
Specifying and Using a PartitionableGroup Communication ServiceAlan Fekete� Nancy Lynchy Alex ShvartsmanyAbstractA new, simple formal speci�cation is presented for a par-titionable view-oriented group communication service. Thespeci�cation consists of a state machine to express safetyrequirements and a timed trace property to express perfor-mance and fault-tolerance requirements. The speci�cation isused to construct a totally-ordered-broadcast application, us-ing an algorithm (based on algorithms of Amir, Dolev, Keidarand others) that reconciles information derived from di�erentviews of the group. Correctness of the resulting applicationis proved, and its performance and fault-tolerance analyzed.The speci�cation has a simple implementation, based on agroup membership algorithm of Cristian and Schmuck.1 IntroductionIn the development of practical distributed systems, consid-erable e�ort is devoted to making distributed applicationsrobust in the face of typical processor and communicationfailures. Constructing such systems is di�cult, however, be-cause of the complexities of the applications and of the fault-prone distributed settings in which they run. To aid in thisconstruction, some computing environments include general-purpose building blocks that provide powerful distributedcomputation services.Among the most important examples of building blocksare group communication services. Group communicationservices enable processes located at di�erent nodes of a dis-tributed network to operate collectively as a group; the pro-cesses do this by using a group communication service to mul-ticast messages to all members of the group. Di�erent groupcommunication services o�er di�erent guarantees about theorder and reliability of message delivery. Examples are foundin Isis [6], Transis [11], Totem [25], Newtop [13], Relacs [3]and Horus [27].The basis of a group communication service is a groupmembership service. Each process, at each time, has a uniqueview of the membership of the group. The view includes alist of the processes that are members of the group. Viewscan change from time to time, and may become di�erent atdi�erent processes. Isis introduced the important conceptof virtual synchrony [6]. This concept has been interpretedin various ways, but an essential requirement is that if aparticular message is delivered to several processes, then allhave the same view of the membership when the message�Basser Department of Computer Science, Madsen Building F09,University of Sydney, NSW 2006, Australia.yMIT Laboratory for Computer Science, 545 Technology Square,NE43-365, Cambridge, MA 02139, USA.

is delivered. This allows the recipients to take coordinatedaction based on the message, the membership set and therules prescribed by the application.The Isis system was designed for an environment whereprocessors might fail and messages might be lost, but wherethe network does not partition. That is, it assumes thatthere are never two disjoint sets of processors, each set com-municating successfully among its members. This assump-tion might be reasonable for some local area networks, butit is not valid in wide area networks. Therefore, the morerecent systems mentioned above allow the possibility thatconcurrent views of the group might be disjoint.To be most useful to application programmers, systembuilding blocks should come equipped with simple and pre-cise speci�cations of their guaranteed behavior. These spec-i�cations should include not only safety properties, but alsoperformance and fault-tolerance properties. Unfortunately,providing appropriate speci�cations for group communica-tion services is not an easy task. Some of these services arerather complicated, and there is still no agreement aboutexactly what the guarantees should be. Di�erent speci�ca-tions arise from di�erent implementations of the same ser-vice, because of di�erences in the safety, performance, orfault-tolerance that is provided. Moreover, the speci�ca-tions that most accurately describe particular implementa-tions may not be the ones that are easiest for applicationprogrammers to use.The �rst major work on the development of speci�cationsfor fault-tolerant group-oriented membership and communi-cation services appears to be that of Ricciardi [28], and theresearch area is still active (see, e.g., [26, 7]). In particu-lar, there has been a large amount of work on developingspeci�cations for partitionable group services. Some speci�-cations deal just with membership and views [17, 29] whileothers also cover message services (ordering and reliabilityproperties) [24, 4, 5, 9, 12, 15, 16]. These speci�cations areall complicated, many are di�cult to understand, and someseem to be ambiguous. It is not clear how to tell whether aspeci�cation is su�cient for a given application. It is not evenclear how to tell whether a speci�cation is implementable atall; impossibility results such as those in [7] demonstrate thatthis is a serious issue.In this paper, we present a new, simple formal speci-�cation for a partitionable view-oriented group communi-cation service. To demonstrate the value of our speci�ca-tion, we use it to construct an ordered-broadcast applica-tion, using an algorithm, based on algorithms of Amir, Dolev,Keidar, Melliar-Smith and Moser [18, 1], that reconciles in-formation derived from di�erent views. We prove the cor-rectness and analyze the performance and fault-tolerance ofthis algorithm. Our speci�cation has a simple implemen-tation, based on the membership algorithm of Cristian andSchmuck [10]. We call our speci�cation VS , which stands forview-synchrony.11This is not the same as the notion of view-synchrony in [5].

In VS, the views are presented to each processor2 accord-ing to a consistent total order, though not every processorneed see every view. Each message is associated with a par-ticular view, and all send and receive events for a messageoccur at processors when they have the associated view. Theservice provides a total order on the messages associated witheach view, and each processor receives a pre�x of this totalorder. There are also some guarantees about stabilizationof view information and about successful message delivery,under certain assumptions about the number of failures andabout the stabilization of failure behavior.Our speci�cation VS does not describe all the potentially-useful properties of any particular implementation. Rather,it includes only the properties that are needed for the ordered-broadcast application. However, preliminary results suggestthat the same speci�cation is also useful for other applica-tions.The style of our speci�cation is di�erent from those ofprevious speci�cations for group communication services, inthat we separate safety requirements from performance andfault-tolerance requirements. The safety requirements areformulated in terms of an abstract, global input/output statemachine, using precondition-e�ect notation. This enables as-sertional reasoning about systems that use this service. Theperformance and fault-tolerance requirements are expressedas a collection of properties that must hold in executionsof the service. Speci�cally, we include failure-status inputactions in the speci�cation; we then give properties sayingthat consensus on the view and timely message delivery areguaranteed in an execution provided that it stabilizes to asituation in which the failure status stops changing and cor-responds to a consistently partitioned system. This stabi-lization hypothesis can be seen as an abstract version of the\timed asynchronous model" of Cristian [8]. These perfor-mance and fault-tolerance properties are expressed in precisenatural language and require operational reasoning.We consider how our view-synchronous group communi-cation service can be used in the distributed implementationof a sequentially consistent memory. It turns out that theproblem can be subdivided into two: the implementationof a totally ordered broadcast communication service using aview-synchronous group communication service, and the im-plementation of sequentially consistent memory using a to-tally ordered broadcast service. The second of these is easyusing known techniques3 , so we focus in this paper on the�rst problem. A totally ordered broadcast service deliversmessages submitted by its clients, according to a single totalordering of all the messages; this total order must be consis-tent with the order in which the messages are sent by anyparticular sender. Each client receives a pre�x of the order-ing, and there are also some guarantees of successful delivery,under certain assumptions about the stabilization of failurebehavior. This service is di�erent from a view-synchronousgroup communication service in that there is no notion of\view"; the ordering guarantees apply to all the messages,not just those within individual views.We begin in Section 3 by giving a simple formal speci�-cation for a totally ordered broadcast service, which we callTO . TO serves as the correctness de�nition for the ordered-broadcast application. It consists of an abstract state ma-chine for safety properties, plus stabilized properties for per-formance and fault-tolerance.2We consider \processor groups" in the formal material of this pa-per rather than \process groups". The distinction is unimportant here.3The \replicated state machine" approach of Lamport [19], sur-veyed by Schneider in [30], is one such approach.

