RIGHTS

Asymptotically Optimal Algorithms For Approximate Agreement
A. D. Fekete

Department of Mathematics

Harvard University
Cambridge, MA 02138
fekete%h-mal@harvard

ABSTRACT

This paper introduces some algorithms to solve crash-failure,
failure-by-omission and Byzantine failure versions of the Byzan-
tine Generals or consensus problem, where non-faulty processors
need only arrive at values that are close together rather than
identical. In the failure-by-omission and Byzantine failure algo-
rithms, each processor attempts to identify the faulty proceasors
and corrects values transmitted by them to reduce the amount
of disagreement. For each failure model and each value of 5,
we give a t-resilient algorithm using S rounds of communication
which has convergence rate that is asymptetic to the best pos-
sible as the number of processors increases. If § = t + 1, exact

agreement is obtained.

1 The Problem and Statement of Results

An important question in the design of fault-tolerent distributed
systems is how to enable non-faulty communicating processors
to agree even when faulty processors in the system are interfering
by providing different correct processors with different informa-
tion. Examples of applications include agreeing on whether to
commit & database transaction and agreeing on which copy of
& file is the primary copy. Classical formulations of this prob-
lem are known as the interactive consistency problem and the
Byzantine Generals problem ([F]). These problems have been

studied in several models of computation, and it has been found

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
che publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, of to republish, requires a fec and/or specfic
permission.

® 1986 ACM 0-89791-198-9/86/0800-0073 75¢

i,

73

that any solution resilient to ¢ faulty processors requires ¢ + 1
rounds of communication in the worst case ([PSL), [LSP], [FL|).
In some practical situations complete agreement is not required
- e.g. in synchronizing clacks ([LL)) or reading a sensor, it is of-
ten good enough if all the values held by different processors are
close together. We may hope for protocols using fewer rounds of
communication for this problem called the approximate agree-
ment problemn, which was first studied in [DLPSW).

In this paper we study a t-resilient appoximate agreement
problem in this form: there are n processors labelled 1,2,... .
These processors are linked by a complete, synchronous, fault-
free point-to-point network which is the only means of inter-
process communication. In each execution there is some subset
Corr of processors (the correct ones), so that if p € Corr then
p executes the given algorithm. We consider three models of
computation distinguished by the flexibility of behavior of the
other (faulty) processors. In the ¢rash-failure model a faulty pro-
cessor executes the given protoco] up to some point and then
halts (without loss of generality we assume the crash doesn’t
occur in the middle of sending a message). In the faslure-by-
omiéssion model a faulty processor may neglect to send a mes-
sage that the protocol calls for it to send, and it may halt, but
it does not send any message that ia different from what the
protocol requires. The most general model is the Byzantine
model, in which a faulty processor may change state or send a
message arbitrarily. We denote the set of faulty processors by
Fault = {1,2,...,n} \Corr and set f = |Fault|. Each processor
p has an initial value v (p} which is a real number and at the end
of any execution of the algorithm for which f < ¢ each correct
processor p must arrive at 8 new value w (p) satisfying a validity
condition: in the crash-failure and failure-by-omissicn models

this is that for correct p, w (p) must lie within the range of the

RIGHTS

initial values. In the Byzantine madel we do not trust the initial
values of faulty processors, so we insist that for correct p, w (p)
must lie within the range of the initial values of the correct pro-
cessors. Naturally we put no requirement on the final state of
the faulty processors, nor on the behavior of correct processors
when more than t processors are faulty.

We denote the smallest interval containing a collection of
values V by p(V) and its length, the diameter of V', by § (V)
so that p(V) is the interval {min(V), max (V)] and & (V) =
max (V) — min (V). Let us denote by U the collection of initial
values of all processora and by I the collection of initial values
of correct processors, so U = {v(p)} and U= {v(p) : p Corr}.
We can express the validity condition in the failure-by-omission
and crash-failure models by “f |Fault| < ¢ and p € Corr then
w(p} € p(U)". Similarly in the Byzantine model the validity
condition is “if |Fault| < t and p € Corr then w (p) € p (f])”

We will measure the performance of such an algorithm by
the change in the range spanned by the values of the proces-

sors. Thus we measure performance in the crash-failure and

6§ ({w(p):p€ Corr})
5(0)
8 ({w(p) : p€ Corr})
5@
in each case the supremum being taken over all executions with

failure-by-omission models by K = sup

and in the Byzantine model by X = sup

|Fault] £ t (so a good algorithm is one with a low value for
H). Notice that the identification of processors as faulty or cor-
rect is not known to the processors during the algorithm and
in fact a given execution may be explained by more than one
identification.

The greater generality of the Byzantine model means that
any algorithm valid in that model is also valid with at least as
good a performance in the other models. Similarly any lower
bound on achievable values of K in the crash-failure model ap-
plies to the other models as well.

For the Byzantine model, the paper [DLPSW] gives an al-
gorithm using only one round of communication, valid when
n > 3t, with performance K = [(n—2t)/t]”*. This is opti-
mal if only cne round of communication is allowed. We can
clearly iterate this algorithm (that is, use the final values pro-
duced by one execution as initial values in another and then
use the final values of that as initial values in a third execu-
tion, and 86 on for § rounds). This gives an S-round solution
with K = ([(n — 2t)/¢])™5. The present paper introduces an

S-round algorithm valid when n > 4t, with performance

i,

74

sup(ly«++lg : 1 +---+ Ig £ t, all I; nonnegative integers)

K= (n—2t)(n— 42)°7?

By elementary calculus this supremum is at most ¢5/ 59 8o we

see
ts

K<
T 85(n—2t)(n—at)" !
which for large n is asymptotic to §% times better than the per-

formance of [DLPSW] iterated. In fact as n/t — oo so the frac-

tion of faulty processors decreases, this performance is asymp-
totic to the best possible for an S-round algorithm resilient to ¢
Byzantine failures by the lower bound

, 5up (ti--+1s : iy +---+ s < 2, all l; nonnegative integers)

K (n+1)®

which is due to [DLPSW]. An interesting feature of our algo-
rithm is that each processor tries to identify which of the other
processors is faulty, and then ignores any information received
from a known faulty processor to reduce the possibilities for dis-
agreement.

In this paper we give a new lower bound for K in the crash-
failure model, namely

gup(ly'++lg il +++++lg £t, all l; nonnegative integers)
(2n +32)°

for any algorithm using § rounds of communication. We also

K>

give an algorithm for the crash-failure mode! with performance

sup{ly---lg: & +---+ s < ¢, all ,; nonnegative integers)
(2n — 22)°

which is asymptotic to the optimum as n increases.

K<

We offer an algorithm in the failure-by-omission model by
combining parts of the algorithms from the other models. This
has performance

K < BUP (fi++lg: 4+ +1g <t, all ; nonnegative integers)
= (2n - 46)°71 (2n — 24)

which is asymptotic to optimal.

It is worth noting that f S = ¢ + 1 the expression
sup{ly---lg : Iy + -+ + lg < t, all i; nonnegative integers) is
zero, as one of the I; must be zero, and so our algorithms give
solutions to the exact agreement problem when run for ¢ + 1
rounds. In the Byzantine model this solution satisfies the strong
validity condition that the value agreed on lies in the range of
initial values of correct processors (this is not achieved by nor-
mal Byzantine agreement algorithm on each bit of the initial
values unless some removal of extreme values is done). In each
medel our algorithm for & rounds staris by doing all the com-

munication of the § — 1 round algerithm, so it is possible to do

RIGHTS

approximate agreement without knowing at the start how many
rounds will be used. In fact, after each rcund the new values can
be calculated as if that round were the last — this permits the
values held by the correct processors to approach one another
rapidly, finally agreeing if ¢ + 1 rounds are used.

The algorithms introduced here require expanential amounts
of message traffic, like most other consensus or Byzantine Agree-
ment algorithms. Coan has introduced a transformation which
can encode algorithms of this type so &s to require only poly-
nomial communication ([C]). However in the Byzantine model
Coan’s transformation costs a few rounds of communication, and
go the transformed algorithm will not have performance that is
agymptotic to optimal. The decision in practice between Coan's
transformation of our algorithm, and the jteration of the cne
round algorithm of {DLPSW)] (which involves only linear mes-
sage traffic) will depend on the details of the system. In the
crash-failure and failure-by-omission models Coan’s transforma-
tion involves no overhead rounds and sc is a definite improve-
ment to our algorithms.

