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t. Quorum-based methods for managing repli
ated data arepopular be
ause they provide availability of both reads and writes inthe presen
e of faulty behavior by some sites or 
ommuni
ation links.Over a very long time, it may be
ome ne
essary to alter the quorumsystem, perhaps be
ause some sites have failed permanently and oth-ers have joined the system, or perhaps be
ause users want a di�erenttrade-o� between read-availability and write-availability. There are sub-tle issues that arise in managing the 
hange of quorums, in
luding howto make sure that any operation using the new quorum system is awareof all information from operations that used an old quorum system, andhow to allow 
on
urrent attempts to alter the quorum system.In this paper we use ideas from group management servi
es, espe
iallythose providing a dynami
 notion of primary view; with this we de�nean abstra
t spe
i�
ation of a system that presents ea
h user with a 
on-sistent su

ession of identi�ed 
on�gurations, ea
h of whi
h has a mem-bership set, and a quorum system for that set. The key 
ontribution hereis the interse
tion property, that determines how the new 
on�gurationsmust relate to previous ones. We demonstrate that our proposed spe
i�-
ation is neither too strong, by showing how it 
an be implemented, nortoo weak, by showing the 
orre
tness of a repli
ated data managementalgorithm running above it.1 Introdu
tionIn distributed appli
ations involving repli
ated data, a well known way to en-han
e the availability and eÆ
ien
y of the system is to use quorums. A quorumis a subset of the members of the system, su
h that any two quorums have non-empty interse
tion. An update 
an be performed with only a quorum available,unlike other repli
ation te
hniques where all of the members must be available.



The interse
tion property of quorums guarantees 
onsisten
y. Quorum systemshave been extensively studied and used in appli
ations, e.g., [1, 7, 8, 18, 23, 24,34, 38℄. The use of quorums has been proven e�e
tive also against Byzantinefailures [32, 33℄.Pre-de�ned quorum sets 
an yield eÆ
ient implementations in settings whi
hare relatively stati
, i.e., failures are transient. However they work less well insettings where pro
esses routinely join and leave the system, or where the system
an su�er multiple partitions. These settings require the on-going modi�
ationof the 
hoi
e of quorums. For example, if more sites join the system, quorumsmust be re
on�gured to make use of the new sites. If many sites fail permanently,quorums must be re
on�gured to maintain availability. The most 
ommon pro-posal has been to use a two-phase 
ommit proto
ol whi
h stops all appli
ationoperations while all sites are noti�ed of the new 
on�guration. Sin
e two-phase
ommit is a blo
king proto
ol, this solution is vulnerable to a single failure dur-ing the 
on�guration 
hange. In a setting of database transa
tions, [23℄ showedhow to integrate fault-tolerant updates of repli
ated information about quorumsizes (using the same quorums for both data item repli
as, and for quorum in-formation repli
as).Here we o�er a di�erent approa
h, based on ideas of dynami
 primary viewsfrom group management systems. View-oriented group 
ommuni
ation servi
eshave be
ome important as building blo
ks for fault-tolerant distributed systems.Su
h a servi
e enables appli
ation pro
esses lo
ated at di�erent nodes of a fault-prone distributed network to operate 
olle
tively as a group, using the servi
e tomulti
ast messages to all members of the group. Ea
h su
h servi
e is based ona group membership servi
e, whi
h provides ea
h group member with a view ofthe group; a view in
ludes a list of the pro
esses that are members of the group.Messages sent by a pro
ess in one view are delivered only to pro
esses in themembership of that view, and only when they have the same view. Within ea
hview, the servi
e o�ers guarantees about the order and reliability of messagedelivery. Examples of view-oriented group 
ommuni
ation servi
es are foundin Isis [9℄, Transis [15℄, Totem [37℄, Newtop [20℄, Rela
s [3℄, Horus [46℄ andEnsemble [45℄.For many appli
ations, some views must be distinguished as primary views.Primary views have stronger properties, whi
h allow updates to o

ur 
onsis-tently. Traditionally, a primary view was de�ned as one 
ontaining a majorityof all possible sites, but other, dynami
, de�nitions are possible, based on in-terse
tion properties between su

essive primary views. One possibility is tode�ne a primary view as a view 
ontaining a majority of the previous primaryview. Several papers de�ne primary views adaptively, e.g., [6, 13, 14, 17, 27, 35,41, 43, 47℄. Produ
ing good spe
i�
ations for view-oriented group 
ommuni
ationservi
es is diÆ
ult, be
ause these servi
es 
an be 
ompli
ated, and be
ause dif-ferent su
h servi
es provide di�erent guarantees about safety, performan
e, andfault-toleran
e. Examples of spe
i�
ations for group membership servi
es andview-oriented group 
ommuni
ation servi
es appear in [4, 5, 10, 12, 16, 21, 22, 25,



