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Abstract

A distributed algorithm that implements a sequentially
consistent collection of shared read/update objects using a
combination of broadcast and point-to-point communica-
tion is presented and proved correct. This agorithmis a
generaization of one used in the Orca shared object sys-
tem. The agorithm caches abjects in the loca memory
of processors according to application needs;, each read
operation accesses a single copy of the abject, while each
update accesses al copies. Copiesof al theobjectsare kept
consistent using a strategy based on sequence numbers for
broadcasts.

The algorithm is presented in two layers. The lower
layer uses the given broadcast and point-to-point commu-
nication services, plus sequence numbers, to provide anew
communication service called a context multicast channel.
The higher layer uses a context multicast channel to man-
age the object replication in a consistent fashion. Both
layers and their combination are described and verified for-
mally, using the 1/0O automaton model for asynchronous
concurrent systems.

1 Introduction

In this paper, we present and verify a distributed algo-
rithm that implements a sequentialy consistent collection
of shared read/update objects using a combination of (reli-
able, totally ordered) broadcast and (reliable, FIFO) point-
to-point communication. Thisalgorithmisageneralization
of one used in the implementation of the Orca distributed
programming language [7] over the Amoeba distributed
operating system [26].

Orca is a language for writing parale and distributed
application programs to run on clusters of workstations,
processor pools and massively parallel computers [7, 25].
It provides a smple shared object model in which each
object hasastate and a set of operations, classified as either
read operations or update operations. Read operations do
not modify the object state, while update operations may
do so. Each operation involves only a single object and
appears to beindivisible.

More precisely, Orca provides a sequentially consi stent
memory model [20]. Informally speaking, a sequentially
consistent memory appearstoitsusersasif it were central -
ized (even though it may be implemented in a distributed
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fashion). There are several formalizations of the notion of
sequentially consistent memory, differing in subtle ways;
we use the state machine definition of Afek, Brown and
Merritt [2].

Orcarunsover the Amoebaoperating system[26], which
providestwo communi cation services: broadcast and point-
to-point communication. Both services provide reliable
communication, even in the presence of communication
fallures. No guarantees are made by Orca if processors
fall; therefore, we do not consider processor failures e-
ther. In addition, the broadcast service promises delivery
of the broadcast messages in the same total order at ev-
ery destination,! while the point-to-point service preserves
the order of messages between any sender and receiver.
The cost of an Amoeba broadcast, in terms of time and
amount of communication, is higher than that of a single
point-to-point message. Therefore, it is natura to design
algorithms so that point-to-point communication is used
whenever possible, i.e., when a message is intended for
only asingle destination, and broadcast is only used when
necessary, i.e., when amessage must go to several destina-
tions.

In the implementation of Orca, user programs are dis-
tributed among the various processors in the system. The
user program consists of threads, each of which runson a
singleprocessor. Inthispaper, we call thesethreads clients
of the Orca system. Each processor may support severa
clients. Shared objects are cached in the local memory of
some of the processors. Each read operation by a client
accesses a single copy of the object, while each update
operation accesses all copies. The underlying broadcast
primitive provided by the Amoeba system is used to send
messages that must be sent to severa destinations — that
is, invocations of update operations for objects that have
multiple copies. The underlying point-to-point primitiveis
used to send messages that have only a single destination,
that i's, invocationsof readsfrom asitewithout alocal copy
of the aobject, invocations of writes for an object that has
only single (remote) copy, and responsesto all invocations.

1A broadcast service with such a consistent ordering guarantee is
sometimes called a group communication service. Although group com-
municationiswidely discussedin thesystemsliterature, thereisnogeneral
agreement on its definition. In this paper, we sidestep the issue by using
the term broadcast to indicate a communication to all sitesin the system,
and multicast to indicate a communication to a subset of the sites. This
terminology does not say whether the service is provided by hardware or
software.



An early version of theimplementation used thestrategy
of caching all shared objectsat all processors. Thisstrategy
yields good performance for an object that has a high read-
to-updateratio, since aread operation needs only to access
the local copy of the object. The drawback isthat updates
must be performed at all copies, using an (expensive) broad-
cast communication. Experience has shown that there are
some obj ectsfor which thisisnot thebest arrangement. For
example, many applicationsuse ajob queue abject to allow
clientsto share work; the job queueis updated whenever a
client appends information to It about a task that needs to
be done, and aso whenever a client removes a task from
the queuein order tobeginwork onit. Since al accessesto
ajob queue are updates, total replication is not an efficient
strategy in this case.

Because of objects like these, Orca has been re-
implemented to allow more flexibility in the placement of
copies. The new implementation allows some objects to
be totally replicated and others to have only a single copy.
Operations on an object with only asinglecopy can now be
done using only point-to-point messages, though broadcast
must still be used for updateson replicated objects. Thede-
cision about whether or not to replicate an object ismade at
runtimeusing information generated by the Orca compiler.
The details of this decision process, and also performance
measurements to show the benefits of not replicating all
objects, can befoundin [6].