In §2 we give the notation and technical lemmas we will use
later. §3 provides an intuitive introduction to the algorithms
by discussing a similar but gimpler algorithm and pointing cut
the modifications needed to get asymptotically optimal perfor-
mance. §4 discusses the algorithm in the Byzantine model, and
§5 gives the corresponding lower bound. In §6 and §7 we then
give algorithm and lower bound for the crash-failure model, and

§8 is devoted to the failure-by-omission model.

I would like to thank Professor Nancy Lynch for teaching -

me about distributed algorithms and suggesting this problem,
Michael Merritt for finding a major error in an early draft of
this paper, Brian Coan for detailed cornments on & later draft,
Leslie Lamport for suggestions about the crash-failure case and

Yoram Moses for fruitful discussions about §7.

2 Notation and Lemmas

In order to give the algorithms precisely, we introduce the lan-
guage of multisets. A formal account appears in [DLPSW]| but
for our purposes it is enough to think of a multiset as an un-
ordered collection of values which need not be distinct. For
each value v and multiset V' we denote the number of occur-

rences of v in V (the multiplicity of v) by muli(v,V). The

values may be either real numbers or the special symbols L,

i,

75

denoting a value not received in round r because (for exam-
ple) a processer failed to send it. We define union, intersection,
cardinality,max ,min, mean for multisets in the obvious ways,
min(mult(v, V), mult(v, ¥))
and (V| = I, mult(v,V). Also let double(V) be defined by
mult(v, double(V)) = 2mulit(v, V).

As in [DLPSW] we will try to reduce the range of values

eg for any v, mult{v,V N W) =

held by processors by using operators that act on multisets by
removing extreme values. Let V' be a multiset with (V| = N.
We put redi(V) to be the multiset with N — 2k entriea formed
frem V by removing the & highest entries and also the k lowest
entries. We order the values by treating L, as greater than any
real number and also as greater than Lp if r > R. For the
crash-failure or failure-by-omission models we will use similar
operators chepy that prefer to remove 1,. If |[V] = N and
mult(L,, V) = j then chopf(V) is a multiset of 2N — 2k entries
formed from double(V) either by removing 2k copies of L, (in
the case j > k) or else by removing all 25 copies of 1, and then
removing the & — 5 higheat and k — 7 lowest of the remaining
entries.

We similarly have operators to find a single number to be
an “average” for a multiset. Suppose |V| = N and at least
N — k entries in V are real numbers. Then we put mid (V) =
mean(red,(V)). Similarly if [V| = N, at least N — k entries of
V' are real numbers and mult(L,,V) = 0 for r > 1 we define
centery (V) = meen{chop}(V)). The facts below and the condi-
tions given will ensure that & mean is only taken for multisets

of real values. As examples:
+ {-1,-1,0}u{0,1} = {-1,-1,0,0,1}
o {-1,-1,L,}u{0, 41,19} = {-1,-1,0,14, 13}
e {-1,-1,0,0}n {-1,0,0,1} = {-1,0,0}

. I{_.ll —1,0}' =3

H-1,-1,0,1L,}| = 4

o reds ({-1,-1,-1,0,0,1}} = {-1,0}

o redy({-~1,~1,0,1,, L;}) = {-1,0,1,}

® chop}({—1,0,0, 13, £2}) = {~1,-1,0,0,0,0,.14, 15}
* chopi({-1,0,0, Ly, Ls}) = {~1,0,0,0}

o midy({-1,-1,-1,0,1,1;}) = —05

RIGHTS

e centers({-1,-1,0,1,.1,}) = ~05
e centery({—-1,-1,0,1,1,}) = —-1/3

In our discussion we will need to know how the operators
introduced affect the range of values in a multiset and the dif-

ferences between two multisets. We have the following results:

Lemma 1 [DLPSW] IfV is a maultiset witk |[V| = N, end at
least N — k elements of V lie in the range [,}], then every

element of red; (V) lies in the range [a, b].

Proof: At most k elementa of V' are greater than & and all of
these must be removed among the k highest elements of V" when
forming redy (V). Thus every element of red; (V) is less than or
equal to b, and a symmetric argument shows that every element

of redy (V) is greater than or equal to a. Q.E.D.

Lemma 2 [DLPSW/ IfV and W are multisets then {redy (V)N
red, (W)| 2 [V AW| - 2k.

Prooft Since VNW CV, rede (VNW) C red (V) and sim-
larly red, (V NW) C redy (W), so redp (VNOW) C redi (V) N

redg (W), but |red, (VNW)| = [V O W| - 2k. Q.E.D.

Lemma 3 Let V end W be multicets with |V| = |W|

N. Suppose that every entry in VU W s one of v,
or L,, and that mult(1,,V) < k end mult{l,,W) < k.
If |mult(v, V) — mult(v,W)| + |muit(w,V) — mult(w,W)| <
m then |mult(v, ckopi(V)) — muli(v,chopi{W)}| £ m and
|muit(w, chopf(V)} — mult{w, chopi (W)} < m

g

A

Proof: Without loss of generality we may assume v < w. We
first: observe that W can be formed frem V by a sequence of at
most m operations, each being the replacement of a single entry
by L, or the replacement of a single occurence of L, by either
v or w. Thus it is enough to prove that |mult(v, chopi(V7)) —
mult(v, chapi(V2))| < 1 when mult(L,, Vi) < k—1 and V3 is
formed from V; by removing a single occurence of # (which is
either v or w) and replacing it with L,. So we put j = mult(L,
, V1) and let Z denote the multiset of 2¥ — 27 entries formed by
removing all occurrences of L, from double(Vy). Now chop} (V1)
is formed from Z by removing the k — j highest entries and the
k — 7 lowest entries. On the other hand, chop}(Va) is formed
from Z by removing two occurrences of z and then removing

the & — 5 — 1 highest and & — § — 1 lowest of the remaining

i,

76

entries. If z = v this is equivalent to removing the & - 7 — 1
highest and k — 5 + 1 lowest entries from Z as v is the lowest
entry in Z, while if 2 = w the net effect is to remove the k— 57 +1
highest and k — 5 — 1 lowest entries from Z. Thus we can obtain
chop}(Vz) from chop}(V1) either by removing an occurrence of
the k — 7+ 1 lowest entry of Z and adding an occurrence of the
k — 5 highest entry of Z, or else by replacing an occurence of the
k — 7 highest entry of Z by the k — j lowest entry of Z. In either
case we see that the multiplicities of v and w can each change

by at most 1. Q.E.D.

Lemma 4 If V is a multiset with [V] = N, mult(L,,V) £ k
such that at least N — k entries of V are different from 1. and
lie in the interval [a,8], then every entry of chop}, (V) Hes in
[2,5].

Proof: Let mult(L,,V) = j and let Z denote the multiset of
2N —2j entries formed from double(V') by removing all 27 copies
of L,. Now chop};(V) = reds,;(Z), and at least 2N —2k entries

of Z lie in [a,] so Lemma 1 completes the proof. Q.ED.

Lemma & SupposeV end W are multisets with [V]| = |W| = N,
[VAW| 2 N —m and at least N - k elements of cach of V' and
W lic in the intervel [a,b]. Then midy (V) end midi (W) lie in
[a,8] and [midg (V) — mid {W)| < m(b— a)/(N — 2k)

Proof: By Lemma I we see that all the entries of red, (V) lie in
the interval [a,] and so their average midg (V') also lies in [a, }].
Similarly every entry of red,(W) and also mid,(W) lies in |a, }].
By Lemma 2, the multisets red;(V) and red,{W) agree in at
least N — 2k — m of their entries, and in each of the remaining m
places, the entries can differ by at most b—a as each lies in {a; b).
Thus |mid, (V) — mid(W)| = 'N%.Fl Tredy (V) — T redy (W) <
m{b —a)/(N — 2k). Q.E.D.

