output a
tion in the signatureof at least one of the
omponent automata.Logi
al semanti
s� Ea
h a
tion of the
omposition must be an a
tion of only �nitely many
omponent automata.� The signature of the
omposition is the union of the signatures of the
omponent automata.� An a
tion is an output a
tion of the
omposition if it is an output a
tion of some
omponentautomaton.� An a
tion is an input a
tion of the
omposition if it is an input a
tion of some
omponentautomaton, but not an output a
tion of any
omponent.� An a
tion is an internal a
tion of the
omposition if it is an internal a
tion of some
omponentautomaton.� The set of states of the
omposition is the produ
t of the sets of states of the
omponentautomata.� The set of start states of the
omposition is the produ
t of the sets of start states of the
omponent automata.� A triple (s; �; s0) is in the transition relation for the
omposite automaton if, for every
om-ponent automaton C, (sC ; �; s0C) is a transition of C when � is an a
tion of C and sC = s0Cwhen � is not an a
tion of C.Editorial note: This do
ument needs to des
ribe the notations that
an be used for state variablesof
omposite automata in invariants and simulation relations. A preliminary des
ription of thesenotations
an be found at nms.l
s.edu/�garland/IOA/stateVars.do
.Editorial note: State that one
an prove a theorem that allows repla
ement of one
omponentby another that implements it without a�e
ting the tra
es of the
omposite automaton.17 Statements about automataAssertions about automata make
laims about invariants preserved by the a
tions of the automataor about simulation relations between two automata.Syntax of invariant and simulation relationsassertion ::= invariant | simulationinvariant ::= 'invariant' 'of' automatonName ':' predi
atesimulation ::= ('forward' | 'ba
kward') 'simulation' 'from'automatonName 'to' automatonName ':' predi
ate
48

Stati
 semanti
s� Ea
h automatonName must have been de�ned previously in an automatonDef.� All operators,
onstants, and identi�ers in a predi
ate in an assertion must be{ in
l(VA) for (one of) the named automata,{ state variables of (one of) the named automata, or{ variables in the s
ope of a quantifier in the predi
ate.Logi
al semanti
s� An invariant must be true in all rea
hable states of the automaton.� The proof obligations for simulation relationships are as de�ned in Se
tion 1.4.

49

Part IVLSL Referen
e ManualAn LSL spe
i�
ation de�nes a theory in multisorted �rst-order logi
. It presents a set of axiomsfor that theory. It may also present
laims about the intended
onsequen
es of these axioms.18 Lexi
al syntaxThe lexi
al grammar of LSL is the same as that of IOA (Se
tion 12), ex
ept that it uses the followinglist of reserved words: asserts, assumes, by,
onverts, else, kenumeration, exempting, for, freely,generated, if, implies, in
ludes, introdu
es, of, partitioned, sort, then, trait, traits, tuple, type,union, with.19 TraitsThe basi
 unit of spe
i�
ation in LSL is a trait, whi
h de�nes a set of axioms for a logi
al theoryand whi
h makes
laims about the
onsequen
es of that theory. The header for a trait spe
i�esits name and an optional list of formal parameters, whi
h
an be used in referen
es to other traits(see Se
tion 23). The body of the trait
onsists of optional referen
es to subtraits (Se
tion 23)intermixed with shorthands de�ning sorts (Se
tion 22), followed by sort and operator de
larations(Se
tion 20), axioms (Se
tion 21), and
laimed
onsequen
es of the axioms (Se
tion 24).Syntax of traitstrait ::= traitId traitFormals? ':' 'trait' traitBodytraitId ::= IDENTIFIERtraitBody ::= (subtrait | sort shorthand)* opD
ls? axioms?
onsequen
es?20 Sort and operator de
larationsSorts in LSL
an be simple sorts, whi
h are named by a single identi�er, or
ompound sorts, whi
hare named by a sort
onstru
tor applied to a list of simpler sorts. Operator names
an be used inseveral di�erent kinds of notations for terms.Operator de
laration Form of term Examplef: Int -> Int fun
tional f(i)min: Int, Int -> Int " min(i; j)0: -> Int " 0__<__: Int, Int -> Bool in�x i < j-__: Int, Int -> Int pre�x �i__!: Int, Int -> Int post�x i!__.last: Seq[Int℄ -> Int " s:last__[__℄: A, Int -> V bra
keted a[i℄{__}: E -> Set[E℄ " fxg{}: -> Set[E℄ " fgif__then__else__: Bool, S, S -> S
onditional if x < 0 then �x else xquanti�ed 8x9y(x < y)50

