
Clock Synchronization for Wireless Networks

Rui Fan⋆ Indraneel Chakraborty† Nancy Lynch⋆

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
⋆{rfan, lynch}@theory.csail.mit.edu, †indranil@lcs.mit.edu

1 Abstract

Time synchronization is a fundamental service in many wireless applications. While the synchronization problem is
well-studied in traditional wired networks, physical constraints of the wireless medium impose a unique set of challenges.
We present a novel time synchronization algorithm which is highly energy efficient and failure/recovery-tolerant. Our
algorithm allows nodes to synchronize to sources of real time such as GPS when such signals are available, but continues
to synchronize nodes to each other, even in the absence of GPS. In addition, the algorithm satisfies a relaxed gradient
property, in which the degree of synchronization between nodes varies as a linear function of their distance. Thus, nearby
nodes are highly synchronized, which is desirable in many wireless applications.

2 Introduction

Wireless networks are an increasingly important medium for distributed computation. As wireless applications grow
more diverse and sophisticated, time synchronization among wireless nodes has emerged as a common requirement of
many applications. For example, MAC layer protocols such as TDMA [5] require time synchronization to schedule
collision-free broadcast schedules. Time synchronization is essential in sensor networks, which collect data from a
physical environment, then tag the data with the time of its occurrence. Time synchronization is also needed in high-
level applications to timestamp and order events and signals, and for security purposes. While time synchronization in
wired networks is a well-studied problem, the wireless medium presents a unique set of challenges. The primary concern
of all wireless applications is energy conservation. A clock synchronization algorithm (CSA for short) must carefully
regiment its frequency of resynchronization, and avoid flooding. In addition, the algorithm cannot typically rely on a
power-hungry source of real time such as GPS. Another characteristic of wireless networks is unexpected and possibly
frequent changes in network topology. Thus, a CSA in a wireless medium must continue to function in the face of node
failures and recoveries. Lastly, many applications in wireless settings are local in nature. That is, only nearby nodes in
the network need to participate in some activity. Thus, a desirable property for a CSA is that it closely synchronizes
nodes which are nearby, while possibly allowing faraway nodes to be more loosely synchronized.

In this work, we present a time synchronization algorithm addressing the requirements of a wireless network. Our
algorithm is energy-efficient: nodes perform at most one local (1-hop) broadcast per synchronization round. It tolerates
dynamic network behavior: the algorithm continues to function when there are arbitrary node failures and joins. A
novel feature of our algorithm is that it performs both internal synchronization, i.e. synchronizing nodes with each
other, and external synchronization, i.e. synchronizing nodes with real time. The algorithm allows incorporating a GPS
source of real time when such signals are available, but continues to synchronize nodes with each other even in the
absence of GPS. Thus, for example, a sensor node can use our algorithm both for timestamping data with real time, and
to schedule TDMA broadcasts, which only requires relative time among the nodes. Our algorithm satisfies a relaxed
gradient property. In particular, the algorithm ensures that the clock skew of two nodes which are distance d apart in
the network is bounded by a linear function of d, at almost all times. Finally, our algorithm is practical and easy to
implement. It requires little memory and computation, and is suited for resource-bounded wireless nodes.

The remainder of this paper is organized as follows. In Section 3, we describe some related work on clock synchronization.
In Sections 4 and 5, we describe our formal model and problem. We present our synchronization algorithm in Section
6, and show that it satisfies the desired properties in Section 7. Finally, we conclude and discuss some future work in
Section 8.

1

3 Related Work

NTP [6] is a widely deployed time synchronization service. NTP relies on a hierarchy of time servers, and assumes
that root servers have access to a correct source of real time. In contrast, our algorithm works in a network with no
infrastructure support. Access to real time via GPS may exist, but is intermittent. Furthermore, unlike NTP, we tolerate
a highly dynamic network, and node failures and joins are accommodated without disturbing the synchronization in the
rest of the network. Srikanth and Toueg [7] present an optimal clock synchronization algorithm. However, their algorithm
relies on broadcast, and is not suitable for a wireless network. Their algorithm performs only internal synchronization,
while we integrate external and internal synchronization. Also, [7] is complicated by the need to tolerate Byzantine
failures. Our algorithm only tolerates stopping failures, but is much simpler.

RBS [1] is an efficient CSA designed for wireless networks. RBS performs post-hoc synchronization, in which nodes
determine the time of an event some time after it has occurred. By contrast, our algorithm performs on-the-fly syn-
chronization, so that we can timestamp an event at the moment it occurs. In addition, RBS performs only internal
synchronization.