The naive strategy of allowing each read operation to
access any copy of the object and each update operation to
access all copiesisnot by itsalf sufficient toimplement ase-
guentially consistent shared memory. To see why, consider
the execution depicted in Figure 1. The exampleinvolves3
processors, P1, P, and P3, and two objects, « and y. Object
z isreplicated on all processors, while object y is stored
only on P,. The figure shows the invocation and response
messages for an update of y by P;, and the broadcast invo-
cation messages for an update of « by P3. Inthisexecution,
P>’sread operationsindicate that y is updated before x is,
while P; reads the new value of « before invoking the up-
date of y. Inacentralized shared memory, such conflicting
observations are impossible; thus this execution violates
sequential consistency.

Thenew version of theOrcaal gorithm solvesthisconsis-
tency problem using a strategy based on sequence numbers
for broadcasts. These broadcast sequence numbersare pig-
gybacked on certain point-to-point messages and are used
to determine certain ordering rel ationshipsamong the mes-
sages.

Our original goa wasto verify thecorrectness of thenew
Orca agorithm. In the early stages of our work, however,
we discovered a logica error in the implemented algo-
rithm. Namely, broadcast sequence numbers were omitted
from some point-to-point messages (the replies returned to
the operation invokers) that needed to include them. We
produced a corrected version of the agorithm, which has
since been incorporated into the Orca system.

The algorithm we study in this paper is our corrected
algorithm, generalized beyond what is used in the Orca
implementation to allow replication of a shared object at
an arbitrary collection of processors, rather than just one
processor or al processors. There is one way in which
our algorithm is less generd than the Orca implementa-
tion, however: we assume for simplicity that the locations

Update x
Readx |
| Time
Updatey
Ready |
Read x |
P1 P2 P3

Figure 1: A problem with the naive replication strategy.

of copies for each object are fixed throughout a program
execution, whereas Orca allows these locations to change
dynamically, in response to changes in access patternsover
time. We discuss the extension of our results to the case of
dynamic reconfiguration in Section 7.

We present and verify the algorithm as the composi-
tion of two completely separate layers, each a distributed
algorithm. The structure of this part of the system is de-
pictedinFigure2. Thelower layer usesthe given broadcast
and poi nt-to-point communication services, plus broadcast
sequence numbers, to implement a new communication
service called a context multicast channel. A context mul-
ticast channel supports multicast of messages to designated
subsets of the sites, according to a virtual total ordering
of messages that is consistent with the order of message
receipt a each site, and consistent with certain restricted
“causality” relationships. The guarantees provided by a
context multicast channel are weaker than those that are
provided by totally ordered causal multicast channels, as
provided by systems such as Isis[10]. However, the prop-
erties of a context multicast channel are sufficiently strong
to support the replica management of the Orca a gorithm.

The lower layer uses the given point-to-point primitive
for each multicast message with a single destination, and
the given totally ordered broadcast primitive for each mul-
ticast message with more than one destination. (Sites that
are not intended recipients smply discard the message.)
Sites associate sequence numbers with broadcasts and pig-
gyback the sequence number of the last received broadcast
on each point-to-point message. When a point-to-point
message reaches its destination, the recipient delaysitsde-
livery until the indicated number of broadcasts have been
received. (Theideaissimilar totheonein Lamport’sclock
synchronization agorithm [19], but we only apply it to
a restricted set of events) We prove that this agorithm
correctly implements a context multicast channel.

The higher layer uses an arbitrary context multicast
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Figure 2: The architecture of the system.

channel to manage the object replication in a consistent
fashion. Each object isreplicated at an arbitrary subset of
the sites. A site performs aread operation locally if possi-
ble. Otherwise, it sendsarequest to any sitethat has a copy
and that site returns a response. A site performs an update
operation localy if it hasthe only copy of the object. Oth-
erwise, it sends a multicast message to al sites that have
copies, and waitsto receive either itsown multicast, or else
an appropriate response from some other site. We prove
that this algorithm, combined with any context multicast
system, provides a sequentially consistent memory. Our
proof uses a new method based on partia orders.

All our specifications and proofs are presented in terms
of the 1/0O automaton model for asynchronous concurrent
systems[23]. General results about the composition of 1/0
automata allow us to infer the correctness of the complete
system from our correctness results for the two separate
layers.

Many different correctness conditions have been pro-
posed for shared memory, including strong conditionslike
memory coherence and weaker ones like release consis-
tency. Seguential consistency is widely used because it
appears to be closest to what programmers expect from a
shared memory system; non-sequentially consistent shared
memory systems typically trade programmability for per-
formance. Sequential consistency was first defined by
Lamport [20]; in this paper, we use an dternative for-
mulation proposed by Afek et a. [2], based on /O au-
tomata. Other papers exploring correctness conditions for
shared memory and algorithms that implement them in-
clude [1,3,5,8,9, 11, 12, 13, 15, 16, 17, 21, 24]. In most
of thiswork, memory is modeled as a collection of items
that are accessed through read and write operations. The
study of correctness for shared memory with more general
data types was initiated by Herlihy and Wing [18]. Se-
guentia consistency and other consistency conditions for
genera datatypeshasbeen studied by Attiyaand Welch [5]
and Attiyaand Friedman [4].

