Specifying and Using a Partitionable
Group Communication Service

Alan Fekete*

Abstract

A new, simple formal specification is presented for a par-
titionable view-oriented group communication service. The
specification consists of a state machine to express safety
requirements and a timed trace property to express perfor-
mance and fault-tolerance requirements. The specification is
used to construct a totally-ordered-broadcast application, us-
ing an algorithm (based on algorithms of Amir, Dolev, Keidar
and others) that reconciles information derived from different
views of the group. Correctness of the resulting application
is proved, and its performance and fault-tolerance analyzed.
The specification has a simple implementation, based on a
group membership algorithm of Cristian and Schmuck.

1 Introduction

In the development of practical distributed systems, consid-
erable effort is devoted to making distributed applications
robust in the face of typical processor and communication
failures. Constructing such systems is difficult, however, be-
cause of the complexities of the applications and of the fault-
prone distributed settings in which they run. To aid in this
construction, some computing environments include general-
purpose building blocks that provide powerful distributed
computation services.

Among the most important examples of building blocks
are group communication services. Group communication
services enable processes located at different nodes of a dis-
tributed network to operate collectively as a group; the pro-
cesses do this by using a group communication service to mul-
ticast messages to all members of the group. Different group
communication services offer different guarantees about the
order and reliability of message delivery. Examples are found
in Isis [6], Transis [11], Totem [25], Newtop [13], Relacs [3]
and Horus [27].

The basis of a group communication service is a group
membership service. Each process, at each time, has a unique
view of the membership of the group. The view includes a
list of the processes that are members of the group. Views
can change from time to time, and may become different at
different processes. Isis introduced the important concept
of virtual synchrony [6]. This concept has been interpreted
in various ways, but an essential requirement is that if a
particular message is delivered to several processes, then all
have the same view of the membership when the message

*Basser Department of Computer Science, Madsen Building F09,
University of Sydney, NSW 2006, Australia.

tMIT Laboratory for Computer Science, 545 Technology Square,
NE43-365, Cambridge, MA 02139, USA.

Nancy Lynchf

Alex Shvartsman'

is delivered. This allows the recipients to take coordinated
action based on the message, the membership set and the
rules prescribed by the application.

The Isis system was designed for an environment where
processors might fail and messages might be lost, but where
the network does not partition. That is, it assumes that
there are never two disjoint sets of processors, each set com-
municating successfully among its members. This assump-
tion might be reasonable for some local area networks, but
it 1s not valid in wide area networks. Therefore, the more
recent systems mentioned above allow the possibility that
concurrent views of the group might be disjoint.

To be most useful to application programmers, system
building blocks should come equipped with simple and pre-
cise specifications of their guaranteed behavior. These spec-
ifications should include not only safety properties, but also
performance and fault-tolerance properties. Unfortunately,
providing appropriate specifications for group communica-
tion services 1s not an easy task. Some of these services are
rather complicated, and there is still no agreement about
exactly what the guarantees should be. Different specifica-
tions arise from different implementations of the same ser-
vice, because of differences in the safety, performance, or
fault-tolerance that is provided. Moreover, the specifica-
tions that most accurately describe particular implementa-
tions may not be the ones that are easiest for application
programmers to use.

The first major work on the development of specifications
for fault-tolerant group-oriented membership and communi-
cation services appears to be that of Ricciardi [28], and the
research area is still active (see, e.g., [26, 7]). In particu-
lar, there has been a large amount of work on developing
specifications for partitionable group services. Some specifi-
cations deal just with membership and views [17, 29] while
others also cover message services (ordering and reliability
properties) [24, 4, 5, 9, 12, 15, 16]. These specifications are
all complicated, many are difficult to understand, and some
seem to be ambiguous. It is not clear how to tell whether a
specification is sufficient for a given application. It is not even
clear how to tell whether a specification is implementable at
all; impossibility results such as those in [7] demonstrate that
this is a serious issue.

In this paper, we present a new, simple formal speci-
fication for a partitionable view-oriented group communi-
cation service. To demonstrate the value of our specifica-
tion, we use it to construct an ordered-broadcast applica-
tion, using an algorithm, based on algorithms of Amir, Dolev,
Keidar, Melliar-Smith and Moser [18, 1], that reconciles in-
formation derived from different views. We prove the cor-
rectness and analyze the performance and fault-tolerance of
this algorithm. Our specification has a simple implemen-
tation, based on the membership algorithm of Cristian and
Schmuck [10]. We call our specification V'S, which stands for
view-synchrony.

IThis is not the same as the notion of view-synchrony in [5].

In VS, the views are presented to each processor® accord-
ing to a consistent total order, though not every processor
need see every view. Each message is associated with a par-
ticular view, and all send and receive events for a message
occur at processors when they have the associated view. The
service provides a total order on the messages associated with
each view, and each processor receives a prefix of this total
order. There are also some guarantees about stabilization
of view information and about successful message delivery,
under certain assumptions about the number of failures and
about the stabilization of failure behavior.

Our specification VS does not describe all the potentially-
useful properties of any particular implementation. Rather,
it includes only the properties that are needed for the ordered-
broadcast application. However, preliminary results suggest
that the same specification is also useful for other applica-
tions.

The style of our specification is different from those of
previous specifications for group communication services, in
that we separate safety requirements from performance and
fault-tolerance requirements. The safety requirements are
formulated in terms of an abstract, global input/output state
machine,; using precondition-effect notation. This enables as-
sertional reasoning about systems that use this service. The
performance and fault-tolerance requirements are expressed
as a collection of properties that must hold in executions
of the service. Specifically, we include failure-status input
actions in the specification; we then give properties saying
that consensus on the view and timely message delivery are
guaranteed in an execution provided that it stabilizes to a
situation in which the failure status stops changing and cor-
responds to a consistently partitioned system. This stabi-
lization hypothesis can be seen as an abstract version of the
“timed asynchronous model” of Cristian [8]. These perfor-
mance and fault-tolerance properties are expressed in precise
natural language and require operational reasoning.

We consider how our view-synchronous group communi-
cation service can be used in the distributed implementation
of a sequentially consistent memory. It turns out that the
problem can be subdivided into two: the implementation
of a totally ordered broadcast communication service using a
view-synchronous group communication service, and the im-
plementation of sequentially consistent memory using a to-
tally ordered broadcast service. The second of these is easy
using known techniques®, so we focus in this paper on the
first problem. A totally ordered broadcast service delivers
messages submitted by its clients, according to a single total
ordering of all the messages; this total order must be consis-
tent with the order in which the messages are sent by any
particular sender. Each client receives a prefix of the order-
ing, and there are also some guarantees of successful delivery,
under certain assumptions about the stabilization of failure
behavior. This service is different from a view-synchronous
group communication service in that there is no notion of
“view”; the ordering guarantees apply to all the messages,
not just those within individual views.

