
Asymptotically Optimal Algorithms For Approximate Agreement

A. D. Fekete

Department of Mathematics

Harvard University

Cambridge, MA 02138

fekete%h-mal@harvard

ABSTRACT

This paper introduces some algorithms to solve crash-failure,

failure-by-omission and Byzantine failure versions of the Byzan-

tine Generals or consensus problem, where non-faulty processors

need only arrive at values that are close together rather than

identical. In the failure-by-omission and Byzantine failure algo-

rithms, each processor attempts to identify the faulty processors

and corrects values transmitted by them to reduce the amount

of disagreement. For each failure model and each value of S,

we give a t-resilient algorithm using S rounds of communication

which has convergence rate that is asymptotic to the best pos-

sible as the number of processors increases. If S = t + I, exact

agreement is obtained.

1 The P r o b l e m and S t a t e m e n t o f Resu l t s

An important question in the design of fault-tolerent distributed

systems is how to enable non-faulty communicating processors

to agree even when faulty processors in the system are interfering

by providing different correct processors with different informa-

tion. Examples of applications include agreeing on whether to

commit a database transaction and agreeing on which copy of

a file is the primary copy. Classical formulations of this prob-

lem are known as the interactive consistency problem and the

Byzantine Generals problem ([F]). These problems have been

studied in several models of computation, and it has been found

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

that any solution resilient to t faulty processors requires t + 1

rounds of communication in the worst case ([PSL], [LSP], [FL]).

In some practical situations complete agreement is not required

- e.g. in synchronizing clocks (ILL}) or reading a sensor, it is of-

ten good enough if all the values held by different processors are

close together. We may hope for protocols using fewer rounds of

communication for this problem called the approximate agree-

ment problem, which was first studied in [DLPSW].

In this paper we study a t-resilient appoximate agreement

problem in this form: there are n processors labelled 1,2,... ,n.

These processors are linked by a complete, synchronous, fault-

free point-to-point network which is the only means of inter-

process communication. In each execution there is some subset

Corr of processors (the correct ones), so that if p E Corr then

p executes the given algorithm. We consider three models of

computation distinguished by the flexibility of behavior of the

other (faulty) processors. In the crash-failure model a faulty pro-

cessor executes the given protocol up to some point and then

halts (without loss of generality we assume the crash doesn't

occur in the middle of sending a message). In the failure-by-

omisMon model a faulty processor may neglect to send a mes-

sage that the protocol calls for it to send, and it may halt, but

it does not send any message that is different from what the

protocol requires. The most general model is the Byzantine

model, in which a faulty processor may change state or send a

message arbitrarily. We denote the set of faulty processors by

Fault = (1,2 , n) \Gorr and set f =]Fault I. Each processor

p has an initial value v (p) which is a real number and at the end

of any execution of the algorithm for which f < t each correct

processor p must arrive at a new value w (p) satisfying a validity

condition: in the crash-failure and failureoby-omission models

this is tha t for correct p, w (p) must lie within the range of the

© 1986 A C M 0 - 8 9 7 9 1 - 1 9 8 - 9 / 8 6 / 0 8 0 0 - 0 0 7 3 75¢ 73

initial values. In the Byzantine model we do not t rust the initial

values of faulty processors, so we insist that for correct p, w (p)

must lie within the range of the initial values of the correct pro-

cessors. Naturally we put no requirement on the final s tate of

the faulty processors, nor on the behavior of correct processors

when more than t processors are faulty.

We denote the smallest interval containing a collection of

values V by p (V) and its length, the diameter of V, by 6 (V)

so that p (V) is the interval [m i n (V) , m a x (V)] and 6 (V) =

max (V) - rain (V). Let us denote by U the collection of initial

values of all processors and by U the collection of initial values

of correct processors, so U = {v(p)} and 0 = {v (p) : p • Corr}.

We can express the validity condition in the failure-by-omission

and crash-failure models by "if IFaultl _< t and p • Corr then

w (p) • p (U) ' . Similarly in the Byzantine model the validity

condition is "if [Fault[<_ t and p • Corr then to (p) • p (U) ' .

We will measure the performance of such an algori thm by

the change in the range spanned by the values of the proces-

sors. Thus we measure performance in the crash-failure and
6 ({to (p) : p • C o r d)

failure-by-omission models by K = sup 6 (U)

6 ({to(p): p• Corr})
and in the Byzantine model by K = sup 6(01
in each case the supremum being taken over all executions with

IFaultl <_ t (so a good algori thm is one with a low value for

K) . Notice tha t the identification of processors as faulty or cor-

rect is not known to the processors during the algori thm and

in fact a given execution may be explained by more than one

identification.

The greater generality of the Byzantine model means tha t

any algori thm valid in tha t model is also valid with at least as

good a performance in the other models. Similarly any lower

bound on achievable values of K in the crash-failure model ap-

plies to the other models as well.

For the Byzantine model, the paper [DLPSW] gives an al-

gor i thm using only one round of communication, valid when

n > 3t, with performance K = [(n - 2 t) / t] - * . This is opti-

mal if only one round of communication is allowed. We can

clearly i terate this algori thm (that is, use the final values pro-

duced by one execution as initial values in another and then

use the final values of that as initial values in a third execu-

tion, and so on for S rounds). This gives an S- round solution

with K = ([(n - 2 t} / t]) - s . The present paper introduces an

S- round algori thm valid w h e n , > 4t, with performance

K < sup (l i . . . Is : 11 + . . . + Is _< t, all li nonnegative integers)
(n - 2t) (n - 4t) s -1

By elementary calculus this supremum is at most t S / s s so we

s e e

t s
K <

- S s (n - 2t) (n - 4t) s - 1

which for large n is asymptot ic to S s t imes be t te r than the per-

formance of [DLPSW] iterated. In fact as n / t ~ vo so the frac-

tion of faulty processors decreases, this performance is asymp-

totic to the bes t possible for an S-round algori thm resilient to t

Byzantine failures by the lower bound

K > sup (11. . . Is : 11 + . . . + Is _< t, all li nonnegative integers)
(n + t) s

which is due to [DLPSW]. An interesting feature of our algo-

r i thm is tha t each processor tries to identify which of the other

processors is faulty, and then ignores any information received

from a known faulty processor to reduce the possibilities for dis-

agreement.

In this paper we give a new lower bound for K in the crash-

failure model, namely

K _> sup (l , . . . Is : l , + . . . + Is _< t, all Ii nonnegative integers)

(2n -I- 3t) s

for any algori thm using S rounds of communication. We also

give an algori thm for the crash-failure model with performance

K _< sup (i l . . . is : il + . . . + Is _< t, all il nonnegative integers)

(2n - 2t) s

which is asymptot ic to the op t imum as n increases.

We offer an algori thm in the failure-by-omission model by

combining par ts of the algorithms from the other models. This

has performance

K _< sup (l l . . . Is : 11 + . . . + is <_ t, all ii nonnegative integers)

(2n - 4t) s -1 (2n - 2t)

which is asymptot ic to optimal.

I t is worth noting tha t if S = t + 1 the expression

s u p (l i . . . l s : Ii + . . . + Is _< t, all il nonnegative integers) is

zero, as one of the l / m u s t be zero, and so our algori thms give

solutions to the exac t agreement problem when run for t + 1

rounds. In the Byzantine model this solution satisfies the s t rong

validity condit ion tha t the value agreed on lies in the range of

initial values of correct processors (this is not achieved by nor-

mal Byzantine agreement algori thm on each b i t of the initial

values unless some removal of extreme values is done). In each

model our algori thm for S rounds s tar ts by doing all the com-

municat ion of the S - 1 round algorithm, so it is possible to do

74

approximate agreement without knowing at the start how many

rounds will be used. In fact, after each round the new values can

be calculated as if that round were the last - this permits the

values held by the correct processors to approach one another

rapidly, finally agreeing if t + 1 rounds are used.

The algorithms introduced here require exponential amounts

of message traffic, like most other consensus or Byzantine Agree-

ment algorithms. Coan has introduced a transformation which

can encode algorithms of this type so as to require only poly-

nomial communication ([C]). However in the Byzantine model

Coan's transformation costs a few rounds of communication, and

so the transformed algorithm will not have performance that is

asymptotic to optimal. The decision in practice between Coan's

transformation of our algorithm, and the iteration of the one

round algorithm of [DLPSW] (which involves only linear mes-

sage traffic) will depend on the details of the system. In the

crash-failure and failure-by-omission models Coan's transforma-

tion involves no overhead rounds and so is a definite improve-

ment to our algorithms.

In §2 we give the notation and technical lemrnas we will use

later. §3 provides an intuitive introduction to the algorithms

by discussing a similar but simpler algorithm and pointing out

the modifications needed to get asymptotically optimal perfor-

mance. §4 discusses the algorithm in the Byzantine model, and

§5 gives the corresponding lower bound. In §6 and §7 we then

give algorithm and lower bound for the crash-failure model, and

§8 is devoted to the failure-by-omission model.

