
Implementing Sequentially Consistent Shared Objects using Broadcast and
Point-To-Point Communication

Alan Feketey M. Frans Kaashoekz Nancy LynchzyDepartment of Computer Science F09 z MIT Laboratory for Computer Science
University of Sydney 2006, Australia. Cambridge MA 02139, U.S.A.

Abstract
A distributed algorithm that implements a sequentially

consistent collection of shared read/update objects using a
combination of broadcast and point-to-point communica-
tion is presented and proved correct. This algorithm is a
generalization of one used in the Orca shared object sys-
tem. The algorithm caches objects in the local memory
of processors according to application needs; each read
operation accesses a single copy of the object, while each
update accesses all copies. Copies of all the objects are kept
consistent using a strategy based on sequence numbers for
broadcasts.

The algorithm is presented in two layers. The lower
layer uses the given broadcast and point-to-point commu-
nication services, plus sequence numbers, to provide a new
communication service called a context multicast channel.
The higher layer uses a context multicast channel to man-
age the object replication in a consistent fashion. Both
layers and their combination are described and verified for-
mally, using the I/O automaton model for asynchronous
concurrent systems.

1 Introduction
In this paper, we present and verify a distributed algo-

rithm that implements a sequentially consistent collection
of shared read/update objects using a combination of (reli-
able, totally ordered) broadcast and (reliable, FIFO) point-
to-point communication. This algorithm is a generalization
of one used in the implementation of the Orca distributed
programming language [7] over the Amoeba distributed
operating system [26].

Orca is a language for writing parallel and distributed
application programs to run on clusters of workstations,
processor pools and massively parallel computers [7, 25].
It provides a simple shared object model in which each
object has a state and a set of operations, classified as either
read operations or update operations. Read operations do
not modify the object state, while update operations may
do so. Each operation involves only a single object and
appears to be indivisible.

More precisely, Orca provides a sequentially consistent
memory model [20]. Informally speaking, a sequentially
consistent memory appears to its users as if it were central-
ized (even though it may be implemented in a distributed

This research was supported in part by ARPA N00014-92-J-4033,
NSF 922124-CCR, and ONR-AFOSR F49620-94-1-0199; by ONR con-
tract N00014-94-1-0985 and a NSF Young Investigator Award.

fashion). There are several formalizations of the notion of
sequentially consistent memory, differing in subtle ways;
we use the state machine definition of Afek, Brown and
Merritt [2].

Orca runs over the Amoeba operating system [26], which
provides two communication services: broadcast and point-
to-point communication. Both services provide reliable
communication, even in the presence of communication
failures. No guarantees are made by Orca if processors
fail; therefore, we do not consider processor failures ei-
ther. In addition, the broadcast service promises delivery
of the broadcast messages in the same total order at ev-
ery destination,1 while the point-to-point service preserves
the order of messages between any sender and receiver.
The cost of an Amoeba broadcast, in terms of time and
amount of communication, is higher than that of a single
point-to-point message. Therefore, it is natural to design
algorithms so that point-to-point communication is used
whenever possible, i.e., when a message is intended for
only a single destination, and broadcast is only used when
necessary, i.e., when a message must go to several destina-
tions.

In the implementation of Orca, user programs are dis-
tributed among the various processors in the system. The
user program consists of threads, each of which runs on a
single processor. In this paper, we call these threads clients
of the Orca system. Each processor may support several
clients. Shared objects are cached in the local memory of
some of the processors. Each read operation by a client
accesses a single copy of the object, while each update
operation accesses all copies. The underlying broadcast
primitive provided by the Amoeba system is used to send
messages that must be sent to several destinations — that
is, invocations of update operations for objects that have
multiple copies. The underlying point-to-point primitive is
used to send messages that have only a single destination,
that is, invocations of reads from a site without a local copy
of the object, invocations of writes for an object that has
only single (remote) copy, and responses to all invocations.

1A broadcast service with such a consistent ordering guarantee is
sometimes called a group communication service. Although group com-
munication is widely discussed in the systems literature, there is no general
agreement on its definition. In this paper, we sidestep the issue by using
the term broadcast to indicate a communication to all sites in the system,
and multicast to indicate a communication to a subset of the sites. This
terminology does not say whether the service is provided by hardware or
software.



An early version of the implementation used the strategy
of caching all shared objects at all processors. This strategy
yields good performance for an object that has a high read-
to-update ratio, since a read operation needs only to access
the local copy of the object. The drawback is that updates
must be performed at all copies,using an (expensive) broad-
cast communication. Experience has shown that there are
some objects for which this is not the best arrangement. For
example, many applications use a job queue object to allow
clients to share work; the job queue is updated whenever a
client appends information to it about a task that needs to
be done, and also whenever a client removes a task from
the queue in order to begin work on it. Since all accesses to
a job queue are updates, total replication is not an efficient
strategy in this case.

Because of objects like these, Orca has been re-
implemented to allow more flexibility in the placement of
copies. The new implementation allows some objects to
be totally replicated and others to have only a single copy.
Operations on an object with only a single copy can now be
done using only point-to-point messages, though broadcast
must still be used for updates on replicated objects. The de-
cision about whether or not to replicate an object is made at
run time using information generated by the Orca compiler.
The details of this decision process, and also performance
measurements to show the benefits of not replicating all
objects, can be found in [6].

The naive strategy of allowing each read operation to
access any copy of the object and each update operation to
access all copies is not by itself sufficient to implement a se-
quentially consistent shared memory. To see why, consider
the execution depicted in Figure 1. The example involves 3
processors, P1, P2 and P3, and two objects, x and y. Objectx is replicated on all processors, while object y is stored
only on P2. The figure shows the invocation and response
messages for an update of y by P1, and the broadcast invo-
cation messages for an update of x by P3. In this execution,P2’s read operations indicate that y is updated before x is,
while P1 reads the new value of x before invoking the up-
date of y. In a centralized shared memory, such conflicting
observations are impossible; thus this execution violates
sequential consistency.