We begin in Section 3 by giving a simple formal specifi-
cation for a totally ordered broadcast service, which we call
TO. TO serves as the correctness definition for the ordered-
broadcast application. It consists of an abstract state ma-
chine for safety properties, plus stabilized properties for per-
formance and fault-tolerance.

2We consider “processor groups” in the formal material of this pa-
per rather than “process groups”. The distinction is unimportant here.

3The “replicated state machine” approach of Lamport [19], sur-
veyed by Schneider in [30], is one such approach.

Then, in Section 4, we present our new specification for a
partitionable group communication service, V.S. VS includes
a crisp notion of a local view, that is, each processor, at any
time, has a current view and knows the membership of the
group in its current view; moreover, any messages sent by
any processor in a view are received (if they are received at
all) in the same view. The VS service also provides a “safe”
indication, once a message has been delivered to all members
of the view.

The most important differences between V.S and other
group communication specifications are:

1. VS does not mention any “transitional views” or “hid-
den views”, such as are found in Extended Virtual Syn-
chrony [24] or the specification of Dolev et al [12]. Each
processor always has a well-defined view of the group
membership, and all recipients of a message share the
view that the sender had when the message was sent.

2. VS does not require that a processor learn of all the views
of which it is a member.

3. VS does not require any relationship among the mem-
bership of concurrent views held by different processors.
Stronger specifications demand that these views be either
disjoint or identical [5], or either disjoint or subsets [4].

4. VS does not require consensus on whether a message is
delivered. Many other specifications for group commu-
nication, including [4, 5, 12, 15, 24], insist on delivery
at every processor in the intersection of the current view
and a successor view. We allow each member to receive a
different subset of the messages associated with the view;
however, each member must receive a prefix of a common
total order of the messages of that view.

5. The “safe” indication is separate from the message de-
livery event. In Transis, Totem and Horus [11, 25, 27],
delivery is delayed until the lower layer at each site has
the message (though it might not yet have delivered it).
Thus in these systems, safe delivery means that every
other member is guaranteed to also provide safe delivery
or crash. A simple “coordinated attack” argument (as in
Chapter 5 of [20]) shows that in a partitionable system,
this notion of safe delivery is incompatible with having all
recipients in exactly the same view as the sender. In con-
trast, our service delivers a message before it is safe and
later provides a notification once delivery has happened
at all other group members.

6. There are no liveness requirements that apply to all ex-
ecutions. Instead, we follow the “timed asynchronous
model” of Cristian [8] and make conditional claims for
timely delivery only in certain executions where the pro-
cessors and links behave well.

The differences represented by points 2, 4 and 6 mean that
V'S 1s not subject to the impossibility results that afflict some
group communication specifications [5, 7].

Although VS is weaker in several respects than most con-
sidered in the literature, we demonstrate that it is strong
enough to be useful, by showing, in Section 5, how an in-
teresting and useful algorithm can run on top of it. This
algorithm is based on data replication algorithms developed
by Amir, Dolev, Keidar, Melliar-Smith and Moser [18, 1].
These algorithms implement a fault-tolerant shared memory
by sending modification operations to each replica through
a group communication service based on Extended Virtual
Synchrony, and carrying out a state-exchange protocol when
partition components merge. Our algorithm, which we call

bcast(a)p

AN

brev(a)g,p

bcast(a)q

N

brev(a)p,q

C VStoTO,

gpsnd(m)p gprcv(m)g,p

/ /

safe(m)q,p newview(v)p

Vo

VStoTO,)

/ /

safe(m)p ¢ newview(v)g

gpsnd(m)q gprev(m)p,q

(

VS)

Figure 1: System components and interfaces

VStoTO, can be seen as a more abstract form of both previ-
ous ones, separated from the specific use for data replication.

In Sections 6 and 7, we prove that the V.StoTO algorithm,
running on top of VS, indeed provides the service expressed
by the TO specification. The safety aspect of this claim uses
assertional methods. We give invariants on the global state
of a system that consists of the VStoTO algorithm and the
VS state machine. We then give a simulation relationship
between the global state of the system and the TO state
machine. The performance and fault-tolerance aspects of the
proof involve operational reasoning about timed executions.

Figure 1 depicts the major components of the system we
consider, and their interactions.

The full version of this paper can be found at the URL
http://theory.lcs.mit.edu/tds/vsge.html.

2 Mathematical Foundations

If r is a binary relation, then we define dom(r) to be the set
(without repetitions) of first elements of the ordered pairs
comprising relation r, and range(r) to be the set of second
elements. If fis a partial function from A to B and (a,b) €
A x B, then f & (a,b) is defined to be the partial function
that is identical to f except that f(a) =b.

If f and ¢ are partial functions, from A to B and from
A to C respectively, then the pair (f,g) is defined to be the
function from A to B x C such that (f, g)(a) = (f(a), g(a)).

We write A for the empty sequence, and {(a)) for the se-
quence consisting of the single element a. If s is a sequence,
length(s) denotes the length of s. If s is a sequence and
1 <1 < length(s) then s(1) denotes the ith element of s. If s
and t are sequences and s is finite, then the concatenation of
s and t i1s denoted by s-t. We say that sequence s is a prefiz
of sequence ¢, written as s < t, provided that there exists s’
such that s-s’ =t. A collection S of sequences is consistent
provided that for every s,t € S, either s < tort<s. If §
is a consistent collection of sequences, we define {ub(S) to be
the minimum sequence ¢ such that s < for all s € 5.

We often regard a sequence s as a partial function from
its index set to its elements; thus, for example, we use the
function notation range(s) to denote the set of elements ap-
pearing in sequence s. If s is a sequence of elements of X
and f is a partial function from X to Y whose domain in-
cludes range(s), then applyall(f,s) denotes the sequence ¢
of elements of Y such that length(t) = length(s) and, for
i < length(1), 1(3) = f(s().

Our services and algorithms are described using untimed
and timed state machine models. Untimed models are used
for the safety properties, while timed models are used for the
performance and fault-tolerance properties.

The untimed model we use is the I/O automaton model
of Lynch and Tuttle [21], also described in Chapter 8 of [20].

We do not use the “task” construct of the model — the only
components we need are a set of states, a designated subset of
start states, a signature specifying input, output and internal
actions, and a set of (state,action,state) transitions. The
timed model we use is that of Lynch and Vaandrager [23], as
described in Chapter 23 of [20]. This is similar to the untimed
model, but also includes time passage actions v(t), which
indicate the passage of real time ¢. Time passage actions
also have associated state transitions.

An ezecution fragment of an I1/O automaton is an al-
ternating sequence of states and actions consistent with the
transition relation. An ezecution is an execution fragment
that begins with a start state. Timed execution fragments
and timed executions of a timed automaton are defined in
the same way. A timed execution fragment of a timed au-
tomaton has a “limit time” Itime € RZ° U {oc}, which is the
sum of all the amounts of time in its time passage actions.

