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ABSTRACT: This paper introduces an algorithm to 

solve the Approximate Agreement Problem in an asyn- 

chronous failure-by-omission (or crash-failure) system, 

and proves that the algorithm is optimal by consider- 

ing the power of the “adversary” scheduler to disrupt 

processors’ views. We show that the adversary need not 

cause any crashes or omissions to achieve its purpose, 

and therefore no algorithm can do better than simply 

to operate round-by-round, as ours does. The result- 

ing understanding of the adversary should be applicable 

to other problems in asynchronous failure-by-omission or 

crash-failure systems. 

1 Introduct ion 

A fundamental problem in designing fault-tolerant dis- 

tributed systems is how to eliminate or reduce differences 

between the information held by different processors. A 

classical abstract version of this is known as the Byzan- 

tine Agreement Problem [PSL], and has been studied ex- 

tensively, using many models of computation, reflecting 

differing amounts of synchrony in the system, different 

degrees of maliciousness on the part of faulty processors, 
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different power of computation of processors, and differ- 

ent requirements on the solution (see [Fi] for a survey 

of these results). The distressing fact that in a system 

with asynchronous communication (i.e. where messages 

cm take arbitrarily long to arrive) there is no agreement 

protocol that can tolerate even one fault, was first proved 

in [FLP], and extended to more general system models in 

[DDS]. 

Since reaching agreement is difficult even in syn- 

chronous systems, and impossible in asynchronous ones, 

several researchers have been led to study problems of re- 

ducing (rather than completely eliminating) differences 

between values held by processors. Obvious examples 

of such problems are clock synchronization ([LMJ, (IA], 

[@SD]) and app roximating a true value (e.g. a sensor) 

[MS]. An abstract formulation of the problem, which per- 

mits the use of techniques developed in studying Byzan- 

tine Agreement, is Approximate Agreement, introduced 

in (DLPSW], where algorithms were given for both sYn- 

chronous and asynchronous systems assuming Byzantine 

(i.e. arbitrarily malicious) behaviour of faulty processors. 

Those algorithms proceed in rounds, where in each round 

each processor receives the current value held by other 

processors and uaverages n these values to obtain a new 

value for itself (the function used is not the mean, but a 

fault-tolerant meaSure of central tendency). In (DLPSWI 

the algorithms given are shown to be optimal (for BYzan- 

tine faults) among algorithms having the same form, that 

is, where the value chosen in each round depends only on 
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values held by processors at the start of that round. The 

question is raised in [DLPSW], whether using informa- 

tion from other rounds permits better algorithms. This 

paper answers that question negatively for asynchronous 

systems in which processor failures are relatively benign 

(failure-by-omission), by giving an algorithm that pro- 

ceeds in rounds and showing that this is optimal among 

deterministic algorithms, 

The Approximate Agreement Problem is studied in 

this paper in the following form: there are n processors 

labelled 1,2,. . . ,n which are linked by a completely con- 

nected, fault-free, point-to-point network which is the 

only means of interprocess communication. A message 

submitted to the network will eventually reach its des- 

tination (where it will be delivered if the addressee asks 

to receive it), but no upper bound exists on the time 

from source to destination. We are interested in proto- 

cols i,l;ar, a;;i resilient to 1. failures, so we consider only ex- 

ecutions where at least n -t of the processors are correct, 

that is, they follow ihe given algorithm, and the remain- 

ing proce~ors ,:lle “faulty” ones, numbering at most t) 

are obliged to ti,Ilow the protocol as well, except that 

they may neglect to send some messages the algorithm 

requires, and they may halt (“crash”) at any time, with- 

otii other prc essors being aware of the crash.l In each 

execution each, kirocessor p begins with an initial value, 

.t .real number ~(pj, and (un!ess it has crashed) it mu::t 

eventually enter a decision state with a new value w(p) 

satkfying t.he validity condition that w(p) 1ic.s within the 

i;:terval of the initial values.2 We will measure the per- 

formance of such an algorithm by K, the ratio of the 

size of the interval containing the new values to the size 

‘Neglecting to send a message is included among the possible 

f,aults a~ a way of reconciling the tendency of real systems to lose mw- 

sages from time to time with the failure-free network of our model. 

“JDLPSW] demands that w(p) lie in the interval of initial values 

of correct, processors. Since we do not allow arbitrary maliciousness 

of faulty processors, there seems to be no reason to rule out their 

initial values. 

of the interval containing the initial valuess (so a good 

algorithm is one with a low K). 

The results of [DLPSW] indicate that any value for 

K can be achieved (so long as n > 5t) if enough com- 

munication is used, so we will restrict our discussion to 

algorithms using at most S rounds of communication. 

The algorithm given in [DLPSW] has performance 

KS ?$-” 
i 1 

The algorithm given in this paper is very similar to that 

of [DLPSW], but it is valid whenever n > t, and it is able 

to exploit the fact that failed processes do not exhibit 

malicious behaviour to obtain performance 

This accords nicely with the results in /Fe], where ii 

was found that for synchronous systems, the fai’iure-bj; 

omission model permits twice the rate of convergence a!- 

lowed by the Byzantine failure model. 

