
A Dynami
 Primary Con�gurationGroup Communi
ation Servi
eRoberto De Pris
o1, Alan Fekete2, Nan
y Lyn
h3, and Alex Shvartsman41 MIT Laboratory for Computer S
ien
e, Cambridge, MA 02139, USA andDip. di Informati
a ed Appli
azioni, University of Salerno, Italy.robdep�theory.l
s.mit.edu2 Basser Dept. of Computer S
ien
e, University of Sydney, NSW 2006, Australiafekete�theory.l
s.mit.edu3 MIT Laboratory for Computer S
ien
e, Cambridge, MA 02139, USA.lyn
h�theory.l
s.mit.edu4 Dept. of Computer S
ien
e and Eng., University of Conne
ti
ut, Storrs, CT, USA,and MIT Laboratory for Computer S
ien
e, Cambridge, MA 02139, USA.alex�theory.l
s.mit.eduAbstra
t. Quorum-based methods for managing repli
ated data arepopular be
ause they provide availability of both reads and writes inthe presen
e of faulty behavior by some sites or
ommuni
ation links.Over a very long time, it may be
ome ne
essary to alter the quorumsystem, perhaps be
ause some sites have failed permanently and oth-ers have joined the system, or perhaps be
ause users want a di�erenttrade-o� between read-availability and write-availability. There are sub-tle issues that arise in managing the
hange of quorums, in
luding howto make sure that any operation using the new quorum system is awareof all information from operations that used an old quorum system, andhow to allow
on
urrent attempts to alter the quorum system.In this paper we use ideas from group management servi
es, espe
iallythose providing a dynami
 notion of primary view; with this we de�nean abstra
t spe
i�
ation of a system that presents ea
h user with a
on-sistent su

ession of identi�ed
on�gurations, ea
h of whi
h has a mem-bership set, and a quorum system for that set. The key
ontribution hereis the interse
tion property, that determines how the new
on�gurationsmust relate to previous ones. We demonstrate that our proposed spe
i�-
ation is neither too strong, by showing how it
an be implemented, nortoo weak, by showing the
orre
tness of a repli
ated data managementalgorithm running above it.1 Introdu
tionIn distributed appli
ations involving repli
ated data, a well known way to en-han
e the availability and eÆ
ien
y of the system is to use quorums. A quorumis a subset of the members of the system, su
h that any two quorums have non-empty interse
tion. An update
an be performed with only a quorum available,unlike other repli
ation te
hniques where all of the members must be available.

The interse
tion property of quorums guarantees
onsisten
y. Quorum systemshave been extensively studied and used in appli
ations, e.g., [1, 7, 8, 18, 23, 24,34, 38℄. The use of quorums has been proven e�e
tive also against Byzantinefailures [32, 33℄.Pre-de�ned quorum sets
an yield eÆ
ient implementations in settings whi
hare relatively stati
, i.e., failures are transient. However they work less well insettings where pro
esses routinely join and leave the system, or where the system
an su�er multiple partitions. These settings require the on-going modi�
ationof the
hoi
e of quorums. For example, if more sites join the system, quorumsmust be re
on�gured to make use of the new sites. If many sites fail permanently,quorums must be re
on�gured to maintain availability. The most
ommon pro-posal has been to use a two-phase
ommit proto
ol whi
h stops all appli
ationoperations while all sites are noti�ed of the new
on�guration. Sin
e two-phase
ommit is a blo
king proto
ol, this solution is vulnerable to a single failure dur-ing the
on�guration
hange. In a setting of database transa
tions, [23℄ showedhow to integrate fault-tolerant updates of repli
ated information about quorumsizes (using the same quorums for both data item repli
as, and for quorum in-formation repli
as).Here we o�er a di�erent approa
h, based on ideas of dynami
 primary viewsfrom group management systems. View-oriented group
ommuni
ation servi
eshave be
ome important as building blo
ks for fault-tolerant distributed systems.Su
h a servi
e enables appli
ation pro
esses lo
ated at di�erent nodes of a fault-prone distributed network to operate
olle
tively as a group, using the servi
e tomulti
ast messages to all members of the group. Ea
h su
h servi
e is based ona group membership servi
e, whi
h provides ea
h group member with a view ofthe group; a view in
ludes a list of the pro
esses that are members of the group.Messages sent by a pro
ess in one view are delivered only to pro
esses in themembership of that view, and only when they have the same view. Within ea
hview, the servi
e o�ers guarantees about the order and reliability of messagedelivery. Examples of view-oriented group
ommuni
ation servi
es are foundin Isis [9℄, Transis [15℄, Totem [37℄, Newtop [20℄, Rela
s [3℄, Horus [46℄ andEnsemble [45℄.For many appli
ations, some views must be distinguished as primary views.Primary views have stronger properties, whi
h allow updates to o

ur
onsis-tently. Traditionally, a primary view was de�ned as one
ontaining a majorityof all possible sites, but other, dynami
, de�nitions are possible, based on in-terse
tion properties between su

essive primary views. One possibility is tode�ne a primary view as a view
ontaining a majority of the previous primaryview. Several papers de�ne primary views adaptively, e.g., [6, 13, 14, 17, 27, 35,41, 43, 47℄. Produ
ing good spe
i�
ations for view-oriented group
ommuni
ationservi
es is diÆ
ult, be
ause these servi
es
an be
ompli
ated, and be
ause dif-ferent su
h servi
es provide di�erent guarantees about safety, performan
e, andfault-toleran
e. Examples of spe
i�
ations for group membership servi
es andview-oriented group
ommuni
ation servi
es appear in [4, 5, 10, 12, 16, 21, 22, 25,