I would like to thank Professor Nancy Lynch for teaching

me about distributed algorithms and suggesting this problem,

Michael Merr i t t for finding a major error in an early draf t of

th is paper , Br ian Coan for detailed comment s on a later draft ,

Leslie Lampor t for suggest ions abou t the crash-failure ease and

Yoram Moses for fruitful discussions about §7.

2 N o t a t i o n a n d L e m m a s

In order to give the a lgor i thms precisely, we introduce the lan-

guage of mul t ise ts . A formal account appears in [DLPSW] bu t

for our purposes it is enough to th ink of a mul t i se t as an un-

ordered collection of values which need not be dist inct . For

each value v and mul t i se t V we denote the n u m b e r of occur-

renees of v in V (the multiplicity of v) by mutt(v, V). The

values m a y be ei ther real number s or the special symbols -Lr

denot ing a value not received in round r because (for exam-

ple) a processor failed to send it. We define union, intersection,

eardinal i ty ,max ,rain, m e a n for mul t i se ts in the obvious ways,

eg for any v, mult(v,V 0 W) = min(mult(v,V), mult(v,W))

and tel = E~ mult(v,V). Also let double(V) be defined by

malt(v, double(V)) = 2muir(v, V).

As in [DLPSW] we will t ry to reduce the range of values

held by processors by using opera tors t ha t act on mul t i se t s by

removing ext reme values. Let V be a mul t i se t with Ivl -- ~v.

We pu t red~(V) to be the mul t i se t wi th N - 2k entries formed

f rom V by removing the k highest entries and also the k lowest

entries. We order the values by treating -J-r as greater than any

real number and also as greater than -LR if r > R. For the

crash-failure or failure-by-omission models we will use similar

operators chops that prefer to remove -J-r. If IVI = N and

mult(.Lr,V) = j then chopS(V) is a mul t ise t of 2 N - 2k entries

formed from double(V) either by removing 2k copies of-J-r (in

the case j > k) or else by removing all 2 j copies of -l-r and then

removing the k - j h ighes t and k - j lowest of the remaining

entries.

We similarly have operators to find a single number to be

an "average" for a mult iset . Suppose IVl = Iv and a t least

N - k entries in V are real numbers . Then we pu t midk(V) =

mean(redk(V)). Similarly if IV[= N, a t least N - k entr ies of

V are real number s and mult(±r,V) = 0 for r > 1 we define

centerk(V) = mean(chop~(V)). The facts below and the condi-

t ions given will ensure tha t a mean is only taken for mul t i se t s

of real values. As examples:

• {-1,-1,0}U {0,1} = {-1,-1,0,0,1}

• {-1,-1,.J-1}U {O,-LI,J-~;} = {-1,-1,0,.I_1,..L2}

• {-I,-i,0,0} n {-1,0,0,1} = {-i,0,0}

• l {-q, -1, 0} [= 3

• [{ - 1 , - 1 , 0 , - L 1 } I = 4

• red2 ({-1,-I,-1,0,0,1}) = {-1,0}

• redl({-1,-1,0,.Ll,.L2}) = {-1,0,.L1}

• chop~({-1,0, O,.L2,.L2})= {-1,-1,0,0,0,0,A_2,.L2}

• chop~({-1,0,0,±2,±2})= {-1,0,0,0}

• mid2({-1, - 1 , - 1 , O, 1,-.Li}) = - 0 . 5

75

• centers({-1,-1,0,1, ±1}) = -0.5

• center,({- 1, -1, O, 1,-L1}) = -1/3

In our discussion we will need to know how the operators

introduced affect the range of values in a multiset and the dif-

ferences between two multisets. We have the following results:

L e ~ m a 1 [DLPSW] I f V is a multiset with IV[= N, and at

least N - k elements of V lie in the range [a, b], then every

element of rcdk (V) lies in the range [a, hi.

P r o o f : At most k elements of V are greater than b and all of

these must be removed among the k highest elements of V when

forming red~ (V). Thus every element of redk (V) is less than or

equal to b, and a symmetr ic argument shows tha t every element

of redt (V) is greater than or equal to a. Q.E.D.

L e m r n ~ 2 / D L P S W / 1 I V and W are multisets then [redk (V) n

red~ (w) l _> Iv n wl - 2k.

P r o o f : Since V N W c V, redt (V N W) C redt (V) and sim-

ilarly redt (V n W) _C redk (W), so redk (V n W) C_ redk (v) n

redk (W), but [redk (V A W)[= IV N W I - 2k. Q.E.D.

L e m m a 3 Let V and W be multisets with [V] = IW[=

N. Suppose that every entry in V U W is one of v, w

or _k,, and that mult(_kr,V) < k and mult(_kr, W) < k.

g Imutt(v,v) - m~tt(v,W)[+ Imutt(w,V) - ~ul t (w ,W) l <

m then Imult(v, ehop~(V)) - mutt(v, chop~(W))l < m and

Ira,kit(w, chopS(V)) - muir(w, chop~(W))l < m

P r o o f : Without loss of generality we may assume v < w. We

first observe tha t W can be formed from V by a sequence of at

most m operations, each being the replacement of a single entry

by -l-r or the replacement of a single occurence of -l-r by either

v or w. Thus it is enough to prove tha t [mutt(v, chopS(V,)) -

muit(v, choprt(V,))[< 1 when mult(.l-r,V1) <_ k - 1 and V~ is

formed from Vx by removing a single occurence of z (which is

either v or to) and replacing it with -l-r. So we put j = mult(-l-r

, VX) and let Z denote the multiset of 2N - 2 j entries formed by

removing all occurrences of -l-r from double(Vx). Now ehopr~(Vt)

is formed from g by removing the k - j highest entries and the

k - j lowest entries. On the other hand, ehoprt(V,) is formed

from g by removing two occurrences of z and then removing

the k - j - 1 highest and k j 1 lowest of the remaining

entries. If z = v this is equivalent to removing the k - j - 1

highest and k - j + 1 lowest entries from Z as v is the lowest

entry in Z , while i f z = w the net effect is to remove the k - j + l

highest and k - j - 1 lowest entries from Z. Thus we can obtain

chopS(R) from chopS(V1) either by removing an occurrence of

the k - j + 1 lowest entry of Z and adding an occurrence of the

k - j highest entry of Z , or else by replacing an occurence of the

k - j highest entry of Z by the k - j lowest entry of Z . In either

case we see tha t the multiplicities of v and w can each change

by at most 1. Q.E.D.

L e r n r n a 4 If V is a multiset with IV[= N, mult(.ir, V) <_ k

such that at least N - k entries of V are different from _L, and

lie in the interval [a,b], then every entry of ehop~(V) lies in

[a,b].

P r o o f : Let mult(.l.r,V) = j and let Z denote the mult iset of

2 N - 2 j entries formed from double(V) by removing all 2 j copies

of-/-r. Now chop~k(V) = red2k_j(Z), and at least 2 N - 2 k entries

of Z lie in [a, b] so Lemma 1 completes the proof. Q.E.D.

L e m m a 5 Suppose V and W arc multisets with Ivl = IWl = N,

I v N w I >_ N - m and at least N - k elements of each of V and

W lie in the interval [a,b]. Then midt(V) and midt (W) lie in

[a,b] and Imidk(W) - midk(W)[<_ m(b - a) / (N - 2k)

Proof: By Lemma I we see that all the entries of redt(V) lie in

the interval [a, b] and so their average midk(V) also lies in [a, b].

Similarly every entry of redk(W) and also midk(W) lies in [a, b].

By Lemma 2, the multisets redt(V) and redt(W) agree in a t

least N - 2 k - m of their entries, and in each of the remaining rn

places, the entries can differ by at most b - a as each lies in [a, b].

Thus [midt(V) - m l d t (W) [= ~,-~2~ I E red,(V)- E redk(W)l _<

m(b - a) / (N - 2k). Q.E.D.

L e m m a 6 SupposeV andW are multisets with IVl = Iwl = iv,

such that mult(_kl,V) < k, mult(_kx,W) < k, mult(_kr,V) =

mult(_l_r,W) = 0 for r > 1, all real entries of V U W lie in

the interval [a,b] and E~#.Li Imult(v, V) - mult(v, W)l -< m.

Then centerk(V) and eenterk(W) lie in [a, b] and [centerk(V) -

eenterk(W)l _< m(b - a)/(2N - 2k)

P r o o f : The hypotheses show tha t in double(V) there will be at

most 2k entries tha t are not real, and all of t hem will be -l-t and

so will be removed in forming ehop~(V). Thus the resulting mul-

t iset has all its entries in [a,b] and so its mean centerk(V) also

76

lies in [a, b]. Similarly eenter t (W) also lies in [a,b]. Now as in

the proof of L e m m a 3 we observe t ha t W is formed f rom V by a t

mos t m operat ions each replacing a value by 11 or vice versa. So

we need only prove t ha t if V1 and V2 are mul t i se ts with IVll = N ,

mult(-J-l, V1) ~_ k - 1, mu l t (±r ,V l) = 0 for r > 0, and every real

en t ry of Vi lies in the interval [a, b] and such t ha t V2 is formed

from VI by removing one occurrence of a value z and replacing it

wi th -1.1, t h e n Icenterk(V1) - centerk(V2)[_< (b - a) / (2 N - 2k).