We also prove the matching lower bound 

K2 
I 
-1 
n-t 4 

t I 

for any deterministic t-resilient Appr0ximat.e Agreement 

algorithm in an asynchronous system with failure-by- 

omission faults. This proof is the major original conti- 

bution of this paper, since the result is surprising at first, 

considering that in [Fe] it3 was found that for synchronous 

systems with failure-by-omission faults (or By2antir.r 

faults) an S-round alworithm could do subr;t antially bet- 

ter that an itcrated round-by-round a1E;orit.h.m like thor c 

in [DLPSW] or this paper. The intuitive reason for this 

result is that the synchronous S-round algorithms of [Fe\ 

exploit the fact that the same set oft processes have to ac” 

count for the faulty behaviour in all the rounds. Thus the 

algorithms try to detect which processors are faulty, an< 

then alter the information received from them to re;luce 

the damage they can do. However in an asynchronor;e 

system with failure-by-omission, the worst damage a pr+- 

% the terminoIogy of [MS], K is the ratio of final precision to 

initial precision. 
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cessor’s failure can cause, is also produced by delaying its 

messages sufficiently.’ Since delays do not have to involve 

the same processors in each round, there is no extra in- 

formation to be obtained by carrying values over several 

rounds. 

In $2 we introduce needed notation, and then we give 

a formal model of our system, and define precisely what 

it means for an algorithm to use only S rounds of com- 

munication in an asynchronous failure-by-omission sys- 

tem. Then we express formally the intuition above, that 

any results an Yadversaryn can obtain by causing proces- 

sors to halt or not send messages, it can obtain without 

crashes or omissions, by delaying messages6 This result 

and the underlying intuition should have applications to 

other problems (e.g. Inexact Agreement [MS]) in asyn- 

chronous failure-by-omission systems. In $3 we give the 

.,l"e.&Cl..M -..A .bi.r,p that ;t k.A.2 tls- -l-:--J - --C-m-nrp 

Then in $4 we prove the matching lower bound, using 

the result from 52. In 55 we discuss the fact that the 

algorithm and the lower bound are both also valid in an 

asynchronous crash-failure system, where faulty proces- 

sors can only follow the algorithm or halt. 

I would lie to thank the members of the Theory of 

Distributed Systems group at M.I.T. for helpful discus- 

sions, and especially Jennifer Welch for eagle-eyed proof- 

reading. 

2 Notation and The System 

Model 

We introduce the notion of a multiset of values. Formal 

definitions can be found in [DLPSW], but for us it will be 

enough to say that a multiset (sometimes called a bag) 

is an unordered collection of values which need not be 

distinct. For each value u and multiset V we denote the 

‘This is reflected in [FLP] in the fact that the exe-&ions con- 

structed there do not involve processors failing. 
6Thii does not mean that an adversary without the power to 

cause crashes or omissions is as powerful as one with the power, but 

merely that (having the power) it need not exercise it! 

number of occurrences of v in V (the multiplicity of v) 

by mult(v,V). Th e smallest interval containing all the 

values in V will be denoted by p(V), and its length, the 

diameter of V, by 6(V), so p(V) = [min(V),max(V)], 

and 6(V) = Imax -min(V)l. We define the “average” 

that we will use by 

where X = 151 and the elements of the multiset V, 

in order from lowest to highest, are v~,~~,. . . ,vN. b, 

[DLPSW] the function av is called ft,o. We use two lem- 

mas which are special cases of Lemmas 4 and 5 from 

[DLPSW]. 

Lemma 1 Suppose U and V ure nonempty multisets 

with V E U. Then av(V) E p(U). 

Lemma 2 Suppose V, W, and U are noncmpty multisets 

with IV1 = JWJ = m, V C U, W C U and IW -VI = 

IV - WI 5 t. Then 

jav(V) - av(W)I 5 8. 

Now we give a formal model of an 

failure-by-omission system, based closely 

asynchronous 

on the most 

asynchronous model of [DDS], with asynchronous proces- 

sors, communication, and message order, point-to-point 

transmission, and separate send and receive operations.’ 

The main change to that model is that we allow multi- 

ple channels between each pair of processors, and allow 

a processor to try to receive messages from only a subset 

of channels, during a receive operation. This can be used 

to model the capacity in languages like CSP, for message 

receipt to be guarded by the message type. We also as- 

sume that there are initial and decision states for every 

real number, not just for 0 and 1 as in [DDS]. This for- 

mal model is not needed to discuss the algorithm or the 

lower bound, but it is needed for a rigorous proof of the 
intuition about the power of the adversary, mentioned in 

the introduction. 

‘By results in [v?], the processors could be assumed to be syn- 

chronous, without altering the results. 
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Formally, a protocol of the set P of processors 

1,2,... ,n is described by the following data: a universe 

M of messages, a collection C of channels for commu- 

nication, and for each processor p a set of states Z* 

and functions p* (describing message generation), TP (de- 

scribing the guards on message receipt), and P (de- 

scribing the state transitions). The collection of chan- 

nels has two associated functions begin : C -+ P and 

end : C -+ P. We put PI* = {c E C : begin(c) = p} 

and C”” = {c E C : end(c) = p}, respectively the sets 

of channels starting and ending at p. We define the set 

EP of events at p to be {t,0} U (C”** x M), where t is 

a place holder representing a crashed processor’s step, 

0 represents a step where no message is received at p, 

and (c, m) represents a step where message m is received 

by p from channel c. We form the set of events E as 

the tagged union of the set of events at each processor, 

E = u,(p) x EP. We say that the event (p,e) involves 

processor p. The set ZP is partitioned into a set of send- 

ing states 2; and a set of receiving states 2:. For each 

real number u there are distinguished an initial state with 

value v, giinit, and a set of decision states with vaiue v, 

$dee * We require that each state be an initial or decision 

state for at most one value v. The message generation 

function /3P : ZP -+ p(CP** x M) is required to satisfy the 

conditions I/~‘(Z)\ < 1 for all z, and /Y’(z) = 0 if z E 2:. 