26, 36, 39, 42, 44℄. Extending these de�nitions to spe
ify dynami
 primary viewswas the fo
us of [14, 47℄.In this paper we 
ombine the notion of dynami
 primary view with that ofa quorum system, and 
all the result a 
on�guration. We integrate this witha group 
ommuni
ation servi
e, resulting in a dynami
 primary 
on�gurationgroup 
ommuni
ation servi
e. The main diÆ
ulty in 
ombining quorum systemswith the notion of dynami
 primary view is the interse
tion property betweenquorums from di�erent views, whi
h is required to maintain 
onsisten
y. With
on�gurations the simple interse
tion property (i.e., a primary view 
ontains amajority of the previous primary) that works for primary views, is no longerenough. Indeed updated information might be only at a quorum and the pro-
essors in the interse
tion might be not in that quorum. A stronger interse
tionproperty is required. We propose one possible interse
tion property that allowsappli
ations to keep 
onsisten
y a
ross di�erent primary 
on�gurations. Namely,we require that there be a quorum of the old primary 
on�guration whi
h is in-
luded in the membership set of the new primary 
on�guration. This guaranteesthat there is at least one pro
ess in the new primary 
on�guration that has themost up to date information. This, similarly to the interse
tion property of dy-nami
 primary views, allows 
ow of information from the old 
on�guration tothe new one and thus permits one to preserve 
onsisten
y.The spe
i�
 
on�gurations we 
onsider use two sets of quorums, a set ofread quorums and a set of write quorums, with the property that any readquorum interse
ts any write quorum. (This 
hoi
e is justi�ed by the appli
ationwe develop, an atomi
 read/write register.) With this kind of 
on�guration theinterse
tion property that we require for a new primary 
on�guration is thatthere be one read quorum and one write quorum both of whi
h are in
luded inthe membership set of the new primary 
on�guration. The use of read and writequorums (as opposed to just quorums) 
an be more eÆ
ient in order to balan
ethe load of the system (see for example [18℄).We provide a formal automaton spe
i�
ation, 
alled d
 for \dynami
 
on�g-urations", for the safety guarantees made by a dynami
 primary 
on�gurationgroup 
ommuni
ation servi
e. We remark that we do not address liveness proper-ties here, but that they 
an be expressed as 
onditional performan
e properties,similar to those in [21℄, or with other te
hniques su
h as failure-dete
tors [11℄.Clearly the d
 spe
i�
ation provides support for primary 
on�gurations.However it also has another important feature, namely, it provides support forstate-ex
hange. When a new 
on�guration starts, appli
ations generally requiresome pre-pro
essing, su
h as an ex
hange of information, to prepare for ordinary
omputation. Typi
ally this is needed in order to bring every member of the 
on-�guration up to date. For example, pro
esses in a 
oherent database appli
ationmay need to ex
hange information about previous updates in order to bring ev-eryone in the new 
on�guration up to date. We will refer to the up-to-date stateof a new 
on�guration as the starting state of that 
on�guration. The startingstate is the state of the 
omputation that all members should have in order toperform regular 
omputation. When the noti�
ation of a new 
on�guration is



given to its members, the d
 spe
i�
ation allows these members to submit their
urrent state. Then the servi
e takes 
are of 
olle
ting all the states and 
omput-ing the starting state for the new 
on�guration and delivering it to the members.When all members have been noti�ed of the starting state for a 
on�guration
, all information about the membership set and the quorums of previous 
on-�gurations is not needed anymore, and the servi
e no longer needs to ensureinterse
tion in membership between 
on�gurations before 
 and any subsequentones that are formed. This is the basis of a garbage-
olle
tion me
hanism whi
hwas introdu
ed in [47℄.The d
 spe
i�
ation o�ers a broad
ast/
onverge
ast 
ommuni
ation servi
ewhi
h works as follows: a pro
ess p submits a message to the servi
e; the ser-vi
e forwards this message to the members of the 
urrent 
on�guration andupon re
eiving a
knowledgment values from a quorum of members it 
omputesa response for the message sent by pro
ess p and gives the response to p. This
ommuni
ation me
hanism has been introdu
ed in [30℄, though in the setting ofthat paper there is no group-oriented 
omputation.We demonstrate the value of our d
 spe
i�
ation by showing both how it
an be implemented and how it 
an be used in an appli
ation. Both pie
es areshown formally, with assertional proofs.We implement d
 by using a variant of the group membership algorithmof [47℄. Our variant integrates 
ommuni
ation with the membership servi
e, pro-vides state-ex
hange support at the beginning of a new 
on�guration, and uses astati
 