The new version of the Orca algorithm solves this consis-
tency problem using a strategy based on sequence numbers
for broadcasts. These broadcast sequence numbers are pig-
gybacked on certain point-to-point messages and are used
to determine certain ordering relationships among the mes-
sages.

Our original goal was to verify the correctness of the new
Orca algorithm. In the early stages of our work, however,
we discovered a logical error in the implemented algo-
rithm. Namely, broadcast sequence numbers were omitted
from some point-to-point messages (the replies returned to
the operation invokers) that needed to include them. We
produced a corrected version of the algorithm, which has
since been incorporated into the Orca system.

The algorithm we study in this paper is our corrected
algorithm, generalized beyond what is used in the Orca
implementation to allow replication of a shared object at
an arbitrary collection of processors, rather than just one
processor or all processors. There is one way in which
our algorithm is less general than the Orca implementa-
tion, however: we assume for simplicity that the locations

Update x

Read x

Update y

Read y

Read x

P1 P2 P3

Time

Figure 1: A problem with the naive replication strategy.

of copies for each object are fixed throughout a program
execution, whereas Orca allows these locations to change
dynamically, in response to changes in access patterns over
time. We discuss the extension of our results to the case of
dynamic reconfiguration in Section 7.

We present and verify the algorithm as the composi-
tion of two completely separate layers, each a distributed
algorithm. The structure of this part of the system is de-
picted in Figure 2. The lower layer uses the given broadcast
and point-to-point communication services, plus broadcast
sequence numbers, to implement a new communication
service called a context multicast channel. A context mul-
ticast channel supports multicast of messages to designated
subsets of the sites, according to a virtual total ordering
of messages that is consistent with the order of message
receipt at each site, and consistent with certain restricted
“causality” relationships. The guarantees provided by a
context multicast channel are weaker than those that are
provided by totally ordered causal multicast channels, as
provided by systems such as Isis [10]. However, the prop-
erties of a context multicast channel are sufficiently strong
to support the replica management of the Orca algorithm.

The lower layer uses the given point-to-point primitive
for each multicast message with a single destination, and
the given totally ordered broadcast primitive for each mul-
ticast message with more than one destination. (Sites that
are not intended recipients simply discard the message.)
Sites associate sequence numbers with broadcasts and pig-
gyback the sequence number of the last received broadcast
on each point-to-point message. When a point-to-point
message reaches its destination, the recipient delays its de-
livery until the indicated number of broadcasts have been
received. (The idea is similar to the one in Lamport’s clock
synchronization algorithm [19], but we only apply it to
a restricted set of events.) We prove that this algorithm
correctly implements a context multicast channel.

The higher layer uses an arbitrary context multicast

2



Context multicast

Object management

Client Client . . . Client

Figure 2: The architecture of the system.

channel to manage the object replication in a consistent
fashion. Each object is replicated at an arbitrary subset of
the sites. A site performs a read operation locally if possi-
ble. Otherwise, it sends a request to any site that has a copy
and that site returns a response. A site performs an update
operation locally if it has the only copy of the object. Oth-
erwise, it sends a multicast message to all sites that have
copies, and waits to receive either its own multicast, or else
an appropriate response from some other site. We prove
that this algorithm, combined with any context multicast
system, provides a sequentially consistent memory. Our
proof uses a new method based on partial orders.

All our specifications and proofs are presented in terms
of the I/O automaton model for asynchronous concurrent
systems [23]. General results about the composition of I/O
automata allow us to infer the correctness of the complete
system from our correctness results for the two separate
layers.

Many different correctness conditions have been pro-
posed for shared memory, including strong conditions like
memory coherence and weaker ones like release consis-
tency. Sequential consistency is widely used because it
appears to be closest to what programmers expect from a
shared memory system; non-sequentially consistent shared
memory systems typically trade programmability for per-
formance. Sequential consistency was first defined by
Lamport [20]; in this paper, we use an alternative for-
mulation proposed by Afek et al. [2], based on I/O au-
tomata. Other papers exploring correctness conditions for
shared memory and algorithms that implement them in-
clude [1, 3, 5, 8, 9, 11, 12, 13, 15, 16, 17, 21, 24]. In most
of this work, memory is modeled as a collection of items
that are accessed through read and write operations. The
study of correctness for shared memory with more general
data types was initiated by Herlihy and Wing [18]. Se-
quential consistency and other consistency conditions for
general data types has been studied by Attiya and Welch [5]
and Attiya and Friedman [4].

The rest of the paper is organized as follows. Section 2
introduces basic terminology that is used in the rest of the
paper. Section 3 contains the definition of a sequentially
consistent shared memory and introduces our new method
for proving sequential consistency. Section 4 contains def-
initions of multicast channels with various properties, and
in particular, the definition of a context multicast channel.
Section 5 contains the higher layer algorithm, which imple-

ments sequential consistency using context multicast, plus
a proof of its correctness. Section 6 contains the lower layer
algorithm, which implements context multicast in terms of
broadcast and point-to-point messages. Section 7 contains
a discussion of dynamic reconfiguration, and ideas for fu-
ture work. Finally, in Section 8 we draw our conclusions.

Because of space limitations, most details of the proofs
are omitted here. Full details appear in [14].

2 Some Basics
2.1 Partial Orders

We use many partial (and total) orders, on events in
executions, and on operations. Throughout the paper, we
assume that partial and total orders are irreflexive, that is,
they do not relate any element to itself. Also, we define
a partial or total order P to be well-founded provided that
each element has only finitely many predecessors in P .
This assumption is needed to rule out various technical
anomalies.