The rest of the paper is organized as follows. Section 2
introduces basic terminology that is used in the rest of the
paper. Section 3 contains the definition of a sequentially
consistent shared memory and introduces our new method
for proving sequential consistency. Section 4 contains def-
initions of multicast channels with various properties, and
in particular, the definition of a context multicast channel.
Section 5 containsthe higher layer algorithm, which imple-

ments sequential consistency using context multicast, plus
aproof of itscorrectness. Section 6 containsthelower layer
algorithm, which implements context multicast in terms of
broadcast and point-to-point messages. Section 7 contains
adiscussion of dynamic reconfiguration, and ideas for fu-
turework. Finaly, in Section 8 we draw our conclusions.

Because of space limitations, most details of the proofs
are omitted here. Full details appear in [14].

2 SomeBasics

2.1 Partial Orders

We use many partia (and total) orders, on events in
executions, and on operations. Throughout the paper, we
assume that partial and total orders are irreflexive, that is,
they do not relate any element to itself. Also, we define
apartial or total order P to be well-founded provided that
each element has only finitely many predecessors in P.
This assumption is needed to rule out various technical
anomalies.

2.2 1/0 Automata

The I/O automaton model isa simple labeled transition
system model for asynchronous concurrent systems. An
I/O automaton has a set of states, including some start
states. It also has a set of actions, classified as input,
output or internal actions, and a set of steps, each of which
isa(state, action, state) triple. Finally, it has a set of tasks,
each of which consists of a set of internal and/or output
actions. Inputs are assumed to be always enabled.

An 1/O automaton executes by performing a sequence
of steps. An execution issaid to befair if each task getsin-
finitely many chancesto perform astep. Externa behavior
of an I/O automaton is defined by the set of fair traces, i.e.,
the sequences of input and output actions that can occur in
fair executions.

I/O automata can be composed, by identifying actions
with the same name. The fair trace semantics is compo-
sitional. Output actions of an 1/O automaton can also be
hidden, which means that they are reclassified as internal
actions. See[23] for more details.

3 Sequentially Consistent Shared Object

Systems

Inthissection, wedefineaseguentially consi stent shared
object system and give a new method for proving that a
system is sequentially consistent. Informaly, a system is
said to be a sequentially consistent shared object system if
all operations receive responses that are “consistent with”
the behavior of a serially-accessed, centralized memory.
More precisely, the order of events at each client should
be the same as in the centralized system, but the order of
events at different clientsis allowed to be different.

3.1 Thelnterface

We start by identifying the actions by which the shared
object system interacts with its environment (the clients).
The shared object system receives requests from its envi-
ronment and responds with reports. Requests and reports
are of twotypes: read and update. Each request and report
is subscripted with the name of the client involved. Each
request and report contains, as arguments, the name of the
object being accessed and a unique operation identifier. In
addition, each update request contains the function to be



applied to the object and each read report contains areturn
vaue?

Formally, let C' be afixed finite set of clients, X afixed
set of shared objects, V' afixed set of valuesfor the objects,
including adistinguishedinitial value v, and = afixed set
of operationidentifiers, partitioned into subsets =, onefor
each client c. Then theinterfaceisas follows. (Here, ¢, &,
z and v are dlements of C', =, X, and V', respectively, and
fisafunctionfromV to1.)

Input:
request-read(¢, ) ., £ € =,
request-update(¢,z, f )¢, € € =,

Output:
report-read(¢, z,v) ., € € =,
report-update(¢,x) ¢, € € =,

If 5 is a sequence of actions, we write j|c for the subse-
quence of / consisting of request-read,, request-update,,
report-read, and report-update, actions. Thissubsequence
represents the interactions between client ¢ and the object
system.

We assume that invocations are blocking: a client does
not issue a new request until it has received areport for its
previous request. This assumption, and the unigqueness of
operation identifiers, are assumptions about the behavior
of clients. We express these conditions in the following
definition: we say that a sequence /5 of actions is client-
well-formed provided that for each client ¢, no two request
events* in 3|c contain the same operation identifier ¢, and
that /|c¢ does not contain two request events without an
intervening report event.

The object systems we describe will generate responses
to client requests. Here we define the syntactic properties
required of these responses. Namely, we say that a se-
guence of actions is complete provided that thereis a one-
to-one correspondence between request and report events
such that each report foll owsthe corresponding request and
has the same client, operation identifier, object and type.
If a sequence S is client-well-formed and complete, then
Ble must consist of a sequence of pairs of actions, each
of the form request-read (¢, =), report-read(&, , v). or
request-update(¢, «, f). , report-update(¢, =) ..

We say that an operation identifier £ occursin sequence
[ provided that 3 contains a request event with operation
identifier £. If g isany client-well-formed sequence and &
occurs in 3, then there is a unique request event in 5 for
£. We sometimes denote this event simply by request(¢).
Also, if g isclient-well-formed and compl ete, then thereis
auniquereport event with operation identifier £; we denote
it by report(¢). We often refer to an operation identifier as
just an operation.

If g is a complete client-well-formed sequence of
actions, we define the totally-precedes partia order,
totally-precedes;, on the operations that occur in 3 by:

(&,¢") € totally-precedes; provided that report(¢) occurs

2There are two waysin which Orca differs from our specification: in
Orca, (1) an updatemay return avalue and (2) an update might block.

3We ignore the possibility of different data domains for the different
objects.

