
Modular Reasoning about Open Systems:
A Case Study of Distributed Commit

R. Das

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge MA 02139, U.S.A.

Abstract

We show how to w o n about distributed database
management systems, in which a commit protocol is
wed to coordinate activity of several resource man-
agers. This is an interesting case study of an open
system, in which each component U developed inde-
pendently to operate with many possible environments.
We give specifications for each resource manager, and
a specification for the commit protocol, and show that
the whole system is correct as long as each component
has the properties required of at. We then show how to
prove that specific examples have these properties.

1 Introduction

Commercial computing has changed radically in re-
cent years. Instead of proprietary systems in which all
components are designed specifically for use together,
there are open systems where components are taken
off-the-shelf and combined. A component of an open
system needs to work correctly with many different
environments. This naturally raises the question of
how to specify the requirements on a component. We
want to know that the whole system will be correct,
provided each component is independently developed
to meet its own specification.

In this paper, we examine one type of system in
this way. Our focus is on transaction management
in distributed database management systems. These
systems are built from separate resource managers,
each of which maintains a collection of information.
Transactions axe provided by users, and each can ac-
cess data in several resource managers. Linking these
is a commit protocol that ensures that a transaction
does not commit at any site unless its effects are in-
stalled at every site where it ran, despite system fail-
ures (“crashes”) that can cause changes to be lost.
The commit protocol is provided by a transaction pro-

A. Fekete

Department of Computer Science
University of Sydney

Sydney 2006, Australia

cessing monitor that is distributed through the sys-
tem, but designed independently of the resource man-
agers.

The classic work of Lindsay et al. [4] presents an
algorithm to provide transparently distributed trans-
actions. However, the algorithm is given as an inte-
grated system. The mechanism of commit processing
is generally abstracted from the complete algorithm
under the name of the two-phase commit protocol. A
number of alternative mechanisms have been proposed
for use in a transaction processing monitor. For ex-
ample, Mohan, Lindsay and Obermack [7] show how
to modify two-phase commit so that fewer messages
and forced log-writes are needed.

Most of the discussions of commit protocols present
an abstract specification expressing requirements on
a commit protocol. There is a particularly clear ac-
count of this in Section 7.3 of Concurrency Control
and Recovery in Database Systems [l]. In that book
five properties (AC1-AC5) are defined. The interface
between the commit protocol and the sites is that each
site, where transaction T ran, casts a “vote” (either
Yes or No), and the protocol determines whether to
commit T or abort it. The essential property is AC3,
which says the protocol is required not to commit T
except in cases where all votes are Yes.

For use in an open system, however, one must also
characterize the behavior of the resource managers. In
particular, one must give a condition on when a man-
ager should vote Yes. This is generally treated very
loosely in the database literature. For example, Mo-
han et al. [7] state that a Yes vote indicates that the
site “is willing to commit the transaction” and has
“force-writ[ten] a prepare log record”. The concept
of willingness is not further explained in their paper.
Bernstein et al. provide (11 a more detailed discussion,
where they state that a site may vote Yes as long as
“every value read by T at that site was written by a

30
1063-6765/93 $3.00 Q 1993 IEEE

transaction that committed” and also “all values writ-
ten by T at that site are in stable storage - the stable
database or the log”. Unfortunately, one can construct
a system in which each Resource Manager follows the
usual rules for two-phase locking, and votes according
to the principle given by [l], and where the commit
protocol satisfies AC1-AC5, and yet where executions
exist that violate transaction semantics. The problem
is that a site may process a read operation for transac-
tion T, and a later crash might cause the read-lock to
be lost (since lock-tables are kept in volatile memory
until a transaction prepares to commit). The rules of
Bernstein et al. [l] make the site “willing to commit”
the transaction. Serializability might be violated, as
in the following example involving two transactions T
and T’ at two sites x and y, each containing one data
item. The following history can occur: T reads x, x
crashes and recovers - removing the read lock held by
T, T’ writes x, T’ writes y, TI commits, T reads y. In
this history by the rules of Bernstein et al. [l], both x
and y can vote Yes for committing T. If T commits,
serializability is violated.

The importance of proving the correctness of the
system (as well aa just specifying the components)
is shown by incorrect descriptions in several text-
books. For example, the classic text of Ceri and Pela-
gatti [2] states that “each participant corresponds to
a subtransaction which has performed some write ac-
tion”. If the two-phase commit protocol is run in
this way (i.e., not including read-only sites among
the participants), and each resource manager keeps its
lock-tables in volatile store, then serializability (and
database integrity) can be violated, due to loss of read-
locks during a crash, just as in the example above.