Then, in Section 4, we present our new speci�cation for apartitionable group communication service, VS . VS includesa crisp notion of a local view, that is, each processor, at anytime, has a current view and knows the membership of thegroup in its current view; moreover, any messages sent byany processor in a view are received (if they are received atall) in the same view. The VS service also provides a \safe"indication, once a message has been delivered to all membersof the view.The most important di�erences between VS and othergroup communication speci�cations are:1. VS does not mention any \transitional views" or \hid-den views", such as are found in Extended Virtual Syn-chrony [24] or the speci�cation of Dolev et al [12]. Eachprocessor always has a well-de�ned view of the groupmembership, and all recipients of a message share theview that the sender had when the message was sent.2. VS does not require that a processor learn of all the viewsof which it is a member.3. VS does not require any relationship among the mem-bership of concurrent views held by di�erent processors.Stronger speci�cations demand that these views be eitherdisjoint or identical [5], or either disjoint or subsets [4].4. VS does not require consensus on whether a message isdelivered. Many other speci�cations for group commu-nication, including [4, 5, 12, 15, 24], insist on deliveryat every processor in the intersection of the current viewand a successor view. We allow each member to receive adi�erent subset of the messages associated with the view;however, each member must receive a pre�x of a commontotal order of the messages of that view.5. The \safe" indication is separate from the message de-livery event. In Transis, Totem and Horus [11, 25, 27],delivery is delayed until the lower layer at each site hasthe message (though it might not yet have delivered it).Thus in these systems, safe delivery means that everyother member is guaranteed to also provide safe deliveryor crash. A simple \coordinated attack" argument (as inChapter 5 of [20]) shows that in a partitionable system,this notion of safe delivery is incompatible with having allrecipients in exactly the same view as the sender. In con-trast, our service delivers a message before it is safe andlater provides a noti�cation once delivery has happenedat all other group members.6. There are no liveness requirements that apply to all ex-ecutions. Instead, we follow the \timed asynchronousmodel" of Cristian [8] and make conditional claims fortimely delivery only in certain executions where the pro-cessors and links behave well.The di�erences represented by points 2, 4 and 6 mean thatVS is not subject to the impossibility results that a�ict somegroup communication speci�cations [5, 7].Although VS is weaker in several respects than most con-sidered in the literature, we demonstrate that it is strongenough to be useful, by showing, in Section 5, how an in-teresting and useful algorithm can run on top of it. Thisalgorithm is based on data replication algorithms developedby Amir, Dolev, Keidar, Melliar-Smith and Moser [18, 1].These algorithms implement a fault-tolerant shared memoryby sending modi�cation operations to each replica througha group communication service based on Extended VirtualSynchrony, and carrying out a state-exchange protocol whenpartition components merge. Our algorithm, which we call

TO. . .VSgpsnd(m)p gprcv(m)q;p safe(m)q;psafe(m)q;p newview(v)p@@Rbcast(a)p brcv(a)q;p��� @@Rbcast(a)q brcv(a)p;q����� �� �� ��'& $%�� �
@@R ��� ��� ���@@ �� �� �� gpsnd(m)q gprcv(m)p;q safe(m)p;qsafe(m)p;q newview(v)q@@R ��� ��� ���@@ �� �� ��VStoTOp VStoTOqFigure 1: System components and interfacesVStoTO, can be seen as a more abstract form of both previ-ous ones, separated from the speci�c use for data replication.In Sections 6 and 7, we prove that the VStoTO algorithm,running on top of VS, indeed provides the service expressedby the TO speci�cation. The safety aspect of this claim usesassertional methods. We give invariants on the global stateof a system that consists of the VStoTO algorithm and theVS state machine. We then give a simulation relationshipbetween the global state of the system and the TO statemachine. The performance and fault-tolerance aspects of theproof involve operational reasoning about timed executions.Figure 1 depicts the major components of the system weconsider, and their interactions.The full version of this paper can be found at the URLhttp://theory.lcs.mit.edu/tds/vsgc.html.2 Mathematical FoundationsIf r is a binary relation, then we de�ne dom(r) to be the set(without repetitions) of �rst elements of the ordered pairscomprising relation r, and range(r) to be the set of secondelements. If f is a partial function from A to B and ha; bi 2A � B, then f � ha; bi is de�ned to be the partial functionthat is identical to f except that f(a) = b.If f and g are partial functions, from A to B and fromA to C respectively, then the pair hf; gi is de�ned to be thefunction from A to B �C such that hf; gi(a) = hf(a); g(a)i.We write � for the empty sequence, and hhaii for the se-quence consisting of the single element a. If s is a sequence,length(s) denotes the length of s. If s is a sequence and1 � i � length(s) then s(i) denotes the ith element of s. If sand t are sequences and s is �nite, then the concatenation ofs and t is denoted by s � t. We say that sequence s is a pre�xof sequence t, written as s � t, provided that there exists s0such that s � s0 = t. A collection S of sequences is consistentprovided that for every s; t 2 S, either s � t or t � s. If Sis a consistent collection of sequences, we de�ne lub(S) to bethe minimum sequence t such that s � t for all s 2 S.We often regard a sequence s as a partial function fromits index set to its elements; thus, for example, we use thefunction notation range(s) to denote the set of elements ap-pearing in sequence s. If s is a sequence of elements of Xand f is a partial function from X to Y whose domain in-cludes range(s), then applyall(f; s) denotes the sequence tof elements of Y such that length(t) = length(s) and, fori � length(t), t(i) = f(s(i)).Our services and algorithms are described using untimedand timed state machine models. Untimed models are usedfor the safety properties, while timed models are used for theperformance and fault-tolerance properties.The untimed model we use is the I/O automaton modelof Lynch and Tuttle [21], also described in Chapter 8 of [20].