So we pu t j = mult(.J-r,V1) and let Z denote the mul t i se t of

2 N - 2 j entr ies formed by removing-all occurrences of .J-r f rom

double(V1). Now chopS(V1) is formed f rom Z by removing the

k - j h ighes t entr ies and the k - j lowest entries. On the other

hand, chopS(V2) is formed from Z by removing two occurrences

of z and then removing the k - j - 1 h ighes t and k j 1

lowest of the remaining entries. If z is among the k - j - 1

lowest entr ies of Z'r this is equivalent to removing the k - j - 1

h ighes t and / c - j + 1 lowest entries f rom Z . If z is among the

k - j - 1 highes t entr ies of Z the net effect is to remove the

/c - j + I highest and k - j - I lowest entries from Z. Thus

in these cases, we can obta in chop~(V~) f rom chopS(If1) either

by removing a n occurrence of the k - ~ -t- 1 lowest en t ry of Z

and adding an occurrence of the k - j h ighest en t ry of Z , or

else by replacing an occurence of the k - j h ighes t en t ry of Z

by the k - j lowest en t ry of Z. Clearly in these cases, the s u m

of the entr ies of chop~(V1) differs f rom the s u m of the entries of

c h e p ~ (l ~ b y the difference of two e lements of the interval [a,b]

which is a t mos t b - a. In the remaining case z lies between the

k - ~ lowest en t ry of Z (call it a I) and the k - ~ h ighes t en t ry

of Z (call it P) , bu t chop~(V2) is obtained f rom chop~(Vl) by

removing two occurences of z and replacing t h e m with a t and b P

which will al ter the s u m of the entries by b P + a I - 2z which is

a t mos t b' - z (as z _> a I) bu t this is bounded by b - a. T h u s in

every case

lcenterk(Vl) -- centert(V2) l

= 2~v~-2~[Z ehopl(vl) - Z chop~(Vs)i
_< (b- ~)/(2# - 2k)

as required. Q.E.D.

3 I n t r o d u c t i o n to the A l g o r i t h m s

The a lgor i thms given in th is paper are all var iants on a sin-

gle plan. To help the reader unde r s t and t h e m we give here an

account of a basic a lgor i thm for the crash-failure model. Th i s

algorithm is not optimal, but it is simpler than the others while

still capturing the essential features, and it will isolate the main

issues involved in solving the approximate agreement problem.

For ease of exposition in this and the later algorithms, we will

suppose that when a processor broadcasts information it sends

to itself as well as to the other processors, though in imple-

mentation this will require remembering, rather than sending a

message.

In the basic algorithm, processor p, until it fails, must per-

form the following -

- In round I: Broadcast ~(p), and denote by v(q1,p) the

value received by p from ql as ~ (ql)- If the message from

ql is missing set v (q1,P) to be -.[-1.

• In round 2: Broadcast the vector of values (v(1,p),

v(2,p),..., v(n,p)) and denote by v(ql, q2,P) the value

received by p fromq~ as ~ (ql,q2). If the message from q2

is missing set ~ (ql, q2,P) to be .I-2.

• In round r, for r = 3,...,S, processor p will start

with an array of n "-I values (v(ql,q2,...,qr-l,p) :

each ql = 1,...,n). Now p should broadcast the array

(v (ql, q2 q , - l , P)). Denote by v (ql qr-1, qr, P) the

value received by p from qr as v (q l , . . . ,qr- l ,qr) . If the

message from qr is miss ing set v (q l , . . . ,qr- l ,qr ,P) to be

-Lr.

• At the end of round 8 , processor p has an array of val-

ues v (ql, . . . ,qs,P). Now let W (ql qs,P) denote the

mul t i se t wi th a single en t ry v (q l , . . . , qs,P).

• For each r decreasing f rom S - 1 to 1

- for each choice of ql,. . . ,qr, form a mul t i se t

W (ql q,,*,... ,*,P)
r, W q r + l , * , * , . . . , * , P) = red(n_~t)s- , - i t Uq,+~=i (q l , . . •, qr,

where in every case the as ter isks fill places so t h a t

there are S + 1 entries, ei ther aster isks or indices, to

n a m e each mult iset .

• Now pu t W (p) = U~l=lW (ql, * , . . . , * , P) .

• Finally p u t w (p) = mid(n_~t)s-, t (W (p)).

T h e a lgor i thm has two phases. F i rs t there rare S rounds of

communica t ion , in each of which each active processor broad-

77

casts all the information it holds and collects the information

sent to it. After round r processor p has an array of val-

ues (v (qx , . . . , q r , p) : each qi = 1 ,n) where v (qx , . . . , q r ,P)

is the value p received from qr representing the initial value

v(qt) as t ransmi t ted by ql to q~ in round 1, then relayed by

q2 to qs in round 2, and so on. In the second phase, after

all communicat ion has occurred, processor p builds for each

choice of ql,-- .,qr a mult iset W (q l , . . . , qr, * , . . . , *, P) out of the

collection of values { v (q x , . . . , q r , q r + l , . . . , q s , p) : each qj =

1 , . . . , n for j > r) . Now if qr ,qr+l , . . . ,qs are all non-faulty

then v(ql qr, q r+ l , . . . ,qs,P) = v(ql, . . . ,qr) and in fact the

method of constructing W(q l , . • •, qr, * , . . . ,*, P) by successively

combining multisets and removing extreme values is designed

to ensure tha t W (q l , . . . , q r , * , . . . , * , p) is a multiset of size

(n - 2t) s - r which is a good representative for v(ql , . . . ,qr) in

tha t

(i) if qr has not failed before the s tar t of round r + 1 then every

entry of W(qx , qr, * , *,p) has value v (q l , . . . , q~), and

(ii) the mult isets W (q t , . . . , q,, * , . . . ,* ,po) and W(qt , qr, *,

• -. ,* ,P l) are not very different - in fact they are the same un-

less qr failed precisely during round r, in which case they differ

in at most l r+l" . Is entries, where lj denotes the number of

processors failing precisely in round j .

These propert ies are easily proved by descending induction using

the recursive construction of W (q l , . . . , qr, * , . . . , *, P) and using

the lemmas about the red~ operators. Finally using these facts

about the mult isets W(ql ,* , . . . ,*,p) and the proper ty of the

operator rnidk we establish tha t to(p) lies in the range p(U) and

tha t
l z ' " l s ~lrr~

I~ (p0) - ~ (p~)l -< (~ - ~ ' ~ J

which shows tha t

sup {!112"'" Is : il + " " is _< t, all l~ nonnegative integers~
K ~

(n - 2t) s

as the processors tha t fail precisely in round i are different from

those tha t fail precisely in round j if i ~ j .

The above argument hinges on the fact tha t a faulty pro-

cessor can cause different correct processors to receive different

information only during one round (the round when the faulty

processor crashes) since before the crash the faulty processor

sends the same correct message to everyone, and after the crash

it sends nothing to everyone. The difficulty we face in the failure-

by-omission and Byzantine models is that a faulty processor may

cause diffences between the views held by correct processors in

78

more than one round. To overcome this, in the algori thms of §4

and §8 each processor performs fault detection, examining the

messages relayed to it by other processors tha t they received

from q to try to deduce if q is faulty. Once a processor p has

deduced tha t q is faulty, it refuses to listen to messages from q,

using -l-r in place of the values in them. If a processor qr has

not been detected as faulty by everyone by the end of round

r + 1, its performance in round r must have been quite close

to correct, and our algorithms remove enough ext reme values in

forming the mult isets W (q l , . . . , qr, * , . . . , *,P) t ha t these multi-

sets are the same for different p. On the o ther hand if qr was

detected as faulty by everyone before round r then everyone was

ignoring values t ransmit ted by qr in round r, and the multi-

set W (q l , . . . , qr, * , . . . , * , p) win contain only .1_~ and so be the

same for different p. Thus the fault detect ion ensures tha t a

faulty processor can cause significant differences in the views of

correct processors only in one round, namely the round before

the one in which the last of the other processors detects the

failure.

The algori thms of §6 and §8 also obtain be t te r perfor-

mance than the basic algori thm above by using the operators

chops and center k which are more complicated than redk and

midk but are specially adapted to the situations where the

only differences between multisets W(ql , • • •, qr, *,- • •, *, po) and

W (q l , . . . ,qr, * , . . . , * ,Pl) are due to replacing a value by -l-r (un-

like the Byzantine case where one value can be replaced by an-

other).