The specification we give uses the same style of vot-
ing interaction, but it is based on a quite different idea
from the traditional ones. In essence, we regard a Yes
vote as meaning “the resource manager will not in the
future lose information about the transaction, despite
any later crash”. Because of this, the commit proto-
col must check that each manager voted Yes, and also
that earlier activity of the transaction was not lost
in a crash before the vote; it uses a cwh-count for
each site to accomplish this. The mechanism of crash-
counts is taken from the Argus system [SI; a related
mechanism of “low-water marks” was used by Lindsay
et al. [4]. Because this is a stronger requirement on
the commit protocol than the usual one, we are able
to use a very simple and permissive specification for
the each resource manager.

In this paper, we deal with a distributed system
supporting nested transactions. Nested transactions

allow the activity of a transaction to be divided among
multiple concurrent “subtransactions”, which are pro-
tected from interfering with one another. Our work is
done using 1/0 automata [SI as a model. The salient
features of the formal model are that it allows descrip-
tion of both problem statements and implemented sys-
tems; that the aspect of any entity that is regarded as
significant is the set of possible behaviors, that is, se-
quences of interactions (actions) between the entity
and the environment; that it allows one to use state
to generate the behaviors required; and that it has
theorems that support modular (piece-by-piece) and
hierarchical (step-by-step) examination of a complex
system. The model includes coverage of liveness is-
sues, but only safety conditions are considered here.

In this paper we first describe the architecture of
the system. There are transaction automata, repre-
senting the code supplied by the users. There are
crashing object automata, representing resource man-
agers. There are local managers, that collectively (to-
gether with the communication medium) provide a
transaction processing monitor. In Section 2 we list
the actions that are in the interface of each compo-
nent. We also state the top-level requirement, that ex-
presses that the whole system acts correctly. Then in
Section 3 we give specifications for the separate com-
ponents. For a resource manager, the requirement is a
condition on the behavior of the manager, saying that
when the sequence is reordered in certain ways, that
what results is allowed by the type definition of the re-
source. For the local managers, we require that their
collective behavior is a behavior allowed to a particular
automaton (called the atomic commit controller). In
Section 4, we show the correctness of any system built
from components each with the appropriate property,
and also show by example how to verify that partic-
ular resource managers or commit protocols have the
properties required of them.

2 The system structure

The model links d transactions together into a
tree, organized by the parent-child relationship be-
tween a caller and the called transaction. For uni-
formity, we include a root transaction TO correspond-
ing to the human users, so that “top-level” transac-
tions appear as children of TO. For simplicity, we aa-
sume that each transaction’s name encodes all relevant
facts, including its arguments, the code it runs, and
the site where it runs. We also include as leaves of
the tree, all the accesses to resource managers, each
as a child of the transaction that invoked it. If T is
an access to the resource X, and v is its return value,

we call the pair (T,v) an operation of X.
Now we can define the system decomposition appro-

priate for describing a system in which sites can crash,
and where some commit protocol is used to check be-
fore the commit of a top-level transaction. Specifi-
cally, we define a crush system, which is composed of
tmnsaction automata, crushing object automata, local
manager automata and a communication medium. We
refer to the sequence of actions that can occur in an
execution of a crash system as a crush behavior.

Transaction Automata. A non-access transac-
tion T is modeled as a tmwaction automaton AT.
The CREATE input action “wakes up” the transac-
tion. Each REQUEST-CREATE output action is a
request by T to create a particular child transaction
(including a child access as a special case). Each
REPORT-COMMIT input action reports to T the suc-
cessful completion of one of its children, and returns
a value recording the results of that child’s execution.
Each REPORTABORT input action reports to T the
unsuccessful completion of one of its children, with-
out returning any other information. The REQUEST-
-COMMIT action is an announcement by T that it has
finished its work, and includes a value recording the
results of that work. We leave the executions of partic-
ular transaction automata largely unconstrained; the
choice of which children to create and what value to
return will depend on the particular implementation.

Notice that we model separately the parent invocat-
ing a child, and the child beginning to run, since in a
distributed system there will be a delay while the mes-
sage is transmitted. For uniformity, we use the same
notation (REQUEST-CREATE and later REPORT-
-COMMIT) to model the request for an access to per-
form some action at a resource manager, and the sub-
sequent response, as we use for subtransactions.

Crashing Object Automata. A crashing object
automaton Cx represents one resource manager. It
encapsulates the data stored for the resource X, in-
cluding perhaps multiple versions, log entries, locks or
timestamps. In the theory of [3], each resource also
comes with a serial specification Sx, that represents
its type in the absence of concurrency and failure.

