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Abstract. Quorum-based methods for managing replicated data are
popular because they provide availability of both reads and writes in
the presence of faulty behavior by some sites or communication links.
Over a very long time, it may become necessary to alter the quorum
system, perhaps because some sites have failed permanently and oth-
ers have joined the system, or perhaps because users want a different
trade-off between read-availability and write-availability. There are sub-
tle issues that arise in managing the change of quorums, including how
to make sure that any operation using the new quorum system is aware
of all information from operations that used an old quorum system, and
how to allow concurrent attempts to alter the quorum system.

In this paper we use ideas from group management services, especially
those providing a dynamic notion of primary view; with this we define
an abstract specification of a system that presents each user with a con-
sistent succession of identified configurations, each of which has a mem-
bership set, and a quorum system for that set. The key contribution here
is the intersection property, that determines how the new configurations
must relate to previous ones. We demonstrate that our proposed specifi-
cation is neither too strong, by showing how it can be implemented, nor
too weak, by showing the correctness of a replicated data management
algorithm running above it.

1 Introduction

In distributed applications involving replicated data, a well known way to en-
hance the availability and efficiency of the system is to use quorums. A quorum
is a subset of the members of the system, such that any two quorums have non-
empty intersection. An update can be performed with only a quorum available,
unlike other replication techniques where all of the members must be available.



The intersection property of quorums guarantees consistency. Quorum systems
have been extensively studied and used in applications, e.g., [1,7,8,18,23,24,
34,38]. The use of quorums has been proven effective also against Byzantine
failures [32, 33].

Pre-defined quorum sets can yield efficient implementations in settings which
are relatively static, i.e., failures are transient. However they work less well in
settings where processes routinely join and leave the system, or where the system
can suffer multiple partitions. These settings require the on-going modification
of the choice of quorums. For example, if more sites join the system, quorums
must be reconfigured to make use of the new sites. If many sites fail permanently,
quorums must be reconfigured to maintain availability. The most common pro-
posal has been to use a two-phase commit protocol which stops all application
operations while all sites are notified of the new configuration. Since two-phase
commit is a blocking protocol, this solution is vulnerable to a single failure dur-
ing the configuration change. In a setting of database transactions, [23] showed
how to integrate fault-tolerant updates of replicated information about quorum
sizes (using the same quorums for both data item replicas, and for quorum in-
formation replicas).

Here we offer a different approach, based on ideas of dynamic primary views
from group management systems. View-oriented group communication services
have become important as building blocks for fault-tolerant distributed systems.
Such a service enables application processes located at different nodes of a fault-
prone distributed network to operate collectively as a group, using the service to
multicast messages to all members of the group. Each such service is based on
a group membership service, which provides each group member with a view of
the group; a view includes a list of the processes that are members of the group.
Messages sent by a process in one view are delivered only to processes in the
membership of that view, and only when they have the same view. Within each
view, the service offers guarantees about the order and reliability of message
delivery. Examples of view-oriented group communication services are found
in Isis [9], Transis [15], Totem [37], Newtop [20], Relacs [3], Horus [46] and
Ensemble [45].

For many applications, some views must be distinguished as primary views.
Primary views have stronger properties, which allow updates to occur consis-
tently. Traditionally, a primary view was defined as one containing a majority
of all possible sites, but other, dynamic, definitions are possible, based on in-
tersection properties between successive primary views. One possibility is to
define a primary view as a view containing a majority of the previous primary
view. Several papers define primary views adaptively, e.g., [6,13,14,17,27,35,
41,43, 47]. Producing good specifications for view-oriented group communication
services is difficult, because these services can be complicated, and because dif-
ferent such services provide different guarantees about safety, performance, and
fault-tolerance. Examples of specifications for group membership services and
view-oriented group communication services appear in [4,5,10,12,16, 21,22, 25,



26, 36,39,42, 44]. Extending these definitions to specify dynamic primary views
was the focus of [14,47].

