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ABSTRACT 

This paper introduces some algorithms to solve crash-failure, 

failure-by-omission and Byzantine failure versions of the Byzan- 

tine Generals or consensus problem, where non-faulty processors 

need only arrive at values that are close together rather than 

identical. In the failure-by-omission and Byzantine failure algo- 

rithms, each processor attempts to identify the faulty processors 

and corrects values transmitted by them to reduce the amount 

of disagreement. For each failure model and each value of S, 

we give a t-resilient algorithm using S rounds of communication 

which has convergence rate that is asymptotic to the best pos- 

sible as the number of processors increases. If S = t + I, exact 

agreement is obtained. 

1 The  P r o b l e m  and S t a t e m e n t  o f  Resu l t s  

An important question in the design of fault-tolerent distributed 

systems is how to enable non-faulty communicating processors 

to agree even when faulty processors in the system are interfering 

by providing different correct processors with different informa- 

tion. Examples of applications include agreeing on whether to 

commit a database transaction and agreeing on which copy of 

a file is the primary copy. Classical formulations of this prob- 

lem are known as the interactive consistency problem and the 

Byzantine Generals problem ([F]). These problems have been 

studied in several models of computation, and it has been found 
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that any solution resilient to t faulty processors requires t + 1 

rounds of communication in the worst case ([PSL], [LSP], [FL]). 

In some practical situations complete agreement is not required 

- e.g. in synchronizing clocks (ILL}) or reading a sensor, it is of- 

ten good enough if all the values held by different processors are 

close together. We may hope for protocols using fewer rounds of 

communication for this problem called the approximate agree- 

ment problem, which was first studied in [DLPSW]. 

In this paper we study a t-resilient appoximate agreement 

problem in this form: there are n processors labelled 1,2,... ,n. 

These processors are linked by a complete, synchronous, fault- 

free point-to-point network which is the only means of inter- 

process communication. In each execution there is some subset 

Corr of processors (the correct ones), so that if p E Corr then 

p executes the given algorithm. We consider three models of 

computation distinguished by the flexibility of behavior of the 

other (faulty) processors. In the crash-failure model a faulty pro- 

cessor executes the given protocol up to some point and then 

halts (without loss of generality we assume the crash doesn't 

occur in the middle of sending a message). In the failure-by- 

omisMon model a faulty processor may neglect to send a mes- 

sage that the protocol calls for it to send, and it may halt, but 

it does not send any message that is different from what the 

protocol requires. The most general model is the Byzantine 

model, in which a faulty processor may change state or send a 

message arbitrarily. We denote the set of faulty processors by 

Fault = (1,2 . . . .  , n )  \Gorr and set f = ]Fault I. Each processor 

p has an initial value v (p) which is a real number and at the end 

of any execution of the algorithm for which f < t each correct 

processor p must arrive at  a new value w (p) satisfying a validity 

condition: in the crash-failure and failureoby-omission models 

this is tha t  for correct p, w (p) must lie within the range of the 
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initial values. In the Byzantine model we do not  t rust  the initial 

values of faulty processors, so we insist that  for correct p, w (p) 

must  lie within the range of the initial values of the correct pro- 

cessors. Naturally we put  no requirement on the final s tate  of 

the  faulty processors, nor on the behavior of correct processors 

when more than  t processors are faulty. 

We denote the smallest interval containing a collection of 

values V by p (V) and its length, the  diameter  of V,  by 6 (V) 

so that  p (V) is the interval [ m i n ( V ) , m a x  (V)] and 6 (V) = 

max (V) - rain (V). Let us denote by U the collection of initial 

values of all processors and by U the collection of initial values 

of correct processors, so U = {v(p)} and 0 = {v (p) : p • Corr}. 

We can express the validity condition in the failure-by-omission 

and crash-failure models by "if IFaultl _< t and  p • Corr  then 

w (p) • p ( U ) ' .  Similarly in the Byzantine model  the  validity 

condition is "if [Fault[ <_ t and p • Corr then  to (p) • p ( U ) ' .  

We will measure the performance of such an algori thm by 

the change in the range spanned by the values of the  proces- 

sors. Thus  we measure performance in the crash-failure and 
6 ({to (p) :  p • C o r d )  

failure-by-omission models by K = sup 6 (U) 

6 ({to(p):  p• Corr}) 
and in the Byzantine model by K = sup 6(01 
in each case the supremum being taken over all executions with 

IFaultl <_ t (so a good algori thm is one with a low value for 

K) .  Notice tha t  the identification of processors as faulty or cor- 

rect is not  known to the  processors during the  algori thm and 

in fact a given execution may be explained by more than  one 

identification. 

The greater generality of the  Byzantine model  means tha t  

any algori thm valid in tha t  model  is also valid with at  least as 

good a performance in the  other  models. Similarly any lower 

bound on achievable values of K in the crash-failure model ap- 

plies to the  other  models as well. 

For the Byzantine model, the paper  [DLPSW] gives an al- 

gor i thm using only one round of communication,  valid when 

n > 3t,  with performance K = [ ( n -  2 t ) / t ] - * .  This is opti- 

mal if only one round of communication is allowed. We can 

clearly i terate this algori thm ( that  is, use the final values pro- 

duced by one execution as initial values in another  and then  

use the  final values of that  as initial values in a third execu- 

tion, and so on for S rounds). This gives an S- round solution 

with K = ([(n - 2 t} / t ] )  - s .  The present  paper  introduces an 

S- round  algori thm valid w h e n ,  > 4t, with performance 

K < sup ( l i . . .  Is : 11 + . . .  + Is _< t, all li nonnegative integers) 
(n - 2t) (n - 4t) s -1  

By elementary calculus this supremum is at  most  t S / s  s so we 

s e e  

t s 
K <  

- S s (n  - 2t) (n - 4t) s - 1  

which for large n is asymptot ic  to S s t imes be t te r  than  the  per- 

formance of [DLPSW] iterated. In fact as n / t  ~ vo so the  frac- 

tion of faulty processors decreases, this performance is asymp- 

totic to the bes t  possible for an S-round algori thm resilient to t 

Byzantine failures by the lower bound 

K > sup (11. . .  Is : 11 + . . .  + Is _< t, all li nonnegative integers) 
( n  + t) s 

which is due to [DLPSW]. An interesting feature of our algo- 

r i thm is tha t  each processor tries to identify which of the other  

processors is faulty, and then  ignores any information received 

from a known faulty processor to reduce the  possibilities for dis- 

agreement.  

In this paper  we give a new lower bound for K in the  crash- 

failure model,  namely 

K _> sup ( l , . . .  Is : l ,  + . . .  + Is _< t, all Ii nonnegative integers) 

(2n -I- 3t) s 

for any algori thm using S rounds of communication.  We also 

give an algori thm for the crash-failure model  with performance 

K _< sup ( i l . . .  is  : il + . . .  + Is  _< t, all il nonnegative integers) 

(2n - 2t) s 

which is asymptot ic  to the op t imum as n increases. 

We offer an algori thm in the failure-by-omission model  by 

combining par ts  of the algorithms from the  other  models. This 

has performance 

K _< sup ( l l . . .  Is : 11 + . . .  + is  <_ t, all ii nonnegative integers) 

(2n - 4t) s -1  (2n - 2t) 

which is asymptot ic  to optimal. 

I t  is worth noting tha t  if S = t + 1 the  expression 

s u p ( l i . . . l s  : Ii + . . .  + Is _< t,  all il nonnegative integers) is 

zero, as one of the  l / m u s t  be zero, and so our algori thms give 

solutions to the  exac t  agreement  problem when run for t + 1 

rounds. In the  Byzantine model this solution satisfies the s t rong 

validity condit ion tha t  the value agreed on lies in the  range of 

initial values of correct  processors (this is not  achieved by nor- 

mal Byzantine agreement  algori thm on each b i t  of  the  initial 

values unless some removal of extreme values is done). In each 

model our algori thm for S rounds s tar ts  by doing all the com- 

municat ion of the  S - 1 round algorithm, so it is possible to do 

74 



approximate agreement without knowing at the start how many 

rounds will be used. In fact, after each round the new values can 

be calculated as if that round were the last - this permits the 

values held by the correct processors to approach one another 

rapidly, finally agreeing if t + 1 rounds are used. 

The algorithms introduced here require exponential amounts 

of message traffic, like most other consensus or Byzantine Agree- 

ment algorithms. Coan has introduced a transformation which 

can encode algorithms of this type so as to require only poly- 

nomial communication ([C]). However in the Byzantine model 

Coan's transformation costs a few rounds of communication, and 

so the transformed algorithm will not have performance that is 

asymptotic to optimal. The decision in practice between Coan's 

transformation of our algorithm, and the iteration of the one 

round algorithm of [DLPSW] (which involves only linear mes- 

sage traffic) will depend on the details of the system. In the 

crash-failure and failure-by-omission models Coan's transforma- 

tion involves no overhead rounds and so is a definite improve- 

ment to our algorithms. 

In §2 we give the notation and technical lemrnas we will use 

later. §3 provides an intuitive introduction to the algorithms 

by discussing a similar but simpler algorithm and pointing out 

the modifications needed to get asymptotically optimal perfor- 

mance. §4 discusses the algorithm in the Byzantine model, and 

§5 gives the corresponding lower bound. In §6 and §7 we then 

give algorithm and lower bound for the crash-failure model, and 

§8 is devoted to the failure-by-omission model. 

I would like to thank Professor Nancy Lynch for teaching 

me about distributed algorithms and suggesting this problem, 

Michael  Merr i t t  for finding a major  error in an  early draf t  of 

th is  paper ,  Br ian Coan  for detailed comment s  on a later  draft ,  

Leslie Lampor t  for suggest ions  abou t  the  crash-failure ease and  

Yoram Moses for fruitful  discussions about  §7. 