on�guration-oriented servi
e internally. We prove that this algorithm im-plements d
, in the sense of tra
e in
lusion. The proof uses a simulation relationand invariant assertions.We develop an atomi
 read/write shared register on top of d
. The algorithmis based on the work of Attiya, Bar-Noy and Dolev [2℄ and follows the approa
hused in [19, 30℄. The appli
ation exploits the 
ommuni
ation and state-ex
hangeservi
es provided by d
. The proof of 
orre
tness uses a simulation relation andinvariant assertions.2 Mathemati
al foundations and notationWe des
ribe the servi
es and algorithms using the the I/O automaton model ofLyn
h and Tuttle [31℄ (without fairness). The model and asso
iated methodologyis des
ribed in Chapter 8 of [29℄.Next we provide some de�nitions used in the rest of the paper.We write � for the empty sequen
e. If a is a sequen
e, then jaj denotes thelength of a. If a is a sequen
e and 1 � i � jaj then a(i) denotes the ith elementof a. Given a set S, seqof (S) denotes the set 
onsisting of all �nite sequen
esof elements of S. If s and t are sequen
es, the 
on
atenation of s and t, with s
oming �rst, is denoted by s+t. We say that sequen
e s is a pre�x of sequen
e t,written as s � t, provided that there exists u su
h that s+u = t. The \head" ofa sequen
e a is a(1). A sequen
e 
an be used as a queue: the append operationmodi�es the sequen
e by 
on
atenating the sequen
e with a new element and theremove operation modi�es the sequen
e by deleting the head of the sequen
e.



If R is a binary relation, then we de�ne dom(R), the domain of R to bethe set (without repetitions) of �rst elements of the ordered pairs 
omprisingrelation R.We denote by P the universe of all pro
essors1 and we assume that P is totallyordered. We denote by M the universe of all possible messages. We denote byG a totally ordered set of identi�ers used to distinguish 
on�gurations. Given aset S, the notation S? refers to the set S [ f?g. If a set S is totally ordered, weextend the ordering of S to the set S? by letting ? < s for any s 2 S.A 
on�guration is a quadruple, 
 = hg; P;R;Wi, where g 2 G is a uniqueidenti�er, P � P is a nonempty set of pro
essors, and R and W are nonemptysets of nonempty subsets2 of P , su
h that R \W 6= fg for all R 2 R, W 2 W .Ea
h element of R is 
alled a read quorum of 
, and ea
h element of W a writequorum. We let C denote the set of all 
on�gurations.Given a 
on�guration 
 = hg; P;R;Wi, the notation 
:id refers to the 
on-�guration identi�er g, the notation 
:set refers to the membership set P , while
:rqrms and 
:wqrms refer to R and W , respe
tively. We distinguish an initial
on�guration 
0 = hg0; P0;R0;W0i, where g0 is a distinguished 
on�gurationidenti�er.3 The d
 spe
i�
ationIn many appli
ations signi�
ant 
omputation is performed only in spe
ial 
on�g-urations 
alled primary 
on�gurations, whi
h satisfy 
ertain interse
tion prop-erties with previous primary 
on�gurations. In parti
ular, we require that themembership set of a new primary 
on�guration must in
lude the members of atleast one read quorum and one write quorum of the previous primary 
on�gu-ration. The d
 spe
i�
ation provides to the 
lient only 
on�gurations satisfyingthis property. This is similar to what the dvs servi
e of [14℄ does for ordinaryviews.An important feature of the d
 spe
i�
ation is that it allows for state-ex
hange at the beginning of a new primary 
on�guration. State-ex
hange atthe beginning of a new 
on�guration is required by most appli
ations. Whena new 
on�guration is issued ea
h member of the 
on�guration is supposed tosubmit its 
urrent state to the servi
e whi
h, on
e obtained the state from all themembers of the 
on�guration 
omputes the most up to date state over all themembers, 
alled the starting state, and delivers this state to ea
h member. Thisway, ea
h member begins regular 
omputation in the new 
on�guration knowingthe starting state. We remark that this is di�erent from the approa
h used bythe dvs servi
e of [14℄ whi
h lets the members of the 
on�guration 
ompute1 In the rest of the paper we will use pro
essor as synonymous of pro
ess. The di�er-en
es between the two terms are immaterial in our setting.2 Expressing ea
h quorum as a set of subsets is a generalization of the 
ommon te
h-nique where the quorums are based on integers nr and nw su
h that nr + nw � jP j;the two approa
hes are related by de�ning the set of read quorums as 
onsistingof those subsets of P with 
ardinality at least nr, and the set of write quorums as
onsisting of those subsets of P of 
ardinality at least nw.