Thus no message is generated during a receiving step, and 

at most one message is generated in a sending step. The 

guard function ++’ : ZP -t ~(C*~p) is required to satisfy 

-+‘(z) = 0 for z E Zg, modelling the fact that no messages 

are received during a sending step. The state transition 

function 6* : Z* x E* --t ZP is required to satisfy the con- 

dition that P(z,e) E Zvqdec for all 2: E ZZ,dcc and for all 

e, to reflect the irrevocable nature of a decision. We also 

require that SP(z, t) = 2 for all states 2, since t reflects a 

place-holder for a step not taken because of a crash. 

A configuration IC consists of a state for each processor 

and a multiset’ of messages for each channel. We write 
‘A multiset or bag is used, rather than a set, because the same 

message could be sent several times. 

st(p, G) specifying the state of processor p, and buff(c, K) 

for the messages in transit on channel c, in the configu- 

ration IE. We say the event (p,e) where e E EP is appli- 

cable to the configuration n, if either e = t or e = 0 or 

e = (c,m) where c E -+‘(st(p, K)) and m f buff(c,rc). 

Suppose (p,e) is an event applicable to rc. If e = 

(c,m) we define the failure-free result of (p, e) in K to 

be the unique configuration K’ with st(q,&) = st(q, K) 

for q # p, st(p,K’) = P(st(p,n),e) and buff(d,n’) = 

buff(d,rc) u {m’ : (d,m’) E /?*(st(p,n))) for d # c 

and buff(c,rc’) = (buff(c,rc) - (m)) U (m’ : (c, m’) E 

PP(St(p,4)). If e = 0 we define the failure-free re- 

sult of (p,e) in K to be the unique configuration n’ with 

st(‘z, K’) = st(q,K) for q f p, st(p,rc’) = GP(st(p,n),e) 

and buff(d,n’) = buff(d,rc) U (m’ : (d,m‘) E PP(st(p,K))} 

for d E C. If e = (c,m) we also define the failure re- 

sult of (p,e) in K to be the unique configuration K’ with 

st(q, 6’) = st(q,fi) for q # P, st(p,d = fiPbt(p, 4,4 

and buff(d,n’) = buff(d,K) for d # c and buff(c,rc’) = 

(buff(c,n) - Cm}). If e = t or e = 0 we define the failure 

result of (p, c) in n to be the unique configuration rt’ with 

st(q,n’) = st(q,n) for q # p, st(p,n’) = G*(st(p,n),e) ad 

buff(d,&‘) = buff(d, z) for d E C. Thus the failure re- 

sult of an event (p,e) is produced by p altering its state 

as required by the transition function P, but not adding 

a message to a buffer, even if required to do SO by the 

message generation function 7. 

A partial execution of the protocol is a finite, alter- 

nating sequence nl ,(PI, el) a, (~2, et) 43,. . .,(pr ,4 ,m+l of 

configurations and events, starting and ending with a con- 

figuration, satisfying the conditions: 

l for each processor p, st(p, ~1) = g,init for some vi 

l for each channel c, buff(c,nl) = 0; 

l for each i, (pi, ei) is applicable to 6;; 

l for each i, ni+r is either the failure-free result or the 

failure result Of (pi, ei) in /Ci; 

s if j > i, ci = t, and pi = pi, then ej = t. 
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An execution is an infinite alternating sequence 

m,(pl, el),n2,(p2, e2)m,. -. whose prefixes of odd length 

are partial executions. In an execution or partial ex- 

ecution nl,(p,, c~),Ic~, (pz,ez),~. . ., processor p is said 

to have failed if there is some i such that pi = p 

and l~i+l is not the failure-free result of (pi,ei) in G. 

Similarly, we say that processor p ckashed in the ex- 

ecution or partial execution if there is some i such 

that pi = p and ei = t. A partial execution p = 

~l,(pl,el),~z,(P2,e2),~s,...,(P1,e~),~~+1 isdledadmis- 

sible if at most t processors have failed in p. We say that 

an execution p = 61, (n,el),n2, (Pzre2),ns,. . . is dmki- 

ble if every prefix of odd length is an admissible partial 

execution and in addition, every processor is involved in 

an infinite number of the events (pi, ei), and also when- 

ever m E buff(c,q) then either there exists j > i such 

that ei = (c, m), or else there are only a finite number of 

indices k such that e) # 0 and c E 7P&(st(pk,nt)). Thus 

in an admissible execution every processor takes steps (or 

has place-holders for failed steps) infinitely often, and ev- 

ery message sent is eventually received, if the addressee 

requests it often enough. We say an execution or partial 

execution p is failurefree if no processor has failed in p. 

Given an execution or partial execution p = 

KI,(PI, el),nz, (pz, e2),e,. . ., ad a proe-or P, we say 

that p’s initial state st (p, nl), together with the subs* 

quence of events (pi, ei) which involve p (i.e. for which 

pi = p) form “the view of p in p” . We note that st(p, K~+I) 

is uniquely determined by the view of p in the partial Ed- 

ecucon 4hr ed,n29 (p2, e2h.. .,(P#, el),nl+b 

We have the following useful extension result: 

Lemma 3 Let p = 4~1, ed,Kt, 

(~2,e2),~,... ,(pl, el),lcl+l be an admissible, fuilure-free 

partial execution of a protocol. Then there is an 

admissible, failure-free execution p’ = nl,(pl, eI),n2, 

(p2,e2),b,... of the protocol which has p as a prefiz. 

