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Abstract

This paper presents and proves correct a distributed algorithm that implements a sequentially consistent collection of

shared read/update objects. This algorithm is a generalization of one used in the Orca shared object system. The algo-

rithm caches objects in the local memory of processors according to application needs; each read operation accesses a

single copy of the object, while each update accesses all copies. The algorithm uses broadcast communication when

it sends messages to replicated copies of an object, and it uses point-to-point communication when a message is sent

to a single copy, and when a reply is returned. Copies of all the objects are kept consistent using a strategy based on

sequence numbers for broadcasts.

The algorithm is presented in two layers. The lower layer uses the given broadcast and point-to-point communi-

cation services, plus sequence numbers, to provide a new communication service called a context multicast channel.

The higher layer uses a context multicast channel to manage the object replication in a consistent fashion. Both

layers and their combination are described and verified formally, using the I/O automaton model for asynchronous

concurrent systems.

1 Introduction

In this paper, we present and verify a distributed algorithm that implements a sequentially consistent collection

of shared read/update objects using a combination of (reliable, totally ordered) broadcast and (reliable) point-to-

point communication. This algorithm is a generalization of one used in the implementation of the Orca distributed

programming language [10] over the Amoeba distributed operating system [35].

Orca is a language for writing parallel and distributed application programs to run on clusters of workstations,

processor pools and massively parallel computers [10, 34]. It provides a simple shared object model in which each

object has a state and a set of operations, classified as either read operations or update operations. Read operations

do not modify the object state, while update operations may do so. Each operation involves only a single object and

appears to be indivisible.

More precisely, Orca provides a sequentially consistent memory model [26]. Informally speaking, a sequentially

consistent memory appears to its users as if it were centralized (even though it may be implemented in a distributed

fashion). There are several formalizations of the notion of sequentially consistent memory, differing in subtle ways.

We use the state machine definition of Afek, Brown and Merritt [4].
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Orca runs over the Amoeba operating system [35], which provides two communication services: broadcast and

point-to-point communication. Both services provide reliable communication, even in the presence of communication

failures. No guarantees are made by Orca if processors fail; therefore, we do not consider processor failures either.

In addition, the broadcast service promises delivery of the broadcast messages in the same total order at every

destination,1 while the point-to-point service preserves the order of messages between any sender and receiver. The

cost of an Amoeba broadcast, in terms of time and amount of communication, is higher than that of a single point-to-

point message. Therefore, it is natural to design algorithms so that point-to-point communication is used whenever

possible, i.e., when a message is intended for only a single destination, and broadcast is only used when necessary,

i.e., when a message must go to several destinations.

In the implementation of Orca, user programs are distributed among the various processors in the system. The user

program consists of threads, each of which runs on a single processor. In this paper, we call these threads clients of

the Orca system. Each processor may support several clients. Shared objects are cached in the local memory of some

of the processors. Each read operation by a client accesses a single copy of the object, while each update operation

accesses all copies. The underlying broadcast primitive provided by the Amoeba system is used to send messages

that must be sent to several destinations — that is, invocations of update operations for objects that have multiple

copies. The underlying point-to-point primitive is used to send messages that have only a single destination, that is,

invocations of reads from a site without a local copy of the object, invocations of writes for an object that has only

single (remote) copy, and responses to all invocations.

An early version of the implementation used a “replicate-everywhere” algorithm that caches all shared objects at

all processors. This strategy yields good performance for an object that has a high read-to-update ratio, since a read

operation needs only to access the local copy of the object. A major drawback is that updates must be performed

at all copies, using an (expensive) broadcast communication. Experience has shown that there are some objects for

which this is not the best arrangement. For example, many applications use a job queue object to allow clients to

share work; the job queue is updated whenever a client appends information to it about a task that needs to be done,

and also whenever a client removes a task from the queue in order to begin work on it. Since all accesses to a job

queue are updates, total replication is not an efficient strategy in this case. Another drawback of total replication is

the space needed for the copies.

Because of objects like these, Orca has been re-implemented to allow more flexibility in the placement of copies.

The new implementation uses an “all-or-one” replication algorithm that allows some objects to be totally replicated

and others to have only a single copy. Operations on an object with only a single copy can now be done using only

point-to-point messages, though broadcast must still be used for updates on replicated objects. The decision about

whether or not to replicate an object is made at run time using information generated by the Orca compiler. The

details of this decision process, and also performance measurements to show the benefits of not replicating all objects,

can be found in [9].

The naive strategy of allowing each read operation to access any copy of the object and each update operation

to access all copies is not by itself sufficient to implement a sequentially consistent shared memory. To see why,

consider the execution depicted in Figure 1, where time runs down the page, each vertical line represents the activity

at one processor, and messages are shown as arrows from the sending event at one processor to the receipt event at

another. The example involves 3 processors, P
1

, P
2

and P
3

, and two objects, x and y. Object x is replicated on

all processors, while object y is stored only on P
2

. The figure shows the invocation and response messages for an

update of y by P
1

, and the broadcast invocation messages for an update of x by P
3

. In this execution, P
2

’s read

operations indicate that y is updated before x is, while P
1

reads the new value of x before invoking the update of y.

1A broadcast service with such a consistent ordering guarantee is sometimes called a group communication service. Although group

communication is widely discussed in the systems literature, there is no general agreement on its definition. In this paper, we sidestep the issue

by using the term broadcast to indicate a communication to all sites in the system, and multicast to indicate a communication to a subset of the

sites. This terminology does not say whether the service is provided by hardware or software.
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Figure 1: A problem with the naive replication strategy.

In a centralized shared memory, such conflicting observations are impossible; thus this execution violates sequential

consistency.

The “all-or-one” replication algorithm in Orca solves this consistency problem using a strategy based on sequence

numbers for broadcasts. These broadcast sequence numbers are piggybacked on certain point-to-point messages and

are used to determine certain ordering relationships among the messages.

Our original goal was to verify the correctness of the “all-or-one” Orca replication algorithm. In the early stages

of our work, however, we discovered a logical error in the implemented algorithm. Namely, broadcast sequence

numbers were omitted from some point-to-point messages (the replies returned to the operation invokers) that needed

to include them. We produced a corrected version of the algorithm, which has since been incorporated into the Orca

system.

The algorithm we study in this paper is our corrected algorithm, generalized beyond what is used in the Orca

implementation to allow replication of a shared object at an arbitrary collection of processors, rather than just one

processor or all processors. We call this a “partial” replication algorithm. There is one way in which this partial

replication algorithm is less general than the Orca implementation, however: we assume for simplicity that the

locations of copies for each object are fixed throughout a program execution, whereas Orca allows these locations to

change dynamically, in response to changes in access patterns over time. We discuss the extension of our results to

the case of dynamic reconfiguration in Section 7. We also require less of the underlying point-to-point primitive than

Amoeba provides: we do not assume that the order of messages between the same sender and receiver is preserved.

We present and verify the algorithm as the composition of two completely separate layers, each a distributed

algorithm. The structure of this part of the system is depicted in Figure 2. The lower layer uses the given broadcast

and point-to-point communication services, plus broadcast sequence numbers, to implement a new communication
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Figure 2: The architecture of the system.

service called a context multicast channel. A context multicast channel supports multicast of messages to designated

subsets of the sites, according to a virtual total ordering of messages that is consistent with the order of message

receipt at each site, and consistent with certain restricted “causality” relationships. The guarantees provided by a

context multicast channel are weaker than those that are provided by totally ordered causal multicast channels, as

provided by systems such as early versions of Isis [13, 14]. However, the properties of a context multicast channel are

sufficiently strong to support the replica management of the Orca algorithm. We offer the context multicast channel as

an intermediate abstraction that helps in understanding the algorithm of this paper, which provides partially replicated

data using the primitives available in Amoeba. Whether it is valuable in other situations remains to be seen.

The lower layer uses the given point-to-point primitive for each multicast message with a single destination, and

the given totally ordered broadcast primitive for each multicast message with more than one destination. (Sites

that are not intended recipients simply discard the message.) Sites associate sequence numbers with broadcasts and

piggyback the sequence number of the last received broadcast on each point-to-point message. When a point-to-point

message reaches its destination, the recipient delays its delivery until the indicated number of broadcasts have been

received. We prove that this algorithm correctly implements a context multicast channel.

The higher layer uses an arbitrary context multicast channel to manage the object replication in a consistent

fashion. Each object is replicated at an arbitrary subset of the sites. A site performs a read operation locally if

possible. Otherwise, it sends a request to any site that has a copy and that site returns a response. A site performs an

update operation locally if it has the only copy of the object. Otherwise, it sends a multicast message to all sites that

have copies, and waits to receive either its own multicast, or else an appropriate response from some other site. We

prove that this algorithm, combined with any context multicast system, provides a sequentially consistent memory.

Our proof uses a new method based on partial orders.

All our specifications and proofs are presented in terms of the I/O automaton model for asynchronous concurrent

systems [30]; see [29] for a tutorial presentation of the model. General results about the composition of I/O automata

allow us to infer the correctness of the complete system from our correctness results for the two separate layers.

1.1 Related Work

Many different correctness conditions have been proposed for shared memory, including strong conditions like

memory coherence and weaker ones like release consistency. Sequential consistency is widely used because it

appears to be closest to what programmers expect from a shared memory system; non-sequentially-consistent shared

memory systems typically trade programmability for performance. Sequential consistency was first defined by

Lamport [26]; in this paper, we use an alternative formulation proposed by Afek et al. [4], based on I/O automata.