2.2 I/O Automata
The I/O automaton model is a simple labeled transition

system model for asynchronous concurrent systems. An
I/O automaton has a set of states, including some start
states. It also has a set of actions, classified as input,
output or internal actions, and a set of steps, each of which
is a (state, action, state) triple. Finally, it has a set of tasks,
each of which consists of a set of internal and/or output
actions. Inputs are assumed to be always enabled.

An I/O automaton executes by performing a sequence
of steps. An execution is said to be fair if each task gets in-
finitely many chances to perform a step. External behavior
of an I/O automaton is defined by the set of fair traces, i.e.,
the sequences of input and output actions that can occur in
fair executions.

I/O automata can be composed, by identifying actions
with the same name. The fair trace semantics is compo-
sitional. Output actions of an I/O automaton can also be
hidden, which means that they are reclassified as internal
actions. See [23] for more details.

3 Sequentially Consistent Shared Object
Systems

In this section, we define a sequentially consistent shared
object system and give a new method for proving that a
system is sequentially consistent. Informally, a system is
said to be a sequentially consistent shared object system if
all operations receive responses that are “consistent with”
the behavior of a serially-accessed, centralized memory.
More precisely, the order of events at each client should
be the same as in the centralized system, but the order of
events at different clients is allowed to be different.

3.1 The Interface
We start by identifying the actions by which the shared

object system interacts with its environment (the clients).
The shared object system receives requests from its envi-
ronment and responds with reports. Requests and reports
are of two types: read and update. Each request and report
is subscripted with the name of the client involved. Each
request and report contains, as arguments, the name of the
object being accessed and a unique operation identifier. In
addition, each update request contains the function to be

3



applied to the object and each read report contains a return
value.2

Formally, let C be a fixed finite set of clients, X a fixed
set of shared objects, V a fixed set of values for the objects,
including a distinguished initial value v0,3 and Ξ a fixed set
of operation identifiers, partitioned into subsets Ξc, one for
each client c. Then the interface is as follows. (Here, c, �,x and v are elements of C, Ξ, X, and V , respectively, andf is a function from V to V .)

Input:
request-read(�; x)c, � 2 Ξc
request-update(�; x; f)c, � 2 Ξc

Output:
report-read(�; x; v)c, � 2 Ξc
report-update(�; x)c, � 2 Ξc

If � is a sequence of actions, we write �jc for the subse-
quence of � consisting of request-readc, request-updatec,
report-readc and report-updatec actions. This subsequence
represents the interactions between client c and the object
system.

We assume that invocations are blocking: a client does
not issue a new request until it has received a report for its
previous request. This assumption, and the uniqueness of
operation identifiers, are assumptions about the behavior
of clients. We express these conditions in the following
definition: we say that a sequence � of actions is client-
well-formed provided that for each client c, no two request
events4 in �jc contain the same operation identifier �, and
that �jc does not contain two request events without an
intervening report event.

The object systems we describe will generate responses
to client requests. Here we define the syntactic properties
required of these responses. Namely, we say that a se-
quence of actions is complete provided that there is a one-
to-one correspondence between request and report events
such that each report follows the corresponding request and
has the same client, operation identifier, object and type.
If a sequence � is client-well-formed and complete, then�jc must consist of a sequence of pairs of actions, each
of the form request-read(�; x)c ; report-read(�; x; v)c or
request-update(�; x; f)c ; report-update(�; x)c.

We say that an operation identifier � occurs in sequence� provided that � contains a request event with operation
identifier �. If � is any client-well-formed sequence and �
occurs in �, then there is a unique request event in � for�. We sometimes denote this event simply by request(�).
Also, if � is client-well-formed and complete, then there is
a unique report event with operation identifier �; we denote
it by report(�). We often refer to an operation identifier as
just an operation.

If � is a complete client-well-formed sequence of
actions, we define the totally-precedes partial order,
totally-precedes�, on the operations that occur in � by:(�; �0)2 totally-precedes� provided that report(�) occurs

2There are two ways in which Orca differs from our specification: in
Orca, (1) an update may return a value and (2) an update might block.

3We ignore the possibility of different data domains for the different
objects.

4An event is an occurrence of an action in a sequence.

before request(�0) in �. Notice that for each client c,
totally-precedes�jc totally orders the operations that occur
in �jc.
3.2 Definition

Our definition of sequential consistency is based on an
atomic object [22], also known as a linearizable object
[18], whose underlying data type is the entire collection
of data objects to be shared. In an atomic object, the
operations appear to the clients “as if” they happened in
some sequential order, and furthermore, that order must be
consistent with the totally-precedes order. Specifically, we
let AM, the atomic memory automaton, be the serial object
automaton defined by Afek, Brown and Merritt [2] for the
given collection of objects, except that we generalize it to
allow updates that apply functions rather than just blind
writes. Note that every client-well-formed fair trace of AM
is complete.

Sequential consistency is almost the same as atomicity;
the difference is that sequential consistency does not respect
the order of events at different clients. Thus, if � is a
client-well-formed sequence of actions, we say that � is
sequentially consistent provided that there is some fair trace
 of AM such that 
jc=�jc for every client c. That is, �
“looks like” 
 to each individual client; we do not require
that the order of events at different clients be the same in �
and 
.

If A is an automaton that models a shared object sys-
tem, then we say that A is sequentially consistent provided
that every client-well-formed fair trace of A is sequentially
consistent.

3.3 Proving Sequential Consistency
In order to show that the Orca shared object system is

sequentially consistent, we will use a new proof technique
based on producing a partial order on the operations that
occur in a fair trace. In this subsection, we collect the prop-
erties we need, in the definition of a “supportive” partial
order.