Proofi We inductively construct (pirei) and ni+l for 

i > 1. Let pi = (i mod n) f 1. Consider the multiset 

of messages (m : m E buff(c,n;),c E 7pi(st(pi,n;))}, ar- 

ranged in order, from the earliest. sent to the latest sent. 

If the set is empty, let ei = 0, otherwise let ei = (co, nio) 

where mo is the member of the multiset that was sent 

earliest, and where m. E buff(eo,Ki). Now, let ni+l be 

the failure-free result of (pi, e) in 4. 

By construction, p’ is failure-free, and it is an execu- 

tion. By the choice of pi every processor takes an infinite 

number of steps in p’ and by the choice of ei every mes- 

sage is received if requested often enough. Thus p’ is 

admissible. Q.E.D. 

With thii formal model, we prove the result (descibed 

in 51) about the behaviour of the “adversary” against 

which our algorithm needs to work. 

Lemma 4 Let p be an admissible ezeeution of a protocol 

in an asynchronous failure-by-omission system, in which 

every processor that does not crash enters a decision state. 

Then there is an admissible, failure-free ezeeution p’ such 

that each processor that did not crash in p has the same 

view in p’ as in p, up to the pint where it enters a decision 

state (and thus it chooses the same decision value in both 

ezeeutions). 

Proof: Let p = ~~,(p~,e~),n~,(p~, e2),Ics,. . . . Let R 

denote the set of processors that have not crashed in 

p. Choose some index 1 so that st(p,q) is a decision 

state for every processor p E It. We will first. con- 

struct an admissible, failure-free partial execution p’ = 

n:,tp:,e:),n:,(p’,,e:),-.., n:, such that the view of p in p’ 

is the same as the view of p in p. We put IC\ = ~1. Now we 

define (&e:) and IC:+~ inductively, for i < 1. Let tii = pi. 

Ifei = f, let ei = 0, and otherwise let e: =‘ei. Let K.:+~ be 

the failure-free result of (p’, e:) in &. We note that (p:, e:) 

is applicable to K: since st(p, K:) = st(p, Ki) aa long as p 

has not crashed in the first i steps of p. Now we can use 

Lemma 3 to extend p’ to an admissible, failure-free exe- 

cution p’. For p E R, the view of p in p’ is the same as 

its view in the prefix of p ending in ~1, and (since there- 

fore st(p,ni) = st(p, y) is a decision state) we have thus 

completed the proof of the Lemma. Q.E.D. 
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A protocol in this formal model is said lo SO!V‘.! the 

Approximate Agreement problem if in every adnlissible 

execution every processor that has not crashed eventualiy 

enters a decision state, and if the value of each &&ion 

state entered is within the range of the values of the initial 

states. The performance of such a protocol is the supre- 

mum (over all admissible executions) of the ratio of the 

diameter of the multiset of values of the decision states to 

the diameter of the multiset of values of the initial states. 

We say that such a protocol uses only S rounds of com- 

munication (or that it solves the S-round Approximate 

Agreement problem) if in every admissible execution ev- 

ery message sent has round number at most S, where we 

inductively specify the round number of a message as one 

higher than the round number of any message that the 

sender had received before sending the message in ques- 

tion, or one if the sender had not previously received any 

messages. In a completely synchronous system in which 

all processors exchange messages every round, thii defini- 

tion agrees with the round in which the message was sent. 

This definition explains why our model needs to include 

a mechanism for a protocol to be able to guard against 

receiving some messages too early - once a round r mes- 

sage has been received, a processor has Iost the chance to 

send a round t message of its own. 

3 The Algorithm 

Each processor p acts according to the following algo- 

rithm, which we give first informally, as in [DLPSW]: 

l Initially, assign vu1 to be u(p), the initial value of 

processor p, 

l Next, for r = I, 2,. . . , S successively 

(i) Send a message (r, ual) to each processor (in- 

cluding p itself). 

(ii) Wait, trying to receive messages with r as 

the first component, and collecting the second 

components, until n -‘. t such rne~+agcs have 

been received. 

(iii) Arrange the n - t vaiues cn!i:hd ~1.1 :riX step 

(ii) in increasing order. Selsct, tT.c- lovlsst, (2. + 

I)-& lowest, (2t 4. I)-st. Lowest. ef.;.. Assign ual 

to be the mean of the (‘9 1 I~tlrfi’uktrS selected. 

l Finally decide on w(p) = vai, and thereafter do not 

send or try to receive messages. 

We refer to steps (i), (ii) and (iii) for r as forming “phase 

r”. 

Now we give a formal account of this protocol zing 

the model of 52, to illustrate the correspondence between 

that model and the higher-level description above. The 

universe M of messages consists of all the real numbers. 

The channels are CPIQI’ for p and q ranging from 1 to ?z, 

and r ranging from 1 to S, with begin(cPsQ*‘) = p and 

end(cPBqJ) = q. W e will use cP#qJ to carry the round 

r message from p to q. The state of each processor 

has components val (a real number), round (an inte- 

ger), valrec (an array, indexed from 1 to n, with each 

value either a real number or I, indicating no value re- 

ceived so far), numbersent (an integer between 0 and 

n - 1, inclusive), and mode (one of the values: send, 

receive, done). The receiving states 2: are those where 

mode=receive or mode=done, and the sending states 2: 

are those where mode=send. The initial state ~1,~~~~ has 

val=u, round=l, valrec[i]=l for ail i, numbersent=O, 

and mode=send. The decision states 2: dce are those with 

val=u and mode=done. The message generation func- 

tion PP is given by pP(z) =: ((CP,l,numbc~ant~l,r.ruu:ld: z.val)} 

if z.mode=send, and pJ’(z) = 0 otherwise. The message 

guard function is given by 7P(r) = {cqJ+r : t = z.round} if 

z,mode=receive, and yP(z) = 0 otherwise. The function 

G’ is given by the following procedure, which takes as ar- 

gumcnts a state z and an event e, and returns the value 

&‘(e, e). The local variable UJ is initially set to E, and its 

components are then modified till it.s villue is @‘(z, e). 



