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Abstract 

We show how to w o n  about distributed database 
management systems, in which a commit protocol is 
wed to coordinate activity of several resource man- 
agers. This is an interesting case study of an open 
system, in which each component U developed inde- 
pendently to operate with many possible environments. 
We give specifications for each resource manager, and 
a specification for the commit protocol, and show that 
the whole system is correct as long as each component 
has the properties required of at. We then show how to 
prove that specific examples have these properties. 

1 Introduction 

Commercial computing has changed radically in re- 
cent years. Instead of proprietary systems in which all 
components are designed specifically for use together, 
there are open systems where components are taken 
off-the-shelf and combined. A component of an open 
system needs to work correctly with many different 
environments. This naturally raises the question of 
how to specify the requirements on a component. We 
want to know that the whole system will be correct, 
provided each component is independently developed 
to meet its own specification. 

In this paper, we examine one type of system in 
this way. Our focus is on transaction management 
in distributed database management systems. These 
systems are built from separate resource managers, 
each of which maintains a collection of information. 
Transactions axe provided by users, and each can ac- 
cess data in several resource managers. Linking these 
is a commit protocol that ensures that a transaction 
does not commit at any site unless its effects are in- 
stalled at every site where it ran, despite system fail- 
ures (“crashes”) that can cause changes to be lost. 
The commit protocol is provided by a transaction pro- 
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cessing monitor that is distributed through the sys- 
tem, but designed independently of the resource man- 
agers. 

The classic work of Lindsay et al. [4] presents an 
algorithm to provide transparently distributed trans- 
actions. However, the algorithm is given as an inte- 
grated system. The mechanism of commit processing 
is generally abstracted from the complete algorithm 
under the name of the two-phase commit protocol. A 
number of alternative mechanisms have been proposed 
for use in a transaction processing monitor. For ex- 
ample, Mohan, Lindsay and Obermack [7] show how 
to modify two-phase commit so that fewer messages 
and forced log-writes are needed. 

Most of the discussions of commit protocols present 
an abstract specification expressing requirements on 
a commit protocol. There is a particularly clear ac- 
count of this in Section 7.3 of Concurrency Control 
and Recovery in Database Systems [l]. In that book 
five properties (AC1-AC5) are defined. The interface 
between the commit protocol and the sites is that each 
site, where transaction T ran, casts a “vote” (either 
Yes or No), and the protocol determines whether to 
commit T or abort it. The essential property is AC3, 
which says the protocol is required not to commit T 
except in cases where all votes are Yes. 

For use in an open system, however, one must also 
characterize the behavior of the resource managers. In 
particular, one must give a condition on when a man- 
ager should vote Yes. This is generally treated very 
loosely in the database literature. For example, Mo- 
han et al. [7] state that a Yes vote indicates that the 
site “is willing to commit the transaction” and has 
“force-writ[ten] a prepare log record”. The concept 
of willingness is not further explained in their paper. 
Bernstein et al. provide (11 a more detailed discussion, 
where they state that a site may vote Yes as long as 
“every value read by T at that site was written by a 
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transaction that committed” and also “all values writ- 
ten by T at that site are in stable storage - the stable 
database or the log”. Unfortunately, one can construct 
a system in which each Resource Manager follows the 
usual rules for two-phase locking, and votes according 
to the principle given by [l], and where the commit 
protocol satisfies AC1-AC5, and yet where executions 
exist that violate transaction semantics. The problem 
is that a site may process a read operation for transac- 
tion T, and a later crash might cause the read-lock to 
be lost (since lock-tables are kept in volatile memory 
until a transaction prepares to commit). The rules of 
Bernstein et al. [l] make the site “willing to commit” 
the transaction. Serializability might be violated, as 
in the following example involving two transactions T 
and T’ at two sites x and y, each containing one data 
item. The following history can occur: T reads x, x 
crashes and recovers - removing the read lock held by 
T, T’ writes x, T’ writes y, TI commits, T reads y. In 
this history by the rules of Bernstein et al. [l], both x 
and y can vote Yes for committing T. If T commits, 
serializability is violated. 

The importance of proving the correctness of the 
system (as well aa just specifying the components) 
is shown by incorrect descriptions in several text- 
books. For example, the classic text of Ceri and Pela- 
gatti [2] states that “each participant corresponds to 
a subtransaction which has performed some write ac- 
tion”. If the two-phase commit protocol is run in 
this way (i.e., not including read-only sites among 
the participants), and each resource manager keeps its 
lock-tables in volatile store, then serializability (and 
database integrity) can be violated, due to loss of read- 
locks during a crash, just as in the example above. 

The specification we give uses the same style of vot- 
ing interaction, but it is based on a quite different idea 
from the traditional ones. In essence, we regard a Yes 
vote as meaning “the resource manager will not in the 
future lose information about the transaction, despite 
any later crash”. Because of this, the commit proto- 
col must check that each manager voted Yes, and also 
that earlier activity of the transaction was not lost 
in a crash before the vote; it uses a cwh-count for 
each site to accomplish this. The mechanism of crash- 
counts is taken from the Argus system [SI; a related 
mechanism of “low-water marks” was used by Lindsay 
et al. [4]. Because this is a stronger requirement on 
the commit protocol than the usual one, we are able 
to use a very simple and permissive specification for 
the each resource manager. 

