Efficient Replication of Large Data Objects

Rui Fan and Nancy Lynch

MIT Computer Science and Artificial Intelligence Laboratory,
200 Technology Square,
Cambridge, MA USA 02139
{rfan,lynch}@theory.lcs.mit.edu

Abstract. We present a new distributed data replication algorithm tai-
lored especially for large-scale read/write data objects such as files. The
algorithm guarantees atomic data consistency, while incurring low la-
tency costs. The key idea of the algorithm is to maintain copies of the
data objects separately from information about the locations of up-to-
date copies. Because it performs most of its work using only the location
information, our algorithm needs to access only a few copies of the ac-
tual data; specifically, only one copy during a read and only f + 1 copies
during a write, where f is an assumed upper bound on the number of
copies that can fail. These bounds are optimal. The algorithm works in an
asynchronous message-passing environment. It does not use additional
mechanisms such as group communication or distributed locking. It is
suitable for implementation in WANSs as well as LANs. We also present
two lower bounds on the costs of data replication. The first lower bound
is on the number of low-level writes required during a read operation on
the data. The second bound is on the minimum space complexity of a
class of efficient replication algorithms. These lower bounds suggest that
some of the techniques used in our algorithm are necessary. They are
also of independent interest.

1 Introduction

Data replication is an important technique for improving the reliability and scal-
ability of data services. To be most useful, data replication should be transparent
to the user. Thus, while there exist multiple physical copies of the data, users
should only see one logical copy, and user operations should appear to execute
atomically on the logical copy.

To maintain atomicity, existing replication algorithms typically use locks [4],
embed physical writes to the data within a logical read [3,14], or assume powerful
network primitives such as group communication [2]. However, such techniques
have adverse effects on performance [8], and practical systems either sacrifice
their consistency guarantees [12], or rely on master copies [15] or use very few
replicas.

This paper presents an algorithm which deals with the performance penalty
of data replication by taking advantage of the fact that, in a typical application
requiring replication, such as a file system, the size of the objects being replicated

F.E. Fich (Ed.): DISC 2003, LNCS 2848, pp. 75-91, 2003.
© Springer-Verlag Berlin Heidelberg 2003

76 R. Fan and N. Lynch

is often much larger than the size of the metadata (such as tags or pointers)
used by the algorithm. In this situation, it is efficient to perform more cheap
operations on the metadata in order to avoid expensive operations on the data
itself.

Our algorithm replicates a single data item supporting read and write op-
erations, and guarantees that the operations appear to happen atomically. The
normal case' communication cost is nearly constant for a read operation, and
nearly linear in f for a write, where f is an upper bound on the number of
replica failures. The latency for a read and write are both nearly constant. Here,
we measure the communication and latency costs in terms of the number of data
items accessed, and ignore the number of metadata items accessed, as the for-
mer term is dominant.? Our algorithm runs on top of any reliable, asynchronous
message passing network. It tolerates high latency and network instability, and
therefore is appropriate in both LAN and WAN settings.

The basic idea of the algorithm is to separately store copies of the data in
replica servers, and information about where the most up-to-date copies are
located in directory servers. We call this layered replication approach Layered
Data Replication (LDR). Roughly speaking, to read the data, a client first reads
the directories to find the set of up-to-date replicas, then reads the data from
one of the replicas. To write, a client first writes its data to a set of replicas,
then informs the directories that these replicas are now up-to-date.

In addition to our replication algorithm, we prove two lower bounds on the
costs of replication. The first lower bound shows that in any atomically consistent
replication algorithm, clients must sometimes write to at least f replicas during
a logical read, where f is the number of replicas that can fail. The second lower
bound shows that for a selfish atomic replication algorithm, i.e., one in which
clients do not “help” each other, the replicas need to have memory which is
proportional to the maximum number of clients that can concurrently write. In
addition to their independent interest, these lower bounds help explain some of
the techniques LDR uses, such as writing to the directories during a read, and
sometimes storing multiple copies of the data in a replica.

Our paper is organized as follows. Section 2 describes related work on data
replication. Section 3 formally defines our model and problem. Section 4 describes
the LDR algorithm, while Sections 5 and 6 prove its correctness, and analyzes
and compares its performance to other replication algorithms. Section 7 presents
our lower bounds. Finally, Section 8 concludes.