26, 36, 39, 42, 44℄. Extending these de�nitions to spe
ify dynami
 primary viewswas the fo
us of [14, 47℄.In this paper we
ombine the notion of dynami
 primary view with that ofa quorum system, and
all the result a
on�guration. We integrate this witha group
ommuni
ation servi
e, resulting in a dynami
 primary
on�gurationgroup
ommuni
ation servi
e. The main diÆ
ulty in
ombining quorum systemswith the notion of dynami
 primary view is the interse
tion property betweenquorums from di�erent views, whi
h is required to maintain
onsisten
y. With
on�gurations the simple interse
tion property (i.e., a primary view
ontains amajority of the previous primary) that works for primary views, is no longerenough. Indeed updated information might be only at a quorum and the pro-
essors in the interse
tion might be not in that quorum. A stronger interse
tionproperty is required. We propose one possible interse
tion property that allowsappli
ations to keep
onsisten
y a
ross di�erent primary
on�gurations. Namely,we require that there be a quorum of the old primary
on�guration whi
h is in-
luded in the membership set of the new primary
on�guration. This guaranteesthat there is at least one pro
ess in the new primary
on�guration that has themost up to date information. This, similarly to the interse
tion property of dy-nami
 primary views, allows
ow of information from the old
on�guration tothe new one and thus permits one to preserve
onsisten
y.The spe
i�

on�gurations we
onsider use two sets of quorums, a set ofread quorums and a set of write quorums, with the property that any readquorum interse
ts any write quorum. (This
hoi
e is justi�ed by the appli
ationwe develop, an atomi
 read/write register.) With this kind of
on�guration theinterse
tion property that we require for a new primary
on�guration is thatthere be one read quorum and one write quorum both of whi
h are in
luded inthe membership set of the new primary
on�guration. The use of read and writequorums (as opposed to just quorums)
an be more eÆ
ient in order to balan
ethe load of the system (see for example [18℄).We provide a formal automaton spe
i�
ation,
alled d
 for \dynami

on�g-urations", for the safety guarantees made by a dynami
 primary
on�gurationgroup
ommuni
ation servi
e. We remark that we do not address liveness proper-ties here, but that they
an be expressed as
onditional performan
e properties,similar to those in [21℄, or with other te
hniques su
h as failure-dete
tors [11℄.Clearly the d
 spe
i�
ation provides support for primary
on�gurations.However it also has another important feature, namely, it provides support forstate-ex
hange. When a new
on�guration starts, appli
ations generally requiresome pre-pro
essing, su
h as an ex
hange of information, to prepare for ordinary
omputation. Typi
ally this is needed in order to bring every member of the
on-�guration up to date. For example, pro
esses in a
oherent database appli
ationmay need to ex
hange information about previous updates in order to bring ev-eryone in the new
on�guration up to date. We will refer to the up-to-date stateof a new
on�guration as the starting state of that
on�guration. The startingstate is the state of the
omputation that all members should have in order toperform regular
omputation. When the noti�
ation of a new
on�guration is

given to its members, the d
 spe
i�
ation allows these members to submit their
urrent state. Then the servi
e takes
are of
olle
ting all the states and
omput-ing the starting state for the new
on�guration and delivering it to the members.When all members have been noti�ed of the starting state for a
on�guration
, all information about the membership set and the quorums of previous
on-�gurations is not needed anymore, and the servi
e no longer needs to ensureinterse
tion in membership between
on�gurations before
 and any subsequentones that are formed. This is the basis of a garbage-
olle
tion me
hanism whi
hwas introdu
ed in [47℄.The d
 spe
i�
ation o�ers a broad
ast/
onverge
ast
ommuni
ation servi
ewhi
h works as follows: a pro
ess p submits a message to the servi
e; the ser-vi
e forwards this message to the members of the
urrent
on�guration andupon re
eiving a
knowledgment values from a quorum of members it
omputesa response for the message sent by pro
ess p and gives the response to p. This
ommuni
ation me
hanism has been introdu
ed in [30℄, though in the setting ofthat paper there is no group-oriented
omputation.We demonstrate the value of our d
 spe
i�
ation by showing both how it
an be implemented and how it
an be used in an appli
ation. Both pie
es areshown formally, with assertional proofs.We implement d
 by using a variant of the group membership algorithmof [47℄. Our variant integrates
ommuni
ation with the membership servi
e, pro-vides state-ex
hange support at the beginning of a new
on�guration, and uses astati

on�guration-oriented servi
e internally. We prove that this algorithm im-plements d
, in the sense of tra
e in
lusion. The proof uses a simulation relationand invariant assertions.We develop an atomi
 read/write shared register on top of d
. The algorithmis based on the work of Attiya, Bar-Noy and Dolev [2℄ and follows the approa
hused in [19, 30℄. The appli
ation exploits the
ommuni
ation and state-ex
hangeservi
es provided by d
. The proof of
orre
tness uses a simulation relation andinvariant assertions.2 Mathemati
al foundations and notationWe des
ribe the servi
es and algorithms using the the I/O automaton model ofLyn
h and Tuttle [31℄ (without fairness). The model and asso
iated methodologyis des
ribed in Chapter 8 of [29℄.Next we provide some de�nitions used in the rest of the paper.We write � for the empty sequen
e. If a is a sequen
e, then jaj denotes thelength of a. If a is a sequen
e and 1 � i � jaj then a(i) denotes the ith elementof a. Given a set S, seqof (S) denotes the set
onsisting of all �nite sequen
esof elements of S. If s and t are sequen
es, the
on
atenation of s and t, with s
oming �rst, is denoted by s+t. We say that sequen
e s is a pre�x of sequen
e t,written as s � t, provided that there exists u su
h that s+u = t. The \head" ofa sequen
e a is a(1). A sequen
e
an be used as a queue: the append operationmodi�es the sequen
e by
on
atenating the sequen
e with a new element and theremove operation modi�es the sequen
e by deleting the head of the sequen
e.