In this paper, we deal with a distributed system 
supporting nested transactions. Nested transactions 

allow the activity of a transaction to be divided among 
multiple concurrent “subtransactions”, which are pro- 
tected from interfering with one another. Our work is 
done using 1/0 automata [SI as a model. The salient 
features of the formal model are that it allows descrip- 
tion of both problem statements and implemented sys- 
tems; that the aspect of any entity that is regarded as 
significant is the set of possible behaviors, that is, se- 
quences of interactions (actions) between the entity 
and the environment; that it allows one to use state 
to generate the behaviors required; and that it has 
theorems that support modular (piece-by-piece) and 
hierarchical (step-by-step) examination of a complex 
system. The model includes coverage of liveness is- 
sues, but only safety conditions are considered here. 

In this paper we first describe the architecture of 
the system. There are transaction automata, repre- 
senting the code supplied by the users. There are 
crashing object automata, representing resource man- 
agers. There are local managers, that collectively (to- 
gether with the communication medium) provide a 
transaction processing monitor. In Section 2 we list 
the actions that are in the interface of each compo- 
nent. We also state the top-level requirement, that ex- 
presses that the whole system acts correctly. Then in 
Section 3 we give specifications for the separate com- 
ponents. For a resource manager, the requirement is a 
condition on the behavior of the manager, saying that 
when the sequence is reordered in certain ways, that 
what results is allowed by the type definition of the re- 
source. For the local managers, we require that their 
collective behavior is a behavior allowed to a particular 
automaton (called the atomic commit controller). In 
Section 4, we show the correctness of any system built 
from components each with the appropriate property, 
and also show by example how to verify that partic- 
ular resource managers or commit protocols have the 
properties required of them. 

2 The system structure 

The model links d transactions together into a 
tree, organized by the parent-child relationship be- 
tween a caller and the called transaction. For uni- 
formity, we include a root transaction TO correspond- 
ing to the human users, so that “top-level” transac- 
tions appear as children of TO. For simplicity, we aa- 
sume that each transaction’s name encodes all relevant 
facts, including its arguments, the code it runs, and 
the site where it runs. We also include as leaves of 
the tree, all the accesses to resource managers, each 
as a child of the transaction that invoked it. If T is 
an access to the resource X, and v is its return value, 



we call the pair (T,v) an operation of X. 
Now we can define the system decomposition appro- 

priate for describing a system in which sites can crash, 
and where some commit protocol is used to check be- 
fore the commit of a top-level transaction. Specifi- 
cally, we define a crush system, which is composed of 
tmnsaction automata, crushing object automata, local 
manager automata and a communication medium. We 
refer to the sequence of actions that can occur in an 
execution of a crash system as a crush behavior. 

Transaction Automata. A non-access transac- 
tion T is modeled as a tmwaction automaton AT. 
The CREATE input action “wakes up” the transac- 
tion. Each REQUEST-CREATE output action is a 
request by T to create a particular child transaction 
(including a child access as a special case). Each 
REPORT-COMMIT input action reports to T the suc- 
cessful completion of one of its children, and returns 
a value recording the results of that child’s execution. 
Each REPORTABORT input action reports to T the 
unsuccessful completion of one of its children, with- 
out returning any other information. The REQUEST- 
-COMMIT action is an announcement by T that it has 
finished its work, and includes a value recording the 
results of that work. We leave the executions of partic- 
ular transaction automata largely unconstrained; the 
choice of which children to create and what value to 
return will depend on the particular implementation. 

Notice that we model separately the parent invocat- 
ing a child, and the child beginning to run, since in a 
distributed system there will be a delay while the mes- 
sage is transmitted. For uniformity, we use the same 
notation (REQUEST-CREATE and later REPORT- 
-COMMIT) to model the request for an access to per- 
form some action at  a resource manager, and the sub- 
sequent response, as we use for subtransactions. 

Crashing Object Automata. A crashing object 
automaton Cx represents one resource manager. It 
encapsulates the data stored for the resource X, in- 
cluding perhaps multiple versions, log entries, locks or 
timestamps. In the theory of [3], each resource also 
comes with a serial specification Sx,  that represents 
its type in the absence of concurrency and failure. 