Since our treatment is compositional, we need notions of
external behavior for both types of automata. For I/O au-
tomata, we use traces, which are sequences of actions; for
timed automata, we use timed traces, each of which is a se-
quence of actions paired with its time of occurrence, together
with a value ltime € RZ°U{co} indicating the total duration
of time over which the events are observed. The external be-
havior of an I/O automaton is captured by the set of traces
generated by its executions, while that of a timed automaton
is captured by the set of timed traces generated by its “ad-
missible” timed executions, i.e., those in which ltime = co.

Execution fragments can be concatenated, as can timed
execution fragments, traces and timed traces. I/O automata
can be composed, as can timed automata; Chapters 8 and 23
of [20] contain theorems showing that composition respects
the external behavior. Invariant assertion and simulation
relation methods for these two models are also presented in
those chapters.

3 Totally Ordered Broadcast

In this section, we present T'O, our specification for a totally
ordered broadcast communication service. T0O is a combina-
tion of a state machine T'O-machine and a performance/fault-
tolerance property TO-prop, which is a property of timed
traces allowed by a timed version of TO-machine.

For the rest of the paper, we fix P to be a totally ordered
finite set of processor identifiers (we will often refer to these
as locations) and A to be a set of data values.

The interface between the service and its clients is through
input actions of the form beast(a),, representing the submis-
sion of data value a by a client at the location of processor p,
and output actions of the form brev(a)y,q, representing the
delivery of a to a client at ¢ of a data value previously sent
by a client at p. We call the messages at this interface “data

values”, to distinguish them from messages at lower-level in-
terfaces.

The state of the specification automaton includes a queue
queue of data values, each paired with the location at which
it originated. Also, for each location p, there is a queue
pending[p] containing the data values originating at p that
have not yet been added to queue. Finally, for each p there
is an integer next[p] giving the index in queue of the next data
value to be delivered at p. The code is given in Figure 2.

Signature:
Input: Internal:
bcast(a)p, a € A, p € P to-order(a,p), a € A, p € P
Qutput:

brev(a)p g, a € A, p,g € P

States:
queue, a finite sequence of A x P, initially empty
for each p € P:
pending[p], a finite sequence of A, initially empty
next[p] € N0, initially 1

Transitions:
bcast(a)p brev(a)p q
Effect: Precondition:
append a to pending[p] queue(next[q]) = {a, p)
Effect:

to-order(a, p) next[q] «— next[q] + 1
Precondition:

a is head of pending[p]
Effect:

remove head of pending[p]

append (a,p) to queue

Figure 2: TO-machine

The finite traces of this automaton are exactly the finite
prefixes of traces of a totally ordered causal broadcast service,
as defined in [14]. Note that, in any trace of TO-machine,
there is a natural correspondence between brev events and
the bcast events that cause them.

Now we define the performance/fault-tolerance property
TO-prop. Its signature T'O-fsig is the same as the signature
of TO-machine, with the addition of the following actions:

Input:
for each p: for each p, ¢:
good, good,, .
badp badp,q
ugly,, uglyy g

If 3 is any finite sequence of actions of TO-fsig, then we
define the failure status of any location or pair of locations
after # to be either good, bad, or ugly, based on the last
action for that location or pair of locations in 3. If there is
no such action, the default choice is good.

The intention (though this is formally meaningless at this
level of abstraction) is that a good processor takes steps with
no time delay after they become enabled, a bad processor is
stopped, and an ugly processor operates at nondeterministic
speed (or may even stop). Similarly, a good channel delivers
all messages that are sent while it is good, within a fixed time
of sending. A bad channel delivers no messages. An ugly
channel might or might not deliver its messages, and there
are no timing restrictions on delivery. But these statements
refer to processors, channels and their properties, notions
that belong in an implementation model, not in an abstract
service specification.

To formulate our performance/fault-tolerance claim, we
define the property TO-prop(b, d, }) as a parameterized prop-
erty of a timed sequence pair over external actions of TO-fsig,
as defined in [23]. This is a pair consisting of a sequence 3 of
timed actions (with non-decreasing times) together with an

ltsme. Here, we only consider cases where ltime = oo. The
parameters b and d are nonnegative reals, and the parameter
Q) is a set of processors.

TO-prop(b, d, Q):
Both of the following hold:
1. 8 with timing information removed is a trace of TO-machine.
2. Suppose that (3, 00) = (v, 1)(8, o) and that all the following hold:

(a) & contains no failure status events for locations in @ or for
pairs including a location in Q.

(b) All locations in @ and all pairs of locations in @ are good
after .

(c) If p € Q and ¢ & Q then (p, ¢) is bad after v.

Then (8, 00) can be written as (8,1")(6", 00), where

(a) U <b.

(b) Every data value sent from a location in @ in 8 at time ¢ is
delivered at all members of @ by time max{t, (I + 1)} + d.

(c) Every data value delivered in 8 to any location in @ at time ¢
is delivered at all members of Q by time max {¢, (I + I)} + 4.

We define the specification 70 (b, d, }) to be the pair con-
sisting of TO-machine and TO-prop(b,d, Q). We say that
a timed automaton A satisfies the specification TO(b,d, Q)
provided that every admissible timed trace of A is in the set
(of timed sequence pairs) defined by TO-prop(b,d, Q).

4 View-Synchronous Group Communication

In this section, we present VS5, our formal specification for a
view-synchronous synchronous group communication service.
VS is a combination of a state machine VS-machine and a
performance/fault-tolerance property VS-prop.

For the rest of the paper, we fix M to be a message al-
phabet, and (G, <g, go) to be a totally ordered set of view
identifiers with an initial view identifier. We define views =
G x P(P), the set of pairs consisting of a view identifier to-
gether with a set of locations; an element of the set views is
called a view. If v is a view, we write v.¢d and v.set to denote
the view identifier and set components of v, respectively.

The external actions of VS-machine include actions of
the form gpsnd(m),, representing the client at p sending a
message m, and actions of the form gprcv(m),,q, represent-
ing the delivery to ¢ of the message m sent by p. Outputs
safe(m)y , are also provided at ¢ to report that the earlier
message m from p has been delivered to all locations in the
current view as known by g¢.

VS-machine informs its clients of group status changes
through newview({g, S}), actions, p € S, which tells p that
the view identifier ¢ is associated with membership set §
and that, until another newview occurs, the following mes-
sages will be in this view. After any finite execution, we
define the current view at p to be the argument v in the last
newview, event, if any, otherwise it is the pair consisting of
the distinguished initial view identifier go and the universe
P of processor locations.

The code is given in Figure 3. The state of the automaton
is similar to that of TO-machine, except that there are mul-
tiple queues, one per view identifier, and similarly for each
view identifier there is a separate indicator for the next index
to be delivered to a given location. Also, the service keeps
track of all the views that have ever been defined, and of the
current view at each location.