We do not use the \task" construct of the model { the onlycomponents we need are a set of states, a designated subset ofstart states, a signature specifying input, output and internalactions, and a set of (state,action,state) transitions. Thetimed model we use is that of Lynch and Vaandrager [23], asdescribed in Chapter 23 of [20]. This is similar to the untimedmodel, but also includes time passage actions �(t), whichindicate the passage of real time t. Time passage actionsalso have associated state transitions.An execution fragment of an I/O automaton is an al-ternating sequence of states and actions consistent with thetransition relation. An execution is an execution fragmentthat begins with a start state. Timed execution fragmentsand timed executions of a timed automaton are de�ned inthe same way. A timed execution fragment of a timed au-tomaton has a \limit time" ltime 2 R�0 [f1g, which is thesum of all the amounts of time in its time passage actions.Since our treatment is compositional, we need notions ofexternal behavior for both types of automata. For I/O au-tomata, we use traces, which are sequences of actions; fortimed automata, we use timed traces, each of which is a se-quence of actions paired with its time of occurrence, togetherwith a value ltime 2 R�0[f1g indicating the total durationof time over which the events are observed. The external be-havior of an I/O automaton is captured by the set of tracesgenerated by its executions, while that of a timed automatonis captured by the set of timed traces generated by its \ad-missible" timed executions, i.e., those in which ltime =1.Execution fragments can be concatenated, as can timedexecution fragments, traces and timed traces. I/O automatacan be composed, as can timed automata; Chapters 8 and 23of [20] contain theorems showing that composition respectsthe external behavior. Invariant assertion and simulationrelation methods for these two models are also presented inthose chapters.3 Totally Ordered BroadcastIn this section, we present TO , our speci�cation for a totallyordered broadcast communication service. TO is a combina-tion of a state machine TO-machine and a performance/fault-tolerance property TO-prop, which is a property of timedtraces allowed by a timed version of TO-machine.For the rest of the paper, we �x P to be a totally ordered�nite set of processor identi�ers (we will often refer to theseas locations) and A to be a set of data values.The interface between the service and its clients is throughinput actions of the form bcast(a)p, representing the submis-sion of data value a by a client at the location of processor p,and output actions of the form brcv(a)p;q, representing thedelivery of a to a client at q of a data value previously sentby a client at p. We call the messages at this interface \data

values", to distinguish them from messages at lower-level in-terfaces.The state of the speci�cation automaton includes a queuequeue of data values, each paired with the location at whichit originated. Also, for each location p, there is a queuepending[p] containing the data values originating at p thathave not yet been added to queue. Finally, for each p thereis an integer next[p] giving the index in queue of the next datavalue to be delivered at p. The code is given in Figure 2.Signature:Input:bcast(a)p, a 2 A, p 2 POutput:brcv(a)p;q , a 2 A, p; q 2 P Internal:to-order(a; p), a 2 A, p 2 PStates:queue, a �nite sequence of A � P , initially emptyfor each p 2 P :pending[p], a �nite sequence of A, initially emptynext[p] 2 N>0 , initially 1Transitions:bcast(a)pE�ect:append a to pending[p]to-order(a; p)Precondition:a is head of pending[p]E�ect:remove head of pending[p]append ha; pi to queue brcv(a)p;qPrecondition:queue(next[q]) = ha; piE�ect:next[q] next[q] + 1Figure 2: TO-machineThe �nite traces of this automaton are exactly the �nitepre�xes of traces of a totally ordered causal broadcast service,as de�ned in [14]. Note that, in any trace of TO-machine,there is a natural correspondence between brcv events andthe bcast events that cause them.Now we de�ne the performance/fault-tolerance propertyTO-prop. Its signature TO-fsig is the same as the signatureof TO-machine, with the addition of the following actions:Input:for each p:goodpbadpuglyp for each p, q:goodp;qbadp;quglyp;qIf � is any �nite sequence of actions of TO-fsig, then wede�ne the failure status of any location or pair of locationsafter � to be either good, bad, or ugly, based on the lastaction for that location or pair of locations in �. If there isno such action, the default choice is good.The intention (though this is formally meaningless at thislevel of abstraction) is that a good processor takes steps withno time delay after they become enabled, a bad processor isstopped, and an ugly processor operates at nondeterministicspeed (or may even stop). Similarly, a good channel deliversall messages that are sent while it is good, within a �xed timeof sending. A bad channel delivers no messages. An uglychannel might or might not deliver its messages, and thereare no timing restrictions on delivery. But these statementsrefer to processors, channels and their properties, notionsthat belong in an implementation model, not in an abstractservice speci�cation.To formulate our performance/fault-tolerance claim, wede�ne the property TO-prop(b; d;Q) as a parameterized prop-erty of a timed sequence pair over external actions of TO-fsig,as de�ned in [23]. This is a pair consisting of a sequence � oftimed actions (with non-decreasing times) together with an

ltime. Here, we only consider cases where ltime = 1. Theparameters b and d are nonnegative reals, and the parameterQ is a set of processors.TO-prop(b; d; Q):Both of the following hold:1. � with timing information removed is a trace of TO-machine.2. Suppose that (�;1) = (
; l)(�;1) and that all the following hold:(a) � contains no failure status events for locations in Q or forpairs including a location in Q.(b) All locations in Q and all pairs of locations in Q are goodafter
.(c) If p 2 Q and q 62 Q then (p; q) is bad after
.Then (�;1) can be written as (�0; l0)(�00 ;1), where(a) l0 � b.(b) Every data value sent from a location in Q in � at time t isdelivered at all members of Q by time maxft; (l + l0)g+ d.(c) Every data value delivered in � to any location in Q at time tis delivered at all members of Q by time max ft; (l + l0)g+d.We de�ne the speci�cation TO (b; d;Q) to be the pair con-sisting of TO-machine and TO-prop(b; d;Q). We say thata timed automaton A satis�es the speci�cation TO (b; d;Q)provided that every admissible timed trace of A is in the set(of timed sequence pairs) de�ned by TO-prop(b; d;Q).4 View-Synchronous Group CommunicationIn this section, we present VS , our formal speci�cation for aview-synchronous synchronous group communication service.VS is a combination of a state machine VS-machine and aperformance/fault-tolerance property VS-prop.For the rest of the paper, we �x M to be a message al-phabet, and hG;<G; g0i to be a totally ordered set of viewidenti�ers with an initial view identi�er. We de�ne views =G �P(P), the set of pairs consisting of a view identi�er to-gether with a set of locations; an element of the set views iscalled a view . If v is a view, we write v:id and v:set to denotethe view identi�er and set components of v, respectively.The external actions of VS-machine include actions ofthe form gpsnd(m)p, representing the client at p sending amessage m, and actions of the form gprcv(m)p;q , represent-ing the delivery to q of the message m sent by p. Outputssafe(m)p;q are also provided at q to report that the earliermessage m from p has been delivered to all locations in thecurrent view as known by q.VS-machine informs its clients of group status changesthrough newview(hg; Si)p actions, p 2 S, which tells p thatthe view identi�er g is associated with membership set Sand that, until another newview occurs, the following mes-sages will be in this view. After any �nite execution, wede�ne the current view at p to be the argument v in the lastnewviewp event, if any, otherwise it is the pair consisting ofthe distinguished initial view identi�er g0 and the universeP of processor locations.The code is given in Figure 3. The state of the automatonis similar to that of TO-machine, except that there are mul-tiple queues, one per view identi�er, and similarly for eachview identi�er there is a separate indicator for the next indexto be delivered to a given location. Also, the service keepstrack of all the views that have ever been de�ned, and of thecurrent view at each location.The actions for creating a view and for informing a proces-sor of a new view are straightforward (recall that the signa-ture ensures that only members, but not necessarily all mem-bers, receive noti�cation of a new view). Within each view,messages are handled as in TO-machine: �rst kept pending,then placed into a total order in the appropriate queue, and