The crashing object automaton CX has an in- 
terface through which it receives invocations of ac- 
cesses (CREATE) and returns results (REQUEST- 
-COMMIT), and receives information about the fate 
of transactions (INFORM-COMMIT and INFORM- 
ABORT). In this, it is similar to the generic object of 
[3]. It also has an extra CRASH action and two extra 
classes of actions: PREPAREREQUEST and VOTE 
-YES. The CRASH action models the loss of volatile 

storage at the site where the object resides.l Notice 
that since CRASH is an input, it may occur at any 
time (because of the input-enabled rule of the 1/0 au- 
tomaton model). A PREPAREREQUEST action in- 
dicates to the object that a top-level transaction (that 
is, a child of TO, where TO models the user of the sys- 
tem) has finished running, and the object should then 
save the transaction’s results on stable storage. Once 
this has been done, the VOTE-YES action is the ob- 
ject’s response, announcing that it will be able to pro- 
cess a later INFORM-COMMIT action properly, even 
if CRASH events occur. (We do not include an ex- 
plicit negative response to a PREPAREREQUEST in 
our model; rather, if no positive response is given, the 
transaction can never commit. In practice, a timeout 
would eventually lead to the transaction aborting.) 

Local Manager Automata. We model the ac- 
tivity of the commit protocol at a single site n by 
a local manager automaton L,, which represents the 
transaction manager. Once a top-level transaction 
requests to commit, it is the local manager that is- 
sues any PREPAREREQUEST action to a resource 
manager located at  the site, and that reacts to the 
VOTE-YES action in response. Different local man- 
agers interact with one another by passing messages: 
the SEND actions and RECV actions model the send- 
ing and receipt of messages, respectively. For simplic- 
ity, we use the local managers for all communication2 
between sites. For example, the local manager also 
accepts a REQUEST-CREATE action from a trans- 
action at the site, and sends a message to its peer 
at  the site of the requested child. On receiving this 
information the local manager issues the CREATE ac- 
tion to the child transaction (or resource manager, 
in case the child is an access). Similarly the local 
manager accepts a REQUEST-COMMIT input from a 
transaction or resource manager, acts to complete the 
transaction (either COMMIT or ABORT), and then 
sends information to the local manager at  the site 
where the parent is running, after which that manager 
issues the REPORT-COMMIT or REPORTABORT 
action as appropriate. The information about com- 
pletion is also sent to local managers at other sites, 
so that resource managers can be given information 
in INFORM-COMMIT or INFORM-ABORT actions. 
We also assume that the local manager can be affected 

When specific algorithms are discussed, as in section 4, the 
CRASH will have the effect of causing the state to change to 
some value that depends only on the previous value of the stable 
components. 

*In commercial systems, it is more common for the resource 
managers to communicate directly, passing to the commit pro- 
tocol indications of what is being done. 
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by the crash of the site. 
The Communication Medium. The commu- 

nication network is also modelled, as an automa- 
ton. The interface of the communication network 
automaton is as follows. The input actions are 
SEND(m)AT(n)TO(p), and the output actions are 
RECV(m)AT(n)FROM(p). 

Requirements for the Crash System. Next, 
we state a specification for the complete distributed 
database management system, representing a closed 
universe containing users and user-supplied code 
(transaction automata) resource managers (crash ob- 
ject automata), peers forming the commit protocol 
(local manager automata), and an underlying message 
passing communication medium. The key property re- 
quired of a distributed database management system 
is transparency, that is, the system should not be func- 
tionally distinguishable from a single-site database 
management system (DBMS). Since any single-site 
DBMS supports transactions, the distributed system 
must do so too. We use the approach of Fekete et al.. 
Precise details of the definition can be found in [3], but 
in essense, we define an ideal system, called a serial 
system, in which the same transaction automata are 
present, but the execution is controlled so that sibling 
transactions are run without concurrency, no transac- 
tion fails after taking some steps, and each resource 
is implemented by its abstract type without concur- 
rency control or recovery mechanisms. We say that a 
particular execution (Y of a DBMS is serially correct 
for TO provided there exists an execution a' of the se- 
rial system such that the activity of TO (representing 
the users) is the same in the two sequences. We will 
use exactly the same definition as the requirement on 
a crash system: every execution of the crash system 
must be serially correct for TO. 

3 Specifications of the components 

Requirements on Transaction Automata. We 
make only minor restrictions on the construction of 
transaction automata, since these represent code pro- 
vided by the user. We require that each automaton 
preserve transaction well-formedness. A transaction 
well-formed sequence is always a prefix of a sequence 
that starts with CREATE(T), ends with REQUEST- 
-COMMIT(T,u), and in between has some interleaving 
of a collection of two-element sequences REQUEST- 
-CREATE(T')REPORT~COMMIT(T',u'), for Various 
children T' of T. Thus each transaction automaton 
must not issue any output that violates this pattern, 
unless it had already been violated by an earlier input. 
Notice that we do not restrict the transaction's choice 

of which children to request, nor its choice of return 
value. 

Requirements on Crash Object Automata. 
We now formally define the concept of local crash 
atomicity, which is the obligation we place on each 
resource manager. In essence, as in dynamic atomic- 
ity in [3], the obligation is that in each crash behavior, 
the values returned to accesses by the crash object aw 
tomaton must be such that the serial specification of 
the resource is allowed to act in the way described by 
rearranging these accesses into any order that might 
have occurred in a serial execution if siblings are run 
in the order given by their time of completion in real 
(concurrent) system. 