4An event is an occurrence of an action in a sequence.

before request(¢’) in 5. Notice that for each client ¢,
totally-precedes;, totally orders the operations that occur

ingBle.
3.2 Dsfinition

Our definition of sequential consistency is based on an
atomic object [22], aso known as a linearizable object
[18], whose underlying data type is the entire collection
of data objects to be shared. In an atomic object, the
operations appear to the clients “as if” they happened in
some sequentia order, and furthermore, that order must be
consistent with the totally-precedes order. Specifically, we
let AM, the atomic memory automaton, be the seria object
automaton defined by Afek, Brown and Merritt [2] for the
given collection of objects, except that we generdize it to
allow updates that apply functions rather than just blind
writes. Note that every client-well-formed fair trace of AM
iscomplete.

Sequentia consistency is almost the same as atomicity;
thedifferenceisthat sequential consistency doesnot respect
the order of events at different clients. Thus, if 5 isa
client-well-formed sequence of actions, we say that 3 is
sequentially consi stent provided that thereissomefair trace
v of AM such that v|e=g|c for every client ¢. That is, 8
“lookslike” ~ to each individua client; we do not require
that the order of events at different clientsbethesamein 3
and v.

If A isan automaton that models a shared object sys-
tem, then we say that A issequentially consistent provided
that every client-well-formed fair trace of A issequentially
consistent.

3.3 Proving Sequential Consistency

In order to show that the Orca shared object system is
sequentially consistent, we will use a new proof technique
based on producing a partia order on the operations that
occur inafair trace. Inthissubsection, we collect the prop-
erties we need, in the definition of a “supportive’ partial
order.

Foreach ¢ € C, let 5. beacomplete client-well-formed
sequence of request and report events at client ¢. Suppose
that P isapartia order ontheset of al operationsthat occur
in the sequences .. Then we say that P is supportive for
the sequences 3. providedthat itisconsistent withtheorder
of operations at each client and orders al conflicting read
and update operations, moreover, theresponses provided by
the reads are correct according to P. Formally, it satisfies
the following four conditions:

1. P iswell-founded.
2. For each ¢, P containsthe order totally-precedes .

3. For each variable z € X, P totally orders all the up-
date operationsof «, and P relates each read operation
of « to each update operation of x.

4. Each read operation ¢ of variable « has areturn value
that istheresult of applyingto vg, intheorder given by
P, the update operations of « that are ordered ahead
of £.

Thefollowinglemma describes how a supportive partia
order can be used to prove sequential consistency.



Lemma3.1 For each ¢ € C, let 5. be a complete client-
well-formed sequence of request and report events at client
c. Suppose that P is a partial order on the set of all
operationsthat occur in the sequences g..

If P is supportive for the sequences /5., then there is
a fair trace v of AM such that v|c=3. for every ¢ and
totally-precedes, contains P.

Proof Sketch: We first show that we can extend P to a
total order () suchthat ¢ isalso supportivefor thesequences
B.. Wedefine Qasfollows: suppose¢ and ¢’ are operations
that occur in 5. and . respectively. Let (¢,¢) € Q
provided that either ¢ has fewer predecessors in P than
¢, or ese the two operations have the same number of
predecessors and ¢ precedes ¢’ in some fixed total ordering
of theclients.

Now arranging the operations in the order given by @
defines asequence of operations. Replacing each operation
in this sequence by itsrequest event followed by its report
event yieldstherequired sequencey. H

The following lemma is what we actually use later in
our proof.

Lemma 3.2 SQupposethat A isan automatonwiththeright
interface for a shared object system. Suppose that, for
every client-well-formed fair trace 5 of A, the following
aretrue

1. giscomplete

2. Thereis a supportive partial order for the sequences

Ale.
Then A isa sequentially consistent shared object system.

4 Multicast Communication

In this section, we define properties for multicast chan-
nels, and in particular, define a context multicast channel.

As in the previous section, we start by identifying the
actions by which the multicast channel interacts with its
environment; now the environment will be a set of sites
in a distributed network. The multicast channel receives
requests from a site to send a message to a specified col-
lection of sites, and responds by delivering the message
to the requested recipients. Thus, the channe provides
multicast messages. There are two specia cases. when
the destination set consists of the entire collection of sites
(including the sender), the communication is called broad-
cast, and when the destination set containsasinglesite, the
communication is called point-to-point.

Formally, let M be a set of messages, / be a set of
sites, and Z be a fixed set of subsets of I, representing
the possible destination sets for messages. If 7={1} we
say that the channdl is broadcast, since the only possible
destinationset includesall thesites. WhenZ={{:} : : € I}
we say the communication system is point-to-point, since
each destination set consists of asingle site. The interface
isasfollows:

Input:

meast(m,J);,m e M, JeT,iel
Output:

receive(m,j);, m e M,i,j €1

The action mcast(im, .J); represents the submission of
message m by site ¢ to the channel, with .J asthe set of in-
tended destinations. The action receive(m, j); represents
the delivery of message m to site ¢, where j is the site
where the message originates. In each case, the subscript
denotes the site at which the action occurs.