ComputeNextState(z:state,e:event):state 

Local variable w:state 

begin 

W+-2 

ife=t 

then return(w) 

if z .mode=send 

then if z.numbersent< n - 1 

then begin 

w .numbersent t w.numbersentf 1 

return(w) 

end 

else begin 

w.numbersent c 0 

w.mode=receive 

return(w) 

end 

if z.mode=receive and e=0 

then return(w) 

if z.mode=receive and e=(&‘.r, m) 

then begin 

w.valrec[~=m 

if I{i : w.valrec[i] # 1}1 < n-t 

then return(w) 

else begin 

W.val + av({w.valre+] : w.valrec[i] # I}) 

if w.round=S 

then begin 

w-mode *done 

return(w) 

end 

else begin 

w-round +- w.round+l 

for i = 1 , . . . , n do w.valrec[ij t I 

w.numbersent + 0 

w.mode e-send 

return(w) 

end 
end 

end 

if z.mode=done 

then return(w) 

end 

The main properties of this algorithm all depend on 

the following lemma, which relates the values of the vari- 

ables during successive rounds. 

Lemma 5 In an admissible czecution of the protocol 

above, in which the initial value of processor p is u(p), 

let ual; = u(p). Let va$,+l denote the value of val 

that is chosen in step (iii) of phase r. (Thus if p 

haa not crashed, it aends messages (r,ual~) in step 

(ii) of phase r). Let U’ denote the multiset (~0’~ : 

p has not halted before cxeeuting step (iii) of phase r). 

Then 

and 

Proof: It is clearly enough to prove that if p and q have 

not crashed before executing step (iii) of phase r, then 

and 

Let Vp’ denote the multiset of n-4 round T values collected 

by p in step (ii) of ph ase r. We note that V, C_ U’, since 

processors cannot exhibit Byzantine behaviour, and so if 

a message (r,u) is received by p from p’ then v = ~a$,,. 

Now IV,’ II Vp’l + IV,’ U V,,l = IV,1 + IV,‘1 = 2(n - t), but 

Vp’UVpI E U’,so \V;UV;t 5 n. Thus IV;flV;l 2 n-22t, 

and so IV; - V:l 5 t. The conclusions now follow by 

Lemmas 1 and 2, since t$+l = av(V,‘). Q.E.D. 

Theorem 1 The algorithm aboue solves the Approximate 

Agreement Problem using S rounds of communivation, 

with performance 

n--t 4 K< - r 1 t 
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Proof : Note that each message (r, u) is a round r mes- 

sage as defined in 52. The result is now immediate from 

the lemma. Q.E.D. 

4 The Lower Bound 

To simplify the analysis we will assume that any protocol 

considered has been put in a canonical form, ss a full- 

information protocol*. A full-information protocol is the 

following: 

l For I = 1,2,. . . , S successively 

(i) Send a message (r, hi&) to each processor (in- 

cluding p itself) where hist is p’s history (its 

view in the partial execution so far), that is, 

its initial value and a record of the messages 

that p received at each step. 

(ii) Wait, trying to receive messages with 1,2,. . .,r 

as the first component, until there is a set of 

n - t processors such that p has received r 

messages (one with each first component from 

1 to r) from each of these processors during 

the execution. 

l Finally decide on a value w(p) which is some func- 

tion of p’s history, and thereafter do not send or try 

to rec.eive messages. 

Different full-information protocols are given by using dif- 

ferent functions of the history to determine the decision 

value. We refer to steps (i) and (ii) for r as forming 

“phase r” of the execution. 

We briefly explain the reasons this form of protocol 

is completely general, in that any protocol can be im- 

plemented by a full-information protocol. As we only 

consider deterministic algorithms, each message is de- 

termined by the history of the sender at the time the 

message is sent, so we can assume that it is the history 

sThe full-information protocol we give here iz a natural general- 

ization to asynchronous systems of a standard form used for resaon- 

ing about synchrohous algorithms. 

itself that is sent. Since the receiver need not pay any 

attention to messages it is not interested in, there is no 

loss of generality in sending each message to every pro- 

cessor, or in sending a message for each round. Once 

a round r message is received, a processor cannot send 

a round r message of its own, so it should only try to 

receive messages from rounds up to r - 1 until it has 

sent its round r message. In order to put as much in- 

formation as possible in that message, it should not send 

the round r message till it is possible that the proces- 

sor has received everything that it will ever get, among 

the messages of rounds 1,. . .,r - 1. Thus, the processor 

should wait (trying to receive) as long as it knows that 

there are such messages still to come, but no longer. In 

the failure-by-omission asynchronous system, this means 

waiting until all messages of preceding rounds have been 

received from some set of n - t processors, since the re- 

maining t processors could have omitted to send all the 

messages not yet received from them.g Once a processor 

has entered a decision state, there is no point to trying 

to receive messages, as the final value in fixed, and any 

message sent after that point would violate the require- 

ment that no message have round number greater than 

S. We also note that in an infinite admissible execution 

of a full-information protocol, every processor (unless it 

crashes) eventually decides on a final value. 