2 Related Work

There has been extensive work on database replication [4,15,5,2]. Algorithms
that guarantee strong consistency usually rely on locking and commit protocols
[4]. Practical systems usually sacrifice consistency for performance [12], or rely
on master copies [5] or group communication [2]. In our work, we do not consider

! I.e., when there are no failures.
2 The amount of metadata accessed is also not large.

Efficient Replication of Large Data Objects 7

transactions, only individual read /write operations on a single object. Therefore,
we can avoid the use of locks, commit protocols and group communication, while
still guaranteeing strong consistency.

Directory-based replication is also used in file systems, such as Farsite [1].
However, this system focuses more on tolerating Byzantine failures and providing
file-system semantics, and their replication algorithm and analysis is less formal
and precise than ours.

Our use of directory servers bears similarities to the witness replicas of [16]
and the ghost replicas of [18]. These replicas store only the version number
of the latest write, and are cheap to access. We extend these ideas by storing
the locations of up-to-date replicas in directories, allowing LDR to access the
minimum copies of the actual data. In addition, since our replicas are not used
in voting, we can replicate the data in arbitrary sets of (at least f + 1) replicas,
instead of only in quorums. This allows optimizations on replica placement,
which can further enhance LDR’s performance. Lastly, while [16] and [18] still
need external concurrency control mechanisms, LDR does not.

Directory-based cache-coherence protocols [17] are used in distributed shared
memory systems, and are in spirit similar to our work. However, these algorithms
are not directly comparable to LDR, since the assumptions and requirements in
the shared memory setting are quite different from ours.

The algorithm used to maintain consistency among the directories is based
on the weighted voting algorithm of [7] and the shared memory emulation algo-
rithms of [3] and [14]. One can apply [3] and [14] directly for data replication.
However, doing so is expensive, because these algorithms read and write the data
to a quorum of replicas in each client read or write operation. The client read
operation is especially slow compared to LDR, since LDR only accesses the data
from one replica during a read.

Theorem 10.4 of [9] is similar in spirit to our first bound. It shows that
in a wait-free simulation of a single-writer, multi-reader register using single-
writer, single-reader registers, a reader must sometimes write. In contrast, our
lower bound considers arbitrary processes simulating a multi-reader, multi-writer
register, and shows that a reader must sometimes write to at least f processes,
where f is the number of processes allowed to fail.

3 Specification

3.1 Model

Let x be the data object we are replicating. = takes values in a set V', and has
default value vg. x can be read and written to. To replicate multiple objects, we
run multiple instances of LDR. However, we do not support transactions, i.e.,
single operations that both read and write, or access multiple objects.

LDR is based on the client-server model. Each client and server is modeled
by an I/O automaton [13]. The communication between clients and servers is
modeled by a standard reliable, FIFO asynchronous network.

78 R. Fan and N. Lynch

3.2 Interface, Assumptions, and Guarantees

The clients receive external input actions to read and write to z. Upon receiving
an input, a client interacts with the servers to perform the requested action.
To distinguish the input actions that read/write z from the low-level reads and
writes which clients perform on the servers, we sometimes call the former logical
or client reads/writes, and the latter physical reads/writes.

Let C be the set of client endpoints. For every i € C, client i has invoca-
tions (input actions) read; (resp., write(v);) to read (resp., write v to) z, and
corresponding responses (output actions) read — ok(x); (resp., write — ok;). The
servers are divided into R, the replica endpoints, and D, the directory endpoints.
We assume that R and D are finite (C may be infinite). The interface at a server
i € DUTR consists of send(m); ; to send message m to endpoint j, j € CUDUR,
and recv(m);; to receive m from j.

We assume the crash-fail model, and we model failures by having a fail;
input for every i € CUDUR. When fail; occurs, automaton i stops taking any
more locally controlled steps.

LDR assumes clients are well-behaved. That is, clients do not make consecu-
tive invocations without a receiving a corresponding response in between.