The crashing object automaton CX has an in-
terface through which it receives invocations of ac-
cesses (CREATE) and returns results (REQUEST-
-COMMIT), and receives information about the fate
of transactions (INFORM-COMMIT and INFORM-
ABORT). In this, it is similar to the generic object of
[3]. It also has an extra CRASH action and two extra
classes of actions: PREPAREREQUEST and VOTE
-YES. The CRASH action models the loss of volatile

storage at the site where the object resides.l Notice
that since CRASH is an input, it may occur at any
time (because of the input-enabled rule of the 1/0 au-
tomaton model). A PREPAREREQUEST action in-
dicates to the object that a top-level transaction (that
is, a child of TO, where TO models the user of the sys-
tem) has finished running, and the object should then
save the transaction’s results on stable storage. Once
this has been done, the VOTE-YES action is the ob-
ject’s response, announcing that it will be able to pro-
cess a later INFORM-COMMIT action properly, even
if CRASH events occur. (We do not include an ex-
plicit negative response to a PREPAREREQUEST in
our model; rather, if no positive response is given, the
transaction can never commit. In practice, a timeout
would eventually lead to the transaction aborting.)

Local Manager Automata. We model the ac-
tivity of the commit protocol at a single site n by
a local manager automaton L,, which represents the
transaction manager. Once a top-level transaction
requests to commit, it is the local manager that is-
sues any PREPAREREQUEST action to a resource
manager located at the site, and that reacts to the
VOTE-YES action in response. Different local man-
agers interact with one another by passing messages:
the SEND actions and RECV actions model the send-
ing and receipt of messages, respectively. For simplic-
ity, we use the local managers for all communication2
between sites. For example, the local manager also
accepts a REQUEST-CREATE action from a trans-
action at the site, and sends a message to its peer
at the site of the requested child. On receiving this
information the local manager issues the CREATE ac-
tion to the child transaction (or resource manager,
in case the child is an access). Similarly the local
manager accepts a REQUEST-COMMIT input from a
transaction or resource manager, acts to complete the
transaction (either COMMIT or ABORT), and then
sends information to the local manager at the site
where the parent is running, after which that manager
issues the REPORT-COMMIT or REPORTABORT
action as appropriate. The information about com-
pletion is also sent to local managers at other sites,
so that resource managers can be given information
in INFORM-COMMIT or INFORM-ABORT actions.
We also assume that the local manager can be affected

When specific algorithms are discussed, as in section 4, the
CRASH will have the effect of causing the state to change to
some value that depends only on the previous value of the stable
components.

*In commercial systems, it is more common for the resource
managers to communicate directly, passing to the commit pro-
tocol indications of what is being done.

32

by the crash of the site.
The Communication Medium. The commu-

nication network is also modelled, as an automa-
ton. The interface of the communication network
automaton is as follows. The input actions are
SEND(m)AT(n)TO(p), and the output actions are
RECV(m)AT(n)FROM(p).

Requirements for the Crash System. Next,
we state a specification for the complete distributed
database management system, representing a closed
universe containing users and user-supplied code
(transaction automata) resource managers (crash ob-
ject automata), peers forming the commit protocol
(local manager automata), and an underlying message
passing communication medium. The key property re-
quired of a distributed database management system
is transparency, that is, the system should not be func-
tionally distinguishable from a single-site database
management system (DBMS). Since any single-site
DBMS supports transactions, the distributed system
must do so too. We use the approach of Fekete et al..
Precise details of the definition can be found in [3], but
in essense, we define an ideal system, called a serial
system, in which the same transaction automata are
present, but the execution is controlled so that sibling
transactions are run without concurrency, no transac-
tion fails after taking some steps, and each resource
is implemented by its abstract type without concur-
rency control or recovery mechanisms. We say that a
particular execution (Y of a DBMS is serially correct
for TO provided there exists an execution a' of the se-
rial system such that the activity of TO (representing
the users) is the same in the two sequences. We will
use exactly the same definition as the requirement on
a crash system: every execution of the crash system
must be serially correct for TO.

3 Specifications of the components

Requirements on Transaction Automata. We
make only minor restrictions on the construction of
transaction automata, since these represent code pro-
vided by the user. We require that each automaton
preserve transaction well-formedness. A transaction
well-formed sequence is always a prefix of a sequence
that starts with CREATE(T), ends with REQUEST-
-COMMIT(T,u), and in between has some interleaving
of a collection of two-element sequences REQUEST-
-CREATE(T')REPORT~COMMIT(T',u'), for Various
children T' of T. Thus each transaction automaton
must not issue any output that violates this pattern,
unless it had already been violated by an earlier input.
Notice that we do not restrict the transaction's choice

of which children to request, nor its choice of return
value.

Requirements on Crash Object Automata.
We now formally define the concept of local crash
atomicity, which is the obligation we place on each
resource manager. In essence, as in dynamic atomic-
ity in [3], the obligation is that in each crash behavior,
the values returned to accesses by the crash object aw
tomaton must be such that the serial specification of
the resource is allowed to act in the way described by
rearranging these accesses into any order that might
have occurred in a serial execution if siblings are run
in the order given by their time of completion in real
(concurrent) system.