If R is a binary relation, then we de�ne dom(R), the domain of R to bethe set (without repetitions) of �rst elements of the ordered pairs
omprisingrelation R.We denote by P the universe of all pro
essors1 and we assume that P is totallyordered. We denote by M the universe of all possible messages. We denote byG a totally ordered set of identi�ers used to distinguish
on�gurations. Given aset S, the notation S? refers to the set S [f?g. If a set S is totally ordered, weextend the ordering of S to the set S? by letting ? < s for any s 2 S.A
on�guration is a quadruple,
 = hg; P;R;Wi, where g 2 G is a uniqueidenti�er, P � P is a nonempty set of pro
essors, and R and W are nonemptysets of nonempty subsets2 of P , su
h that R \W 6= fg for all R 2 R, W 2 W .Ea
h element of R is
alled a read quorum of
, and ea
h element of W a writequorum. We let C denote the set of all
on�gurations.Given a
on�guration
 = hg; P;R;Wi, the notation
:id refers to the
on-�guration identi�er g, the notation
:set refers to the membership set P , while
:rqrms and
:wqrms refer to R and W , respe
tively. We distinguish an initial
on�guration
0 = hg0; P0;R0;W0i, where g0 is a distinguished
on�gurationidenti�er.3 The d
 spe
i�
ationIn many appli
ations signi�
ant
omputation is performed only in spe
ial
on�g-urations
alled primary
on�gurations, whi
h satisfy
ertain interse
tion prop-erties with previous primary
on�gurations. In parti
ular, we require that themembership set of a new primary
on�guration must in
lude the members of atleast one read quorum and one write quorum of the previous primary
on�gu-ration. The d
 spe
i�
ation provides to the
lient only
on�gurations satisfyingthis property. This is similar to what the dvs servi
e of [14℄ does for ordinaryviews.An important feature of the d
 spe
i�
ation is that it allows for state-ex
hange at the beginning of a new primary
on�guration. State-ex
hange atthe beginning of a new
on�guration is required by most appli
ations. Whena new
on�guration is issued ea
h member of the
on�guration is supposed tosubmit its
urrent state to the servi
e whi
h, on
e obtained the state from all themembers of the
on�guration
omputes the most up to date state over all themembers,
alled the starting state, and delivers this state to ea
h member. Thisway, ea
h member begins regular
omputation in the new
on�guration knowingthe starting state. We remark that this is di�erent from the approa
h used bythe dvs servi
e of [14℄ whi
h lets the members of the
on�guration
ompute1 In the rest of the paper we will use pro
essor as synonymous of pro
ess. The di�er-en
es between the two terms are immaterial in our setting.2 Expressing ea
h quorum as a set of subsets is a generalization of the
ommon te
h-nique where the quorums are based on integers nr and nw su
h that nr + nw � jP j;the two approa
hes are related by de�ning the set of read quorums as
onsistingof those subsets of P with
ardinality at least nr, and the set of write quorums as
onsisting of those subsets of P of
ardinality at least nw.

the starting state. Some existing group
ommuni
ation servi
es also integratestate-ex
hange within the servi
e [43℄.Finally, the d
 spe
i�
ation o�ers a broad
ast/
onverge
ast
ommuni
ationme
hanism. This me
hanism involves all the members of a quorum, and uses a
ondenser fun
tion to pro
ess the information gathered from the quorum. Morespe
i�
ally, a
lient that wants to send a message (request) to the members of its
urrent
on�guration submits the message together with a
ondenser fun
tionto the servi
e; then the d
 servi
e broad
asts the message to all the membersof the
on�guration and waits for a response from a quorum (the type of thequorum, read or write, is also spe
i�ed by the
lient); on
e answers are re
eivedfrom a quorum, the d
 servi
e applies the
ondenser fun
tion to these answersin order to
ompute a response to give ba
k to the
lient that sent the message.We remark that this kind of
ommuni
ation is di�erent from those of the vsservi
e [21℄ and the dvs servi
e [14℄. Instead, it is as the one used in [30℄. Weintegrate it into d
 be
ause we want to develop a parti
ular appli
ation thatbene�ts from this parti
ular
ommuni
ation servi
e (a read/write register as isdone in [30℄).Prior to providing the
ode for the d
 spe
i�
ation, we need some notationand de�nitions, whi
h we introdu
e in the following while giving an informaldes
ription of the
ode.Ea
h operation requested by the
lient of the servi
e is tagged with a uniqueidenti�er. Let OID be the set of operation identi�ers, partitioned into sets OIDp,p 2 P . Let A be a set of \a
knowledgment" values and let R be a set of \re-sponse" values. A value
ondenser fun
tion is a fun
tion from (A?)n to R. Let� be the set of all value
ondenser fun
tions. Let S be the set of states of the
lient (this does not need to be the entire
lient's state, but it may
ontain onlythe relevant information in order for the appli
ation to work). A state
ondenserfun
tion is a fun
tion from (S?)n to S. Let 	 be the set of all state
ondenserfun
tions. Given a fun
tion f : P ! D from the set of pro
essors P to somedomain value D and given a subset P � P of pro
essors we write f jP to denotethe fun
tion f 0 de�ned as follows: f 0(p) = f(p) if p 2 P and f 0(p) = ? otherwise.We use the following data type to des
ribe an operation: D = M� � �f\read"; \write"g � 2P � (A?)n � Bool and we let O = OID ! D?. Given anoperation des
riptor, sele
tors for the
omponents are msg ,
nd , sel , dlv , a
k ,and rsp. Given an operation des
riptor d 2 D for an operation i, d:msg is themessage of operation i whi
h is delivered to all the pro
esses (it represents therequest of the operation, like read a register or write a register), d:
nd is the
on-denser of operation i whi
h is used to
ompute a response when a
knowledgmentvalues are available from a quorum of pro
esses, d:sel is a sele
tor that spe
i�eswhether to use a read or a write quorum, d:dlv is the set of pro
esses to whi
hthe message has been delivered, d:a
k
ontains the a
knowledgment values, and,�nally, d:rsp is a
ag indi
ating whether or not the
lient has re
eived a re-sponse for the operation. Operation des
riptors maintain information about theoperations. When an operation i is submitted its des
riptor d = pending [g℄(i) isinitialized to d = (m;�; b; fg; fg; false) where m, � and b
ome with the opera-