LDR’s guarantees are specified by properties of its traces. LDR’s liveness
guarantee is conditional. Specifically, let (Qr, Qw) be a read/write quorum sys-
tem over D. That is, Qr, Ow C 2P are collections of subsets of D, with the
property that for any sets Q; € Qr and Q2 € Ow, Q1 N Q2 # 0. Also, let f be
any natural number such that f < |R|. Then LDR guarantees the following:

Definition 1. (Liveness) In any infinite trace of LDR in which at most f repli-
cas fail, and some Q1 € Qr and Q2 € Qw of directories do not fail, every
inwvocation at a nonfailing client has a subsequent corresponding response at the
client.

LDR’s safety guarantee says that client read/write operations appear to ex-
ecute atomically.

Definition 2. (Atomicity) Every trace of LDR, when projected onto the client
invocations and corresponding responses, can be linearized to a trace respecting
the semantics of a read/write register with domain V' and initial value vy.

We refer to [10] for a formal definition of atomicity and linearization.

4 The LDR Algorithm

The clients, replicas and directories have different state variables and run dif-
ferent protocols. The protocols are shown in Figures 1, 2, and 3, resp., and are
described below. Figures 4 and 5 show the schematics of the read and write
operations, resp. Both the read and write operations involve the client getting
an external input, then contacting some directories and replicas to perform the
requested action.

Efficient Replication of Large Data Objects 79

4.1 State

A client has the following state variables. Variable phase (initially equal to idle)
keeps track of where a client is in a read/write operation. Variable utd € 2%
(initially @) stores the set of replicas which the client thinks are most up-to-
date. Variable tag € N x C (initially #¢%) is the tag of the latest value of x the
client knows. Variable mid (initially 0) keeps track of the latest message the
client sent; the client ignores responses with id < mad.

A replica has one state variable data C V x T x {0, 1}, initially §). For each
triple in data, the first coordinate is a value of x that the replica is storing. The
replica may store multiple values of x; the reason why this is done is explained
in Section 7.3. The second coordinate is the tag associated with the value. The
third coordinate indicates whether the value is secured, as explained in Section
4.3.

A directory has a utd C R variable, initially equal to R, which stores the set
of replicas that have the latest value of x. It also has a variable tag € T, initially
to, which is the tag associated with that value of x.

4.2 Client Protocol

When client i does a read, it goes through four phases in order: rdr,rdw, rrr
and rok.* During rdr, i reads (utd,tag) from a quorum of directories to find
the most up-to-date replicas. i sets its own tag and wutd to be the (tag,utd) it
read with the highest tag. During rdw, i writes (utd,tag) to a write quorum of
directories, so that later reads will read i’s tag or higher. During rrr, i reads the
value of z from a replica in utd. Since each replica may store several values of
x, i tells the replica it wants to read the value of x associated with tag. During
rok, i returns the z-value it read in rrr.

When ¢ writes a value v, it also goes through four phases in order:
wdr, wrw, wdw and wok.> During wdr, i reads (utd,tag) from a quorum of di-
rectories, then sets its tag to be higher than the largest tag it read. During wrw,
i writes (v, tag) to a set acc of replicas, where |acc| > f+1. Note that the set acc
is arbitrary; it does not have to be a quorum. During wdw, i writes (acc, tag) to a
quorum of directories, to indicate that acc is the set of most up-to-date replicas,
and tag is the highest tag for x. Then ¢ sends each replica a secure message to
tell them that its write is finished, so that the replicas can garbage-collect older
values of x. Then ¢ finishes in phase wok.

3 Here to < t,Vt € T, where tags are ordered lexicographically, and T' denotes the set
of all tags.

4 The phase names describe what happens during the phase. They stand for read-
directories-read, read-directories-write, read-replicas-read, and read-ok, resp.

5 As for a read, wdr stands for write-directories-read, wrw for write-replicas-write,
wdw for write-directories-write, and wok for write-ok.