In this paper we combine the notion of dynamic primary view with that of
a quorum system, and call the result a configuration. We integrate this with
a group communication service, resulting in a dynamic primary configuration
group communication service. The main difficulty in combining quorum systems
with the notion of dynamic primary view is the intersection property between
quorums from different views, which is required to maintain consistency. With
configurations the simple intersection property (i.e., a primary view contains a
majority of the previous primary) that works for primary views, is no longer
enough. Indeed updated information might be only at a quorum and the pro-
cessors in the intersection might be not in that quorum. A stronger intersection
property is required. We propose one possible intersection property that allows
applications to keep consistency across different primary configurations. Namely,
we require that there be a quorum of the old primary configuration which is in-
cluded in the membership set of the new primary configuration. This guarantees
that there is at least one process in the new primary configuration that has the
most up to date information. This, similarly to the intersection property of dy-
namic primary views, allows flow of information from the old configuration to
the new one and thus permits one to preserve consistency.

The specific configurations we consider use two sets of quorums, a set of
read quorums and a set of write quorums, with the property that any read
quorum intersects any write quorum. (This choice is justified by the application
we develop, an atomic read/write register.) With this kind of configuration the
intersection property that we require for a new primary configuration is that
there be one read quorum and one write quorum both of which are included in
the membership set of the new primary configuration. The use of read and write
quorums (as opposed to just quorums) can be more efficient in order to balance
the load of the system (see for example [18]).

We provide a formal automaton specification, called bDc for “dynamic config-
urations”, for the safety guarantees made by a dynamic primary configuration
group communication service. We remark that we do not address liveness proper-
ties here, but that they can be expressed as conditional performance properties,
similar to those in [21], or with other techniques such as failure-detectors [11].

Clearly the DC specification provides support for primary configurations.
However it also has another important feature, namely, it provides support for
state-exchange. When a new configuration starts, applications generally require
some pre-processing, such as an exchange of information, to prepare for ordinary
computation. Typically this is needed in order to bring every member of the con-
figuration up to date. For example, processes in a coherent database application
may need to exchange information about previous updates in order to bring ev-
eryone in the new configuration up to date. We will refer to the up-to-date state
of a new configuration as the starting state of that configuration. The starting
state is the state of the computation that all members should have in order to
perform regular computation. When the notification of a new configuration is



given to its members, the DC specification allows these members to submit their
current state. Then the service takes care of collecting all the states and comput-
ing the starting state for the new configuration and delivering it to the members.
When all members have been notified of the starting state for a configuration
¢, all information about the membership set and the quorums of previous con-
figurations is not needed anymore, and the service no longer needs to ensure
intersection in membership between configurations before ¢ and any subsequent
ones that are formed. This is the basis of a garbage-collection mechanism which
was introduced in [47].

The DC specification offers a broadcast/convergecast communication service
which works as follows: a process p submits a message to the service; the ser-
vice forwards this message to the members of the current configuration and
upon receiving acknowledgment values from a quorum of members it computes
a response for the message sent by process p and gives the response to p. This
communication mechanism has been introduced in [30], though in the setting of
that paper there is no group-oriented computation.

We demonstrate the value of our DC specification by showing both how it
can be implemented and how it can be used in an application. Both pieces are
shown formally, with assertional proofs.

We implement DC by using a variant of the group membership algorithm
of [47]. Our variant integrates communication with the membership service, pro-
vides state-exchange support at the beginning of a new configuration, and uses a
static configuration-oriented service internally. We prove that this algorithm im-
plements DC, in the sense of trace inclusion. The proof uses a simulation relation
and invariant assertions.

We develop an atomic read/write shared register on top of bc. The algorithm
is based on the work of Attiya, Bar-Noy and Dolev [2] and follows the approach
used in [19,30]. The application exploits the communication and state-exchange
services provided by DC. The proof of correctness uses a simulation relation and
invariant assertions.

2 Mathematical foundations and notation

We describe the services and algorithms using the the I/O automaton model of
Lynch and Tuttle [31] (without fairness). The model and associated methodology
is described in Chapter 8 of [29].

Next, we provide some definitions used in the rest of the paper.