Now we describe various correctness properties for fair
traces of multicast channels. First, we require reliable
delivery of al messages, each exactly once, and to exactly
the specified destinations. Formally, in any fair trace 5
of any multicast channel, there should be a cause function
mapping each receive event in 3 to a preceding mcast event
(i.e., the mcast event that “causes’ thisreceive event). The
two corresponding events should have the same message
contents, the site of the mcast should be the originator
argument of the receive, and the site of the receive should
be a member of the destination set given in the mcast.
Furthermore, the cause function should be one-to-one on
receive events at the same site (which means there is no
duplicatedelivery at the same site). Finally, the destination
set for any mcast event should equal the set of sites where
corresponding receive eventsoccur (which meansthat every
message isin fact delivered everywhere it should be).

In addition to these basi ¢ properties, there are additional
properties of multicast systems that are of interest. These
involve a“virtual ordering” of multicasts. We define these
properties as conditions on a particular sequence 5 that
we assume satisfies al the basic reiability requirements
described just above, and a particul ar total order 7" of mcast
eventsin 5. Thefirst conditionisatechnical condition: the
virtual ordering 7" isreally asequence, i.e., it doesnot order
infinitely many multicasts before any particular multicast.

Well-Foundedness T iswell-founded.

The next condition says that the order in which each site
receives its messages is consi stent with the virtual ordering
T'. Thisimpliesthat theorder inwhich any two sitesreceive
their messages is consistent.

Receive Consistency (5 and 7" are receive consistent pro-
vided that the following holds. If = and 7’ are mcast
eventsin /3, and areceive correspondingto = precedes
areceive correspondingto #’ at somesitei, in 3, then
(m, 7)) eT.

The next condition describes FIFO delivery of messages
originating at the same site.

FIFO jandT areFIFO providedthat thefollowingholds.
If 7 and =’ are mcast events at site 7 in 3, with 7
preceding =, then (7, 7') € T.

The final condition describes a restricted “causality” rela
tionship, between amulticast that arrives at site and another
that subseguently originates at the same site.

Context safety ( and T are context safe provided that the
followingholds. If 7 isany mcast event, =’ isan mcast
event at site ¢, and a receive event corresponding to «
precedes 7’ at sitez in 3, then (7, 7') € T.

Now we define a context multicast channel to be any
automaton with the proper interface in which every far
trace /5 satisfies the basic reliability requirements, and also
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Figure 3: The architecture of the higher layer.

has a total order 7" such that 3 and 7" are well-founded,
receive consistent and context safe. (We do not requirethe
FIFO condition.)

In atotally ordered causal multicast channdl, every fair
trace has a total order guaranteeing the FIFO condition
in addition to well-foundedness, receive consistency, and
context safety. Thus, any totally ordered causal multicast
channel is a specia case of a context multicast channel.
However, there are communication systems (such astheone
described in Section 6) that are context multicast channels
but are not FIFO.

5 TheHigher Layer

Now we present the replica management agorithm,
which uses a context multicast channel to implement a
sequentially consistent shared memory (see Figure 3).

5.1 TheAlgorithm

The algorithm is modeled as a collection of automata
P;, onefor each site 7 in a distributed network. Asinthe
previous section, welet I denotethe set of sites. The entire
shared object system is, formally, the composition of the
site automata P;, ¢ € I, and a context multicast channel.
Each client ¢ isassumed to run at a particular site site(c) .
We let clients(i) denotethe set of clientsthat run at sites.>

The agorithm replicates each object « at an arbitrary
(but fixed) subset sites(x) of the sites, one of which is
distinguished as the primary site, primary(z ). We assume
that the set of sites at which each object = isreplicated isa
possible destination set for the multicast channdl, i.e,, that
for every x, sites(z) € 7.

A site automaton P; performs a read operation on an
object = localy if it has a copy of «. Otherwisg, it sendsa
request to any site that has a copy of = and that site returns
aresponse. P; performsan update operationon « localy if
it has the only copy of «. Otherwise, P; sends a multicast
message to al sites that have copies of », and waits to
receive either its own multicast (in case P; has a copy of
x), or else an acknowledgement from the primary site (in
case P; does not have a copy).

Formally, the messages M used in the algorithm are of
the following kinds:

(read-do, ¢, &, z),

5In theoretical work on distributed shared memory, it is common to
assume that only one client runs per site. This does not accurately model
systemslike Orca.

(update-do, ¢, ¢, z, f),
(read-reply, ¢, &, z, v),
(update-reply, ¢, &, x),

wheece C, (e Z, e e X,veV,andf:V — V. The
“do” messages are the requests to perform the operations,
and the “reply” messages are the reports.

Theinterface of P; isasfollows. (Here, ¢ € clients(i),
&,z andv areelementsof =, X, and V, respectively, and f
isafunctionfrom V' to V. Also, m isan arbitrary message
inM,jel,andJ €Z.)

Input:
request-read(¢, ) ¢, £ € =,
request-update(é, =, f) ¢, € € =
receive(m, 7);

Output:
report-read(¢, z,v) ¢, £ € =
report-update(¢,z) ., & € =,
mcast(m, J)i

Internal:
performread(c, ¢,z);,¢ € =,
global-read(c, &, ), & € =,
perform-update(e, ¢, =, f)4, &€ € =
global-update(c, &, 2, )i, € € =

Theinput and output actionsof P; areall theactionsof all
clientsc at sited, plusactionsto send and receive multicasts.
The interna action perform-read(e, &, ), represents the
reading of alocal copy of =, whereas global-read(c, ¢, z);
represents the sending of a message to another site request-
ing the value of . Similarly, performrupdate(c, &, =, f);
represents the local performance of an update (when site i
hastheonly copy of «), whereas global-update(c, &, =, f);
represents the sending of a message in order to update «.