We first collect some elementary properties of a 
crashing object under the term crashing object well- 
fonnedness. A sequence p of actions t is said to be 
crashing object well-formed for X provided that all 
the following conditions hold: there is at most one 
CREATE(T) event in p for any access T ;  there is at 
most one REQUEST-COMMIT event in p for any ac- 
cess T ;  if there is a REQUEST-COMMIT event for T 
in p, then there is a preceding CREATE(T) event in p; 
if there is a VOTE-YES event for T in p, then there is 
a preceding PREPAREREQUEST event for T in p; if 
an INFORM-COMMITAT(X)OF(T) event occurs in 
p and T is an access to X, then there is a preceding 
REQUEST-COMMIT event for T; there is no trans- 
action T for which both an INFORM-COMMIT event 
and an INFORMABORT event at x for T occur in 
p. We require that the crashing object automaton 
preserve crashing object well-formedness. 

We define local visibility: we say that T is lo- 
cally visible to T' in a sequence p of actions 
of a crashing object Cx if p contains INFORM- 
-COMMITAT(X)OF(CI) for every U in ancestors (2')- 
ancestors (TI). We also define local-completion (p )  to 
be the binary relation on accesses to X where (U, U')  E 
local-completion(@) if and only if U # U', /3 con- 
tains REQUEST-COMMIT events for both U and U', 
and U is locally visible at X to U' in p', where /?' 
is the longest prefix of /3 not containing the given 
REQUEST-COMMIT event for U'. Define a sequence 
( of operations of X to be transaction-respecting pro- 
vided that for every transaction name T, all the op- 
erations for descendants of T appear consecutively in 
<*  

Suppose that p is a finite crash object well- 
formed sequence of external actions of Cx.  Then 
local-views(p) is the set of sequences defined as fol- 
lows. Let 2 be the set of all operations (T,v) ,  such 
that REQUEST-COMMIT(T,u) occurs in p and T is 



locally visible at X to TO in p. Then the elements 
of local-views(p) are all the sequences that can be 
formed by reordering Z according to  a transaction- 
respecting total ordering consistent with the partial 
order local-completion (p )  on the transaction compo- 
nents, and then replacing each operation (T,v)  by 
CREATE(T)REQUEST-COMMIT( T,u). We say a se- 
quence p of actions of Cx is autonomy-respecting for 
X provided that the following holds for every T that is 
an access to  x: if p contains a REQUEST-COMMIT 
event 4 for T and T is locally visible to To in /3, then 
there is a VOTE-YESAT(X)FOR(CI) event ?r that fol- 
lows 4 in p, and furthermore no CRASH event oc- 
curs between 4 and a in p, where U is the unique 
transaction such that T is a descendant of U and 
parent (U) = To. 

We can now combine all the above definitions, to  
express formally the obligation placed on each resource 
manager. We say that crashing object automaton Cx 
for object name X is locally crash atomic if whenever 
/3 is a finite crashing object well-formed behavior of 
Cx that is autonomy-respecting then every sequence 
in local-views(P) is a finite behavior of Sx. 

Requirements on Local Manager Automata. 
We express our requirements on the local managers 
in a very different way. Rather than specify one lo- 
cal manager, we make a condition on the composition 
of all the local managers together with the communi- 
cation medium. To express this condition, we define 
an explicit global automaton called the atomic com- 
mit controller, that acts as a specification of the com- 
mit protocol service as a whole. We then require that 
whenever a is a sequence of actions that is a transac- 
tion well-formed and crashing-object well-formed be- 
havior of the composition of local managers and com- 
munication medium, then Q is also a behavior of the 
atomic commit controller. 

It 
is the maximally non-deterministic global automa- 
ton that acts as required for a transaction process- 
ing monitor, using the semantics described in the in- 
troduction. Fundamentally, it acts as a communica- 
tion medium. For example, it receives REQUEST- 
-COMMIT(T,u) from T ,  reaches an internal decision 
point represented as COMMIT(T), and eventually 
gives REPORT-COMMIT(T,v) to  T’s parent, and also 
passes INFORM-COMMITAT(T)OF(X) to CX. In 
this, it behaves in much the same way as the generic 
controller in Fekete et al. [3]. The main additional 
feature is that, after a top-level transaction T has re- 
quested to  commit but before the commit occurs, the 
controller asks objects to prepare to commit the trans- 

There is a single atomic commit controller. 

action, that is, to store its effects so that future crashes 
will not destroy the information. Each object involved 
issues a vote when this has been done, and the trans- 
action can commit only when a vote has been received 
from every object at which a (non-orphan) descendant 
access has run. The controller also checks that the de- 
scendant accesses at any site all ran within the same 
incamatton of that site as the VOTE-YES action. 