tion submission (i.e., are provided by the
lient). Then d:dlv ; d:a
k and d:rsp areupdated while the operation is being servi
ed. On
e a response has been givenba
k to the
lient and thus d:rsp is set to true, the operation is
ompleted.For ea
h pro
ess p we de�ne the
urrent
on�guration of p as the last
on-�guration
 given to p with a new
onf(
)p event (or a prede�ned
on�gurationif no su
h event has happened yet). The identi�er of the
urrent
on�gurationof pro
ess p is stored into variable
ur-
idp. When a
on�guration
 has beennoti�ed to a pro
essor p we say that pro
essor p has \attempted"
on�guration
. We use the history variable attempted to re
ord the set of pro
essors thathave attempted a parti
ular
on�guration
. More formally p 2 attempted [
:id℄i� pro
essor p has attempted
.Next we de�ne an important notion, the one of \dead"
on�guration. Infor-mally a dead
on�guration
 is a
on�guration for whi
h a member pro
essp went on to newer
on�gurations, that is, it exe
uted a
tion new
onf(
0)pwith
0:id >
:id, before re
eiving the noti�
ation, that is the new
onf(
)pevent, for
on�guration
 (whi
h
an no longer be noti�ed to that pro
es-sor, and thus is dead be
ause pro
essor p
annot parti
ipate and it is impos-sible to
ompute the starting state). More formally we de�ne dead 2 2C asdead = f
 2 Cj9p 2
:set :
ur-
idp >
:id and p =2 attempted [
:id ℄g.d
 (Signature and state)Signature:Input:submit(m;�; b; i)p, m 2M, � 2 �,b 2 f\read"; \write"g, p 2 P,i 2 OIDpa
kdlvr(a; i)p, a 2 A, i 2 OID, p 2 Psubmit-state(s;)p, s 2 S, 2 Internal:
reate
onf(
),
 2 COutput:new
onf(
)p,
 2 C, p 2
:setnewstate(s)p, s 2 Srespond(a; i)p, a 2 A, i 2 OIDp, p 2 Pdeliver(m; i)p, m 2 M, i 2 OID, p 2 PState:
reated 2 2C, init f
0gfor ea
h p 2 P:
ur-
id [p℄ 2 G?,init g0 if p 2 P0, ? elsefor ea
h g 2 G: attempted [g℄ 2 2P ,init P0 if g = g0, fg else for ea
h g 2 G:got-state [g℄ = P ! S?, init everywhere ?
ondenser [g℄ = P ! ?, init everywhere ?state-dlv [g℄ 2 2P , init P0 if g = g0, fg elsepending [g℄ 2 O, init everywhere ?Fig. 1. The d
 signature and stateWe say that a
on�guration
 is totally attempted in a state s of d
 if
:set �attempted [
:id℄. We denote by TotAtt the set of totally attempted
on�gurations.Informally a totally attempted
on�guration is a
on�guration for whi
h allmembers have re
eived noti�
ation of the new
on�guration. Similarly, we saythat a
on�guration
 is attempted in a state s of d
 if attempted [
:id℄ 6= fg. Wedenote by Att the set of attempted
on�gurations. Clearly Att � TotAtt.

d
 (Transitions)A
tions:internal
reate
onf(
)Pre: For all w 2
reated :
:id 6= w:idif
 62 dead thenFor all w 2
reated ; w:id <
:id:w 2 dead or(9x 2 TotEst: w:id<x:id<
:id)_(9R 2 w:rqrms ; 9W 2 w:wqrms :R [W �
:set)For all w 2
reated ; w:id >
:idw 2 dead or(9x 2 TotEst:
:id<x:id<w:id)_(9R 2
:rqrms ; 9W 2
:wqrms :R [W � w:set)E�:
reated :=
reated [f
goutput new
onf(
)p, p 2
:setPre:
 2
reated
:id >
ur-
id [p℄E�:
ur-
id [p℄ :=
:idattempted [
:id℄:= attempted [
:id℄ [fpginput submit-state(s;)pE�: if
ur-
id [p℄ 6= ? andgot-state [
ur-
id [p℄℄(p) = ? thengot-state [
ur-
id [p℄℄(p) := s
ondenser [
ur-
id [p℄℄(p) := output newstate(s)p
hoose
Pre:
:id =
ur-
id [p℄
 2
reated8q 2
:set : got-state [
:id℄(q) 6= ?s =
ondenser [
:id℄(p)(got-state [
:id℄)p =2 state-dlv [
:id℄E�: state-dlv [
:id℄:= state-dlv [
:id℄ [fpg

input submit(m;�; b; i)pE�: if
ur-
id [p℄ 6= ? thenpending [
ur-
id [p℄℄(i):= (m;�; b; fg; fg; false)output deliver(m; i)p
hoose gPre: g =
ur-
id [p℄p =2 pending [g℄(i):dlvpending [g℄(i):msg = mE�: pending [g℄(i):dlv:= pending [g℄(i):dlv [fpginput a
kdlvr(a; i)pE�: if
ur-
id [p℄ 6= ? andpending [
ur-
id [p℄℄(i):a
k (p) 6= ?thenpending [
ur-
id [p℄℄(i):a
k(p):= aoutput respond(r; i)p
hoose
;QPre:
:id =
ur-
id [p℄
 2
reatedi 2 OIDppending [
:id℄(i):rsp = falseif pending [
:id℄:sel = \read"then Q 2
:rqrmsif pending [
:id℄:sel = \write"then Q 2
:wqrmslet f = pending [
:id℄(i):a
k8q 2 Q : f(q) 6= ?r = pending [
:id℄(i):
nd (f jQ)E�: pending [
:id℄(i):rsp := true
Fig. 2. The d
 transitions

