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Data replication is an important technique for improving the 
reliability and scalability of data services. To be most useful, 
replication should be transparent: operations should appear 
to execute atomically on one logical copy of the data, even 
when multiple physical copies exist. Current atomic replica- 
tion algorithms generally fall into two categories. The first 
uses locking protocols or group communication, and the sec- 
ond replicates the data in quorum systems. Both techniques 
suffer from poor performance; the former from the overhead 
of locking or GC algorithms, and the latter because each op- 
eration involves accessing many replicas. Their performance 
penalty is significant enough that  they are rarely used in 
practical systems, which opt for non-atomic but faster algo- 
rithms. In this brief announcement, we discuss Layered Data 
Replication (LDR), an efficient and practical replication al- 
gorithm guaranteeing atomicity, using only asynchronous 
message-passing channels. LDR assumes the size of the data 
it replicates is large compared to metadata (e.g. tags) which 
it uses. This allows the algorithm to perform more cheap 
operations on the metadata, and avoid expensive operations 
on the real data. The large-data assumption is reasonable in 
many settings, e.g. a replicated file system. LDR accesses 
only one copy of the data per read operation, and accesses 
f + 1 copies per write, where .f is the number of replica fail- 
ures LDR tolerates. Since any replication algorithm must 
read one copy of the data per read, and write f + 1 copies 
of the data in order to survive f faults, LDR's performance 
is optimal. Additionally, we prove two lower bounds on the 
costs of replication. These lower bounds show some of the 
constructions used in LDR are necessary, and they are also 
of independent interest. 
The basic idea in LDR is to separately store copies of the 
data in replica servers, and store information about where 
the most up-to-date copies are located in directory servers. 
During a read, directories are first read to locate the most 
up-to-date replicas, then the data is read from one such 
replica. In a write, the data is first written to f + 1 replicas, 
then the directories are informed that  these replicas are most 
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up-to-date. This description omits some important details, 
which we discuss below in the context of our lower bounds. 
LDR adopts the algorithm of [1] when accessing the direc- 
tories, and writes back the latest information it reads to the 
directories. This behavior is not an artifact of LDR: our 
first lower bound shows that  any atomic replication algo- 
rithm must sometimes perform f (physical) writes during a 
(logical) read operation, where f is the fault-tolerance of the 
algorithm. The intuition behind this result is that  during 
the course of a" write operation, the system is sometimes in 
an ambiguous state, when a read operation can return ei- 
ther an old value or the new value being written. A reader 
needs to write in order to record which value it decided to 
return, so that  later reads can make a consistent decision. 
Since any processor the reader writes to may fail, the reader 
must write to at least f processors. 
When there are concurrent writes in LDR, a replica some- 
times stores several values of the data. Our second lower 
bound shows this behavior is inherent for the class of selfish 
atomic replication algorithms. Intuitively, a selfish replica- 
tion algorithm is one in which operations can only "help" 
each other in "cheap" ways. We formalize these notions 
in the full paper [2]. Recall that helping is a crucial tech- 
nique for implementing many lock-free data-structures, but 
carries with it a performance penalty. A selfish algorithm, 
then, allows lock-freedom and high performance. But, we 
prove that  a selfish replication algorithm must use memory 
which is proportional to the maximum number of concurrent 
writers the algorithm tolerates. This is done by assuming 
the contrary, and constructing an execution involving mul- 
tiple writers, one of which completes its write but leaves its 
data in an "unsafe" state. We use this fact to force consecu- 
tive reads following this execution to return different values. 
But eventually some two nonconsecutive reads must return 
the same value, violating the atomicity of the replication 
algorithm, and proving the lower bound. Interestingly, the 
"morals" of our lower bounds appear in the context of many 
other lock-free algorithms. 
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