4 The Byzantine Model: The Algorithm

An overview - - During each round of communicat ion a cor-

rect processor p broadcasts information it holds in the array

~(p l , . . . , p r - l ,p) , collects the information sent to i t in an array

v(pi,...,Pr,P), tries to deduce which processors are faulty, and

then modifies the information it received from processors known

to be faulty to form the new array ~(pl , . . . ,pr ,p) . The only

method a correct processor p uses to detect tha t process q is

faulty, is to examine the n values which reach p representing

some information tha t was broadcast by q and then relayed to p

by each recipient. If q were correct then every processor would

have received the same value in the broadcast and then the cor-

rect processors (at least n - t of them) would all have sent the

same value to p. Thus if p finds fewer than n - t values the same

among the n it received, it can deduce tha t q was faulty. M t e r

the S rounds of communication, a correct processor will have an

array of n s values to operate on. In S steps this array is used

to form a collection of (n - 2t) (n - 4t) s-~ values by repeatedly

removing extreme values from subcollections and then combin-

ing subcoilections. Finally this collection of values is averaged

to give the proceesor's new value.

In detail, processor p, if correct, mus t perform the following

• Set ~ (p) = v (p).

• In round 1:

- Broadcast ~ (p), and denote by v (qx, P) the value re-

ceived by p from qx purport ing to be ~(ql) . If the

mesage from ql is missing or malformed set v(qt ,p)

to be .1-1.

- Set Fault (p, 1) to be the empty set.

- Set 5 (ql,P) = v (ql, P).

• In round 2:

- Broadcast the vector of values (5(1,p) , 5(2 ,p)

(n,p)) and denote by v (qx, qz,p) the value received

by p from q2 purport ing to be ~ (ql, q~). If the message

from q2 is missing or malformed set v(qx, q2,p) to be

_Lz.

- For each ql consider the multiset {o (ql, 1, p), v (q*, 2, p),

. . . , o (qx,n,p)}; if the most frequently occurring ele-

ment in this multiset has multiplicity less than n - t

say that "qx has been detected as faulty by p in round

2 n .

- Set Fault(p,2) to be the set of q which have been

detected as faulty by p in round 2.

- Set 5 (q,, q2,P) = / v (ql, q2,p) if q2 ~ Fault (p, 2)

[I~ if q2 e Fault (p, 2)

• In round r, for • = 3 , . . . , S , processor p will s tar t with

an array of n r - I values (5 (ql, q~ , . . . , q , - x ,p) : each qi =

1 , . . . , n) and a set Fault (p, r - 1) of processors already

detected as faulty by p. Now p should

- Broadcast the array (~(ql,q2 q,-1,p)).

- Denote by t, (q l , - . •, qr-1, qr, pJ the value received by

p from qr purport ing to be ~(qx, q r - l ,q r) . If

the message from q, is missing or malformed set

v (q l , . . . ,q, ,p) to be J_,.

For every choice of indices q t , . - . ,qr-x, consider the

multiset {n (q l , - . . , q r -1 ,1 ,p) , v (ql, . . . , q,-*, 2,p),. . .,

v (qx, . . . , qr - l ,n ,p)} . If the most frequently occur-

ring element has multiplicity less than n - t, say tha t

"q,-x has been detected as faulty by p in round •"

(Note tha t several choices of qi,-- .,q,-~ may lead to

the same q , - i being detected).

- Set Fault (p, r) = Faal t (p , , - 1) U {q : q has been

detected as faulty by p in round r }.

v (q l , . . . ,qr- l ,qr ,p)

- Set ~ (ql , q r - l , q r , p)= if qr f~ Fault (p, r)

J-, if qr E Fault (p, r)

- Now p is ready to s tar t round r + 1.

• At the end of round S , processor p has an array of val-

ues ~ (qx , . . . ,qs ,P) . Now let W (q l , . . . , q s , p) denote the

multiset with a single entry 5 (q t , . . . , qs,P).

• For each • decreasing from S - 1 to 1

- for each choice of qx,.. -,qr, form a multiset

W (q l , . . . , q r , * , . . . , *,p)

=red , n 4t,s-.-12tU~ n l W (q x , . . . , q r , qr+x,*,*,. ,*,P)
I . - -] ~ f+ 1= * "

where in every case the asterisks fill places so tha t

there are S + 1 entries, either asterisks or indices, to

name each multiset.

n • Now put W (p) = oq,=xW (q x , , , , , p) .

• Finally put w (p) = mid(n_40s-q (W (p)). (Note tha t the

amount of reduction in this case is different from tha t in

previous steps).

The bchaviour of the algorithm is explained by the following:

T h e o r e m 1 In the algorithm above as a convention we set

Fault(p,O) = ~, Fault (p, S + l) = {1 } \ C o r r . We put

Exposed (r) = np~aorrFault (p, •) and i, = I Ezposed (r + 1) 1 -

] E=posed (r)l = I Exposed (r + 1) \Exposed (r)[Then we can con-

clude:

(i) : I f p 6 Cor•, qr E Corr then all the (n - 4t) s - r entries of

w (q~ , q , , . , . . . , , , p) are ~ (q~ ,q ,)

79

(i i) : I f qr q~ Ezposed(r+ 1) and Po E Corr, px E Corr then

W (q l , . . . , q , , * *,Po) = W (q l , . . . , q , , * , . . . , * , P l)

(i i i) : I f qr E Exposed(r) and Po E Corr, Pt E Corr then

w (q ~ , . . . , q , , . , . . . , , , p o) = w (q~ , q , , * , . . . , * , p d

(i v) : I f po ~ Corr, Px E Corr then

[W (ql qr ,* , . . . ,* ,PO) N W (ql q , ,* *,Pl)I

>_ (n - 4t) s - " - ! , + 1 • ! , + 2 . ' . is

P r o o f : Fi rs t we observe t ha t i f p E Corr, q ~ Corr

then q ~ Fault(p,r) This is proved by induct ion on r. I f

r = 1, and p E Cart , q E Corr t hen q f~ Faul t (p , 1) as

Fault (p, 1) = 0. Now for arbi t rary r suppose p E Corr, and

q E Corr. If qr E Corr then by the induct ion hypothesis

q f~ Fault(qr, 1) and so for any choice of q l , . . . , q r - 2 we see

(q , . . . , q , - 2 , q , q ,) = ,~ (q ~ , . . . , q , - 2 , q , q ,) = ~ (q ~ , . . • , q , - ~ , q)

as q is broadcast ing correctly. Also qr broadcasts correctly so

u(ql qr-2,q, qr,P) = ~(ql qr-2,q,q~) • Thus the mul-

riser of values {v (ql , q¢_l, q, 1, p) ,e (ql q~_l, q, 2, p)

v (qx q,_~, q, n ,p)} contains a t least (n - [) entr ies each of

which is ~ (ql, q,_2, q). So q is no t detected as faulty by p

in round r, b u t by the induct ion hypothesis q f~ Fault (p , r - 1)

so we see q f~ Fault (p, r) as required. Now the theorem follows

easily by descending induct ion on r, using the lemmas of §2 a n d

the observat ions t h a t if q~ E Ezposed(r) then for any correct

q¢+t we have ~(q~, . . . ,q, ,q,+x) =_L, while if q, ~ E z p o s e d (r + l)

then for fixed choice of qa,.. . ,q~-z a t least n - 2t of the correct

processors q,.+l have the same value for ~ (q~ , . . . , q~_ l , q~, q ~ x).

W h e n we apply Theorem 1 wi th r = 1 we ob ta in

(1): I f p ~ Corr, q~ E Corr then W (q ~ , * , . . . , * , p) consists of

(n - 4t) $-~ entr ies all of which are u (qt).

(t t) : If ql ~ Ezposed(2) , Po E Corr, and Pl E Corr then

w (q~, . , . . . ,* , po) = w (q . . , . . . , , , pd.

(iv) : I f p o E Corr, Pt E Corr then

Iw (q~,* *,po) n w (q~,, * ,~)1

_> (n - 4t) s - I - 12" I s " " Is

Notice t ha t (iii) tells us nothing as Ezposed (1) = ~. Now if

n p ~ Corr we see t h a t Uqt=iW (q i , * , . . . ,* ,p) contains a t least

(n - t) (n - 4t) s - I entr ies in the range p (U) spanned by init ial

values of correct processors, namely the (n - 4t) s - x copies of

v (ql) for each correct ql. Then by Lemma 1, w(p) lies in the

range p(U). Suppose t ha t ptrE Corr, Pl E Corr, Then

Iw (po) n w (~)1
~_ (. - 4,) s-1 (n - ld + I, ((. - 4t) ~-1 - l , . . . l~)

= n (n - 4 t) s - I - 1112... Is

as there are il values of ql wi th qx E Exposed (2) and n - 11

values of ql wi th qx ~ Ezposed (2). We can apply Lernma 5 to

prove

l l . . . l s
I= (po) - ,o (pdl -< (n - 4t) s-1 (n - '2 t) "6 (0)

We final ly note t h a t as ix = IN=posed (2)1, l= -- l~=po=ea (3) t -
lE=po,ed C2) 1 i s = IE=posed (S + l) l - I E z p o s e d (S) l, we have

each l~ a non-negat ive integer and also !1 -t- 12 + . . . + ls =

IExPoaed (S + ~)[= [Fat,it I < t. This proves t h a t our a lgor i thm

has, as claimed, performance

K <_ sup { lx l2 . . . is : il + ' " l s _< t, all fi nonnegat ive integers)

(- - 4 t) s - 1 (- - 20
It is interest ing to note t h a t for S = 2 our a lgor i thm therefore

gives a n i m p l e m e n t a t i o n o f Crusader ' s Agreement [D] on each

value v (q) - - each processor p gets e i t h e r a value (the common

value of W (q, *,p)) or else the knowledge t h a t q is faulty, and

all t he processors which get a value get the same value, which

is the r ight one if q is correct. In fact our implementa t ion has a

s t ronger property, t h a t if any P0 fails to detec t t h a t q is faulty,

all those p t ha t do detect i t know wha t value P0 has chosen.