Signature:Input:gpsnd(m)p, m 2 M , p 2 POutput:gprcv(m)p;q hidden g, m 2M , p 2 P , q 2 P , g 2 Gsafe(m)p;q hidden v, m 2M , p 2 P , q 2 P , v 2 viewsnewview(v)p, v 2 views, p 2 P , p 2 v:set Internal:createview(v), v 2 viewsvs-order(m; p; g), m 2 M , p 2 P , g 2 GStates:created � views, initially fhg0; P igfor each p 2 P :current-viewid[p] 2 G, initially g0for each g 2 G:queue[g], a �nite sequence of M � P , initially empty for each p 2 P , g 2 G:pending[p; g], a �nite sequence of M , initially emptynext[p; g] 2 N>0 , initially 1next-safe[p; g] 2 N>0 , initially 1Transitions:createview(v)Precondition:v:id > maxfg : 9S : hg; Si 2 createdgE�ect:created created [fvgnewview(v)pPrecondition:v 2 createdv:id > current-viewid[p]E�ect:current-viewid[p] v:idgpsnd(m)pE�ect:append m to pending[p; current-viewid[p]]vs-order(m; p; g)Precondition:m is head of pending[p; g]E�ect:remove head of pending[p; g]append hm; pi to queue[g]
gprcv(m)p;q , hidden gPrecondition:g = current-viewid[q]queue[g](next [q; g]) = hm; piE�ect:next[q; g] next[q; g] + 1safe(m)p;q , hidden g; SPrecondition:g = current-viewid[q]hg; Si 2 createdqueue[g](next-safe[q; g]) = hm; pifor all r 2 S:next[r; g] > next-safe[q; g]E�ect:next-safe[q; g] next-safe[q; g] + 1Figure 3: VS-machine�nally passed to the environment. Thus, VS-machine en-sures that each gprcvp;q and each safep;q event occurs at qwhen q's view is the same as p's view when the correspondinggpsnd event occurs. The speci�cation given in Figure 3 (un-like the particular VStoTO algorithm presented later) doesnot have any notion of \primary" view: it does not treat amessage associated with a majority view di�erently from onein a minority view.Note that VS-machine does not include any restrictionson when a new view might be formed. However, our perfor-mance and fault-tolerance property VS-prop, described be-low, does express such restrictions { it implies that \capri-cious" view changes must stop shortly after the behavior ofthe underlying physical system stabilizes. In any trace of VS-machine, there is a natural correspondence between gprcvevents and the gpsnd events that cause them, and betweensafe events and the gpsnd events that cause them.Now we de�ne the performance/fault-tolerance propertyVS-prop. Its signature VS-fsig is the same as the signatureof VS-machine, with the addition of failure status actions (asbefore). We de�ne VS-prop as a parameterized property of atimed sequence pair (�;1) over external actions of VS-fsig.Parameters b and d are nonnegative reals, and Q is a set ofprocessors.VS-prop(b; d;Q):Both of the following hold:1. � with timing information removed is a trace of VS-machine:2. Suppose that (�;1) = (
; l)(�;1). Suppose that all the fol-lowing hold:(a) � contains no failure status events for locations in Q orfor pairs including a location in Q.

(b) All locations in Q and all pairs of locations in Q are goodafter
.(c) If p 2 Q and q 62 Q then (p; q) is bad after
.Then (�;1) can be written as (�0; l0)(�00;1), where(a) l0 � b(b) No newview events occur in �00 at locations in Q.(c) The latest views at all locations in Q after
�0 are thesame, say hg; Si, where S = Q.(d) Every message sent from a location in Q in � while inview hg;Si at time t has corresponding safe events at allmembers of Q by time maxft; (l+ l0)g+ d.We de�ne the speci�cation VS(b; d;Q) to be the pair con-sisting of VS-machine and VS-prop(b; d;Q). We say thata timed automaton A satis�es the speci�cation VS(b; d;Q)provided that every admissible timed trace of A is in the setde�ned by VS-prop(b; d;Q).5 The Algorithm VStoTONow we describe the VStoTO algorithm, which uses VS toimplement TO . As depicted in Figure 1, the algorithm con-sists of an automaton VStoTOp for each p 2 P . Code forVStoTOp appears in Figure 5, and some auxiliary de�nitionsneeded in the code appear in Figure 4.For the rest of the paper, we �x a set Q of quorums, eachof which is a subset of P . We assume that every pair Q, Q0in Q satisfy Q \Q0 6= ;.The activities of the algorithm consist of normal activityand recovery activity. Normal activity occurs while groupviews are stable. Recovery activity begins when a new view

Types:L = G �N>0 � P , with selectors id , seqno , originsummaries = P(L� A)� (L�)�N>0 �G, with selectors con ,ord , next , and highOperations on types:For x 2 summaries ,x:con�rm is the pre�x of x:ord such that length(x:con�rm)= min(x:next � 1; length(x:ord))For Y a partial function from processor ids to summaries,knowncontent (Y) = [q2dom(Y)Y (q):conmaxprimary (Y) = maxq2dom(Y)fY (q):highgreps(Y) = fq 2 dom(Y) : Y (q):high = maxprimarygchosenrep(Y) is some element in reps(Y)shortorder (Y) = Y (chosenrep(Y)):ordfullorder (Y) is shortorder (Y) followed by the remainingelements of dom(knowncontent(Y)), in label ordermaxnextcon�rm (Y) = maxq2dom(Y) Y (q):nextFigure 4: De�nitions used in VStoTO automatonis presented by VS , and continues while the members ex-change and combine information from their previous histo-ries in order to establish a consistent basis for subsequentnormal activity.In the normal case, each value received by VStoTOp fromthe client is assigned a system-wide unique label consistingof the viewid at p when the value arrives, a sequence num-ber, and the processor id p. The variable current keeps trackof the current view, and the variable nextseqno is used togenerate the sequence numbers. Labels are ordered lexico-graphically. VStoTOp stores the hlabel,valuei pair in a rela-tion content. It sends the pair to the other members of thecurrent view, using VS , and these other processors also addthe pair to their own content relations. An invariant showsthat each content relation is actually a partial function fromlabels to values, and that a given label is associated with thesame data value everywhere.The algorithm distinguishes primary views, whose mem-bership includes a quorum of processors, from non-primaryviews. When VStoTOp receives a hlabel,valuei pair while it isin a primary view, it places the label at the end of its sequenceorder. In combination with content, order describes a totalorder of submitted data values; this represents a tentativeversion of the system-wide total ordering of data values thatthe TO service is supposed to provide. The consistent orderof message delivery within each view (guaranteed by VS) en-sures that order is consistent among members of a particularview, but it need not always be consistent among processorsin di�erent views. When VStoTOp receives a hlabel,valueipair while it is in a non-primary view, it does not process thepair (except for recording it in content).VStoTOp remembers which data values have been re-ported as safely delivered to all members of the current view,using a set safe-labels of labels. When a label is in safe-labels,it is a candidate for becoming \con�rmed" for release to theclient. Labels in the order sequence become con�rmed inthe same order in which they appear in order . The variablenextcon�rm is used to keep track of the pre�x of the currentorder sequence that is con�rmed. VStoTOp can release datavalues associated with con�rmed labels to the client, in theorder described by order . The variable nextreport is used tokeep track of which values have been released to the client.Recovery activity begins when VS performs a newviewevent. This activity involves exchanging and combining in-formation to integrate the knowledge of di�erent members ofthe new view. The recovery process consists of two, possiblyoverlapping phases. In the �rst phase of recovery, each mem-