To say that a protocol P has performance K 2 

[?I- ’ is to say that there is some run (determined 

by some choice of initial values, processor failures and 

message delay times) in which two processors p and q 

reach decision states with values w(p) and w(g) such that 

Iw(p) -w(g)1 2 [~l-“S where 6 = G(v(l),...,v(n)) is 

the size of the interval of initial values in the run. We 

will prove a stronger statement, since the extra condition 

helps the induction argument work. 

Theorem 2 For any protocol P that solves the S-round 

t-resilient Approzimate Agreement Problem in an asyn- 

OA detailed account of knowledge in failure-by-omission systems 

can be found in [MT]. 
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chronous, failure-by-omission system, there ia an admis- 

sible ezecution p (in which we denote the initial value of 

p’ by v(p’)) and processors p and g which enter decision 

states with final values w(p) and w(g) such that 

14P) - w(q)1 2 [yy b(v(l),. . . ,v(n)) 

and such that there are at most [ylt processors from 

which both p and g receive round S messages. 

Proof: For notational convenience we put v = [VI. 

We first prove the theorem for S = 1. 

We denote by p,, (a = 1,. , . , V) the processor at + 1, 

and by pV+l processor 1. Now we will describe a chain of 

admissible executions ps, pr ,. . .+++I such that processor 

pa has the same history in executions p,,-1 and po, and 

thus the same decision value in those executions. We wiil 

construct ps with each processor ,having initial value 1, 

so the decision value of pr in that execution must be 1. 

Similarly the decision value of pv+l in p,+l must be 0. 

From these facts it follows by a standard argument (see 

the lower bounds in [Fe] for example) that for some (Y the 

processes p. and po+l reach decision states with final val- 

ues that differ by at least y-l, in the admissible execution 

pa which satisfies all the conditions of the theorem. 

The execution po is one where every processor has 

initial value 1, no processors crash or omit to send, and 

each processor receives round 1 messages from processes 

t+1 ,. . .,n before entering its decision state. For a = 

1 , . . .,v - 1 the execution pp has processors 1,2,. . .,at with 

initial value 0, and processors at + 1,. . .,n with initial 

value 1. No processor crashes or omits to send, and p. 

enters its decision state after receiving round 1 messages 

from processors 1,. . .,(a - 1)t and at + 1,. . .,n, while ev- 

ery other processor (in particular p,+l) receives round 1 

messages from processors 1,. . .,at and (cz + 1)t + 1, . . .,n 

before entering its decision state. The execution pV has 

processors 1,2,. . ., it with initial value 0, and processors 

Yt + 1,. . . ,n with initial value 1. No processor crashes or 

omits to send, and p,, enters its decision state after re- 

ceiving round 1 messages from processors 1,. . .,(v - 1)t 

and vti-1,. . ., n, while every other processor (in particular 

pV+t) receives round 1 messages from processors 1,. . .,n- t 

before entering its decision state. In the execution pV.+l 

every processor has initial value 0 and each processor en- 

ters its decision state after receiving messages from pro- 

cessors 1,. . .,n - t. 

Now we suppose the theorem true for (S - l)-round 

protocols, and prove it for the S-round protocol P. 

From P we construct an (S - 1)-round full-information 

protocol Q. To describe Q we have to specify the decision 

value chosen by p after a given history h. This value will 

be the decision value chosen by p in protocol P after a 

history &. We now de&be k-lo Let Rp denote a set of 

n - t processors such that p received every message from 

each processor in Rr during h (such a set exists since p 

entered a decision state). The history i is the same as 

h during stages 1,. . . ,S - 2. During phase S - 1 of L, 

p receives only those messages (among those it received 

in h during phase S - 1) that were from processors in 

R,,. Then in phase S of i, p receives round S messages 

from the processors in Rr, and no other messages, We 

will have completed the description of h when we give 

the contents of these round S messages, Since this is a 

full-information protocol, the message p receives from p’ 

contains (beside the round number) a history of p’. This 

history is an extension of the history p received from p’ 

in the round S - 1 message in h, with the extra events 

during phase S - 1 being the receipt by p’ of any message 

(of rounds 1,. . ., S-l) from a processor in Rp that had not 

already been received by p’. We will see below that the 

history il is actually a history of p that occurs in a run of 

protocol P. Note that p can compute the history k, since 

it can compute the purported histories of processors p’ (as 

loWe will give the description in the same high-level terminology 

we have used to descibe the protocols. For a complete description in 

the fon.zal model of $2, we would also need to specify the order in 

which the messagea are received during each phase. Any consistently 

applied choice would be suitable, for example, receiving a round il 

message from processor pl before a round ia message from processor 

pn if pl < pi or (pi -= pz and il < ia). 
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it did receive during h all the messages it is appending to 

the history of p’). 

The theorem applied to the S - 1 round algorithm Q 

implies the existence of an admissible execution p’ of Q 

and processors p’ and q’ which reach decision states with 

final values w(p’) and w(q)) satisfying 

(w(p’) - w(g’)( 2 ~~]-S+lG(u(l),...,u(n)) 

and there are at most [yj t processors from which both 

p’ and q’ receive round S - 1 messages. Lemma 4 from 

52 implies that-we .canassume that no processor is faulty 

during p’. 