Lemma 6 Suppose V end W arc multisets with |[V| = |W| =N,
such that muli(L,,V) < k, mult(L,,W) < k, mult(L, V)=
mult(L,, W) = 0 for r > 1, all real entries of VU W ke in
the interval [a,B] and 30, [muit(e,V) — mult{v, W}| < m.
Then centery (V) and centery(W) lie in [a,b] and |center,(V) —
centery (W) < m(b - a)/(2N - 2k)

Proof: The hypotheses show that in double{V') there will be at
most 2k entries that are not real, and all of them will be 1; and
80 will be remaoved in forming chop (V). Thus the resulting mul-

tiset has all its entries in [a,b] and =0 its mean center (V) also

lies in [a,B]. Similarly center,(W) also les in [q,b]. Now as in
the proof of Lemma 3 we observe that W is formed from V by at
most m operations each replacing a value by L or vice versa. So
we need only prove that if V; and V; are multisets with |Vi[= N,
mult{L1, V1) < k~ 1, muit(L,,4) = O for r > O, and every real
entry of V| lies in the interval |a, b] and such that V3 is formed
from V; by removing one occurrence of a value z and replacing it
with Lj, then |centery(V}) — centery(V3)]| < (b — a)/(2N — 2k).
So we put 7 = mult{1, V1) and let Z denote the multiset of
2N — 25 entries formed by removing all occurrences of L, from
double(V1). Now chopi(V1) is formed from Z by removing the
k - 4 highest entries and the k — j lowest entries. On the other

hand, chop}(Vz) is formed from Z by removing two occurrences
of z and then removing the k — 5 — 1 highest and k — 57 — 1

lowest of the remaining entries. If z is among the k — y — 1
lowest entries of Z, this is equivalent to removing the A — 7 ~ 1
highest and k — j + 1 lowest entries from Z. If z is among the
k — 7 — 1 highest entries of Z the net effect is to remove the
k ~ 7+ 1 highest and & — j — 1 lowest entries from 2. Thus
in these cases, we can obtain chop}(Va) from chopf(V}) either
by removing an occurrence of the k — j + F lowest entry of Z
and adding an occurrence of the k — j highest entry of 2, or
else by replacing an occurence of the k — 5 highest entry of Z
by the k — j lowest entry of Z. Clearly in these cases, the sum
of the entries of ckopj (V1) differs from the sum of the entries of
chopl(V3) by the difference of two elements of the interval [a,b]
which is at most b — a. In the remaining case z lies between the
k — ; lowest entry of Z (call it 2') and the k — j highest entry
of Z (call it &), but chopj(V3) is obtained from ckopj(V3) by
removing two occurences of » and replacing them with o' and &'
which will alter the sum of the entries by b’ + a' — 27 which is
&t most b’ — z {as z > a') but this is bounded by b — a. Thus in

every case

feentery (Vi) — centery(Va)]

= syl I chopi (V1) — X chopi(V2)]
< (b—a)/(2N - 2k)
as required. Q.E.D.

3 Introduction to the Algorithms

The algorithms given in this paper are all variants on a sin-
gle plan. To help the reader understand them we give here an

account of a basic algorithm for the crash-failure model. This

algorithm is not optimal, but it is simpler than the others while
still capturing the essential features, and it will isolate the main
issues involved in solving the approximate agreement problem.
For ease of exposition in this end the later algorithms, we will

guppose that when a processor broadcasts information it sends

to iteelf as well as to the other processors, though in imple-
mentation this will require remembering, rather than sending a
message.

In the basic algorithm, processor p, until it fails, must per-

form the following -

¢ In round 1: Broadcast v{p), and denote by v{(q1,p) the
value received by p from ¢; as v (g1). If the message from

@1 is missing set v (g1, p) to be L;.

e In round 2: Broadcast the vector of values {v(l,p),
v(2,9),. .., v(n,p)) and denote by v (g1,42,p) the value
received by p from ¢z as v (q1,42). If the message from g2

is missing set v (g1, g2, p) to be L3,

e In round », for » = 3,...,5, processor p will start

with an array of n"™! values {v{q1,¢1,...,¢r-1,P) :
eachq; = 1,...,n). Now p should broadcast the array
(v(g1,92,---19r-1,p)). Denote by v(q,...,8r-1,9r, P) the
value received by p from g, as v(q,...,8r-1,¢.). If the
message from g, iz missing set v (q1,...,9r-1,9-, 8) to be

L.

e At the end of round S, processor p has an array of val-
ues v{g1,...,93,p). Now let W (q1,...,45,p) denote the

multiset with & eingle entry v (¢1,...,¢5,p)-
o For each r decreasing from S—-1to1
— for each choice of gy,. . .,gr, form a multiset

W (g1 - Grs%--a%P)
= rcd("_ms---xt Y =1 W(aL,. 18 3re1: %%, %, P)
where in every case the asterisks fill places so that
there are § + 1 entries, either asterisks or indices, to

name each multiset.
« Now put W (p) = U3 W (a1,%,...,%,p)-
« Finally put w{p) = mid,,_,s-1, (W ().

The elgorithm has two phases. First there are S rounds of

communication, in each of which each active processor broad-

77

RIGHTS L

RIGHTS

casts all the information it holds and collects the information
sent to it. After round r processor p has an array of val-
ues {v(g1,...,4r,p) : each q; = 1,...,n) where v{q1,...,qr,)
is the value p received from ¢, representing the initial value
v{q1) as transmitted by ¢ to ¢a in round 1, then relayed by
gz to gs in round 2, and so on. In the second phase, after
all communication has occurred, processor p builds for each
choice of ¢1,...,¢- & multiset W(g,...,¢.,%,...,¥,p) out of the
collection of values {v(gs,...,¢r,qr+1,...,45,p) : eachg; =
1,...,nforj > r}. Now if ¢r,¢rt1,...,¢s are all non-fanlty
then v{gs,...,Gr: @rs1s---,95,P) = v{q1,...,¢,) and in fact the
method of constructing W(gy,...,4r, *,...,*,2) by successively

combining multisets and removing extreme values is designed

to ensure that W(gy,...,qr,»*,... ,*%p) is a multiset of size
(n — 2t)°~" which is a good representative for v{g1,...,q,) in
that

(i) if g, has not failed before the start of round r + 1 then every
entry of W(g1,...,qr,*,...,%,p) has value v(q,...,¢.), and
(ii) the multisets W{gy,... ¢, *,...,%,po) and W(g1,...,q., %,
... %, p1) are not very different — in fact they are the same un-
less g, failed precisely during round r, in which case they differ
in at most {4y -+ Ig entries, where l; denotes the number of
processors failing precisely in round j.

These properties are easily proved by descending induction using
the recursive construction of W{gs,...,qr, *,...,*, p) and using
the lemmas about the red, operators. Finally using these facts
about the multisets W (g, *,...,*,p) and the property of the
operator mid, we establish that w(p) lies in the range s{I/) and
that

Ioolg
- < L5(U
[w (po) — w(p1)| < ey (4]

which shows that

K < BuP {lfy«+-lg : Iy +---1g < t, all [; nonnegative integers}

(n-2t)°

as the processors that fail precisely in round 1 are different from

those that fail precisely in round j if € # ;.

The above argument hinges on the fact that a faulty pro-
cessor can cause different correct processors to receive different
information only during one round {the round when the faulty
processor crashes) since before the crash the faulty processor
genda the same correct message to everyone, and after the crash
it sends nothing to everyone. The difficulty we face in the failure-
by-omission and Byzantine models is that & faulty processor may

causge diffences between the views held by correct processors in

i,

78

more than one round. To overcome this, in the algorithms of §4
and §8 each processor performs fault detection, examining the
messages relayed to it by other processors that they received
from g to try to deduce if ¢ is faulty. Once & processor p has
deduced that g is faulty, it refuses to listen to messages from g,
using L, in place of the values in them. If a processor ¢, has
not been detected as faulty by everyone by the end of round
r + 1, ite performance in round r must have been quite close
to correct, and our algorithms remove encugh extreme values in
forming the multisets W(gy,...,4r, %, .., %, p) that these multi-
sets are the same for different p. On the other hand if g, was
detected as faulty by everyone before round r then everyone was
ignoring values transmitted by ¢, in round r, and the multi-
set W{g,...,qr, %,...,%,p) will contain only L, and so be the
same for different p. Thus the fault detection ensures that a
faulty processor can cause significant differences in the views of
correct processors only in one round, namely the round before
the one in which the last of the other processors detects the
failure.

The algorithms of §6 and §8 also obtain better perfor-
mance than the basic algorithm above by using the operators
chop}, and center, which are more complicated than red, and
mid; but are specially adapted to the situations where the
only differences between multisets W(ygy,...,¢r, *,...,*%,pa} and

W(g1,---,¢rs*,...,% P} are due to replacing a value by 1, (un-

like the Byzantine case where one value can be replaced by an-

other).