P; has the following state components:

for every ¢ € clients(¢):
status(c), atuple, initially quiet
for every « having a copy at i:
val (z) € V, initidly vg
buffer, a FIFO queue of (message, destination set) pairs,
initially empty

The dstatus components keeps track of operations
being processed a the sdite For example, if
status(c) = (update-wait, £, ), it means that P; has sent
a message asking for # to be updated on behalf of opera-
tion¢, andiswaitingfor toreceive either itsown message or
an acknowledgement beforereportingback toclient c. (Be-
cause of client-well-formedness, status information needs
to be kept for a most one operation of ¢ a atime) The
val (z) component records the current value of the copy of
r a dited. The buffer contains messages scheduled to be
sent viathe multicast channd.

The steps of P; are givenin Figures4 and 5. We repre-
sent the steps for each particular type of action in asingle
fragment of precondition-effect code (i.e., a guarded com-
mand). The automaton is allowed to perform any of these
steps a any time its precondition is satisfied; thus, this
style alows maximum nondeterminism in the description
of the algorithm. We have organized the code so that the
fragments involved in processing reads (plus the code for



request-read(¢, z) .
Effect:
status(¢) := (read-perform ¢, =)

performread(c, £, z);
Precondition:
status(c) = (read-perform ¢, z)
i € sites(z)
Effect:
status(¢) := (read-report, &, z,val (=) )

global-read(e, &, ) ;
Precondition:
status(c) = (read-perform ¢, z)
1 ¢ sites(z)
Effect:
add ( (read-do, ¢, €,2) ,{j}) to buffer
where j is any element of sites( )
status(c) := (read-wait, ¢, )

receive( (read-do, c, &, ) , 7))
Effect:
add ( (read-reply, ¢, ¢, z,val (=) ) ,{5}) to buffer

receive( (read-reply, ¢, &, z,v) , )
Effect:
status(¢) : =(read-report, ¢, =, v)

report-read(¢, z, v) .
Precondition:

status(¢) = (read-report, ¢, z,v)
Effect:

status(c) : =quiet

meast(m, J);
Precondition:

(m, J) isfirst on buffer
Effect:

removefirst element of buffer

Figure 4: Automaton P; to perform read operations.

mcast) appear in Figure 4, while thefragmentsfor process-
ing updates appear in Figure 5. Also, the fragments appear
in approximate order of their execution. However, the or-
der in which the fragments are presented has no formal
significance.

The code follows the informal description we gave
above. For example, a perform-read can occur provided
that the operation has the right status and ¢ has a copy of
the object x; its effect isto change the status to record the
value read (and the fact that the read has occurred). As
another example, a global-update can occur provided that
the operation has the right status and ¢ is not the only site
with acopy of the object «; its effect isto change the status
to record that P; is now waiting and also to put a message
inthebuffer. The most interesting code fragment isthat for
receive(update-do). When thisoccurs, P; always updates
its local copy of the object . In addition, if the message

request-update(¢, z, f) .
Effect:
status(c) : = (update-perform &, z, f)

perform-update(e, ¢, =, f ),

Precondition:
status(c) = (update-perform ¢, z, f)
sites(z) ={i}

Effect:

val(z) : =f(val(z) )
status(c) : = (update-report, £, =)

global-update(c, ¢, =, f);
Precondition:
status(c) = (update-perform ¢, z, f)
stes(z) £{¢}
Effect:
add ( (update-do, ¢, ¢, z, f) ,sites(z) ) to buffer
status(c) : = (update-wait, ¢, z)

receive( (update-do, ¢, ¢, z, f) ,7);
Effect:
val(z) : =f(val(z) )
if 7=¢ then status(¢) : = (update-report, ¢, z)
if 5 ¢ sites(«) and i=primary(z)
then add ( (update-reply, ¢, €, ) ,{j1}) to buffer

receive( (update-reply, ¢, &, ) ,7);
Effect:
status(c) : = (update-report, £, =)

report-update(¢, ) .
Precondition:

status(c) = (update-report, £, )
Effect:

status(c) : =quiet

Figure5: Automaton P; to perform update operations.

received is P;'s own message, then P; uses thisas an indi-
cation to stop waiting and report back to the client. Also,
if the message received is from a site that does not have a
copy of z, and P; isthe primary sitefor «, then P; sendsa
reply back to the sender.

The tasks of automaton P; correspond to the individual
output and internal actions. Thismeansthat each non-input
action keeps getting chances to perform its work.

5.2 Correctness

Let A denote the composition of the site automata 7;
and an automaton B that is a context multicast channdl,
with the mcast and recei ve actions hidden.

Theorem 5.1 A isa sequentially consistent shared object
system.

Proof Sketch: Weuse Lemma 3.2. Let 5 be an arbitrary
client-well-formed fair trace of A, and let « be any far
execution of A that givesriseto 5. We must show that 3
is complete, and that there is a supportive partial order for
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the sequences 5|c. Completeness is argued by tracing the
steps involved in the various operationsin «, using a case
analysis.

We construct a partial order P as the transitive closure
of the union of several orders.