the starting state. Some existing group 
ommuni
ation servi
es also integratestate-ex
hange within the servi
e [43℄.Finally, the d
 spe
i�
ation o�ers a broad
ast/
onverge
ast 
ommuni
ationme
hanism. This me
hanism involves all the members of a quorum, and uses a
ondenser fun
tion to pro
ess the information gathered from the quorum. Morespe
i�
ally, a 
lient that wants to send a message (request) to the members of its
urrent 
on�guration submits the message together with a 
ondenser fun
tionto the servi
e; then the d
 servi
e broad
asts the message to all the membersof the 
on�guration and waits for a response from a quorum (the type of thequorum, read or write, is also spe
i�ed by the 
lient); on
e answers are re
eivedfrom a quorum, the d
 servi
e applies the 
ondenser fun
tion to these answersin order to 
ompute a response to give ba
k to the 
lient that sent the message.We remark that this kind of 
ommuni
ation is di�erent from those of the vsservi
e [21℄ and the dvs servi
e [14℄. Instead, it is as the one used in [30℄. Weintegrate it into d
 be
ause we want to develop a parti
ular appli
ation thatbene�ts from this parti
ular 
ommuni
ation servi
e (a read/write register as isdone in [30℄).Prior to providing the 
ode for the d
 spe
i�
ation, we need some notationand de�nitions, whi
h we introdu
e in the following while giving an informaldes
ription of the 
ode.Ea
h operation requested by the 
lient of the servi
e is tagged with a uniqueidenti�er. Let OID be the set of operation identi�ers, partitioned into sets OIDp,p 2 P . Let A be a set of \a
knowledgment" values and let R be a set of \re-sponse" values. A value 
ondenser fun
tion is a fun
tion from (A?)n to R. Let� be the set of all value 
ondenser fun
tions. Let S be the set of states of the
lient (this does not need to be the entire 
lient's state, but it may 
ontain onlythe relevant information in order for the appli
ation to work). A state 
ondenserfun
tion is a fun
tion from (S?)n to S. Let 	 be the set of all state 
ondenserfun
tions. Given a fun
tion f : P ! D from the set of pro
essors P to somedomain value D and given a subset P � P of pro
essors we write f jP to denotethe fun
tion f 0 de�ned as follows: f 0(p) = f(p) if p 2 P and f 0(p) = ? otherwise.We use the following data type to des
ribe an operation: D = M� � �f\read"; \write"g � 2P � (A?)n � Bool and we let O = OID ! D?. Given anoperation des
riptor, sele
tors for the 
omponents are msg , 
nd , sel , dlv , a
k ,and rsp. Given an operation des
riptor d 2 D for an operation i, d:msg is themessage of operation i whi
h is delivered to all the pro
esses (it represents therequest of the operation, like read a register or write a register), d:
nd is the 
on-denser of operation i whi
h is used to 
ompute a response when a
knowledgmentvalues are available from a quorum of pro
esses, d:sel is a sele
tor that spe
i�eswhether to use a read or a write quorum, d:dlv is the set of pro
esses to whi
hthe message has been delivered, d:a
k 
ontains the a
knowledgment values, and,�nally, d:rsp is a 
ag indi
ating whether or not the 
lient has re
eived a re-sponse for the operation. Operation des
riptors maintain information about theoperations. When an operation i is submitted its des
riptor d = pending [g℄(i) isinitialized to d = (m;�; b; fg; fg; false) where m, � and b 
ome with the opera-