After a pro
essor p has attempted a new
on�guration, it submits its stateby means of a
tion submit-state(s;)p. Variable got-state[g℄(p) re
ords the states submitted by pro
essor p for the
urrent
on�guration of p whose identi�eris g. Similarly, the state
ondenser fun
tion submitted by p is re
orded intovariable
ondenser [g℄(p). After all pro
essors members of a
on�guration
 havesubmitted their state, the starting state for

an be
omputed, by using theappropriate
ondenser fun
tion, and
an be given to the members of
. Notethat the state
ondensor is used when all members have submitted a state,in
ontrast to message
onverge
ast whi
h applies the value
ondensor on
e aquorum of values are known. Variable state-dlv [g℄ re
ords the set of pro
essors towhi
h the starting state for the
on�guration with identi�er g has been delivered.When the starting state for a
on�guration
 has been delivered to pro
es-sor p we say that
 is established (at p). A
on�guration is totally establishedwhen it is established at all pro
essors members of the
on�guration. More for-mally a
on�guration
 is totally established in a state s of d
 if, in state s, wehave
:set � state-dlv [
:id℄. We denote by TotEst the set of totally established
on�gurations. When a
on�guration
 be
omes totally established, informationabout the membership set and quorums of
on�gurations previous to

an bedis
arded, be
ause the interse
tion property will be guaranteed between
 andlater
on�gurations.The
ode of the d
 spe
i�
ation is given in Figures 1 and 2.The se
ond pre
ondition of
reate
onf(
) is the key to our spe
i�
ation. Itstates that when a
on�guration
 is
reated it must either be already dead or forany other
on�guration w su
h that there are no intervening totally established
on�gurations, the earlier
on�guration (i.e., the one with smaller identi�er) hasone read quorum and one write quorum whose members are in
luded in themembership set of the later
on�guration (i.e., the one with bigger identi�er).The above pre
ondition is formalized in the following key invariant:Invariant 1 Let
1;
2 2
reated n dead, with
1:id <
2:id . Then either existsw 2 TotEst;
1:id < w:id <
2:id , or else exist R, W quorums of
1 su
h thatR [W �
2:setThe property stated by this invariant is used to prove
orre
t the appli
ationthat we build on top of d
. We remark that dead
on�gurations are ex
luded,that is, the interse
tion property may not hold for dead
on�gurations. However,in a dead
on�guration it is not possible to make progress be
ause for su
h a
on�guration there is at least one pro
ess that will not parti
ipate and thus the
on�guration will never be
ome established.The need for
onsidering dead
on�gurations
omes from the implementationof the spe
i�
ation that we provide. It is possible to give a stronger version ofd
 by requiring that the interse
tion property in the pre
ondition of a
tion
reate
onf holds also for dead
on�gurations, however this stronger versionmight not be implementable. Moreover, as we have said above, there is no lossof generality sin
e no progress is made anyway in dead
on�gurations.

4 An implementation of d
The d
 spe
i�
ation
an be implemented, in the sense of tra
e in
lusion, withan algorithm similar to that used in [14℄ to implement the dvs servi
e. Hen
e ituses ideas from [47℄. This implementation
onsists of an automaton d
-
odepfor ea
h p 2 P . Due to spa
e
onstraints we omit the
ode and the proof of
orre
tness and provide only an overall des
ription.4.1 The implementationThe automaton d
-
odep uses spe
ial messages, tagged either with \info", usedto send information about the a
tive and ambiguous
on�gurations, or with\got-state", used to send the state submitted by a pro
ess to all the membersof the
on�guration. The former information is needed to
he
k the interse
tionproperty that new primary
on�gurations have to satisfy a

ording to the d
spe
i�
ation. The latter information is needed in order to
ompute the startingstate for a new
on�guration.The major problem is that the d
 spe
i�
ation requires a global interse
tionproperty (i.e., a property that
an be
he
ked only by someone that knowsthe entire system state), while ea
h single pro
ess has a lo
al knowledge ofthe system. So, in order to guarantee that a new
on�guration satis�es therequirement of d
, ea
h single pro
ess needs information from other pro
essesmembers of the
on�guration.Informally, the �ltering of
on�gurations works as follows. Ea
h pro
ess keepstra
k of the latest totally established
on�guration,
alled the \a
tive"
on�g-uration, re
orded into variable a
t , and a set of \ambiguous"
on�gurations,re
orded into variable amb, whi
h are those
on�gurations that were noti�edafter the a
tive
on�guration but did not be
ome established yet. We de�neuse = a
t [amb. When a new
on�guration is dete
ted, pro
ess p sends outan \info" message
ontaining its
urrent a
tp and ambp values to all other pro-
essors in the new
on�guration, using an underlying broad
ast
ommuni
ationme
hanism, and waits to re
eive the
orresponding \info" messages for
on�gu-ration
 from all the other members of
. After re
eiving this information (andupdating its own a
tp and ambp a

ordingly), pro
ess p
he
ks whether
 has therequired interse
tion property with ea
h view in the usep set. If so,
on�guration
 is given in output to the
lient at p by means of a
tion new
onf(
)p.When a new primary
on�guration
 has been given in output to pro
essorp by means of a
tion new
onf(
)p, the
lient at p submits its
urrent statetogether with a
ondenser fun
tion to be used to
ompute the starting statewhen all other members have submitted their state (su
h a
ondenser fun
tiondepends on the appli
ation). Clearly the state of p is needed by other pro
essorsin the
on�guration while p needs the state of the other pro
essors. Hen
e when asubmit-state(s;)p is exe
uted at p, the state s submitted by pro
essor p is sentout with a \got-state" message to all other members of the
on�guration. Uponre
eiving the state of all other pro
essors, d
-
odep uses the state
ondenserfun
tion provided by the
lient at p in order to
ompute the starting state tobe output, by means of a
tion newstate(s)p, to the
lient at p.