1. The mcast order relates any two operations whose
processing in « includes the multicast of a read-do
or update-do message; it orders them in the order T
provided by the context multicast channel.

2. For each site 4, the access; order relates any two op-
erations that both perform accesses to copies of ob-
jects at site 4, (that is, perform, receive(read-do) or
receive(update-do) events at site 7) in «; it orders
them in the order of their accesses in «.

3. For each client ¢, the totally-precedes(3|c) order,
which totally orders the operations of client c.

To show that P isin fact apartial order, we show that all its
congtituent orders give the same order for operationswhose
processing uses multicasts. Thisinvolves a case anaysis,
based on the receive consistency and context safety proper-
ties. Then thecombined order P just inserts operationsthat
are performed locally in appropriate places in the sequence
of operationsthat use multicasts.

To show that P is supportive, the key isthat for any two
conflicting operations (that is, a read and an update, or two
updates) on a single object, there must be some copy that
isaccessed by both. m

6 Lower Layer

Now we present the algorithm that constructs a context
multicast channel based on acombination of totally ordered
broadcast and poi nt-to-point communi cation (see Figure6).

We fix an arbitrary message a phabet M, set I of sites,
and set 7 of degtination sets; we will implement a context
multicast channel for A/, / and Z.

6.1 TheAlgorithm

The implementation is constructed as the composition
of the following automata: BC, ardliable, totally-ordered
broadcast channel,® PP, a reliable, point-to-point channd,
andacollection D;, onefor eachi € I, of daemon automata
that multiplex between the two lower-level services.

Both BC and PP are multicast channels, as defined in
Section 4, and both have I astheir set of sites. Thebroadcast
channel BC has only one possible destination set, namely,
1 itself, whilethe point-to-point channel PP has exactly the
singleton sets {i}, ¢ € I, as destination sets. Both satisfy
thebasic reliability requirementsfor multicast channels. In
addition, we assume that BC isitself a context multicast
channel — each of its fair traces has an ordering that is
well-founded, receive consistent and context safe.” We
do not assume anything additional about PP. In order to
distinguish the mcast and receive events for BC, PP, and
the channel being implemented, we superscript each action
of BC and PP by the channel name.

Each automaton D; processes the messages that are sub-
mitted by the environment via mcast; events. To process a
message that is destined for more than one site, D; broad-
casts the message and its intended destination set, using
the broadcast channel BC. When this message reaches a
site 7, automaton D); delivers it to the environment if j is
among the intended destinations; otherwise, D; discardsit.
To process a message intended for one site only, D; pig-
gybacks on it the sequence number of the broadcast most
recently recelved at site ¢, and then sends the embellished
message directly to its destination using the point-to-point
channel PP. After thismessage reachesitsdestination, itis
delivered to the environment, but only after multicastswith
the same and lower sequence numbers have been delivered.

Theinterfaceof D; isasfollows. (Here, m € M,j € 1,
J € I,and k isanonnegative integer.)

Input:
mcast(m,J)i
receiveP< ((m,J) ,j);
receive®® ((m, k) ,5):
Output:
receive(m, j) ;
meast?C ((m,J) ,I);
meast? F ((m, k) , {5}

D; hasthefollowing state components:

buffer: aqueueof (message, destination set) pairs, initialy
empty

msgs: aqueue of (message, site) pairs, initialy empty

ppwait: a multiset of (message, site, nonnegative integer)
triples, initially empty

segno: a nonnegative integer, initialy O.

6We model this broadcast channel as a single automaton. This could
itself beimplemented as a collection of automata, one per site, communi-
cating through a still lower-level service.

“In fact, since each message is received by every site including the
sender itself, and each receive event occursafter the corresponding mcast
event, any total order in abroadcast system that is receive consistent must
also be well-founded and context safe.



The buffer component is used like buffer in F;, in the
higher layer al gorithm; it containsmessages scheduled to be
sent viathe underlying communication services. The msgs
component keeps track of messages that are scheduled for
delivery to the environment, each with an indication of its
site of origin. The ppwait component keeps track of point-
to-point messages that are destined for site ¢, but that are
waiting for the recei pt of the broadcast with the appropriate
sequence number. Finally, component seqno records the
number of broadcasts received so far. The code for D;
follows.

meast(m, J);
Effect:
add (m, J) to buffer

meast?C ((m,J) , 1),
Precondition:
(m, J) isfirst on buffer
[J]>1
Effect:
removefirst element of buffer

meast”” ((m, k) ,{5}):
Precondition:
(m, {7} isfirst on buffer

remove head of buffer

receive®C ((m, J) ,j);
Effect:
segno: =segno + 1
if ; € Jthenadd (m, ;) tomsgs
add to msgs (in any order) al (m’, ;')
suchthat (m/, 5/, seqno) € ppwait
removefrom ppwaital (m’, j’, seqno)

receve” ¥ ((m,k) ,5);

Effect:
if & < segnothenadd (m, ;) to msgs
elseadd (m, 7, k) to ppwait

receive(m, ;) ;
Precondition:

(m, 7) isfirst on msgs
Effect:

removefirst element of msgs

6.2 Correctness

Let C denote the composition of the site automata D;
together with BC and PP, with the actions of BC and PP
hidden.