2 N o t a t i o n  a n d  L e m m a s  

In order to give the  a lgor i thms precisely, we introduce the  lan- 

guage of mul t ise ts .  A formal  account  appears  in [DLPSW] bu t  

for our  purposes  it  is enough to th ink  of a mul t i se t  as an  un-  

ordered collection of values which need not  be  dist inct .  For 

each value v and  mul t i se t  V we denote the  n u m b e r  of occur- 

renees of  v in V (the multiplicity of v) by mutt(v, V). The  

values m a y  be  ei ther real number s  or the  special symbols  -Lr 

denot ing a value not  received in round  r because (for exam-  

ple) a processor failed to send it. We define union,  intersection,  

eardinal i ty ,max ,rain, m e a n  for mul t i se ts  in the  obvious ways, 

eg for any v, mult(v,V 0 W) = min(mult(v,V), mult(v,W)) 

and tel = E~  mult(v,V). Also let double(V) be defined by 

malt(v, double(V)) = 2muir(v, V). 

As in [DLPSW] we will t ry  to reduce the  range of values 

held by processors by using opera tors  t ha t  act  on mul t i se t s  by 

removing ext reme values. Let  V be a mul t i se t  with  Ivl -- ~v. 

We pu t  red~(V) to be the  mul t i se t  wi th  N - 2k entries formed 

f rom V by removing the  k highest  entries and  also the  k lowest 

entries. We order the values by treating -J-r as greater than any 

real number and also as greater than -LR if r > R. For the 

crash-failure or failure-by-omission models we will use similar 

operators chops that prefer to remove -J-r. If IVI = N and 

mult(.Lr,V) = j then  chopS(V) is a mul t ise t  of 2 N  - 2k entries 

formed from double(V) either by removing 2k copies of-J-r (in 

the  case j > k) or else by removing all 2 j  copies of  -l-r and  then  

removing the  k - j h ighes t  and  k - j lowest of the  remaining 

entries.  

We similarly have  operators  to find a single number  to be 

an  "average" for a mult iset .  Suppose IVl = Iv and  a t  least  

N - k entries in V are real numbers .  Then  we pu t  midk(V) = 

mean(redk(V)). Similarly if IV[ = N,  a t  least N - k entr ies of  

V are real number s  and  mult(±r,V) = 0 for r > 1 we define 

centerk(V) = mean(chop~(V)). The  facts below and  the condi- 

t ions given will ensure tha t  a mean  is only taken for mul t i se t s  

of  real values. As  examples:  

• {-1,-1,0}U {0,1} = {-1,-1,0,0,1} 

• {-1,-1,.J-1}U {O,-LI,J-~;} = {-1,-1,0,.I_1,..L2} 

• {-I,-i,0,0} n {-1,0,0,1} = {-i,0,0} 

• l {-q, -1, 0} [ = 3 

• [ { - 1 , - 1 , 0 , - L 1 } I  = 4 

• red2 ({-1,-I,-1,0,0,1}) = {-1,0} 

• redl({-1,-1,0,.Ll,.L2}) = {-1,0,.L1} 

• chop~({-1,0, O,.L2,.L2})= {-1,-1,0,0,0,0,A_2,.L2} 

• chop~({-1,0,0,±2,±2})= {-1,0,0,0} 

• mid2({-1, - 1 ,  - 1 ,  O, 1,-.Li}) = - 0 . 5  
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• centers({-1,-1,0,1, ±1}) = -0.5 

• center,({- 1, -1, O, 1,-L1}) = -1/3 

In our discussion we will need to know how the operators  

introduced affect the range of values in a multiset  and the  dif- 

ferences between two multisets. We have the following results: 

L e ~ m a  1 [DLPSW] I f V  is a multiset with IV[ = N, and at 

least N - k elements of V lie in the range [a, b], then every 

element of rcdk (V) lies in the range [a, hi. 

P r o o f :  At most k elements of V are greater than b and all of 

these must  be removed among the k highest elements of V when 

forming red~ (V). Thus every element of redk (V) is less than  or 

equal to b, and a symmetr ic  argument  shows tha t  every element 

of redt (V) is greater than  or equal to a. Q.E.D. 

L e m r n ~  2 / D L P S W / 1 I V  and W are multisets then [redk (V) n 

red~ (w) l _> Iv n wl  - 2k. 

P r o o f :  Since V N W c V,  redt (V N W) C redt (V) and sim- 

ilarly redt (V n W) _C redk (W), so redk (V n W) C_ redk (v) n 

redk (W), but  [redk (V A W)[ = IV N W I - 2k. Q.E.D. 

L e m m a  3 Let V and W be multisets with [V] = IW[ = 

N. Suppose that every entry in V U W is one of v, w 

or _k,, and that mult(_kr,V) < k and mult(_kr, W)  < k. 

g Imutt(v,v) - m~tt(v,W)[ + Imutt(w,V) - ~ul t (w ,W) l  < 

m then Imult(v, ehop~(V) ) -  mutt(v, chop~(W))l < m and 

Ira,kit(w, chopS(V)) - muir(w, chop~(W))l < m 

P r o o f :  Without  loss of generality we may assume v < w. We 

first observe tha t  W can be formed from V by a sequence of at  

most  m operations,  each being the replacement of a single entry 

by -l-r or the replacement of a single occurence of -l-r by either 

v or w. Thus  it is enough to prove tha t  [mutt(v, chopS(V,)) - 

muit(v, choprt(V,))[ < 1 when mult(.l-r,V1) <_ k - 1 and V~ is 

formed from Vx by removing a single occurence of z (which is 

either v or to) and replacing it with -l-r. So we put  j = mult(-l-r 

, VX) and let Z denote the  multiset  of 2N - 2 j  entries formed by 

removing all occurrences of -l-r from double(Vx). Now ehopr~(Vt) 

is formed from g by removing the k - j highest entries and the 

k - j lowest entries. On the other  hand, ehoprt(V,) is formed 

from g by removing two occurrences of z and then removing 

the k - j - 1 highest and k j 1 lowest of the remaining 

entries. If  z = v this is equivalent to removing the  k - j - 1 

highest and k - j + 1 lowest entries from Z as v is the lowest 

entry in Z ,  while i f z  = w the net  effect is to remove the  k - j + l  

highest and k - j -  1 lowest entries from Z.  Thus  we can obtain 

chopS(R) from chopS(V1) either by removing an occurrence of 

the k - j + 1 lowest entry  of Z and adding an occurrence of the 

k -  j highest entry of Z ,  or else by replacing an occurence of the 

k - j highest entry of Z by the k - j lowest entry  of Z .  In either 

case we see tha t  the multiplicities of v and w can each change 

by at  most  1. Q.E.D. 

L e r n r n a  4 If  V is a multiset with IV[ = N,  mult(.ir,  V) <_ k 

such that at least N - k entries of V are different from _L, and 

lie in the interval [a,b], then every entry of ehop~(V) lies in 

[a,b]. 

P r o o f :  Let mult(.l.r,V) = j and let Z denote the  mult iset  of 

2 N - 2 j  entries formed from double(V) by removing all 2 j  copies 

of-/-r. Now chop~k(V ) = red2k_j(Z), and at  least 2 N - 2 k  entries 

of Z lie in [a, b] so Lemma 1 completes the proof. Q.E.D. 

L e m m a  5 Suppose V and W arc multisets with Ivl = IWl = N,  

I v  N w I >_ N - m and at least N - k elements of each of V and 

W lie in the interval [a,b]. Then midt(V) and midt (W)  lie in 

[a,b] and Imidk(W) - midk(W)[ <_ m(b - a) / (N  - 2k) 

Proof: By Lemma I we see that all the entries of redt(V) lie in 

the interval [a, b] and so their average midk(V) also lies in [a, b]. 

Similarly every entry of redk(W) and also midk(W) lies in [a, b]. 

By Lemma 2, the multisets redt(V) and redt(W) agree in a t  

least N - 2 k -  m of their entries, and in each of the remaining rn 

places, the entries can differ by at  most b -  a as each lies in [a, b]. 

Thus [midt(V) - m l d t ( W ) [  = ~,-~2~ I E red,(V)- E redk(W)l _< 

m(b - a ) / (N  - 2k). Q.E.D. 

L e m m a  6 SupposeV andW are multisets with IVl = Iwl = iv, 

such that mult(_kl,V) < k, mult(_kx,W) < k, mult(_kr,V) = 

mult(_l_r,W) = 0 for r > 1, all real entries of V U W  lie in 

the interval [a,b] and E~#.Li Imult(v, V) - mult(v, W)l -< m. 

Then centerk(V) and eenterk(W) lie in [a, b] and [centerk(V) - 

eenterk(W)l _< m(b - a)/(2N - 2k) 

P r o o f :  The hypotheses show tha t  in double(V) there  will be  at  

most  2k entries tha t  are not  real, and all of t hem will be -l-t and 

so will be removed in forming ehop~(V). Thus the  resulting mul- 

t iset has all its entries in [a,b] and so its mean centerk(V) also 
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lies in [a, b]. Similarly eenter t (W) also lies in [a,b]. Now as in 

the  proof  of L e m m a  3 we observe t ha t  W is formed f rom V by a t  

mos t  m operat ions  each replacing a value by 11  or vice versa. So 

we need only prove t ha t  if V1 and  V2 are mul t i se ts  with IVll = N ,  

mult(-J-l, V1) ~_ k -  1, mu l t (±r ,V l )  = 0 for r > 0, and  every real 

en t ry  of Vi lies in the  interval [a, b] and  such t ha t  V2 is formed 

from VI by removing one occurrence of a value z and  replacing it 

wi th  -1.1, t h e n  Icenterk(V1) - centerk(V2)[ _< (b - a ) / ( 2 N  - 2k). 