For each c 2 C, let �c be a complete client-well-formed
sequence of request and report events at client c. Suppose
thatP is a partial order on the set of all operations that occur
in the sequences �c. Then we say that P is supportive for
the sequences �c provided that it is consistent with the order
of operations at each client and orders all conflicting read
and update operations; moreover, the responses provided by
the reads are correct according to P . Formally, it satisfies
the following four conditions:

1. P is well-founded.

2. For each c, P contains the order totally-precedes�c .

3. For each variable x 2 X, P totally orders all the up-
date operations ofx, andP relates each read operation
of x to each update operation of x.

4. Each read operation � of variable x has a return value
that is the result of applying to v0, in the order given byP , the update operations of x that are ordered ahead
of �.

The following lemma describes how a supportive partial
order can be used to prove sequential consistency.

4



Lemma 3.1 For each c 2 C, let �c be a complete client-
well-formed sequence of request and report events at clientc. Suppose that P is a partial order on the set of all
operations that occur in the sequences �c.

If P is supportive for the sequences �c, then there is
a fair trace 
 of AM such that 
jc=�c for every c and
totally-precedes
 contains P .

Proof Sketch: We first show that we can extend P to a
total orderQ such thatQ is also supportive for the sequences�c. We define Q as follows: suppose � and �0 are operations
that occur in �c and �c0 respectively. Let (�; �0)2 Q
provided that either � has fewer predecessors in P than�0, or else the two operations have the same number of
predecessors and c precedes c0 in some fixed total ordering
of the clients.

Now arranging the operations in the order given by Q
defines a sequence of operations. Replacing each operation
in this sequence by its request event followed by its report
event yields the required sequence 
.

The following lemma is what we actually use later in
our proof.

Lemma 3.2 Suppose thatA is an automaton with the right
interface for a shared object system. Suppose that, for
every client-well-formed fair trace � of A, the following
are true:

1. � is complete.

2. There is a supportive partial order for the sequences�jc.
Then A is a sequentially consistent shared object system.

4 Multicast Communication
In this section, we define properties for multicast chan-

nels, and in particular, define a context multicast channel.
As in the previous section, we start by identifying the

actions by which the multicast channel interacts with its
environment; now the environment will be a set of sites
in a distributed network. The multicast channel receives
requests from a site to send a message to a specified col-
lection of sites, and responds by delivering the message
to the requested recipients. Thus, the channel provides
multicast messages. There are two special cases: when
the destination set consists of the entire collection of sites
(including the sender), the communication is called broad-
cast, and when the destination set contains a single site, the
communication is called point-to-point.

Formally, let M be a set of messages, I be a set of
sites, and I be a fixed set of subsets of I, representing
the possible destination sets for messages. If I=fIg we
say that the channel is broadcast, since the only possible
destination set includes all the sites. When I=ffig : i 2 Ig
we say the communication system is point-to-point, since
each destination set consists of a single site. The interface
is as follows:

Input:
mcast(m; J)i, m 2M , J 2 I, i 2 I

Output:
receive(m;j)i, m 2M , i; j 2 I

The action mcast(m;J)i represents the submission of
message m by site i to the channel, with J as the set of in-
tended destinations. The action receive(m; j)i represents
the delivery of message m to site i, where j is the site
where the message originates. In each case, the subscript i
denotes the site at which the action occurs.

Now we describe various correctness properties for fair
traces of multicast channels. First, we require reliable
delivery of all messages, each exactly once, and to exactly
the specified destinations. Formally, in any fair trace �
of any multicast channel, there should be a cause function
mapping each receive event in � to a preceding mcast event
(i.e., the mcast event that “causes” this receive event). The
two corresponding events should have the same message
contents, the site of the mcast should be the originator
argument of the receive, and the site of the receive should
be a member of the destination set given in the mcast.
Furthermore, the cause function should be one-to-one on
receive events at the same site (which means there is no
duplicate delivery at the same site). Finally, the destination
set for any mcast event should equal the set of sites where
corresponding receive events occur (which means that every
message is in fact delivered everywhere it should be).

In addition to these basic properties, there are additional
properties of multicast systems that are of interest. These
involve a “virtual ordering” of multicasts. We define these
properties as conditions on a particular sequence � that
we assume satisfies all the basic reliability requirements
described just above, and a particular total order T of mcast
events in �. The first condition is a technical condition: the
virtual orderingT is really a sequence, i.e., it does not order
infinitely many multicasts before any particular multicast.

Well-Foundedness T is well-founded.

The next condition says that the order in which each site
receives its messages is consistent with the virtual orderingT . This implies that the order in which any two sites receive
their messages is consistent.

Receive Consistency � and T are receive consistent pro-
vided that the following holds. If � and �0 are mcast
events in �, and a receive corresponding to � precedes
a receive corresponding to �0 at some site i, in �, then(�; �0)2 T .

The next condition describes FIFO delivery of messages
originating at the same site.

FIFO � and T are FIFO provided that the followingholds.
If � and �0 are mcast events at site i in �, with �
preceding �0, then (�; �0)2 T .

The final condition describes a restricted “causality” rela-
tionship, between a multicast that arrives at site and another
that subsequently originates at the same site.

Context safety � and T are context safe provided that the
followingholds. If� is any mcast event, �0 is an mcast
event at site i, and a receive event corresponding to �
precedes �0 at site i in �, then (�; �0)2 T .

Now we define a context multicast channel to be any
automaton with the proper interface in which every fair
trace � satisfies the basic reliability requirements, and also

5



Context multicast

Replica
manager

Replica
manager

Replica
manager

...

Client Client... Client Client...

Figure 3: The architecture of the higher layer.

has a total order T such that � and T are well-founded,
receive consistent and context safe. (We do not require the
FIFO condition.)

In a totally ordered causal multicast channel, every fair
trace has a total order guaranteeing the FIFO condition
in addition to well-foundedness, receive consistency, and
context safety. Thus, any totally ordered causal multicast
channel is a special case of a context multicast channel.
However, there are communication systems (such as the one
described in Section 6) that are context multicast channels
but are not FIFO.