Theorem 6.1 C isa context multicast channe!.

Proof Sketch: Let 5 be an arbitrary fair trace of C, and
let « be any fair execution of C that givesriseto 5. We
define atota order 7" on the mcast eventsin .

Firgt, if = isany mcast event, then we define its epoch,
epoch (). If w isamulti-destinationmcast, then epoch (=)
is the value assigned to the state component segno when
m'sreceive” occurs at any site. (Receive-consistency of

BC and thefact that all sitesreceive each broadcast, imply
that thisvalueisuniquely defined.) Also, if = isany single-
destination mcast event, say with destination set {i}, then
epoch () isthe maximum of the following two numbers:
(8) the sequence number piggybacked on 7’ s point-to-point
message (thisis the value of seqno at the sender when the
corresponding mcast””” occurs) and (b) the value of segno
at site s when the corresponding receive’”” occurs at D;.

We now define 7' as the relation on mcast events in
« which is the transitive closure of the union of severa
individual relations.

1. The multi-multi order relates any two multi-
destinationmcast eventsin «; it ordersthemaccording
to their epoch’s.

2. The multi-single relation orders a multi-destination
mcast event = in « before a single-destination mcast
event ¢ in« if epoch(r) < epoch(¢).

3. The single-multi relation orders a single-destination
mcast event ¢ in « before a multi-destination mcast
event 7 in « if epoch(¢) < epoch(r).

4. The single-single order relates any two single-
destination mcast eventsin « that have the sameepoch;
it orders them in the order of their receive events as
they occur in «.

Thenit is straightforwardto show that 7" isa well-founded
total order, and that it guarantees the needed properties of
receive consistency and context safety. B

Wenotethat itispossibletoimprovetheefficiency of the
algorithm for all or one-site replication. For example, we
tag each point-to-point message with the sequence number
of the last broadcast received (in areceive®® event) before
the point-to-point message is sent (in a mcast”” event).
Alternatively, we could tag it with the sequence number of
thelast broadcast message that i s passed to the environment
at site ¢ before the point-to-point message is submitted by
the environment at site ;. This can be smaller than the
tag used above, so that the destination site might delay the
message for a shorter time. In this respect, our version of
the algorithm follows the Orca implementation.

7 Discussion

We have presented a new algorithm for implementing a
sequentially consi stent shared object system in adistributed
network. Theal gorithmisbased ontheoneused intheOrca
system, but generalizes it to allow objects to be partially
replicated. Replicated objects are kept consistent using a
context multicast system, which is a new communication
servicethat can beimplemented using acombination of to-
tally ordered broadcast and poi nt-to-point communication.
We have presented this algorithm in two layers, and have
carried out a complete correctness proof using this decom-
position. In the course of our work, we found a logical
error in the implementation of the Orca system that had
not yet manifested itself in execution; as a result, the Orca
implementation has been modified to correct thiserror.

This work opens up many avenues for future research.
First, some simple extensions to our results can be made.
For example, we could alow concurrent invocations of



operations by the same client instead of requiring clients
to block. In order to handle this case, we need to adjust
our definition of sequential consistency to eliminate the
client-well-formedness condition, to modify the algorithm
to maintain sets of active operations, and to make minor
changes in our proofs.

Another extension to our work is to incorporate objects
with more genera kinds of operations than just read and
update.

A more serious extension is to alow for dynamic
changes to the locations of object copies. As we noted
in Section 1, Orca allows object locations to change dy-
namically, in responseto changes in access patterns. There
are severa different schemes possible for managing such
changes;, most of these maintain the safety properties ex-
pressed by our results, but cause violationsto the liveness
conditions (e.g., an operation might not be able to find the
needed copies because they are continuously moving). It
remains to describe and verify existing schemes using our
framework, and to develop and verify new schemes that
preserve the liveness condition.

Still another extension is to use weaker communica:
tion primitives. In some process group systems such as
the present implementation of Isis, consistent ordering is
not guaranteed between al messages, but only between
messages with a common destination. We would like to
consider how to build a shared object system using this
primitive together with point-to-point messages. For all
these extensions we expect that much of the machinery
developed in this paper can be reused.

8 Conclusions

Implementations for distributed systems such as Orca
are complicated, because of the many possible interleav-
ingsof eventsof concurrent threads. 1tisgeneraly difficult
to be sure that such implementations are correct. Formal
modeling and verification in the style we have presented
here can provide great help in understanding and verifying
such systems. Our modeling and verification of Orca has
already contributed to the Orca project by identifying and
correcting an error and by giving the designers extra con-
fidence in the corrected implementation. In addition, the
structures we have provided should provide useful docu-
mentation and assistance in future system modification.

More broadly, our work can be seen as a first step in
the devel opment of a practical theory for distributed shared
memory systems. Such a theory should consist of a body
of abstract component specifications, abstract algorithms,
theorems about how thevariousabstract notionsarerel ated,
and application-specific proof methods. Our contributions
to this theory include our specifications for a sequentially
consistent shared memory system and for various kinds
of multicast channels, our higher layer and lower layer
algorithmsand their correctness theorems, and our lemmas
that show how to prove sequential consistency. However,
our work is only afirst step — we believe that much more
work of the same kind, based on formal modeling of real
systems and applications, is needed to complete the job.
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