So we pu t  j = mult(.J-r,V1) and let Z denote the  mul t i se t  of  

2 N  - 2 j  entr ies formed by removing-all  occurrences of  .J-r f rom 

double(V1). Now chopS(V1) is formed f rom Z by removing the  

k - j h ighes t  entr ies and  the  k - j lowest entries.  On  the  other  

hand,  chopS(V2) is formed from Z by removing two occurrences 

of z and  then  removing the  k - j - 1 h ighes t  and  k j 1 

lowest of  the  remaining entries.  If z is among  the  k - j - 1 

lowest entr ies  of  Z'r this  is equivalent  to removing  the  k - j - 1 

h ighes t  and / c  - j + 1 lowest entries f rom Z .  If z is among  the  

k - j - 1 highes t  entr ies of  Z the  net  effect is to remove the  

/c - j + I highest and k - j - I lowest entries from Z. Thus 

in  these  cases, we can obta in  chop~(V~) f rom chopS(If1) either 

by removing a n  occurrence of the  k - ~ -t- 1 lowest en t ry  of Z 

and  adding an  occurrence of  the  k - j h ighest  en t ry  of Z ,  or  

else by replacing an  occurence of the  k - j h ighes t  en t ry  of Z 

by the  k - j lowest en t ry  of Z.  Clearly in these  cases,  the  s u m  

of the  entr ies  of  chop~(V1) differs f rom the  s u m  of the  entries of  

c h e p ~ ( l ~ b y  the  difference of two e lements  of  the  interval [a,b] 

which is a t  mos t  b - a. In the  remaining case z lies between the  

k - ~ lowest en t ry  of Z (call it  a I) and  the  k - ~ h ighes t  en t ry  

of Z (call it  P) ,  bu t  chop~(V2) is obtained f rom chop~(Vl) by 

removing two occurences of z and  replacing t h e m  with a t and  b P 

which will al ter  the  s u m  of the  entries by b P + a I - 2z which is 

a t  mos t  b' - z (as z _> a I) bu t  this  is bounded  by b - a. T h u s  in 

every case 

lcenterk(Vl) -- centert(V2) l 

= 2~v~-2~[ Z ehopl(vl) - Z chop~(Vs)i 
_< (b- ~)/(2# - 2k) 

as required. Q.E.D.  

3 I n t r o d u c t i o n  to the  A l g o r i t h m s  

The  a lgor i thms given in th is  paper  are  all var iants  on a sin- 

gle plan. To help the  reader  unde r s t and  t h e m  we give here an  

account  of  a basic a lgor i thm for the  crash-failure model.  Th i s  

algorithm is not optimal, but it is simpler than the others while 

still capturing the essential features, and it will isolate the main 

issues involved in solving the approximate agreement problem. 

For ease of exposition in this and the later algorithms, we will 

suppose that when a processor broadcasts information it sends 

to itself as well as to the other processors, though in imple- 

mentation this will require remembering, rather than sending a 

message. 

In the basic algorithm, processor p, until it fails, must per- 

form the following - 

- In round I: Broadcast ~(p), and denote by v(q1,p) the 

value received by p from ql as ~ (ql)- If the message from 

ql is missing set v (q1,P) to be -.[-1. 

• In round 2: Broadcast the vector of values (v(1,p), 

v(2,p),..., v(n,p)) and denote by v(ql, q2,P) the value 

received by p fromq~ as ~ (ql,q2). If the message from q2 

is missing set ~ (ql, q2,P) to be .I-2. 

• In round r, for r = 3,...,S, processor p will start 

with an array of n "-I values (v(ql,q2,...,qr-l,p) : 

each ql = 1,...,n). Now p should broadcast the array 

(v (ql, q2 . . . . .  q , - l ,  P)). Denote  by v (ql . . . . .  qr-1, qr, P) the  

value received by p from qr as v (q l , . . .  ,qr- l ,qr) .  If the  

message  from qr is miss ing set  v ( q l , . . .  ,qr- l ,qr ,P)  to be  

-Lr. 

• At  the  end of round 8 ,  processor p has  an  array of val- 

ues v (ql, . . .  ,qs,P).  Now let W (ql . . . . .  qs,P) denote  the  

mul t i se t  wi th  a single en t ry  v ( q l , . . . ,  qs,P). 

• For each r decreasing f rom S - 1 to 1 

- for each choice of ql,. . . ,qr, form a mul t i se t  

W (ql . . . . .  q,,*,... ,*,P) 
r, W q r + l , * , * , . . . , * , P )  = red(n_~t)s- , - i  t Uq,+~=i (q l , . .  •, qr, 

where in every case the  as ter isks  fill places so t h a t  

there  are S + 1 entries,  ei ther aster isks or indices, to 

n a m e  each mult iset .  

• Now pu t  W (p) = U~l=lW (ql, * , . . . , * , P ) .  

• Finally p u t  w (p) = mid(n_~t)s-, t (W (p)). 

T h e  a lgor i thm has  two phases.  F i rs t  there  rare S rounds  of 

communica t ion ,  in each of which each active processor  broad-  
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casts all the information it holds and collects the information 

sent  to it. After round r processor p has an array of val- 

ues (v (qx , . . . , q r , p )  : each qi = 1 . . . .  ,n)  where v (qx , . . . , q r ,P )  

is the value p received from qr representing the  initial value 

v(qt) as t ransmi t ted  by ql to q~ in round 1, then relayed by 

q2 to qs in round 2, and so on. In the  second phase, after 

all communicat ion has occurred, processor p builds for each 

choice of ql,-- .,qr a mult iset  W ( q l , . . . ,  qr, * , . . . ,  *, P) out of the  

collection of values { v ( q x , . . . , q r , q r + l , . . . , q s , p )  : each qj = 

1 , . . . , n  for j > r ) .  Now if qr ,qr+l , . . . ,qs  are all non-faulty 

then  v(ql . . . . .  qr, q r+ l , . . .  ,qs,P) = v(ql, . . .  ,qr) and in fact the 

method  of constructing W(q l , .  • •, qr, * , . . .  ,*, P) by successively 

combining multisets and removing extreme values is designed 

to ensure tha t  W ( q l , . . . , q r , * , . . . , * , p )  is a multiset  of size 

(n - 2t) s - r  which is a good representative for v(ql , . . .  ,qr) in 

tha t  

(i) if qr has not  failed before the  s tar t  of round r + 1 then every 

entry of W(qx . . . .  , qr, * . . . .  , *,p) has value v ( q l , . . . ,  q~), and 

(ii) the  mult isets  W ( q t , . . . ,  q,, * , . . . ,* ,po)  and W(qt . . . .  , qr, *, 

• -. ,* ,P l )  are not  very different - in fact they are the  same un- 

less qr failed precisely during round r, in which case they differ 

in at  most  l r+l" .  Is entries, where lj denotes the number  of 

processors failing precisely in round j .  

These propert ies are easily proved by descending induction using 

the  recursive construction of W ( q l , . . . ,  qr, * , . . . ,  *, P) and using 

the lemmas about  the red~ operators.  Finally using these facts 

about  the mult isets  W(ql ,* , . . .  ,*,p) and the proper ty  of the 

operator  rnidk we establish tha t  to(p) lies in the range p(U) and 

tha t  
l z ' " l s  ~lrr~ 

I~ (p0) - ~ (p~)l -< ( ~ - ~ ' ~ J  

which shows tha t  

sup {!112"'" Is : il + " "  is _< t, all l~ nonnegative integers~ 
K ~  

(n - 2t) s 

as the processors tha t  fail precisely in round i are different from 

those tha t  fail precisely in round j if i ~ j .  

The  above argument  hinges on the fact tha t  a faulty pro- 

cessor can cause different correct processors to receive different 

information only during one round (the round when the  faulty 

processor crashes) since before the crash the faulty processor 

sends the same correct message to everyone, and after the  crash 

it sends nothing to everyone. The difficulty we face in the  failure- 

by-omission and Byzantine models is that  a faulty processor may 

cause diffences between the  views held by correct processors in 
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more than  one round. To overcome this, in the  algori thms of §4 

and §8 each processor performs fault detection, examining the  

messages relayed to it by other  processors tha t  they received 

from q to try to deduce if q is faulty. Once a processor p has 

deduced tha t  q is faulty, it refuses to listen to  messages from q, 

using -l-r in place of the values in them. If a processor qr has 

not  been detected as faulty by everyone by the end of  round 

r + 1, its performance in round r must  have been quite close 

to correct, and our algorithms remove enough ext reme values in 

forming the mult isets  W ( q l , . . . ,  qr, * , . . . ,  *,P) t ha t  these multi-  

sets are the  same for different p. On the  o ther  hand if qr was 

detected as faulty by everyone before round r then  everyone was 

ignoring values t ransmit ted  by qr in round r, and the multi-  

set W ( q l , . . . ,  qr, * , . . . , * , p )  win contain only .1_~ and so be the  

same for different p. Thus  the fault detect ion ensures tha t  a 

faulty processor can cause significant differences in the  views of 

correct processors only in one round, namely the  round before 

the one in which the  last of the  other  processors detects  the  

failure. 

The algori thms of §6 and §8 also obtain be t te r  perfor- 

mance than  the  basic algori thm above by using the  operators  

chops and center k which are more complicated than  redk and 

midk but  are specially adapted  to the situations where the 

only differences between multisets W(ql ,  • • •, qr, *,- • •, *, po) and 

W ( q l , . . .  ,qr, * , . . . ,  * ,Pl )  are due to replacing a value by -l-r (un- 

like the Byzantine case where one value can be replaced by an- 

other).  

4 The Byzantine Model: The Algorithm 

An overview - -  During each round of communicat ion a cor- 

rect processor p broadcasts  information it holds in the  array 

~(p l , . . . , p r - l ,p ) ,  collects the  information sent  to i t  in an array 

v(pi,...,Pr,P), tries to deduce which processors are faulty, and 

then  modifies the information it received from processors known 

to be faulty to form the new array ~(pl , . . . ,pr ,p) .  The only 

method  a correct processor p uses to detect  tha t  process q is 

faulty, is to examine the  n values which reach p representing 

some information tha t  was broadcast  by q and then  relayed to  p 

by each recipient. If  q were correct then every processor would 

have received the  same value in the broadcast  and then  the cor- 

rect processors (at least n - t of them) would all have sent  the  

same value to p. Thus  if p finds fewer than  n - t values the  same 



among the  n it received, it  can deduce tha t  q was faulty. M t e r  

the S rounds of communication,  a correct processor will have an 

array of n s values to operate on. In S steps this array is used 

to form a collection of  ( n  - 2t) (n - 4t) s-~ values by repeatedly 

removing extreme values from subcollections and then  combin- 

ing subcoilections. Finally this collection of values is averaged 

to give the  proceesor's new value. 