Pla
eholders in operator de
larations indi
ate where the operators arguments are pla
ed. Sig-natures in operator de
larations indi
ate the sorts of the arguments for an operator (its domainsorts) and the sort of its value (its range sort).Syntax of operator de
larationsopD
ls ::= 'introdu
es' opD
l+opD
l ::= name,+ ':' signature ','?name ::= 'if' '__' 'then' '__' 'else' '__'| '__'? OPERATOR '__'?| '__'? openSym '__',*
loseSym '__'?| '__'? '.' IDENTIFIER| IDENTIFIERopenSym ::= '[' | '{' | '\(' | '\<'| '\langle' | '\lfloor' | '\l
eil'
loseSym ::= '℄' | '}' | '\)' | '\>'| '\rangle' | '\rfloor' | '\r
eil'operator ::= name (':' signature)?signature ::= domain '->' rangedomain ::= sort,*range ::= sortsort ::= simpleSort |
ompoundSortsimpleSort ::= IDENTIFIER
ompoundSort ::= sortConstru
tor '[' sort,+ '℄'sortConstru
tor ::= IDENTIFIEREditorial note: Des
ribe the parsing pre
eden
e for operators.Stati
 semanti
s� The optional
omma at the end of an opD
l is required if the following opD
l begins with aleft bra
ket.� The number of __ pla
eholders in the name in an opD
l must be the same as the number ofsorts in the domain of its signature.� The __ pla
eholder
annot be omitted from a name of the form __.IDENTIFIER in an opD
l.� The signature of the operators true and false must be !Bool. De
larations for theseoperators are built into LSL.� The signature of the logi
al operators ,,), ^, and _ must be Bool,Bool!Bool. De
larationsfor these operators are built into LSL.� The signature of the operators = and 6= must be S,S!Bool for some sort S. De
larations forthese operators are built into LSL for ea
h sort S that o

urs in an opD
l or shorthand (seeSe
tion 22).� The signature of the operator if__then__else__ must be Bool,S,S!S for some sort S. Ade
laration for this operator is built into LSL for ea
h sort S that o

urs in an opD
l orshorthand (see Se
tion 22). 51

Logi
al semanti
s� A sort denotes a non-empty set of elements.12� Di�erent sorts denote disjoint sets of elements.� An opD
l de�nes a list of operators, ea
h with a given name and signature.� Ea
h operator denotes a total fun
tion from tuples of elements in its domain sorts to anelement in its range sort.Formal semanti
s21 AxiomsAxioms in LSL are either formulas in multisorted �rst-order logi
 or abbreviations for sets offormulas. A limited amount of operator pre
eden
e, as illustrated in the following table, is usedwhen parsing terms. Unparenthesized term Interpretationx� y � z (x� y)� za = b+
) b < s(a) (a = (b+
))) (b < s(a))a:b:
! ((a:b):
)!:p ^ :x:pre (:p) ^ (:(x:pre))9x(x <
))
 > 0 (9x(x <
))) (
 > 0)8x9y x < y (8x9y x) < ya < b+
 Errorp ^ q _ r Errorp) q) r ErrorSyntax of axiomsaxioms ::= 'asserts' varD
ls? axiom;+ ';'?varD
ls ::= 'with' (IDENTIFIER,+ qualifi
ation)+qualifi
ation ::= ':' sortaxiom ::= predi
ate| 'sort' sort ('generated' 'freely'? | 'partitioned')'by' operator,+predi
ate ::= termterm ::= IF term THEN term ELSE term| subtermsubterm ::= subterm (OPERATOR subterm)+| (quantifier | OPERATOR)* OPERATOR se
ondary| (quantifier | OPERATOR)* quantifier primary| se
ondary OPERATOR*quantifier ::= ('\A' | '\E') variablevariable ::= IDENTIFIER qualifi
ation?se
ondary ::= primary| primary? bra
keted ('.'? primary)?12LSL a

ords synta
ti
, but not semanti
, meaning to
ompound sorts.52

primary ::= primaryHead (qualifi
ation | '.' primaryHead)*primaryHead ::= IDENTIFIER ('(' term,+ ')')?| '(' term ')'bra
keted ::= openSym term,*
loseSym qualifi
ation?Stati
 semanti
s� Ea
h operator in an axiom must be a built-in operator, de
lared in an operator de
laration(Se
tion 20), introdu
ed by a shorthand for a sort (Se
tion 22), or de
lared in a subtrait(Se
tion 23).� Ea
h sort in a qualifi
ation must have been de
lared.� No variable may be de
lared more than on
e in a varD
ls.� A variable
annot be de
lared to have the same identi�er and sort as a
onstant (i.e., as azero-ary operator).� There must be unique assignment of de
lared operators and variables to the identi�ers,OPERATORs, openSyms, and
loseSyms in a term so that the arguments of ea
h de
lared op-erator have the appropriate sorts and so that every quali�ed subterm has the appropriatesort.� The sort of a predi
ate must be Bool.� The sort named in a generated by or a partitioned by must have been de
lared.� The range of ea
h operator in a generated by must be the named sort.� At least one of the operators in a generated by must not have the named sort in its domain.� Ea
h operator in a partitioned by must have the named sort in its domain.� The list of operators in a generated by or partitioned by must not
ontain dupli
ates.Logi
al semanti
s� See Se
tion 9.2 for the semanti
s of generated by and partitioned by axioms.22 Shorthands for sortsLSL shorthands provide a
onvenient way of de
laring sorts representing enumerations, tuples, andunions.Syntax of shorthandsshorthand ::= 'enumeration' 'of' IDENTIFIER,+| ('tuple' | 'union') 'of' (IDENTIFIER,+ ':' sort),+
53