Other papers exploring correctness conditions for shared memory and algorithms that implement them include

[2, 3, 5, 11, 12, 15, 17, 18, 19, 20, 21, 28, 33]. A valuable survey of these ideas is given by Adve and Gharachorloo [1].
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In most of previous work, memory is modelled as a collection of items that are accessed through read and write

operations. The study of correctness for shared memory with more general data types was initiated by Herlihy and

Wing [22]. Sequential consistency and other consistency conditions for general data types has been studied by Attiya

and Welch [8] and Attiya and Friedman [7].

The algorithms that provide each layer in this paper are closely related to some in the literature. In the lower

layer, context multicast is provided by placing sequence numbers in messages, and delaying processing until after

the receipt of messages that should be ordered ahead. This is similar to techniques used by Welch [36] and Neiger

and Toueg [31], which delay point-to-point messages based on sequence numbers. The algorithm in the upper layer

updates all copies, and reads any copy; this is folklore from the database community, where operation ordering is

managed by locking. Attiya and Welch [8] proved that this algorithm provides sequential consistency when run over

a totally ordered broadcast communication service. Our proof technique for sequential consistency based on a partial

order is similar to a method used by Attiya and Friedman [7] to prove hybrid consistency.

1.2 Overview of this paper

The rest of the paper is organized as follows. Section 2 introduces basic terminology that is used in the rest of the

paper. Section 3 contains the definition of a sequentially consistent shared memory and introduces our new method

for proving sequential consistency. Section 4 contains definitions of multicast channels with various properties, and

in particular, the definition of a context multicast channel. Section 5 contains the higher layer algorithm, which

implements sequential consistency using context multicast, plus a proof of its correctness. Section 6 contains the

lower layer algorithm, which implements context multicast in terms of broadcast and point-to-point messages, plus a

proof of its correctness. Section 7 contains a discussion of dynamic reconfiguration, and some ideas for future work.

Finally, in Section 8 we draw our conclusions.

2 Some Basics

2.1 Partial Orders

We use many partial (and total) orders, on events in executions, and on operations. Throughout the paper, we assume

that partial and total orders are irreflexive, that is, they do not relate any element to itself. Also, we define a partial

or total order P to be well-founded provided that each element has only finitely many predecessors in P . This

assumption is needed to rule out various technical anomalies.

2.2 I/O Automata

The I/O automaton model is a simple labeled transition system model for asynchronous concurrent systems. An I/O

automaton has a set of states, including some start states. It also has a set of actions, classified as input, output, or

internal actions, and a set of steps, each of which is a (state, action, state) triple. Finally, it has a set of tasks, each of

which consists of a set of output and/or internal actions. Inputs are assumed to be always enabled.

An I/O automaton executes by performing a sequence of steps. An execution is said to be fair if each task gets

infinitely many chances to perform a step. External behavior of an I/O automaton is defined by the set of fair traces,

i.e., the sequences of input and output actions that can occur in fair executions.

I/O automata can be composed, by identifying actions with the same name. The fair trace semantics is compo-

sitional. Output actions of an I/O automaton can also be hidden, which means that they are reclassified as internal

actions. See [30] or [29] for more details.
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3 Sequentially Consistent Shared Object Systems

In this section, we define a sequentially consistent shared object system and give a new method for proving that a

system is sequentially consistent. Informally, a system is said to be a sequentially consistent shared object system if

all operations receive responses that are “consistent with” the behavior of a serially-accessed, centralized memory.

More precisely, the order of events at each client should be the same as in the centralized system, but the order of

events at different clients is allowed to be different.

3.1 The Interface

We start by identifying the actions by which the shared object system interacts with its environment (the clients).

The shared object system receives requests from its environment and responds with reports. Requests and reports

are of two types: read and update. Each request and report is subscripted with the name of the client involved. Each

request and report contains, as arguments, a unique operation identifier and the name of the object being accessed. In

addition, each update request contains the function to be applied to the object and each read report contains a return

value.2

Formally, letC be a fixed finite set of clients, X a fixed set of shared objects, V a fixed set of values for the objects,

including a distinguished initial value v
0

,3 and � a fixed set of operation identifiers, partitioned into subsets �
c

, one

for each client c. Then the interface is as follows. (Here, c, �, x and v are elements of C, �, X , and V , respectively,

and f is a function from V to V .)

Input:

request-read(�; x)
c

, � 2 �

c

request-update(�;x; f)
c

, � 2 �

c

Output:

report-read(�; x; v)
c

, � 2 �

c

report-update(�;x)
c

, � 2 �

c

If � is a sequence of actions, we write �jc for the subsequence of � consisting of request-read
c

, request-update
c

,

report-read
c

and report-update
c

actions. This subsequence represents the interactions between client c and the object

system.

We assume that invocations are blocking: a client does not issue a new request until it has received a report

for its previous request. This assumption, and the uniqueness of operation identifiers, are assumptions about the

behavior of clients. We express these conditions in the following definition: we say that a sequence � of actions is

client-well-formed provided that for each client c, no two request events4 in �jc contain the same operation identifier

�, and that �jc does not contain two request events without an intervening report event.

The object systems we describe will generate responses to client requests. Here we define the syntactic properties

required of these responses. Namely, we say that a sequence of actions is complete provided that there is a one-to-one

correspondence between request and report events such that each report follows the corresponding request and has

the same client, operation identifier, object and type.5 If a sequence � is client-well-formed and complete, then

�jc must consist of a sequence of pairs of actions, each of the form request-read(�; x)
c

; report-read(�; x; v)
c

or

request-update(�; x; f)
c

; report-update(�; x)
c

.

We say that an operation identifier � occurs in sequence � provided that � contains a request event with operation

identifier �. If � is any client-well-formed sequence and � occurs in �, then there is a unique request event in � for �.

We sometimes denote this event simply by request(�). Also, if � is client-well-formed and complete, then there is a

2There are two ways in which Orca differs from our specification: in Orca, (1) an update may return a value and (2) an update might be

delayed at the object in certain circumstances such as attempting to delete from an empty queue.
3We ignore the possibility of different data domains for the different objects.
4An event is an occurrence of an action in a sequence.
5Note that the completeness property includes both safety and liveness conditions.
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unique report event with operation identifier �; we denote it by report(�). We often refer to an operation identifier as

just an operation.

If� is a complete client-well-formed sequence of actions, we define the totally-precedes partial order, totally-precedes
�

,

on the operations that occur in � by: (�; �0) 2 totally-precedes
�

provided that report(�) occurs before request(�0) in

�. Notice that for each client c, totally-precedes
�jc

totally orders the operations that occur in �jc.

3.2 Definition of Sequential Consistency

Our definition of sequential consistency is based on an atomic object [27, 29], also known as a linearizable object

[22], whose underlying data type is the entire collection of data objects to be shared. In an atomic object, the

operations appear to the clients “as if” they happened in some sequential order, and furthermore, that order must be

consistent with the totally-precedes order. Specifically, we let AM, the atomic memory automaton, be just like the

serial object automaton Mserial defined by Afek, Brown and Merritt [4] for the given collection of objects, except

that we generalize it to allow updates that apply functions rather than just blind writes. The code appears in Figure 3.

Here, c, �, x and v are elements ofC, �,X , and V , respectively, and f is a function from V to V . The actions of AM

are those of the interface described in Section 3.1, plus additional internal actions of the form perform-read(�; x)
c

and perform-update(�; x; f)
c

, where � 2 �

c

. The state of the automaton AM consists of an array mem indexed by

X , of elements of V , and an array active, indexed by C, of tuples or the special value null. Here, mem(x) represents

the current value for object x, and active(c) represents the access by client c that is currently in progress, if any. The

value null means that no access is currently in progress.

The steps of AM are described using a simple precondition-effect (i.e., guarded command) notation. The steps for

each particular type of action are represented by a single code fragment. The automaton is allowed to perform any

of these actions at any time when its precondition is satisfied; this style allows us to express the maximum allowable

nondeterminism. Here, the request actions record the requests, the perform actions actually perform the operations

using mem, and the report actions convey the results back to the clients.

AM has one task for the output and internal actions of each client. This means that the automaton keeps giving

turns to the activities it does on behalf of each client. Note that every client-well-formed fair trace of AM is complete.

Sequential consistency is almost the same as atomicity; the difference is that sequential consistency does not

respect the order of events at different clients. Thus, if � is a client-well-formed sequence of actions, we say that � is

sequentially consistent provided that there is some fair trace 
 of AM such that 
jc = �jc for every client c. That is,

� “looks like” 
 to each individual client; we do not require that the order of events at different clients be the same

in � and 
.

If A is an automaton that models a shared object system, then we say that A is sequentially consistent provided

that every client-well-formed fair trace of A is sequentially consistent.

3.3 Proving Sequential Consistency

In order to show that the Orca shared object system is sequentially consistent, we use a new proof technique based

on producing a partial order on the operations that occur in a fair trace. In this subsection, we collect the properties

we need for the proof of correctness, in the definition of a “supportive” partial order.