In detail, processor p, if correct, mus t  perform the  following 

• Set ~ (p) = v (p). 

• In round 1: 

- Broadcast  ~ (p), and denote by v (qx, P) the value re- 

ceived by p from qx purport ing to be ~(ql) .  If the 

mesage from ql is missing or malformed set v(qt ,p)  

to be .1-1. 

- Set Fault (p, 1) to be the empty  set. 

- Set 5 (ql,P) = v (ql, P). 

• In round 2: 

- Broadcast  the vector of values (5(1,p) ,  5(2 ,p)  . . . . .  

(n,p)) and denote by v (qx, qz,p) the value received 

by p from q2 purport ing to be ~ (ql, q~). If the  message 

from q2 is missing or malformed set v(qx, q2,p) to be 

_Lz. 

- For each ql consider the multiset  {o (ql, 1, p), v (q*, 2, p), 

. . . ,  o (qx,n,p)}; if the most  frequently occurring ele- 

ment  in this multiset  has multiplicity less than  n - t 

say that  "qx has been detected as faulty by p in round 

2 n . 

- Set Fault(p,2) to be the set of q which have been 

detected as faulty by p in round 2. 

- Set 5 (q,, q2,P) = / v (ql, q2,p) if q2 ~ Fault (p, 2) 

[ I~ if q2 e Fault (p, 2) 

• In round r, for • = 3 , . . . ,  S ,  processor p will s tar t  with 

an array of  n r - I  values (5 (ql, q~ , . . . , q , - x ,p )  : each qi = 

1 , . . . ,  n) and a set Fault (p, r -  1) of  processors already 

detected as faulty by p. Now p should 

- Broadcast  the array (~(ql,q2 . . . . .  q,-1,p)).  

- Denote by t, (q l , - .  •, qr-1, qr, pJ the value received by 

p from qr purport ing to be ~(qx, . . . .  q r - l ,q r ) .  If 

the  message from q, is missing or malformed set 

v (q l , . . .  ,q, ,p) to be J_,. 

For every choice of indices q t , . - .  ,qr-x,  consider the  

multiset  {n (q l , - . .  , q r -1 ,1 ,p ) ,  v (ql, . . . , q,-*, 2,p),. . ., 

v (qx, . . .  , qr - l ,n ,p )} .  If the most  frequently occur- 

ring element has multiplicity less than  n - t, say tha t  

"q,-x has been detected as faulty by p in round •" 

(Note tha t  several choices of qi,-- .,q,-~ may lead to 

the  same q , - i  being detected).  

- Set Fault (p, r) = Faal t  ( p , ,  - 1) U {q : q has been 

detected as faulty by p in round r }. 

v ( q l , . . .  ,qr- l ,qr ,p)  

- Set  ~ (ql . . . .  , q r - l , q r , p )=  if qr f~ Fault (p, r) 

J-,  if qr E Fault (p, r) 

- Now p is ready to s tar t  round r + 1. 

• At  the end of round S ,  processor p has an array of val- 

ues ~ (qx , . . . ,qs ,P) .  Now let W ( q l , . . . , q s , p )  denote the 

multiset  with a single entry 5 ( q t , . . . ,  qs,P). 

• For each • decreasing from S - 1 to 1 

- for each choice of qx,.. -,qr, form a multiset  

W (q l , . . . , q r ,  * , . . . ,  *,p) 

=red ,  n 4t,s-.-12tU~ n l W ( q x , . . . , q r ,  qr+x,*,*,. ,*,P) 
I .  - -  ] ~ f+  1=  * " 

where in every case the asterisks fill places so tha t  

there are S + 1 entries, either asterisks or indices, to 

name each multiset.  

n • Now put W (p) = oq,=xW ( q x , ,  . . . .  , , , p ) .  

• Finally put  w (p) = mid(n_40s-q  (W (p)). (Note tha t  the 

amount  of reduction in this case is different from tha t  in 

previous steps). 

The bchaviour of the algorithm is explained by the following: 

T h e o r e m  1 In the algorithm above as a convention we set 

Fault(p,O) = ~, Fault (p, S + l )  = {1 . . . . .  . } \ C o r r .  We put 

Exposed (r) = np~aorrFault (p, •) and i, = I Ezposed (r + 1) 1 - 

] E=posed (r)l = I Exposed (r + 1) \Exposed (r)[ Then we can con- 

clude: 

( i ) :  I f  p 6 Cor•, qr E Corr then all the (n - 4t) s - r  entries of 

w (q~ . . . .  , q , , . , . . . , , , p )  are ~ (q~ . . . .  ,q , )  
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( i i ) :  I f  qr q~ Ezposed(r+ 1) and Po E Corr, px E Corr then 

W ( q l , . . . , q , ,  * . . . . .  *,Po) = W ( q l , . . . , q , ,  * , . . . , * , P l )  

( i i i ) :  I f  qr E Exposed(r)  and Po E Corr, Pt E Corr then 

w ( q ~ , . . . , q , , . , . . . , , , p o )  = w (q~ . . . .  , q , , * , . . . , * , p d  

( i v ) :  I f  po ~ Corr, Px E Corr then 

[W (ql . . . . .  qr ,* , . . . ,* ,PO)  N W (ql . . . . .  q , ,* . . . . .  *,Pl)I 

>_ (n  - 4t )  s - "  - ! , + 1  • ! , + 2  . ' .  is 

P r o o f :  Fi rs t  we observe t ha t  i f  p E Corr, q ~ Corr 

then  q ~ Fault(p,r)  This  is proved by induct ion on r. I f  

r = 1, and  p E Cart  , q E Corr t hen  q f~ Faul t (p ,  1) as 

Fault (p, 1) = 0. Now for arbi t rary  r suppose p E Corr, and 

q E Corr. If  qr E Corr then  by the  induct ion hypothesis  

q f~ Fault(qr,  1) and so for any choice of q l , . . . , q r - 2  we see 

( q , . . . , q , - 2 ,  q , q , )  = ,~ ( q ~ , . . . , q , - 2 , q ,  q , )  = ~ ( q ~ , . .  • ,  q , - ~ ,  q) 

as q is broadcast ing correctly. Also qr broadcasts  correctly so 

u(ql  . . . . .  qr-2,q,  qr,P) = ~(ql  . . . . .  qr-2,q,q~) • Thus  the  mul-  

riser of values {v (ql . . . .  , q¢_l, q, 1, p) ,e  (ql . . . . .  q~_l, q, 2, p) . . . .  

v (qx . . . . .  q,_~, q, n ,p )}  contains  a t  least  ( n -  [) entr ies  each of 

which is ~ (ql, . . . .  q,_2, q). So q is no t  detected as faulty by p 

in round r,  b u t  by the  induct ion hypothesis  q f~ Fault (p , r  - 1) 

so we see q f~ Fault (p, r )  as required. Now the  theorem follows 

easily by descending induct ion on r, using the  lemmas of §2 a n d  

the  observat ions  t h a t  if q~ E Ezposed(r) then  for any correct  

q¢+t we have ~(q~, . . .  ,q, ,q,+x) =_L, while if q, ~ E z p o s e d ( r + l )  

then  for fixed choice of qa,.. . ,q~-z a t  least  n -  2t of the  correct  

processors q,.+l have the  same value for ~ (q~ , . . . ,  q~_ l ,  q~, q ~  x ). 

W h e n  we apply Theorem 1 wi th  r = 1 we ob ta in  

(1): I f p  ~ Corr, q~ E Corr then  W ( q ~ , * , . . . , * , p )  consists of 

(n - 4t) $-~ entr ies  all of which are u (qt). 

( t t ) :  If  ql ~ Ezposed(2) ,  Po E Corr, and Pl E Corr then  

w (q~, . , . . .  ,* ,  po) = w ( q . . , . . .  , , ,  pd. 

( iv ) :  I f  p o E  Corr, Pt E Corr then  

Iw  (q~,* . . . . .  *,po) n w (q~,, . . . . .  * ,~)1  

_> (n - 4t) s - I  - 12" I s " "  Is 

Notice t ha t  (iii) tells us nothing as Ezposed (1) = ~. Now if 

n p ~ Corr we see t h a t  Uqt=iW ( q i , * , . . .  ,* ,p)  contains  a t  least 

(n - t) (n - 4t) s - I  entr ies  in the  range p ( U )  spanned  by init ial  

values of correct  processors, namely the  ( n -  4t) s - x  copies of 

v (ql) for each correct  ql. Then  by Lemma 1, w(p) lies in the  

range p(U).  Suppose t ha t  ptrE Corr,  Pl E Corr, Then  

Iw  (po) n w (~)1 
~_ ( .  - 4,) s-1 (n - ld  + I, ( ( .  - 4t) ~-1 - l , . . .  l~) 

= n (n  - 4 t )  s - I  - 1112... Is 

as there  are il values of ql wi th  qx E Exposed (2) and  n - 11 

values of ql wi th  qx ~ Ezposed (2). We can apply Lernma 5 to 

prove 

l l . . . l s  
I= (po) - ,o (pdl -< (n - 4t) s-1 (n - '2 t )  "6 ( 0 )  

We final ly note t h a t  as ix = IN=posed (2)1, l= -- l~=po=ea (3) t -  
lE=po,ed C2) 1 . . . . .  i s  = IE=posed (S + l ) l - I E z p o s e d  ( S )  l, we have 

each l~ a non-negat ive  integer and  also !1 -t- 12 + . . .  + ls  = 

IExPoaed (S + ~)[ = [Fat,it I < t. This proves t h a t  our a lgor i thm 

has,  as claimed, performance 

K <_ sup { lx l2 . . .  is  : il + ' " l s  _< t, all fi nonnegat ive  integers)  

(- - 4 t )  s - 1  ( -  - 20 
It  is interest ing to note  t h a t  for S = 2 our  a lgor i thm therefore 

gives a n  i m p l e m e n t a t i o n  o f  Crusader ' s  Agreement  [D] on each 

value v (q) - -  each processor p gets e i t h e r a  value ( the  common 

value of W (q, *,p))  or else the  knowledge t h a t  q is faulty, and  

all t he  processors which get a value get the  same value, which 

is the  r ight  one if q is correct. In fact our  implementa t ion  has  a 

s t ronger  property,  t h a t  if any P0 fails to  detec t  t h a t  q is faulty,  

all those p t ha t  do detect  i t  know wha t  value P0 has  chosen. 

