
Brief Announcement: Efficient Replication of Large Data
Objects

Rui Fan
MIT Laboratory for Computer Science

Cambridge, MA

rfan @theory.lcs.mit.edu

Nancy A. Lynch
MIT Laboratory for Computer Science

Cambridge, MA

lynch @ theory.lcs.mit.edu

Data replication is an important technique for improving the
reliability and scalability of data services. To be most useful,
replication should be transparent: operations should appear
to execute atomically on one logical copy of the data, even
when multiple physical copies exist. Current atomic replica-
tion algorithms generally fall into two categories. The first
uses locking protocols or group communication, and the sec-
ond replicates the data in quorum systems. Both techniques
suffer from poor performance; the former from the overhead
of locking or GC algorithms, and the latter because each op-
eration involves accessing many replicas. Their performance
penalty is significant enough that they are rarely used in
practical systems, which opt for non-atomic but faster algo-
rithms. In this brief announcement, we discuss Layered Data
Replication (LDR), an efficient and practical replication al-
gorithm guaranteeing atomicity, using only asynchronous
message-passing channels. LDR assumes the size of the data
it replicates is large compared to metadata (e.g. tags) which
it uses. This allows the algorithm to perform more cheap
operations on the metadata, and avoid expensive operations
on the real data. The large-data assumption is reasonable in
many settings, e.g. a replicated file system. LDR accesses
only one copy of the data per read operation, and accesses
f + 1 copies per write, where .f is the number of replica fail-
ures LDR tolerates. Since any replication algorithm must
read one copy of the data per read, and write f + 1 copies
of the data in order to survive f faults, LDR's performance
is optimal. Additionally, we prove two lower bounds on the
costs of replication. These lower bounds show some of the
constructions used in LDR are necessary, and they are also
of independent interest.
The basic idea in LDR is to separately store copies of the
data in replica servers, and store information about where
the most up-to-date copies are located in directory servers.
During a read, directories are first read to locate the most
up-to-date replicas, then the data is read from one such
replica. In a write, the data is first written to f + 1 replicas,
then the directories are informed that these replicas are most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fec.
PODC'03, July 13-16, 2003, Boston, Massachusetts, USA.
Copyright 2003 ACM 1-58113 -708-7/03/0007...$5.00.

up-to-date. This description omits some important details,
which we discuss below in the context of our lower bounds.
LDR adopts the algorithm of [1] when accessing the direc-
tories, and writes back the latest information it reads to the
directories. This behavior is not an artifact of LDR: our
first lower bound shows that any atomic replication algo-
rithm must sometimes perform f (physical) writes during a
(logical) read operation, where f is the fault-tolerance of the
algorithm. The intuition behind this result is that during
the course of a" write operation, the system is sometimes in
an ambiguous state, when a read operation can return ei-
ther an old value or the new value being written. A reader
needs to write in order to record which value it decided to
return, so that later reads can make a consistent decision.
Since any processor the reader writes to may fail, the reader
must write to at least f processors.
When there are concurrent writes in LDR, a replica some-
times stores several values of the data. Our second lower
bound shows this behavior is inherent for the class of selfish
atomic replication algorithms. Intuitively, a selfish replica-
tion algorithm is one in which operations can only "help"
each other in "cheap" ways. We formalize these notions
in the full paper [2]. Recall that helping is a crucial tech-
nique for implementing many lock-free data-structures, but
carries with it a performance penalty. A selfish algorithm,
then, allows lock-freedom and high performance. But, we
prove that a selfish replication algorithm must use memory
which is proportional to the maximum number of concurrent
writers the algorithm tolerates. This is done by assuming
the contrary, and constructing an execution involving mul-
tiple writers, one of which completes its write but leaves its
data in an "unsafe" state. We use this fact to force consecu-
tive reads following this execution to return different values.
But eventually some two nonconsecutive reads must return
the same value, violating the atomicity of the replication
algorithm, and proving the lower bound. Interestingly, the
"morals" of our lower bounds appear in the context of many
other lock-free algorithms.

1. REFERENCES
[1] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory

robustly in message-passing systems. Journal of the
ACM, 42(1):124-142, January 1995.

[2] R. Fan. Efficient replication of large data-objects.
Technical Report MIT-LCS-TR-886, Department of
Electrical Engineering and Computer Science, MIT,
Cambridge, MA 02139, February 2003.

335