We write A for the empty sequence. If a is a sequence, then |a| denotes the
length of a. If a is a sequence and 1 < i < |a| then a(i) denotes the ith element
of a. Given a set S, seqof(S) denotes the set consisting of all finite sequences
of elements of S. If s and ¢ are sequences, the concatenation of s and ¢, with s
coming first, is denoted by s+¢. We say that sequence s is a prefiz of sequence ¢,
written as s < t, provided that there exists u such that s+u = ¢. The “head” of
a sequence a is a(1). A sequence can be used as a queue: the append operation
modifies the sequence by concatenating the sequence with a new element and the
remove operation modifies the sequence by deleting the head of the sequence.



If R is a binary relation, then we define dom(R), the domain of R to be
the set (without repetitions) of first elements of the ordered pairs comprising
relation R.

We denote by P the universe of all processors! and we assume that P is totally
ordered. We denote by M the universe of all possible messages. We denote by
G a totally ordered set of identifiers used to distinguish configurations. Given a
set S, the notation S refers to the set SU{L}. If a set S is totally ordered, we
extend the ordering of S to the set S| by letting L < s for any s € S.

A configuration is a quadruple, ¢ = (g, P, R,W), where g € G is a unique
identifier, P C P is a nonempty set of processors, and R and W are nonempty
sets of nonempty subsets? of P, such that RNW # {} forall Re R, W € W.
Each element of R is called a read quorum of ¢, and each element of W a write
quorum. We let C denote the set of all configurations.

Given a configuration ¢ = (g, P, R, W), the notation c.id refers to the con-
figuration identifier g, the notation c.set refers to the membership set P, while
c.rgrms and c.wgrms refer to R and W, respectively. We distinguish an initial
configuration ¢ = (go, Py, Ro, Wo), where go is a distinguished configuration
identifier.

3 The DC specification

In many applications significant computation is performed only in special config-
urations called primary configurations, which satisfy certain intersection prop-
erties with previous primary configurations. In particular, we require that the
membership set of a new primary configuration must include the members of at
least one read quorum and one write quorum of the previous primary configu-
ration. The DC specification provides to the client only configurations satisfying
this property. This is similar to what the DVS service of [14] does for ordinary
views.

An important feature of the DC specification is that it allows for state-
exchange at the beginning of a new primary configuration. State-exchange at
the beginning of a new configuration is required by most applications. When
a new configuration is issued each member of the configuration is supposed to
submit its current state to the service which, once obtained the state from all the
members of the configuration computes the most up to date state over all the
members, called the starting state, and delivers this state to each member. This
way, each member begins regular computation in the new configuration knowing
the starting state. We remark that this is different from the approach used by
the Dvs service of [14] which lets the members of the configuration compute

! In the rest of the paper we will use processor as synonymous of process. The differ-
ences between the two terms are immaterial in our setting.

2 Expressing each quorum as a set of subsets is a generalization of the common tech-
nique where the quorums are based on integers n, and n, such that n, + n., > |P|;
the two approaches are related by defining the set of read quorums as consisting
of those subsets of P with cardinality at least n,, and the set of write quorums as
consisting of those subsets of P of cardinality at least n.,.



the starting state. Some existing group communication services also integrate
state-exchange within the service [43].

Finally, the DC specification offers a broadcast/convergecast communication
mechanism. This mechanism involves all the members of a quorum, and uses a
condenser function to process the information gathered from the quorum. More
specifically, a client that wants to send a message (request) to the members of its
current, configuration submits the message together with a condenser function
to the service; then the DC service broadcasts the message to all the members
of the configuration and waits for a response from a quorum (the type of the
quorum, read or write, is also specified by the client); once answers are received
from a quorum, the DC service applies the condenser function to these answers
in order to compute a response to give back to the client that sent the message.

We remark that this kind of communication is different from those of the vs
service [21] and the DVS service [14]. Instead, it is as the one used in [30]. We
integrate it into DC because we want to develop a particular application that
benefits from this particular communication service (a read/write register as is
done in [30]).

Prior to providing the code for the DC specification, we need some notation
and definitions, which we introduce in the following while giving an informal
description of the code.