For each c 2 C, let �
c

be a complete client-well-formed sequence of request and report events at client c. Suppose

that P is a partial order on the set of all operations that occur in the sequences �
c

. Then we say that P is supportive

for the sequences �
c

provided that it is consistent with the order of operations at each client and orders all conflicting

operations (that is, two operations on the same object where at least one is an update); moreover, the responses

provided by the reads are correct according to P . Formally, it satisfies the following four conditions:

1. P is well-founded.
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AM:

Signature:

Input:

request-read(�; x)
c

, � 2 �

c

request-update(�;x; f)
c

, � 2 �

c

Output:

report-read(�; x; v)
c

, � 2 �

c

report-update(�;x)
c

, � 2 �

c

Internal:

perform-read(�; x)
c

, � 2 �

c

perform-update(�;x; f)
c

, � 2 �

c

States:

mem, an array indexed by X of elements of V , initially identically v
0

active, an array indexed by C of tuples or the special value null, initially identically null

Steps:

request-read(�; x)
c

Effect:

active(c) := (read-perform; �;x)

perform-read(�;x)
c

Precondition:

active(c) = (read-perform; �; x)

Effect:

active(c) := (read-report; �; x;mem(x))

report-read(�;x; v)
c

Precondition:

active(c) = (read-report; �;x; v)

Effect:

active(c) := null

request-update(�; x;f)
c

Effect:

active(c) := (update-perform; �; x; f)

perform-update(�; x; f)
c

Precondition:

active(c) = (update-perform; �;x; f)

Effect:

mem(x) := f(mem(x))

active(c) := (update-report; �; x)

report-update(�; x)
c

Precondition:

active(c) = (update-report; �; x)

Effect:

active(c) := null

Tasks:

for every client c:

the set of output and internal actions of c

Figure 3: Automaton AM .
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2. For each c, P contains the order totally-precedes
�

c

.

3. For each object x 2 X , P totally orders all the update operations of x, and P relates each read operation of x

to each update operation of x.

4. Each read operation � of object x has a return value that is the result of applying to v
0

, in the order given by

P , the update operations of x that are ordered ahead of �. More precisely, let �
1

; �

2

; : : : ; �

m

be the unique

finite sequence of operations such that (a) f�
j

: 1 � j � mg is exactly the set of updates �0 of x such that

(�

0

; �) 2 P , and (b) (�
j

; �

j+1

) 2 P for all j, 1 � j < m. Let f
j

be the function associated with request(�
j

).

Then the return value for � is f
m

(f

m�1

(: : :(f

2

(f

1

(v

0

))) : : :)).

The following lemma describes how a supportive partial order can be used to prove sequential consistency.

Lemma 3.1 For each c 2 C, let �
c

be a complete client-well-formed sequence of request and report events at client

c. Suppose that P is a partial order on the set of all operations that occur in the sequences �
c

.

If P is supportive for the sequences �
c

, then there is a fair trace 
 of AM such that 
jc = �

c

for every c and

totally-precedes



contains P .

Proof: Let P be a supportive partial order. We first show that we can extend P to a total order Q such that Q is also

supportive for the sequences �
c

. We define Q as follows: suppose � and �0 are operations that occur in �
c

and �
c

0

respectively. Let (�; �0) 2 Q provided that either � has fewer predecessors in P than �0, or else the two operations

have the same number of predecessors and c precedes c0 in some fixed total ordering of the clients. It is clear by

construction that Q is a total order on the operations that occur in the sequences and that P � Q.

To show that Q is supportive, we note that the second and third conditions follow from the fact that P is supportive

(since Q contains P ).

To show the first condition, we observe that P totally orders all the operations that occur in �
c

(for the same c),

and so it is not possible for two operations � and �0 that are both in �
c

to have the same number of predecessors.

(Whichever is later will have a set of predecessors that include all the predecessors of the other, together with the

other operation itself and possibly more). It follows that there are at most n(N + 1) operations that have � N

predecessors in P , where n is the number of clients in the system. Now, if an operation has N predecessors in P ,

then by definition ofQ, each of its predecessors inQmust have at mostN predecessors in P . Since there are at most

n(N + 1) such operations, the operation has at most n(N + 1) predecessors in Q. This shows the first condition.

Finally the fourth condition holds for Q because it holds for P , and the set of update operations of x that precede

a given read of x is identical whether P or Q is used as the order.

Now since Q is a total order in which each element has only a finite number of predecessors, arranging the

operations in the order given byQ defines a sequence of operations. We obtain the required sequence 
 by replacing

each operation in this sequence by its request event followed by its report event.

We claim that 
 has the required properties. The fact that each �
c

is client-well-formed and complete implies that

totally-precedes
�

c

is a total order on the operations that occur in �
c

, and so these operations occur in Q in the same

order; since 
 is constructed to be well-formed and complete, the events in 
jc are the same as the events in �
c

, and

their order is also the same. Thus 
jc = �

c

. By construction, totally-precedes



equals Q which contains P . Finally,


 is a trace of AM because the fourth condition ensures that return values are appropriate; the trace is fair since 
 is

complete.

The following lemma is what we actually use later in our proof.

Lemma 3.2 Suppose that A is an automaton with the interface for a shared object system described in Section 3.1.

Suppose that, for every client-well-formed fair trace � of A, the following are true:

1. � is complete.
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2. There is a supportive partial order for the sequences �jc.

Then A is a sequentially consistent shared object system.

Proof: Immediate by Lemma 3.1.

The literature contains other definitions of sequential consistency, besides the automaton-based one we have

adopted from Afek, Brown and Merritt [4]. The original definition of Lamport [26] says that a multiprocessor is

sequentially consistent if “the result of every operation is the same as if the operations of all the processors were

executed in some sequential order, and the operations of each individual processor appear in this sequence in the

order specified by its program.” This corresponds directly to the existence of a total order that is supportive for the

sequences �jc. Thus our proof technique using a supportive partial order can be seen as a generalization of the

techniques that are based on Lamport’s definition.

4 Multicast Communication

In this section, we define properties for multicast channels, and use them to define context multicast channels. We

also define some alternative kinds of multicast channels considered elsewhere, and compare these channels to context

multicast channels.

4.1 Context Multicast Channels

As in Section 3, we start by defining the actions by which a multicast channel interacts with its environment; this

time, the environment is a set of sites in a distributed network. The multicast channel receives requests from sites to

send messages to specified collections of sites, and responds by delivering the messages to the requested recipients.

Thus, the channel provides multicast messages. There are two special cases: when the destination set consists of the

entire collection of sites (including the sender), the communication is called broadcast, and when the destination set

contains a single site, the communication is called point-to-point.

Formally, let M be a set of messages, I be a set of sites, and I be a fixed set of subsets of I , representing the

possible destination sets for messages. If I = fIg we say that the channel is broadcast, since the only possible

destination set includes all the sites. When I = ffig : i 2 Ig we say the channel is point-to-point, since each

destination set consists of a single site. The interface is as follows:

Input:

mcast(m)

i;J

, m 2M , i 2 I , J 2 I

Output:

receive(m)

j;i

, m 2 M , j; i 2 I

The action mcast(m)

i;J

represents the submission of message m by site i to the channel, with J as the set of

intended destinations. The action receive(m)

j;i

represents the delivery of message m to site i, where j is the site

where the message originates. In each case, the action occurs at site i.

Now we describe various correctness properties for fair traces of multicast channels. First, we require reliable

delivery of all messages, each exactly once, and to exactly the specified destinations. Formally, in any fair trace � of

any multicast channel, there should be a cause function mapping each receive event in � to a preceding mcast event

(i.e., the mcast event that “causes” this receive event). The two corresponding events should have the same message

contents, the site of the mcast should be the originator argument of the receive , and the site of the receive should be a

member of the destination set given in the mcast. Furthermore, the cause function should be one-to-one on receive

events at the same site (which means there is no duplicate delivery at the same site). Finally, the destination set

for any mcast event should equal the set of sites where corresponding receive events occur (which means that every

message is in fact delivered everywhere it should be).

In addition to these basic properties, there are additional properties of multicast systems that are of interest. These

involve a “virtual ordering” of multicasts. We define these properties as conditions on a particular sequence � that

10



we assume satisfies all the basic reliability requirements described just above, and a particular well-founded partial

order Q (the “virtual ordering”) of mcast events in �.

The first condition says that the order in which each site receives its messages is consistent with the virtual ordering

Q. That is, the observations at a single site do not contradict the virtual ordering.

Receive Consistency � andQ are receive consistent provided that the following holds. If � and �0 are mcast events

in �, and (�; �0

) 2 Q, and for some site i the sequence � contains both a receive event � at i corresponding to

� and also a receive event �0 at i corresponding to �0, then � precedes �0 in �.

The remaining two conditions in this subsection describe ordering relationships that must be included in Q. The

next condition says that Q must relate a multicast that arrives at a site to any subsequent multicast originating at the

same site. This describes a restricted “causality” relationship.

Context safety � and Q are context safe provided that the following holds. If � is any mcast event, �0 is an mcast

event at site i, and a receive event corresponding to � precedes �0 at site i in �, then (�; �

0

) 2 Q.

The final condition says that Qmust relate all pairs of multicasts, that is, must be a total order.

Totality � andQ are total provided that Q relates any pair of distinct multicasts in �; that is, if � and �0 are any two

distinct mcast events in �, then either (�; �0

) 2 Q or (�0

; �) 2 Q.

Finally, we define a context multicast channel to be any automaton with the proper interface, in which every fair

trace �:

� satisfies the basic reliability requirements, and

� has a well-founded partial order Q such that � and Q are receive consistent, context safe, and total.

4.2 Other Types of Multicast Channels

Many researchers have proposed the development of distributed applications based on multicast services [6, 13, 16,

32, 35]. The proposed services make different guarantees on the ordering of message deliveries. In this subsection, we

define two more conditions similar to those used to define context multicast channels. Based on these conditions and

those previously defined, we then define some different channels and compare them with context multicast channels.