tion submission (i.e., are provided by the 
lient). Then d:dlv ; d:a
k and d:rsp areupdated while the operation is being servi
ed. On
e a response has been givenba
k to the 
lient and thus d:rsp is set to true, the operation is 
ompleted.For ea
h pro
ess p we de�ne the 
urrent 
on�guration of p as the last 
on-�guration 
 given to p with a new
onf(
)p event (or a prede�ned 
on�gurationif no su
h event has happened yet). The identi�er of the 
urrent 
on�gurationof pro
ess p is stored into variable 
ur-
idp. When a 
on�guration 
 has beennoti�ed to a pro
essor p we say that pro
essor p has \attempted" 
on�guration
. We use the history variable attempted to re
ord the set of pro
essors thathave attempted a parti
ular 
on�guration 
. More formally p 2 attempted [
:id℄i� pro
essor p has attempted 
.Next we de�ne an important notion, the one of \dead" 
on�guration. Infor-mally a dead 
on�guration 
 is a 
on�guration for whi
h a member pro
essp went on to newer 
on�gurations, that is, it exe
uted a
tion new
onf(
0)pwith 
0:id > 
:id, before re
eiving the noti�
ation, that is the new
onf(
)pevent, for 
on�guration 
 (whi
h 
an no longer be noti�ed to that pro
es-sor, and thus is dead be
ause pro
essor p 
annot parti
ipate and it is impos-sible to 
ompute the starting state). More formally we de�ne dead 2 2C asdead = f
 2 Cj9p 2 
:set : 
ur-
idp > 
:id and p =2 attempted [
:id ℄g.d
 (Signature and state)Signature:Input:submit(m;�; b; i)p, m 2M, � 2 �,b 2 f\read"; \write"g, p 2 P,i 2 OIDpa
kdlvr(a; i)p, a 2 A, i 2 OID, p 2 Psubmit-state(s;  )p, s 2 S,  2  Internal: 
reate
onf(
), 
 2 COutput:new
onf(
)p, 
 2 C, p 2 
:setnewstate(s)p, s 2 Srespond(a; i)p, a 2 A, i 2 OIDp, p 2 Pdeliver(m; i)p, m 2 M, i 2 OID, p 2 PState:
reated 2 2C, init f
0gfor ea
h p 2 P: 
ur-
id [p℄ 2 G?,init g0 if p 2 P0, ? elsefor ea
h g 2 G: attempted [g℄ 2 2P ,init P0 if g = g0, fg else for ea
h g 2 G:got-state [g℄ = P ! S?, init everywhere ?
ondenser [g℄ = P !  ?, init everywhere ?state-dlv [g℄ 2 2P , init P0 if g = g0, fg elsepending [g℄ 2 O, init everywhere ?Fig. 1. The d
 signature and stateWe say that a 
on�guration 
 is totally attempted in a state s of d
 if 
:set �attempted [
:id℄. We denote by TotAtt the set of totally attempted 
on�gurations.Informally a totally attempted 
on�guration is a 
on�guration for whi
h allmembers have re
eived noti�
ation of the new 
on�guration. Similarly, we saythat a 
on�guration 
 is attempted in a state s of d
 if attempted [
:id℄ 6= fg. Wedenote by Att the set of attempted 
on�gurations. Clearly Att � TotAtt.



d
 (Transitions)A
tions:internal 
reate
onf(
)Pre: For all w 2 
reated : 
:id 6= w:idif 
 62 dead thenFor all w 2 
reated ; w:id < 
:id:w 2 dead or(9x 2 TotEst: w:id<x:id<
:id)_(9R 2 w:rqrms ; 9W 2 w:wqrms :R [W � 
:set)For all w 2 
reated ; w:id > 
:idw 2 dead or(9x 2 TotEst: 
:id<x:id<w:id)_(9R 2 
:rqrms ; 9W 2 
:wqrms :R [W � w:set)E�: 
reated := 
reated [ f
goutput new
onf(
)p, p 2 
:setPre: 
 2 
reated
:id > 
ur-
id [p℄E�: 
ur-
id [p℄ := 
:idattempted [
:id℄:= attempted [
:id℄ [ fpginput submit-state(s;  )pE�: if 
ur-
id [p℄ 6= ? andgot-state [
ur-
id [p℄℄(p) = ? thengot-state [
ur-
id [p℄℄(p) := s
ondenser [
ur-
id [p℄℄(p) :=  output newstate(s)p 
hoose 
Pre: 
:id = 
ur-
id [p℄
 2 
reated8q 2 
:set : got-state [
:id℄(q) 6= ?s = 
ondenser [
:id℄(p)(got-state [
:id℄)p =2 state-dlv [
:id℄E�: state-dlv [
:id℄:= state-dlv [
:id℄ [ fpg