The actions for creating a view and for informing a proces-
sor of a new view are straightforward (recall that the signa-
ture ensures that only members, but not necessarily all mem-
bers, receive notification of a new view). Within each view,
messages are handled as in T'O-machine: first kept pending,
then placed into a total order in the appropriate queue, and

Signature:

Input:
gpsnd(m)p, m € M, p € P
Qutput:

gprcev(m)p g hidden g m e M, pe P, g€ P, g€ G
safe(m)p ¢ hidden v, m € M, p € P, ¢ € P, v € views
newview(v)p, v € views, p € P, p € v.set

States:

created C views, initially {{go, P}}
for each p € P:
current-viewid[p] € G, initially go
for each ¢ € G:
queuelg], a finite sequence of M X P, initially empty

Transitions:

createview(v)
Precondition:

v.id > max{g : 35 : (g, S} € created}
Effect:

created «— created U {v}

newview(v)p
Precondition:

v € created

v.id > current-viewid[p]
Effect:

current-viewid[p] — v.ud

gpsnd(m)p
Effect:
append m to pending[p, current-viewid[p]]

vs-order(m,p, g)
Precondition:
m is head of pending[p, g]
Effect:
remove head of pending[p, g]
append {m, p} to queue[yg]

Internal:
createview(v), v € views
vs-order(m,p,g), m e M, pe P, g€ G

foreachp € P, g € G:
pending[p, g], a finite sequence of M, initially empty
next[p, g] € N0 initially 1
next-safelp, g] € N0 initially 1

gprcev(m)p g, hidden g
Precondition:

g = current-viewid[q]

queuelg](nestlq, g]) = {m, p)
Effect:

nextlq, g] — newt[g, g] + 1

safe(m)p ¢, hidden g, S
Precondition:
g = current-viewid[q]
(g, S) € created
queue[g](nest-safelq, g]) = (m, p)
forallr € §:
nextlr, g] > next-safe[q, g]
Effect:
next-safe[q, g] — next-safe[q, g] + 1

Figure 3: VS-machine

finally passed to the environment. Thus, VS-machine en-
sures that each gprev,, . and each safep , event occurs at ¢
when ¢’s view is the same as p’s view when the corresponding
gpsnd event occurs. The specification given in Figure 3 (un-
like the particular VStoTO algorithm presented later) does
not have any notion of “primary” view: it does not treat a
message associated with a majority view differently from one
in a minority view.

Note that VS-machine does not include any restrictions
on when a new view might be formed. However, our perfor-
mance and fault-tolerance property VS-prop, described be-
low, does express such restrictions — it implies that “capri-
cious” view changes must stop shortly after the behavior of
the underlying physical system stabilizes. In any trace of VS-
machine, there is a natural correspondence between gprcv
events and the gpsnd events that cause them, and between
safe events and the gpsnd events that cause them.

Now we define the performance/fault-tolerance property
VS-prop. Its signature VS5-fsig is the same as the signature
of VS-machine, with the addition of failure status actions (as
before). We define VS-prop as a parameterized property of a
timed sequence pair (3, 00) over external actions of VS-fsig.
Parameters b and d are nonnegative reals, and @Q is a set of
processors.

VS-prop(b,d, Q):
Both of the following hold:
1. § with timing information removed is a trace of VS-machine.
2. Suppose that (3,00) = (v,1)(8,00). Suppose that all the fol-
lowing hold:
(a) 6 contains no failure status events for locations in @ or
for pairs including a location in Q.

(b) All locations in Q and all pairs of locations in Q are good
after ~.

(c) If p € Q and g ¢ Q then (p, g) is bad after ~.

Then (6, c0) can be written as (8',1)(6", 00), where

(a) ' <b

(b) No newview events occur in §" at locations in Q.

(c) The latest views at all locations in Q after v§' are the
same, say (g, S), where S = Q.

(d) Every message sent from a location in @ in 8 while in

view (g, S) at time ¢ has corresponding safe events at all

members of @ by time max {t,({ + ')} + d.

We define the specification V.S(b, d, @) to be the pair con-
sisting of VS-machine and VS-prop(b,d, Q). We say that
a timed automaton A satisfies the specification VS(b,d, Q)
provided that every admissible timed trace of A is in the set

defined by VS-prop(b,d, Q).
5 The Algorithm VStoTO

Now we describe the VStoTO algorithm, which uses VS to
implement 7T0. As depicted in Figure 1, the algorithm con-
sists of an automaton VStoTO, for each p € P. Code for
VStoTO, appears in Figure 5, and some auxiliary definitions
needed in the code appear in Figure 4.

For the rest of the paper, we fix a set @ of quorums, each
of which is a subset of P. We assume that every pair Q, Q'
in Q satisfy QN Q' £ 0.

The activities of the algorithm consist of normal activity
and recovery activity. Normal activity occurs while group
views are stable. Recovery activity begins when a new view

Types:
L =G x N>9 x P, with selectors id, seqno, origin
summaries = P(L x A) x (L*) x N'>0 x G, with selectors con,
ord, next, and high
Operations on types:
For = € summaries,
z.confirm is the prefix of z.ord such that length(z.confirm)
= min(z.next — 1, length(z.ord))
For Y a partial function from processor ids to summaries,
knowncontent(Y) = Ugedom(v)Y ()-con
mazprimary (Y) = maxge gom(y)1Y (9)-high}
reps(Y) = {qg € dom(Y') : Y (q).high = mazprimary }
chosenrep (Y') is some element in reps(Y')
shortorder(Y) = Y (chosenrep(Y')).ord
fullorder(Y') is shortorder (Y') followed by the remaining
elements of dom (knowncontent(Y')), in label order
maznextconfirm (V) = maxgegom(y) Y (g)-neat

Figure 4: Definitions used in VStoTO automaton

is presented by VS, and continues while the members ex-
change and combine information from their previous histo-
ries in order to establish a consistent basis for subsequent
normal activity.

In the normal case, each value received by VStoTO, from
the client is assigned a system-wide unique label consisting
of the viewid at p when the value arrives, a sequence num-
ber, and the processor id p. The variable current keeps track
of the current view, and the variable nextseqno is used to
generate the sequence numbers. Labels are ordered lexico-
graphically. VStoTO,, stores the (label value) pair in a rela-
tion content. It sends the pair to the other members of the
current view, using VS5, and these other processors also add
the pair to their own content relations. An invariant shows
that each content relation is actually a partial function from
labels to values, and that a given label is associated with the
same data value everywhere.

The algorithm distinguishes primary views, whose mem-
bership includes a quorum of processors, from non-primary
views. When VStoTO,, receives a (label,value) pair while it is
in a primary view, it places the label at the end of its sequence
order. In combination with content, order describes a total
order of submitted data values; this represents a tentative
version of the system-wide total ordering of data values that
the TO service is supposed to provide. The consistent order
of message delivery within each view (guaranteed by VS) en-
sures that order is consistent among members of a particular
view, but it need not always be consistent among processors
in different views. When VStoTO, receives a (label value)
pair while it is in a non-primary view, it does not process the
pair (except for recording it in content).