5 The Higher Layer
Now we present the replica management algorithm,

which uses a context multicast channel to implement a
sequentially consistent shared memory (see Figure 3).

5.1 The Algorithm
The algorithm is modeled as a collection of automataPi, one for each site i in a distributed network. As in the

previous section, we let I denote the set of sites. The entire
shared object system is, formally, the composition of the
site automata Pi; i 2 I, and a context multicast channel.
Each client c is assumed to run at a particular site site(c).
We let clients(i) denote the set of clients that run at site i.5

The algorithm replicates each object x at an arbitrary
(but fixed) subset sites(x) of the sites, one of which is
distinguished as the primary site, primary(x). We assume
that the set of sites at which each object x is replicated is a
possible destination set for the multicast channel, i.e., that
for every x, sites(x)2 I.

A site automaton Pi performs a read operation on an
object x locally if it has a copy of x. Otherwise, it sends a
request to any site that has a copy of x and that site returns
a response. Pi performs an update operation on x locally if
it has the only copy of x. Otherwise, Pi sends a multicast
message to all sites that have copies of x, and waits to
receive either its own multicast (in case Pi has a copy ofx), or else an acknowledgement from the primary site (in
case Pi does not have a copy).

Formally, the messages M used in the algorithm are of
the following kinds:(read-do; c; �; x),

5In theoretical work on distributed shared memory, it is common to
assume that only one client runs per site. This does not accurately model
systems like Orca.

(update-do; c; �; x; f),(read-reply; c; �; x; v),(update-reply; c; �; x),

where c 2 C, � 2 Ξ, x 2 X, v 2 V , and f : V ! V . The
“do” messages are the requests to perform the operations,
and the “reply” messages are the reports.

The interface of Pi is as follows. (Here, c 2 clients(i),�, x and v are elements of Ξ, X, and V , respectively, and f
is a function from V to V . Also, m is an arbitrary message
in M , j 2 I, and J 2 I.)

Input:
request-read(�; x)c, � 2 Ξc
request-update(�; x; f)c, � 2 Ξc
receive(m; j)i

Output:
report-read(�; x; v)c, � 2 Ξc
report-update(�; x)c, � 2 Ξc
mcast(m; J)i

Internal:
perform-read(c; �; x)i, � 2 Ξc
global-read(c; �; x)i, � 2 Ξc
perform-update(c; �; x; f)i, � 2 Ξc
global-update(c; �; x; f)i, � 2 Ξc
The input and output actions ofPiare all the actions of all

clients c at site i, plus actions to send and receive multicasts.
The internal action perform-read(c; �; x)i represents the
reading of a local copy of x, whereas global-read(c; �; x)i
represents the sending of a message to another site request-
ing the value of x. Similarly, perform-update(c; �; x; f)i
represents the local performance of an update (when site i
has the only copy of x), whereas global-update(c; �; x; f)i
represents the sending of a message in order to update x.Pi has the following state components:

for every c 2 clients(i):
status(c), a tuple, initially quiet

for every x having a copy at i:
val(x)2 V , initially v0

buffer, a FIFO queue of (message, destination set) pairs,
initially empty

The status components keeps track of operations
being processed at the site. For example, if
status(c) =(update-wait; �; x), it means that Pi has sent
a message asking for x to be updated on behalf of opera-
tion�, and is waiting for to receive either its own message or
an acknowledgement before reportingback to client c. (Be-
cause of client-well-formedness, status information needs
to be kept for at most one operation of c at a time.) The
val(x) component records the current value of the copy ofx at site i. The buffer contains messages scheduled to be
sent via the multicast channel.

The steps of Pi are given in Figures 4 and 5. We repre-
sent the steps for each particular type of action in a single
fragment of precondition-effect code (i.e., a guarded com-
mand). The automaton is allowed to perform any of these
steps at any time its precondition is satisfied; thus, this
style allows maximum nondeterminism in the description
of the algorithm. We have organized the code so that the
fragments involved in processing reads (plus the code for

6



request-read(�; x)c
Effect:

status(c) := (read-perform; �; x)
perform-read(c; �; x)i
Precondition:

status(c)=(read-perform; �; x)i 2 sites(x)
Effect:

status(c) := (read-report; �; x; val(x))
global-read(c; �; x)i
Precondition:

status(c)=(read-perform; �; x)i =2 sites(x)
Effect:

add ((read-do; c; �; x) ;fjg) to buffer
where j is any element of sites(x)

status(c) := (read-wait; �; x)
receive((read-do; c; �; x) ; j)i
Effect:

add ((read-reply; c; �; x; val(x)) ;fjg) to buffer

receive((read-reply; c; �; x; v) ; j)i
Effect:

status(c) : =(read-report; �; x; v)
report-read(�; x; v)c
Precondition:

status(c)=(read-report; �; x; v)
Effect:

status(c) : =quiet

mcast(m;J)i
Precondition:(m; J) is first on buffer
Effect:

remove first element of buffer

Figure 4: Automaton Pi to perform read operations.

mcast) appear in Figure 4, while the fragments for process-
ing updates appear in Figure 5. Also, the fragments appear
in approximate order of their execution. However, the or-
der in which the fragments are presented has no formal
significance.