Finally, the broad
ast/
onverge
ast
ommuni
ation me
hanism of d
 is sim-ulated by using the underlying broad
ast
ommuni
ation me
hanism (this sim-ulation is quite straightforward).4.2 ProofThe proof that d
-impl implements d
 in the sense of tra
e in
lusion is doneby using invariants and a simulation relation. The proof is similar to the onein [14℄ used to prove that dvs-impl implements dvs. There is a key di�eren
ein the implementation whi
h provides new insights for the dvs spe
i�
ation andimplementation, as we explain below.The dvs spe
i�
ation requires a global interse
tion property whi
h is the fol-lowing: given two primary views w and v with no intervening totally establishedview, we must have that w:set [v:set 6= fg. The dvs implementation, whendelivering a new view v,
he
ks a stronger property lo
ally to the pro
essors,whi
h requires that jv:set [w:setj � jw:setj=2 for all the views w, w:id < v:id,known by the pro
essor performing the
he
k.The d
 spe
i�
ation requires a global interse
tion property whi
h is thefollowing: given two primary
on�gurations, both of whi
h are not dead, with nointervening totally established
on�guration, then it must be that there existsa read and write quorum of the
on�guration with a smaller identi�er whi
hare in
luded in the membership set of the
on�guration with bigger identi�er.The d
 implementation
he
ks the same property lo
ally to ea
h pro
essor. Theintuitive reason why by
he
king lo
ally the same property we
an prove it alsoglobally is that we ex
lude dead
on�gurations. This suggest that also for dvswe
an prove the stronger interse
tion property (the one
he
ked lo
ally) or we
an use a weaker lo
al
he
k (the interse
tion required globally) if we do ex
ludedead views.5 Atomi
 Read/Write Shared MemoryAlgorithmIn this se
tion we show how to use d
 to implement an atomi
 multi-writer multi-reader shared register. The algorithm is an extension of the single-writer multi-reader atomi
 register of Attiya, Bar-Noy and Dolev [2℄. A similar extensionwas provided in [30℄. The overall algorithm is
alled abd-sys and
onsists of anautomaton abd-
odep for ea
h p 2 P , and d
. Due to spa
e
onstraint the
odeof automaton abd-
odeP is omitted from this extended abstra
t.5.1 The algorithmEa
h pro
essor keeps a
opy of the shared register, in variable val paired with atag, in variable tag . Tags are used to establish the time when values are written: avalue paired with a bigger tag has been written after a value paired with a smallertag. Tags
onsists of pairs hj; pi where j is a sequen
e number (an integer) andp is a pro
essor identi�er. Tags are ordered a

ording to their sequen
e numberswith pro
essors identi�ers breaking ties. Given a tag hj; pi the notation t:seqdenotes the sequen
e number j.

The algorithm has two modes of operation: a normal mode and a re
on�g-uration mode. The latter is used to establish a new
on�guration. It is enteredwhen a new
on�guration is announ
ed (a
tion new
onf) and is left when the
on�guration be
omes established (a
tion newstate). The former is the modewhere read and write operations are performed and it is entered when a
on�g-uration is established and is left when a new
on�guration is announ
ed. Duringthe re
on�guration mode pending operations are delayed until the normal modeis restored.Clients of the servi
e
an request read and write operations by means ofa
tions readp and write(x)p. We assume that ea
h
lient does not invoke anew operation request before re
eiving the response for the previous request.Both type of requests (read and write) are handled in a similar way: there isa query phase and a subsequent propagate phase. During the query phase theserver re
eiving the request \queries" a read-quorum in order to get the valueof the shared register and the
orresponding tag for ea
h of the members of theread-quorum. From these it sele
ts the value x
orresponding to the max tagt. This
on
ludes the query phase. In the propagation phase the server sends anew value and a new tag (whi
h are (t; x) for the
ase of a readp operation and(ht:seq + 1; pi; y) for a write(y)p operation) to the members of a write quorum.These pro
essors update their own
opy of the register if the tag re
eived isgreater than their
urrent tag; then they send ba
k an a
knowledgment to theserver p. When p gets the a
knowledgment message from the members of a writequorum, the propagate phase is
ompleted. At this point the server
an respondto the
lient that issued the operation with either the value read, in the
ase ofa read operation, or with just a
on�rmation, in the
ase of a write operation.We remark that when a
on�guration
hange happens during the exe
utionof a requested operation, the
ompletion of the operation is delayed until thenormal mode is restored. However if the query phase has already been
ompletedit is not ne
essary to repeat it in the new
on�guration.5.2 ProofThe proof that abd-sys implements an atomi
 read/write shared register isomitted from this extended abstra
t. The proof uses an approa
h similar to thatused in [14℄ and in [21℄ to prove the
orre
tness of appli
ations built on top ofdvs and vs, respe
tively.We remark that the interse
tion property of d
, namely that there exista read quorum R and a write quorum W of a previous primary
on�gurationboth belonging to the next primary
on�guration
omes from this parti
ularappli
ation. For other appli
ations one might have di�erent (maybe weaker)interse
tion properties. For example, one might require that the new primary
on�guration
ontains a read quorum of the previous one (and not a write one).In our
ase, we must require both a read quorum and a write quorum in the newprimary be
ause we want to implement an atomi
 register and if, for examplewe only require a read quorum to be in the new
on�guration, it is possiblethat other read quorums of the old
on�guration will be able to read old valuesmaking the register not atomi
 anymore.