VStoTO, remembers which data values have been re-
ported as safely delivered to all members of the current view,
using a set safe-labels of labels. When a label is in safe-labels,
it is a candidate for becoming “confirmed” for release to the
client. Labels in the order sequence become confirmed in
the same order in which they appear in order. The variable
nextconfirm is used to keep track of the prefix of the current
order sequence that is confirmed. VStoT'O, can release data
values associated with confirmed labels to the client, in the
order described by order. The variable nextreport is used to
keep track of which values have been released to the client.

Recovery activity begins when VS performs a newview
event. This activity involves exchanging and combining in-
formation to integrate the knowledge of different members of
the new view. The recovery process consists of two, possibly
overlapping phases. In the first phase of recovery, each mem-

ber of a new view uses VS to send a state-exchange message
containing a summary of that processor’s state, including
the values of its content, order and nextconfirm variables. In
order to use this state information, each processor must de-
termine which member has the most up-to-date information.
For this purpose, another variable highprimary is used to
record the highest view identifier of a primary view in which
an order was calculated that has affected the processor’s own
order sequence. (This effect can be through the processor’s
own earlier participation in that primary view, or through
indirect information in previous state exchange messages.)
The value of the highprimary variable is also included in the
summary sent in the state-exchange message.

During this first phase of recovery, VStoTO, records the
summary information received from the other members of
the new view, in gotstate, which i1s a partial function from
processor ids to summaries. Once VStoTO, has collected
all members’ summaries, it processes the information in one
atomic step; at this point, it is said to establish the new view.
The processor processes state information by first defining
its confirmed labels to be longest prefix of confirmed labels
known in any of the summaries. Then it determines the
representatives, which are the members whose summaries in-
clude the greatest highprimary value. Then the information
is processed in different ways, depending on whether or not
the new view is primary.

If the new view is not primary, the processor adopts as
its new order the order sent by a particular “chosen” rep-
resentative processor. In this case, highprimary is set equal
to the greatest highprimary in any of the summaries, i.e.,
the highprimary of the chosen representative. On the other
hand, if the view is primary, the processor adopts as its new
order the order computed as above for non-primary views,
extended with all other known labels appearing in any of the
summaries in gotstate, arranged in label order. In this case,
highprimary is set equal to the new viewid.

Extracting the various pieces of information described
above from gotstate requires some auxiliary functions, which
are defined in Figure 4. Namely, let Y be a value of the type
recorded in the gotstate component. Then knowncontent(Y)
contains all the (label, value) pairs in the summaries recorded
in Y. Also, mazprimary(Y') is the greatest view identifier of
an established primary appearing in any of the summaries,
reps(Y') denotes the set of members that know of this view,
and chosenrep(Y') is some consistently-chosen element of this
set. (Any method can be used to select the particular repre-
sentative, as long as all processors select the same one from
identical information; for example, they could choose the rep-
resentative with the highest processor id, or the one with the
shortest or longest order sequence.) Now shortorder is the
order of the chosen representative; this is the order adopted
in a non-primary view, as described above. And fullorder
consists of shortorder(Y') followed by the remaining elements
of knowncontent(Y'), in label order; this is the order adopted
in a primary view. We also define mazneztconfirm(Y') to be
the highest among the reported nestconfirm values in the
exchanged state.

At this point, the first phase of recovery is completed,
and normal processing of new client messages is allowed to
resume. However, for a primary view, there is a second phase
of recovery, which involves collecting the VS safe indications
for the state-exchange messages. V.StoTO, remembers these
indications in a variable safe-exch. This phase may overlap
with the summary collection phase. Once the state exchange
is safe, all labels used in the exchange are marked as safe,
and all associated messages are confirmed just as they would

Signature:
Input:
bcast(a)p, a € A
gprev(im)gp, ¢ € P, m € (L X A)U summaries
safe(m)q,p, ¢ € P, m € (L X A)U summaries
newview(v)p, v € views

States:

current € views, initially {go, P}

status € {normal, send, collect}, initially normal
content C L X A, initially @

nextseqno € N0 initially 1

buffer, a finite sequence of elements of L, initially A
safe-labels C L, initially @

order, a finite sequence of L, initially A
nextconfirm € N0 initially 1

Transitions:

bcast(a)p

Effect:
content — content U {{{current.id, nextseqno,p), a}}
append {current.id, nextseqno, p) to buffer
nextseqno «— nexstseqno + 1

gpsnd((/, a))p
Precondition:

status = normal

l is head of buffer

(I, a) € content
Effect:

delete head of buffer

gprev({l, a))g,p
Effect:

content — content U {{I, a)}
if premary then
order «— order - {{1})

safe((l, a))q,p
Effect:

if premary then
safe-labels — safe-labels U {1}

confirmy
Precondition:

primary

order(nextconfirm) € safe-labels
Effect:

nextconfirm «— nexstconfirm + 1

brev(a)g,p
Precondition:
nextreport < nextconfirm
(order(nextreport), a) € content
¢ = order(nextreport).origin
Effect:
negtreport «— nextreport 4+ 1

Qutput:
gpsnd(m)p, m € (L x A) U summaries
brev(a)gp, a € A, g€ P

Internal:
confirmy

nextreport € N0 initially 1

highprimary € G, initially gg

gotstate, a partial function from P to summaries, initially @,
safe-exch C P, initially @,

Derived variables:
primary, a Boolean, defined to be the condition that current.set
contains some quorum.

newview(v)p

Effect:
current «+— v
nextseqno «— 1
buffer — A
gotstate — @
safe-exch — 0
safe-labels — @
status «— send

gpsnd(a);
Precondition:

status = send

xz = {content, order, nextconfirm, highprimary)
Effect:

status +— collect

gprev(T)g,p
Effect:

content «— content U x.con
gotstate «— gotstate @ (g, v)
if (dom(gotstate) = current.set) A (status = collect) then
neztconfirm — maznestconfirm(gotstate)
if primary then
order «— fullorder(gotstate)
highprimary «— current.id
else
order «— shortorder{gotstate)
highprimary — maxprimary(gotstate)
status +— normal

safe(z)q,p
Effect:
safe-exch — safe-exch U {¢}
if safe-exch = current.set and primary then
safe-labels — safe-labels U range(fullorder(gotstate))

Figure 5: VStoTO,

be in normal processing. For a non-primary view, there is no
second phase of recovery, 1.e., the safe indications are ignored.

The state of V.StoTO, also records the status of process-
ing, which may be normal (anywhere other than in the first
phase of recovery), send (in the first phase of recovery, after
the new view announcement but before sending the state-
exchange message), or collect (in the first phase of recovery,
waiting for some state-exchange messages).

6 Correctness - Safety Argument

Define VStoTO-sys to be the composition of VS-machine and
VStoTO, for all p € P, with the actions used for communi-
cation between the two layers (that is, the gpsnd, gprev,
safe and newview actions) hidden. In a state of the com-
position, we refer to the separate state variables by giving a
subscript p indicating a variable that is part of the state of

VStoTO,.