We first collect some elementary properties of a
crashing object under the term crashing object well-
fonnedness. A sequence p of actions t is said to be
crashing object well-formed for X provided that all
the following conditions hold: there is at most one
CREATE(T) event in p for any access T ; there is at
most one REQUEST-COMMIT event in p for any ac-
cess T ; if there is a REQUEST-COMMIT event for T
in p, then there is a preceding CREATE(T) event in p;
if there is a VOTE-YES event for T in p, then there is
a preceding PREPAREREQUEST event for T in p; if
an INFORM-COMMITAT(X)OF(T) event occurs in
p and T is an access to X, then there is a preceding
REQUEST-COMMIT event for T; there is no trans-
action T for which both an INFORM-COMMIT event
and an INFORMABORT event at x for T occur in
p. We require that the crashing object automaton
preserve crashing object well-formedness.

We define local visibility: we say that T is lo-
cally visible to T' in a sequence p of actions
of a crashing object Cx if p contains INFORM-
-COMMITAT(X)OF(CI) for every U in ancestors (2')-
ancestors (TI). We also define local-completion (p) to
be the binary relation on accesses to X where (U, U') E
local-completion(@) if and only if U # U', /3 con-
tains REQUEST-COMMIT events for both U and U',
and U is locally visible at X to U' in p', where /?'
is the longest prefix of /3 not containing the given
REQUEST-COMMIT event for U'. Define a sequence
(of operations of X to be transaction-respecting pro-
vided that for every transaction name T, all the op-
erations for descendants of T appear consecutively in
<*

Suppose that p is a finite crash object well-
formed sequence of external actions of Cx. Then
local-views(p) is the set of sequences defined as fol-
lows. Let 2 be the set of all operations (T,v) , such
that REQUEST-COMMIT(T,u) occurs in p and T is

locally visible at X to TO in p. Then the elements
of local-views(p) are all the sequences that can be
formed by reordering Z according to a transaction-
respecting total ordering consistent with the partial
order local-completion (p) on the transaction compo-
nents, and then replacing each operation (T,v) by
CREATE(T)REQUEST-COMMIT(T,u). We say a se-
quence p of actions of Cx is autonomy-respecting for
X provided that the following holds for every T that is
an access to x: if p contains a REQUEST-COMMIT
event 4 for T and T is locally visible to To in /3, then
there is a VOTE-YESAT(X)FOR(CI) event ?r that fol-
lows 4 in p, and furthermore no CRASH event oc-
curs between 4 and a in p, where U is the unique
transaction such that T is a descendant of U and
parent (U) = To.

We can now combine all the above definitions, to
express formally the obligation placed on each resource
manager. We say that crashing object automaton Cx
for object name X is locally crash atomic if whenever
/3 is a finite crashing object well-formed behavior of
Cx that is autonomy-respecting then every sequence
in local-views(P) is a finite behavior of Sx.

Requirements on Local Manager Automata.
We express our requirements on the local managers
in a very different way. Rather than specify one lo-
cal manager, we make a condition on the composition
of all the local managers together with the communi-
cation medium. To express this condition, we define
an explicit global automaton called the atomic com-
mit controller, that acts as a specification of the com-
mit protocol service as a whole. We then require that
whenever a is a sequence of actions that is a transac-
tion well-formed and crashing-object well-formed be-
havior of the composition of local managers and com-
munication medium, then Q is also a behavior of the
atomic commit controller.

It
is the maximally non-deterministic global automa-
ton that acts as required for a transaction process-
ing monitor, using the semantics described in the in-
troduction. Fundamentally, it acts as a communica-
tion medium. For example, it receives REQUEST-
-COMMIT(T,u) from T , reaches an internal decision
point represented as COMMIT(T), and eventually
gives REPORT-COMMIT(T,v) to T’s parent, and also
passes INFORM-COMMITAT(T)OF(X) to CX. In
this, it behaves in much the same way as the generic
controller in Fekete et al. [3]. The main additional
feature is that, after a top-level transaction T has re-
quested to commit but before the commit occurs, the
controller asks objects to prepare to commit the trans-

There is a single atomic commit controller.

action, that is, to store its effects so that future crashes
will not destroy the information. Each object involved
issues a vote when this has been done, and the trans-
action can commit only when a vote has been received
from every object at which a (non-orphan) descendant
access has run. The controller also checks that the de-
scendant accesses at any site all ran within the same
incamatton of that site as the VOTE-YES action.

Each state s of the atomic commit controller con-
sists of the following components: s.create-requested,
s.created, s.commtt,requested, s.committed, s.aborted
and s.reported, s .mlrcount, s.cmhrec, and $.ready.
The first six are sets of transactions or operations, and
they simply record the actions that have happened;
they are already present in the generic controller of
[3]. The component s.ciushcount is a function from
site names to non-negative integers. For any site n,
ciushcount(n) is initially zero. In any state it rep-
resents the number of crashes that have occurred at
the site n. The component s.ready is a function from
top-level transaction names (those which are children
of TO) to sets of objects. Initially s.ready(T) is the
empty set. In any state it represents the objects that
are able to commit T . The component s.crashrec is a
partial function from access names to non-negative in-
tegers. Initially s.cro;shrec(T) is undefined, and in any
state it represents the number of crashes of the site of
T that occurred before the REQUEST-COMMIT for
T.