80 R. Fan and N. Lynch

input read; input recv(m); ; where (m = (write-ok, id))

Effect: Effect:
mid — mid + 1 if (phase = rdw) A (id = mid) then
for all j € D do msglj] — (read, mid) ace — acc U {j}
phase — rdr if (3Q € Qu : Q C ace) then

mid — mid + 1
for all j € utd do msg[j] — (read, tag, mid)

input write(v); s do
Effect: acc 0; phase rrr
val « v; mid «— mid + 1
for all j € D do msg[j] < (read, mid) input reev(m); ; where (m = (read-ok, v, t, id))
phase — wdr Effect: 5

if (phase = rrr) A (id = mid) then

input fail; val < v; tag «— t; phase — rok

Effect:
stop taking locally-controlled steps input recv(m);,; where (m = (read-ok, t, id))
Effect:
if (phase = wdr) A (id = mid) then

output read-ok(v); {3}t
acc «— acc U {j

Precondition:

(val = v) A (phase = rok) if (t > tag) then
Effect: tag — t //tag = (n,i’)
phase — idle if (3Q € QR : Q C acc) then

mid «— mid + 1; tag — (n 4+ 1,14)
for all j € R do msg[j] — (write, val, tag, mid)

output write-ok; _
Precondition: acc « 0; phase — wrw
phase = wok
Effect: input recv(m)j i where (m = (write-ok, id))
phase «— idle Effect: B

if (phase = wrw) A (id = mid) then
acc «— acc U {j}

output send(m); .
P (m)ij if (lace| > f) then

Precondition: asel > It
msg[j] =m . . .)
Effect: for all que D do msg[j] — (write, acc, tag, mid)

D e ace «— 0; phase — wdw
msglil — else if (phase = wdw) A (id = mid) then
ace — acc U {j}
input recv(m); ; where (m = (read-ok, §, t, id)) if (3Q € Quw : Q C acc) then
Effect: ’ mid — mid + 1

for all j € R do msg[j] — (secure, tag, mid)

if (phase = rdr) A (id = mid) then
acc «— 0; phase — wok

acc «— acc U {j}
if (t > tag) then
tag — t; utd — S
if (3Q € QR : Q C ace) then
mid — mid + 1
for all j € D do msglj] — (write, utd, tag, mid)
acc — 0; phase — rdw

Fig. 1. Client C; transitions.

G where (m = (read, t, mid)) input fail;
! Effect:
stop taking locally-controlled steps

input recv(m
Effect:
if 3v : (v, t, *) € data then
(v’,t') «— choose {v | (v, t, *) € data}

msg[j] «— (read-ok,v’,t’, mid) output send(m); j
s
else/ , Precondition:
(v",t") «— maxst(data) msglj] = m
. i .
msgli] — (read-ok, v’ , t/, mid) Effect:
msg(j] L
input recv(m)jyi where (m = (write, v, t, mid))
Effect: internal gossip;
data «— data U {(v,t,0)} Precondition:
msg[j] «— (write-ok, mid) v, t,: (v, t, 1) € data
Effect:
rog
input recv(m); ; where (m = (gossip, v, t)) gr yatu)jz %}o;se {(v,t)| (v, t,1) € data}
Pffect; msglj] — (gossip, v/, t')

data «— data U {(v, t,1)}\{(v,t,0)}
for all j € D do
msg[j] — (write, {i},t)
internal gc;
Precondition:

input recv(m)jyi where (m = (secure, t, mid)) Ju,t: (v, t,1) € data
BEffect: Effect:
‘ffa” ‘liv’ %, 0) te g“‘a;hf“d t — choose {t/ | (v,t',1) € data}
or all v : (v, t,0) € data do for all v/, ¢t/ : (v, ¢, %) € data) A (¢/ < t) do
data = data U (v, t, D\ {(v, ¢, 0)} remove (v, ¢/, %) from data
),

Fig. 2. Replica R; transitions.

Efficient Replication of Large Data Objects 81

input rec"(m)j,z‘ where (m = (read, mid))
Effect:
msg[j] «— (read-ok, utd, tag, mid)

input fail;
Effect:
stop taking locally-controlled steps

output send(m)iﬁj
Precondition:
msg[j] = m
Effect:
msgly] —L

input recv(m)jyi where (m = (write, S, t, mid))
Effect:
if (t = tag) then
utd «— utd U S
else if (t > tag) then
if [S| > f+ 1 then
utd «— S
t «— tag
msglj] «— (write-ok, mid)

Fig. 3. Directory D; transitions.

i |]
TAVAY

H 3 £ $ H

Fig. 4. Client read operation. Fig. 5. Client write operation.