The channels we define are simplifications of services provided in actual systems, since our definitions do not

take the possibility of failure into account. When failure is considered, a level of indirection is usually introduced:

messages are addressed to a named group rather than to individual sites, and each group has a varying set of sites

which are its members. The interaction of group membership changes with message ordering is complex, and there

is no consensus yet on appropriate definitions. We avoid these issues here.

The two conditions we define in this subsection describe ordering relationships that must be included in the virtual

ordering Q. The first says that Q must relate any multicast to any later multicast originating at the same site.

FIFO � and Q are FIFO provided that the following holds. If � and �0 are mcast events at site i in �, with �

preceding �0, then (�; �

0

) 2 Q.

The second condition says that Q must relate any two multicasts with the same destination set.

Group-Ordered � andQ are group-ordered provided thatQ relates any distinct multicasts with the same destination

set; that is, if � = mcast(m)

i;J

and �0

= mcast(m0

)

i

0

;J

are two distinct events in �, then either (�; �0

) 2 Q

or (�0

; �) 2 Q.
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The CBCAST multicast primitive of the Isis system[14, 13] guarantees that message delivery respects “Lamport

causality” [25]. Informally speaking, this ensures that when a message is delivered, the recipient has already seen

any other message whose contents could have been known to the sender at the time of sending. We represent the

CBCAST channel by the following definition: A causal multicast channel is any automaton with the proper interface,

in which every fair trace �:

� satisfies the basic reliability requirements, and

� has a well-founded partial order Q such that � and Q are receive consistent, context safe, and FIFO.

This idea has been widely adopted in systems for group communication [6, 32].

The Isis CBCAST primitive does not guarantee consistent order of receipt of all messages at different sites, and

so it does not provide a context multicast channel. Also, there are interesting communication systems (e.g., the

one described in Section 6) that are context multicast channels but are not causal multicast channels because some

fair traces do not satisfy the FIFO condition. That is, causal multicast channels and context multicast channels are

incomparable concepts: there are fair traces that are permitted by each but not by the other.

For some distributed applications, especially those based on replicated data, it is necessary not only to ensure

causality but also to ensure that non-causally-related messages are received in the same order at different destinations.

The ABCAST multicast primitive in the early versions of ISIS [14] guarantees these properties. We represent the

ABCAST channel by the following definition: A totally ordered causal multicast channel is any automaton with the

proper interface, in which every fair trace �:

� satisfies the basic reliability requirements, and

� has a well-founded partial order Q such that � and Q are receive consistent, context safe, total, and FIFO.

Note that, by definition, any totally ordered causal multicast channel is also a context multicast channel. However,

the algorithm of Section 6 gives a context multicast channel that is not a totally ordered causal multicast channel.

In the absence of hardware support for broadcast (such as the local area networks used in Amoeba), the known

algorithms for implementing totally ordered causal multicast are fairly slow. This has led some system designers to

weaken their multicast service guarantees so that consistent message delivery is ensured not for all messages, but

only for messages intended for the same group. We represent such a weaker service by the following definition: A

group-ordered causal multicast channel is any automaton with the proper interface, in which every fair trace �:

� satisfies the basic reliability requirements, and

� has a well-founded partial order Q such that � and Q are receive consistent, context safe, FIFO and group-

ordered.

Of course, any totally ordered causal multicast channel is also a group-ordered causal multicast channel, and any

group-order causal multicast channel is a causal multicast channel. When Isis designers re-implemented the ABCAST

service, they chose a new algorithm that provided group-ordered traces but not the stronger total order property

present in the original implementation.

In Figure 4, we show the inclusion relationships between the definitions given. An arrow from one type of

multicast channel to another indicates that every example of the first type is necessarily an example of the second

type. Whenever there is no path from one type to another in the diagram, then there are examples of the first type that

are not examples of the second type.

5 The Higher Layer

Now we present the replica management algorithm, which uses a context multicast channel to implement a sequentially

consistent shared memory (see Figure 5).
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5.1 The Partial Replication Algorithm

The partial replication algorithm is modelled as a collection of automata P
i

, one for each site i in a distributed

network. As in the previous section, we let I denote the set of sites. The entire shared object system is, formally,

the composition of the site automata P
i

, i 2 I , and a context multicast channel. Each client c is assumed to run at a

particular site, site(c). We let clients(i) denote the set of clients that run at site i.6

The algorithm replicates each object x at an arbitrary (but fixed) subset sites(x) of the sites, one of which is

distinguished as the primary site, primary(x). We assume that the set of sites at which each object x is replicated is

a possible destination set for the multicast channel, i.e., that for every x, sites(x) 2 I.

A site automaton P
i

performs a read operation on an object x locally if it has a copy of x. Otherwise, it sends a

request to any site that has a copy of x and that site returns a response. P
i

performs an update operation on x locally

if it has the only copy of x. Otherwise, P
i

sends a multicast message to all sites that have copies of x, and waits to

receive either its own multicast (in case P
i

has a copy of x), or else an acknowledgment from the primary site (in case

P

i

does not have a copy).

The set of messagesM used in the algorithm consists of (read-do; c; �; x),(update-do; c; �; x; f),(read-reply; c; �; x; v),

and (update-reply; c; �; x), where c 2 C, � 2 �, x 2 X , v 2 V , and f : V ! V . The “do” messages are requests

to perform operations, and the “reply” messages are responses to these requests.

The code for process P
i

appears in Figure 6. In this code, we assume that c 2 clients(i), �, x and v are elements

of �, X , and V , respectively, and f is a function from V to V . Also, m is an arbitrary message in M , j 2 I , and

J 2 I.

The input and output actions of P
i

are all the actions of all clients c at site i, plus actions to send and re-

ceive multicasts. The internal action perform-read(c; �; x)
i

represents the reading of a local copy of x, whereas

global-read(c; �; x)
i

represents the decision to send a message to another site requesting the value of x. Similarly,

perform-update(c; �; x; f)
i

represents the local performance of an update (when site i has the only copy of x),

whereas global-update(c; �; x; f)
i

represents the decision to send a message in order to update x.

The status components of the state keep track of operations being processed at the site. For example, if status(c) =

(update-wait; �; x), it means that P
i

has sent a message asking for x to be updated on behalf of operation �, and

is waiting to receive either its own message or an acknowledgment before reporting back to client c. Because of

client-well-formedness, status information needs to be kept for at most one operation of c at a time. The val(x)

component records the current value of the copy of x at site i. The buffer contains messages scheduled to be sent via

the context multicast channel.

The steps of P
i

are organized into code fragments, one for each type of action. In order to make the code easier

to read, we have organized it so that the fragments involved in processing reads, plus the code for mcast, appear in

the left column and the fragments for processing updates appear in the right column. Also, the fragments appear in

the approximate order of their execution. However, note that the order in which the fragments are presented has no

formal significance in the underlying model. As we described earlier, the automaton can perform any one of its steps

at any time when that step’s precondition is satisfied.

The code fragments follow the informal description we gave above. For example, a perform-read is allowed to

occur provided that the operation has the right status and i has a copy of the object x; its effect is to change the status

to record the value read (and the fact that the read has occurred). For another example, a global-update is allowed to

occur provided that the operation has the right status and i is not the only site with a copy of the object x; its effect

is to change the status to record that P
i

is now waiting and also to put a message in the buffer. The most interesting

code fragment is that for receive(update-do). When this occurs, P
i

always updates its local copy of the object x. In

addition, if the message received is P
i

’s own message, then P
i

uses this as an indication to stop waiting and report

6In theoretical work on distributed shared memory, it is common to assume that only one client runs per site. This issue has little impact on

the proofs, but we prefer to include multiple clients as a realistic model for systems like Orca.
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P

i

:

Signature:

Input:

request-read(�; x)
c

, � 2 �

c

request-update(�;x; f)
c

, � 2 �

c

receive(m)

j;i

Output:

report-read(�; x; v)
c

, � 2 �

c

report-update(�;x)
c

, � 2 �

c

mcast(m)

i;J

Internal:

perform-read(c; �;x)
i

, � 2 �

c

global-read(c; �; x)
i

, � 2 �

c

perform-update(c; �; x; f)
i

, � 2 �

c

global-update(c; �; x; f)
i

, � 2 �

c

States:

for every c 2 clients(i):

status(c), a tuple or quiet, initially quiet

for every x for which there is a copy at i:

val(x) 2 V , initially v
0

buffer, a FIFO queue of (message, destination set) pairs, initially empty

Steps:
request-read(�; x)

c

Effect:

status(c) := (read-perform; �;x)

perform-read(c; �; x)
i

Precondition:

status(c) = (read-perform; �;x)

i 2 sites(x)

Effect:

status(c) := (read-report; �;x; val(x))

global-read(c; �; x)
i

Precondition:

status(c) = (read-perform; �;x)

i =2 sites(x)

Effect:

add ((read-do; c; �; x);fjg) to buffer

where j is any element of sites(x)

status(c) := (read-wait; �; x)

receive((read-do; c; �;x))
j;i

Effect:

add ((read-reply; c; �;x; val(x)); fjg) to buffer

receive((read-reply; c; �; x; v))
j;i

Effect:

status(c) := (read-report; �; x; v)

report-read(�; x; v)
c

Precondition:

status(c) = (read-report; �;x; v)

Effect:

status(c) := quiet

mcast(m)

i;J

Precondition:

(m;J) is first on buffer

Effect:

remove first element of buffer

request-update(�;x; f)
c

Effect:

status(c) := (update-perform; �; x; f)

perform-update(c; �;x; f)
i

Precondition:

status(c) = (update-perform; �;x; f)

sites(x) = fig

Effect:

val(x) := f(val(x))

status(c) := (update-report; �; x)

global-update(c; �; x; f)
i

Precondition:

status(c) = (update-perform; �;x; f)

sites(x) 6= fig

Effect:

add ((update-do; c; �;x; f); sites(x)) to buffer

status(c) := (update-wait; �; x)

receive((update-do; c; �; x; f))
j;i

Effect:

val(x) := f(val(x))

if j = i then status(c) := (update-report; �;x)

if j =2 sites(x) and i = primary(x)

then add ((update-reply; c; �;x); fjg) to buffer

receive((update-reply; c; �; x))
j;i

Effect:

status(c) := (update-report; �; x)

report-update(�;x)
c

Precondition:

status(c) = (update-report; �; x)

Effect:

status(c) := quiet

Tasks:

For each c,

the set of all output and internal actions that involve c comprise a task.