We introduce derived variables, writing 8.completed =
s.committedUs.aborted, and, for each T , writing s.visible(T)
for the set of transaction names 2” such that every ele-
ment of ancestors(T‘)-ancestors(T) is in smmmitted;
we also define s.included(T,X) to be s.visible(T) n
descendants (T) n accesses(X); we define s.inuo1ved (T)
to be the set of object names X such that s.included(T, X)

Figure 1 shows the code of the atomic commit con-
troller. The transitions for REQUEST-CREATE, CREATE,
ABORT, REPORT-COMMIT, REPORTABORT,
INFORM-COMMIT and INFORMAABORT actions, and
also for COMMIT transitions for transactions except
those whose parent is TO, and REQUEST-COMMIT
actions for transactions that are not accesses, are all
straightforward (and identical to those in [3]). They
simply record requests in appropriate variables, and
deliver them later. The transition for the CRASH ac-
tion simply increases the appropriate crashcount. The
transition for a VOTE-YES action records the site in
the ready set, provided the cmshcount indicates that
the vote occurs when no preceding CRASH could have
destroyed needed information. Notice how the seman-

0.

tic requirement on the commit protocol is expressed in
the precondition of the COMMIT of a top-level trans-
action, which checks that each participant (that is,
each site in inuolued(T)) has voted at an appropriate
point (as indicated by being in ready(T)).

4 Verification

Having proposed a collection of requirements for
the components of a crash system, we still need to
prove the correctness (according to the requirements
for the whole system) of a crash system in which each
component meets the appropriate condition. We will
also need ways to prove that specific components do
meet their separate requirements.

Correctness of the Component Specifications.
The value of our collection of requirements on compo-
nents is expressed in the following Theorem.

Theorem 4.1 Suppose that each transaction automa-
ton preserves transaction well-fonnedness, that each
crashing object automaton preserves cmshing object
well-formedness and is local cmsh atomic, and that
every well-formed behavior of the composition of all
the local managers with the communication medium is
also a behavior of the atomic commit controller. Then
each behavior of the system is serially correct for TO.

This result can be proved by using Proposition 46
of [3], which expresses the fundamental intuition that
the users see satisfactory behavior so long as each ob-
ject returns d u e s in such a way that when serial-
ized in the completion order, the activity is allowed
by the serial specification. Once the definitions are
all unwound, the constraint on the local managers
imply that the behavior p of each crashing object
is autonomy-respecting, and that the serialization in
completion order is one of the sequences in the set
local-views(p). The local crash atomicity of the crash-
ing object now implies that this sequence is a behavior
of the serial specification, exactly as needed to apply
Proposition 46 of [3].

strate the modularity afforded by our system decom-
position, and present one way to construct local man-
agers that collectively provide the functionality of the
atomic commit controller. The algorithm used is based
on the standard two-phase commit protocol. Our pre-
sentation retains a lot of generality through nondeter-
minism. For example, we allow a large choice in which
information to send in a message, and in which desti-
nations it is sent to. More detailed algorithms may
make specific restrictions, sending information only

A Particular Commit Protocol. Here we demon-

when needed, and only to sites that need to know.
The correctness of such a detailed algorithm will fol-
low from the correctness of this one, since the detailed
algorithm will have as its behaviors a subset of the be-
haviors of the non-deterministic algorithm we present.

The local manager L, at site n has the interface
described above. The state components of state 8 of
the local manager L, include all those that are compo-
nents of a state of the atomic commit controller, with
the same types and initial values. Each component
represents what is known at the site n about transac-
tion status, etc., corresponding to the variable of the
same name in the atomic commit controller? There
is also an additional state component e.inc. For each
transaction name T and object name X , s. inc(T,X)
is a set of accesses to X . Initially s. inc(T,X) is { T } if
T is an access, and otherwise it is empty. The compo-
nent e.inc reflects local knowledge corresponding to
the derived variable included in the atomic commit
controller.

s.committed Us.aborted; for each T , e.uisible(T) is the
set of transaction names T’ such that every element
of ancestors (T’) -ancestors (T) is in 8. committed ; for
each top-level T , u.inuolued(T) is the set of object
names X such that s. inc(T,X) # 0.

In our system, we will use the following format for
the messages sent between local managers: a message
is a record whose components axe those of a state of a
local manager except for c ” m t . Thus a message
indicating that T has committed could be modeled as
a record m in which m.committed = {T} , and the
other components are empty. By using this general
notation, we allow ourselves to model piggybacking
multiple information into a single message, and also
make the code easy to write.

The transition relation of a local manager automa-
ton is given in Figure 2.