The code follows the informal description we gave
above. For example, a perform-read can occur provided
that the operation has the right status and i has a copy of
the object x; its effect is to change the status to record the
value read (and the fact that the read has occurred). As
another example, a global-update can occur provided that
the operation has the right status and i is not the only site
with a copy of the object x; its effect is to change the status
to record that Pi is now waiting and also to put a message
in the buffer. The most interesting code fragment is that for
receive(update-do). When this occurs, Pi always updates
its local copy of the object x. In addition, if the message

request-update(�; x; f)c
Effect:

status(c) : =(update-perform; �; x; f)
perform-update(c; �; x; f)i
Precondition:

status(c)=(update-perform; �; x; f)
sites(x)=fig

Effect:
val(x) : =f(val(x))
status(c) : =(update-report; �; x)

global-update(c; �; x; f)i
Precondition:

status(c)=(update-perform; �; x; f)
sites(x) 6 =fig

Effect:
add ((update-do; c; �; x; f) ; sites(x)) to buffer
status(c) : =(update-wait; �; x)

receive((update-do; c; �; x; f) ; j)i
Effect:

val(x) : =f(val(x))
if j=i then status(c) : =(update-report; �; x)
if j =2 sites(x) and i=primary(x)

then add ((update-reply; c; �; x) ;fjg) to buffer

receive((update-reply; c; �; x) ; j)i
Effect:

status(c) : =(update-report; �; x)
report-update(�; x)c
Precondition:

status(c)=(update-report; �; x)
Effect:

status(c) : =quiet

Figure 5: Automaton Pi to perform update operations.

received is Pi’s own message, then Pi uses this as an indi-
cation to stop waiting and report back to the client. Also,
if the message received is from a site that does not have a
copy of x, and Pi is the primary site for x, then Pi sends a
reply back to the sender.

The tasks of automaton Pi correspond to the individual
output and internal actions. This means that each non-input
action keeps getting chances to perform its work.
5.2 Correctness

Let A denote the composition of the site automata Pi
and an automaton B that is a context multicast channel,
with the mcast and receive actions hidden.

Theorem 5.1 A is a sequentially consistent shared object
system.

Proof Sketch: We use Lemma 3.2. Let � be an arbitrary
client-well-formed fair trace of A, and let � be any fair
execution of A that gives rise to �. We must show that �
is complete, and that there is a supportive partial order for

7



Object Management

Client ClientClient ...

Daemon Daemon

Broadcast channel

Point−to−point channel

Lower
Layer

...

Figure 6: The architecture of the lower layer.

the sequences �jc. Completeness is argued by tracing the
steps involved in the various operations in �, using a case
analysis.

We construct a partial order P as the transitive closure
of the union of several orders.

1. The mcast order relates any two operations whose
processing in � includes the multicast of a read-do
or update-do message; it orders them in the order T
provided by the context multicast channel.

2. For each site i, the accessi order relates any two op-
erations that both perform accesses to copies of ob-
jects at site i, (that is, perform, receive(read-do) or
receive(update-do) events at site i) in �; it orders
them in the order of their accesses in �.

3. For each client c, the totally-precedes(�jc) order,
which totally orders the operations of client c.

To show that P is in fact a partial order, we show that all its
constituent orders give the same order for operations whose
processing uses multicasts. This involves a case analysis,
based on the receive consistency and context safety proper-
ties. Then the combined order P just inserts operations that
are performed locally in appropriate places in the sequence
of operations that use multicasts.

To show that P is supportive, the key is that for any two
conflicting operations (that is, a read and an update, or two
updates) on a single object, there must be some copy that
is accessed by both.

6 Lower Layer
Now we present the algorithm that constructs a context

multicast channel based on a combination of totallyordered
broadcast and point-to-pointcommunication (see Figure 6).

We fix an arbitrary message alphabet M , set I of sites,
and set I of destination sets; we will implement a context
multicast channel for M , I and I.

6.1 The Algorithm
The implementation is constructed as the composition

of the following automata: BC, a reliable, totally-ordered
broadcast channel,6 PP, a reliable, point-to-point channel,
and a collectionDi, one for each i 2 I, of daemon automata
that multiplex between the two lower-level services.

Both BC and PP are multicast channels, as defined in
Section 4, and both have I as their set of sites. The broadcast
channel BC has only one possible destination set, namely,I itself, while the point-to-point channel PP has exactly the
singleton sets fig; i 2 I, as destination sets. Both satisfy
the basic reliability requirements for multicast channels. In
addition, we assume that BC is itself a context multicast
channel – each of its fair traces has an ordering that is
well-founded, receive consistent and context safe.7 We
do not assume anything additional about PP. In order to
distinguish the mcast and receive events for BC, PP, and
the channel being implemented, we superscript each action
of BC and PP by the channel name.

Each automatonDi processes the messages that are sub-
mitted by the environment via mcasti events. To process a
message that is destined for more than one site, Di broad-
casts the message and its intended destination set, using
the broadcast channel BC. When this message reaches a
site j, automaton Dj delivers it to the environment if j is
among the intended destinations; otherwise,Dj discards it.
To process a message intended for one site only, Di pig-
gybacks on it the sequence number of the broadcast most
recently received at site i, and then sends the embellished
message directly to its destination using the point-to-point
channel PP. After this message reaches its destination, it is
delivered to the environment, but only after multicasts with
the same and lower sequence numbers have been delivered.

The interface ofDi is as follows. (Here, m 2M , j 2 I,J 2 I, and k is a nonnegative integer.)

Input:
mcast(m; J)i
receiveBC((m; J) ; j)i
receivePP ((m; k) ; j)i

Output:
receive(m; j)i
mcastBC((m; J) ; I)i
mcastPP ((m; k) ;fjg)iDi has the following state components:

buffer: a queue of (message, destination set) pairs, initially
empty

msgs: a queue of (message, site) pairs, initially empty

ppwait: a multiset of (message, site, nonnegative integer)
triples, initially empty

seqno: a nonnegative integer, initially 0.

6We model this broadcast channel as a single automaton. This could
itself be implemented as a collection of automata, one per site, communi-
cating through a still lower-level service.

7In fact, since each message is received by every site including the
sender itself, and each receive event occurs after the corresponding mcast
event, any total order in a broadcast system that is receive consistent must
also be well-founded and context safe.