Stati
 semanti
s� The list of identi�ers in an enumeration must not
ontain dupli
ates.� The list of identi�ers
orresponding to a �eld of a parti
ular sort in a tuple or union mustnot
ontain dupli
ates.� Ea
h sort appearing in a shorthand must di�er from the sort of the shorthand itself.Logi
al semanti
s� See Se
tion 9.823 Trait referen
esTraits
an in
orporate axioms from other traits by in
lusion. Traits
an also
ontain assumptions,whi
h must be dis
harged in order for their in
lusion in other traits to have the intended meaning.Syntax of trait referen
essubtrait ::= ('in
ludes' | 'assumes') traitRef,+traitRef ::= traitId renaming?traitId ::= IDENTIFIERrenaming ::= '(' traitA
tual,+ ')'| '(' traitA
tual,* repla
e,+ ')'repla
e ::= traitA
tual FOR traitFormaltraitA
tual ::= name |
ompoundSorttraitFormals ::= '(' traitFormal,* ')'traitFormal ::= name signature? |
ompoundSortStati
 semanti
s� There must not be a
y
le in the assumes/in
ludes hierar
y.� Ea
h
ompoundSort used as a traitFormal must be de
lared in the trait.� Ea
h name quali�ed by a signature used as a traitFormal must be de
lared as an operator inthe trait.� Pla
eholders
an be omitted from a name in a traitFormal if there is exa
tly one way to supplypla
eholders so as to mat
h that name with the name of a de
lared operator.� Ea
h name used as a traitFormal, but not quali�ed by a signature, must be de
lared as asimple sort, be de
lared as a sort
onstru
tor, or mat
h the name (modulo the addition ofpla
eholders) of exa
tly one de
lared operator.� When a name used as a traitFormal
an be interpreted in more than one way as a simple sort,sort
onstru
tor, or operator, preferen
e is given to its intepretation �rst as a simple sort,se
ond as a sort
onstru
tor, and third as an operator.� The number of a
tual parameters in a trait referen
e must not ex
eed the number of formalparameters in the de�nition of the trait. 54

� No operator or sort may be renamed more than on
e in a renaming.� Ea
h
ompoundSort used as a traitA
tual must
orrespond to a traitFormal that is a sort.� Ea
h name used as a traitA
tualmust be an identi�er if it
orresponds to a traitFormal thatis a sort. If the name
ontains pla
eholders, it must
orrespond to a traitFormal that is anoperator with the appropriate number of domain sorts. If the name
ontains no pla
eholders,there must be a unique way of adding them to mat
h the number of domain sorts for the
orresponding traitFormal.Logi
al semanti
s� The assertions of a trait in
lude the axioms asserted dire
tly in the trait, together with the(appropriately renamed) axioms asserted in all traits (transitively) in
luded in the trait.� The assumptions of a trait in
lude the (appropriately renamed) axioms of all traits (transi-tively) assumed by the trait.� When trait A in
ludes or assumes trait B, the assertions and assumptions of A must implythe assumptions of B.� The assertions and assumptions of any trait must be
onsistent.24 Consequen
esLSL traits
an
ontain
he
kable redundan
y in the form of
onsequen
es that are
laimed to followfrom their axioms.Syntax of
onsequen
es
onsequen
es ::= 'implies' varD
ls?
onsequen
e;+ ';'?
onsequen
e ::= axiom | 'trait' traitRef,+ |
onversion
onversion ::= '
onverts' operator,+ ('exempting' term,+)?Stati
 semanti
s� All sorts and operators in a
onsequen
e, in
luding those de
lared in an implied traitFef,must be de
lared in the implying trait.� Ea
h name in a
onversion must
orrespond to exa
tly one de
lared operator (in the samemanner as required for traitFormals).� Ea
h term in an exempting
lause must
ontain some
onverted operator.Logi
al semanti
s� The assertions and assumptions of a trait must imply the non-
onversion
onsequen
es ofthat trait.� If a trait T is
laimed to
onvert a set Ops of operators, then op(x1; : : : ; xn) = op0(x1; : : : ; xn)must be a logi
al
onsequen
e of T [T 0 [E for ea
h op in Ops, where55

{ op0 is a new operator name,{ T 0 is obtained from T by repla
ing ea
h o

uren
e of ea
h op in Ops by op0, and{ E is the set of all formulas of the form t = t0, where t is an exempted term and t0 isobtained from t by repla
ing ea
h o

uren
e of ea
h op in Ops by op0.25 ConvertsEditorial note: Write this.