6 Con
lusionsIn this paper we have
ombined the notion of dynami
 primary views with that ofquorum systems, to identify a servi
e that provides
on�gurations. Our key
on-tribution in solving the problem of making quorums dynami
, that is, adaptableto the set of pro
essors
urrently
onne
ted, is to identify a suitable interse
tionproperty whi
h
an be used to maintain
onsisten
y a
ross di�erent
on�gura-tions. An interesting dire
tion of resear
h is to identify whi
h properties have tobe satis�ed in order to transform a \stati
" servi
e or appli
ation into a \dy-nami
" one. For example, some data repli
ation algorithms are based on viewswith a distinguished leader (e.g., [28, 40℄) and these appli
ations tolerate tran-sient failures, i.e., they work well in a stati
 setting. We think that it is possibleto follow an approa
h similar to the one used in this paper to transform theseappli
ations into ones that adapt better to dynami
 settings, where pro
esses
an leave the system forever and new members
an join the system.Referen
es1. D. Agrawal and A. El Abbadi. An eÆ
ient and fault-tolerant solution for dis-tributed mutual ex
lusion. ACM Transa
tions on Computer Systems, 9(1):1{20,1991.2. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message passingsystems. Communi
ations of the ACM, 42(1):124{142, 1996.3. �O. Babao�glu, R. Davoli, L. Gia
hini, and M. Baker. Rela
s: A
ommuni
ationinfrastru
ture for
onstru
ting reliable appli
ations in large-s
ale distributed sys-tems. In Pro
eedings of Hawaii International Conferen
e on Computer and SystemS
ien
e, 1995, vol II, pp 612{621.4. �O. Babao�glu, R. Davoli, L. Gia
hini, and P. Sabattini. The inherent
ost of strong-partial view syn
hronous
ommuni
ation. In Pro
eedings of Workshop on Dis-tributed Algorithms on Graphs, pages 72{86, 1995.5. �O. Babao�glu, R. Davoli, and A. Montresor. Group Communi
ation in Partition-able Systems: Spe
i�
ations and Algorithms. TR UBLCS99-01, Department ofComputer S
ien
e, University of Bologna, 1998.6. A. Bartoli and �O. Babao�glu, Sele
ting a \Primary Partition" in PartitionableAsyn
hronous Distributed Systems, In Pro
eedings of the 16th Symposium onReliable Distributed Systems pages 138{145, 1997.7. M. Bearden and R. Bian
hini Jr. The syn
hronization
ost of on-line quorumadaptation. In 10th (ISCA) International Conferen
e on Parallel and DistributedComputing Systems (PDCS'97), pages 598{605, 1997.8. M. Bearden and R. Bian
hini Jr. A fault-tolerant algorithm for de
entralizedon-line quorum adaptation. In Pro
eedings of the 28th Annual International Sym-posium on Fault-Tolerant Computing (FTCS), 1998.9. K.P. Birman and R. van Renesse. Reliable Distributed Computing with the IsisToolkit. IEEE Computer So
iety Press, Los Alamitos, CA, 1994.10. T. Chandra, V. Hadzila
os, S. Toueg, and B. Charron-Bost. On the impossibilityof group membership. In Pro
eedings of the Fifteenth Annual ACM Symposium onPrin
iples of Distributed Computing, pages 322{330, 1996.11. T. Chandra, and S. Toueg, Unreliable failure dete
tors for reliable distributedsystems. Journal of the ACM, 43(2):225{267, Mar
h 1996.

12. F. Cristian. Group, majority and stri
t agreement in timed asyn
hronous dis-tributed systems. In Pro
eedings of the 26th Conferen
e on Fault-Tolerant Com-puter Systems, pages 178{187, 1996.13. D. Dav
ev and W. Bu
khard. Consisten
y and re
overy
ontrol for repli
ated �les.In ACM Symp. on Operating Systems Prin
iples, volume 10, pages 87{96, 1985.14. R. De Pris
o, A. Fekete, N. Lyn
h, and A.A. Shvartsman. A dynami
 view-orientedgroup
ommuni
ation servi
e. In Pro
eedings of the 17th ACM Symposium onPrin
iple of Distributed Computing (PODC), pages 227{236, 1998.15. D. Dolev and D. Malkhi. The Transis approa
h to high availability
luster
om-muni
ations. Communi
ations of the ACM, 39(4):64{70, 1996.16. D. Dolev, D. Malkhi, and R. Strong. A framework for partitionable membershipservi
e. Te
hni
al Report TR95-4, Institute of Computer S
ien
e, Hebrew Univer-sity, Jerusalem, Israel, Mar
h 1995.17. A. El Abbadi and S. Dani. A dynami
 a