ber of a new view uses VS to send a state-exchange messagecontaining a summary of that processor's state, includingthe values of its content, order and nextcon�rm variables. Inorder to use this state information, each processor must de-termine which member has the most up-to-date information.For this purpose, another variable highprimary is used torecord the highest view identi�er of a primary view in whichan order was calculated that has a�ected the processor's ownorder sequence. (This e�ect can be through the processor'sown earlier participation in that primary view, or throughindirect information in previous state exchange messages.)The value of the highprimary variable is also included in thesummary sent in the state-exchange message.During this �rst phase of recovery, VStoTOp records thesummary information received from the other members ofthe new view, in gotstate, which is a partial function fromprocessor ids to summaries. Once VStoTOp has collectedall members' summaries, it processes the information in oneatomic step; at this point, it is said to establish the new view.The processor processes state information by �rst de�ningits con�rmed labels to be longest pre�x of con�rmed labelsknown in any of the summaries. Then it determines therepresentatives, which are the members whose summaries in-clude the greatest highprimary value. Then the informationis processed in di�erent ways, depending on whether or notthe new view is primary.If the new view is not primary, the processor adopts asits new order the order sent by a particular \chosen" rep-resentative processor. In this case, highprimary is set equalto the greatest highprimary in any of the summaries, i.e.,the highprimary of the chosen representative. On the otherhand, if the view is primary, the processor adopts as its neworder the order computed as above for non-primary views,extended with all other known labels appearing in any of thesummaries in gotstate, arranged in label order. In this case,highprimary is set equal to the new viewid.Extracting the various pieces of information describedabove from gotstate requires some auxiliary functions, whichare de�ned in Figure 4. Namely, let Y be a value of the typerecorded in the gotstate component. Then knowncontent(Y)contains all the (label, value) pairs in the summaries recordedin Y . Also, maxprimary(Y) is the greatest view identi�er ofan established primary appearing in any of the summaries,reps(Y) denotes the set of members that know of this view,and chosenrep(Y) is some consistently-chosen element of thisset. (Any method can be used to select the particular repre-sentative, as long as all processors select the same one fromidentical information; for example, they could choose the rep-resentative with the highest processor id, or the one with theshortest or longest order sequence.) Now shortorder is theorder of the chosen representative; this is the order adoptedin a non-primary view, as described above. And fullorderconsists of shortorder(Y) followed by the remaining elementsof knowncontent(Y), in label order; this is the order adoptedin a primary view. We also de�ne maxnextcon�rm(Y) to bethe highest among the reported nextcon�rm values in theexchanged state.At this point, the �rst phase of recovery is completed,and normal processing of new client messages is allowed toresume. However, for a primary view, there is a second phaseof recovery, which involves collecting the VS safe indicationsfor the state-exchange messages. VStoTOp remembers theseindications in a variable safe-exch. This phase may overlapwith the summary collection phase. Once the state exchangeis safe, all labels used in the exchange are marked as safe,and all associated messages are con�rmed just as they would

Signature:Input:bcast(a)p, a 2 Agprcv(m)q;p , q 2 P , m 2 (L� A) [summariessafe(m)q;p , q 2 P , m 2 (L� A) [summariesnewview(v)p, v 2 views Output:gpsnd(m)p, m 2 (L �A) [summariesbrcv(a)q;p, a 2 A, q 2 PInternal:con�rmpStates:current 2 views, initially hg0; P istatus 2 fnormal; send; collectg, initially normalcontent � L �A, initially ;nextseqno 2 N>0 , initially 1bu�er , a �nite sequence of elements of L, initially �safe-labels � L, initially ;order, a �nite sequence of L, initially �nextcon�rm 2 N>0 , initially 1 nextreport 2 N>0 , initially 1highprimary 2 G, initially g0gotstate, a partial function from P to summaries, initially ;,safe-exch � P , initially ;,Derived variables:primary, a Boolean, de�ned to be the condition that current:setcontains some quorum.Transitions:bcast(a)pE�ect:content content [fhhcurrent:id;nextseqno; pi; aigappend hcurrent:id; nextseqno; pi to bu�ernextseqno nextseqno + 1gpsnd(hl; ai)pPrecondition:status = normall is head of bu�erhl; ai 2 contentE�ect:delete head of bu�ergprcv(hl; ai)q;pE�ect:content content [fhl; aigif primary thenorder order � hhliisafe(hl; ai)q;pE�ect:if primary thensafe-labels safe-labels [flgcon�rmpPrecondition:primaryorder(nextcon�rm) 2 safe-labelsE�ect:nextcon�rm nextcon�rm + 1brcv(a)q;pPrecondition:nextreport < nextcon�rmhorder(nextreport); ai 2 contentq = order(nextreport):originE�ect:nextreport nextreport+ 1

newview(v)pE�ect:current vnextseqno 1bu�er �gotstate ;safe-exch ;safe-labels ;status sendgpsnd(x)pPrecondition:status = sendx = hcontent; order; nextcon�rm; highprimaryiE�ect:status collectgprcv(x)q;pE�ect:content content [x:congotstate gotstate� hq; xiif (dom(gotstate) = current:set) ^ (status = collect) thennextcon�rm maxnextcon�rm(gotstate)if primary thenorder fullorder(gotstate)highprimary current:idelseorder shortorder(gotstate)highprimary maxprimary(gotstate)status normalsafe(x)q;pE�ect:safe-exch safe-exch [fqgif safe-exch = current:set and primary thensafe-labels safe-labels [range(fullorder(gotstate))Figure 5: VStoTOpbe in normal processing. For a non-primary view, there is nosecond phase of recovery, i.e., the safe indications are ignored.The state of VStoTOp also records the status of process-ing, which may be normal (anywhere other than in the �rstphase of recovery), send (in the �rst phase of recovery, afterthe new view announcement but before sending the state-exchange message), or collect (in the �rst phase of recovery,waiting for some state-exchange messages).6 Correctness - Safety ArgumentDe�ne VStoTO-sys to be the composition ofVS-machine andVStoTOp for all p 2 P , with the actions used for communi-cation between the two layers (that is, the gpsnd, gprcv,safe and newview actions) hidden. In a state of the com-position, we refer to the separate state variables by giving asubscript p indicating a variable that is part of the state of
VStoTOp.The proof is based on a forward simulation relation [22]from VStoTO-sys to TO-machine, established with the helpof a series of invariant assertions for VStoTO-sys. We addsome derived variables to the state of VStoTO-sys, for use inde�ning the simulation relation and in stating and provingthe invariants:We write allstate[p; g] to denote a set of summaries, de-�ned so that x 2 allstate[p; g] if and only if at least one ofthe following four conditions holds:1. current:idp = g and x = hcontentp; orderp;nextcon�rmp;highprimarypi.2. x 2 pending[p; g].3. hx; pi 2 queue[g].4. For some q, current:idq = g and x = gotstate(p)q.Thus, allstate[p; g] consists of all the summary information