input submit(m;�; b; i)pE�: if 
ur-
id [p℄ 6= ? thenpending [
ur-
id [p℄℄(i):= (m;�; b; fg; fg; false)output deliver(m; i)p 
hoose gPre: g = 
ur-
id [p℄p =2 pending [g℄(i):dlvpending [g℄(i):msg = mE�: pending [g℄(i):dlv:= pending [g℄(i):dlv [ fpginput a
kdlvr(a; i)pE�: if 
ur-
id [p℄ 6= ? andpending [
ur-
id [p℄℄(i):a
k (p) 6= ?thenpending [
ur-
id [p℄℄(i):a
k(p):= aoutput respond(r; i)p 
hoose 
;QPre: 
:id = 
ur-
id [p℄
 2 
reatedi 2 OIDppending [
:id℄(i):rsp = falseif pending [
:id℄:sel = \read"then Q 2 
:rqrmsif pending [
:id℄:sel = \write"then Q 2 
:wqrmslet f = pending [
:id℄(i):a
k8q 2 Q : f(q) 6= ?r = pending [
:id℄(i):
nd (f jQ)E�: pending [
:id℄(i):rsp := true
Fig. 2. The d
 transitions



After a pro
essor p has attempted a new 
on�guration, it submits its stateby means of a
tion submit-state(s;  )p. Variable got-state[g℄(p) re
ords the states submitted by pro
essor p for the 
urrent 
on�guration of p whose identi�eris g. Similarly, the state 
ondenser fun
tion submitted by p is re
orded intovariable 
ondenser [g℄(p). After all pro
essors members of a 
on�guration 
 havesubmitted their state, the starting state for 
 
an be 
omputed, by using theappropriate 
ondenser fun
tion, and 
an be given to the members of 
. Notethat the state 
ondensor is used when all members have submitted a state,in 
ontrast to message 
onverge
ast whi
h applies the value 
ondensor on
e aquorum of values are known. Variable state-dlv [g℄ re
ords the set of pro
essors towhi
h the starting state for the 
on�guration with identi�er g has been delivered.When the starting state for a 
on�guration 
 has been delivered to pro
es-sor p we say that 
 is established (at p). A 
on�guration is totally establishedwhen it is established at all pro
essors members of the 
on�guration. More for-mally a 
on�guration 
 is totally established in a state s of d
 if, in state s, wehave 
:set � state-dlv [
:id℄. We denote by TotEst the set of totally established
on�gurations. When a 
on�guration 
 be
omes totally established, informationabout the membership set and quorums of 
on�gurations previous to 
 
an bedis
arded, be
ause the interse
tion property will be guaranteed between 
 andlater 
on�gurations.The 
ode of the d
 spe
i�
ation is given in Figures 1 and 2.The se
ond pre
ondition of 
reate
onf(
) is the key to our spe
i�
ation. Itstates that when a 
on�guration 
 is 
reated it must either be already dead or forany other 
on�guration w su
h that there are no intervening totally established
on�gurations, the earlier 
on�guration (i.e., the one with smaller identi�er) hasone read quorum and one write quorum whose members are in
luded in themembership set of the later 
on�guration (i.e., the one with bigger identi�er).The above pre
ondition is formalized in the following key invariant:Invariant 1 Let 
1; 
2 2 
reated n dead, with 
1:id < 
2:id . Then either existsw 2 TotEst; 
1:id < w:id < 
2:id , or else exist R, W quorums of 
1 su
h thatR [W � 
2:setThe property stated by this invariant is used to prove 
orre
t the appli
ationthat we build on top of d
. We remark that dead 
on�gurations are ex
luded,that is, the interse
tion property may not hold for dead 
on�gurations. However,in a dead 
on�guration it is not possible to make progress be
ause for su
h a
on�guration there is at least one pro
ess that will not parti
ipate and thus the
on�guration will never be
ome established.The need for 
onsidering dead 
on�gurations 
omes from the implementationof the spe
i�
ation that we provide. It is possible to give a stronger version ofd
 by requiring that the interse
tion property in the pre
ondition of a
tion
reate
onf holds also for dead 
on�gurations, however this stronger versionmight not be implementable. Moreover, as we have said above, there is no lossof generality sin
e no progress is made anyway in dead 
on�gurations.