CesiumSpray [8] is a CSA performing both internal and external synchronization. CesiumSpray achieves high accuracy
using the simultaneity of message reception by all nodes in a satellite/wireless network. However, we cannot guarantee
simultaneity in the wireless networks we consider because the networks are multihop. In addition, CesiumSpray has lower
fault tolerance than our algorithm, and does not achieve the gradient property. Fetzer and Cristian [3] also integrate
internal and external synchronization. However, their algorithm is more complex than ours because it deals with faulty
GPS information. In practice, we think such failures are unlikely to occur.

Fan and Lynch [2] introduced the gradient property for clock synchronization. They showed that for every CSA, there
exist executions in which two nodes distance d apart have clock skew Ω(d + log D

log log D
), where D is the diameter of the

network. However, their result requires a lower bound on the rate of increase of every node’s logical clock. Our algorithm
permits logical clocks to be constant for some period of time. Thus, their lower bound does not directly apply.

4 System Model

Our system model consists of three parts: a dynamic set of nodes, a communication network over which nodes send
messages, and a GPS service which occasionally informs nodes of the real time. Below, we discuss each part separately.

4.1 Nodes

We wish to model a dynamic system in which nodes can fail or join the system at arbitrary times. To do this, we define
N to be the set of potential nodes. Each node in N can be in either a sleeping or awake state, and the state of the node
can change at any time. The set of nodes which participate in the clock synchronization algorithm at some time consists
of the awake nodes at that time. Failures of nodes are modeled by a node changing from the awake state to the sleeping
state. Joins of nodes are modeled by the opposite transition.

Each node is equipped with a hardware clock, which we think of as a variable whose value changes as a differentiable
function of time. Denote the value of node i’s hardware clock at time t by Hi(t). We assume that the hardware clock
of every node has bounded drift. More precisely, we assume that there exists ρ < 11, such that for all nodes i,

∀t : 1 − ρ ≤
dHi(t)

dt
≤ 1 + ρ

Each node uses its hardware clock and messages it receives from other nodes to compute a logical clock value. Denote
the value of node i’s logical clock at time t by Li(t). The clock synchronization algorithm tries to ensure that the logical
clock values of the nodes are close to each other, and close to real time.

4.2 Communication Network

Nodes communicate with each other over a message passing network. In some wireless networks, e.g., ad hoc networks,
the network changes depending on the set of awake nodes, because the awake nodes are responsible for routing messages
among themselves. Other problems may arise if the network becomes disconnected by too many node failures. However,

1In practice, ρ is very small, on the order of 10−5 or 10−6.

2

such network problems are separate from the problem of clock synchronization. Thus, in this paper, we make a simplifying
assumption that there exists a virtual communication link between every pair of nodes i, j ∈ N . We assume that each
link is reliable, FIFO, and has bounded delay. Regarding the last assumption, we assume that for every i, j, there exists
a constant di,j < ∞, called the distance between i and j, which upper bounds the amount of time it takes for a message
sent by i to be received by j. For simplicity, we assume di,j = dj,i

2. Finally, we let the diameter of the network be
D = maxi,j di,j .

4.3 GPS Service

We imagine that all nodes are equipped with GPS receivers3, and that occasionally, a GPS service transmits a message
informing nodes of the correct real time. The times when these transmissions occur are not under the control of the
nodes. We model the receipt of a GPS message at a node i by an input action gps(t)i. This message is intended to
inform i that the current real time is t. However, the message may not be accurate, in the sense that i may receive the
message after real time t. This is because it takes some time for the GPS message to propagate to the entire network.
However, we bound the inaccuracy of every GPS message, by assuming that all nodes which are awake during the time
interval [t, t + D] receive gps(t) no later than time t + D, where D is the diameter of the network.

5 The Clock Synchronization Problem

In this section, we define the internal, external and gradient synchronization properties that the clock synchronization
algorithm must satisfy. It is not possible to satisfy these properties at all times and at all nodes, when the nodes are
allowed to fail and join/recover. Thus, at any time t, the synchronization properties are only required to hold for nodes
which are stable at time t. We say a node is stable at time t if it has received at least one GPS input before t, and
has not failed since receiving that GPS. Let S(t) ⊆ N denote the set of nodes which are stable at time t. We say an
execution is failure free if S(t) = N for all t. Otherwise, we say the execution is failure prone.