Each operation requested by the client of the service is tagged with a unique
identifier. Let OID be the set of operation identifiers, partitioned into sets OID,,
p € P. Let A be a set of “acknowledgment” values and let R be a set of “re-
sponse” values. A wvalue condenser function is a function from (A, )" to R. Let
& be the set of all value condenser functions. Let S be the set of states of the
client (this does not need to be the entire client’s state, but it may contain only
the relevant information in order for the application to work). A state condenser
function is a function from (S1)"” to S. Let ¥ be the set of all state condenser
functions. Given a function f : P — D from the set of processors P to some
domain value D and given a subset P C P of processors we write f|P to denote
the function f’ defined as follows: f'(p) = f(p) if p € P and f'(p) = L otherwise.

We use the following data type to describe an operation: D = M x & X
{“read”, “write” } x 27 x (A,)" x Bool and we let O = OID — D, . Given an
operation descriptor, selectors for the components are msg, cnd, sel, dlv, ack,
and rsp. Given an operation descriptor d € D for an operation i, d.msg is the
message of operation ¢ which is delivered to all the processes (it represents the
request of the operation, like read a register or write a register), d.cnd is the con-
denser of operation i which is used to compute a response when acknowledgment
values are available from a quorum of processes, d.sel is a selector that specifies
whether to use a read or a write quorum, d.dlv is the set of processes to which
the message has been delivered, d.ack contains the acknowledgment values, and,
finally, d.rsp is a flag indicating whether or not the client has received a re-
sponse for the operation. Operation descriptors maintain information about the
operations. When an operation i is submitted its descriptor d = pending[g](i) is
initialized to d = (m, ¢,b,{}, {}, false) where m, ¢ and b come with the opera-



tion submission (i.e., are provided by the client). Then d.dlv, d.ack and d.rsp are
updated while the operation is being serviced. Once a response has been given
back to the client and thus d.rsp is set to true, the operation is completed.

For each process p we define the current configuration of p as the last con-
figuration ¢ given to p with a NEwconF(c), event (or a predefined configuration
if no such event has happened yet). The identifier of the current configuration
of process p is stored into variable cur-cid,. When a configuration ¢ has been
notified to a processor p we say that processor p has “attempted” configuration
c. We use the history variable attempted to record the set of processors that
have attempted a particular configuration ¢. More formally p € attempted[c.id)
iff processor p has attempted c.

Next we define an important notion, the one of “dead” configuration. Infor-
mally a dead configuration ¢ is a configuration for which a member process
p went on to newer configurations, that is, it executed action NEwconr(c'),
with ¢'.id > c.id, before receiving the notification, that is the NEwconr(c),
event, for configuration ¢ (which can no longer be notified to that proces-
sor, and thus is dead because processor p cannot participate and it is impos-
sible to compute the starting state). More formally we define dead € 2° as
dead = {c € C|3p € c.set : cur-cid, > c.id and p ¢ attempted|c.id]}.

DC (Signature and state)

Signature:

Internal: CREATECONF(c), ¢ € C

Output:

NEWCONF(¢)p, ¢ € C, p € c.set
NEWSTATE(S)p, s € S

RESPOND(a,4)p, a € A, i € OID,, p € P
DELIVER(m,i),, m € M, i€ OID,p € P

Input:
SUBMIT(m, ¢,b,4)p, m € M, ¢ € P,

b € {“read”, “write”}, p € P,i € OID,
ACKDLVR(a,i)p,a € A,i € OID,p€ P
SUBMIT-STATE(S,%)p, S €S, ¥ € ¢

State:

created € 2°, init {co} for each g € G:

for each p € P: cur-cid[p] € G, got-state[g] = P — S, init everywhere L
init go if p € Py, L else condenser[g] = P — ¢, init everywhere L

for each g € G: attempted|g] € 27, state-dlu[g] € 2%, init Py if g = go, {} else
init Py if g = go, {} else pending[g] € O, init everywhere L

Fig. 1. The DC signature and state

We say that a configuration c is totally attempted in a state s of DC if c.set C
attempted[c.id]. We denote by Tot Att the set of totally attempted configurations.
Informally a totally attempted configuration is a configuration for which all
members have received notification of the new configuration. Similarly, we say
that a configuration c is attempted in a state s of DC if attempted|c.id] # {}. We
denote by Att the set of attempted configurations. Clearly Att C Tot Att.