Figure 6: Automaton P
i

.
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back to the client. On the other hand, if the message received is from a site that does not have a copy of x, and P
i

is

the primary site for x, then P
i

sends a reply back to the sender.

There is one task of automaton P
i

devoted to the non-input actions involving each client. This means that P
i

keeps

trying to make progress on behalf of each client.

5.2 Correctness

Let A denote the composition of the site automata P
i

and an automaton B that is a context multicast channel, with

the mcast and receive actions hidden. We prove the following theorem:

Theorem 5.1 A is a sequentially consistent shared object system.

It is an immediate consequence of Theorem 5.1 that the replication algorithm also works correctly when used

over a totally ordered causal multicast channel. However, perhaps not surprisingly, the algorithm does not give

sequential consistency when used over an arbitrary group-ordered causal multicast channel, such as the ABCAST

service provided by recent versions of Isis. This is shown by the example depicted in Figure 7, involving 5 processors,

P

1

, P
2

, P
3

, P
4

and P
5

, and two objects, x and y. Object x is replicated at P
1

, P
2

, P
3

and P
5

, while y is replicated

at P
3

, P
4

and P
5

. An update to x is generated by a client at P
1

, and an update to y by a client at P
4

. A client at P
3

reads the local copy of x after that copy has been updated, and then reads the local copy of y before it is updated. On

the other hand, a client at P
5

reads the local copy of y after it has been updated, and then it reads the local copy of

x before it is updated. The pattern of messages that occurs in this execution has the “update x” message before the

“update y” at P
3

, and the reverse order at P
5

. This is allowed by the properties of group-ordered causal multicast,

which give consistency in order of receipt only for messages sent to the same group. However, the execution is not

sequentially consistent, because the client at P
3

has responses that indicate that x is updated before y, but the client

at P
5

sees the reverse.

It is also worth pointing out that although the partial replication algorithm does provide sequential consistency

when run over a context multicast layer, it does not provide the stronger linearizability condition [22]. This is shown

in Figure 8, in which an object x is replicated on three processors P
1

, P
2

and P
3

. The execution shows how a read

can observe a value that does not reflect an update, even though the update’s completion is reported to the client

at P
2

earlier (in absolute time) than when the read is requested at P
1

. Thus the apparent order of non-overlapping

operations at different processors does not agree with the temporal order seen by an outside observer.

The rest of this section is devoted to the proof of Theorem 5.1. The proof is based on Lemma 3.2. For the rest of

the section, fix � to be an arbitrary client-well-formed fair trace of A, and let � be any fair execution of A that gives

rise to �. As indicated by the statement of Lemma 3.2, our goals are to show both of the following:

1. � is complete.

2. There is a supportive partial order P for the sequences �jc.

If � is an operation that occurs in � then since � is client-well-formed, we know that there is a unique request(�)

event in �. We classify each operation � that occurs in � as one of the following mutually exclusive cases:

1. � is a local read operation if � is a read operation of object x by client c and site(c) 2 sites(x).

2. � is a local update operation if � is an update operation of x by c and fsite(c)g = sites(x).

3. � is a remote read operation if � is a read operation of x by c and site(c) =2 sites(x).

4. � is a remote update operation if � is an update operation of x by c and site(c) =2 sites(x).

16



P

1

P

2

P

3

P

4

P

5

A

A

A

A

A

A

A

A

A

AU

X

X

X

X

X

X

X

X

X

Xz

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@

@R

�

�

�

@

@

@R

update x

�

�

�

�

�	

@

@

@

@

@R

A

A

A

�

�

��

update y

read y

read x

read y

read x

Figure 7: A problem with group-ordered multicast.

17



P

1

P

2

P

3

H

H

H

H

H

H

H

H

H

Hj

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

@

@

@

�

�

�	

update x

read x

Figure 8: Non-linearizable execution.

18



5. � is a shared update operation if � is an update operation of x by c, site(c) 2 sites(x) and fsite(c)g 6= sites(x).

We define a local operation to be either a local read or a local update, and similarly for a remote operation. Also,

a global operation is either a remote operation or a shared update operation.

The classification of operations reflects the different ways they are carried out. Namely, a local operation is

processed using a perform event, a remote operation is processed using an mcast(do) message followed by an

mcast(reply) message, and a shared update operation is processed using an mcast(do) message only.

It is straightforward that in fair client-well-formed executions, each operation has a report event following the

request. Therefore, we have reached the first of our two goals:

Lemma 5.2 � is complete.

Now we turn to our second goal, of producing a supportive partial order P for the sequences �jc. First, we draw

some easy conclusions about the order of events at a single client c, in �. The events singled out are perform events for

local operations, mcast(do) events for global operations, receive(reply) events for remote operations, and receive(do)

events for shared updates.

Lemma 5.3 Suppose that (�; �0) 2 totally-precedes
�jc

for some client c at site i.

1. If � and �0 are both local, then the perform event for � precedes the perform event for �0 in �.

2. If � is local and �0 is global, then the perform event for � precedes the mcast of the do message for �0 in �.

3. If � is local and �0 is shared, then the perform event for � precedes the receipt of the do message for �0 by i, in

�.

4. If � is shared and �0 is local, then the receipt of the do message for � by i precedes the perform event for �0 in

�.

5. If � is remote and �0 is local, then the receipt of the reply message for � precedes the perform event for �0 in �.

6. If � is shared and �0 is global, then the receipt of the do message for � by i precedes the mcast of the do message

for �0 in �.

7. If � and �0 are both shared, then the receipt of the do message for � by i precedes the receipt of the do message

for �0 by i, in �.

8. If � is remote and �0 is global, then the receipt of the reply message for � precedes the mcast of the do message

for �0 in �.

Proof: We prove Part 2. The algorithm code shows that the perform for � precedes report(�). By the definition

of totally-precedes
�jc

, this in turn precedes request(�0). The code also shows that this precedes the mcast of the do

message for �0.

The proofs of the other parts of the lemma are similar.

We now provide some terminology for discussing the crucial actions of the various operations, namely, those

actions that actually affect or use the values of object copies.

Let x be an object, and let i be any element of sites(x). Thus, there is a replica of x at site i. From the definitions

of the steps, we see that the events that can modify this replica are those of the form perform-update(c; �; x; f)
i

and

receive(update-do; c; �; x; f)
j;i

. We say that each of these is a modification of x at i on behalf of �. The only other

events that use this replica are those of the form perform-read(c; �; x)
i

and receive(read-do; c; �; x)
j;i

. We say that
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each of these is a lookup of x at i on behalf of �. A crucial event for x at i on behalf of � is either a modification or

a lookup.

Note that for any site i and operation �, � contains at most one crucial event at i on behalf of �. The code shows

that in processing each operation, we also have some guarantees that certain crucial events must occur:

Lemma 5.4 Let � be a read operation of object x. Then there is some site i in sites(x) such that there is a lookup of

x at i on behalf of �.

Lemma 5.5 Let � be an update operation of object x. Then for every site i in sites(x), there is a modification of x

at i on behalf of �.

Now we are ready to define P . Since B is a context multicast channel, there is a well-founded total order on the

mcast events satisfying receive consistency and context safety. We choose one such order and call it T . Now we

define P to be the transitive closure of the union of the following three relations:

1. mcast-order.

This relates any two global operations that occur in �, ordering them in the total order T provided by the

context multicast channel B for the corresponding do multicasts.

That is, each global operation gives rise to a unique mcast(read-do) or mcast(update-do) event. If � and �0 are

global operations that occur in �, then we define (�; �0) 2 mcast-order provided that the mcast(do) event of �

precedes the mcast(do) event of �0 in T .

2. For each site i, crucial-order
i

.

This relates any two (local or global) operations that both perform crucial events at site i in �, ordering them

in the order of their crucial events.

That is, if � and �0 are operations that occur in �, then we define (�; �

0

) 2 crucial-order
i

provided that �

contains a crucial event at i on behalf of � and a later crucial event at i on behalf of �0. (Note that these events

may be for different objects.)

3. For each client c, the totally-precedes
�jc

order on operations invoked by c, which totally orders the operations

of client c.

It turns out that most of the work of the proof is devoted to showing that P is a partial order; it is then easy to show

that P is supportive for the sequences �jc.

In order to show that P is a partial order, we show that between global operations, only mcast-order is needed;

the other constituent orders are redundant. This involves a case analysis, using the receive consistency and context

safety properties. Then the combined order P just inserts local operations in appropriate places in the sequence of

global operations (using parts 2 and 3 of the definition of P ), but no cycle is created. The following six lemmas carry

out this argument carefully.

Lemma 5.6 Suppose that � and �0 are local or shared operations of the same client c that occur in �. Let i = site(c).