The precision requirement deals with internal synchronization of the nodes, i.e., bounding the difference in the logical
clock values of any two nodes. Let ǫ be a parameter. Formally, we require the algorithm satisfy

Requirement 1 (ǫ-Precision) ∀t∀i, j ∈ S(t) : |Li(t) − Lj(t)| ≤ ǫ

The accuracy requirement deals with external synchronization of the nodes, i.e., bounding the difference between the
logical clock value of any node and real time. Let ǫ be a parameter. We require the algorithm satisfy

Requirement 2 (ǫ-Accuracy) ∀t∀i ∈ S(t) : |Li(t) − t| ≤ ǫ

The gradient property was introduced in [2]. It requires that at all times, the difference in the logical clock values of
any two nodes which are distance d apart in the communication network (i.e, nodes i, j, such that di,j = d) is bounded
by f(d), where f is a nondecreasing function of d. The gradient property is desirable in applications where the clocks
of nearby nodes must be well synchronized, whereas the clocks of faraway nodes can be more loosely synchronized. An
example of such an application is TDMA. In TDMA, only nearby nodes can collide when transmitting, and thus only
such nodes need well synchronized clocks for scheduling their transmissions. Please see [2] for additional motivations and
discussion of the gradient property. Our synchronization algorithm satisfies a weakened form of the gradient property,
where the gradient property holds only some of the time. More precisely, let T ⊆ R

≥0 consisting of the union of
nonzero-length intervals. Then we require that the algorithm satisfy the gradient property for all times in T . Of course,

our goal is to maximize the size of T , i.e., maximize m(T)
m(R≥0)

, where m(·) denotes the Lebesgue measure on R. Let α, β

be parameters. Formally, we require

Requirement 3 ((T, α, β)-Gradient Precision) ∀t ∈ T ∀i, j ∈ S(t) : |Li(t) − Lj(t)| ≤ αdi,j + β

6 Algorithm

In this section, we describe our clock synchronization algorithm. The pseudo-code of the algorithm is written in the
TIOA language [4], and is presented in Figure 1. Below, we give an overview of how the algorithm operates.

2If di,j 6= dj,i, we can simply redefine d′i,j = d′j,i = max(di,j , dj,i), then use d′i,j as the distance between i and j.
3Actually, it is enough for one node to have a GPS receiver, and for this node to propagate GPS messages to the rest of the network.

3

Each node in the algorithm maintains two clocks, a local clock and a global clock. The local clock of node i represents i’s
best estimate of the current real time. i’s global clock represents i’s estimate of the largest local clock of any other node.
Roughly speaking, i’s logical clock is defined to be the maximum of i’s local and global clocks4. i’s local clock is updated
by the occasional GPS inputs which i receives. i’s global clock is updated by the periodic internal synchronizations
which the nodes perform. i’s local clock increases at the same rate as i’s hardware clock. i’s global clock increases at
a rate 1−ρ

1+ρ
times i’s hardware clock rate. The reason for the rate of increase of i’s global clock is so that i does not

overestimate the local clocks of other nodes.

When i receives a GPS signal, it updates its local clock to the value of the signal. However, to avoid setting i’s logical
clock backwards5, i stores its current local clock value, and allocates a new local clock initialized to the time in the GPS
signal. i’s virtual local clock, mlocal, is set to be the larger of i’s local clock, and i’s stored local clock value. Moreover,
i’s logical clock value is defined as the larger of i’s mlocal, and i’s mglobal, which will be defined shortly.

The way that the transfer of local clock values after receiving a GPS is actually implemented in our algorithm is slightly
different from what is stated above, though it amounts to the same idea. In our algorithm, i stores an array local of local
clock values, and there is an index current keeping track of i’s currently active local clock. i increases local[current] at
the same rate as its hardware clock, but keeps local[k] constant, for all k 6= current. When i receives a GPS input, i

increases current. This has the effect of storing i’s previous local clock and starting a new one. The new local clock is
initialized to the value of the GPS input. mlocal is defined as the maximum value in local[·]. In addition, i stores an
array global of global clock values, and updates the array in a similar way to how i updates its local clock values after
it receives a GPS. mglobal is defined as the maximum value in global[·].

To maintain internal synchronization, each node executes its sync action approximately once every τ time, where τ is a
constant. More precisely, each node i stores an index next sync, and when i finds local[current] = τ · next sync,
i performs the synci action. Then, i increments next sync. The sync action sends out a message of the form
(local[current], max gps), where max gps is the largest GPS value that i has received. max gps acts as a “certifi-
cate” of how accurate i’s local[current] is. That is, the higher i’s value of max gps, the more recently that i has received
a GPS input, and thus the more accurate is i’s value local[current].

Now, consider when i receives a synchronization message (t, s), where t is the local[current] of some other node, say j, and
s is j’s value of max gps. i checks that j has received at least as recent a GPS value as i, and also that j’s local[current]
is greater than i’s global[current], which is i’s current estimate of the largest local[current] of any other node. If both
conditions are true, then i stores t in global[current], and propagates the message (t, s) to i’s neighbors in the network.
Lastly, if t ≥ τ · next sync, then there is no need for i to do sync when i finds its own local[current] = τ · next sync,
since j has already done a sync with the same timestamp. In this case, i sets next sync to ⌊ t

τ
⌋ + 1.