5 T h e  B y z a n t i n e  M o d e l :  A L o w e r  B o u n d  

This  section gives a formal  account  of a lower bound,  due to 

[DLPSW], on achievable performance for any S - round  approx-  

imate  agreement  a lgor i thm in the  Byzant ine  model.  Any .algo- 

r i t h m  for solving the  S - round  approximate  agreement  problem 

can be given in the  following s t anda rd  form, where  all infor- 

mat ion  is exchanged for S rounds  and  then  a computa t ion  is 

performed : 

• Set  u (p )  = v(p) .  

• In round  1, a processor p E Corr  

- broadcas ts  u (p), 

- denotes  by u (q l , p )  t he  value received by p f rom ql 

purpor t ing  to be u (qx). 

• In round  r, for r = 2 , 3 , . . .  , S  a processor p E Corr  s t a r t s  

wi th  an  array of n r-1 values (u (qz,- .  •, qr-1,  P) : each ql = 

1 , . . .  ,n ) .  I t  then  
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- broadcasts  the array (u (ql . . . . .  q,-x,P)), 

- denotes by u (qx,- .-  , q , -hq , ,P )  the  value received by 

p from qr purport ing to be u ( q h . . . , q , ) .  

• Finally a processor p ~ Corr applies a function f to its 

dew, the array (u ( q x , . . - , q s , p ) )  of n s values, to produce 

its new value tu (p). 

Different algorithms are given by different choices of  the 

function f .  Notice tha t  the algorithm of §4, which involves 

computing and modifying values between rounds of  communi-  

cation, is equivalent to one in the s tandard  form because all 

the computat ion and modification can be simulated by each 

processor after all the information is exchanged. So suppose 

we are given a function ff for which the algori thm satisfies the 

validity condition. Let l h h , . . . , I s  be any positive integers so 

tha t  Ix + . . .  + Is _< t. We introduce the collection of multi- 

indices I = ( ix , . . .  , i s )  where i~ ranges over the integers from 1 

to mk = [n/lk]. We order the multi-indices 'alphabetically ' ,  

tha t  is (ix . . . .  , i s )  < (.fi . . . .  , i s )  if there is some r so tha t  

(i) ik _< jk for k < r, and (ii) i ,  < j , .  The  multi-indices are 

totally ordered in this way (which is described as "last index 

varies fastest" or "row-by-row") and we denote the successor 

to I by I + + .  As examples, when S = 3, mx = m2 = 3, 

ms  = 4 we have ( 1 , 2 , 3 ) + +  = (1,2,4),  ( 1 , 2 , 4 ) + +  = (1,3,1) 

and (1, 3, 4) + +  = (2,1, 1). 

To each multi-index I we assign an array M i  of n s entries 

defined by 

M~ (qx, q~ . . . . .  qs)  = 

1 if there is some r so tha t  (i) [qk/mk] < ik for k < r, 

and (ii) [q,-/mr] < i ,  

0 otherwise 

Thus Mz is formed by parti t ioning the positions in the  array 

into subblocks of size it x 12 x . . -  × Is. Every entry in a subblock 

has the same value which is either 0 or 1. The subblocks filled 

with l ' s  all precede those filled with O's. 

If we arrange the arrays Idz in the order of the multi-indices 

I we get a chain with the property tha t  given any two con- 

secutive arrays MI and M.,++, there is some execution of the 

broadcasting algorithm with /~ (U) _< 1 and IFaultl < t lead- 

ing to one correct processor p0 receiving MI as view while an- 

other  correct processor Pl receives Mi++ as view. For this 

execution I w ( p 0 ) -  tv(px)[ = I / ( M z ) -  I ( M , + + ) I ,  so K > 

If  (MI) - jr (Mx++)I- However if we consider an execution where 

every processor is correct with initial value 0, we find tha t  every 

processor will get M(1,1,...,x) as view. In an execution where all 

correct processors have initial value the same, the validity condi- 

tion requires t hem to agree on that  same value, so f (M(1,...,1)) = 

0. Also we consider an execution where the processors 1,2,. . . ,  

( m s -  1)Is  are correct with initial value 1, while processors 

(ms  - 1) l s  + 1 , . . . ,n  follow the algorithm with initial value 0 

during the rounds of broadcasting and then stop without  com- 

puting anything - -  notice tha t  the arbi trary behavior allowed 

to a faulty processor includes the possibility of following the al- 

gorithm. In this execution the correct processors will receive 

M(,nx,l,1,...,l) as their view, and the validity condition requires 

agree on 1 as their new value, so f (./~4"(r..1,1,...,1)) = them to 1. 

Since the chain of arrays M! reaches from I = ( 1 , . . . , 1 )  to 

I = ( m s ,  1 , . . . ,  1) in (ml - 1) m 2 . . -  m s  steps, we get a chain of 

real numbers  f (Mi)  reaching from 0 to 1 in (ml  - 1) m z . . .  m s  

steps. Thus  there is some pair  of consecutive values where 
1 > 1 

_ , SO i f  (M,)  - ! (M,++)[ > (rex - 1) m 2 . . . m s  - m x m 2 . . ,  m s  
1 

K > - - .  Since m t =  In/It] <_ (n + i t ) / l t  <_ (n + t) f i t ,  
f r t l  • • • m S 

1112." Is K>_ 
in + t) s 

.As this is t rue for any choice of l h . . . , I s  with 11 -k . . .  -k Is _< t 

we have the lower bound 

K > sup {1112... Is : il + . . .  + is _< t} 
(. + t) s 

to which our algori thm is asymptot ic  as n increases. 

The reader can verify tha t  the following construction gives 

an execution as required with M(i,,i~,...,is) as the view for P0, 

and M(/l,...,is)+ + as the view for Pl : The faulty processors are 

those p such tha t  there is an r with Ip/I,] = it. Since for each r 

at  most  l ,  values of p satisfy this condition, the total number of 

faulty processors is at  most  11 + . . .  + Is _< t. Choose po and pl 

from among the  correct processors. Let ~ (p) be 1 if [p/ll] _< ih  

and 0 if Ip/ll] > il .  

• Every processor p, correct or faulty, sets u (p) = v (p). 

• In round 1, 

- a H  processors p, except those where [Pill] = i l ,  

broadcast  u (p). The remaining p each send the value 

u(p) to those q where [q/i~] < i2, but  they send the 

value 0 to those q where [q/i~] > i2. 
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- All processors p denote by u (ql,P) the  value received 

by p f rom q purpor t ing  to be u (ql). 

• In r o u n d r f o r r = 2 , . . . , S - 1  

- all processors p, except  those where [p/lrl = ir broad- 

cast  the  ar ray (u(ql, . . .  ,q~-l,p)). T he  remaining p 

form ano the r  a r ray  wi th  

0 if [qk/lk] = ik for 

u' (q l , . . . ,qr_l ,p)  = each k = 1 , . . . , r -  1 • 

u ( q l , . . .  ,qr-l,P) else 

These  p send the  array (u (ql . . . . .  qr-l,P)) to those  

q where  [q/lr+l] _< it+l, bu t  they  send the  a r ray  

( uw (ql . . . . .  qr-l,P)) to those  q where  [q/lr+l] > ir+l .  

- All processors  p denote by u ( q l , . . . , q r - 1 ,  qr, P) t he  

value received by p from qr purpor t ing  to be 

u ( q l , . . . ,  q,-1, q,). 

• In the  final round  S 

- all processors  p, except  those  where [p/ls] :- is 

broadcas t  the  ar ray (u (ql, .. •, qs-x, P)). T he  remain-  

ing p form ano the r  ar ray with 

I O if [q~/l~] = ik for 

u l ( q l , . . - , q s - l , P )  = each k = 1 , . . . , S  - 1 

u (ql . . . . .  qs-l ,P) else 

These  p send the  array (u (ql . . . . .  qs-x,P)) to those  q 

where q ~ P0, bu t  to P0 they  send ins tead the  array 

(U' ( q l , ' ' ' ,  qS- l ,P))"  

- -  All processors  p denote  by u (ql, . . .  ,qs- l ,qs ,P)  the  

value received by p f rom qs purpor t ing  to be 

u ( q l , . . .  ,qS-l,qS). 

• Only the  correct processors now calculate their  new value 

f rom their  view. T he  o thers  halt .  

In fact, t he  lower b o u n d  j u s t  derived can be  improved slightly 

by finding other  mult i - indices  I for which M i  is the  view in some 

execut ion wi th  all correct processors having 0 as initial value, 

and  by finding mul t i - indicss  I for which an  execut ion exists  in 

which one correct  processor receives Mx as  view and  ano ther  

receives M(i++)++ as  view. 