4 The Byzantine Model: The Algorithmn

An overview — During each round of communication a cor-
rect processor p broadcasts information it holds in the array
o{p1,. . ..pr—1,p), collects the information sent to it in an array
v(p1,.. ..or,p), tries to deduce which processors are faulty, and
then modifies the information it received from processors known
to be faulty to form the new array ¥(pi,...,pr,p). The only
method a correct processor p uses to detect that process ¢ is
faulty, is to examine the n values which reach p representing
some information that was broadcast by g and then relayed to p
by each recipient. If ¢ were correct then every processor would
have received the same value in the broadcast and then the cor-
rect processors {at least n — 2 of them) would all have sent the

same value to p. Thus if p finds fewer than n— ¢ values the same

RIGHTS

among the n it received, it can deduce that ¢ was faulty. After
the S rounds of communication, a correct processor will have an
array of nS values to operate on. In 5 steps this array is used
to form a collection of (n — 2t) (r — 4)5~! values by repeatedly
removing extreme values from subcollections and then combin-
ing subcollections. Finally this collection of values is avaraged
to give the processor’s new value.

In detail, processor p, if correct, must perform the following

s Set ¥#(p) = v(p).

® In round 1:

— Broadcast @ (p), and denote by v{g1,) the value re-
ceived by p from q purporting to be #{g;). If the
mesage from ¢, is missing or malformed set v(q1, p)

to be L;.

— Set Fault (p,1) to be the empty set.
- Set ¥ (q1,p) = v{q1. 7}
* In round 2:

— Broadcast the vector of values (¥(1,p), ©(2,p),...,
¥(n, p)) and denote by v (g1, g2, p) the value received
by p from g3 purporting to be ¥ (g1, g2). If the message
from g2 is missing cr malformed set v(gy, ¢z, p) to be

1s.

— For each g consider the multiset {v {g1, L, p), v (41, 2,),

.+« v{q1,n, p)}; if the most frequently occurring ele-
ment in this multiset has multiplicity less than n — ¢
say that “g; has been detected as faulty by p in round
27,

— Set Fault(p,2) to be the set of ¢ which have been
detected as faulty by p in round 2.

. v{qi,qz,p) ifg: & Fault (p,2

- Set”(qquﬁlp)= (v) (P’) -

1z ifgz € Fault (p, 2)

e In round r, for v = 3,...,8, processor p will start with
an array of n""! valies (5(q1,92,...,4r—1,p) : each q; =

1,...,n) and a set Fault(p,r — 1) of processors already

detected as faulty by p. Now p should

— Broadeast the array (¥(g1,92,...,49,—1,8))-

— Denote by v(q1,...,9r-1,4r, 7} the value received by
p from g, purporting to be ¥(q,...,¢r—1,¢s). If

i,

79

the message from ¢, is missing or malformed set
v(q1,..-1qr p) o be L.

— For every choice of indices q1,...,¢r—1, consider the
multiset {v (g1, ., ¢r-1, 1, PH v (151 =1, 2, D)5 - s
v(g1,. - @¢r—1;,m,p)}. If the most frequently occur-
ting element has multiplicity less than n — t, say that
“4r—1 has been detected as faulty by p in round r”
(Note that several choices of q1,...,¢r—3 may lead to

the same g,—; being detected).

— Bet Fauit(p,r) = Fault(p,r — 1)U {q : ¢ has been
detected as faulty by p in round r }.
v{g1,-++19r-119P)
if g, & Fault (p,7)

L, if ¢r € Fauk (p,r)
— Now p is ready to start round r + 1.

- Set G(QZIs- .. ,qr—l)qup) =

e At the end of round S, pracessor p has an array of val-
ues ¥(q1,...,95,p). Now let W (q1,...,qs,p) denote the
multiset with a single entry @ (q1,...,¢5,8).

¢ For each r decreasing from S -1 to 1
— for each choice of ¢,. . .,gr, form a multiget

WgL,---sGrs%s.-s %, D)
= red(n_“)s-r-m U= W (0,1 0ry Grp1, %, %, . 5 %, D)
where in every case the asterisks fill places so that

there are § + 1 entries, either asterisks or indices, to

name each multiset.
e Now put W (p) = U], W (q1,%,...,%,p).

* Finally put w(p) = mid,_ ns-1,(W (p)). (Note that the
amount of reduction in this case is different from that in

previcus steps).
The behaviour of the algorithm is explained by the following:

Theorem 1 In the algorithm above as g convention we set
Foult{p,0) = 0, Fault(p,S+1) = {1,...,n}\Corr. We put
Ezposed (r) = Npecon Foult (p,r) and I, = |Ezposed (r+ 1)| —
|Exposed (7)| = | Brpased (r + 1)\ Ezposed (r)| Then we can con-

clude:

(i): If p € Corr, gr € Corr then all the (n ~ 4¢)577 entries of
W(gL,.. ,9m%....%,p) are 3 {q1,...,q)

RIGHTS

(i8): If ¢ € Prposed (r+ 1) and pp € Carr, py € Corr then

W(qlr"-:ql‘l*:"w*’m): W(qll"'lql‘l*a-"s*)pl)

(ili): If q. € Ezposed(r) and pg € Corr, py € Corr then
W(er-‘-rq!':*r'--:*:PO)=W(q1:"'fo:*)"':*:Pl)

(iv): If po € Corr, py € Corr then

|W(ql=---,?r-*,---,*=P0)nW(Ql;---.Qr,*a---,*yPl)l
>n—4) " =l bya--els

Proof: First we observe that if p € Corr, ¢ € Corr
then g ¢ Fault(p,r) This is proved by induction on r. If
r=1 and p € Corr , g € Corr then q & Fault(p,1) as
Fault (p,1) = 0. Now for arbitrary r suppose p € Corr, and
g € Corr. If g € Corr then by the induction hypothesis
g ¢ Fault(q,,1) and =o for any choice of g1,...,9,—2 We see
a1, 0r-2.0.0) = v{gn,..,9-2,0,8) = U(01,..-,9r-2,9)
a8 ¢ is broadcasting correctly. Also g, broadcasts correctly so
v(g1,...,qr-2,9,4P) = v(q1,.--,9r-2,¢,9¢) . Thus the mul-
tiset of values {v(q1,..-,¢r—2,0, 1,250 (q1,..., 020, 2,2} .
v(qL,...,gr-2, 9,7, p}} contains at least (n — 1) entries each of
which is ¥ (q1,...,4r-2,9). Sc g iz not detected as faulty by p
in round r, but by the induction hypothesis ¢ & Fault (p,r — 1)
80 we see ¢ & Fault (p,r) as required. Now the theorem follows
easily by descending induction on r, using the lemmas of §2 and
the chservations that if g, € Ezposed(r) then for any correct
gr+1 we have 9(g1, ..., 4, 9r41) =L, while if g, € Ezposed(r +1)
then for fixed chaice of g1,...,g,~1 ab least n — 2¢ of the correct
ptocessors gr+1 have the same value for ¥(q1,...,¢r—1,9r) @r+1)-

When we apply Theorem 1 with r = 1 we obtain

(1): H p € Corr, . € Corr then W (g1, %,...,*,p) consists of

(n — 42)~! entries all of which are v{q1).