Lastly, we describe how the algorithm deals with node failures and joins. If a node fails, it does not interfere with
synchronization among the remaining nodes. Thus, nothing is needed to deal with node failures. If a node joins, then
it initializes its state to some default values, and waits to receive its first GPS input. The GPS input initializes the new
node’s state to some correct values, after which the node can participate normally in the algorithm.

7 Analysis

In this section, we show that the algorithm described in Section 6 satisfies the requirements described in Section 5. We
first describe the notation used in the proofs.

7.1 Notation

Let i be a node, let var be a state variable of i, and let t be a time. Then we let i.var(t) be the value of var at i at
time t, before any discrete actions have occurred at time t. We let i.var(t+) be the value of var at i at time t, after all

discrete actions have occurred at time t. Thus, for example, if i.current = 1 at time 5, and i receives a GPS at time 5
which causes i to increment current, then we have i.current(5) = 1, and i.current(5+) = 2.

As stated in Section 6, nodes perform sync actions approximately every τ time. We also assume that the GPS service
updates the nodes every T time, for some constant T . That is, suppose gps(t) occurs at some node at time t1. Then
gps(t′) must occur at some node at time t2, where t′ > t, and t1 ≤ t2 ≤ t1 + T . Given an action ξ = gps(t), we say t is
the timestamp of ξ. Given an action φ = recv(t, s), we say t is the timestamp of φ.

4This definition is meant to convey intuition, and is not exactly correct; it is amended in the following paragraphs.
5Many applications require logical clocks to be monotonic, in addition to being accurate and precise.

4

ClockSynci, i ∈ I

Constants
0 ≤ ρ < 1 0 < τ

State
idle ∈ Boolean, initially true

for all k ∈ N : local[k] ∈ R, initially 0
for all k ∈ N : global[k] ∈ R, initially 0
current ∈ N, initially 0
next sync ∈ N, initially 0

hardware ∈ R

max gps ∈ R, initially 0
do send ∈ Boolean, initially false

send buffer, a queue of elements of type R× R, initially empty

Derived Variables
mlocal← maxk local[k]
mglobal ← maxk global[k]

logical ← max(mlocal, mglobal)

Transitions

input wakeupi

Effect:
if idle then

idle← false

current← 1

input gps(t)i

Effect:
if ¬idle then

if t > max gps then
max gps← t
current← current + 1
local[current]← t

global[current] ← t

next sync← ⌊ t
τ
⌋+ 1

input recv(t, s)j,i

Effect:
if ¬idle then

if s ≥ max gps then
if t > global[current] then

global[current]← t

enqueue (t, s) in send buffer
do send ← true

if t
τ
≥ next sync then

next sync← t
τ

+ 1

input crashi

Effect:
idle← true
for all k ∈ N do

local[k]← 0
global[k] ← 0

current← 0
next sync← 0
max gps← 0
do send← false
empty send buffer

output sync(t, s)i

Precondition:
¬idle

t = local[current]
t
τ

= next sync

s = max gps
Effect:

enqueue (t, s) in send buffer
next sync← next sync + 1
do send← true

output send(t, s)i

Precondition:
¬idle
send buffer is not empty
(t, s) = head of send buffer

Effect:
remove head of send buffer
do send← false

Trajectories
Satisfies

unchanged:
idle, current, next sync, max gps, do send, send buffer

1− ρ ≤ d(hardware) ≤ 1 + ρ

∀k ∈ N :
if ¬idle ∧ (k = current) then

d(local[k] − hardware) = 0

d(global[k] − 1−ρ
1+ρ

hardware) = 0

else
d(local[k]) = 0
d(global[k]) = 0

Stops at

(local[current]
τ

= next send) ∨ (do send = true)

Figure 1: ClockSynci state and transitions.

5

If a node i receives a gps(t)i input, we say the GPS is useful if t > max gps, so that it causes i to change its state.
Similarly, if i receives a recv(t, s)j,i input, we say the recv is useful if s ≥ max gps and t > global[current], so that it
causes i to change its state.

7.2 Proof of Correctness

We first prove a lemma which states that in a failure free execution, the mglobal of any node is never much more than
the maximum mlocal of all the nodes. This lemma is used to show that the algorithm satisfies ǫ-accuracy, even in failure
prone executions.

Lemma 7.1 Consider a failure free execution α. Then ∀t∀i ∈ N : maxi i.mglobal(t) ≤ maxj j.mlocal(t) + (1 − ρ)D.