Choose processors po,pl ,. . .,pr such that po = p’, 

pv = g’ and p. # pp+l for ~1 = 0 ,..., v - 1. We will 

describe, in the next paragraph, admissible executions psr 

for c~ = 1 , . . . , Y of protocol P so that pa has the same his- 

tory in pm and pa+l. Furthermore, the history of po = p’ 

in execution p1 is the same as the purported history con- 

structed by p’ during protocol Q in the execution p’, and 

so during ~1, po must decide on value w (p’). Similarly the 

history of py = q’ during execution py will be the same 

as the history constructed by g’ to determine its decision 

value during execution p’ of protocol Q, so during py, pv 

must enter a decision state with value w(q’). Just as in 

the case S = 1, a standard argument shows that for some 

a=1 ,. . .,v, the: execution pa causes processors ppel and 

pa to enter decision states with final values w(P,-~) and 

w(p-) such that 

IW(P=-I) - W(Pa)l 1 IF1 JW(P’) - w(b)1 

2 
n-t -s 1 1 t J(dl), -. *, v(n)) 

The construction of p. also ensures that there are at most 

(V - 1)t processors from which P.-~ and pm both receive 

round S messages during pa, so that the admissible exe- 

cution p. satisfies all the conditions in the theorem. 

Each execution per will be identical to p’ for each pro- 

cessor during phases 1, . , . , S - 2. Also, in each execution 

no processor will crash or omit to send any message. Thus 

we can describe each simply by indicating which messages 

are received by each processor during stages S - 1 and 

S.” Let ~&p(p) denote the set of messages (of rounds 

1 ,. . $3 - 1) sent from a processor in 41 to p during the 

execution p’, except for those of these messages that had 

been received by p in stages 1,. . . , 5’ - 2. (Recall that R,,I 

denotes the set of n - t processors used in Q by processor 

p’ to determine its decision value). Thus when, in the 

execution p’ of protocol Q, p’ is constructing a history A, 

A&~(p) is the set of messages that processor p’ appends 

to the history of p in the first S - 2 rounds, to form a 

history that p’ pretends it received in a round S message 

from p. Similarly, let M,:(p) denote the set of messages 

(of rounds 1 ,. . ,,S - 1) from a processor in Rat to p that 

had not been received by p in stages 1,. . . , S - 2. With- 

out loss of generality, we can renumber the processors so 

that the lowest numbered processors are those in both 

&,I and .I$, and next come those in Rpl but not Rq,, and 

then those in neither Rql nor Rpt, and finally those in Rq, 

but not in 4~. That is, since each of Rp, and I$ contain 

n - t processors, we can assume that 4~ = {I,. . . , n - t} 

and&={i:i<n-2t+$}u{i:n-t++ci}, 

for some $ 2 0. The hypothesis of the induction is 

that &,f f~ Rppl 5 (JJ - l)t, which implies that cl, satis- 

fies n - 2t + 9 5 (U - 1)t. Now we construct phase S - I 

of the execution pa for a = 1,. . . ,u by requiring that 

the set of messages received by processor p during phase 

S - 1 be i%&(p) if (a - 1)t < p 5 n - t, and be A&,(p) 

otherwise. 

The construction of phase S of the execution wiI1 be 

given separately for the cases Y 2 2 and u = 1. First 

suppose y 1 2. In the execution ~1, during phase S, 

processor PO receives all the messages sent by processors 

1 ,**** n - t during phases 1,. . . , S that it had not previ- 

rlh the formal model of $2, we would also need to specify in 

whi& order the Proposers take steps, and in which order the various 

messages b a Phase me received, in order to ComPletelY specify the 

exe,-ution. For example, we could choose to let Processors take stePs 

h round robm order 1,. _. , R, 1,2,. . ., and similarly to let messages 

arrive in the order used for the formal description of Protocol P. 



ously received. In the execution pi every other processor 

(in particular pr) receives in round S all the messages sent 

by processors t + 1,. . . ,n during phases 1,. . . ,S, that it 

had not previously received. For Q = 2,. , , ,y - 1, in 

the execution pa the messages received by paB1 are those 

from processors 1,. . . , (a - 2)t and those from proces- 

sors (a - 1)t + 1 , . . . ,n (except for those of these mes- 

sages that had been received before), while all proces- 

sors except paA receive the messages from processors 

1 , . . . , (a - 1)t and from at + 1,. . . , n that they had not 

received before. The execution pv has stage S where 

processor py-l receives all outstanding messages from 

processors 1,. . . , (Y - 2)6 and from (V - 1)t + 1,. . . , n, 

while all the processors except pv-i receive the outstand- 

ing messages from processors 1,. . . , n - 2t + $ and from 

n--t+$+1,. . . ,n. Inthecasev= 1 we need to construct 

only the execution ~1, with phase S in which processor 

po receives all the as yet undelivered messages from pro- 

cessors 1 , . . . , n - t and each other processor receives all 

the messages from processors t + 1, . . . , n that it had not 

executions form a subset of the failureby-omission exe- 

cutions, it is obvious that any algorithm that solves the 

S-round approximate agreement problem in a failure-by- 

omission system will also solve the problem (with at least 

as good a performance) in a system where crashes are the 

only possible failures. However, it is (a priori) conceiv- 

able that there is some protocol that solves the prob- 

Iem in a crash-failure system, and that uses the special 

nature of the crash-failure system to obtain better per- 

formance than is possible for any algorithm in the more 

general failure-by-omission system. We show that this is 

not the case by converting any protocol for the crssh- 

failure model into a general protocol, and then applying 

Theorem 2. Thus the lower bound of $4 also applies to 

the crash-failure model, and so the protocol of $3 remains 

optimal in the more restricted crash-failure system. 

received before. 