that is in the state of p if p's current view is g, plus all thesummary information that has been sent out by p in stateexchange messages in view g and is now remembered else-where among the state components of VStoTO-sys. Noticethat allstate[p; g] consists only of summaries: an ordinarymessage hl; ai is never an element of allstate[p; g]. We writeallstate[g] to denote Sp2P allstate[p; g], and allstate to de-note Sg2G allstate[g].We write allcontent for Sx2allstate x:con [fhl; ai : 9g; p :hhl; ai; pi 2 range(queue[g]) _ hl; ai 2 range(pending[p; g])g.This represents all the information available anywhere thatlinks a label with a corresponding data value.The invariants also require the addition of some historyvariables to the state of VStoTO-sys: For every g 2 G,established[g] is de�ned to be a Boolean, initially true if g =g0, otherwise false; this variable is maintained by placing thestatement established[current:id] true in the e�ects partof gprcv(x)q;p, just after the assignment status normal(and within the scope of the outer if statement).For every p 2 P , g 2 G, buildorder[p; g] is de�ned to be asequence of labels, initially empty; this variable is maintainedby following every statement of processor p that assigns toorder with another statement buildorder[p; current:idp] order. It follows that if p establishes a view with id g, andlater leaves view g for a view with a higher viewid, thenforever afterwards, buildorder[p; g] remembers the value oforderp at the point where p left view g.We �rst prove a long series of invariants, establishing sim-ple relationships among the state variables, and other proper-ties of the reachable states. As usual, each invariant is provedusing induction on the length of an execution, assuming pre-vious invariants. For example, these invariants demonstratethat allcontent is a function from labels to data values, andthat information received from a processor p is consistentwith p's own knowledge. They show upper and lower boundson the highprimary values. Other invariants assert that in-formation present in the summaries in allstate re
ects correctsummary information for established views (as summarizedin the history variables established and buildorder).The following is a key invariant; it can be used to showthat information from certain processors' tentative orders fora primary view v is also present in all summaries with higherviewids. The hypothesis says that every processor in v:setthat has a current:id higher than v:id has succeeded in es-tablishing v, and moreover, has succeeded in including thesequence � in its order for view v. The conclusion says thatanyplace in the state where information about a higher viewthan v is present, information about � is also present.Invariant 1 Suppose that v 2 created, v:set contains a quo-rum, � 2 L?, and for every p 2 v:set, the following is true:If current:idp > v:id then established[v:id]p and � �buildorder[p; v:id].Then for every x 2 allstate with x:high > v:id, � � x:ord.The following invariant says that, once all members of aprimary view v agree on a pre�x � of order, all summarieswith views at least as high as v will also include sequence �.Its proof uses Invariant 1.Invariant 2 Suppose that v 2 created, v:set contains a quo-rum, � 2 L?, and for every p 2 v:set, established[v:id]p and� � buildorder[p; v:id].Then for every x 2 allstate with x:high � v:id, � � x:ord.Other invariants assert the consistency of the sequencesorder and con�rm throughout the system. For example:

Invariant 3 If x 2 allstate then the following is true:There exists v 2 created such that v:id � x:high, v:set con-tains a quorum, and for every q 2 v:set, established[v:id]qand x:con�rm � buildorder[q; v].Invariant 4 If x; x0 2 allstate then1. If x:high � x0:high then x:con�rm � x0:ord.2. Either x:con�rm � x0:con�rm or x0:con�rm � x:con�rm.Invariant 4 allows us to de�ne another derived variablethat represents the collective knowledge of the con�rmed or-der, throughout the system. Namely, in any reachable state,we write allcon�rm for lubx2allstate(x:con�rm).Next, we de�ne the simulation relation f . We de�ne itas a function from reachable states of VStoTO-sys to statesof TO-machine. (We assume an arbitrary default value forunreachable states.) Namely, if x is a reachable state ofVStoTO-sys, then f(x) = y where:1. y:queue = applyall(hx:allcontent; origini; x:allcon�rm),where the selector origin is regarded as a function fromlabels to processors.2. y:next[p] = x:next-reportp.3. y:pending[p] = applyall(x:allcontent; s) where s is the se-quence of labels such that(a) range(s) is the set of labels l such that l:origin = p,hl; ai 2 x:allcontent for some a, andl 62 range(allcon�rm).(b) s is ordered according to the label order.The �rst clause says that y:queue is the sequence of hvalue,origini pairs corresponding to the sequence x:allcon�rm oflabels that are con�rmed anywhere in the system. For eachlabel in x:allcon�rm, the set x:allcontent, which contains allthe content information that appears anywhere in the sys-tem, is used to obtain the value, and origin is used to ex-tract the origin. (Note that the set of pairs x:allcontent istreated as a function, and that the two functions are pairedtogether into one for use with the applyall operator.) Thesecond clause de�nes y:next[p] directly from the correspond-ing next-pointer in x. The third clause de�nes y:pending[p]to be the sequence of values corresponding to all the la-bels in the system with origin p that are not included inx:allcon�rm, arranged in label order. For each such label,x:allcontent is used to obtain the value. Note that the well-de�nedness of this simulation rests on the invariant that saysthat x:allcontent is a function, and on Invariant 4, whichyields the de�nedness of allcon�rm.Lemma 6.1 Function f is a forward simulation.Proof. By induction. The proof amounts to showing thatthe initial states are related by f , and showing that this re-lationship is preserved by all steps of the system. In showingthat the steps preserve the relationship, some of the invari-ants are used (for example, Invariant 4). 2Theorem 6.2 Every trace of VStoTO-sys is a trace ofTO-machine.7 Performance and Fault-ToleranceWe argue that the performance and fault-tolerance charac-teristics of TO (for certain values of the parameters) are im-plied by the corresponding ones for VS (for certain param-eter values), together with performance and fault-tolerancecharacteristics of the VStoTO processes. In order to do this,we need a richer model for the system than we have been