Proof. We begin by proving ∀t : maxi i.global[current](t) ≤ maxj j.mlocal(t) + (1 − ρ)D, then show that this implies
the lemma. To prove the former statement, fix an i and a t, and consider the last useful message φ which i received
before time t. Suppose φ was received at time t2. There are 2 cases. Either φ is a GPS, or it is a recv.

In the first case, we have i.global[current](t+2) ≤ i.local[current](t+2). Also, since i receives no other useful messages
during (t2, t], we have

i.local[current](t) ≥ i.local[current](t+2) + (1 − ρ)(t − t2)

i.global[current](t) ≤ i.global[current](t+2) +
1 − ρ

1 + ρ
(1 + ρ)(t − t2)

≤ i.local[current](t)

The second inequality follows because i increases i.global[current] at a rate of 1−ρ
1+ρ

times its hardware clock rate, which
is at most 1 + ρ.

In the second case, where φ is a recv, let j be the node which sent φ, and suppose φ was sent at time t1. Then we have

i.global[current](t+2) ≤ j.local[current](t1) (1)

Consider the first useful GPS ξ that j receives after time t1, and suppose j received ξ at time t3. Let the timestamp of
ξ be s1.

Claim 7.2 t − t3 ≤ D

Proof. Suppose for contradiction that t− t3 > D. Then since ξ takes at most D time to reach i, i must have received
ξ by time t, say at time t4. Consider two cases. Either t4 < t2, or t4 ≥ t2.

In the first case, let s2 = j.max gps(t1). Then, since j found ξ useful at time t3, we have s1 > s2. Since i receives ξ,
which has timestamp s1, at time t4 < t2, then i.max gps(t2) ≥ s1. But i receives φ with timestamp s2 at time t2, and i

found φ useful, and so s2 ≥ i.max gps(t2) ≥ s1, which is a contradiction.

In the second case, we also get a contradiction, because when i receives ξ at time t4, i must either find ξ useful, or i

found some other message it received in the time interval [t2, t4] useful. In either case, this contradicts the assumption
that φ was the last useful message i received before time t. Thus, we have t − t3 ≤ D. �

Since the first GPS which j received after time t1 occurs at t3 ≥ t − D, then j did not change j.current until at least
time t3, and j.local[current] increased at a rate which is at least 1 − ρ in the time interval [t1, t3]. Thus, we have

j.local[current](t) ≥ j.local[current](t1) + (1 − ρ)(t3 − t1)

Also, since i did not receive any useful messages during time interval (t2, t], we have

i.global[current](t) ≤ i.global[current](t+2) +
1 − ρ

1 + ρ
(1 + ρ)(t − t2)

≤ j.local[current](t1) + (1 − ρ)(t − t1)

≤ j.local[current](t) + (1 − ρ)(t − t3)

≤ j.local[current](t) + (1 − ρ)D

6

Where the second inequality follows from Eqn. 1. Thus, we have shown that in all cases, and for all t, we have
maxi i.global[current](t) ≤ maxj j.mlocal(t)+(1−ρ)D. Now, now let t∗k be the k’th time when i incremented i.current.
Then, we have

i.mglobal(t) = max
k

i.global[k](t∗k)

≤ max
k

max
j

j.mlocal(t∗k)

≤ max
j

max
k

j.mlocal(t∗k)

≤ max
j

j.mlocal(t)

Thus, we have shown that ∀t : maxi i.mglobal(t) ≤ maxj j.mlocal(t) + (1 − ρ)D.

The next lemma states that in all executions, including failure prone ones, any node’s logical clock value is not much
greater than real time.

Lemma 7.3 ∀t∀i ∈ N : maxi i.logical(t)− t ≤ ρ(T + D) + (1 − ρ)D

Proof. Fix an i and a t. Since i.logical(t) = max(i.mlocal(t), i.mglobal(t)), we first show that i.mlocal(t) − t ≤
ρ(T + D). Consider the last useful GPS ξ that i received before time t. Suppose ξ occurred at time t1, and the
timestamp for ξ was s. We have t− t1 ≤ T + D, because a GPS occurs somewhere in the network every T time, and the
GPS takes at most D time to reach i. Now, i.local[current](t+1) = s ≤ t1, and because i received no other GPS in the
time interval (t1, t], we have i.local[current](t) ≤ i.local[current](t+1) + (1 + ρ)(t − t1). Thus, we have

i.local[current](t) − t ≤ t1 + (1 + ρ)(t − t1) − t

= ρ(t − t1)

≤ ρ(T + D)

We have shown that for all i and t, i.local[current](t) − t ≤ ρ(T + D). Since i.mlocal(t) = maxk i.local[k], we have
i.mlocal(t)− t ≤ ρ(T + D), for all i and t.