If (�; �0) 2 totally-precedes
�jc

, then (�; �

0

) 2 crucial-order
i

.

Proof: Four of the parts of Lemma 5.3 together imply that a crucial event at i on behalf of � precedes a crucial event

at i on behalf of �0, in �. Therefore, (�; �0) 2 crucial-order
i

.

Lemma 5.7 Suppose that � is a remote operation. Then T orders the mcast of the do message for � before the mcast

of the reply message for �.
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Proof: Let j be the site performing the mcast of the reply for �. The code of the algorithm shows that the mcast of

the reply for � must be preceded by the receipt by j of a do message for �. Then the context safety property implies

that T orders the mcast of the do message for � before the mcast of the reply message.

Lemma 5.8 Suppose that � and �0 are two global operations and i is any site. If (�; �0) 2 crucial-order
i

then

(�; �

0

) 2 mcast-order.

Proof: For global operations on behalf of which a crucial event occurs at site i, crucial-order
i

is the order in which

i receives the multicast do messages. By receive consistency, this is the same as the order given by T to the mcast

events, which is exactly the order given to the operations by mcast-order.

Lemma 5.9 Suppose that � and �0 are two global operations of the same client c. If (�; �0) 2 totally-precedes
�jc

then (�; �

0

) 2 mcast-order.

Proof: If � is shared, then by Lemma 5.3, the receipt by i of the do message for � precedes the mcast of the do

message for �0 in �. Then the context safety property implies that T orders the mcast of the do message for � before

the mcast of the do message for �0. Thus, (�; �0) 2 mcast-order.

On the other hand, if � is remote, then by Lemma 5.3, the receipt by i of the reply for � precedes the mcast of the

do message for �0, in �. Then the context safety property implies that T orders the mcast of the reply message for �

before the mcast of the do message for �0. Also, Lemma 5.7 implies that T orders the mcast of the do message for �

before the mcast of the reply message for �. So by transitivity, T orders the mcast of the do message for � before the

mcast of the do message for �0. Again, (�; �0) 2 mcast-order.

The previous four lemmas are now used to show that any two global operations related by P are related in the

same way by mcast-order.

Lemma 5.10 Suppose that � and �0 are global operations. If (�; �0) 2 P , then (�; �

0

) 2 mcast-order.

Proof: If � and �0 are directly related by one of the constituent relations of P , then the result is either trivial, or

exactly the conclusion of Lemma 5.8 or 5.9.

Next, we consider the situation when � and �0 are related through a chain of local operations, which must therefore

all be at a single site i. Let these local operations be named �

1

; �

2

; : : : ; �

m

. Lemma 5.6 shows that for each

k, 1 � k � m � 1, (�
k

; �

k+1

) 2 crucial-order
i

. Since crucial-order
i

is transitive, we have either m = 1 or

(�

1

; �

m

) 2 crucial-order
i

. We divide the argument into cases, depending on which constituent relations give the

initial and final edges in the chain.

1. (�; �

1

) 2 crucial-order
i

.

Then by transitivity, or trivially when m = 1, (�; �
m

) 2 crucial-order
i

. That is, the receipt by i of the do

message for � precedes the perform event for �
m

. We consider subcases.

(a) (�

m

; �

0

) 2 crucial-order
i

.

Then by transitivity, (�; �0) 2 crucial-order
i

, so Lemma 5.8 implies that (�; �0) 2 mcast-order.

(b) (�

m

; �

0

) 2 totally-precedes
�jc

for some c.

Then i = site(c) and �0 is an operation of c. Lemma 5.3 implies that the perform for �
m

precedes the

mcast of the do message for �0. Thus, the receipt by i of the do message for � precedes the mcast (by i)

of the do message for �0. Context safety then implies that (�; �0) 2 mcast-order.
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2. (�; �

1

) 2 totally-precedes
�jc

for some c.

Then i = site(c) and � is an operation of c. If � is a shared update, then Lemma 5.6 implies that also

(�; �

1

) 2 crucial-order
i

, so that Case 1 above applies. So we may assume that � is a remote operation.

Then Lemma 5.7 implies that T orders the mcast of the do message for � before the mcast of the reply message

for �. And Lemma 5.3 implies that the receipt by i of the reply for � precedes the perform event for �
1

, which

either equals (in case m = 1) or precedes the perform event for �
m

. Thus, the receipt by i of the reply for �

precedes the perform event for �
m

. We consider subcases.

(a) (�

m

; �

0

) 2 crucial-order
i

.

Then the perform event for �
m

precedes the receipt by i of the do message for �0. Therefore, the receipt

by i of the reply message for � precedes the receipt by i of the do message for �0. Then the receive

consistency property implies that T orders the mcast of the reply message for � before the mcast of the

do message for �0.

(b) (�

m

; �

0

) 2 totally-precedes
�jc

0

, for some c0.

Then by Lemma 5.3, the perform event for �
m

precedes the mcast of the do message for �0. Therefore,

the receipt by i of the reply for � precedes the mcast of the do message for �0. By context safety, T orders

the mcast of the reply message for � before the mcast of the do message for �0.

Thus, in either case, T orders the mcast of the reply message for � before the mcast of the do message for �0.

Then by transitivity, T orders the mcast of the do message for � before the mcast of the do message for �0.

Thus, (�; �0) 2 mcast-order.

Thus, if � and �0 are related through a chain of local operations, then (�; �

0

) 2 mcast-order.

Finally, if the chain between the operations � and �0 includes other global operations, then we can divide it into

segments each starting and ending with a global operation but containing no other global operations. The argument

just made applies to each segment, which shows that the global operations in the whole chain are themselves a chain

in which each link represents a pair of operations related by mcast-order. Then transitivity of mcast-order yields that

(�; �

0

) 2 mcast-order.

Lemma 5.11 P is a partial order.

Proof: Suppose not. Then there is a cycle of length at least 2 consisting of operations, each related to the following

by one of the constituent relations. If the cycle contains any global operation �, then we have (�; �) 2 P , which

implies that (�; �) 2 mcast-order by Lemma 5.10; this contradicts the fact that mcast-order is an irreflexive partial

order. If, on the other hand, every operation in the cycle is local, then all must be at a single site i, and by Lemma

5.6, there must be a cycle in crucial-order
i

, which is also a contradiction.

Finally, we show that P is supportive.

Lemma 5.12 P is supportive for the sequences �jc.

Proof: We show the four properties in the definition of “supportive.”

We first show that P is well-founded, that is, that each operation has finitely many predecessors in P . Note that

in each constituent relation, each operation has finitely many predecessors. So if this property does not hold in P ,

König’s lemma [24, 23] implies the existence of an infinite chain of direct predecessors. If infinitely many operations

in this chain are global, then Lemma 5.10 gives an infinite chain of predecessors in mcast-order, contradicting the

well-founded property of the multicast service. On the other hand, if only finitely many operations in the chain
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Figure 9: The architecture of the lower layer.

are global, then we can start far enough along the chain and get an infinite chain of local operations. But then all

these local operations must occur at the same site, say i. Then Lemma 5.6 yields an infinite chain of predecessors

in crucial-order
i

which is impossible because � contains only a finite number of events prior to any given event. It

follows that P is well-founded.

The construction immediately guarantees that, for any client c, P contains totally-precedes(�jc).

Now we show that P relates all the “conflicting” operations (that is, a read and an update, or two updates) on a

single object x. Suppose that � and �0 are distinct operations of object x and that at least one is an update. Then

Lemmas 5.4 and 5.5 together imply that there is some site i at which there are crucial events for x on behalf of both

� and �0. This implies that � and �0 are related by crucial-order
i

, and therefore are related by P .

Finally, we argue that each read operation returns the right value. Suppose � is a read operation of object x. Then

by Lemma 5.4, there is a site i at which a lookup event is performed on behalf of �. The algorithm ensures that the

return value of � is exactly the cumulative effect of all the modifications performed on the copy of x at i before the

lookup event. By Lemma 5.5, these modifications are exactly those that arise from the collection of update operations

to x that are ordered before � by crucial-order
i

, applied in the order given by crucial-order
i

. Since crucial-order
i

orders all update operations to x with respect to � and with respect to each other, and crucial-order
i

is included in P ,

it follows that � receives the specified return value.

Proof: (of Theorem 5.1)

Lemmas 5.2, 5.11, 5.12, and 3.2 combine to imply that A is a sequentially consistent shared object system.

6 Lower Layer

Now we present the algorithm that constructs a context multicast channel based on a combination of totally ordered

broadcast and point-to-point communication (see Figure 9).

6.1 The Algorithm

We fix an arbitrary message alphabet M , set I of sites, and collection I of destination sets; we implement a context

multicast channel for M , I and I. The implementation is constructed as the composition of the following automata:

BC, a reliable, totally-ordered broadcast channel,7 PP, a reliable, point-to-point channel, and a collection D
i

, one for

each i 2 I , of daemon automata that multiplex between the two lower-level services.

7We model this broadcast channel as a single automaton. This automaton could itself be implemented as a collection of automata, one per

site, communicating through a still lower-level service.
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Both BC and PP have multicast channel interfaces, as described in Section 4, and both have I as their set of sites.

The broadcast channel BC has only one possible destination set, namely, I itself, while the point-to-point channel

PP has exactly the singleton sets fig; i 2 I , as destination sets. Both satisfy the basic reliability requirements for

multicast channels. In addition, we assume that BC is itself a context multicast channel – each of its fair traces has a

well-founded total ordering that is receive consistent and context safe.8 We do not assume anything additional about

PP, beyond the basic reliability requirements. (In particular, it does not need to be FIFO.) In order to distinguish the

mcast and receive events for BC, PP, and the channel being implemented, we superscript each action of BC and PP

by the channel name.