8



The buffer component is used like buffer in Pi, in the
higher layer algorithm; it contains messages scheduled to be
sent via the underlying communication services. The msgs
component keeps track of messages that are scheduled for
delivery to the environment, each with an indication of its
site of origin. The ppwait component keeps track of point-
to-point messages that are destined for site i, but that are
waiting for the receipt of the broadcast with the appropriate
sequence number. Finally, component seqno records the
number of broadcasts received so far. The code for Di
follows.

mcast(m; J)i
Effect:

add (m; J) to buffer

mcastBC((m;J) ; I)i
Precondition:(m; J) is first on bufferjJ j > 1
Effect:

remove first element of buffer

mcastPP ((m; k) ; fjg)i
Precondition:(m; fjg) is first on bufferk=seqno
Effect:

remove head of buffer

receiveBC((m;J) ; j)i
Effect:

seqno : =seqno + 1
if i 2 J then add (m; j) to msgs
add to msgs (in any order) all (m0; j0)

such that (m0; j0; seqno)2 ppwait
remove from ppwait all (m0; j0; seqno)

receivePP ((m;k) ; j)i
Effect:

if k � seqno then add (m; j) to msgs
else add (m; j; k) to ppwait

receive(m;j)i
Precondition:(m; j) is first on msgs
Effect:

remove first element of msgs

6.2 Correctness
Let C denote the composition of the site automata Di

together with BC and PP, with the actions of BC and PP
hidden.

Theorem 6.1 C is a context multicast channel.

Proof Sketch: Let � be an arbitrary fair trace of C, and
let � be any fair execution of C that gives rise to �. We
define a total order T on the mcast events in �.

First, if � is any mcast event, then we define its epoch,
epoch(�). If� is a multi-destinationmcast, then epoch(�)
is the value assigned to the state component seqno when�’s receiveBC occurs at any site. (Receive-consistency of

BC and the fact that all sites receive each broadcast, imply
that this value is uniquely defined.) Also, if � is any single-
destination mcast event, say with destination set fig, then
epoch(�) is the maximum of the following two numbers:
(a) the sequence number piggybacked on�’s point-to-point
message (this is the value of seqno at the sender when the
corresponding mcastPP occurs) and (b) the value of seqno
at site i when the corresponding receivePP occurs at Di.

We now define T as the relation on mcast events in� which is the transitive closure of the union of several
individual relations.

1. The multi-multi order relates any two multi-
destinationmcast events in�; it orders them according
to their epoch’s.

2. The multi-single relation orders a multi-destination
mcast event � in � before a single-destination mcast
event � in � if epoch(�)� epoch(�).

3. The single-multi relation orders a single-destination
mcast event � in � before a multi-destination mcast
event � in � if epoch(�)< epoch(�).

4. The single-single order relates any two single-
destination mcastevents in� that have the same epoch;
it orders them in the order of their receive events as
they occur in �.

Then it is straightforward to show that T is a well-founded
total order, and that it guarantees the needed properties of
receive consistency and context safety.

We note that it is possible to improve the efficiency of the
algorithm for all or one-site replication. For example, we
tag each point-to-point message with the sequence number
of the last broadcast received (in a receiveBC event) before
the point-to-point message is sent (in a mcastPP event).
Alternatively, we could tag it with the sequence number of
the last broadcast message that is passed to the environment
at site i before the point-to-point message is submitted by
the environment at site i. This can be smaller than the
tag used above, so that the destination site might delay the
message for a shorter time. In this respect, our version of
the algorithm follows the Orca implementation.

7 Discussion
We have presented a new algorithm for implementing a

sequentially consistent shared object system in a distributed
network. The algorithm is based on the one used in the Orca
system, but generalizes it to allow objects to be partially
replicated. Replicated objects are kept consistent using a
context multicast system, which is a new communication
service that can be implemented using a combination of to-
tally ordered broadcast and point-to-point communication.
We have presented this algorithm in two layers, and have
carried out a complete correctness proof using this decom-
position. In the course of our work, we found a logical
error in the implementation of the Orca system that had
not yet manifested itself in execution; as a result, the Orca
implementation has been modified to correct this error.

This work opens up many avenues for future research.
First, some simple extensions to our results can be made.
For example, we could allow concurrent invocations of

9



operations by the same client instead of requiring clients
to block. In order to handle this case, we need to adjust
our definition of sequential consistency to eliminate the
client-well-formedness condition, to modify the algorithm
to maintain sets of active operations, and to make minor
changes in our proofs.

Another extension to our work is to incorporate objects
with more general kinds of operations than just read and
update.

A more serious extension is to allow for dynamic
changes to the locations of object copies. As we noted
in Section 1, Orca allows object locations to change dy-
namically, in response to changes in access patterns. There
are several different schemes possible for managing such
changes; most of these maintain the safety properties ex-
pressed by our results, but cause violations to the liveness
conditions (e.g., an operation might not be able to find the
needed copies because they are continuously moving). It
remains to describe and verify existing schemes using our
framework, and to develop and verify new schemes that
preserve the liveness condition.

Still another extension is to use weaker communica-
tion primitives. In some process group systems such as
the present implementation of Isis, consistent ordering is
not guaranteed between all messages, but only between
messages with a common destination. We would like to
consider how to build a shared object system using this
primitive together with point-to-point messages. For all
these extensions we expect that much of the machinery
developed in this paper can be reused.

8 Conclusions
Implementations for distributed systems such as Orca

are complicated, because of the many possible interleav-
ings of events of concurrent threads. It is generally difficult
to be sure that such implementations are correct. Formal
modeling and verification in the style we have presented
here can provide great help in understanding and verifying
such systems. Our modeling and verification of Orca has
already contributed to the Orca project by identifying and
correcting an error and by giving the designers extra con-
fidence in the corrected implementation. In addition, the
structures we have provided should provide useful docu-
mentation and assistance in future system modification.