By Lemma 7.1, we have that in failure free executions, i.mglobal(t) ≤ maxj j.mlocal(t)+(1−ρ)D ≤ ρ(T +D)+(1−ρ)D.
Now, we observe that if there are failures in an execution, then the failures cannot cause i.mglobal(t) to increase.
Thus, in failure prone executions, we also have i.mglobal(t) ≤ ρ(T + D) + (1 − ρ)D. Finally, since i.logical(t) =
max(i.mlocal(t), i.mglobal(t)), we have that i.logical(t) ≤ ρ(T + D) + (1 − ρ)D, for all i and t. �

The next lemma states that any stable node’s logical clock value is not much less than real time.

Lemma 7.4 ∀t∀i ∈ S(t) : t − mini i.logical(t) ≤ D + ρ(T + D)

Proof. Fix a t and an i ∈ S(t). Since i is stable at time t, i has received a GPS before time t, and has not failed
since that GPS. Consider the last GPS ξ that i received before time t, and suppose that ξ occurred at time t1, and had
timestamp s. Then t1−i.local[current](t+1) = t1−s ≤ D. Also, i.local[current](t) ≥ i.local[current](t+1)+(1−ρ)(t−t1).
Since t − t1 ≤ T + D, we have t − i.logical(t) ≤ t − i.local(t) ≤ D + ρ(T + D), for any i and t. �

Combining Lemmas 7.3 and 7.4, we get the following.

Theorem 7.5 (Accuracy) In all executions, ∀t∀i ∈ S(t) : |i.logical(t)− t| ≤ D + ρ(T + D).

From Theorem 7.5, we immediately get the following.

Theorem 7.6 (Precision) In all executions, ∀t∀i, j ∈ S(t) : |i.logical(t)− j.logical(t)| ≤ 2(D + ρ(T + D)).

To save energy in practice, the GPS service might update the nodes infrequently, so that T can be quite large. Yet even
in periods without GPS, the nodes still perform internal synchronization approximately once every τ time. Since τ may
be much smaller than T , we would like a sharper bound on precision, stated in terms of τ instead of T . Unfortunately,
there is no such bound which holds at all times. The reason for this is that GPS inputs cause “instability” in the network,

7

as follows. Consider when a node i receives a GPS signal ξ. Since i’s logical clock may differ from real time by up to
O(ρT), and since ξ causes i to adjust its logical clock to real time, then i.logical may “jump” by O(ρT) after i receives
ξ. However, since other nodes may not receive ξ at the same time as i, there may be a time period when i’s logical clock
has jumped forward, but other nodes’ logical clocks have not. In this period, the precision is bounded by O(ρT). On
the other hand, we show that if a GPS has not occurred within the last D time, then the precision is bounded by O(ρτ).
To prove this statement, we first show it holds in failure free executions in which no GPS inputs occur. Then we show
it holds in failure free executions with GPS, and finally, we show it holds in failure prone executions with GPS.

Lemma 7.7 Consider a failure free execution in which no GPS inputs occur. Then ∀t∀i, j ∈ N : |i.logical(t) −
j.logical(t)| ≤ 4ρ

(1+ρ)2 τ + (1 + ρ)D.

Proof. Fix an i and j. Let m be the largest integer such that i.logical(t) ≥ τm. Let t2 be such that i.logical(t2) = τm.
Let t1 be the earliest time such that the mlocal of any node equals τm. That is, t1 = mins ∃k : k.mlocal(s) = τm. Let
t3 be the earliest time such that the mlocal of any node equals τ(m + 1). In the following analysis, it suffices to assume
that t1 ≤ t2 ≤ t3 ≤ t. Let d1 = t2 − t1, r = t3 − t2, and d2 = t − t3. We have that d1 ≤ D, because the first node to
reach τm sends out a sync message, which i receives no more than D time later. After i receives the message, we have
i.logical ≥ τm. Similarly, d2 ≤ D.

We claim that r ≥ τ
1+ρ

− d1. Indeed, since there are no GPS inputs, then the maximum rate of increase of the mlocal

of any node is at most 1 + ρ . Since maxk k.mlocal(t1) = τm, maxk k.mlocal(t3) = τ(m + 1), and t3 − t1 = r + d1, we
have (1 + ρ)(r + d1) ≥ τ , from which the claim follows.

Now, again because there are no GPS inputs, the rate of increase of the logical clock of any node is at most 1 + ρ, and
at least 1−ρ

1+ρ
(1 − ρ). Thus, we have

j.logical(t) ≤ j.logical(t3) + (1 + ρ)(t − t3)

≤ τ(m + 1) + (1 + ρ)d2

i.logical(t) ≥ i.logical(t2) +
(1 − ρ)2

1 + ρ
(t − t2)

≥ τm +
(1 − ρ)2

1 + ρ
(r + d2)

≥ τm +
(1 − ρ)2

1 + ρ
(

τ

1 + ρ
+ d2 − d1)

Now, since we have d1, d2 ≤ D, then subtracting the two inequalities above, we get

j.logical(t)− i.logical(t) ≤
4ρ

(1 + ρ)2
τ +

(

1 + ρ −
(1 − ρ)2

1 + ρ
)

)

d2 +
(1 − ρ)2

1 + ρ
d1

≤
4ρ

(1 + ρ)2
τ + (1 + ρ)D.