5 T h e B y z a n t i n e M o d e l : A L o w e r B o u n d

This section gives a formal account of a lower bound, due to

[DLPSW], on achievable performance for any S - round approx-

imate agreement a lgor i thm in the Byzant ine model. Any .algo-

r i t h m for solving the S - round approximate agreement problem

can be given in the following s t anda rd form, where all infor-

mat ion is exchanged for S rounds and then a computa t ion is

performed :

• Set u (p) = v(p) .

• In round 1, a processor p E Corr

- broadcas ts u (p),

- denotes by u (q l , p) t he value received by p f rom ql

purpor t ing to be u (qx).

• In round r, for r = 2 , 3 , . . . , S a processor p E Corr s t a r t s

wi th an array of n r-1 values (u (qz,- . •, qr-1, P) : each ql =

1 , . . . ,n) . I t then

80

- broadcasts the array (u (ql q,-x,P)),

- denotes by u (qx,- .- , q , -hq , ,P) the value received by

p from qr purport ing to be u (q h . . . , q ,) .

• Finally a processor p ~ Corr applies a function f to its

dew, the array (u (q x , . . - , q s , p)) of n s values, to produce

its new value tu (p).

Different algorithms are given by different choices of the

function f . Notice tha t the algorithm of §4, which involves

computing and modifying values between rounds of communi-

cation, is equivalent to one in the s tandard form because all

the computat ion and modification can be simulated by each

processor after all the information is exchanged. So suppose

we are given a function ff for which the algori thm satisfies the

validity condition. Let l h h , . . . , I s be any positive integers so

tha t Ix + . . . + Is _< t. We introduce the collection of multi-

indices I = (ix , . . . , i s) where i~ ranges over the integers from 1

to mk = [n/lk]. We order the multi-indices 'alphabetically ' ,

tha t is (ix , i s) < (.fi , i s) if there is some r so tha t

(i) ik _< jk for k < r, and (ii) i , < j , . The multi-indices are

totally ordered in this way (which is described as "last index

varies fastest" or "row-by-row") and we denote the successor

to I by I + + . As examples, when S = 3, mx = m2 = 3,

ms = 4 we have (1 , 2 , 3) + + = (1,2,4), (1 , 2 , 4) + + = (1,3,1)

and (1, 3, 4) + + = (2,1, 1).

To each multi-index I we assign an array M i of n s entries

defined by

M~ (qx, q~ qs) =

1 if there is some r so tha t (i) [qk/mk] < ik for k < r,

and (ii) [q,-/mr] < i ,

0 otherwise

Thus Mz is formed by parti t ioning the positions in the array

into subblocks of size it x 12 x . . - × Is. Every entry in a subblock

has the same value which is either 0 or 1. The subblocks filled

with l ' s all precede those filled with O's.

If we arrange the arrays Idz in the order of the multi-indices

I we get a chain with the property tha t given any two con-

secutive arrays MI and M.,++, there is some execution of the

broadcasting algorithm with /~ (U) _< 1 and IFaultl < t lead-

ing to one correct processor p0 receiving MI as view while an-

other correct processor Pl receives Mi++ as view. For this

execution I w (p 0) - tv(px)[= I / (M z) - I (M , + +) I , so K >

If (MI) - jr (Mx++)I- However if we consider an execution where

every processor is correct with initial value 0, we find tha t every

processor will get M(1,1,...,x) as view. In an execution where all

correct processors have initial value the same, the validity condi-

tion requires t hem to agree on that same value, so f (M(1,...,1)) =

0. Also we consider an execution where the processors 1,2,. . . ,

(m s - 1)Is are correct with initial value 1, while processors

(ms - 1) l s + 1 , . . . ,n follow the algorithm with initial value 0

during the rounds of broadcasting and then stop without com-

puting anything - - notice tha t the arbi trary behavior allowed

to a faulty processor includes the possibility of following the al-

gorithm. In this execution the correct processors will receive

M(,nx,l,1,...,l) as their view, and the validity condition requires

agree on 1 as their new value, so f (./~4"(r..1,1,...,1)) = them to 1.

Since the chain of arrays M! reaches from I = (1 , . . . , 1) to

I = (m s , 1 , . . . , 1) in (ml - 1) m 2 . . - m s steps, we get a chain of

real numbers f (Mi) reaching from 0 to 1 in (ml - 1) m z . . . m s

steps. Thus there is some pair of consecutive values where
1 > 1

_ , SO i f (M,) - ! (M,++)[> (rex - 1) m 2 . . . m s - m x m 2 . . , m s
1

K > - - . Since m t = In/It] <_ (n + i t) / l t <_ (n + t) f i t ,
f r t l • • • m S

1112." Is K>_
in + t) s

.As this is t rue for any choice of l h . . . , I s with 11 -k . . . -k Is _< t

we have the lower bound

K > sup {1112... Is : il + . . . + is _< t}
(. + t) s

to which our algori thm is asymptot ic as n increases.

The reader can verify tha t the following construction gives

an execution as required with M(i,,i~,...,is) as the view for P0,

and M(/l,...,is)+ + as the view for Pl : The faulty processors are

those p such tha t there is an r with Ip/I,] = it. Since for each r

at most l , values of p satisfy this condition, the total number of

faulty processors is at most 11 + . . . + Is _< t. Choose po and pl

from among the correct processors. Let ~ (p) be 1 if [p/ll] _< ih

and 0 if Ip/ll] > il .

• Every processor p, correct or faulty, sets u (p) = v (p).

• In round 1,

- a H processors p, except those where [Pill] = i l ,

broadcast u (p). The remaining p each send the value

u(p) to those q where [q/i~] < i2, but they send the

value 0 to those q where [q/i~] > i2.

81

- All processors p denote by u (ql,P) the value received

by p f rom q purpor t ing to be u (ql).

• In r o u n d r f o r r = 2 , . . . , S - 1

- all processors p, except those where [p/lrl = ir broad-

cast the ar ray (u(ql, . . . ,q~-l,p)). T he remaining p

form ano the r a r ray wi th

0 if [qk/lk] = ik for

u' (q l , . . . ,qr_l ,p) = each k = 1 , . . . , r - 1 •

u (q l , . . . ,qr-l,P) else

These p send the array (u (ql qr-l,P)) to those

q where [q/lr+l] _< it+l, bu t they send the a r ray

(uw (ql qr-l,P)) to those q where [q/lr+l] > ir+l .

- All processors p denote by u (q l , . . . , q r - 1 , qr, P) t he

value received by p from qr purpor t ing to be

u (q l , . . . , q,-1, q,).

• In the final round S

- all processors p, except those where [p/ls] :- is

broadcas t the ar ray (u (ql, .. •, qs-x, P)). T he remain-

ing p form ano the r ar ray with

I O if [q~/l~] = ik for

u l (q l , . . - , q s - l , P) = each k = 1 , . . . , S - 1

u (ql qs-l ,P) else

These p send the array (u (ql qs-x,P)) to those q

where q ~ P0, bu t to P0 they send ins tead the array

(U' (q l , ' ' ' , qS- l ,P))"

- - All processors p denote by u (ql, . . . ,qs- l ,qs ,P) the

value received by p f rom qs purpor t ing to be

u (q l , . . . ,qS-l,qS).

• Only the correct processors now calculate their new value

f rom their view. T he o thers halt .

In fact, t he lower b o u n d j u s t derived can be improved slightly

by finding other mult i - indices I for which M i is the view in some

execut ion wi th all correct processors having 0 as initial value,

and by finding mul t i - indicss I for which an execut ion exists in

which one correct processor receives Mx as view and ano ther

receives M(i++)++ as view.