(41): If 4 & Ezposed(2), po € Corr, and p1 € Corr then
W(ﬂl-*:---a*:PO)=W(ﬂ’*:“‘i*lpl)'

(iv): If po € Corr, p € Corr then

W (g1, %, .., %, 20) N W (g1,3%,... %, p)]|
2 (n- 41)3—1 ~lpely---lg

Notice that (iii) tells us nothing as Ezpased (1) = 0. Now if
p € Corr we see that U7 ;W {g1,%,...,%,p) contains at least
{(n— t)(n — 4t)*~! entriea in the range p (l':f) spanned by initial
values of correct processors, namely the (n — 4t)°~! copies of

v(q1) for each correct ¢;. Then by Lemma 1, w(p) lies in the

i,

BO

range p{U7). Suppose that po€ Corr, p1 € Corr, Then

W (7o) O W (p)]
- M n-d)+ 0 ((n - 48" — 5 ---1s)
=n(n-— tlt)“"-1 —hLlg.-.lg
as there are !; values of ¢ with q1 € Ezposed (2) and n ~)
values of g, with ¢1 & Ezposed (2). We can apply Lemma 5 to
prove

ly+oelg
ho (pe) = (pr)l € =T =5

5(9)

We finally note that as Iy = |Ezposed (2)], Iz = |Ezposed (3)} —
| Ezposed (2)|,.. ., Is = |Erposed (S + 1)|—|Bzposed (S)|, we have
each I; a non-negative integer and also iy + i3 + ...+ Isg =
| Ezposed (S + 1)| = |Fault] < 2. Thia proves that our algorithm
has, as claimed, performance

sup {ixfz---Is : 1 +---1s < t, all i; nonnegative integers}

(n~4t)°1(n-2t)
It ia interesting to note that for S = 2 our algorithm therefore

K<

gives an implementation of Crusader’s Agreement [D] on each
value v (g} — each processor p gets either a value (the common
value of W (g, *,p)) or else the knowledge that ¢ is faulty, and
all the processors which get a value get the same value, which
is the right one if ¢ is correct. In fact our implemnentation has a
stronger property, that if any po fails to detect that g is faulty,
all those p that do detect it know what value py has chosen.

5 The Byzantine Model: A Lower Bound

This section gives a formal account of s lower bound, due to
{DLPSW], on achievable performance for any S-round approx-
imate agreement algorithm in the Byzantine model. Any algo-

rithm for solving the S-round approximate agreement problem

can be given in the following standard form, where all infor-
mation is exchanged for S rounds and then a computation is

performed :
s Set u(p) =v(p).
¢ In round 1, a processor p € Corr

— broadcasts u{p),

- denctes by «{gi,p) the value received by p from q,
purporting to be u{q1).

e Inround r, for r = 2,3,...,5 a processor p € Corr staris
with an array of n'~! valuesa {u{q,...,q,—1,2) 1 each ¢; =

1,...,n). It then

~ broadcasts the array (u{q1,...,¢-~1,P)},

— denotes by u(g1,...,qr-1,¢r, p} the value received by
p from ¢, purporting to be u({g1,...,q.).

o Finally a processor p € Corr applies a function f to its
view, the array (u(qu,-..,qs,p)} of n® values, to praduce

its new value w (p).

Different algorithms are given by different choices of the
function f. Notice that the algorithm of §4, which involves
computing and modifying values between rounds of communi-
cation, is equivalent to one in the standard form because all
the computation and modification can be simulated by each
processor after all the information is exchanged. So suppose
we are given a function f for which the algorithm satisfies the
validity condition. Let !4,3,...[g be any positive integers so
that fy +--- + {g < t. We introduce the collection of multi-
indices | = (4y,...,1g) where i; ranges over the integers from I
to my = [nfly). We order the multi-indices ‘alphabetically’,
that is {i1,...,9s} < (#,...,J5) if there is some r so that
() ¢z < je for & < r, and (ii) 1, < j.. The multi-indices are
totally ordered in this way (which is described as “last index
varies fastest” or “row-by-row”) and we denote the successor
to I by I++. As examples, when & = 3, m1 = my = 3§,
mg = 4 we have (1,2,8) ++ = (1,2,4), (1,2,4)++ = (1,3,1)
and (1,3,4) ++ = (2,1,1).

To each multi-index I we assign an array My of n® entries
defined by

MI (QIqul'- . -qs‘) =
1 if there is some r eo that (i) [qe/m;] S s fork < r,
and (i) [¢./m,] < ¢,

0 otherwise

Thus M; is formed by partitioning the positions in the array
into subblocks of size {y X {3 X+ + % [5. Every entry in a subblock
has the same value which is either 0 or ¥. The subblocks filled
with 1’s all precede those filled with O’s.

If we arrange the arrays M in the order of the multi-indices
I we get a chain with the property that given any two con-
secutive arrays M; and My, ;, there is some execution of the
broadeasting algorithm with & (U) < 1 and |Fault| < ¢ lead-
ing to one correct proceesor pg receiving M as view while an-
other correct processor p; receives My, , as view. For this

execution |w(po) - w(p)| = |f(M1)— f{Mris)], 8o K 2

RIGHTS L

17 (M1) — f (Mrs+). However if we consider an execution where
every processor ig correct with initial value 0, we find that every
processor will get M3, 1) es view. In an execution where all
correct processors have initial value the same, the validity condi-
tion requires them to agree on that same value, so f (M(1“__,1)) =
0. Also we consider an execution where the processors 1,2,...,
(ms — 1)1 are correct with initial value I, while processors
{ms — 1)ig + 1,...,n follow the algarithm with initial value 0
during the rounds of broadcasting and then stop without com-
puting anything — notice that the arbitrary behavier allowed
to a faulty processor includes the possibility of following the al-
gorithm. In this execution the correct processors will receive
Mim, 1,1, 1) as their view, and the validity condition requires
them to agree on 1 as their new value, so f (M(m,,1,.,.,1)) =1.
Since the chain of arrays M reaches frem I = (1,...,1) to
I=(mg,1,...,1} in (my — 1) my-- - mg steps, we get a chain of
real numbers f (M) reaching from 0 to 1in {m; — 1} mz-.-mg

steps. Thus there is some pair of consecutive values where
1 1

- =
If(M]) {(MI++)' = (ml"' l)mz”'m_q 2 mlm:"'ﬂls’ 80
K 2 e Since mu = [n/l] < (n+) /I < (n+0) /i,
5 hlz---ls
=+ t)f

As this is true for any choice of #y,...,Jg with I; +.--+1g < ¢

we have the lower bound

sup{life- i lg:li+- +isg<t)
(n+1)°

Kz

to which our algorithm is asymptotic as n increases.

The reader can verify that the following construction gives
an execution as required with My, ;, ;) 88 the view for pg,
and M;, o)+ a8 the view for py : The faulty processors are
those p such that there is an r with [p/l,] = ¢.. Since for each r
at most [, values of p satisfy this condition, the total pumber of
faulty processors is at most {; + ...+ {g < ¢. Choose py and py
from among the correct processors. Let v (p) be 1 if [p/l}] < 13,
and 0 if [p/hy] > iy.

» Every processor p, correct or faulty, sets 4 {p) = v (p).
¢ In round 1,

— all processors p, except those where {p/ly] = 1y,
broadcast u (p). The remaining p each send the value
u(p) to those g where [¢/lz] < i3, but they send the
value O to those g where [g/l;] > i3,

— All processors p denote by u(gy, p) the value received

by p from ¢ purporting to be u (q1).
aInroundrforr=2,...,5-1

— all processors p, except those where [p/l} = i; broad-

cast the array {u(q1,-..,9—1,p)). The remaining p

form another array with

O if [qe/li] = 4 for

(g, 1 @r-1,0) = eachk=1,...,r~1 .
w{q1,...,qr-1,p) else

These p send the array (v {¢1,...,9,—1,p)) to those

g where [g/lr41] £ fr+1, but they send the array

{«'{g1,...,9r-1,p)} to those ¢ where [g/lr11] > fry1.

— All processors p denote by u{g1,...,9,-1,¢r, p) the

value received by p from ¢, purporting to he

"’(ql; ceeafra1y qr)-

e In the final round S

— all processors p, except those where [p/lg] = is
broadcast the array (v {g;,...,¢s-1,p)). The remain-

ing p form another array with

0 if [qe/le] = 1 for
(g1, .-, 95-1,0) = eachk=1,...,5-1
u{g1,...,95-1,7) else
These p send the array {u(q1,...,9s-1,p)) to thoseq
where ¢ # py, but to pp they send instead the array
(W {q,...,¢5-1,7)
— All processors p denote by w (q1,...,95-1,9s,p) the
value received by p from gy purporting to be

u{f1,...,95-1,95)-

e Only the correct processors now calculate their new value

from their view. The others halt.

In fact, the lower bound just derived can be improved slightly

by finding other multi-indices I for which M is the view in some

execution with all correct processors having O as initial value,

and by finding multi-indices [for which an execution exists in

which one correct processor receives M; as view and anather

receives M(7, 1)y, a8 View.