�

Lemma 7.8 Consider a failure free execution, and let t be a time such that no GPS inputs occur in the time period

[t − D, t]. Then ∀i, j ∈ N : |i.logical(t)− j.logical(t)| ≤ 4ρ
(1+ρ)2 τ + (1 + ρ)D.

Proof. Fix an i, j and t. Define t1, t2, t3 as in the proof of Lemma 7.7. Now, since no GPS occurs in the time interval
[t−D, t], and t−t3 ≤ D, then no GPS occurs in the time interval [t3, t]. Consider two cases. Either no GPS occurs in time
interval [t1, t3], or some GPS occurs. In the first case, we can prove the lemma using similar ideas as in the proof of Lemma
7.7. For the second case, we consider a simplified version, in which only one GPS occurs in [t1, t3]. The general case with
multiple GPS signals is similar. Let ξ be the GPS input which occurs, and suppose ξ has timestamp s, and ξ occurs at
j at time tj . Following the proof of Lemma 7.7, we can show that |i.logical(tj) − j.logical(tj)| ≤

4ρ
(1+ρ)2 τ + (1 + ρ)D.

Also, since t3 − t1 ≤ τ
1+ρ

, we have

j.local[current](t) ≤ s +
τ

1 + ρ
(1 + ρ)

i.local[current](t) ≥ s + (
τ

1 + ρ
− D)(1 − ρ)

8

Now, since there is only one GPS in [t1, t3], we have j.logical(t) = max(j.logical(tj), j.local[current](t)), and i.logical(t) =
max(i.logical(tj), i.local[current](t)). Thus

|j.logical(t)− i.logical(t)| ≤ max(|j.logical(tj) − i.logical(tj)|, |j.local[current](t) − i.local[current](t)|)

≤ max(
4ρ

(1 + ρ)2
τ + (1 + ρ)D,

2ρ

1 + ρ
τ + (1 − ρ)D)

=
4ρ

(1 + ρ)2
τ + (1 + ρ)D

The last equality follows because ρ < 1. Thus, we have proven the lemma in all cases. �

Theorem 7.9 (Strong Precision) Let t be a time such that no GPS inputs occurred in the time interval [t − D, t].
Then ∀i, j ∈ S(t) : |i.logical(t)− j.logical(t)| ≤ 4ρ

(1+ρ)2 τ + (1 + ρ)D.

Proof. To prove this theorem, notice first that failures have no effect on the precision of synchronization. Second, if
i, j ∈ S(t), then they have each received at least one GPS. Using this fact, the lemma follows from very similar ideas as
in the proof of Lemma 7.8. We omit the proof for lack of space. �

Lastly, we consider the gradient property requirement. Consider two nodes i and j which are distance d apart. Just as
GPS inputs caused “instability” which made precision O(ρT) instead of O(ρτ), sync messages cause instability which
makes the logical clock difference between i and j O(ρτ +D), instead of O(ρτ +d), as required by the gradient property.
However, the gradient property does holds at time t, if there are no GPS and no sync inputs in the time interval [t−D, t].
More precisely, we have the following.

Theorem 7.10 (Gradient Precision) Consider any execution, and let t be a time such that no GPS inputs and

no sync inputs occur in the time interval [t − D, t]. Let i, j ∈ S(t) be two nodes which are distance d apart. Then

|i.logical(t)− j.logical(t)| ≤ 4ρ
(1+ρ)2 τ + (1 + ρ).

Proof. We prove a simpler version of the theorem, when the execution is failure free, and when there are no GPS
inputs, but possibly some sync inputs. The full theorem can be proved in a similar way, and by following ideas in the
proofs of Lemma 7.8 and Theorem 7.9. We omit the full proof due to lack of space.

Fix an i, j and t. Let m be the largest integer such that i.logical(t) ≥ τm, and let t2 be such that i.logical(t2) = τm.
Let t1 be such that j.logical(t1) = τm, and let t3 be such that j.logical(t3) = τ(m + 1). Let d1 = t2 − t1, r = t3 − t2,
and d2 = t− t3. In the following analysis, it will suffice to consider t1 ≤ t2 ≤ t3 ≤ t. By the assumptions of the theorem,
j does not receive a sync in the time interval [t − d, t] ⊆ [t − D, t].