D¢ (Transitions)

Actions:
internal CREATECONF(c)
Pre: For all w € created : c.id # w.id
if ¢ € dead then
For all w € created, w.id < c.id:
w € dead or
(3z € Tot&st: w.id<z.id<c.id)V

(3R € w.rgrms, AW € w.wqrms:

RUW C c.set)
For all w € created, w.id > c.id
w € dead or
(3z € Totést: cid<z.id<w.id)V
(3R € c.rgrms, AW € c.wgrms:
RUW C w.set)
Eff: created := created U {c}

output NEWCONF(¢),, p € c.set
Pre: c € created
c.id > cur-cid[p)]
Eff: cur-cid[p] := c.id
attempted [c.id)
:= attempted|c.id] U {p}

input SUBMIT-STATE(S, ¥)p
Eff: if cur-cid[p] # L and
got-state[cur-cid[p]](p) = L then
got-state[cur-cid[p]](p) := s
condenser|cur-cid[p]](p) := ¥

output NEWSTATE(s), choose ¢
Pre: c.id = cur-cid[p]
¢ € created
Vq € c.set: got-state[c.id](q) # L

s = condenser [c.id](p)(got-state[c.id])

p ¢ state-dlv[c.id)
Eff: state-dlv[c.id]
= state-dlv[c.id] U {p}

input SUBMIT(m, ¢, b, 1),
Eff: if cur-cid[p] # L then
pending[cur-cid[p]](3)
= (m,¢,b,{}, {},false)

output DELIVER(m, %), choose g
Pre: g = cur-cid[p]
p & pending[g](i).dlv
pending[g](i).msg = m
Eff: pending|g](i).dlv
:= pending[g](i).dlv U {p}

input ACKDIVR(a,1),

Eff: if cur-cid[p] # L and
pending[cur-cid[p]](i).ack(p) # L
then

pending[cur-cid[p]](7).ack (p)

=a

output RESPOND(r, %), choose ¢, Q
Pre: c.id = cur-cid[p]
¢ € created
i € 0ID,
pending[c.id](i).rsp = false
if pending|c.id].sel = “read”
then Q) € c.rgrms
if pending|c.id].sel = “write”
then Q € c.wgrms
let f = pending[c.id](7).ack
VgeQ: flg) # L
r = pending[c.id](i).cnd (f|Q)
Eff: pending[c.id](i).rsp := true

Fig. 2. The DC transitions



After a processor p has attempted a new configuration, it submits its state
by means of action sSUBMIT-STATE(s, ¥),. Variable got-state[g](p) records the state
s submitted by processor p for the current configuration of p whose identifier
is g. Similarly, the state condenser function submitted by p is recorded into
variable condenser[g](p). After all processors members of a configuration ¢ have
submitted their state, the starting state for ¢ can be computed, by using the
appropriate condenser function, and can be given to the members of ¢. Note
that the state condensor is used when all members have submitted a state,
in contrast to message convergecast which applies the value condensor once a
quorum of values are known. Variable state-dlv[g] records the set of processors to
which the starting state for the configuration with identifier g has been delivered.

When the starting state for a configuration ¢ has been delivered to proces-
sor p we say that c is established (at p). A configuration is totally established
when it is established at all processors members of the configuration. More for-
mally a configuration c is totally established in a state s of DC if, in state s, we
have c.set C state-dlv[c.id]. We denote by Totst the set of totally established
configurations. When a configuration ¢ becomes totally established, information
about the membership set and quorums of configurations previous to ¢ can be
discarded, because the intersection property will be guaranteed between ¢ and
later configurations.

The code of the DC specification is given in Figures 1 and 2.

The second precondition of creaTECONF(c) is the key to our specification. It
states that when a configuration c is created it must either be already dead or for
any other configuration w such that there are no intervening totally established
configurations, the earlier configuration (i.e., the one with smaller identifier) has
one read quorum and one write quorum whose members are included in the
membership set of the later configuration (i.e., the one with bigger identifier).
The above precondition is formalized in the following key invariant:

Invariant 1 Let ¢1,co € created \ dead, with c¢y.id < co.id. Then either ezists
w € Tot€st,c1.id < w.id < cy.id, or else exist R, W quorums of c¢1 such that
RUW C ca.set

The property stated by this invariant is used to prove correct the application
that we build on top of DC. We remark that dead configurations are excluded,
that is, the intersection property may not hold for dead configurations. However,
in a dead configuration it is not possible to make progress because for such a
configuration there is at least one process that will not participate and thus the
configuration will never become established.