6 T h e C r a s h - F a i l u r e M o d e l : T h e Algo-

r i t h m

An overview - - Dur ing each round of communica t ion a cor-

rect processor p broadcas ts informat ion it holds in the a r ray

v (p l , . . . , p r - l , p) and collects the informat ion sent to it in an ar-

ray v(pl,...,Pr,P). After the S rounds of communica t ion , a cor-

rect processor will have an array of n s values to opera te on. In

S s teps th is a r ray is used to form a collection of n (2n - 2t) s-1

values by repeatedly doubling, removing excess values f rom sub-

collections and then combining subcollections. Finally the cen-

ter operator is applied to this collection of values to give the

processor 's new value.

In detail, processor p, unt i l i t fails, m u s t per form the follow-

ing -

* In round 1: Broadcas t ~(p) , and denote by v(ql ,p) t he

value received by p from ql as v (ql)- If the message f rom

ql is miss ing set v (qx,p) to be _1.1.

• In round 2: Broadcas t the vector of values (v (1 , p) ,

v (2 , p) , . . . , v(n,p)) and denote by v(ql, q2,p) t he value

received by p f rom q2 as v (qx,q2). If the message f rom q2

is miss ing set v (qx,q2,p) to be -l-2.

• In round r, for r = 3 , . . . , S , processor p will s t a r t

wi th an a r ray of n r-1 values (v(ql, q2, . . . ,qr- l ,p) :

each ql = 1 , . . . , n) . Now p should broadcas t the a r ray

(v (qx, q2 q , -1 ,P)) . Denote by v (ql , . • •, qr-1, qr,P) the

value received by p f rom q, as v (q l , . . . , q r - l , q ,) . If the

message from qr is missing set v (qx , . . . ,qr-l,qr,p) to be

-Lr.

• At the end of round S , processor p has an a r ray of val-

ues v(q l , . . . , q s ,p) . Now let W (q l , . . . , q s , p) denote the

mul t i se t wi th a single en t ry v (q t , . - . , qs,P).

• For each r decreasing f rom S - 1 to 1

- for each choice of ql, .- .,qr, form a mul t i se t

W (q l , . . . , q , , * , . . . , * , p)

---- chop r+I s- , ~ un W tql ,
(2n--2t~ - t qr+ s=l k " . . , q r , q r + l , * , * , . . . , * , p)

where in every case the as ter isks fill places so t h a t

there are S + 1 entries, e i ther as ter isks or indices, to

n a m e each mult iset .

82

• Now put W (p) = U~,=tW (ql, * ,* ,P) .

• Finally put w (p) = center(2n_2t)s_, t (W (p)).

The behaviour of the algorithm is explained by the following:

T h e o r e m 2 In the algorithm above, for each r = 1 , . . . , S let

Fail(r) denote the set of processors that have failed before send-

ing any of the messages in round r. Also as a convention we

set Fail (S + 1) = { 1 , . . . , n} \Corr . We put lr =]Fail (r + 1)1 -
IFaiI Cr)l = IFaiI Cr + I) \FailCr)l Then we can conclude:

0): I / p e Vorr then the value of each of the (2n - 2t) s - ,

entries of W(qx q,, * , *,p). is either v(ql ,qr)

or l r .

(ii): l f qr f~ FailCr + 1) and p e Corr then

m u l t (v (q ~ , . . . , q ,) , W (ql , q,, • , , p)) = (2n -2 t) s - "

(tti): I f q, e Fail(r) and p e Corr then

mult(_l_r, W (ql qr, * , . - . , *,p)) = (2n - 2t) s - r

(iv) : I f po E Corr, Pl E Corr then

Imul t (v (qx , . . . , q,), W (q l , . . . , q~, * , . . . , *,po))

- m n l t (v (q l , qr), W (ql , qr, * , . . . , *, Pl))I

~_ lr+l • l r + 2 " " l S

P r o o f : First we observe tha t if p E Gorr, then p f~ Fail(r) for

r = 1 , . . . , S + 1. Now the theorem follows easily by descending

induction on r, using the lemmas of §2 and the observations

tha t if qr ~ Fail(r + 1) then qr sent all its messages in round

r, so tha t every qr+l tha t has not failed before start ing round

r + 1 has v(ql ,qr,qr+l) = vCql ,qr), while on the other

hand if qr E Fail(r) then qr sent no messages in round r, so tha t

every qr+l tha t has not failed before start ing round r + 1 has

v (q l , . . . , qr, qr+l) :-J-r.

We have by (ii) and (iii) for r = 1 tha t W (q , , ,*,Po) =

W(q~,, *,pd unless qx • Fail(2)\Fail(1). For these 11 val-

ues of ql we have by (iv) for r = 1 tha t

Imult(vCqx), W (q~, * , . . . , . , po) - m u l t (v (q l) , w (q l , * , . . . , *, p l) I

<_ 1 2 . l s . . . I s

r t , We can apply Lemma 6 with V = Uq~=lW(qx, , . . . ,*,Po), W =

U~x=lW(ql, * , * ,P l) , N = n(2n - 2t) s - l , m = ll " " I s , k =

t(2n - 2t) s -1 and [a,b] = pCU) to prove tha t each of w(po) =

center t (V) and wCpl) = eentcr t (W) lie in p(U) and tha t

l l • • • 18
I v , (p0) - u , (p~ .) l -< (2~ - 2t) s "s (u)

We finally note that as 11 = IFail (2)I-IFail(X)l, l, = IFail (3)l-

IFail(2)l,..., Is = IFaiICS + I)I- IFail(S)I, we have each l, a

non-negative integer and also 11 + 12 +... + Is = IFail (S + 1)I -

[Fail(1)l < t. This proves that our algorithm has, as claimed,

performance

K _< sup {I l l2- . . ls : ll + ' " ls < t, all l, nonnegative integers)

(2n - 2t) s

It is interesting to note tha t in any execution where the pro-

cessors have common knowledge that some lr = 0 (this means

tha t in round r no new processors crashed) then K = 0 (so exact

agreement is obtained). I t is proved in [DM 1 tha t these are the

only situations where processors can have common knowledge of

exact agreement.

7 T h e C r a s h - F a i l u r e M o d e l : A L o w e r

B o u n d

This section gives a formal account of a new lower bound on

achievable performance for any S-round approximate agreement

algori thm in the crash-failure model. Any algori thm for solving

the S- round approximate agreement problem can be given in the

s tandard form as in §5, where all information is exchanged for S

rounds giving each processor p a view (v(q I , qs, P)) and then

p applies a function f to the view to give its new value w(p).

To prove a lower bound on the performance achievable we

are going to construct a chain of views as in §5, but this time

we will do so implicitly by giving a recursive recipe for the ex-

ecution which lies between successive views. This proof is very

closely related to the proof in [DM] of the impossibility of exact

agreement in fewer than t+ 1 rounds. An execution in the crash-

failure model is very easy to describe -- we need only specify the

initial value of each processor and say which processors failed in

each round and which messages they sent in that round. We say

that two executions p and pl are directly similar (written p ~ pl)

if some processor p is correct in each and obtains the same view

in each. We say similarly that p and pt are k-similar (written

p ~t pt) if there are k+ 1 executions p0,pl,.. -,Pk so that p0 = p,

Pk = pl, and p~ ~ Pi+1 for eachi. Thus NI is just ~, and if

p k p~ and p~ N,n p, then p ~k+,n p,. Note that p ~ p~ implies

p~ ..,k p and p ~,n pl for m > k.

83

Let 11,12 , . . . , I s be any collection of positive integers such t h a t

Ix + . . . + is .~ t. P u t rnl = [hill]. We have

L e m m a 7 Let 1 _< r < S - 1. Let p = po be an ezecution such

that no failures occur after the end of round r, and the number

of failures before the start of round i is at most 11% . . . Jr Ii for

any i. Denote by ~ the ezecution which is identical to p for the

f irst r - 1 rounds but has no failures during any later round.

Then p ~N(r) k where N (r) - s s -- ~ i = r + l l~Iy=i 2my + 1.

Proof." Let the processors that fail in round r in # be denoted

ib...,ira. We will use descending induction on r. So suppose

r = S- 1 (note that the statement is not true ifr = S). For each

k = 1,...,ms let pt and qt be the least and greatest processor

indices that are not among the processors that failed in p nor in

the range (k - 2)Is Jr 1 ,kls. Let P2t-1 denote the execution

which is identical to p during the first S - 2 rounds, and then

also during round S - 1 except that the processors il,...,ira do

send to any processor with index 1,2,..,(k - 1)Is as well as

those processors that they send to in p. In round S, each of the

processors (k - 1)Is + 1 , . . . , k l s t h a t has not failed earlier, fails

after sending messages to processors 1,.. . ,Pk. T he a s sumpt ions

on failure n u m b e r s in p mean t ha t th is execution involves a t mos t

t failures. Also let p2k denote the execution identical to p dur ing

the first S - 2 rounds , and then also dur ing round S - 1 except

that the processors i l , . . . , i ra do send to any processor with index

1,2,...,kls as well as those processors that they send to in p.