Each state s of the atomic commit controller con- 
sists of the following components: s.create-requested, 
s.created, s.commtt,requested, s.committed, s.aborted 
and s.reported, s .mlrcount,  s.cmhrec, and $.ready. 
The first six are sets of transactions or operations, and 
they simply record the actions that have happened; 
they are already present in the generic controller of 
[3]. The component s.ciushcount is a function from 
site names to  non-negative integers. For any site n, 
ciushcount(n) is initially zero. In any state it rep- 
resents the number of crashes that have occurred at 
the site n. The component s.ready is a function from 
top-level transaction names (those which are children 
of TO) to sets of objects. Initially s.ready(T) is the 
empty set. In any state it represents the objects that 
are able to commit T .  The component s.crashrec is a 
partial function from access names to non-negative in- 
tegers. Initially s.cro;shrec(T) is undefined, and in any 
state it represents the number of crashes of the site of 
T that occurred before the REQUEST-COMMIT for 
T.  

We introduce derived variables, writing 8.completed = 
s.committedUs.aborted, and, for each T ,  writing s.visible(T) 
for the set of transaction names 2” such that every ele- 
ment of ancestors(T‘)-ancestors(T) is in smmmitted; 
we also define s.included(T,X) to be s.visible(T) n 
descendants ( T )  n accesses(X); we define s.inuo1ved ( T )  
to be the set of object names X such that s.included(T, X )  

Figure 1 shows the code of the atomic commit con- 
troller. The transitions for REQUEST-CREATE, CREATE, 
ABORT, REPORT-COMMIT, REPORTABORT, 
INFORM-COMMIT and INFORMAABORT actions, and 
also for COMMIT transitions for transactions except 
those whose parent is TO, and REQUEST-COMMIT 
actions for transactions that are not accesses, are all 
straightforward (and identical to those in [3]). They 
simply record requests in appropriate variables, and 
deliver them later. The transition for the CRASH ac- 
tion simply increases the appropriate crashcount. The 
transition for a VOTE-YES action records the site in 
the ready set, provided the cmshcount indicates that 
the vote occurs when no preceding CRASH could have 
destroyed needed information. Notice how the seman- 

# 0. 



tic requirement on the commit protocol is expressed in 
the precondition of the COMMIT of a top-level trans- 
action, which checks that each participant (that is, 
each site in inuolued(T)) has voted at an appropriate 
point (as indicated by being in ready(T)). 

4 Verification 

Having proposed a collection of requirements for 
the components of a crash system, we still need to 
prove the correctness (according to the requirements 
for the whole system) of a crash system in which each 
component meets the appropriate condition. We will 
also need ways to prove that specific components do 
meet their separate requirements. 

Correctness of the Component Specifications. 
The value of our collection of requirements on compo- 
nents is expressed in the following Theorem. 

Theorem 4.1 Suppose that each transaction automa- 
ton preserves transaction well-fonnedness, that each 
crashing object automaton preserves cmshing object 
well-formedness and is  local cmsh atomic, and that 
every well-formed behavior of the composition of all 
the local managers with the communication medium is 
also a behavior of the atomic commit controller. Then 
each behavior of the system is serially correct for TO. 

This result can be proved by using Proposition 46 
of [3], which expresses the fundamental intuition that 
the users see satisfactory behavior so long as each ob- 
ject returns d u e s  in such a way that when serial- 
ized in the completion order, the activity is allowed 
by the serial specification. Once the definitions are 
all unwound, the constraint on the local managers 
imply that the behavior p of each crashing object 
is autonomy-respecting, and that the serialization in 
completion order is one of the sequences in the set 
local-views(p). The local crash atomicity of the crash- 
ing object now implies that this sequence is a behavior 
of the serial specification, exactly as needed to apply 
Proposition 46 of [3]. 

strate the modularity afforded by our system decom- 
position, and present one way to construct local man- 
agers that collectively provide the functionality of the 
atomic commit controller. The algorithm used is based 
on the standard two-phase commit protocol. Our pre- 
sentation retains a lot of generality through nondeter- 
minism. For example, we allow a large choice in which 
information to send in a message, and in which desti- 
nations it is sent to. More detailed algorithms may 
make specific restrictions, sending information only 

A Particular Commit Protocol. Here we demon- 

when needed, and only to sites that need to know. 
The correctness of such a detailed algorithm will fol- 
low from the correctness of this one, since the detailed 
algorithm will have as its behaviors a subset of the be- 
haviors of the non-deterministic algorithm we present. 

The local manager L, at site n has the interface 
described above. The state components of state 8 of 
the local manager L, include all those that are compo- 
nents of a state of the atomic commit controller, with 
the same types and initial values. Each component 
represents what is known at the site n about transac- 
tion status, etc., corresponding to the variable of the 
same name in the atomic commit controller? There 
is also an additional state component e.inc. For each 
transaction name T and object name X ,  s. inc(T,X) 
is a set of accesses to X .  Initially s. inc(T,X) is { T }  if 
T is an access, and otherwise it is empty. The compo- 
nent e.inc reflects local knowledge corresponding to 
the derived variable included in the atomic commit 
controller. 

s.committed Us.aborted; for each T ,  e.uisible(T) is the 
set of transaction names T’ such that every element 
of ancestors (T’) -ancestors ( T )  is in 8. committed ; for 
each top-level T ,  u.inuolued(T) is the set of object 
names X such that s. inc(T,X) # 0. 