essibility proto
ol for repli
ateddatabases. Data and knowledge engineering, 6:319{332, 1991.18. A. El Abbadi and S. Toueg. Maintaining availability in partitioned repli
ateddatabases. ACM Transa
tions on Database Systems, 14(2):264{290, 1989.19. B. Englert and A.A. Shvartsman. Non-obstru
tive quorum re
on�guration in arobust emulation of shared memory. Manus
ript.20. P. D. Ezhil
helvan, A. Ma
edo, and S. K. Shrivastava. Newtop: a fault tolerantgroup
ommuni
ation proto
ol. In 15th International Conferen
e on DistributedComputing Systems (ICDCS), 1995.21. A. Fekete, N. Lyn
h, and A.A. Shvartsman. Spe
ifying and using a partitionablegroup
ommuni
ation servi
e. In Pro
eedings of the 16th ACM Symposium onPrin
iple of Distributed Computing (PODC), pages 53{62, 1997.22. R. Friedman and R. van Renesse. Strong and weak virtual syn
hrony in Horus.Te
hni
al Report TR95-1537, Department of Computer S
ien
e, Cornell Univer-sity, Itha
a, NY, 1995.23. D. Gi�ord. Weighted voting for repli
ated data. In Pro
eedings of the ACM Sym-posium on Operating Systems Prin
iples, pages 150{162, 1979.24. M. Herlihy. A quorum-
onsensus repli
ation method for abstra
t data types. ACMTransa
tions on Computer Systems, 4(1):32{53, 1986.25. M. Hiltunen and R. S
hli
hting. Properties of membership servi
es. In Pro
eedingsof the 2nd International Symposium on Autonomous De
entralized Systems, pages200{207, 1995.26. F. Jahanian, S. Fakhouri, and R. Rajkumar. Pro
essor group membership proto-
ols: Spe
i�
ation, design and implementation. In Pro
eedings of the 12th IEEESymposium on Reliable Distributed Systems, pages 2{11, 1993.27. S. Jajodia and D. Mut
hler. Dynami
 voting algorithms for maintaining the
on-sisten
y of a repli
ated database. ACM Trans. Database Systems, 15(2):230{280,1990.28. L. Lamport. The part-time parliament. ACM Transa
tions on Computer Systems,16(2):133{169, May 1998. Also Resear
h Report 49, DEC SRC, Palo Alto, CA,1989.29. N. Lyn
h. Distributed Algorithms. Morgan Kaufmann Publishers, In
., San Mateo,CA, Mar
h 1996.30. N. Lyn
h and A.A. Shvartsman. Robust emulation of shared memory using dy-nami
 quorum-a
knowledged broad
asts. In Pro
eedings of the 27th IEEE Inter-national Symposium on Fault-Tolerant Computing (FTCS), pages 272{281, 1997.

31. N. Lyn
h and M. R. Tuttle. An introdu
tion to input/output automata. CWI-Quarterly, 2(3):219{246, September 1989. Centrum voor Wiskunde en Informat-i
a, Amsterdam, The Netherlands. Te
hni
al Memo MIT/LCS/TM-373, Labora-tory for Computer S
ien
e, Massa
husetts Institute of Te
hnology, Cambridge, MA02139, November 1988.32. D. Malkhi and M.K. Reiter. Byzantine quorum systems. Distributed Computing,11:203{13, 1998.33. D. Malkhi, M.K. Reiter, and A. Wool. The load and availability of byzantinequorum systems. In Pro
eedings of the 16th ACM Symposium on Prin
iple ofDistributed Computing (PODC), pages 249{257, 1997.34. D. Malkhi, M.K. Reiter, and R. Wright. Probabilisti
 quorum systems. In Pro
eed-ings of the 16th ACM Symposium on Prin
iple of Distributed Computing (PODC),pages 267{273, 1997.35. C. Malloth and A. S
hiper. View syn
hronous
ommuni
ation in large s
ale net-works. In 2nd Open Workshop of the ESPRIT proje
t BROADCAST (Number6360), July 1995 (also available as a Te
hni
al Report Nr. 94/84 at E
ole Poly-te
hnique F�ed�erale de Lausanne (Switzerland), O
tober 1994).36. L. Moser, Y. Amir, P. Melliar-Smith, and D. Agrawal. Extended virtual syn
hrony.In Pro
eedings of the 14th IEEE International Conferen
e on Distributed Comput-ing Systems, pages 56{65, 1994. Full version appears in TR ECE93-22, Dept. ofEle
tri
al and Computer Engineering, University of California, Santa Barbara, CA.37. L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos. Totem: A fault-tolerant multi
ast group
ommuni
ation system.Communi
ations of the ACM, 39(4), April 1996.38. M. Naor and A. Wool. The load,
apa
ity and availability of quorum systems.SIAM Journal on Computing, 27(2):423{447, 1998.39. G. Neiger. A new look at membership servi
es. In Pro
eedings of the 15th AnnualACM Symposium on Prin
iples of Distributed Computing, pages 331{340, 1996.40. B. Oki and B. Liskov. Viewstamped repli
ation: A general primary
opy method tosupport highly available distributed systems. In Pro
eedings of the Seventh ACMSymposium on Prin
iples of Distributed Computing, pages 8{17, 1988.41. J. Paris and D. Long. EÆ
ient dynami
 voting algorithms. In Pro
eedings of the13th International Conferen
e on Very Large Data Base, pages 268{275, 1988.42. A. Ri

iardi. The group membership problem in asyn
hronous systems. Te
hni
alReport TR92-1313, Department of Computer S
ien
e, Cornell University, Itha
a,NY, 1992.43. A. Ri

iardi and K.P. Birman. Using pro
ess groups to implement failure dete
tionin asyn
hronous environments. In Pro
eedings of the 10th ACM Symposium onPrin
iple of Distributed Computing (PODC), pages 341{352, 1991.44. A. Ri

iardi, A. S
hiper, and K.P. Birman. Understanding partitions and the \nopartitions" assumption. Te
hni
al Report TR93-1355, Department of ComputerS
ien
e, Cornell University, Itha
a, NY, 1993.45. R. van Renesse, K.P. Birman, M. Hayden, A. Vaysburd, and D. Karr, Buildingadaptive systems using Ensemble. Software{ Pra
ti
e and Experien
e, 29(9):963{979, 1998.46. R. van Renesse, K.P. Birman, and S. Ma�eis. Horus: A
exible group
ommuni-
ation system. Communi
ations of the ACM, 39(4):76{83, 1996.47. E. Yeger Lotem, I. Keidar, and D. Dolev. Dynami
 voting for
onsistent primary
omponents. In Pro
eedings of the Sixteenth Annual ACM Symposium on Prin
i-ples of Distributed Computing, pages 63{71, 1997.