The need for considering dead configurations comes from the implementation
of the specification that we provide. It is possible to give a stronger version of
DC by requiring that the intersection property in the precondition of action
crEATECONF holds also for dead configurations, however this stronger version
might not be implementable. Moreover, as we have said above, there is no loss
of generality since no progress is made anyway in dead configurations.



4 An implementation of DC

The DC specification can be implemented, in the sense of trace inclusion, with
an algorithm similar to that used in [14] to implement the DVS service. Hence it
uses ideas from [47]. This implementation consists of an automaton DC-CODE,
for each p € P. Due to space constraints we omit the code and the proof of
correctness and provide only an overall description.

4.1 The implementation

The automaton DC-CODE,, uses special messages, tagged either with “info”, used
to send information about the active and ambiguous configurations, or with
“got-state”, used to send the state submitted by a process to all the members
of the configuration. The former information is needed to check the intersection
property that new primary configurations have to satisfy according to the bc
specification. The latter information is needed in order to compute the starting
state for a new configuration.

The major problem is that the DC specification requires a global intersection
property (i.e., a property that can be checked only by someone that knows
the entire system state), while each single process has a local knowledge of
the system. So, in order to guarantee that a new configuration satisfies the
requirement of DC, each single process needs information from other processes
members of the configuration.

Informally, the filtering of configurations works as follows. Each process keeps
track of the latest totally established configuration, called the “active” config-
uration, recorded into variable act, and a set of “ambiguous” configurations,
recorded into variable amb, which are those configurations that were notified
after the active configuration but did not become established yet. We define
use = act U amb. When a new configuration is detected, process p sends out
an “info” message containing its current act, and amb, values to all other pro-
cessors in the new configuration, using an underlying broadcast communication
mechanism, and waits to receive the corresponding “info” messages for configu-
ration ¢ from all the other members of ¢. After receiving this information (and
updating its own act, and amb, accordingly), process p checks whether ¢ has the
required intersection property with each view in the use,, set. If so, configuration
¢ is given in output to the client at p by means of action NEwconF(c),.

When a new primary configuration ¢ has been given in output to processor
p by means of action NEWCONF(c¢),, the client at p submits its current state
together with a condenser function to be used to compute the starting state
when all other members have submitted their state (such a condenser function
depends on the application). Clearly the state of p is needed by other processors
in the configuration while p needs the state of the other processors. Hence when a
SUBMIT-STATE(s, ¥), is executed at p, the state s submitted by processor p is sent
out with a “got-state” message to all other members of the configuration. Upon
receiving the state of all other processors, DC-CODE,, uses the state condenser
function v provided by the client at p in order to compute the starting state to
be output, by means of action NEWSTATE(s),, to the client at p.



Finally, the broadcast/convergecast communication mechanism of DC is sim-
ulated by using the underlying broadcast communication mechanism (this sim-
ulation is quite straightforward).

4.2 Proof

The proof that DC-IMPL implements DC in the sense of trace inclusion is done
by using invariants and a simulation relation. The proof is similar to the one
in [14] used to prove that DVS-IMPL implements DVS. There is a key difference
in the implementation which provides new insights for the DVS specification and
implementation, as we explain below.

The DVS specification requires a global intersection property which is the fol-
lowing: given two primary views w and v with no intervening totally established
view, we must have that w.set U v.set # {}. The DVS implementation, when
delivering a new view w, checks a stronger property locally to the processors,
which requires that |v.set U w.set| > |w.set|/2 for all the views w, w.id < v.id,
known by the processor performing the check.

The DC specification requires a global intersection property which is the
following: given two primary configurations, both of which are not dead, with no
intervening totally established configuration, then it must be that there exists
a read and write quorum of the configuration with a smaller identifier which
are included in the membership set of the configuration with bigger identifier.
The DC implementation checks the same property locally to each processor. The
intuitive reason why by checking locally the same property we can prove it also
globally is that we exclude dead configurations. This suggest that also for bvs
we can prove the stronger intersection property (the one checked locally) or we
can use a weaker local check (the intersection required globally) if we do exclude
dead views.