In our system, we will use the following format for 
the messages sent between local managers: a message 
is a record whose components axe those of a state of a 
local manager except for c ” m t .  Thus a message 
indicating that T has committed could be modeled as 
a record m in which m.committed = {T} ,  and the 
other components are empty. By using this general 
notation, we allow ourselves to model piggybacking 
multiple information into a single message, and also 
make the code easy to write. 

The transition relation of a local manager automa- 
ton is given in Figure 2. 

At thie point, a few words must be mentioned about 
the SEND output action of the local manager au- 
tomata. As can be seen from the transition relation, 
the effect of the SEND(m)AT(n)TO(p) action the 
placing of a subset of the total state information of a 
local manager in the message. However, we have to en- 
sure that the “right” information reaches the “right” 
site at the “right” time. This is important, for ex- 
ample, when determining the liat of participants in 
a commit decision. Hence, we adopt a piggybacking 
strategy which gives such a guarantee. For example, 

S ~ ~ r  uniformity, we retain rrashcount CUJ a function from sites 
to  integers, though in fact we ignore all the values recorded for 
sites other than n itself. 

We use three derived state components: 8.completed = 
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we piggyback the inc information for a transaction 
T with any message from T's site recording T as in 
m.committed, ensuring that both the inc information 
for T and the committed information reach any desti- 
nation site at the same time. 

The communication network we consider is neither 
lossless nor order-preserving, but it does not allow 
corruption or duplication of submitted messages. It 
is modelled as an automaton. Each state 8 of the 
communication network automaton consist of just one 
component: s.messages. Thus, each state is just a set 
of messages. The input action SEND(m)AT(n)TO(p) 
adds a message, whose destination is node p, to the 
set, and the output action RECV(m)AT(n)FROM(p) 
delivers a message to p only if it is in the set, and 
deletes the message from the collection of messages, 
preventing multiple deliveries. 

Correctness of the Commit Protocol. The 
correctness of the commit protocol described above is 
expressed formally by saying that for any behavior of 
the system ("the distributed commit controller") that 
is the composition of all local manager automata to- 
gether with the communication network automaton, 
the subsequence of that behavior (consisting of ac- 
tions in the interface of the atomic crash controller) 
is a behavior of the atomic commit controller. We re- 
mark that this subsequence is exactly the subsequence 
formed by hiding all SEND and RECV actions. 

The correctness is shown with the help of a possi- 
bilities mapping [SI relating states of the distributed 
commit controller and states of the atomic commit 
controller. The mapping relates states that represent 
"essentially" the same information. Let us denote a 
state of the dietributed commit controller by 8, which 
is given by a state for each component: 8[n] for the 
state of the local manager at site n, and s[c] for the 
state of the communication medium. For brevity, we 
abuse notation by writing m E 8[c].messages to refer 
to the set of m for which there exist p and q such that 
(m,p ,q)  is in s[c].messages. Let us denote a state of 
the atomic commit controller as t .  The possibilities 
mapping relates 8 to t provided the following condi- 
tions are met: 

3. t.commit-requested = U s . [ ~ ]  commit-requested 
nEN 

U U m. commit-requested, 
mEs[c] .messages 

4. t.committed - - U committed 
nEN 

U U m.committed, 
mes[c] .messages 

5. t.aborted = U 8.[n]abrted U U maborted, 

6 .  t.reporfed = U s.[n]reported U U mreported, 

7 .  t.madp(T)= U s.[n]readp(T)U U m.ready(T) 

nEN mer[c] .messages 

nE N mE ate] .measclgas 

nEN m€s[c] .messages 
for each 2: where p r e n t ( T )  = TO, 

8. t.cnrshcount (n )  = ~ . [ ~ ] c I Y ~ s ~ c o u R ~ ( ~ )  for all sites 

9. t.crashrec(T) = ~.[site(T)]crashmc(T) for all ac- 

n, 

cesses T. 

In order to prove that this is a possibilities m a p  
ping, we need to use some invariants of the system. 
For example, in any state 8 of the distributed com- 
mit controller, if T E s.[n]create-requested or T E 
m.create-requested for some m E s[c].messages, then 
T E s[sile(prent(T))].creale-requested. Also, if T E 
s.[n]created or T E m.created for some m E s[c].messages, 
then T E s[site(T)].created. Similar properties hold 
for the other state components, reflecting that infor- 
mation available anywhere in the system must also 
be held at the site where the corresponding event oc- 
curred. 

A Resource Manager. It is quite straightfor- 
ward to provide a locally crash atomic object, sim- 
ply by taking any dynamic atomic algorithm (such aa 
those given in [3]) and keeping all its states on stable 
storage. In this case the object can vote to commit 
any transaction as soon as the vote is requested by a 
PREPAREREQUEST action. Of course, if this were 
implemented in a r ed  system, the performance would 
be terrible, since each action requires a write to stable 
storage, which is generally much slower th.an a write 
to volatile storage. Here we present an algorithm that 
provides local crash atomicity, and yet writes to sta- 
ble storage only when transactions vote, rather than 
at  every access. 