Each automaton D
i

processes the messages that are submitted by the environment via mcast
i;J

events. To process

a message that is destined for more than one site, D
i

broadcasts the message and its intended destination set, using

the broadcast channel BC. When this message reaches a site j, automaton D
j

delivers it to the environment if j is

among the intended destinations; otherwise, D
j

discards it. To process a message intended for one site only, D
i

piggybacks on it the sequence number of the broadcast most recently received at site i, and then sends the embellished

message directly to its destination using the point-to-point channel PP. After this message reaches its destination, it

is delivered to the environment, but only after all multicasts with the same and lower sequence numbers have been

delivered.

The code forD
i

appears in Figure 10. In this code, we assume that m 2M , j 2 I , J 2 I, and k is a nonnegative

integer.

The actions of D
i

are the mcast input actions and receive output actions by which it communicates with its

environment, plus the mcast output actions and receive input actions by which it communicates with BC and PP .

The buffer component of the state is used like buffer in P
i

in the higher layer algorithm: it contains messages

scheduled to be sent via the underlying communication services. The msgs component keeps track of messages that

are scheduled for delivery to the environment, each with an indication of its site of origin. The ppwait component

keeps track of point-to-point messages that are destined for site i, but that are waiting for the receipt of the broadcast

with the appropriate sequence number. Finally, component seqno records the number of broadcasts received so far.

The code fragments follow the informal description we gave above. For example, when a receiveBC(m; J)
j;i

occurs, the local sequence number is incremented to obtain the new sequence number to be assigned to the newly-

received broadcast. Then, if the message is intended for the recipient site i, it is placed in the outgoing msgs queue, and

otherwise it is discarded. Also, any point-to-point messages waiting in ppwait that have the same sequence number

as the new broadcast are also moved to the outgoing msgs queue. For another example, when a receivePP (m; k)
j;i

occurs, the new message is placed in the msgs queue if its sequence number k is less than or equal to the recipient

node’s current sequence number; otherwise, it waits in ppwait.

D

i

has one task devoted to sending out the messages in the buffer, and another task devoted to delivering messages

from msgs to the user of the system.

6.2 Correctness

Let C denote the composition of the site automata D
i

together with BC and PP, with the actions of BC and PP

hidden. We prove the following theorem:

Theorem 6.1 C is a context multicast channel.

Figure 11 shows that the communication algorithm does not implement a causal multicast channel. The diagram

depicts a system of 3 sites, P
1

, P
2

and P
3

. P
1

sends point-to-point messages to P
3

and P
2

, in that order, with sequence

number 0 piggybacked on both. Neither point-to-point message is delayed by its recipient in ppwait, since the seqno

8In fact, since each message is received by every site including the sender itself, and each receive event occurs after the corresponding mcast

event, any total order in a broadcast system that is receive consistent must also be well-founded and context safe.
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D

i

:

Signature:

Input:

mcast(m)

i;J

receiveBC

(m;J)

j;i

receivePP (m;k)

j;i

Output:

receive(m)

j;i

mcastBC

(m;J)

i;I

mcastPP (m;k)

i;fjg

States:

buffer, a FIFO queue of (message, destination set) pairs, initially empty

msgs, a FIFO queue of (message, site) pairs, initially empty

ppwait, a multiset of (message, site, nonnegative integer) triples, initially empty

seqno, a nonnegative integer, initially 0.

Steps:
mcast(m)

i;J

Effect:

add (m;J) to buffer

mcastBC

(m;J)

i;I

Precondition:

(m;J) is first on buffer

jJ j > 1

Effect:

remove first element of buffer

mcastPP (m;k)

i;fjg

Precondition:

(m; fjg) is first on buffer

k = seqno

Effect:

remove first element of buffer

receiveBC

(m;J)

j;i

Effect:

seqno := seqno + 1

if i 2 J then add (m; j) to msgs

add to msgs (in any order) all (m0

; j

0

)

such that (m0

; j

0

; seqno) 2 ppwait

remove from ppwait all (m0

; j

0

; seqno)

receivePP (m;k)

j;i

Effect:

if k � seqno then add (m; j) to msgs

else add (m; j; k) to ppwait

receive(m)

j;i

Precondition:

(m;j) is first on msgs

Effect:

remove first element of msgs

Tasks:

All mcastBC and mcastPP actions together comprise a single task.

All receive output actions comprise a single task.

Figure 10: Automaton D
i

.
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Figure 11: Causality is not preserved by the algorithm.

at the recipient is 0. There is also a broadcast by P
3

, which is delivered at P
3

before the point-to-point message arrives

there; however, at P
2

, the broadcast is delivered after the point-to-point message. The only receive consistent partial

order has the mcast event for the message from P

1

to P
2

, followed by the mcast event for the broadcast, followed by

the mcast event for the message from P

1

to P
3

. This violates the FIFO condition for causal multicast. However, this

execution is acceptable for context multicast.

The proof of Theorem 6.1 occupies the rest of this section. For the rest of this section, fix � to be an arbitrary fair

trace of C, and let � be any fair execution of C that gives rise to �.

Lemma 6.2 � satisfies the basic reliability requirements.

Proof: This is straightforward; the most interesting fact to show is that each message does in fact get delivered

everywhere it should. For messages with more than one destination, this follows because such messages are sent using

the reliable broadcast channel BC, and are not delayed at the recipient end. For messages with only one destination,

this follows because such messages are sent using the reliable point-to-point channel PP, and can only be delayed for

a finite amount of time (until the delivery of the broadcast message with the same sequence number).

It remains to define a well-founded partial order T on the mcast events in � such that � and T are receive consistent,

context safe and total.

First, if � is any (environment) mcast event, then we define its epoch, epoch(�). If � is a multi-destination

mcast, then epoch(�) is the value assigned to the state component seqno when �’s receiveBC occurs at any site.

Receive consistency of BC, and the fact that all sites receive each broadcast, together imply that this value is uniquely

defined. Also, if � is any single-destination mcast event, say with destination set fig, then epoch(�) is the maximum
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of the following two numbers: (a) the sequence number piggybacked on �’s point-to-point message (this is the

value of seqno at the sender when the corresponding mcastPP occurs) and (b) the value of seqno at site i when the

corresponding receivePP occurs at D
i

.

Because the state component seqno is incremented exactly by the receiveBC events, it follows that the epoch

numbers of multi-destination messages form a set of consecutive integers beginning with 1 (i.e., there are no gaps),

and that no number is the epoch of more than one multi-destination message. There is no multi-destination mcast

event with epoch = 0. Any number that is the epoch of a multi-destination mcast event may also be the epoch of any

number of single-destination mcast events, and there may also be any number of single-destination mcast events with

epoch = 0.

We now define T as the relation on mcast events in � that is the transitive closure of the union of several individual

relations.

1. The multi-multi order relates any two multi-destination mcast events in �; it orders them according to their

epochs.

2. The multi-single relation orders a multi-destination mcast event � in � before a single-destination mcast event

� in � if epoch(�) � epoch(�).

3. The single-multi relation orders a single-destination mcast event � in � before a multi-destination mcast event

� in � if epoch(�) < epoch(�).

4. The single-single order relates any two single-destination mcast events in � that have the same epoch; it orders

them in the order of their receive events as they occur in �.

We show that T is a well-founded total order, and that it guarantees receive consistency and context safety.

From the individual relations defined above we see that T respects the order determined by epoch numbers, and

among events with the same non-zero epoch, T places the unique multi-destination mcast at the beginning:

Lemma 6.3 If (�; �0

) 2 T , then epoch(�) � epoch(�0

). Also, if (�; �0

) 2 T and �0 is a multi-destination mcast,

then epoch(�) < epoch(�0

).

The following is a partial converse to Lemma 6.3:

Lemma 6.4 If epoch(�) < epoch(�0

), then (�; �

0

) 2 T .

Proof: Consider any two mcast events, � and �0, in �, with epoch(�) < epoch(�0

). If either event is multi-

destination, then (�; �

0

) is an element of one of the orders that generate T . The remaining case is where both are

single-destination. Then, taking to be the unique multi-destination mcast event with epoch( ) = epoch(�0

), we see

that � is ordered before  by single-multi and  is ordered before �0 by multi-single. Thus in every case (�; �0

) 2 T .

Now we show, in turn, that � and T have all the required properties.

Lemma 6.5 T is a partial order.

Proof: By Lemma 6.3, any cycle of edges, each from one of the constituent relations of T , must involve a collection

of events all having the same epoch; furthermore, none can be a multi-destination mcast. But this means that all

the edges must be from the relation single-single, which is itself a partial order. This contradiction shows that T is

acyclic. Therefore, since it is by construction transitive and irreflexive, it is a partial order.

Lemma 6.6 T is a total order.
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Proof: Consider any two distinct mcast events, � and �0, in �. If epoch(�) 6= epoch(�0

) then Lemma 6.4 shows

that � and �0 are related by T . On the other hand, suppose the events have the same epoch; thus at most one can be

multi-destination. If neither is multi-destination then they are related by single-single, while if one is multi-destination

and the other is single-destination then they are related by multi-single. Thus in every case � and �0 are related by T .

Lemma 6.7 T is well-founded.

Proof: Consider any fixed mcast event � in �, say with epoch = k. The predecessors of � in T consist of three types

of mcast events: mcast events with epoch < k, multi-destination mcast events with epoch = k, and single-destination

mcast events with epoch = k whose receive events precede the receive of � in �. We claim that each of these is a

finite set.