5 Atomic Read/Write Shared Memory
Algorithm

In this section we show how to use DC to implement an atomic multi-writer multi-
reader shared register. The algorithm is an extension of the single-writer multi-
reader atomic register of Attiya, Bar-Noy and Dolev [2]. A similar extension
was provided in [30]. The overall algorithm is called ABD-SYs and consists of an
automaton ABD-CODE, for each p € P, and DC. Due to space constraint the code
of automaton ABD-CODEp is omitted from this extended abstract.

5.1 The algorithm

Each processor keeps a copy of the shared register, in variable val paired with a
tag, in variable tag. Tags are used to establish the time when values are written: a
value paired with a bigger tag has been written after a value paired with a smaller
tag. Tags consists of pairs (j,p) where j is a sequence number (an integer) and
p is a processor identifier. Tags are ordered according to their sequence numbers
with processors identifiers breaking ties. Given a tag (j,p) the notation t.seq
denotes the sequence number j.



The algorithm has two modes of operation: a normal mode and a reconfig-
uration mode. The latter is used to establish a new configuration. It is entered
when a new configuration is announced (action Newconr) and is left when the
configuration becomes established (action NEwsTaTE). The former is the mode
where read and write operations are performed and it is entered when a config-
uration is established and is left when a new configuration is announced. During
the reconfiguration mode pending operations are delayed until the normal mode
is restored.

Clients of the service can request read and write operations by means of
actions rREaD, and WRITE(z),. We assume that each client does not invoke a
new operation request before receiving the response for the previous request.
Both type of requests (read and write) are handled in a similar way: there is
a query phase and a subsequent propagate phase. During the query phase the
server receiving the request “queries” a read-quorum in order to get the value
of the shared register and the corresponding tag for each of the members of the
read-quorum. From these it selects the value x corresponding to the max tag
t. This concludes the query phase. In the propagation phase the server sends a
new value and a new tag (which are (¢,x) for the case of a READ, operation and
((t.seq + 1,p),y) for a wriTE(y), operation) to the members of a write quorum.
These processors update their own copy of the register if the tag received is
greater than their current tag; then they send back an acknowledgment to the
server p. When p gets the acknowledgment message from the members of a write
quorum, the propagate phase is completed. At this point the server can respond
to the client that issued the operation with either the value read, in the case of
a read operation, or with just a confirmation, in the case of a write operation.

We remark that when a configuration change happens during the execution
of a requested operation, the completion of the operation is delayed until the
normal mode is restored. However if the query phase has already been completed
it is not necessary to repeat it in the new configuration.

5.2 Proof

The proof that ABD-SYS implements an atomic read/write shared register is
omitted from this extended abstract. The proof uses an approach similar to that
used in [14] and in [21] to prove the correctness of applications built on top of
DVS and Vs, respectively.

We remark that the intersection property of DC, namely that there exist
a read quorum R and a write quorum W of a previous primary configuration
both belonging to the next primary configuration comes from this particular
application. For other applications one might have different (maybe weaker)
intersection properties. For example, one might require that the new primary
configuration contains a read quorum of the previous one (and not a write one).
In our case, we must require both a read quorum and a write quorum in the new
primary because we want to implement an atomic register and if, for example
we only require a read quorum to be in the new configuration, it is possible
that other read quorums of the old configuration will be able to read old values
making the register not atomic anymore.



6 Conclusions

In this paper we have combined the notion of dynamic primary views with that of
quorum systems, to identify a service that provides configurations. Our key con-
tribution in solving the problem of making quorums dynamic, that is, adaptable
to the set of processors currently connected, is to identify a suitable intersection
property which can be used to maintain consistency across different configura-
tions. An interesting direction of research is to identify which properties have to
be satisfied in order to transform a “static” service or application into a “dy-
namic” one. For example, some data replication algorithms are based on views
with a distinguished leader (e.g., [28,40]) and these applications tolerate tran-
sient failures, i.e., they work well in a static setting. We think that it is possible
to follow an approach similar to the one used in this paper to transform these
applications into ones that adapt better to dynamic settings, where processes
can leave the system forever and new members can join the system.
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