At thie point, a few words must be mentioned about
the SEND output action of the local manager au-
tomata. As can be seen from the transition relation,
the effect of the SEND(m)AT(n)TO(p) action the
placing of a subset of the total state information of a
local manager in the message. However, we have to en-
sure that the “right” information reaches the “right”
site at the “right” time. This is important, for ex-
ample, when determining the liat of participants in
a commit decision. Hence, we adopt a piggybacking
strategy which gives such a guarantee. For example,

S ~ ~ r uniformity, we retain rrashcount CUJ a function from sites
to integers, though in fact we ignore all the values recorded for
sites other than n itself.

We use three derived state components: 8.completed =

35

we piggyback the inc information for a transaction
T with any message from T's site recording T as in
m.committed, ensuring that both the inc information
for T and the committed information reach any desti-
nation site at the same time.

The communication network we consider is neither
lossless nor order-preserving, but it does not allow
corruption or duplication of submitted messages. It
is modelled as an automaton. Each state 8 of the
communication network automaton consist of just one
component: s.messages. Thus, each state is just a set
of messages. The input action SEND(m)AT(n)TO(p)
adds a message, whose destination is node p, to the
set, and the output action RECV(m)AT(n)FROM(p)
delivers a message to p only if it is in the set, and
deletes the message from the collection of messages,
preventing multiple deliveries.

Correctness of the Commit Protocol. The
correctness of the commit protocol described above is
expressed formally by saying that for any behavior of
the system ("the distributed commit controller") that
is the composition of all local manager automata to-
gether with the communication network automaton,
the subsequence of that behavior (consisting of ac-
tions in the interface of the atomic crash controller)
is a behavior of the atomic commit controller. We re-
mark that this subsequence is exactly the subsequence
formed by hiding all SEND and RECV actions.

The correctness is shown with the help of a possi-
bilities mapping [SI relating states of the distributed
commit controller and states of the atomic commit
controller. The mapping relates states that represent
"essentially" the same information. Let us denote a
state of the dietributed commit controller by 8, which
is given by a state for each component: 8[n] for the
state of the local manager at site n, and s[c] for the
state of the communication medium. For brevity, we
abuse notation by writing m E 8[c].messages to refer
to the set of m for which there exist p and q such that
(m,p ,q) is in s[c].messages. Let us denote a state of
the atomic commit controller as t . The possibilities
mapping relates 8 to t provided the following condi-
tions are met:

3. t.commit-requested = U s . [~] commit-requested
nEN

U U m. commit-requested,
mEs[c] .messages

4. t.committed - - U committed
nEN

U U m.committed,
mes[c] .messages

5. t.aborted = U 8.[n]abrted U U maborted,

6 . t.reporfed = U s.[n]reported U U mreported,

7 . t.madp(T)= U s.[n]readp(T)U U m.ready(T)

nEN mer[c] .messages

nE N mE ate] .measclgas

nEN m€s[c] .messages
for each 2: where p r e n t (T) = TO,

8. t.cnrshcount (n) = ~ . [~] c I Y ~ s ~ c o u R ~ (~) for all sites

9. t.crashrec(T) = ~.[site(T)]crashmc(T) for all ac-

n,

cesses T.

In order to prove that this is a possibilities m a p
ping, we need to use some invariants of the system.
For example, in any state 8 of the distributed com-
mit controller, if T E s.[n]create-requested or T E
m.create-requested for some m E s[c].messages, then
T E s[sile(prent(T))].creale-requested. Also, if T E
s.[n]created or T E m.created for some m E s[c].messages,
then T E s[site(T)].created. Similar properties hold
for the other state components, reflecting that infor-
mation available anywhere in the system must also
be held at the site where the corresponding event oc-
curred.

A Resource Manager. It is quite straightfor-
ward to provide a locally crash atomic object, sim-
ply by taking any dynamic atomic algorithm (such aa
those given in [3]) and keeping all its states on stable
storage. In this case the object can vote to commit
any transaction as soon as the vote is requested by a
PREPAREREQUEST action. Of course, if this were
implemented in a r ed system, the performance would
be terrible, since each action requires a write to stable
storage, which is generally much slower th.an a write
to volatile storage. Here we present an algorithm that
provides local crash atomicity, and yet writes to sta-
ble storage only when transactions vote, rather than
at every access.

2. t.created = U e.[n]cmteti U U m.created, The algorithm we give is based closely on Moss's
nEN mEr[c] .messages algorithm for read-update locking, as presented using

98

1/0 automata in [3]. In fact, during normal process-
ing, the algorithm is identical (operating entirely on
volatile state). The VOTE-YES action for any trans-
action involves copying the current volatile state into
stable storage, and the effect of a CRASH is to destroy
the existing volatile state, and cause it to be replaced4
by the copy from stable storage (as recorded at the
most recent VOTE-YES). It is easy to write a transi-
tion relation for an automaton CVx, expressing these
ideas.