RIGHTS

82

i,

6 The Crash-Failure Model: The Algo-

rithm

An overview — During each round of communication a cor-
rect processor p broadcasts information it helds in the array
v{p1,. . .,pr—1,p) and collects the information sent to it in an ar-
ray v(p1,...,pr,p). After the S rounds of communication, a cor-
rect processor will have an array of n¥ values to operate on. In
S steps this array is used to form a collection of n (2n ~ 2¢)5~1
values by repeatedly doubling, removing excess values from sub-
collections and then combining subcollections. Finally the cen-
ter operator is applied to this collection of values to give the
processor’s new value.

In detail, processor p, until it fails, must perform the follow-
ing —

e In round 1: Broadcast v{p), and denote by v (g1,p) the

value received by p from ¢ as v (g1). If the message from

¢1 is missing set v {g;, p) to be 1.

e In round 2: Broadcast the vector of values (v(l,p),
v(2,p),..., v(n,p)) and dencte by v(gy,qz,p) the value
received by p from ¢; as v (g, ¢2). If the message from gz

is missing set v (g1, g2,p) to be 1.

e« In round r, for r = 3,...,8, processor p will start
with an array of n™! values (v(g1,q2,...,qr-1,9) :
each ¢; = 1,...,n). Now p should broadcast the array
(v (91,93, -,9r—1,p)}. Dencte by v{q,...,¢r—1,¢r,p) the
value received by p from ¢, as v{g1,...,9,-1,¢-). If the
message from ¢, is missing set v (g1,...,¢r-1,¢r, p) to be

1.

» At the end of round S, processor p has an array of val-

ues v(q1,...,95,p). Now let W {q,...,q9,p) denote the

multiset with a single entry v (q1,...,¢5,p).

e For each r decreasing from S —1to 1

— for each choice of q,.. .,q,, form a multiset
W (911 res@ry ¥, “’*lp)
- 1
= chap{;.—z:]"'“: U:,+,=1 w (41; EEREY (2% 155 PRIt PR *:P]
where in every case the asterisks fill places so that

there are §' + 1 entries, either asteriska or indices, to

name each multiset.

o Now put W () = U W (g1, %, ., %,).
¢ Finally put w(p) = center y, spns—1, (W (p).
The behaviour of the algorithm is explained by the following:

Theorem 2 In the algorithm above, for each v = 1,...,5 let
Fail(r) denote the set of processora that have failed before send-
tng any of the messages in round r. Also 68 e convention we
set Fail (S +1) = {1,...,n}\Corr. We put I, = |Fail {r + 1)} -
| Fail (r)| = |Fail (r + 1) \ Fail (+)| Then we can conclude:

(1) If p € Corr then the value of eack of the (2n — 20)5-"
entries ofW(ql,...,q,.,*,“.,*,p)' s efther v{q1,...,¢q;)

or L,.

(11): Ifq. € Fail[r + 1) and p& Corr then
mult(v(gy, ..., 0:), W (01, ¢r %, ., %,8)) = (2n—20)5 "
(ii): If g, € Fail(r) and p € Corr then
mult(L, W (g1, ... qe %, ..., %,p)) = (2n — 26)5"
(iv): If pa € Corr, py € Corr then

1*:?0))
—mult(u(ql, e lq")lW (411 ey ey ¥yaay *lpl))l

Imuit(v(qr,-. ., ae), W (@1, --,8r, %, - ..

Sleprelepa---lg

Proof: First we observe that if p € Corr, then p & Fail(r) for
r=1,...,8 + 1. Now the thecrem follows easily by descending
induction on r, using the lemmas of §2 and the observations

that if g, & Fail(r + 1) then ¢, sent all its messages in round

r, so that every ¢,.1 that has not failed before starting round
r+1 has v{g1,...,¢r, ¢r+1) = v(g1,-.-,¢.), while on the other
hand if ¢, € Fail(r) then g, sent no messages in round r, so that
every gqr41 that has not failed before sterting round r + 1 has
v(a1, - -1 9r re1) =L,

We have by (ii) and (iii) for r = 1 that W(gs, *,...,+,po) =
W(q1,*,...,%,p1) unless q; € Fail(2)\Fasl(1). For these [; val-

ues of g; we have by (iv) for r = 1 that

|mul"'(u(ql):w (qla ... r*:PO) - mu“(”(ﬂl)’w ('h: ¥y ¥, Pl) I
<lpelgee-lg
We can apply Lemma 8 with V = Uz W la,*,....%,), W =

Ug=1W (g, %, ..., p1), N =a(Zr -2 m=1...05, k=
¢(2n — 2¢)5~1 and [a,b] = p(U) to prove that each of w(pg) =
centery (V) and w(p,) = centery, (W) lie in p(U) and that

RIGHTS L

83

Jus (po) — w {pa)] < Hg-s(u)

We finally note that as Iy = [Faif (2)| - | Fail(1)], I = | Fail (3)| -
|Fail (2)|,-.., 1s = |Fail (S + 1)| ~ |Fail (S)], we have each {; a
hon-negative integer and also fy +ly +... + g = [Fail (S +1)| -
[Fail(1)| < ¢. This proves that our algorithm has, as claimed,
performance

K < SUP {luz---ls: L+ -+ 15 < ¢, all |; nonnegative integers}
= (2n—28)°

It is interesting to note that in any execution where the pro-
cessors have common knowledge that some I, = O (this means
that in round r ne new processora crashed) then K = 0 (s0 exact
agreement is obtained). It is proved in [DM)] that these are the
only situations where processora can have common knowledge of

exact agreement.

7 The Crash-Failure Model:
Bound

A Lower

This section gives a formal account of a new lower bound on

achievable performance for any S-round approximate agreement

algarithm in the crash-failure model. Any algorithm for solving
the S-round approximate agreement problem can he given in the
standard form as in §5, where all information is exchanged for §
rounds giving each processor p a view (v(gy, .. .,qs, p)} and then
p applies & function f to the view to give its new value w(p).

To prove a lower bound on the performance achievable we
are going to construct a chain of views as in §5, but this time
we will do so implicitly by giving a recursive recipe for the ex-
ecution which lies between successive views. This proof is very
closely related to the proof in [DM)] of the impossibility of exact
agreement in fewer than ¢+ 1 rounds. An execution in the crash-
failure model is very easy to describe — we need only specify the
initial value of each processor and say which pracessors failed in
each round and which messages they sent in that round. We say
that two executions p and ¢’ are directly similar (written p & 5)
if some processor p is correct in each and obtains the same view
in each. We say similarly that p and p' are k-similar (written
p o p') if there are k + 1 executions P0,P15- - £k 50 that po = p,
pe = o', and p; & piy; for each i. Thus ~! is just s, and if
p~F g and ' ~™ p" then p ~¥*+™ g Note that p ~* p' implies
' ~* pand p~"p form> k.

RIGHTS

Let 1,13, . .,{s be any collection of positive integers such that

h+...+lg<t. Putm; = [ﬂ/lﬂ. We have

Lemma 7 Let1 <r < S — 1. Let p = pp be an ezecution such
that no failures accur after the end of round r, and the number
of failures before the start of round i f8 at most Iy + ...+ I; for
any £. Denote by p the ezecution which 1s identical to p for the
Frst r — 1 rounds but has no failures during any later round.

Then p ~NU1 3 where N(r) = T, [T 2m; + 1.