4.3 Replica Protocol

The replicas respond to client requests to read and write values of z. Replicas also
garbage-collect out of date values of x from data, and gossip among themselves
the latest value of . The latter is an optimization to help spread the latest value
of x, so that clients can read from a nearby replica.

When replica i receives a message to write value/tag (v, t), ¢ just adds (v, t,0)
to data. The 0 in the third coordinate indicates v is not a secured value. When 1
is asked to read the value associated with tag ¢, i checks whether it has (v, t,)°
in data. If so, i returns (v, t). Otherwise, 7 finds the secured triple with the largest
tag in data, i.e., the (v',¢',1) with the highest tag ¢’ among all triples with third
coordinate equal to 1, and returns (v’,¢'). When i is asked to secure tag t, i
checks whether (x,¢,0) exists in data, and if so, sets the third coordinate of the
triple to 1.

When ¢ garbage-collects out of date values of z, it finds a secured value
(v,t,1) in data, and then removes all triples (v/,#, %) with ¢ < ¢ from data.

5 The * indicates the last coordinate can be a 0 or 1.

82 R. Fan and N. Lynch

When 4 gossips, it finds a secured value (v,t,1) in data, and sends (v,t) to all
the other replicas. When 7 receives a gossip message for (v, t), it adds (v,t,1) to
data.

4.4 Directory Protocol

The directories’ only job is to respond to client requests to read and write utd
and tag.

When directory i gets a message to read utd and tag, it simply returns
(utd, tag). When 1 is asked to write (S,t) to utd and tag (S is a set of replicas
and t is a tag), ¢ first checks that ¢ > tag. If not, then the write request is out of
date, and 7 sends an acknowledgment but does not perform the write. If t = tag,
i adds S to utd. If t > tag, i checks whether |S| > f+ 1, and if so, sets utd to S.

5 Correctness

In this section, we show that LDR satisfies the liveness and atomicity properties
of Defns. 1 and 2, resp. A more detailed proof can be found in the full paper [6].

5.1 Liveness

Consider an execution in which some read and write quorum of directories do
not fail, and no more than f replicas fail. Then a client never blocks waiting for
a response from a quorum of directories. The client also does not block waiting
to read from a set utd of replicas, since we can easily check that |utd| > f+1
always. Therefore, every invocation at a nonfailing client always has a response
in the execution.

5.2 Atomicity

To prove the atomicity condition, we show that a trace of LDR satisfies Lemma
13.10 of [13]. In [13], it is shown that an algorithm satisfying Lemma 13.10
implements the semantics of an atomic register. The lemma requires us to define
a partial order < on the operations in a trace of LDR. Let ¢ be a complete
operation in a trace, i.e., an invocation and its corresponding response. If ¢ is
a read, define \(¢) to be the tag associated with the value returned by ¢.” If ¢
is a write, define A(¢) to be the tag of the value written by ¢. We define < as
follows:

Definition 3. Let ¢ and ¥ be two complete operations in an execution of LDR.

1. If ¢ is a write and v is a read, define ¢ < if A(¢) < A(¥).
2. Otherwise, define ¢ < ¢ if A(¢) < A().

" Recall that when ¢ reads from a replica in phase rrr, the replica returns (*,t). Then,
we set A\(¢) = t.

Efficient Replication of Large Data Objects 83

Before proving LDR satisfies Lemma 13.10, we first prove some lemmas. The
first lemma says that if a client ¢ asks to read a value with tag ¢ from a replica,
then the replica returns a value with tag > ¢ to the client.

Lemma 1. Let ¢ be a complete read operation by client i, and let t be the maz-
imum tag which i read during the rdr phase of ¢. Then, \(¢) > t.

We briefly argue why this lemma is true. Suppose i read (.9,¢) from a directory
during rdr. Then S is the set of replicas that i asks to read from during rrr.
For every replica in S, either (x,t,x) still exists in the replica’s data, or it was
garbage-collected. In the first case, the replica returns (x,t), so A(¢) = t. In the
second case, the replica must have secured a value with tag ¢’ > t in data. The
replica returns (x,t'), so A(¢) > t.