Correctness of the Resource Manager. The
correctness of the algorithm described by CVx is for-
mally expressed as the statement that CVx is locally
crash atomic. To prove this statement, we consider
any behavior /? of CVx. One can form a sequence
clean(/?) as follows: delete any action in /? which is
followed by a CRASH without an intervening VOTE-
-YES (these are the actions whose effects are lost due
to crashes), also delete ad PREPAREREQUEST, VOTE
-YES, and CRASH actions, and finally append to the
sequence a copy of every INFORM-COMMIT action in
/?. The relationship between the code of CVx and that
of Mx implies that cleun(p) is a behavior of Mx. Fur-
thermore, if /? is autonomy-respecting then the set of
events in /? that are locally visible to TO in p is exactly
the same as the set of events that occur in clean(/?) and
are locally visible to TO in clean(/?). Also, the local-
completion order in clean(/?) is a subrelation of the
local-completion order in p. Thus each sequence that
is in local-views(/?) is a reordering, consistent with the
local-completion order, of the events in clean(/?) that
are visible to To. The paper [3] shows Mx to be lo-
cally dynamic atomic, which means that each of these
sequences is a behavior of Sx . Since this holds for an
arbitrary autonomy-respecting behavior of CV,, this
is exactly what is needed to show that CVx is locally
crash atomic.

In fact, one can modify the algorithm and improve
the performance markedly, by writing far less to stable
storage during a VOTE-YES. In fact, all that needs
to be saved (and later restored) are the locks and ver-
sions held for transactions that are either TO itself, or
children of TO.

5 Conclusion and further work

We have proposed a specification of transaction man-
agement, identifying requirements on the commit pro-
tocol and also on the conditions under which sites

‘ h a l l that we have included the complete poet-crash
restart process in our model as part of the CRASH action
itself.

may vote to commit. We have shown that transac-
tional semantics are produced by systems that fit this
framework, and also how one can then present specific
protocols with the required properties.

There is much that can still be done. The dis-
tributed commit protocol we have presented is not
itself efficiently fault-tolerant; that is, the CRASH ac-
tion does not damage the information used by the lo-
cal manager itself, so all of this must be kept on stable
storage. In fact, the usual two-phase commit protocols
are designed to tolerate failures of this sort, while not
keeping much information in stable storage. It would
be good to adapt these algorithms to maintain crash-
counts, and then veriry that the resulting systems do
compose to implement the atomic crash controller.

It would also be interesting to model and verify
other specifications for commit protocols, such as those
corresponding to the traditional specification in which
the commit protocol need not maintain crash-counts.
Acknowledgements. We thank Nancy Lynch, William
Weihl and Michael Merritt for many useful comments
on this material. The presentation was greatly helped
by discussions with Jim Burns and Betty Salzberg.

References

P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley, 1987.

S. Ceri and G. Pelagatti. Distributed Databases:
Principles and Systems. McGraw-Hill, 1984.

A. Fekete, N. Lynch, M. Merritt, and W. Weihl.
Commutativity-based locking for nested transac-
tions. Journal of Computer and System Sciences,
41(1):65-156,1990.

B. Lindsay, P. Selinger, C. Galtieri, J. Gray, R. Lo-
rie, T. Price, F. Putzolu, I. Traiger, and B. Wade.
Notes on distributed databases. Technical Report
M2571(33471)7/14/79, I.B.M. San Jose Research
Laboratory, July 1979.

B. Liskov. Distributed computing in Argus. Com-
munications of ACM, 31(3):300-312, March 1988.

N. Lynch and M. Tuttle. An introduction to in-
put/output automata. CWI- Quarterly, 2(3):219-
246,1989.

C. Mohan, B. Lindsay, and R. Obermarck. Trans-
action management in the R* distributed database
management system. Zhnsactions on Database
Systems, 11(4):378-396, December 1986.

REQUEST-CREATE(T)
Effect:

a .create-nqueated
= s'.cncte-nqu&cd U {T}

R E Q U E S T C O M M I T (T ,U)

Effect:
8 . commit -requested

= s'.co"it-nqucstcd U {(T, U)}

CREATE(T)
Precondition:

Effect:
T E s'.mate-nqueatcd - a'.crcatcd

#.mated = a'.mated U {T}

COMMIT(T), where pamt (T) # TO
Precondition:

(T, U) E a'.commit-nqucated
T s' .completed

s.committed = #'.committed U {T}
Effect:

ABORT(T)
Precondition:

Effect:
T E d . ~ t e - ~ e 8 t e d - #' .e~nplet~d

*.aborted = a'.aborted U {T}

VOTE-YES-AT(X)FOR(T)
Effect:

a.ready(T) = s'.nady(T) U { X)
if s f .mhnc(T') = a'.mheount(dte(X))

for every T' E s'.includcd(T,X)
s.nady(T) = sf.nady(T) otherwise

CRASH(n)
Effect:

s .mhcount(n) = a'.mAcount(n) + 1

PREPAREREQUESTAT(T)FOR(X)
Precondition:

(T, U) E a'.co"it-nqucsted for some U

REPORT-COMMIT(T,u)
Precondition:
T E d.MnnmittCd
(T,u) E a'.commitaqueatcd
T 4 a'.nported

a.nportcd = r'.nported U {T)
Effect:

REPORT-ABORT(T)
Precondition:

T E 8' .*d
T 4 8'.Feported

S . ~ p O r t e d = 8'.npOrted U {T}
Effect:

INFORM-COMMIT-AT(X)OF(T)
Precondition:

T E 8' .committed

INFORMABORT-AT(X)OF(T)
Precondition:

T E #'.aborted

REQUEST-COMMIT(T,u), T an a,cc%~
Effect:

a.commit-nqucrted =
a'.commitnqueatedU {(T,u))

. m h n c (T) = r'.mhcount(n)
where n = dtc(T)

COMMIT(T), p a n t (T) = TO
Precondition:

(T, U) E s'.commataqueated for nome U
T # a'.completed
d.involved(T) E s'.nody(T)

#.committed = #'.committed U {T}
Effect:

Figure 1: Transition Relation for the Atomic Commit Controller

R E Q U E S T - C R E A T E (T)
Effect:

s.mate-nquated = a'.mate,nquwted U { T }

R E Q U E S T - C O M M I T (T ,v)
Effect:

a.commit-nqueated = s'.co"it-nquerted U {(T, U)}
s.inc(T,X) = UT,Echildren(T)n,,.committad s'min4T'9

for each X
s.creshnc(T) = s ' .mhcount (n) if T is an access

V O T E - Y E S - A T (X) F O R (T)
Effect:

s.ready(T) = s'.nady(T) U { X }
if s ' . m h n c (T ') = s ' .mhcount (n)

for each T' E s'.inc(T,X),
a.nady(T) = a'.nody(T) otherwise

R E C V (m) A T (n) F R O M (p)
Effect:

s. create-rquented = 8'. mate-nquertedu

s.mated = s'.created U m.created
8. commitscquented = 8' .commit-requertedU

s.co"itted = s'.co"itted U m.co"itted
8.aborted = a'.aborted U m.aborted
8.nported = s'.nported U m.nported
s .nady(T) = s'.nady(T) U m.nady(T)

e.inc(T,X) = s'.inc(T,X) U m.inc(T,X)

s . m h n c = s ' . m h r e c U m . m h n c

C O M M I T (T) , (where pamrt(T) # TO)
Precondition:

m.mate-nquerted

m.commit-nquested

for each top-level T

for each T and each X

(T, U) E s'.commit-requented for mme U

T 4 s'.completed

s.co"itted = s'.committed U { T }
Effect:

R E P O R T - C O M M I T (T , u)
Precondition:

T E a'.committed
(T, v) E s'.co"it-nquerted for mme U

T 4 s'.nported

a.nported = s'.nported U { T }
Effect:

R E P O R T A B O R T (T)
Precondition:

T E s'.akrted
T e s'.nported

s.nported = s'.nported U { T }
Effect:

C R A S H (n)
Effect:

a.mhcount (n) = s'.creshcount(n) + 1

PREPAREJLEQUEST-AT(X)FOR(T)
Precondition:
(T, U) E a'.co"it-nquested for some v

C R E A T E (T)
Precondition:

Effect:
T E s'.create-nquested - s'.mated

8.mated = s'.mated U (T }

C O M M I T (T) , (where pamrt(T) = TO)
Precondition:

(T ,u) E r'.co"it-nquerted for some U

T r'.unnpleted
r'.inuolued(T) C s'.nady(T)

8.co"itted = s'.co"itted U { T }
Effect:

A B O R T (T)
Precondition:

Effect:
T E s'.mate-nquwted - s'.completed

s.aborted = a'.aborted U { T }

I N F O R M X O M M I T A T (X) O F (T)
Precondition:

T E s'.co"itted

I N F O R M A B O R T A T (X) O F (T)
Precondition:

T E s'.aborted

S E N D (m) A T (n) T O (p)
Precondition:

m . m a t e - v e n t e d C s'.mate-mquested
m.mated C r'.mated
m.commit-nquated C s'.co"it-nqueuted
m.committed s'.co"itted
m.aborted C s'.abded
m.nported C s'.nported
m.nody(T) C s'.nady(T)

for each top-level T
m.inc(T, X) s'.inc(T, X)

for each T and each X
if ((T, U) E m.co"it-nquested for some U,

T 4 m.completed, pannt (T) = TO,
and i t e (T) = n),

or (T E m.co"itted and site(T) = n), then
m.inc(T, X) = s'.inc(T, X) for each X

m . m h n c s ' . m h n c
if T E m.inc(T',X) for any T ' , X , then

m.rrcrshnc(T) = s ' . m h n c (T)

Figure 2: Local Manager Transition Relation