2. t.created = U e.[n]cmteti U U m.created, The algorithm we give is based closely on Moss's 
nEN mEr[c] .messages algorithm for read-update locking, as presented using 
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1/0 automata in [3]. In fact, during normal process- 
ing, the algorithm is identical (operating entirely on 
volatile state). The VOTE-YES action for any trans- 
action involves copying the current volatile state into 
stable storage, and the effect of a CRASH is to  destroy 
the existing volatile state, and cause it to be replaced4 
by the copy from stable storage (as recorded at the 
most recent VOTE-YES). It is easy to write a transi- 
tion relation for an automaton CVx, expressing these 
ideas. 

Correctness of the Resource Manager. The 
correctness of the algorithm described by CVx is for- 
mally expressed as the statement that CVx is locally 
crash atomic. To prove this statement, we consider 
any behavior /? of CVx. One can form a sequence 
clean(/?) as follows: delete any action in /? which is 
followed by a CRASH without an intervening VOTE- 
-YES (these are the actions whose effects are lost due 
to crashes), also delete ad PREPAREREQUEST, VOTE 
-YES, and CRASH actions, and finally append to the 
sequence a copy of every INFORM-COMMIT action in 
/?. The relationship between the code of CVx and that 
of Mx implies that cleun(p) is a behavior of Mx. Fur- 
thermore, if /? is autonomy-respecting then the set of 
events in /? that are locally visible to TO in p is exactly 
the same as the set of events that occur in clean(/?) and 
are locally visible to TO in clean(/?). Also, the local- 
completion order in clean(/?) is a subrelation of the 
local-completion order in p. Thus each sequence that 
is in local-views(/?) is a reordering, consistent with the 
local-completion order, of the events in clean(/?) that 
are visible to To. The paper [3] shows Mx to be lo- 
cally dynamic atomic, which means that each of these 
sequences is a behavior of Sx .  Since this holds for an 
arbitrary autonomy-respecting behavior of CV,, this 
is exactly what is needed to show that CVx is locally 
crash atomic. 

In fact, one can modify the algorithm and improve 
the performance markedly, by writing far less to stable 
storage during a VOTE-YES. In fact, all that needs 
to be saved (and later restored) are the locks and ver- 
sions held for transactions that are either TO itself, or 
children of TO. 

5 Conclusion and further work 

We have proposed a specification of transaction man- 
agement, identifying requirements on the commit pro- 
tocol and also on the conditions under which sites 

‘ h a l l  that we have included the complete poet-crash 
restart process in our model as part of the CRASH action 
itself. 

may vote to commit. We have shown that transac- 
tional semantics are produced by systems that fit this 
framework, and also how one can then present specific 
protocols with the required properties. 

There is much that can still be done. The dis- 
tributed commit protocol we have presented is not 
itself efficiently fault-tolerant; that is, the CRASH ac- 
tion does not damage the information used by the lo- 
cal manager itself, so all of this must be kept on stable 
storage. In fact, the usual two-phase commit protocols 
are designed to  tolerate failures of this sort, while not 
keeping much information in stable storage. It would 
be good to adapt these algorithms to maintain crash- 
counts, and then veriry that the resulting systems do 
compose to implement the atomic crash controller. 

It would also be interesting to model and verify 
other specifications for commit protocols, such as those 
corresponding to the traditional specification in which 
the commit protocol need not maintain crash-counts. 
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REQUEST-CREATE(T) 
Effect: 

a .create-nqueated 
= s'.cncte-nqu&cd U {T} 

R E Q U E S T C O M M I T ( T  ,U) 

Effect: 
8 .  commit -requested 

= s'.co"it-nqucstcd U {(T, U)} 

CREATE(T) 
Precondition: 

Effect: 
T E s'.mate-nqueatcd - a'.crcatcd 

#.mated = a'.mated U {T} 

COMMIT(T), where pamt (T)  # TO 
Precondition: 

(T, U) E a'.commit-nqucated 
T s' .completed 

s.committed = #'.committed U {T} 
Effect: 

ABORT(T) 
Precondition: 

Effect: 
T E d . ~ t e - ~ e 8 t e d  - #' .e~nplet~d 

*.aborted = a'.aborted U {T} 

VOTE-YES-AT(X)FOR(T) 
Effect: 

a.ready(T) = s'.nady(T) U { X )  
if s f .mhnc(T')  = a'.mheount(dte(X)) 

for every T' E s'.includcd(T,X) 
s.nady(T) = sf.nady(T) otherwise 

CRASH(n)  
Effect: 

s .mhcount(n) = a'.mAcount(n) + 1 

PREPAREREQUESTAT(T)FOR(X) 
Precondition: 

(T, U) E a'.co"it-nqucsted for some U 

REPORT-COMMIT(T,u) 
Precondition: 
T E d.MnnmittCd 
(T,u) E a'.commitaqueatcd 
T 4 a'.nported 

a.nportcd = r'.nported U {T) 
Effect: 

REPORT-ABORT(T) 
Precondition: 