The proof is based on a forward simulation relation [22]
from VStoTO-sys to TO-machine, established with the help
of a series of invariant assertions for VStoTO-sys. We add
some derived variables to the state of V.StoTO-sys, for use in
defining the simulation relation and in stating and proving
the invariants:

We write allstate[p, g] to denote a set of summaries, de-
fined so that = € allstate[p, g] if and only if at least one of
the following four conditions holds:

1. current.id, = g and = = (contenty, ordery, nextconfirm,,
highprimary,).

2. © € pending[p, g].

3. (z,p) € queue[g].

4. For some ¢, current.id; = g and = = gotstate(p),.

Thus, allstate[p, g] consists of all the summary information

that is in the state of p if p’s current view is ¢, plus all the
summary information that has been sent out by p in state
exchange messages in view g and is now remembered else-
where among the state components of VStoTO-sys. Notice
that allstate[p, g] consists only of summaries: an ordinary
message ({,a) is never an element of allstate[p, g]. We write
allstate[g] to denote UpeP allstate[p, g], and allstate to de-
note UgeG allstate[g].

We write allcontent for U.reallstate g.con U {{l,a):3g,p:
({1, a), p) € range(queuelg]) V (I,a) € range(pending[p, g])}.

his represents all the information available anywhere that
links a label with a corresponding data value.

The invariants also require the addition of some history
variables to the state of VStoTO-sys: For every g € G,
established[g] is defined to be a Boolean, initially true if g =
go, otherwise false; this variable is maintained by placing the
statement established[current.id] «— true in the effects part
of gprev(z)g,p, just after the assignment status — normal
(and within the scope of the outer if statement).

For every p € P, g € G, buildorder[p, g] is defined to be a
sequence of labels, initially empty; this variable is maintained
by following every statement of processor p that assigns to
order with another statement buildorder(p, current.id,] —
order. It follows that if p establishes a view with id ¢, and
later leaves view g for a view with a higher viewid, then
forever afterwards, buildorder[p,g] remembers the value of
ordery at the point where p left view g.

We first prove a long series of invariants, establishing sim-
ple relationships among the state variables, and other proper-
ties of the reachable states. As usual, each invariant is proved
using induction on the length of an execution, assuming pre-
vious invariants. For example, these invariants demonstrate
that allcontent is a function from labels to data values, and
that information received from a processor p is consistent
with p’s own knowledge. They show upper and lower bounds
on the highprimary values. Other invariants assert that in-
formation present in the summaries in allstate reflects correct
summary information for established views (as summarized
in the history variables established and buildorder).

The following is a key invariant; it can be used to show
that information from certain processors’ tentative orders for
a primary view v is also present in all summaries with higher
viewids. The hypothesis says that every processor in v.set
that has a current.id higher than v.i¢d has succeeded in es-
tablishing v, and moreover, has succeeded in including the
sequence o in its order for view v. The conclusion says that
anyplace in the state where information about a higher view
than v is present, information about o is also present.

Invariant 1 Suppose that v € created, v.set contains a quo-
rum, o € L*, and for every p € v.set, the following is true:
If current.id, > v.id then established[v.id], and o <
buildorder[p, v.id].

Then for every x € allstate with ©.high > v.id, o < z.ord.

The following invariant says that, once all members of a
primary view v agree on a prefix o of order, all summaries
with views at least as high as v will also include sequence o.
Its proof uses Invariant 1.

Invariant 2 Suppose that v € created, v.set contains a quo-
rum, o € L™, and for every p € v.set, established[v.id], and
o < buildorder(p, v.id].

Then for every x € allstate with ©.high > v.id, o < z.ord.

Other invariants assert the consistency of the sequences
order and confirm throughout the system. For example:

Invariant 3 If = € allstate then the following is true:
There exists v € created such that v.ed < x.high, v.set con-
tains a quorum, and for every q € v.set, established[v.id]q
and z.confirm < buildorder(q, v].

Invariant 4 If ¢,2’ € allstate then
1. If ©.high < «'.high then x.confirm < z'.ord.
2. Either ©.confirm < «'.confirm or &'.confirm < x.confirm.

Invariant 4 allows us to define another derived variable
that represents the collective knowledge of the confirmed or-
der, throughout the system. Namely, in any reachable state,
we write allconfirm for lubscaistate(.confirm).

Next, we define the simulation relation f. We define it
as a function from reachable states of V.StoTO-sys to states
of TO-machine. (We assume an arbitrary default value for
unreachable states.) Namely, if z is a reachable state of

VStoTO-sys, then f(z) =y where:

1. y.queue = applyall({z.allcontent, origin), z.allconfirm),
where the selector origin is regarded as a function from
labels to processors.

2. y.nest[p] = v.next-report,,.

3. y.pending[p] = applyall(z.allcontent, s) where s is the se-
quence of labels such that
(a) range(s) is the set of labels I such that l.origin = p,
(I,a) € x.allcontent for some a, and
1 & range(allconfirm).
(b) s is ordered according to the label order.

The first clause says that y.queue is the sequence of {value,
origin) pairs corresponding to the sequence z.allconfirm of
labels that are confirmed anywhere in the system. For each
label in z.allconfirm, the set x.allcontent, which contains all
the content information that appears anywhere in the sys-
tem, 1s used to obtain the value, and origin is used to ex-
tract the origin. (Note that the set of pairs z.allcontent is
treated as a function, and that the two functions are paired
together into one for use with the applyall operator.) The
second clause defines y.next[p] directly from the correspond-
ing next-pointer in . The third clause defines y.pending[p]
to be the sequence of values corresponding to all the la-
bels in the system with origin p that are not included in
z.allconfirm, arranged in label order. For each such label,
z.allcontent is used to obtain the value. Note that the well-
definedness of this simulation rests on the invariant that says
that x.allcontent is a function, and on Invariant 4, which
vields the definedness of allconfirm.

Lemma 6.1 Function f is a forward simulation.

Proof. By induction. The proof amounts to showing that
the initial states are related by f, and showing that this re-
lationship is preserved by all steps of the system. In showing
that the steps preserve the relationship, some of the invari-
ants are used (for example, Invariant 4). O

Theorem 6.2 FEvery trace of VStoTO-sys is a trace of
TO-machine.

7 Performance and Fault-Tolerance

We argue that the performance and fault-tolerance charac-
teristics of TO (for certain values of the parameters) are im-
plied by the corresponding ones for VS (for certain param-
eter values), together with performance and fault-tolerance
characteristics of the V.StoTO processes. In order to do this,
we need a richer model for the system than we have been

using so far. This richer model must include timing and fail-
ure information. We define this richer model in two separate
pieces, for VStoTO and for VS.