6 T h e  C r a s h - F a i l u r e  M o d e l :  T h e  Algo-  

r i t h m  

An overview - -  Dur ing  each round of communica t ion  a cor- 

rect processor p broadcas ts  informat ion it holds  in the  a r ray  

v (p l , . . . , p r - l , p )  and  collects the  informat ion sent  to it in an  ar- 

ray v(pl,...,Pr,P). After  the  S rounds  of communica t ion ,  a cor- 

rect processor will have an array of n s values to opera te  on. In  

S s teps  th is  a r ray  is used to form a collection of n (2n - 2t) s-1 

values by repeatedly  doubling,  removing excess values  f rom sub-  

collections and  then  combining subcollections.  Finally the  cen- 

ter operator  is applied to this  collection of values to give the  

processor 's  new value. 

In detail,  processor p, unt i l  i t  fails, m u s t  per form the  follow- 

ing - 

* In round  1: Broadcas t  ~(p) ,  and  denote  by v(ql ,p)  t he  

value received by p from ql as v (ql)- If the  message  f rom 

ql is miss ing set  v (qx,p) to be  _1.1. 

• In round  2: Broadcas t  the  vector  of  values  ( v  ( 1 , p ) ,  

v ( 2 , p ) , . . . ,  v(n,p))  and  denote  by v(ql, q2,p) t he  value 

received by p f rom q2 as v (qx,q2). If the  message  f rom q2 

is miss ing set  v (qx,q2,p) to be  -l-2. 

• In round  r, for r = 3 , . . . , S ,  processor p will s t a r t  

wi th  an  a r ray  of n r-1 values (v(ql, q2, . . . ,qr- l ,p)  : 

each ql = 1 , . . . , n ) .  Now p should  broadcas t  the  a r ray  

(v (qx, q2 . . . . .  q , -1 ,P)) .  Denote  by v (ql , .  • •, qr-1, qr,P) the  

value received by p f rom q, as v ( q l , . . .  , q r - l , q , ) .  If the  

message  from qr is missing set  v (qx , . . .  ,qr-l,qr,p) to be 

-Lr. 

• At  the  end of round S ,  processor p has  an  a r ray  of val- 

ues v(q l , . . . , q s ,p ) .  Now let W ( q l , . . . , q s , p )  denote  the  

mul t i se t  wi th  a single en t ry  v ( q t , . - . ,  qs,P). 

• For each r decreasing f rom S - 1 to 1 

- for each choice of ql, .-  .,qr, form a mul t i se t  

W ( q l ,  . . . , q , ,  * ,  . . . , * , p )  

---- chop r+I s- ,  ~ un W tql , 
(2n--2t~ - t qr+ s=l  k " . . , q r ,  q r + l , * , * , . . . , * , p )  

where in every case the  as ter isks  fill places so t h a t  

there  are S + 1 entries,  e i ther  as ter isks  or indices, to 

n a m e  each mult iset .  
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• Now put  W (p) = U~,=tW (ql, * . . . .  ,* ,P) .  

• Finally put  w (p) = center(2n_2t)s_, t (W (p)). 

The behaviour of the algorithm is explained by the following: 

T h e o r e m  2 In the algorithm above, for each r = 1 , . . .  , S  let 

Fail(r) denote the set of  processors that have failed before send- 

ing any of  the messages in round r. Also as a convention we 

set Fail (S  + 1) = { 1 , . . . ,  n} \Corr .  We put lr = ]Fail (r + 1)1 - 
IFaiI Cr)l = IFaiI Cr + I) \FailCr)l Then we can conclude: 

0): I / p  e Vorr then the value of each of the (2n - 2t) s - ,  

entries of  W(qx  . . . . .  q,, * . . . .  , *,p). is either v(ql . . . .  ,qr) 

or l r .  

(ii): l f  qr f~ FailCr + 1) and p e  Corr then 

m u l t ( v ( q ~ , . . . , q , ) , W  (ql . . . .  , q,, • . . . . .  , , p ) )  = ( 2n -2 t )  s - "  

(tti):  I f  q, e Fail(r)  and p e Corr then 

mult(_l_r, W (ql . . . . .  qr, * , . - . ,  *,p))  = (2n - 2t) s - r  

( iv) :  I f  po E Corr, Pl E Corr then 

Imul t ( v (qx , . . . ,  q,), W ( q l , . . . ,  q~, * , . . . ,  *,po)) 

- m n l t ( v ( q l  . . . .  , qr), W (ql . . . .  , qr, * , . . . ,  *, Pl))I 

~_ lr+l • l r + 2 " " l S  

P r o o f :  First  we observe tha t  if p E Gorr, then p f~ Fail(r) for 

r = 1 , . . . ,  S + 1. Now the theorem follows easily by descending 

induction on r, using the lemmas of §2 and the observations 

tha t  if qr ~ Fail(r + 1) then qr sent all its messages in round 

r, so tha t  every qr+l tha t  has not  failed before start ing round 

r + 1 has v(ql . . . .  ,qr,qr+l) = vCql . . . .  ,qr), while on the  other  

hand if qr E Fail(r) then qr sent no messages in round r, so tha t  

every qr+l tha t  has not  failed before start ing round r + 1 has 

v ( q l , . . . ,  qr, qr+l) :-J-r. 

We have by (ii) and (iii) for r = 1 tha t  W ( q , , .  . . . .  ,*,Po) = 

W(q~,, . . . . .  *,pd unless qx • Fail(2)\Fail(1). For these 11 val- 

ues of ql we have by (iv) for r = 1 tha t  

Imult(vCqx), W (q~, * , . . . , . ,  po) - m u l t ( v ( q l ) ,  w ( q l ,  * , . . . ,  *, p l )  I 

<_ 1 2 .  l s . . . I s  

r t  , We can apply Lemma 6 with V = Uq~=lW(qx, , . . .  ,*,Po), W = 

U~x=lW(ql, * . . . .  , * ,P l ) ,  N = n(2n - 2t) s - l ,  m = ll " " I s ,  k = 

t(2n - 2t) s -1  and [a,b] = pCU) to prove tha t  each of w(po) = 

center t (V)  and wCpl) = eentcr t (W) lie in p(U) and tha t  

l l  • • • 18 
I v ,  (p0) - u ,  (p~ . ) l  -< (2~ - 2t) s "s (u) 

We finally note that as 11 = IFail (2)I-IFail(X)l, l, = IFail (3)l- 

IFail(2)l,..., Is = IFaiICS + I)I- IFail(S)I, we have each l, a 

non-negative integer and also 11 + 12 +... + Is = IFail (S + 1)I - 

[Fail(1)l < t. This proves that our algorithm has, as claimed, 

performance 

K _< sup {I l l2- . .  ls : ll + ' "  ls < t, all l, nonnegative integers) 

(2n - 2t) s 

It is interesting to note tha t  in any execution where the pro- 

cessors have common knowledge that  some lr = 0 (this means 

tha t  in round r no new processors crashed) then K = 0 (so exact 

agreement  is obtained).  I t  is proved in [DM 1 tha t  these are the 

only situations where processors can have common knowledge of 

exact agreement.  

7 T h e  C r a s h - F a i l u r e  M o d e l :  A L o w e r  

B o u n d  

This section gives a formal account of a new lower bound on 

achievable performance for any S-round approximate agreement  

algori thm in the crash-failure model. Any algori thm for solving 

the S- round  approximate agreement problem can be given in the 

s tandard  form as in §5, where all information is exchanged for S 

rounds giving each processor p a view (v(q I .... , qs, P)) and then 

p applies a function f to the view to give its new value w(p). 

To prove a lower bound on the performance achievable we 

are going to construct a chain of views as in §5, but this time 

we will do so implicitly by giving a recursive recipe for the ex- 

ecution which lies between successive views. This proof is very 

closely related to the proof in [DM] of the impossibility of exact 

agreement in fewer than t+ 1 rounds. An execution in the crash- 

failure model is very easy to describe -- we need only specify the 

initial value of each processor and say which processors failed in 

each round and which messages they sent in that round. We say 

that two executions p and pl are directly similar (written p ~ pl) 

if some processor p is correct in each and obtains the same view 

in each. We say similarly that p and pt are k-similar (written 

p ~t pt) if there are k+ 1 executions p0,pl,.. -,Pk so that p0 = p, 

Pk = pl, and p~ ~ Pi+1 for eachi. Thus NI is just ~, and if 

p k p~ and p~ N,n p, then p ~k+,n p,. Note that p ~ p~ implies 

p~ ..,k p and p ~,n pl for m > k. 
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Let  11,12 , . . . , I s  be any collection of positive integers  such t h a t  

Ix + . . .  + is  .~ t. P u t  rnl = [hill].  We have 

L e m m a  7 Let 1 _< r < S - 1. Let  p = po be an ezecution such 

that no failures occur after the end of  round r, and the number 

of  failures before the start  of round i is at most 11% . . .  Jr Ii for 

any i. Denote by ~ the ezecution which is identical to p for the 

f irst  r - 1 rounds but has no failures during any later round. 

Then p ~N(r) k where N ( r )  - s s -- ~ i = r + l  l~Iy=i 2my + 1. 

Proof." Let the processors that fail in round r in # be denoted 

ib...,ira. We will use descending induction on r. So suppose 

r = S- 1 (note that the statement is not true ifr = S). For each 

k = 1,...,ms let pt and qt be the least and greatest processor 

indices that are not among the processors that failed in p nor in 

the range (k - 2)Is Jr 1 .... ,kls. Let P2t-1 denote the execution 

which is identical to p during the first S - 2 rounds, and then 

also during round S - 1 except that the processors il,...,ira do 

send to any processor with index 1,2,..,(k - 1)Is as well as 

those processors that they send to in p. In round S, each of the 

processors (k - 1)Is + 1 , . . . , k l s  t h a t  has  not  failed earlier, fails 

after sending messages  to processors 1,.. . ,Pk. T he  a s sumpt ions  

on failure n u m b e r s  in p mean  t ha t  th is  execution involves a t  mos t  

t failures. Also let p2k denote the  execution identical to p dur ing  

the  first S - 2 rounds ,  and  then  also dur ing round S - 1 except  

that the processors i l , . . . , i ra  do send to any processor with index 

1,2,...,kls as well as those processors that they send to in p. 