using so far. This richer model must include timing and fail-ure information. We de�ne this richer model in two separatepieces, for VStoTO and for VS.For the VStoTO part, we de�ne a timed automaton calledVStoTO 0p for every p. This timed automaton is obtained bymodifying the untimed automaton VStoTOp as follows:� Add new input actions goodp, badp and uglyp.� Add new time-passage actions �(t) for all t 2 R>0.� Add a new state component failure-status, with values infgood; bad;uglyg, initially good.� Add new code fragments for the failure status actions,just setting the failure-status variable appropriately.� Add a new precondition to each output and internal ac-tion, that failure-status 6= bad.� Add a code fragment for each �(t):�(t)Precondition:if failure-status = good thenno output or internal action is enabledE�ect:noneThe new precondition on output and internal actions saysthat the processor takes no steps when its failure status isbad. The new time-passage actions are allowed to happen atany point, unless there is some output or internal action thatis supposed to happen immediately (because it is enabled andthe processor is good).For the VS part, we now �x b and d to be particularconstants. We assume that we have any timed automatonA that satis�es the speci�cation VS(b; d;Q) from Section 4for every set Q of processors that contains a quorum. De-�ne VStoTO 0-sys to be the composition of A and VStoTO 0pfor all p 2 P , with the actions used for communication be-tween the two layers (that is, the gpsnd, gprcv, safe andnewview), hidden. Note that the failure status input ac-tions are not hidden. The composition operator used here istimed automaton composition.We show that any admissible timed trace of VStoTO 0-syssatis�es TO-prop, for certain values of the parameters:Theorem 7.1 Every admissible timed trace of VStoTO 0-syssatis�es TO-prop(b+d; d;Q) for every Q that contains a quo-rum.Proof. Let (�;1) be any admissible timed trace ofVStoTO 0-sys, and let � be an admissible timed execution ofVStoTO 0-sys that gives rise to �. Fix Q to be any set ofprocessors containing a quorum.We �rst show Condition 1 of the de�nition of TO-prop:that � with the timing information removed is a trace ofTO-machine. This follows from general composition resultsfor timed automata (see, e.g., Chapter 23 of [20]), using whatwe have already proved in the safety part of the paper.The more interesting property to show is Condition 2, theperformance and fault-tolerance property. Our strategy forproving the needed property of � is to use an auxiliary \con-ditional" property VStoTO-prop of �. VStoTO-prop uses the\conclusion" part of VS-prop(b; d;Q) for A, together with theperformance and fault-tolerance assumptions for the proces-sors VStoTO 0p, to infer the conclusion part of TO-prop(b +d; d;Q).VStoTO-prop:Suppose that � can be written as �0�00, such that:1. �00 contains no newview events at locations in Q.2. The latest views at all locations in Q after �0 are the same, sayhg; Si, where S = Q.

3. Every message sent from a location in Q in � while in view hg; Siat time t has corresponding safe events at all members of Q bytime max (t; ltime(�0)) + d.4. �00 contains no failure status events for locations in Q or for pairsincluding a location in Q.5. All locations in Q and all pairs of locations in Q are good after�0.6. If p 2 Q and q 62 Q then (p; q) is bad after �0.Then �00 can be written as �000�0000, where1. ltime(�000) � d2. Every data value sent from a location in Q in � at time t is deliv-ered at all members of Q by time max ft; ltime(�0�000)g+d.3. Every data value delivered to any location in Q at time t is deliv-ered at all members of Q by time max ft; ltime(�0�000)g+d.We prove VStoTO-prop operationally. In our proof, the ex-ecution fragment �000 whose existence is asserted in the con-clusion of VStoTO-prop extends until every member ofQ hasreceived the safe indication for every state-exchange messagesent in view hg; Si. Our proof uses the fact that Q containsa quorum, and also the fact that the \good" processors per-form enabled actions immediately.Based on the VStoTO-prop, it is easy to unwind the de�-nitions of VS-prop(b; d;Q) and TO-prop(b+d;d;Q) and provethat VStoTO 0-sys satis�es TO-prop(b + d; d;Q). Namely,suppose as in the hypothesis of TO-prop(b+d; d;Q) that thefailure-status actions stabilize in Q. Then by the propertyVS-prop(b; d;Q), within time at most b, the VS layer stabi-lizes to a situation in which there are no view changes, viewinformation is consistent within Q, and messages among pro-cessors in Q are delivered (and made safe) within time d.At this point, the hypothesis of VStoTO-prop has beenproved; we next apply VStoTO-prop, which says that in anadditional time at most d, the system stabilizes to a situationwhere all client-level data values are delivered within time d.This is as needed for TO-prop(b+ d; d;Q). 2Theorem 7.1 yields the main result:Theorem 7.2 VStoTO 0-sys satis�es the speci�cationTO(b+ d; d;Q), for every Q that contains a quorum.8 Implementing VSAn implementation of VS can be constructed from the 3-round membership protocol of [10]. In this protocol, once aview is formed, it is \held together" by a circulating token,which is started by a deterministically chosen leader, andwhich travels from member to member around a logical ring.Each processor knows the size of the ring, and so it sets atimer that expires if the token does not return in a reason-able amount of time. If a member crashes, or communicationfailure causes the token to be lost or delayed, the timer ex-piration triggers formation of a new view. Similarly a newview is initiated if contact occurs from a processor outsidethe current membership.Once a processor determines that a new view is needed, itbroadcasts a call-for-participation in the new view (togetherwith a unique viewid chosen to be larger than any the proces-sor has seen). The membership of the view is all processorsthat reply to the broadcast. A processor may not reply toone call after replying to another with higher viewid. Oncethe membership is determined, this is sent to the memberswhich then join the view (unless they have already agreed toparticipate in a view with higher viewid). A leader withinthe view membership launches the token.To provide ordered message delivery, we use the tokento carry the sequence of messages. Each processor bu�ersmessages from the client until the token passes; the messagesare then appended to the token. Each processor examines the