T E 8' .*d 
T 4 8'.Feported 

S . ~ p O r t e d  = 8'.npOrted U {T} 
Effect: 

INFORM-COMMIT-AT(X)OF(T) 
Precondition: 

T E 8' .committed 

INFORMABORT-AT(X)OF(T) 
Precondition: 

T E #'.aborted 

REQUEST-COMMIT(T,u), T an a,cc%~ 
Effect: 

a.commit-nqucrted = 
a'.commitnqueatedU {(T,u)) 

# . m h n c ( T )  = r'.mhcount(n) 
where n = dtc(T) 

COMMIT(T), p a n t ( T )  = TO 
Precondition: 

(T, U) E s'.commataqueated for nome U 
T # a'.completed 
d.involved(T) E s'.nody(T) 

#.committed = #'.committed U {T} 
Effect: 

Figure 1: Transition Relation for the Atomic Commit Controller 



R E Q U E S T - C R E A T E ( T )  
Effect: 

s.mate-nquated = a'.mate,nquwted U { T }  

R E Q U E S T - C O M M I T (  T ,v )  
Effect: 

a.commit-nqueated = s'.co"it-nquerted U {(T, U)} 
s.inc(T,X) = UT,Echildren(T)n,,.committad s'min4T'9 

for each X 
s.creshnc(T) = s ' .mhcount (n)  if T is an access 

V O T E - Y E S - A T ( X ) F O R ( T )  
Effect: 

s.ready(T) = s'.nady(T) U { X }  
if s ' . m h n c ( T ' )  = s ' .mhcount (n)  

for each T' E s'.inc(T,X), 
a.nady(T) = a'.nody(T) otherwise 

R E C V ( m ) A T ( n ) F R O M ( p )  
Effect: 

s. create-rquented = 8'. mate-nquertedu 

s.mated = s'.created U m.created 
8. commitscquented = 8' .commit-requertedU 

s.co"itted = s'.co"itted U m.co"itted 
8.aborted = a'.aborted U m.aborted 
8.nported = s'.nported U m.nported 
s .nady(T)  = s'.nady(T) U m.nady(T)  

e.inc(T,X) = s'.inc(T,X) U m.inc(T,X) 

s . m h n c  = s ' . m h r e c  U m . m h n c  

C O M M I T ( T ) ,  (where pamrt(T)  # TO) 
Precondition: 

m.mate-nquerted 

m.commit-nquested 

for each top-level T 

for each T and each X 

(T, U) E s'.commit-requented for mme U 

T 4 s'.completed 

s.co"itted = s'.committed U { T }  
Effect: 

R E P O R T - C O M M I T ( T , u )  
Precondition: 

T E a'.committed 
(T, v) E s'.co"it-nquerted for mme U 

T 4 s'.nported 

a.nported = s'.nported U { T }  
Effect: 

R E P O R T A B O R T ( T )  
Precondition: 

T E s'.akrted 
T e s'.nported 

s.nported = s'.nported U { T }  
Effect: 

C R A S H ( n )  
Effect: 

a.mhcount (n)  = s'.creshcount(n) + 1 

PREPAREJLEQUEST-AT(X)FOR(T) 
Precondition: 
(T, U) E a'.co"it-nquested for some v 

C R E A T E ( T )  
Precondition: 

Effect: 
T E s'.create-nquested - s'.mated 

8.mated = s'.mated U ( T }  

C O M M I T ( T ) ,  (where pamrt(T)  = TO) 
Precondition: 

(T ,u)  E r'.co"it-nquerted for some U 

T r'.unnpleted 
r'.inuolued(T) C s'.nady(T) 

8.co"itted = s'.co"itted U { T }  
Effect: 

A B O R T ( T )  
Precondition: 

Effect: 
T E s'.mate-nquwted - s'.completed 

s.aborted = a'.aborted U { T }  

I N F O R M X O M M I T A T ( X ) O F ( T )  
Precondition: 

T E s'.co"itted 

I N F O R M A B O R T A T ( X ) O F ( T )  
Precondition: 

T E s'.aborted 

S E N D ( m ) A T ( n ) T O ( p )  
Precondition: 

m . m a t e - v e n t e d  C s'.mate-mquested 
m.mated C r'.mated 
m.commit-nquated C s'.co"it-nqueuted 
m.committed s'.co"itted 
m.aborted C s'.abded 
m.nported C s'.nported 
m.nody(T)  C s'.nady(T) 

for each top-level T 
m.inc(T, X )  s'.inc(T, X )  

for each T and each X 
if ((T, U) E m.co"it-nquested for some U, 

T 4 m.completed, pannt (T)  = TO, 
and i t e ( T )  = n), 

or (T E m.co"itted and site(T) = n), then 
m.inc(T, X )  = s'.inc(T, X )  for each X 

m . m h n c  s ' . m h n c  
if T E m.inc(T',X) for any T ' , X ,  then 

m.rrcrshnc(T) = s ' . m h n c ( T )  

Figure 2: Local Manager Transition Relation 