In round S, each of the processors (k - 1)Is Jr 1,...,kls that 

has not failed earlier, fails after sending messages to processors 

1,...,pk. The assumptions on failure numbers in p mean that 

this execution involves at most t failures. Clearly the view of Pk 

is the same in P2(k-1)  aS in P2k--I SO P2(k-l) ~ P2k-l.  Similarly 

the view of qk is the the same in P2k-t as in P2t so Pz~-x ~ P2k. 

Also let P2ras+l denote the execution identical to p during the 

first S - 2 rounds with no failures during round S - 1 and in 

round S each of the processors il,i2,...,ira as well as each of 

(k- 1)Is Jr 1,...,kls which hasn't failed earlier, fails after sending 

messages to processors 1,...,Pk. The view of qms is the same in 

P2ras+t as in P2ras, but this is the same as its view in P2ras-I 

so P2ras-1 ~ P2ras+l. Similarly the view of Pros is the same 

in P~ras+1 as in ~ so P2,ns+t ~ P- Thus examining the whole 

a rgument ,  p ~ 2 r a s + l  ~. 

Now we assume we have the  result  for r Jr 1 and  prove it for 

r .  For each k = l,...,mr+l we let Psk-2 denote the execution 

identical to p for the first r - 1 rounds and also in round r except 

that the processors ih...,ira do send to any processor with index 

1,2,...,(k - 1)Ir+1 as well as those processors that they send 

to in p. In round r Jr 1, each of the processors (k - 1)Ir+i Jr 

1,...,klr+i that has not failed earlier, fails before sending any 

messages. No failures occur after round r -4-1. The assumptions 

onthe number of failures in p imply that this execution also 

satisfies those assumptions. We let Pst-i denote the execution 

identical to p for the first r - 1 rounds and also in round r 

except that the processors Q,...,ira do send to any processor 

with index 1,2,...,klr+i as well as those processors that they 

send to in p. In round r Jr 1, each of the processors (k- 1)Ir+i Jr 

1,...,k/r+1 that has not failed earlier, fails before sending any 

messages. No failures occur after round r Jr 1. The assumptions 

on the number of failures in p imply that this execution also 

satisfies those assumptions. We let Psk clenote the execution 

identical to p for the first r - 1 rounds and also in round r 

except that the processors ix,...,ira do send to any processo, 

with index 1,2,...,klr+i as well as those processors that they 

send to in p. No failures occur after round r. The assumptions 

on the number of failures in p imply that this execution also 

satisfies those assumptions. Now by the lemmn for r + 1 we 

have P3(/c-t) ~N(r+X) PSk-2 and  Ps/~-t ~N(r+l)  P3k. Also every 

processor gets  the  same view in P3k-2 as in P3k-t so PSk-2 ~:~ 

PSt-X. Fur the r  Psra,+~ in which processors Q, . . . , i ra  fail a t  the  

very end  of round  r can also be viewed as an  execut ion in which 

they fail a t  the  very s ta r t  of round r Jr 1, and  so by the  l e m m a  

for r Jr 1 we have Ps,~+~ ~N(v+l) ~. P u t t i n g  all these  pieces of 

chain toge ther  we see p ~(2ra,+t+l)N(r+t)+m,+l ~, h u t  (2mr+l"jr  

1)N(r + 1) + mr+t <_ (2mr+x + I) (NCr + 1) + 1) = NCr). Q.E.D. 

Now we can prove that if p = P0 is the execution where all 

processors have initial value 0 and no failures occur, and ~ is the 

execution where all initial values are I and no failures occur, then 

p N N b where N < (2rex + 2)- (2mr + 2)-.. (2ms + 2). We will 

give separate proofs if S > 1 and S = 1. First suppose S > 1. 

For each k = 1,..,rnl let P3k-2 denote the execution where 

processors 1,...,(k - 1)11 have initial value I, and the others have 

initial value 0, and where processors (k - 1)l I + 1,...,kll fail in 

round I before sending any messages, but no other failures occur. 

Let Pan-1 denote the execution where processors 1,...,klt have 

initial value 1, and the others have initial value 0, and where 
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processors (k - I)li + I,...,Idl fail in round 1 before sending 

any messages, but no other failures occur. Let Psk denote the 

execution where processors 1,...,kll have initial value 1, and the 

others have initial value 0, and where no failures occur. By 

L e m m a  7, Ps(k-1) ~N(1) Pat-2 and  Psk-1 NN(1) PSA. Also the  

view of every processor is the  same  in Pat-2 as in Pat-1 since the  

initial value of a processor t ha t  fails before sending any  message  

is irrelevant,  and  so Pst-~ ~ Psk-1. Since Ps,n~ ---- ~, we have  

p NN ~ where N = 2 m l ( N ( 1 ) + 1 )  < s ~ y = l  2my + 2 as we see by 

wri t ing 2rn i + 2 as (2mj  + I) + I and  expanding  the  product .  

In the  case S = I for each k = l , . . . , r n l  let pk and  qt be the  

least  and  greates t  processor indices t h a t  are not  in the  range 

(k - 2)11 + 1,.. . , /all.  Let P2k-1 denote the  execution in which 

the  processors  wi th  index I, 2 , . . . , (k  - 1)11 have initial value 1 

and  the  others  have initial value 0 and  in round 1, each of the  

processors (/¢ - 1)11 -I- 1 , . . . ,k l l  fails after  sending messages  to 

processors 1, . . . ,pk. Let  p2t denote the  execution in which the  

processors with index 1 ,2 , . . . , k i l  have initial value 1 and  the  

o thers  have initial value 0 and  in round 1, each of the  processors  

( k  - 1)11 + 1 , . . . ,k l l  fails after sending messages  to processors  

1 , . . . , p t .  The  view of Pk is the  same in P2(k-1) as in P2/~-1 so 

P2(k-1) ~ P2k-1. Similarly the  view of qk is the  same in P2k-1 

as in P2k so P2k-I ~ P2k. As  the  view of P,n~ is the  same in 

P2ml as ill ~ we have t ha t  P2m~ ~ ~, and  so p ~ N  ~, where 

N : 2 m l + l < 2 m l + 2 .  

Now we have shown how to cons t ruc t  a sequence P0 = 

P,Pl,...,PN = P where p# ~ P~+I, t ha t  is there  is some pro- 

cessor p~ whose view (which we will call M~) is the  same  in p~ 

and  in P~+I. Since M0 is a view in a failure-free execution where 

every initial value is 0 we m u s t  have f(Mo) = 0. Similarly 

M N - 1  is a view in a failure-free execution where all initial val- 

ues are 1 so f(M1~-l) = 1. T h u s  there m u s t  be some i so tha t  

If(M~) - f(M~+l)l >_ 1 /N bu t  each of M~ and  Mi+l  are views in 

the  execution P~+I which from the const ruct ion clearly has  all 

initial values ei ther 0 or 1. T h u s  we have  proved t ha t  any  algo- 

S i~=1(2n/l j+3) r i t h m  has K > 1/N. Since N _< l~j=l  2 m ~ + 2  _< 

we have K _> ~ = 1  i~/(2n+31i) _> II~=l l~/(2n+3t). As 11,...,Is 

were arbi trary,  subject  only to il + . . .  + ls _< t, we have 

K < sup  (l~.. .  Is : i~ + . . .  + is <_ t, all I~ nonnegat ive  integers) 

(2n + 3t) s 

In fact by pay ing  closer a t ten t ion  to the  cases when successive 

execut ions look the  same  to all processors,  we can improve the  

denomina to r  to (2n 4- 2t) s. 
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8 The Failure-By-Omission Model 

An overview -- During each round of communication a cor- 

rect processor p broadcasts information it holds in the array 

v(Px,...,Pr-1,P), collects the information sent to it in an array 

v(p1,...,p,,p), tries to deduce which processors are faulty, and 

then modifies the information it received from processors known 

to be faulty to form the new array v(Pl,...,Pr,p). The only 

method a correct processor p uses to detect that process q is 

faulty, is to examine the n values which reach p representing 

some information that was broadcast by q and then relayed to 

p by each recipient. If q were correct then no processor would 

have failed to receive q's value in the broadcast and so none of 

the values reaching p would be -Lr-1. Thus if p finds any entry 

being ±r-1 among those it received, it can deduce that q was 

faulty. After the S rounds of communication, a correct proces- 

sor will have an array of n s values to operate on. In S steps this 

array is used to form a collection of (2n - 4t) s-I (2n - 2t) values 

by repeatedly removing extreme values from subcollections and 

then combining subcollections. Finally this collection of values 

is averaged to give the processor's new value. 

In detail, processor p, if correct, must perform the following 

• Set ~ (p) = v (p). 

* In round 1: 

- Broadcast ~ (p), and denote by v (ql,P) the value re- 

ceived by p from ql as ~ (ql). If the message from ql 

is missing set v(ql,p) to be 11. 

- Set Fault (p, 1) to be the empty set. 

- Set ~ (ql, P) -~ v (ql, P). 

• In round  2: 

- Broadcas t  the  vector of  values (~(1 ,p) ,  ~ (2,p) . . . .  , 

(n,p)> and  denote by v (ql, q2,P) the  value received 

by p f rom q2 as v(ql,q2). If the  message from q2 is 

missing set  v(ql,q~,p) to be -1-2. 

- For each ql consider the  mul t ise t  {v (ql, 1, p), v (ql, 2, p), 

. . . ,  v(ql ,n ,p));  if any  en t ry  is-l-1 say tha t  "ql has  

been detected as faul ty by  p in round 2". 

- Set Fault (p, 2) to be the  set  of  q which have  been 

detected as faulty by p in round  2. 