sequence carried by the token, and passes to its client anymessages that it has not already passed on. The token alsocarries an indication of how many messages each memberpassed to its client, when the token last left that member.This is the basis for the safe indication: a message is safeonce the token records that all members have passed it tothe corresponding clients.Suppose the following hold of the underlying physical sys-tem of processors and links:� While statusp = goodp, processor p takes any enabledstep immediately.� While statusp = bad, processor p takes no locally con-trolled step.� While statuspq = good, every packet sent from p to qarrives within time �� While statuspq = bad, no packet is delivered from p to qAs analyzed in [10] the protocol above implements VS(b; d;Q),where Q is any set of processors, b = 9�+maxf�+(n+3)�; �g,and d = 2�+n�. Here, n is the number of processors in Q, �is the spacing of token creation by the ring leader (this mustsatisfy � > n�), and � is the spacing of attempts to contactnewly connected processes.9 ConclusionsFuture work involves using VS to construct other applica-tions, for example, load-balancing applications. Consideringother applications may lead to di�erent variants of the speci-�cation; it would be interesting to identify these variants andunderstand how they relate to each other. It also remainsto apply the approach of this paper to the task of specify-ing and analyzing other group-communication services, e.g.,services involving multiple groups with possibly-overlappingmemberships, services in which processors voluntarily join orleave groups, or services that include combined broadcastsand convergecasts.AcknowledgmentsWe thank Ken Birman, Tom Bressoud,Danny Dolev, Brad Glade, Idit Keidar, Debby Wallach, andespecially Dalia Malki for discussions about practical aspectsof group communication services. Myla Archer has mechani-cally checked some of the invariants using PVS, thereby help-ing us to debug and polish the proofs. Roger Khazan con-tributed several improvements to the formal models. RobertoDe Prisco and Nicole Lesley made several helpful suggestions.This research was supported by the following contracts:ARPA F19628-95-C-0118, AFOSR-ONR F49620-94-1-0199,U.S. Department of Transportation: DTRS95G-0001- YR. 8,and NSF 9225124-CCR.References[1] Y. Amir, D. Dolev, P. Melliar-Smith and L. Moser, \Robust andE�cient Replication Using Group Communication" Technical Re-port 94-20, Dept of Computer Science, Hebrew University., 1994.[2] Y. Amir, L. Moser, P. Melliar-Smith, D. Agrawal and P. Ciarfella,\Fast Message Ordering and Membership Using a Logical Token-Passing Ring", in Proc. of IEEE Int-l Conference on DistributedComputing Systems, 1993, pp 551{560.[3] O. Babaoglu, R. Davoli, L. Giachini and M. Baker, \Relacs: ACommunication Infrastructure for Constructing Reliable Applica-tions in Large-Scale Distributed Systems", in Proc. of Hawaii In-ternational Conference on Computer and System Science, 1995,volume II, pp 612{621.[4] O. Babaoglu, R. Davoli and A. Montresor, \Failure Detectors,Group Membership and View-Synchronous Communication inPartitionable Asynchronous Systems", TR UBLCS-95-18, De-partment of Computer Science, University of Bologna, Italy.[5] O. Babaoglu, R. Davoli, L. Giachini and P. Sabattini, \The Inher-ent Cost of Strong-Partial View Synchronous Communication",in Proc of Workshop on Distributed Algorithms on Graphs, pp72{86, 1995.

[6] K.P. Birman and R. van Renesse, Reliable Distributed Comput-ing with the Isis Toolkit, IEEE Computer Society Press, LosAlamitos, CA, 1994.[7] T.D. Chandra, V. Hadzilacos, S. Toueg and B. Charron-Bost,\On the Impossibility of Group Membership", in Proc. of 15thAnnual ACM Symp. on Princ. of Distr. Comput., pp. 322-330,1996.[8] F. Cristian, \Synchronous and Asynchronous Group Communi-cation", Comm. of the ACM, vol. 39, no. 4, pp. 88{97, 1996.[9] F. Cristian, \Group, Majority and Strict Agreement in TimedAsynchronous Distributed Systems", in Proc. of 26th Conferenceon Fault-Tolerant Computer Systems, 1996, pp. 178{187.[10] F. Cristian and F. Schmuck, \Agreeing on Processor Group Mem-bership in Asynchronous Distributed Systems", Technical ReportCSE95-428, Department of Computer Science, University of Cal-ifornia San Diego.[11] D. Dolev and D. Malki, \The Transis Approach to High Avail-ability Cluster Communications", Comm. of the ACM, vol. 39,no. 4, pp. 64{70, 1996.[12] D. Dolev, D. Malki and R. Strong \A Framework for PartitionableMembership Service", Technical Report TR94-6, Department ofComputer Science, Hebrew University.[13] P. Ezhilchelvan, R. Macedo and S. Shrivastava \Newtop: A Fault-Tolerant Group Communication Protocol" in Proc. of IEEEInternational Conference on Distributed Computing Systems,1995, pp 296{306.[14] A. Fekete, F. Kaashoek and N. Lynch \Providing Sequentially-Consistent Shared Objects Using Group and Point-to-point Com-munication" in Proc. of IEEE International Conference on Dis-tributed Computer Systems, 1995, pp 439{449.[15] R. Friedman and R. van Renesse, \Strong and Weak Virtual Syn-chrony in Horus", Technical Report TR95-1537, Department ofComputer Science, Cornell University.[16] M. Hiltunen and R. Schlichting \Properties of MembershipServices", in Proc. of 2nd International Symposium on Au-tonomous Decentralized Systems, pp 200{207, 1995.[17] F. Jahanian, S. Fakhouri and R. Rajkumar, \Processor GroupMembership Protocols: Speci�cation, Design and Implementa-tion" in Proc. of 12th IEEE Symposium on Reliable DistributedSystems pp 2{11, 1993.[18] I. Keidar and D. Dolev, \E�cient Message Ordering in DynamicNetworks", in Proc. of 15th ACM Symp. on Princ. of Distr.Comput., pp. 68-76, 1996.[19] L. Lamport, \Time, Clocks. and the Ordering of Events in a Dis-tributed System, Comm. of the ACM, vol. 21, no. 7, pp. 558-565,1978.[20] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publish-ers, San Mateo, CA, 1996.[21] N.A. Lynch and M.R. Tuttle, \An Introduction to Input/OutputAutomata", CWI Quarterly, vol.2, no. 3, pp. 219-246, 1989.[22] N.A. Lynch and F. Vaandrager, \Forward and Backward Simula-tions | Part I: Untimed Systems", Information and Computa-tion, vol. 121, no. 2, pp. 214-233, 1995.[23] N.A. Lynch and F. Vaandrager, \Forward and backward simula-tions { Part II: Timing-based systems", Information and Com-putation vol. 128, no. 1, pp 1-25, 1996.[24] L. Moser, Y. Amir, P. Melliar-Smith and D. Agrawal, \ExtendedVirtual Synchrony" in Proc. of IEEE Int-l Conference on Dis-tributed Computing Systems, 1994, pp 56{65.[25] L.E. Moser, P.M. Melliar-Smith, D.A. Agarawal, R.K. Budhia andC.A. Lingley-Papadopolous, \Totem: A Fault-Tolerant MulticastGroup Communication System", Comm. of the ACM, vol. 39,no. 4, pp. 54-63, 1996.[26] G. Neiger, \A New Look at Membership Services", in Proc. of15th Annual ACM Symp. on Princ. of Distr. Comput., pp. 331-340, 1996.[27] R. van Renesse, K.P. Birman and S. Ma�eis, \Horus: A FlexibleGroup Communication System", Comm. of the ACM, vol. 39,no. 4, pp. 76-83, 1996.[28] A. Ricciardi, \The Group Membership Problem in AsynchronousSystems", Technical Report TR92-1313, Department of Com-puter Science, Cornell University.[29] A. Ricciardi, A. Schiper and K. Birman, \Understanding Parti-tions and the \No Partitions" Assumption", Tech. Report TR93-1355, Department of Computer Science, Cornell University.[30] F. Schneider, \Implementing Fault-Tolerant Services using theState machine Approach: A Tutorial", ACM Computing Sur-veys, vol. 22, no. 4, 1990.