4 An implementation of d
The d
 spe
i�
ation 
an be implemented, in the sense of tra
e in
lusion, withan algorithm similar to that used in [14℄ to implement the dvs servi
e. Hen
e ituses ideas from [47℄. This implementation 
onsists of an automaton d
-
odepfor ea
h p 2 P . Due to spa
e 
onstraints we omit the 
ode and the proof of
orre
tness and provide only an overall des
ription.4.1 The implementationThe automaton d
-
odep uses spe
ial messages, tagged either with \info", usedto send information about the a
tive and ambiguous 
on�gurations, or with\got-state", used to send the state submitted by a pro
ess to all the membersof the 
on�guration. The former information is needed to 
he
k the interse
tionproperty that new primary 
on�gurations have to satisfy a

ording to the d
spe
i�
ation. The latter information is needed in order to 
ompute the startingstate for a new 
on�guration.The major problem is that the d
 spe
i�
ation requires a global interse
tionproperty (i.e., a property that 
an be 
he
ked only by someone that knowsthe entire system state), while ea
h single pro
ess has a lo
al knowledge ofthe system. So, in order to guarantee that a new 
on�guration satis�es therequirement of d
, ea
h single pro
ess needs information from other pro
essesmembers of the 
on�guration.Informally, the �ltering of 
on�gurations works as follows. Ea
h pro
ess keepstra
k of the latest totally established 
on�guration, 
alled the \a
tive" 
on�g-uration, re
orded into variable a
t , and a set of \ambiguous" 
on�gurations,re
orded into variable amb, whi
h are those 
on�gurations that were noti�edafter the a
tive 
on�guration but did not be
ome established yet. We de�neuse = a
t [ amb. When a new 
on�guration is dete
ted, pro
ess p sends outan \info" message 
ontaining its 
urrent a
tp and ambp values to all other pro-
essors in the new 
on�guration, using an underlying broad
ast 
ommuni
ationme
hanism, and waits to re
eive the 
orresponding \info" messages for 
on�gu-ration 
 from all the other members of 
. After re
eiving this information (andupdating its own a
tp and ambp a

ordingly), pro
ess p 
he
ks whether 
 has therequired interse
tion property with ea
h view in the usep set. If so, 
on�guration
 is given in output to the 
lient at p by means of a
tion new
onf(
)p.When a new primary 
on�guration 
 has been given in output to pro
essorp by means of a
tion new
onf(
)p, the 
lient at p submits its 
urrent statetogether with a 
ondenser fun
tion to be used to 
ompute the starting statewhen all other members have submitted their state (su
h a 
ondenser fun
tiondepends on the appli
ation). Clearly the state of p is needed by other pro
essorsin the 
on�guration while p needs the state of the other pro
essors. Hen
e when asubmit-state(s;  )p is exe
uted at p, the state s submitted by pro
essor p is sentout with a \got-state" message to all other members of the 
on�guration. Uponre
eiving the state of all other pro
essors, d
-
odep uses the state 
ondenserfun
tion  provided by the 
lient at p in order to 
ompute the starting state tobe output, by means of a
tion newstate(s)p, to the 
lient at p.



Finally, the broad
ast/
onverge
ast 
ommuni
ation me
hanism of d
 is sim-ulated by using the underlying broad
ast 
ommuni
ation me
hanism (this sim-ulation is quite straightforward).4.2 ProofThe proof that d
-impl implements d
 in the sense of tra
e in
lusion is doneby using invariants and a simulation relation. The proof is similar to the onein [14℄ used to prove that dvs-impl implements dvs. There is a key di�eren
ein the implementation whi
h provides new insights for the dvs spe
i�
ation andimplementation, as we explain below.The dvs spe
i�
ation requires a global interse
tion property whi
h is the fol-lowing: given two primary views w and v with no intervening totally establishedview, we must have that w:set [ v:set 6= fg. The dvs implementation, whendelivering a new view v, 
he
ks a stronger property lo
ally to the pro
essors,whi
h requires that jv:set [ w:setj � jw:setj=2 for all the views w, w:id < v:id,known by the pro
essor performing the 
he
k.The d
 spe
i�
ation requires a global interse
tion property whi
h is thefollowing: given two primary 
on�gurations, both of whi
h are not dead, with nointervening totally established 
on�guration, then it must be that there existsa read and write quorum of the 
on�guration with a smaller identi�er whi
hare in
luded in the membership set of the 
on�guration with bigger identi�er.The d
 implementation 
he
ks the same property lo
ally to ea
h pro
essor. Theintuitive reason why by 
he
king lo
ally the same property we 
an prove it alsoglobally is that we ex
lude dead 
on�gurations. This suggest that also for dvswe 
an prove the stronger interse
tion property (the one 
he
ked lo
ally) or we
an use a weaker lo
al 
he
k (the interse
tion required globally) if we do ex
ludedead views.5 Atomi
 Read/Write Shared MemoryAlgorithmIn this se
tion we show how to use d
 to implement an atomi
 multi-writer multi-reader shared register. The algorithm is an extension of the single-writer multi-reader atomi
 register of Attiya, Bar-Noy and Dolev [2℄. A similar extensionwas provided in [30℄. The overall algorithm is 
alled abd-sys and 
onsists of anautomaton abd-
odep for ea
h p 2 P , and d
. Due to spa
e 
onstraint the 
odeof automaton abd-
odeP is omitted from this extended abstra
t.5.1 The algorithmEa
h pro
essor keeps a 
opy of the shared register, in variable val paired with atag, in variable tag . Tags are used to establish the time when values are written: avalue paired with a bigger tag has been written after a value paired with a smallertag. Tags 
onsists of pairs hj; pi where j is a sequen
e number (an integer) andp is a pro
essor identi�er. Tags are ordered a