The second is clearly finite, since there is at most one multi-destination mcast event with epoch = k. The third is

also finite, because there are only finitely many events preceding the receive of � in the sequence �.

We consider the first set of events, the set of mcast events with epoch < k. Note that there must be a multi-

destination mcast event in �, say �, with epoch = k. (Possibly � = �.) In �, the broadcast for � is eventually

received at every site. After this happens, any later mcastBC or mcastPP will cause its originating mcast event to be

assigned an epoch that is at least k. This implies that there are only finitely many mcast events with epoch < k.

Since all three sets are finite, � has only finitely many predecessors in T . It follows that T is well-founded.

Lemma 6.8 T is receive consistent.

Proof: We first note that the order of receive events at a site is the same as the order of entry into the msgs queue at that

site. A multi-destination message m enters the msgs queue during the corresponding receiveBC step, in which seqno

is first assigned to be the epoch of the mcast event form. Also, the ppwait multiset is used so that a single-destination

message m enters the msgs queue during an event after which the value of seqno is equal to the epoch of the mcast

event for m.

Since T is a partial order, and the occurence of events at a site is a total order on those events, to show receive

consistency it is enough to show the following: whenever receive(m)

j;i

precedes receive(m0

)

j

0

;i

at site i, then T

orders the mcast event for m before the mcast event for m0. So suppose that receive(m)

j;i

precedes receive(m0

)

j

0

;i

at site i in �. Let � and �0 denote the corresponding events mcast(m)

j;I

and mcast(m0

)

j

0

;I

0 . We consider cases.

1. Both � and �0 are multi-destination.

Then each of m and m0 enters the msgs queue during the corresponding receiveBC event. Therefore, the

receiveBC for m precedes the receiveBC for m0, and since seqno never decreases, the epoch of m is less than

the epoch for m0. Thus, the multi-multi relation orders � before �0, so that T does also.

2. Both � and �0 are single-destination.

Since the epoch of each of m and m0 is the value of seqno at the step when it enters the msgs queue, and since

seqno never decreases, the epoch of m must be less than or equal to the epoch of m0. If the epochs are equal,

then it is immediate that single-single orders the corresponding mcast events in the same order as the receive

events, and therefore so does T . On the other hand, if the epoch of m is less than the epoch for m0, then

Lemma 6.4 implies that T orders � before �0.

3. � is multi-destination and �0 is single-destination.

Since m enters the msgs queue during the step when seqno is first set to equal the epoch of m, and m0 enters

the msgs queue in a later event after which seqno equals the epoch of m0, we have that the epoch of m is less

than or equal to the epoch of m0. It is immediate that multi-single orders � before �0, so that T does also.
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4. � is single-destination and �0 is multi-destination.

Since m enters the msgs queue during a step after which seqno is equal the epoch ofm, andm0 enters the msgs

queue during a later event in which seqno is first assigned to be the epoch of m0, we have that the epoch of m

is strictly less than the epoch of m0. It is immediate that single-multi orders � before �0.

In every case, we see that T orders the mcast event for m before the mcast event for m0, as needed.

Lemma 6.9 T is context safe.

Proof: Suppose that at i, receive(m)

j;i

is followed by mcast(m0

)

i;J

. Let � denote the mcast(m) event and let �0

denote the mcast(m0

) event . We must show that T orders � before �0. We divide the argument into cases.

1. Both � and �0 are multi-destination.

Then the algorithm ensures that the receiveBC for m at i precedes the event receive(m)

j;i

. Similarly,

mcast(m0

)

i;J

precedes the mcastBC for m0. Thus, the receiveBC for m at i precedes the mcastBC for

m

0. Context safety and receive consistency ofBC then implies that at every site, the receiveBC form precedes

the receiveBC for m0. Thus the value of seqno assigned at any site during the receiveBC for m is less than

the value of seqno assigned during the receiveBC for m0. That is, the epoch of the mcast of m is less than the

epoch of the mcast of m0. Therefore, the mcast events are ordered appropriately by T .

2. Both � and �0 are single-destination.

Then the receive for m precedes the mcastPP for m0. The epoch of the mcast event for m0 is greater than or

equal to the tag piggybacked on m0, which is the value of seqno at the time of the mcastPP event for m0. This

value is in turn greater than or equal to the value of seqno at the time of the receive for m. The use of the

ppwait multiset ensures that the value of seqno when the receive form occurs is at least as great as the tag that

is piggybacked onm, and (because seqno never decreases) it is also at least as great as the value of seqno when

the receivePP for m occurs. By the definition of epoch, we see that the value of seqno at the receive for m is

greater than or equal to the epoch of the mcast for m.

Combining all these observations, we see that the epoch of the mcast event form0 is greater than or equal to the

epoch of the mcast form. If these epochs are not equal, then Lemma 6.4 implies that T orders the mcast events

appropriately. On the other hand, if the epochs are equal, then we note that the receive for m0 must occur later

in � than the mcast, and hence later than the receive for m. Again, T orders the events appropriately.

3. � is multi-destination and �0 is single-destination.

Then the receiveBC for m at i precedes the mcastPP for m0. The epoch of the mcast event for m0 is greater

than or equal to the tag placed onm0, which is the value of seqno at the time of the mcastPP event form0. This

value is in turn at least as great as the value of seqno assigned during the receiveBC for m, which is the epoch

ofm. Thus the multi-single relation orders the mcast events appropriately, so T also orders them appropriately.

4. � is single-destination and �0 is multi-destination.

Then the receive for m at i precedes the mcastBC for m0, which itself occurs before the receiveBC event for

m

0 at site i itself. The epoch of the mcast event for m0 is the value assigned to seqno during the receiveBC

event for m0, which is strictly greater than the value of seqno at the time of the receive for m. The use of the

ppwait multiset ensures that the value of seqno when the receive form occurs is at least as great as the tag that

is piggybacked onm, and (because seqno never decreases) it is also at least as great as the value of seqno when

the receivePP for m occurs. By the definition of epoch we see that the value of seqno at the receive for m is
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at least as great as the epoch of the mcast for m. Combining these observations, we see that the epoch of the

mcast event for m0 is strictly greater than the epoch of the mcast for m. Thus the single-multi relation (and so

also T ) order the events appropriately.

The above cases cover all possibilities, showing that T is context safe.

Proof: (of Theorem 6.1) The properties of T have been shown in Lemmas 6.6, 6.7, 6.9, and 6.8.

7 Discussion

We have presented a new algorithm for implementing a sequentially consistent shared object system in a distributed

network. The algorithm is based on the one used in the Orca system, but generalizes it to allow objects to be partially

replicated. Replicated objects are kept consistent using a context multicast system, which is a new communication

service that can be implemented using a combination of totally ordered broadcast and point-to-point communication.

We have presented this algorithm in two layers, and have carried out a complete correctness proof using this

decomposition. In the course of our work, we found a logical error in the implementation of the Orca system that had

not yet manifested itself in execution; as a result, the Orca implementation has been modified to correct this error.

This work opens up many avenues for future research. First, some simple extensions to our results can be made.

For example, we could allow concurrent invocations of operations by the same client, as in [20], instead of requiring

clients to block. In order to handle this case, we need to adjust our definition of sequential consistency to eliminate the

client-well-formedness condition, to modify the algorithm to maintain sets of active operations, and to make minor

changes in our proofs.

Another extension to our work is to incorporate objects with more general kinds of operations than just read and

update.

A more serious extension is to allow for dynamic changes to the locations of object copies. As we noted in Section

1, Orca allows object locations to change dynamically, in response to changes in access patterns. There are several

different schemes possible for managing such changes; most of these maintain the safety properties expressed by our

results, but cause violations to the liveness conditions (e.g., an operation might not be able to find the needed copies

because they are continuously moving). It remains to describe and verify existing schemes using our framework, and

to develop and verify new schemes that preserve the liveness condition.

Another direction for further work is to consider different algorithms that trade off between the latency of different

operations, as explored in [8]. For example, in a shared update, our replica management algorithm delays reporting

the completion of the update to the client until the multicast message is received by the client’s processor. One could

seek algorithms that reduce the latency in this situation; however to maintain sequential consistency, other operations

might need longer delays.

Still another extension is to use other communication primitives. For example, we would like to consider how

to build a shared object system using group-ordered causal multicast together with point-to-point messages. For all

these extensions we expect that much of the machinery developed in this paper can be reused.

8 Conclusions

Implementations for distributed systems such as Orca are complicated, because of the many possible interleavings

of events of concurrent threads. It is generally difficult to be sure that such implementations are correct. Formal

modelling and verification in the style we have presented here can provide great help in understanding and verifying

such systems. Our modelling and verification of Orca has already contributed to the Orca project by identifying and

correcting an error and by giving the designers extra confidence in the corrected implementation. In addition, the

structures we have provided should provide useful documentation and assistance in future system modification.
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More broadly, our work can be seen as one step in the development of a practical theory for distributed shared

memory systems. Such a theory should consist of a body of abstract component specifications, abstract algorithms,

theorems about how the various abstract notions are related, and application-specific proof methods. Our contributions

to this theory include our specifications for a sequentially consistent shared memory system and for various kinds of

multicast channels, our higher layer and lower layer algorithms and their correctness theorems, and our lemmas that

show how to prove sequential consistency. However, our work is only a first step — we believe that much more work

of the same kind, based on formal modelling of real systems and applications, is needed to complete the job.
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