56

Part VAppendi
esA Axioms for built-in data typesEditorial note: To be supplied.

57

B Software tools for IOAIOA is being developed to enable the
onstru
tion of a variety of software tools that support thedes
ription and analysis of
on
urrent algorithms. Among these tools will be the following:� An LSL data type library, whi
h will supply spe
i�
ations of the data types built into IOA,as well as of other
ommon abstra
t data types for use in des
ribing I/O automata. The LSLHandbook [7℄, or a subset thereof, will form the basis for this library. Users will be able toextend the library.� A library of LSL traits that provide pre
ise de�nitions for the semanti
s of I/O automata andfor relations between automata.� A syntax and stati
 semanti

he
ker, for
he
king the well-formedness of des
riptions for I/Oautomata.� A prettyprinter, for tidying up des
riptions of I/O automata.� A simulator, for testing the behavior of I/O automata.� Proof tools, to assist in the proof of invariants, simulation relations, and temporal properties.One su
h tool will be based on the Lar
h Prover [5℄. Similar tools may be
onstru
ted forother veri�
ation systems, su
h as PVS [12℄, or for �nite state model
he
kers, su
h as SMV[10℄ and SPIN [11℄.

58

C BibliographyReferen
es[1℄ Mi
hel Bidoit. Pluss, un langage pour le d�eveloppement de sp�e
i�
ations alg�ebriques modulaires.Th�ese d'Etat, Universit�e Paris-Sud, Orsay, May 1989.[2℄ K. Mani Chandy and Jayadev Misra. Parallel Program Design. Addison Wesley, 1988.[3℄ Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebrai
 Spe
i�
ation 1: Equations andInitial Semanti
s. EATCS Monographs on Theoreti
al Computer S
ien
e, Vol. 6. Springer-Verlag, 1985.[4℄ Herbert B. Enderton, A Mathemati
al Introdu
tion to Logi
, A
ademi
 Press, 1972. (Se
ondedition to be published in January 2001 by Har
ourt Bra
e.)[5℄ Stephen J. Garland and John V. Guttag. \A guide to LP, the Lar
h Prover." TR-82, DECSystems Resear
h Center, 1991. Updated version available ashttp://www.sds.l
s.mit.edu/Lar
h/LP/overview.html.[6℄ J. A. Goguen, J. W. That
her and E. G. Wagner. \An initial algebra approa
h to the spe
i�
a-tion,
orre
tness, and implementation of abstra
t data types." Current Trends in ProgrammingMethodology IV: Data Stru
turing, Raymond T. Yeh (ed.). Prenti
e-Hall, 1978.[7℄ John V. Guttag and James J. Horning, editors. Lar
h: Languages and Tools for Formal Spe
-i�
ation. Springer-Verlag, 1993.[8℄ Nan
y A. Lyn
h. Distributed Algorithms. Morgan Kaufmann, 1996.[9℄ Nan
y A. Lyn
h and Mark Tuttle. \Hierar
hi
al
orre
tness proofs for distributed algorithms."Te
hni
al Report MIT/LCS/TR-387, MIT Laboratory for Computer S
ien
e, 1987.[10℄ Kenneth L. M
Millan. Symboli
 Model Che
king, an Approa
h to the State Explosion Problem.Ph.D. Thesis, Carnegie Mellon University, CMU-CS-92-131, 1992.[11℄ Gerard J. Holzmann. Design and Validation of Computer Proto
ols. Prenti
e Hall, New Jersey,1991, ISBN 0-13-539925-4.[12℄ Sam Owre, Sreeranga P. Rajan, John M. Rushby, Natarajan Shankar, and Mandayam Sri-vas. \PVS: Combining spe
i�
ation, proof
he
king, and model
he
king." Computer AidedVeri�
ation '96, 1996.[13℄ J�rgen A. Sogaard-Andersen, Stephen J. Garland, John V. Guttag, Nan
y A. Lyn
h, andAnna Pogosyants. \Computer-assisted simulation proofs." 4th Conferen
e on Computer AidedVeri�
ation, 1993.[14℄ M. Wand. \Final algebra semanti
s and data type extensions." Journal of Computer andSystem S
ien
es, August 1979.
59