More broadly, our work can be seen as a first step in
the development of a practical theory for distributed shared
memory systems. Such a theory should consist of a body
of abstract component specifications, abstract algorithms,
theorems about how the various abstract notions are related,
and application-specific proof methods. Our contributions
to this theory include our specifications for a sequentially
consistent shared memory system and for various kinds
of multicast channels, our higher layer and lower layer
algorithms and their correctness theorems, and our lemmas
that show how to prove sequential consistency. However,
our work is only a first step — we believe that much more
work of the same kind, based on formal modeling of real
systems and applications, is needed to complete the job.

Acknowledgements
We like to thank Henri Bal, Wilson Hsieh, Victor

Luchangco, and Tim Ruhl for their comments on drafts
of this paper.

References
[1] S.V. Adve and M.D. Hill. Weak ordering - a new

definition and some implications. Technical Report
TR-902, University of Wisonsin, Madison, WI, Dec.
1989.

[2] Y. Afek, G. Brown, and M. Merritt. Lazy caching.
ACM. Trans. on Programming Languages and Sys-
tems, 15(1):182–205, Jan. 1989.

[3] M. Ahamad, P.W. Hutto, and R. John. Implementing
and programming causal distributed shared memory.
In Proc. Eleventh International Conference on Dis-
tributed Computing Systems, pages 274–281, Arling-
ton, TX, May 1991.

[4] H. Attiya and R. Friedman. A correctness condition
for high-performance multiprocessors. In Proc. 24th
ACM Symp. on Theory of Computing, pages 679–691,
1992.

[5] H. Attiya and J. Welch. Sequential consistency ver-
sus linearizability. ACM Transactions on Computer
Systems, 12(2):91–122, 1994.

[6] H.E. Bal and M.F. Kaashoek. Object distribution in
Orca using compile-time and run-time techniques. In
Proc. Eight Annual Conf. on Object-Oriented Pro-
gramming Systems, Languages, and Applications,
pages 162–177, Washington, DC, Sept. 1993.

[7] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca:
A language for parallel programming of distributed
systems. IEEE Trans. on Soft. Eng., 18(3):190–205,
March 1992.

[8] J.K. Bennett, J.B. Carter, and W. Zwaenepoel. Munin:
Distributed shared memory based on type-specific
memory coherence. In Proc. Second Symposium on
Principles and Practice of Parallel Programming,
pages 168–176, Seattle, WA, March 1990.

[9] B.N. Bershad and M.J. Zekauskas. Midway: Shared
memory parallel programming with entry consistency
for distributed memory multiprocessors. Technical
Report CMU-CS-91-170, CMU, Pittsburgh, PA, Sept.
1991.

[10] K.P. Birman and T.A. Joseph. Reliable communica-
tion in the presence of failures. ACM Trans. Comp.
Syst., 5(1):47–76, Feb. 1987.

[11] L.M. Censier and P. Feautrier. A new solution to cache
coherence problems in multicache systems. IEEE
Trans. on Computers, pages 1112–1118, Dec. 1978.

[12] W.W. Collier. Reasoning about Parallel Architectures.
Prentice Hall Publishers, Englewood Cliffs, NJ, 1992.

[13] M. Dubois, C. Scheurich, and F.A. Briggs. Synchro-
nization, coherence, and event ordering in multipro-
cessors. IEEE Computer, 21(2):9–21, Feb. 1988.

10



[14] A. Fekete, M.F. Kaashoek, and N. Lynch. Imple-
menting sequentially consistent shared objects using
broadcast and point-to-point communication. Tech-
nical Report TM 518, MIT Laboratory for Computer
Science, May 1995.

[15] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and
event ordering in scalable shared-memory multipro-
cessors. In Proc. Seventeenth Annual International
Symposium on Computer Architecture, pages 15–26,
Seattle, WA, May 1990.

[16] P. Gibbons and M. Merritt. Specifying non-blocking
shared memories. In Proc. Fourth ACM Symp. on
Parallel Algorithms and Architectures, pages 306–
315, 1992.

[17] P. Gibbons, M. Merritt, and K. Gharachorloo. Proving
sequential consistency of high-performance shared
memories. In Proc. Third ACM Symp. on Parallel
Algorithms and Architectures, pages 292–303, 1991.

[18] M.P. Herlihy and J.M. Wing. Linearizability: A cor-
rectness condition for concurrent objects. ACM Trans.
on Programming Languages and Systems, 12(3):463–
492, July 1990.

[19] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM, 21(7):558–
565, July 1978.

[20] L. Lamport. How to make a multiprocessor computer
that correctly executes multiprocess programs. IEEE
Trans. on Computers, 28(9):690–691, Sept. 1979.

[21] R.J. Lipton and J.S. Sandberg. Pram: a scalable shared
memory. Technical Report CS-TR-180-88, Princeton
University, Princeton, NJ, Sept. 1988.

[22] N. Lynch. Distributedalgorithms. Morgan Kaufmann
publishers, Scheduled for 1995.

[23] N. Lynch and M. Tuttle. An introduction to in-
put/output automata. CWI Quarterly, 2(3):219–246,
September 1989.

[24] C. Scheurich and M. Dubois. Correct memory op-
eration of cache-based multiprocessors. In Proc.
Fourteenth Annual International Symposium on Com-
puter Architecture, pages 234–243, Pittsburg, PA,
June 1987.

[25] A.S. Tanenbaum, M.F. Kaashoek, and H.E. Bal. Par-
allel programming using shared objects and broad-
casting. IEEE Computer, 25(8):10–19, Aug. 1992.

[26] A.S. Tanenbaum, M.F. Kaashoek, R. van Renesse,
and H.E. Bal. The Amoeba distributed operating sys-
tem - a status report. Computer Communications,
14(6):324–335, Aug. 1991.

11