( 

- Set ~ (ql, q2, Pl = ~ v (ql, q~, Pl ifq2 ~ Fault (p, 2) 

[ -1-2 ifqa ~ Fault (p, 2) 

* In round r, for r = 3 , . . . , ~ ,  processor p will s tar t  with 

an array of n r-1 values (~(ql ,q2, . . .  ,qr- l ,P)  : each qi = 

1 , . . . , n  / and a set Fault (p,r - 1) of processors already 

detected as faulty by p. Now p should 

- Broadcast  the array (6 (ql, q2 , . . . ,  qr-1, P)). 

- Denote by v ( q l , . . . ,  qr-1, qr,P) the  value received by 

p from qr as ~ ( q l , . . .  ,qr-l ,qr).  If the message from 

qr is missing set e (q l , . . .  ,qr- l ,qr ,P)  to be -Lr. 

- For  every choice of indices q t , - . .  ,qr-1, consider the  

multiset  { ~ ( ql . . . .  , qr-t ,  1,p), v ( ql . . . . .  qr- x, 2 ,p) , . . . ,  

v ( q l , . . .  , q r - l ,n ,p ) } .  If  any entry is -Lr-1 say tha t  

"qr-x has been detected as faulty by p in round r" 

(Note tha t  several choices of ql ,-- . ,qr-2 may lead to 

the same qr-1 being detected).  

- Set  Fault(p,r)  = Faul t (p ,r  - 1 / U {q : q has been 

detected as faulty by p in round r }. 

v(ql  . . . . .  qr - l ,q , ,P l  

- SerE(q1 . . . . .  qr_1,qr,p)= i fq r f~Fau l t (p , r )  • 

"1"r if q, ~ Fault (p, r) 

- Now p is ready to s tar t  round r -F 1. 

• At  the end of round S ,  processor p has an array of val- 

ues ~ ( q l , - . .  ,qs,P).  Now let W ( q l , - - . , q s , P )  denote  the  

multiset  wi th  a single entry ~ (q l , . . . ,  qs, p). 

• For each r decreasing from S - 1 to 1 

- for each choice of ql,...,qr, form a mult iset  

W (ql . . . . .  q , , * , . . .  , , , p )  

~ho~-~_.)s_._,2, u~.+,=~ W (q l  . . . .  , q . , q . + x , * , *  . . . .  , * ,  P) 

where in every case the  asterisks fill places go tha t  

there  are S + 1 entries, either asterisks or indices, to 

name each multiset.  

• Now p u t  W (P) = Uq~=lW (ql, * , - - . ,  *,PI" 

• Finally put  to ( p )  = eenter(2n_4t)s-, , (IV (Pl)" (Note tha t  

the amount  of reduction is different from tha t  in previous 

~teps I. 

The  behaviour of the algori thm is explained by the  following: 

T h e o r e m 3  In the algorithm aboee, for each r = 1 , . . . , S  

let Fa//(r)  denote the set of  processors that have failed before 

sending any of  the messages in round r .  Let  £zposed(r)  = 

Fail(r) U n~z~a(,+l)Fault(p,r).  Aho aa a con~en~on we set 

E=posedCS + 11 = { 1 , . . . , , } \ C o r r .  ~rote that ~posedC,)  c 

Ezposed(r + 1). We put l ,  = IExposed (r + 1)1 - IEzposed (r)l = 

[Ezposed (r + 1) \Ezposed (r)[ Then we can conclude: 

( t ) :  I f  p E Corr then the caius of each of the (2n - 4t1 s - r  

entries of W ( q l , . . . , q r , . , . . . , , , p  I is either ~(ql , . .  . ,qr) 

or -Lr. 

(li): I f  qr ~ Ezposed (r + 11 and p E Corr then 

mu l t (~ (q l , . . . , q r ) ,W (ql . . . .  , qr, * . . . . .  *,Pl) = (2n-4 t )  s - "  

( m ) :  ~f q. ~ Exposed (,) and p ~ Corr then 

m,, l t ( .± . ,  W ( q l , . . . , q . , *  . . . .  , * , p ) )  = ( 2 .  - 4t) s - "  

( iv) :  l f  po E Corr, Pl E Corr then 

IraultC~Cql . . . .  , q.), w (ql . . . .  , q,, * , . . . , * ,po ) )  

- m u l t ( ~ ( q l , . . . , q r ) , W  (ql . . . . .  q r , * , ' " , * , P l ) ) l  

_< lr+l " l r + 2 " " l s  

P r o o f :  First we observe from the algorithm that b(ql, . . . , qr, Pl 

can never have the  value .Lj for j > r. Next  we observe 

tha t  if p f~ Fail(r + 1) and q E Corr then  q f~ Fault(p,r). 

This is proved by induction on r. The  case r = 1 is triv- 

ial as Fault(p, 1) is empty.  Now for arbi trary r ,  suppose 

p f~ Fail(r + 1) and q E Corr. Fix q l , . . . , q r -2 .  If qr 

does not  send properly to p in round r (in part icular  if qr 

Fail(r1) then  v (q l , . . . , q r -~ ,q ,  qr,pl =±r .  On the  other  hand  

if qr does send to p in round r then  v(q l , . . . , qr -=,q ,  qr,Pl = 

6 ( q l , . . .  ,q , -2,q,  q,) = v (q l , . . . , q r -2 ,  q,qr) since by the  induc- 

tion hypothesis  q f~ Fault(qr,r - 1), and v (q l , . . .  ,qr-2,q, qr) = 

~ ( q l , . . . ,  qr-2, q) which as we noted above is not  equal to  "±r-x. 

Thus  no entry of {v(ql , . .  • ,qr-2,q, qr,P) : qr = 1 , . . .  ,n}  is "±r-1 

proving tha t  q f~ Fault(p, r). Now the  theorem is easily proved 

by descending induction on r, using the  lemmas of §2 and the  

observations tha t  if qr f~ ExposedCr+ 11 then  for every q E Corr, 

~ (q l , . . . , q , , q )  = ~(q2,. . .  ,qr) (which is proved by contradic- 

tion) and on  the  other  hand if qr E Ezposed(r) then  for every 

q E Corr, ~ ( q t , . . . ,  qr, q) =±r  (if qr E Fault(r) this is explicit in 

the  algorithm, and if qr E Fail(r) then qr sent  no message to q 

in round r so v(ql . . . .  ,q, ,q) =-l-r). 

We have by Cii ! and (iii 1 for r = 1 tha t  W(ql ,  * . . . . .  *,P0) = 

W(ql ,  * , . . . ,  *,Px) unless ql E Ezposed(2)\Ezposed(1 I. For these 

il values of q~ we have by (iv) for r = I t ha t  
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Im~u(~Cqd ,  w (qx, * . . . .  ,* ,  p0) - m~uC~(qd ,  w (ql,  * . . . . .  *, p d  I 

< I~. Is' . .  Is 

since ~(ql) = v(qx). We can apply Lemma 6 with V = 

u~".=~w(q~. ,  . . . .  . * .po ) .  w = u ~ ' . = l w ( q ~ . ,  . . . .  . * . p d . . v  = 

n ( 2 n -  4t) s-x, rn = l x ' " l s ,  k = t ( 2 n -  4t) s-1 and [a,b] = 

#(U) to prove that each of w(po) = centert(V) and w(pl) = 

eenterk(W ) lie in p(U) and that 

ix... ts • ~ (v) 
[~ (p0) - ~ (z)I -< (2~ - 4& -~ (2n - 2t) 

We finally note that as ix = [Ezpoeed(2)[- [Ezpoeed(1)[, 

l~ = I E z p o s e d  (3)1  - IBzpoaed ( 2 ) 1 . . .  Is = IEzposed (S + 1)1 - 

[Ezposed(S)], we have each Ii a non-negative integer and also 

11 + 12 + . . .  + is = [Ezposed(S + I)[ - [Ezposed(1)[ < t. This 

proves that our algorithm has, as claimed, performance 

K < sup {lfl2... Is : 11 +."Is _< t, all li nonnegative integers} 
(2n - 4t) s-1 (2n - 2t) 

[FL] M. Fischer, N. Lynch, "A Lower Bound for the Time to 

Assure Interactive Consistency", Information Processing 

Letters 1~4 ~ 183-186 (1982). 

[LL] J. Lundelius, N. Lynch, "A New Fault-Tolerant Algorithm 

for Clock Synchronization", Information and Control, 62, 

2~ 190-204 (1984) 

[LSP] L. Lamport, R. Shostak, M. Pease, "The Byzantine Gen- 

erals Problem", ACM Transactions on Programming Lan- 

guages and Systems 4~ 2~ 382-401 (1982). 

[PSL] M. Pease, R. Shostak, L. Lamport, "Reaching Agree- 

ment in the Presence of Faults ~, JACM 2~7 2~ 228-234 

(19s0) 

[C] B. Coan, "A Communication-Efficient Canonical Form for 

Fault-Tolerant Distributed Protocols ~, Proceedings of the 

5th ACM Symposium on Principles of Distributed Com- 

puting, August 1986. 

[CD] B. Coan, C. Dwork, "Simultaneity is Harder than Agree- 

menC, Proceedings of the 5th Symposium on Reliability 

in Distributed Software and Database Systems, 141-150, 

January 1986. 

[D] D. Dolev, "The Byzantine Generals Strike Again", Journal 

of Algorithms 3~ 14-30 (1982). 

[DLPSW] D. Dolev, N. Lynch, S. Pinter, E. Stark, W. Weihl, 

"Reaching Approximate Agreement in the Presence of 

Faults", to appear in JACM. 

[DM] C. Dwork, Y. Moses, "Knowledge and Common Knowl- 

edge in a Byzantine Environment I: Crash Failures ", Pro- 

ceedings of the 1986 Conference on Theoretical Aspects of 

Reasoning About Knowledge, 149-169, March 1986. 

[F] M. Fischer, "The Consensus Problem in Unreliable Dis- 

tributed Systems (A Brief Survey)" Yale University Tech- 

nical Report YALEU/DCS/RR-273 (1983). 

87 