Theorem 3 For any protocol P that solves the S-round 

I 

t-resilient Approzimate Agreement Problem in an asyn- 

- . 

chronous, crash-jailure system, there is an admissible ez- 

v(p’)) and processors p and q which enter decision states 

ecution p’ /in which the initial value of ti will be denoted 

It is now straightforward to see that the executions 

constructed above have the properties claimed for them, 

completing the proof of the induction step of the argu- 

ment. Q.E.D. 

with final values w(p) and w(q) such that .- _ .-_ 

(W(p) -w(q)1 2 [~1-S6(u~l),...,u(n)) 

Proof: We first note that we may assume that P has 

the following form (which is a full-information protocol 

5 The Crash-Failure Model 
for the crash-failure model): 

l For r = 1,2,. . . , S successively 

We now consider the approximate agreement problem in 

an agynchronous crash-failure system, which is just like 

the synchronous failure-by-omission system discussed so 

far, except that the “adversary” is restricted in the ways 

it can have processors fail. In a crash-failure system pro- 

cessors may crash or they may operate correctly, but they 

can not omit to send a message and then continue func- 

tioning. In the formal model of $2, we say that an execu- 

tion or partial execution is crash-jailure if every configu- 

ration is the failure-free result of the previous step unless 

the previous step was (p, t) for some p. Since crash-failure 

(i) Send a message (r, hist) to each processor (in- 

eluding p itself) where hist is p’s history (its’ 

view in the partial execution so far), that is its 

initial value and a record of the messages that 

p received at each step. - 

(ii) Wait, trying to receive messages with 1,2,. , .,r 

as the first component, while p knows that 

some message remains in transit to p. That, is, 

wait until p has received a round r1 message 

from q (for every choice of rr and Q such that 
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there is a round rs message from q with rr > rr 

among the messages p received, or among the 

messages whose receipt is reported in the his- 

tories that are the messages p received), and 

until there is a set of n - t processors (includ- 

ing p itself) such that p has received r mes- 

sages (one with each first component from 1 

to r) from each of these processors during the 

execution. 

l Finally decide on a value w(p) which is some func- 

tion of p’s history, and thereafter do not send or try 

to receive messages. 

We construct from P a protocol Q that is a full- 

information protocol for the failure-by-omission model as 

decribed in 54. Thus we need only specify the decision 

value chosen by processor p in Q after a history h, and 

this will be the decision value chosen by p in P after 

a history i= converts(h), where convert; is a function 

that we will define in the next paragraph, that converts 

an S-round history of p in the full-information failure- 

by-omission protocol to a history in the full-information 

crash-failure protocol. 

We define inductively convert: to convert a history 

h of p up to the end of phase r in the full-information 

failure-by-omission protocol, into a history of p up to the 

end of phase r in the full-information crash-failure pro- 

tocol. If r = 1 then h consists of an initial value u(p) for 

p, followed by receipt of n - t messages containing ini- 

tial values of processors. We define convert:(h) to be the 

history consisting of the same initial value u(p) followed 

by receipt of the same messages as in h and also (un- 

less h already contains the receipt of a round 1 message 

from p) by the receipt of a round 1 message from p itself, 

containing its own initial value. Now if r > 1, we let h’ 

denote the p&.x of h up to the end of phase r - 1 of the 

full-information protocol. We will form convert:(h) as 

an extension of convert:-,(V), with the additional events 

(forming phase r of the protocol) being receipt of certain 

messages described below. First, for any round rl mes- 

sage from p1 (containing the history hr of p1 up to the 

end of phase rl - 1) that p received during phase r in 

h, we include among the events of convert:(h) the receipt 

by p of a round r1 message from p1 containing the history 

convert::-r(hr), except if convert&,(P) already contains 

the receipt by p of a round r-1 message from ~1. Next, 

we include in convert:(h) the receipt by p of a round r 

message from itself containing the history convert:-r (h’), 

unless a round r message from p is already among the 

messages whose receipt was added in the first step of the 

construction. Finally, we examine all the messages re- 

ceived by p in phase r of h or whose receipt is reported 

in a message received by p in phase r of h. For each such 

message, say a round rs message from p2 containing a 

history hz, and for each rs such that rs < r2, we include 

in phase r of convert:(h) the receipt by p of a round rs 

message from pa containing the history convert~~-r(h3), 

where hS is the prefix of hz containing the events up to 

the end of phase rs - 1 of the full-information failure- 

by-omission protocol, unless the receipt by p of a round 

r3 message from p2 is among the events of convert:-r (h’) 

or among the events included previosly into phase r of 

convert:(h). This completes the account of the computa- 

tion of convert{(h), and therefore of the protocol Q. 

Let p be any admissible execution of the protocol Q. 

By Lemma 4 there is an admissible failure-free execution 

pl of Q with the same initial values, and in which all pro- 

cessors that did not crash in p reach the same decision 

values. Then there is an admissible, crash-failure execu- 

tion pi of P, such that for each processor p the view of p 

in pi is convert$(h), where h is the view of p in pr. Thus 

the initial values and (by the construction of Q) the de- 

cision values chosen in p1 are just the same as those in 

pi. Since P solves the Approximate Agreement problem 

we know that the decision values chosen in pi are within 

the range of the initial values. Therefore the decision val- 

ues chosen in pr (and hence in p) are within the range of 
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the initial values, and so we see that Q aolves the Ap- 

proximate Agreement problem in the failure-by-omission 

system. Thus from Theorem 2 from 54, we deduce the 

existence of e. pa&c-Jxar execution p of Q, for which there 

are processors p and q whose decision values sat& 

The correspondi execution #r of P therefore has the 

properties required for thii theorem. Q.E.D. 
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