For the VStoTO part, we define a timed automaton called
VStoTO;, for every p. This timed automaton is obtained by
modifying the untimed automaton VStoT O, as follows:

¢ Add new input actions good,,, bad, and ugly,,.

o Add new time-passage actions v(t) for all t € R”°.
e Add a new state component failure-status, with values in
{good, bad, ugly}, initially good.
o Add new code fragments for the failure status actions,
just setting the failure-status variable appropriately.
e Add a new precondition to each output and internal ac-
tion, that failure-status # bad.
Add a code fragment for each v(t):
v(t)
Precondition:
if failure-status = good then
no output or internal action is enabled

Effect:
none

The new precondition on output and internal actions says
that the processor takes no steps when its failure status is
bad. The new time-passage actions are allowed to happen at
any point, unless there is some output or internal action that
is supposed to happen immediately (because it is enabled and
the processor is good).

For the VS part, we now fix b and d to be particular
constants. We assume that we have any timed automaton
A that satisfies the specification VS(b,d, Q) from Section 4
for every set J of processors that contains a quorum. De-
fine V:StoTO’-sys to be the composition of A and VStoTO',
for all p € P, with the actions used for communication be-
tween the two layers (that is, the gpsnd, gprev, safe and
newview), hidden. Note that the failure status input ac-
tions are not hidden. The composition operator used here is
timed automaton composition.

We show that any admissible timed trace of VStoTO'-sys
satisfies T'O-prop, for certain values of the parameters:

Theorem 7.1 Every admissible timed trace of VStoTO'-sys
satisfies TO-prop(b+d,d, Q) for every Q that contains a quo-
rum.

Proof. Let (8,00) be any admissible timed trace of
VStoTO'-sys, and let o be an admissible timed execution of
VStoTO'-sys that gives rise to 3. Fix @ to be any set of
processors containing a quorum.

We first show Condition 1 of the definition of TO-prop:
that @ with the timing information removed is a trace of
TO-machine. This follows from general composition results
for timed automata (see, e.g., Chapter 23 of [20]), using what
we have already proved in the safety part of the paper.

The more interesting property to show is Condition 2, the
performance and fault-tolerance property. Our strategy for
proving the needed property of § is to use an auxiliary “con-
ditional” property VStoTO-prop of a. VStoTO-prop uses the
“conclusion” part of VS-prop(b,d, Q) for A, together with the
performance and fault-tolerance assumptions for the proces-
sors VStoTOy, to infer the conclusion part of TO-prop(b +

d,d, Q).

VStoTO-prop:
Suppose that « can be written as oz/oz”, such that:
1. a' contains no newview events at locations in Q.
2. The latest views at all locations in Q after a' are the same, say
(g, S}, where § = Q.

3. Every message sent from a location in Q in « while in view {g, S}
at time t has corresponding safe events at all members of @ by
time max (¢, itime(a’)) + d.

4. o' contains no failure status events for locations in Q or for pairs
including a location in Q.

5. All locations in Q and all pairs of locations in Q are good after

[
a’.
6. If p € Q and ¢ & Q then (p, ¢) is bad after o’.

Then o' can be written as o'/’’’

1. ltime(a'") < d

2. Every data value sent from a location in Q in « at time ¢ is deliv-
ered at all members of Q by time max {¢, ltime(a’a’")} +d.

3. Every data value delivered to any location in Q at time ¢ is deliv-
ered at all members of @ by time max {t, ltime(a’a’")} +d.

, where

We prove VStoTO-prop operationally. In our proof, the ex-
ecution fragment o' whose existence is asserted in the con-
clusion of V.StoTO-prop extends until every member of () has
received the safe indication for every state-exchange message
sent in view (g, S). Our proof uses the fact that @ contains
a quorum, and also the fact that the “good” processors per-
form enabled actions immediately.

Based on the VStoTO-prop, it is easy to unwind the defi-
nitions of VS-prop(b, d, Q) and TO-prop(b+d,d, Q) and prove
that VStoTO'-sys satisfies TO-prop(b + d,d, Q). Namely,
suppose as in the hypothesis of TO-prop(b+d, d, Q}) that the
failure-status actions stabilize in (. Then by the property
VS-prop(b, d, @), within time at most b, the VS layer stabi-
lizes to a situation in which there are no view changes, view
information is consistent within ¢}, and messages among pro-
cessors in @) are delivered (and made safe) within time d.

At this point, the hypothesis of V.StoTO-prop has been
proved; we next apply VStoTO-prop, which says that in an
additional time at most d, the system stabilizes to a situation
where all client-level data values are delivered within time d.

This is as needed for TO-prop(b+d,d, Q). O
Theorem 7.1 yields the main result:

Theorem 7.2 VStoTO'-sys satisfies the specification
TO(b+d,d,Q), for every Q that contains a quorum.

8 Implementing VS

An implementation of VS can be constructed from the 3-
round membership protocol of [10]. In this protocol, once a
view 1s formed, it is “held together” by a circulating token,
which 1s started by a deterministically chosen leader, and
which travels from member to member around a logical ring.
Each processor knows the size of the ring, and so it sets a
timer that expires if the token does not return in a reason-
able amount of time. If a member crashes, or communication
failure causes the token to be lost or delayed, the timer ex-
piration triggers formation of a new view. Similarly a new
view 1s initiated if contact occurs from a processor outside
the current membership.

Once a processor determines that a new view is needed, it
broadcasts a call-for-participation in the new view (together
with a unique viewid chosen to be larger than any the proces-
sor has seen). The membership of the view is all processors
that reply to the broadcast. A processor may not reply to
one call after replying to another with higher viewid. Once
the membership is determined, this is sent to the members
which then join the view (unless they have already agreed to
participate in a view with higher viewid). A leader within
the view membership launches the token.

To provide ordered message delivery, we use the token
to carry the sequence of messages. Each processor buffers
messages from the client until the token passes; the messages
are then appended to the token. Each processor examines the

sequence carried by the token, and passes to its client any
messages that it has not already passed on. The token also
carries an indication of how many messages each member
passed to its client, when the token last left that member.
This is the basis for the safe indication: a message is safe
once the token records that all members have passed it to
the corresponding clients.
Suppose the following hold of the underlying physical sys-
tem of processors and links:
e While status, = good,, processor p takes any enabled
step immediately.
o While status, = bad, processor p takes no locally con-
trolled step.
o While statuspq = good, every packet sent from p to ¢
arrives within time é

o While statuspq = bad, no packet is delivered from p to ¢

As analyzed in [10] the protocol above implements V.S(b, d, ()
where @) is any set of processors, b = 96+max{r+(n+3)8, n},
and d = 27+ né. Here, n is the number of processors in @, 7
is the spacing of token creation by the ring leader (this must
satisfy = > né), and p is the spacing of attempts to contact
newly connected processes.

9 Conclusions

Future work involves using VS to construct other applica-
tions, for example, load-balancing applications. Considering
other applications may lead to different variants of the speci-
fication; it would be interesting to identify these variants and
understand how they relate to each other. It also remains
to apply the approach of this paper to the task of specify-
ing and analyzing other group-communication services, e.g.,
services involving multiple groups with possibly-overlapping
memberships, services in which processors voluntarily join or
leave groups, or services that include combined broadcasts
and convergecasts.