We claim that j does not receive any useful sync inputs during [t1, t]. Indeed, suppose j received a useful sync φ at
time t′ < t − d. Then the timestamp for φ must be at least τ(m + 1), since otherwise j would not find φ useful. Since
t′ < t − d and di,j = d, then i must receive φ before time t. But then we would have i.logical(t) ≥ τ(m + 1), which is
a contradiction. Thus, since j does not receive a useful sync during [t1, t], j’s logical clock increases at a rate at most
1 + ρ during [t1, t], and so we have

j.logical(t) ≤ j.logical(t3) + (1 + ρ)(t − t3)

= τ(m + 1) + (1 + ρ)d2

Also, i’s logical clock increases at a rate at least 1−ρ
1+ρ

(1 − ρ), so we have

i.logical(t) ≥ i.logical(t2) +
(1 − ρ)2

1 + ρ
(t − t2)

= τm +
(1 − ρ)2

1 + ρ
(r + d2)

Now, since j’s logical clock increased by τ from time t1 to t3, and j’s logical clock rate was at most 1 + ρ during this
time, we have (1 + ρ)(t3 − t1) = (1 + ρ)(r + d1) ≥ τ . Thus, r ≥ τ

1+ρ
− d1. Also, we have d1, d2 ≤ d, because i.logical

must reach τm (resp., τ(m + 1)) within d time that j.logical reaches τm (resp., τ(m + 1)). Thus, subtracting the two
inequalities from above, we get

j.logical(t)− i.logical(t) ≤
4ρ

(1 + ρ)2
τ +

(

1 + ρ −
(1 − ρ)2

1 + ρ

)

d2 +
(1 − ρ)2

1 + ρ
d1

≤
4ρ

(1 + ρ)2
τ + (1 + ρ)d

9

�

Finally, we consider the communication complexity of the algorithm. We show that each node performs roughly one
local (i.e. 1-hop) broadcast per τ time. By comparison, many clock synchronization algorithms require each node to
broadcast to the entire network during every synchronization period, which is not feasible for energy-conserving wireless
nodes.

Theorem 7.11 (Communication Complexity) Let i be any node. Then i performs at most 1 local broadcast every
τ

1+ρ
time.

Proof. By looking at the sync and recv actions in Figure 1, we see that each node performs only one local broadcast
for each value of next sync. The value of next sync can only increase when the local[current] of some node increases
by τ , and this takes at least τ

1+ρ
time. �

8 Conclusions

We have presented an energy-efficient and fault-tolerant clock synchronization algorithm which integrates internal and
external synchronization, and which satisfies a relaxed gradient property. Our algorithm is simple, and easily imple-
mentable on resource-bounded wireless nodes.

Our algorithm ensures tight synchronization among nodes when the network is stable, i.e. in periods when a GPS or
synchronization operation has not recently occurred. However, when the network is unstable, clock skew may be much
larger. Though certain lower bounds exist on the optimal tightness of non-gradient and gradient synchronization, the
lower bounds do not immediately apply in our setting, because we do not require a lower bound on the rate of increase of
logical clocks. It is an interesting theoretical and practical question whether tight synchronization can be maintained at
all times, by allowing logical clocks to remain constant during unstable periods. Another interesting direction of further
research is to implement our algorithm on a large scale wireless network, and to compare its average case behavior with
the worst case bounds proven in this paper.

References

[1] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time synchronization using reference broad-
casts. SIGOPS Operating Systems Review, 36(SI):147–163, 2002.

[2] Rui Fan and Nancy Lynch. Gradient clock syncrhonization, to appear. In Proceedings of the Twenty-third Annual

ACM PODC. ACM Press, 2004.

[3] C. Fetzer and F. Cristian. Integrating external and internal clock synchronization. Journal of Real-Time Systems,
12(2):123–172, 1997.

[4] Dilsun Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. Timed i/o automata: A mathematical frame-
work for modeling and analyzing real-time systems. In Proceedings of the 24th IEEE International Real-Time Systems

Symposium, 2003.

[5] Errol L. Lloyd. Broadcast scheduling for TDMA in wireless multihop networks. John Wiley & Sons, Inc., 2002.

[6] D. L. Mills. Internet time synchronization: The network time protocol. IEEE Transactions on Computers,
39(10):1482–1493, 1991.

[7] T. K. Srikanth and Sam Toueg. Optimal clock synchronization. J. ACM, 34(3):626–645, 1987.

[8] P. Verissimo, L. Rodrigues, and A. Casimiro. Cesiumspray: a precise and accurate global time service for large-scale

systems. Technical Report NAV-TR-97-0001, Universidade de Lisboa, 1997.

10