Proof: Let the processors that fail in round r in p be denoted
t1,-. oim. We will use descending induction on r. So suppose
r = §—1 (note that the statement is not true if r = §). For each
k = 1,...,mg let py and ¢; be the least and greatest processor
indices that are not among the processors that failed in p nor in
the range (k — 2)is +1,.. . ,kls. Let pop_, denote the execution
which is identical to p during the first S — 2 rounds, and then
also during round S — 1 except that the processors iy,.. ..ip, do
send to any processor with index 1,2,...,(k — 1)ig as well as
those processors that t_hey send to in g. In round S, each of the
processors {k — 1)lg + 1,...,kls that has not failed earliez, fails
after sending messages to processors 1,...,p;. The assumptions
on failure numbers in p mean that this execution involves at most
t failures. Also let pap denote the execution identical to p during
the first 5§ — 2 rounds, and then also during round § — 1 except
that the processors iy,.. .,i, do send to any processor with index
1,2,...,kls as well as those processors that they send to in p.
In round 5, each of the processors (k - 1)ls + 1,...klg that
has not failed earlier, fails alter sending messages to processors
1, ...pk. The assumptions on failure numbers in p mean that
this execution invelves at most t failures. Clearly the view of p,
is the same in pp(3_1y as in pgk-; s0 P2(k-1) & pze—1. Similarly
the view of g; is the the same in pap_; as in gz s0 pox-y = P2k,
Also let pyp 41 denote the execution identical to p during the
first § — 2 rounds with no failures during round § — 1 and in
round S each of the processors 1,i3,...,5m 25 well as each of
(k—1)lg+1,...,kls which hasn’t failed earlier, fails after sending
messages to processors 1,...,p;. The view of ¢m, is the same in
Pims+1 38 1N prmg, but this is the same as its view in pom, 3
80 Pams-1 R Pemg+1. Similarly the view of Pmg i3 the same
N pamg+1 a8 in p 80 pan 41 & p. Thus examining the whole
argument, p ~*Mstl 5

Now we assume we have the result for r + 1 and prove it for

i,

84

+. For each k = 1,...,m,41 We let pse_; denote the execution
identical to g for the first r — 1 rounds and also in round r except
that the processors 11,. . .,im do send to any processor with index
1,2,...,(k = 1)l,41 as well as those processots that they send
to in p. In round r + 1, each of the processors (k — Dyt +
1,...klr1 that has not failed earlier, fails before sending any
messages. No failures occur after round r +1. The assumptions
on the number of failures in p imply that this execution also
satisfies those assumptions. We let ps;_; denote the execution
identical to p for the first r — 1 rounds and also in round r
except that the processors {y,...4m do send to any processor
with index 1,2,...,kl,.; as well as those processors that they
send to in p. In round r+1, each of the processors (k- 1)lry1+
1,...,kl,41 that has not failed earlier, fails before sending any
messages. No fallures occur after round r 4 1. The assumptions
on the number of failures in p imply that this execution also
satisfies those assumptions. We let pg; denote the execution
identical to p for the first r — 1 rounds and also in round r
except that the processors f3,...,4m do send to any processo.
with index 1,2,...klr41 a8 well as those processors that they
send to in p. No failures occur after round r. The assumpticns
on the number of failures in p imply that this execution also
satisfies those assumptions. Now by the lernma for r + 1 we
have psge_q) ~NCD gy g and pap_y ~VFD gy Also every
processor gets the same view in psi—3 as in pge_1 80 pgr3 =
psi-1. Further pgn ., in which processors ¢1,...,im fail at the
very end of round » can also be viewed as an execution in which
they fail at the very start of round r + 1, and so by the lemma
for r + 1 we have pgm,,, ~¥(+1) 3. Putting all these pieces of
chain together we see p ~(2mes1 +DN(+IHmrrs 5 but (2my4q +
N(r+1)+me < (2mpq +1)(N{r+1)+ 1} = N(7). QE.D.

Now we can prove that if p = pp is the execution where all
processors have initial value 0 and no failures occur, and } is the
execution where all initial values are 1 and no failures occur, then
p~" pwhere ¥ < (2m; +2)- (2mg + 2) -+ - (2mg + 2). We will
give separate proofs if § > 1 and § = 1. First suppose § > 1.
For each k£ = 1,...,m; let psr_3 denote the execution where
processors 1,...,(k—1)I, have initial value 1, and the others have
initial value 0, and where processors (k — 1) + 1,.. k], fail in
round 1 before sending any messages, but no other failures cceur.
Let pai-.; dencte the execution where processors 1,...,kl; have

initial value 1, and the others have initial value 0, and where

RIGHTS

processors (k — 1)i; + L,...,kl; fail in round 1 before sending
any messages, but no other failures occur. Let pg; denote the
execution where processors 1,...,kl; have initial value 1, and the
others have initial value 0, and where no failures accur. By
Lemma 7, psx-1) ~V) psr_z and pag—y ~M(D pyp. Also the
view of every processor is the same in pg;_3 a8 in pgi_1 Bince the
initial value of a processor that fails before sending any message
is irrelevant, and 80 psi-3 & pse—1. Since p3,, = p, we have
p~Y p where N = 2y (N(1)+1) £ H}?ﬂ 2m; +2 as we see by
writing 2m; + 2 as (2m; + 1) + 1 and expanding the product.
In the case § = 1 for each k = 1,...,/m; let p and q; be the
least and greatest processor indices that are not in the range
(k— 2}y + 1,...,kl;. Let pyy—; dencte the execution in which
the processors with index 1,2,...,(k — 1}{; have initial value 1
and the others have initial value O and in round 1, each of the
processors {k — L} + 1,...,kl; fails after sending messages to
processors 1,...,pe. Let pzx denote the execution in which the
processors with index 1,2,...,kli have initial value 1 and the
others have initial value 0 and in rourd 1, each of the processors
(k — 1)&1 + 1,.. .kl fails after sending messages to processors
L,...,px- . The view of py is the same in Pa(k-1) B3 in pap—; 8o
P2(k—1) & P2e-1. Similarly the view of ¢, is the same in pgp_
ag in pgp 80 pri—1 & p2p. As the view of p,,, is the same in
Pam; 88 in p we have that pam, = p, and so p ~¥ p, where
N=2m;+1<2m +2.

Now we have shown how to construct a sequence py =
PP1s- PN = p where p; r2 piyy, that is there is some pro-
cessor p; whose view (which we will call ML) is the same in p;
and in pi;,. Since Mj is a view in a failure-free execution where
every initial value is 0 we must have f(Mg) = 0. Similarly
Mpy_, is a view in a failure-free execution where all initial val-
ues are 1 so f{My_1) = 1. Thus there must be some { so that
|F(M;) - F(Mi41)] 2 1/ N but each of M; and M;,, are views in
the execution p;yy which from the construction clearly has all
initial values either 0 or 1. Thus we have proved that any algo-
rithm has K > 1/N. Since N < [I5; 2m;+2 < [T5-,(2n/1;+3)
we have K >[5, ;/(2n+31;) > Tioi i/ (2n+32). Asiy,.. s
were arbitrary, subject only to {y + ...+ [5 < t, we have

K < P (Jp:«-Tg:l +---+1g < t, all l; nonnegative integers)
- (2n +32)5

In fact by paying closer attention to the cagses when successive
executions look the same to all processors, we can improve the

denominator to {2n + 2¢)%.

i,

85

8 The Failure-By-Omission Model

An overview — During each round of communication a cor-
rect processor p broadcasts information it holds in the array
#{p1,-- -,Pr-1,P), collects the information sent to it in an array
v(1,. ..Pr,p), tries to deduce which processors are faulty, and
then modifies the information it received from processors known
to be faulty to form the new array #(pi,....pr,p}. The only
method a correct processor p uses to detect that process g is
faulty, is to examine the n values which reach p representing
some information that was broadcast by ¢ and then relayed to
p by each recipient. If ¢ were correct then no processor would
have failed to receive g's value in the broadcast and so none of
the values reaching p would be L,_;. Thus if p finds any entry
being 1,.; among those it received, it can deduce that ¢ was
faulty. After the S rounds of communication, a correct proces-
sor will have an array of n® values to operate on. In S steps this
array is used to form a collection of (2n — 4t)° ' (2n —2¢) values
by repeatedly removing extreme values from subcollections and
then combining subcollections. Finally this collection of values
is averaged to give the processor's new value.

In detail, processor p, if correct, must perform the following

e Set U (p) = v(p).
¢ In round 1:

~ Broadcast ¥ (p), and denote by v (g1, p) the value re-
ceived by p from ¢ as ¥ (¢1). If the message from ¢;
is missing set v{g1,») to be 1,.

— Set Fault (p,1) to be the empty set.

— Set & (g1,#) = v (q1,p)-

e In round 2:

~ Broadcast the vector of values (¥(1,p), ¥(2,p),...,
%(n,p)} and denote by v (g1, g2, p) the value received
by p from ¢; as % (q1,92). If the message from g9 is
missing set v(q1,9z2, p) to be Lg.

— Foreach ¢; consider the multiset {v (g1, 1, p), v (q1,2, p),
<o v(g1, 1, p)}; if any entry is 1, say that gy has
been detected as faulty by p in round 2”.

— Set Fault(p,2) to be the set of ¢ which have been
detected as faulty by p in round 2.