Acknowledgments We thank Ken Birman, Tom Bressoud,
Danny Dolev, Brad Glade, Idit Keidar, Debby Wallach, and
especially Dalia Malki for discussions about practical aspects
of group communication services. Myla Archer has mechani-
cally checked some of the invariants using PVS, thereby help-
ing us to debug and polish the proofs. Roger Khazan con-
tributed several improvements to the formal models. Roberto
De Prisco and Nicole Lesley made several helpful suggestions.

This research was supported by the following contracts:
ARPA F19628-95-C-0118, AFOSR-ONR F49620-94-1-0199,
U.S. Department of Transportation: DTRS95G-0001- YR. 8,
and NSF 9225124-CCR.

References

[1] Y. Amir, D. Dolev, P. Melliar-Smith and L. Moser, “Robust and
Efficient Replication Using Group Communication” Technical Re-
port 94-20, Dept of Computer Science, Hebrew University., 1994.

[2] Y. Amir, L. Moser, P. Melliar-Smith, D. Agrawal and P. Ciarfella,
“Fast Message Ordering and Membership Using a Logical Token-
Passing Ring”, in Proc. of IEEE Int-1 Conference on Distributed
Computing Systems, 1993, pp 551-560.

[3] O. Babaoglu, R. Davoli, L. Giachini and M. Baker, “Relacs: A
Communication Infrastructure for Constructing Reliable Applica-
tions in Large-Scale Distributed Systems”, in Proc. of Hawaii In-
ternational Conference on Computer and System Science, 1995,
volume II, pp 612-621.

[4] O. Babaoglu, R. Davoli and A. Montresor, “Failure Detectors,
Group Membership and View-Synchronous Communication in
Partitionable Asynchronous Systems”, TR UBLCS-95-18, De-
partment of Computer Science, University of Bologna, Italy.

[5] O.Babaoglu, R. Davoli, L. Giachini and P. Sabattini, “The Inher-
ent Cost of Strong-Partial View Synchronous Communication”,
in Proc of Workshop on Distributed Algorithms on Graphs, pp
72-86, 1995.

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

[24]

[26]

(27]

K.P. Birman and R. van Renesse, Reliable Distributed Comput-
ing with the Isis Toolkit, IEEE Computer Society Press, Los
Alamitos, CA, 1994.

T.D. Chandra, V. Hadzilacos, S. Toueg and B. Charron-Bost,
“On the Impossibility of Group Membership”, in Proc. of 15th
Annual ACM Symp. on Princ. of Distr. Comput., pp. 322-330,
1996.

F. Cristian, “Synchronous and Asynchronous Group Communi-
cation”, Comm. of the ACM, vol. 39, no. 4, pp. 88-97, 1996.

F. Cristian, “Group, Majority and Strict Agreement in Timed
Asynchronous Distributed Systems” | in Proc. of 26th Conference
on Fault-Tolerant Computer Systems, 1996, pp. 178-187.

F. Cristian and F. Schmuck, “Agreeing on Processor Group Mem-
bership in Asynchronous Distributed Systems” | Technical Report
CSE95-428, Department of Computer Science, University of Cal-
ifornia San Diego.

D. Dolev and D. Malki, “The Transis Approach to High Avail-
ability Cluster Communications”, Comm. of the ACM, vol. 39,
no. 4, pp. 64-70, 1996.

D. Dolev, D. Malki and R. Strong “A Framework for Partitionable
Membership Service”, Technical Report TR94-6, Department of
Computer Science, Hebrew University.

P. Ezhilchelvan, R. Macedo and S. Shrivastava “Newtop: A Fault-
Tolerant Group Communication Protocol” in Proc. of IEEE
International Conference on Distributed Computing Systems,
1995, pp 296—306.

A. Fekete, F. Kaashoek and N. Lynch “Providing Sequentially-
Consistent Shared Objects Using Group and Point-to-point Com-
munication” in Proc. of IEEE International Conference on Dis-
tributed Computer Systems, 1995, pp 439-449.

R. Friedman and R. van Renesse, “Strong and Weak Virtual Syn-
chrony in Horus”, Technical Report TR95-1537, Department of
Computer Science, Cornell University.

M. Hiltunen and R. Schlichting “Properties of Membership
Services”, in Proc. of 2nd International Symposium on Au-
tonomous Decentralized Systems, pp 200-207, 1995.

F. Jahanian, S. Fakhouri and R. Rajkumar, “Processor Group
Membership Protocols: Specification, Design and Implementa-
tion” in Proc. of 12th IEEE Symposium on Reliable Distributed
Systems pp 2—11, 1993.

I. Keidar and D. Dolev, “Efficient Message Ordering in Dynamic
Networks”, in Proc. of 15th ACM Symp. on Princ. of Distr.
Comput., pp. 68-76, 1996.

L. Lamport, “Time, Clocks. and the Ordering of Events in a Dis-
tributed System, Comm. of the ACM, vol. 21, no. 7, pp. 558-565,
1978.

N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publish-
ers, San Mateo, CA, 1996.

N.A. Lynch and M.R. Tuttle, “An Introduction to Input/Output
Automata”, CWI Quarterly, vol.2, no. 3, pp. 219-246, 1989.

N.A. Lynch and F. Vaandrager, “Forward and Backward Simula-
tions — Part I: Untimed Systems”, Information and Computa-
tion, vol. 121, no. 2, pp. 214-233, 1995.

N.A. Lynch and F. Vaandrager, “Forward and backward simula-
tions — Part II: Timing-based systems”, Information and Com-
putation vol. 128 no. 1, pp 1-25, 1996.

L. Moser, Y. Amir, P. Melliar-Smith and D. Agrawal, “Extended
Virtual Synchrony” in Proc. of IEEE Int-1 Conference on Dis-
tributed Computing Systems, 1994, pp 56-65.

L.E. Moser, P.M. Melliar-Smith, D.A. Agarawal, R.K. Budhia and
C.A. Lingley-Papadopolous, “Totem: A Fault-Tolerant Multicast
Group Communication System”, Comm. of the ACM, vol. 39,
no. 4, pp. 54-63, 1996.

G. Neiger, “A New Look at Membership Services”, in Proc. of
15th Annual ACM Symp. on Princ. of Distr. Comput., pp. 331-
340, 1996.

R. van Renesse, K.P. Birman and S. Maffeis, “Horus: A Flexible
Group Communication System”, Comm. of the ACM, vol. 39,
no. 4, pp. 76-83, 1996.

A. Ricciardi, “The Group Membership Problem in Asynchronous
Systems”, Technical Report TR92-1313, Department of Com-
puter Science, Cornell University.

A. Ricciardi, A. Schiper and K. Birman, “Understanding Parti-
tions and the “No Partitions” Assumption”, Tech. Report TR93-
1355, Department of Computer Science, Cornell University.

F. Schneider, “‘Implementing Fault-Tolerant Services using the
State machine Approach: A Tutorial”, ACM Computing Sur-
veys, vol. 22, no. 4, 1990.