ording to their sequen
e numberswith pro
essors identi�ers breaking ties. Given a tag hj; pi the notation t:seqdenotes the sequen
e number j.



The algorithm has two modes of operation: a normal mode and a re
on�g-uration mode. The latter is used to establish a new 
on�guration. It is enteredwhen a new 
on�guration is announ
ed (a
tion new
onf) and is left when the
on�guration be
omes established (a
tion newstate). The former is the modewhere read and write operations are performed and it is entered when a 
on�g-uration is established and is left when a new 
on�guration is announ
ed. Duringthe re
on�guration mode pending operations are delayed until the normal modeis restored.Clients of the servi
e 
an request read and write operations by means ofa
tions readp and write(x)p. We assume that ea
h 
lient does not invoke anew operation request before re
eiving the response for the previous request.Both type of requests (read and write) are handled in a similar way: there isa query phase and a subsequent propagate phase. During the query phase theserver re
eiving the request \queries" a read-quorum in order to get the valueof the shared register and the 
orresponding tag for ea
h of the members of theread-quorum. From these it sele
ts the value x 
orresponding to the max tagt. This 
on
ludes the query phase. In the propagation phase the server sends anew value and a new tag (whi
h are (t; x) for the 
ase of a readp operation and(ht:seq + 1; pi; y) for a write(y)p operation) to the members of a write quorum.These pro
essors update their own 
opy of the register if the tag re
eived isgreater than their 
urrent tag; then they send ba
k an a
knowledgment to theserver p. When p gets the a
knowledgment message from the members of a writequorum, the propagate phase is 
ompleted. At this point the server 
an respondto the 
lient that issued the operation with either the value read, in the 
ase ofa read operation, or with just a 
on�rmation, in the 
ase of a write operation.We remark that when a 
on�guration 
hange happens during the exe
utionof a requested operation, the 
ompletion of the operation is delayed until thenormal mode is restored. However if the query phase has already been 
ompletedit is not ne
essary to repeat it in the new 
on�guration.5.2 ProofThe proof that abd-sys implements an atomi
 read/write shared register isomitted from this extended abstra
t. The proof uses an approa
h similar to thatused in [14℄ and in [21℄ to prove the 
orre
tness of appli
ations built on top ofdvs and vs, respe
tively.We remark that the interse
tion property of d
, namely that there exista read quorum R and a write quorum W of a previous primary 
on�gurationboth belonging to the next primary 
on�guration 
omes from this parti
ularappli
ation. For other appli
ations one might have di�erent (maybe weaker)interse
tion properties. For example, one might require that the new primary
on�guration 
ontains a read quorum of the previous one (and not a write one).In our 
ase, we must require both a read quorum and a write quorum in the newprimary be
ause we want to implement an atomi
 register and if, for examplewe only require a read quorum to be in the new 
on�guration, it is possiblethat other read quorums of the old 
on�guration will be able to read old valuesmaking the register not atomi
 anymore.



6 Con
lusionsIn this paper we have 
ombined the notion of dynami
 primary views with that ofquorum systems, to identify a servi
e that provides 
on�gurations. Our key 
on-tribution in solving the problem of making quorums dynami
, that is, adaptableto the set of pro
essors 
urrently 
onne
ted, is to identify a suitable interse
tionproperty whi
h 
an be used to maintain 
onsisten
y a
ross di�erent 
on�gura-tions. An interesting dire
tion of resear
h is to identify whi
h properties have tobe satis�ed in order to transform a \stati
" servi
e or appli
ation into a \dy-nami
" one. For example, some data repli
ation algorithms are based on viewswith a distinguished leader (e.g., [28, 40℄) and these appli
ations tolerate tran-sient failures, i.e., they work well in a stati
 setting. We think that it is possibleto follow an approa
h similar to the one used in this paper to transform theseappli
ations into ones that adapt better to dynami
 settings, where pro
esses
an leave the system forever and new members 
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