In round S, each of the processors (k - 1)Is Jr 1,...,kls that

has not failed earlier, fails after sending messages to processors

1,...,pk. The assumptions on failure numbers in p mean that

this execution involves at most t failures. Clearly the view of Pk

is the same in P2(k-1) aS in P2k--I SO P2(k-l) ~ P2k-l. Similarly

the view of qk is the the same in P2k-t as in P2t so Pz~-x ~ P2k.

Also let P2ras+l denote the execution identical to p during the

first S - 2 rounds with no failures during round S - 1 and in

round S each of the processors il,i2,...,ira as well as each of

(k- 1)Is Jr 1,...,kls which hasn't failed earlier, fails after sending

messages to processors 1,...,Pk. The view of qms is the same in

P2ras+t as in P2ras, but this is the same as its view in P2ras-I

so P2ras-1 ~ P2ras+l. Similarly the view of Pros is the same

in P~ras+1 as in ~ so P2,ns+t ~ P- Thus examining the whole

a rgument , p ~ 2 r a s + l ~.

Now we assume we have the result for r Jr 1 and prove it for

r . For each k = l,...,mr+l we let Psk-2 denote the execution

identical to p for the first r - 1 rounds and also in round r except

that the processors ih...,ira do send to any processor with index

1,2,...,(k - 1)Ir+1 as well as those processors that they send

to in p. In round r Jr 1, each of the processors (k - 1)Ir+i Jr

1,...,klr+i that has not failed earlier, fails before sending any

messages. No failures occur after round r -4-1. The assumptions

onthe number of failures in p imply that this execution also

satisfies those assumptions. We let Pst-i denote the execution

identical to p for the first r - 1 rounds and also in round r

except that the processors Q,...,ira do send to any processor

with index 1,2,...,klr+i as well as those processors that they

send to in p. In round r Jr 1, each of the processors (k- 1)Ir+i Jr

1,...,k/r+1 that has not failed earlier, fails before sending any

messages. No failures occur after round r Jr 1. The assumptions

on the number of failures in p imply that this execution also

satisfies those assumptions. We let Psk clenote the execution

identical to p for the first r - 1 rounds and also in round r

except that the processors ix,...,ira do send to any processo,

with index 1,2,...,klr+i as well as those processors that they

send to in p. No failures occur after round r. The assumptions

on the number of failures in p imply that this execution also

satisfies those assumptions. Now by the lemmn for r + 1 we

have P3(/c-t) ~N(r+X) PSk-2 and Ps/~-t ~N(r+l) P3k. Also every

processor gets the same view in P3k-2 as in P3k-t so PSk-2 ~:~

PSt-X. Fur the r Psra,+~ in which processors Q, . . . , i ra fail a t the

very end of round r can also be viewed as an execut ion in which

they fail a t the very s ta r t of round r Jr 1, and so by the l e m m a

for r Jr 1 we have Ps,~+~ ~N(v+l) ~. P u t t i n g all these pieces of

chain toge ther we see p ~(2ra,+t+l)N(r+t)+m,+l ~, h u t (2mr+l"jr

1)N(r + 1) + mr+t <_ (2mr+x + I) (NCr + 1) + 1) = NCr). Q.E.D.

Now we can prove that if p = P0 is the execution where all

processors have initial value 0 and no failures occur, and ~ is the

execution where all initial values are I and no failures occur, then

p N N b where N < (2rex + 2)- (2mr + 2)-.. (2ms + 2). We will

give separate proofs if S > 1 and S = 1. First suppose S > 1.

For each k = 1,..,rnl let P3k-2 denote the execution where

processors 1,...,(k - 1)11 have initial value I, and the others have

initial value 0, and where processors (k - 1)l I + 1,...,kll fail in

round I before sending any messages, but no other failures occur.

Let Pan-1 denote the execution where processors 1,...,klt have

initial value 1, and the others have initial value 0, and where

84

processors (k - I)li + I,...,Idl fail in round 1 before sending

any messages, but no other failures occur. Let Psk denote the

execution where processors 1,...,kll have initial value 1, and the

others have initial value 0, and where no failures occur. By

L e m m a 7, Ps(k-1) ~N(1) Pat-2 and Psk-1 NN(1) PSA. Also the

view of every processor is the same in Pat-2 as in Pat-1 since the

initial value of a processor t ha t fails before sending any message

is irrelevant, and so Pst-~ ~ Psk-1. Since Ps,n~ ---- ~, we have

p NN ~ where N = 2 m l (N (1) + 1) < s ~ y = l 2my + 2 as we see by

wri t ing 2rn i + 2 as (2mj + I) + I and expanding the product .

In the case S = I for each k = l , . . . , r n l let pk and qt be the

least and greates t processor indices t h a t are not in the range

(k - 2)11 + 1,.. . , /all. Let P2k-1 denote the execution in which

the processors wi th index I, 2 , . . . , (k - 1)11 have initial value 1

and the others have initial value 0 and in round 1, each of the

processors (/¢ - 1)11 -I- 1 , . . . ,k l l fails after sending messages to

processors 1, . . . ,pk. Let p2t denote the execution in which the

processors with index 1 ,2 , . . . , k i l have initial value 1 and the

o thers have initial value 0 and in round 1, each of the processors

(k - 1)11 + 1 , . . . ,k l l fails after sending messages to processors

1 , . . . , p t . The view of Pk is the same in P2(k-1) as in P2/~-1 so

P2(k-1) ~ P2k-1. Similarly the view of qk is the same in P2k-1

as in P2k so P2k-I ~ P2k. As the view of P,n~ is the same in

P2ml as ill ~ we have t ha t P2m~ ~ ~, and so p ~ N ~, where

N : 2 m l + l < 2 m l + 2 .

Now we have shown how to cons t ruc t a sequence P0 =

P,Pl,...,PN = P where p# ~ P~+I, t ha t is there is some pro-

cessor p~ whose view (which we will call M~) is the same in p~

and in P~+I. Since M0 is a view in a failure-free execution where

every initial value is 0 we m u s t have f(Mo) = 0. Similarly

M N - 1 is a view in a failure-free execution where all initial val-

ues are 1 so f(M1~-l) = 1. T h u s there m u s t be some i so tha t

If(M~) - f(M~+l)l >_ 1 /N bu t each of M~ and Mi+l are views in

the execution P~+I which from the const ruct ion clearly has all

initial values ei ther 0 or 1. T h u s we have proved t ha t any algo-

S i~=1(2n/l j+3) r i t h m has K > 1/N. Since N _< l~j=l 2 m ~ + 2 _<

we have K _> ~ = 1 i~/(2n+31i) _> II~=l l~/(2n+3t). As 11,...,Is

were arbi trary, subject only to il + . . . + ls _< t, we have

K < sup (l~.. . Is : i~ + . . . + is <_ t, all I~ nonnegat ive integers)

(2n + 3t) s

In fact by pay ing closer a t ten t ion to the cases when successive

execut ions look the same to all processors, we can improve the

denomina to r to (2n 4- 2t) s.

85

8 The Failure-By-Omission Model

An overview -- During each round of communication a cor-

rect processor p broadcasts information it holds in the array

v(Px,...,Pr-1,P), collects the information sent to it in an array

v(p1,...,p,,p), tries to deduce which processors are faulty, and

then modifies the information it received from processors known

to be faulty to form the new array v(Pl,...,Pr,p). The only

method a correct processor p uses to detect that process q is

faulty, is to examine the n values which reach p representing

some information that was broadcast by q and then relayed to

p by each recipient. If q were correct then no processor would

have failed to receive q's value in the broadcast and so none of

the values reaching p would be -Lr-1. Thus if p finds any entry

being ±r-1 among those it received, it can deduce that q was

faulty. After the S rounds of communication, a correct proces-

sor will have an array of n s values to operate on. In S steps this

array is used to form a collection of (2n - 4t) s-I (2n - 2t) values

by repeatedly removing extreme values from subcollections and

then combining subcollections. Finally this collection of values

is averaged to give the processor's new value.

In detail, processor p, if correct, must perform the following

• Set ~ (p) = v (p).

* In round 1:

- Broadcast ~ (p), and denote by v (ql,P) the value re-

ceived by p from ql as ~ (ql). If the message from ql

is missing set v(ql,p) to be 11.

- Set Fault (p, 1) to be the empty set.

- Set ~ (ql, P) -~ v (ql, P).

• In round 2:

- Broadcas t the vector of values (~(1 ,p) , ~ (2,p) ,

(n,p)> and denote by v (ql, q2,P) the value received

by p f rom q2 as v(ql,q2). If the message from q2 is

missing set v(ql,q~,p) to be -1-2.

- For each ql consider the mul t ise t {v (ql, 1, p), v (ql, 2, p),

. . . , v(ql ,n ,p)); if any en t ry is-l-1 say tha t "ql has

been detected as faul ty by p in round 2".

- Set Fault (p, 2) to be the set of q which have been

detected as faulty by p in round 2.