RIGHTS

~ Set 5{g1, 42,) = v(g1,92,0) ifqa & Fuult (p,2) .
1, ifgy € Fauit (p,2)

e In round r, for r = 3,..., 8, proceesor p will start with

an array of "? values (% (q1,42,.-.,4r—1,F) : each g; =

1,...,n) and a set Fault(p,r — 1) of processors already

detected as faulty by p. Now p should

— Broadcast the array (3 (g1,92,.--,9r-1,p))-

— Denote by v (g1, ...,4,~1,¢r, p) the value received by
p from g, as ¥(q1,...,¢r_1,9r). If the message from
gr is missing set v{g1,...,gr—1,¢r,) to be L,.

— For every choice of indices g1,...,4,_3, consider the
multiset {v {g1,...,8r-1,1,8), % (41, ..., 01, 2,P},-- -,
v(g1,-.-,9r-1,n,p)}. If any entry is L, say that
“gr—1 has been detected as faulty by p in round r*
(Note that several choices of 41,...,¢,—2 may lead to
the same g,_3 being detected).

— Set Foult (p,r) = Fault (p,r — 1) U {¢ : ¢ has been
detected as faulty by p in round r }.

v (qli ces)qr—lyq"P)
if ¢ & Fault (p,r) -

1, if g, € Fault (p,r)
~ Now p is ready to start round r + 1.

— Set i')(ql,.. .,Qr—:hQr:P) =

¢ At the end of round §, processor p has an array of val-

ues ¥(q1,-..,95,p). Now let W (g1,...,95,p) denote the

multiset with a single entry ¥ (q1,...,¢s,p).
s For each r decreasing from § —1to 1

— for each choice of ¢1,...,qy, form a multiset
W(Ql;---;ﬂn';- "!*IP]
- 1 n
- choPE‘;ﬂ—lC)s_'_lzi Uq,+1=1 W (QI: e :%, Qr+1; ')*i A | *ip)
where in every case the asterisks fill places so that

there are S 4 1 entries, either asterisks or indices, to

name each multisat.
¢ Now put W (p) = U ;W (a1, %,--. ,%,p).

e Finally put w(p) = centeru_ uns-1g (W (p)). (Note that
the amount of reduction is different from that in previous

steps).
The behaviour of the algorithm is explained by the following:

Theorem 3 In the algorithm above, for each r = 1,...,5
let Fail(r) denote the set of processors that have failed before

i,

B&

sending any of the messages in round r. Let Ezposed(r) =
Fail{r) U Npgragpri) Fault(p,r}. Alse 8s o convention we set
Bzposed (S +1) = {1,...,n}\Corr. Note that Ezposed(t)
Erposed(r + 1), We put I, = |Brposed (r + 1)| ~ | Exposed (r)| =
| Bxposed (r + 1) \ Ezposed (r})| Then we can conclude:

(3): If p € Corr then the value of each of the [2n — 4£)°-"
entries of W (q1,....qr,%,...,%,7) s either ¥(qy,...,q)

or L,.

(11): If ¢; & Pzposed (r + 1) and p € Corr then

mult(ﬁ(ql, se ,Qr),W (qlx ceeyGry ¥y :*:p)) = (2"_4t)s-r

(iit): If ¢, € Exposed (r) and p € Corr then

mult(Le, W (q1,.. .80, % .., %,p)) = (2n — 48)5"

(iv): If po € Corr, py € Corr then

[mult (g, . -), W (15« 1 Gy *5 - ., %, P0))
~mult(O(q, - @), W (oo gr %4 1)

Slhyt-bya--ly
Proof: First we observe from the algorithm that ©(qy,...,q.,2)
can never have the value 1; for § > 7. Next we observe
that if p ¢ Fail{r + 1) and ¢ € Corr then ¢ € Fault(p,r).
This is proved by induction on r.
ial as Fault(p,1) is empty. Now for arbitrary r, suppose
p & Feillr 4+ 1) and ¢ & Corr. I g

does not send properly to p in round r (in particular if g, €

The case r = 1 is triv-

Fix 915+ s9r-2.

Fail(r)} then v(q1,...,9r-32,¢,9r,2} =L,. On the other hand
if ¢, does send to p in round r then v(q,...,fr-2,4, 9, P) =
(g1, 9r-2.0, %) = ©(91,.-.,4r-2,¢,4,) since by the induc-
tion hypothesis g ¢ VFauIt(q,,r - 1), and v(q1,..-,9r-3,0,8+) =
(g1, .- -, 9r-2,9) which as we noted above is not equal to L,_;.
Thus no entry of {(q1,..-,0r—2,8, 9 P) 1 €r = 1,...,0} is L,
proving that q ¢ Fault(p,r). Now the theorem is easily proved
by descending induction on r, ueing the lemmaa of §2 and the
observations that if q, ¢ Ezposed(r+ 1) then for every ¢ € Corr,
¥(q1,..-,9-9) = ¥{q1,-..,9-) (whick is proved by contradic-
tion) and on the other hand if g» € Fzrposed(r) then for every
g € Corr, 6(q1,...,4-,9} =1, (if ¢, € Fauki(r) this is explicit in
the algorithm, and if ¢, € Fail(r) then g, sent no message to ¢
in round r 80 v(gy,...,q q) =L,).

We have by (i) and (iii) for r = 1 that W{gs,*,...,%,po) =
W(g1,*,...,%,p1) unless gy € Ezposed(2)\ Exposed{l). For these
Iy values of ¢, we have by (iv) for r = 1 that

RIGHTS

[mule(v(g1), W (g1, 4, - ,*,po) — mult(o(q:), W (q1,%,- .., %, ;1) |
<lyolgeelg

since ¥(q1) = wv(q1). We can apply Lemma 6 with V =
u;'l=]W(q1,t,...,t,po), W = upWlg+...,um) N =
n(2n —)51 m = Iy lg, k = t(2n — 42577 and [a,B] =
p(U) to prove that each of w(py) = centery(V) and w(p) =
centery(W) lie in p(U) and that

- 4:;”“1152,: — *)

We finally note that as Iy = |Fzposed (2)| — |Ezposed(1)|,
ly = |Ezposed (3)f — |Ezposed (2)|,..., Is = |Ezposed (S +1)| —
| Ezposed (S)|, we have each /; a non-negative integer and also

i1+ 1+ ...+ Iy = |Ezposed (S + 1)| ~ |Ezposed(1)| < 2. This

[w{po) —w(pm)| < n

proves that cur algorithm has, ag claimed, performance

sup {lilz---lg : & +---lg <1, all l; nonnegative integers}

K<
= (2n — 4t)57 (2n — 2¢)

[C] B. Coan, “A Communication-Efficient Canonical Form for
Fault-Tolerant Distributed Protocols®, Proceedings of the
5th ACM Symposium on Principles of Distributed Com-
puting, August 1986.

[CD] B. Coan, C. Dwork, “Simultaneity is Harder than Agree-
ment”, Proceedings of the 5th Symposium on Reliability
in Distributed Software and Database Systems, 141-150,
January 1986.

[D] D. Dolev, “The Byzantine Generals Strike Again”, Journal
of Algorithms 3, 14-30 (1982).

[DLPSW] D. Dolev, N. Lynch, 8. Pinter, E. Stark, W. Weihl,
“Reaching Approximate Agreement in the Presence of

Faults”, to appear in JACM.

[DM] C. Dwork, Y. Moses, “Knowledge and Common Knowi-
edge in a Byzantine Environment I: Crash Failures®, Pro-
ceedings of the 1986 Conference on Theoretical Aspects of
Reasoning About Knowledge, 149-169, March 1986.

[F] M. Fischer, “The Consensus Problem in Unreliable Dis-
tributed Systems (A Brief Survey)” Yale University Tech-
nical Report YALEU/DCS/RR-273 (1983).

i,

87

[FL] M. Fischer, N. Lynch, “A Lower Bound for the Time to
Assure Interactive Consistency”, Information Processing

Letters 14, 4, 183-186 (1982).

{LL] J. Lundelius, N. Lynch, “A New Fault-Tolerant Algorithm
for Clock Synchronization”, Information and Control, §2,

2, 190-204 {1984)

[LSP] L. Lamport, R. Shostak, M. Pease, “The Byzantine Gen-
erals Problem”, ACM Transactions on Programming Lan-
guages and Systems 4, 2, 382401 (1982).

[PSL] M. Pease, R. Shostak, L. Lamport, “Reaching Agree-
ment in the Presence of Faults®, JACM 27, 2, 228-234
(1980).