(

- Set ~ (ql, q2, Pl = ~ v (ql, q~, Pl ifq2 ~ Fault (p, 2)

[-1-2 ifqa ~ Fault (p, 2)

* In round r, for r = 3 , . . . , ~ , processor p will s tar t with

an array of n r-1 values (~(ql ,q2, . . . ,qr- l ,P) : each qi =

1 , . . . , n / and a set Fault (p,r - 1) of processors already

detected as faulty by p. Now p should

- Broadcast the array (6 (ql, q2 , . . . , qr-1, P)).

- Denote by v (q l , . . . , qr-1, qr,P) the value received by

p from qr as ~ (q l , . . . ,qr-l ,qr). If the message from

qr is missing set e (q l , . . . ,qr- l ,qr ,P) to be -Lr.

- For every choice of indices q t , - . . ,qr-1, consider the

multiset { ~ (ql , qr-t , 1,p), v (ql qr- x, 2 ,p) , . . . ,

v (q l , . . . , q r - l ,n ,p) } . If any entry is -Lr-1 say tha t

"qr-x has been detected as faulty by p in round r"

(Note tha t several choices of ql ,-- . ,qr-2 may lead to

the same qr-1 being detected).

- Set Fault(p,r) = Faul t (p ,r - 1 / U {q : q has been

detected as faulty by p in round r }.

v(ql qr - l ,q , ,P l

- SerE(q1 qr_1,qr,p)= i fq r f~Fau l t (p , r) •

"1"r if q, ~ Fault (p, r)

- Now p is ready to s tar t round r -F 1.

• At the end of round S , processor p has an array of val-

ues ~ (q l , - . . ,qs,P). Now let W (q l , - - . , q s , P) denote the

multiset wi th a single entry ~ (q l , . . . , qs, p).

• For each r decreasing from S - 1 to 1

- for each choice of ql,...,qr, form a mult iset

W (ql q , , * , . . . , , , p)

~ho~-~_.)s_._,2, u~.+,=~ W (q l , q . , q . + x , * , * , * , P)

where in every case the asterisks fill places go tha t

there are S + 1 entries, either asterisks or indices, to

name each multiset.

• Now p u t W (P) = Uq~=lW (ql, * , - - . , *,PI"

• Finally put to (p) = eenter(2n_4t)s-, , (IV (Pl)" (Note tha t

the amount of reduction is different from tha t in previous

~teps I.

The behaviour of the algori thm is explained by the following:

T h e o r e m 3 In the algorithm aboee, for each r = 1 , . . . , S

let Fa//(r) denote the set of processors that have failed before

sending any of the messages in round r . Let £zposed(r) =

Fail(r) U n~z~a(,+l)Fault(p,r). Aho aa a con~en~on we set

E=posedCS + 11 = { 1 , . . . , , } \ C o r r . ~rote that ~posedC,) c

Ezposed(r + 1). We put l , = IExposed (r + 1)1 - IEzposed (r)l =

[Ezposed (r + 1) \Ezposed (r)[Then we can conclude:

(t) : I f p E Corr then the caius of each of the (2n - 4t1 s - r

entries of W (q l , . . . , q r , . , . . . , , , p I is either ~(ql , . . . ,qr)

or -Lr.

(li): I f qr ~ Ezposed (r + 11 and p E Corr then

mu l t (~ (q l , . . . , q r) ,W (ql , qr, * *,Pl) = (2n-4 t) s - "

(m) : ~f q. ~ Exposed (,) and p ~ Corr then

m,, l t (.± . , W (q l , . . . , q . , * , * , p)) = (2 . - 4t) s - "

(iv) : l f po E Corr, Pl E Corr then

IraultC~Cql , q.), w (ql , q,, * , . . . , * ,po))

- m u l t (~ (q l , . . . , q r) , W (ql q r , * , ' " , * , P l)) l

_< lr+l " l r + 2 " " l s

P r o o f : First we observe from the algorithm that b(ql, . . . , qr, Pl

can never have the value .Lj for j > r. Next we observe

tha t if p f~ Fail(r + 1) and q E Corr then q f~ Fault(p,r).

This is proved by induction on r. The case r = 1 is triv-

ial as Fault(p, 1) is empty. Now for arbi trary r , suppose

p f~ Fail(r + 1) and q E Corr. Fix q l , . . . , q r -2 . If qr

does not send properly to p in round r (in part icular if qr

Fail(r1) then v (q l , . . . , q r -~ ,q , qr,pl =±r . On the other hand

if qr does send to p in round r then v(q l , . . . , qr -=,q , qr,Pl =

6 (q l , . . . ,q , -2,q, q,) = v (q l , . . . , q r -2 , q,qr) since by the induc-

tion hypothesis q f~ Fault(qr,r - 1), and v (q l , . . . ,qr-2,q, qr) =

~ (q l , . . . , qr-2, q) which as we noted above is not equal to "±r-x.

Thus no entry of {v(ql , . . • ,qr-2,q, qr,P) : qr = 1 , . . . ,n} is "±r-1

proving tha t q f~ Fault(p, r). Now the theorem is easily proved

by descending induction on r, using the lemmas of §2 and the

observations tha t if qr f~ ExposedCr+ 11 then for every q E Corr,

~ (q l , . . . , q , , q) = ~(q2,. . . ,qr) (which is proved by contradic-

tion) and on the other hand if qr E Ezposed(r) then for every

q E Corr, ~ (q t , . . . , qr, q) =±r (if qr E Fault(r) this is explicit in

the algorithm, and if qr E Fail(r) then qr sent no message to q

in round r so v(ql ,q, ,q) =-l-r).

We have by Cii ! and (iii 1 for r = 1 tha t W(ql , * *,P0) =

W(ql , * , . . . , *,Px) unless ql E Ezposed(2)\Ezposed(1 I. For these

il values of q~ we have by (iv) for r = I t ha t

86

Im~u(~Cqd , w (qx, * ,* , p0) - m~uC~(qd , w (ql, * *, p d I

< I~. Is' . . Is

since ~(ql) = v(qx). We can apply Lemma 6 with V =

u~".=~w(q~. , * .po) . w = u ~ ' . = l w (q ~ . , * . p d . . v =

n (2 n - 4t) s-x, rn = l x ' " l s , k = t (2 n - 4t) s-1 and [a,b] =

#(U) to prove that each of w(po) = centert(V) and w(pl) =

eenterk(W) lie in p(U) and that

ix... ts • ~ (v)
[~ (p0) - ~ (z)I -< (2~ - 4& -~ (2n - 2t)

We finally note that as ix = [Ezpoeed(2)[- [Ezpoeed(1)[,

l~ = I E z p o s e d (3)1 - IBzpoaed (2) 1 . . . Is = IEzposed (S + 1)1 -

[Ezposed(S)], we have each Ii a non-negative integer and also

11 + 12 + . . . + is = [Ezposed(S + I)[- [Ezposed(1)[< t. This

proves that our algorithm has, as claimed, performance

K < sup {lfl2... Is : 11 +."Is _< t, all li nonnegative integers}
(2n - 4t) s-1 (2n - 2t)

[FL] M. Fischer, N. Lynch, "A Lower Bound for the Time to

Assure Interactive Consistency", Information Processing

Letters 1~4 ~ 183-186 (1982).

[LL] J. Lundelius, N. Lynch, "A New Fault-Tolerant Algorithm

for Clock Synchronization", Information and Control, 62,

2~ 190-204 (1984)

[LSP] L. Lamport, R. Shostak, M. Pease, "The Byzantine Gen-

erals Problem", ACM Transactions on Programming Lan-

guages and Systems 4~ 2~ 382-401 (1982).

[PSL] M. Pease, R. Shostak, L. Lamport, "Reaching Agree-

ment in the Presence of Faults ~, JACM 2~7 2~ 228-234

(19s0)

[C] B. Coan, "A Communication-Efficient Canonical Form for

Fault-Tolerant Distributed Protocols ~, Proceedings of the

5th ACM Symposium on Principles of Distributed Com-

puting, August 1986.

[CD] B. Coan, C. Dwork, "Simultaneity is Harder than Agree-

menC, Proceedings of the 5th Symposium on Reliability

in Distributed Software and Database Systems, 141-150,

January 1986.

[D] D. Dolev, "The Byzantine Generals Strike Again", Journal

of Algorithms 3~ 14-30 (1982).

[DLPSW] D. Dolev, N. Lynch, S. Pinter, E. Stark, W. Weihl,

"Reaching Approximate Agreement in the Presence of

Faults", to appear in JACM.

[DM] C. Dwork, Y. Moses, "Knowledge and Common Knowl-

edge in a Byzantine Environment I: Crash Failures ", Pro-

ceedings of the 1986 Conference on Theoretical Aspects of

Reasoning About Knowledge, 149-169, March 1986.

[F] M. Fischer, "The Consensus Problem in Unreliable Dis-

tributed Systems (A Brief Survey)" Yale University Tech-

nical Report YALEU/DCS/RR-273 (1983).

87