The next lemma states that after a read finishes, a write quorum of directories
have tag at least as high as the tag of the value the read returned.

Lemma 2. Let ¢ be a complete read operation in an execution of LDR. Then
after ¢ finishes, there exists a write quorum of directories with tag > \(¢).

We argue why the lemma holds. Let ¢ be the largest tag i read during the rdr
phase of ¢. If A\(¢) = t, then i writes (,t) to a write quorum of directories
during rdw, before the end of ¢, and the lemma is true. Otherwise, by the
previous lemma, A(¢) > t. This means ¢ tried to read a value with tag ¢ at
a replica, but the replica returned a value with a larger tag. Hence, the latter
value was secure at the replica, which implies an earlier client had finished its
phase wdw while writing that value. That client wrote A(¢) to a write quorum
of directories during its phase wdw, before the end of ¢, and so the lemma holds.

We can now prove the relation < we defined earlier satisfies Lemma 13.10
of [13]. For lack of space, we prove only the most interesting condition in the
lemma, the second. The condition is that if an operation ¢ completes before
operation v begins, then 1 4 ¢.

To see this, we consider the four cases where ¢ and v are various combinations
of reads or writes. If ¢ and v are both writes, then ¢ writes A\(¢) to a write
quorum of directories before it finishes. Since the read quorum 1 reads from
intersects with ¢’s write quorum, ¢ will use a larger tag than ¢, and ¢ £ ¢. If
¢ is a write and 9 is a read, then by similar reasoning, ¥ returns a value with
tag at least as large as A(¢), and the condition again holds. When ¢ is a read
and v is a write, by Lemma 2, a write quorum of directories have tag at least as
high as A(¢) after ¢ finishes, so 1 uses a larger tag than A(¢), and the condition
holds. Lastly, when both ¢ and v are reads, then ¢ will try to read a value with
tag at least as high as A(¢) from the replicas. By Lemma 1, A(¢)) > A(¢), and
so ¥ £ ¢.

Combining Sections 5.1 and 5.2, we have shown:

Theorem 1. LDR satisfies the liveness and atomicity properties of Definitions
1 and 2, resp.

84 R. Fan and N. Lynch

6 Performance Analysis

We analyze the communication and time complexity of LDR, and show that
these costs are nearly optimal when the size of the data is large compared to the
size of the metadata.

We first describe a modification to the client algorithm. Currently, when a
client wants to contact a set of directories or replicas, it sends messages to a
superset of that set, in case some directories or replicas have failed. However,
in practice failures are rare, and so it suffices for the client to send messages to
exactly those directories or replicas it wants to contact. This technique greatly
improves performance, and in general, does not decrease fault-tolerance. We
analyze LDR for this optimized implementation.

6.1 Communication Complexity

A basic assumption which LDR makes is that the size of the data, i.e., values
of z, is much larger than the size of metadata LDR uses, such as tags and utd’s.
Therefore, we also assume it is much more costly to transfer data than metadata.
In particular, we assume that the communication cost to transfer one value of
x is d, while the cost to transfer one unit of metadata is 1. We assume d > 1,
and also that d > f2, where f is the number of replica failures LDR tolerates.®
Lastly, we assume all read and write quorums have size f + 1. As an example
of our cost measure, it costs d + 3 to transfer the message (read — ok, v,t,id),
where v is a value of x. With this measure, the communication cost of an LDR
read operation adds up to d + 2f2 + 14f + 18, and the cost of an LDR write
operation adds up to (f + 1)d + f? +20f + 19.

When d > 1 and d > f2, the cost of an LDR read is dominated by the
d term. However, any replication algorithm must read at least one value of
the data during a read. Therefore, the communication complexity of a read
for any replication algorithm is > d in the worst case. Therefore, for large d, the
communication complexity of an LDR read is asymptotically optimal. Also, in
any replication algorithm tolerating the failure of up to f replicas, the data must
be written to at least f + 1 replicas. Therefore, the worst case communication
complexity of a write for any replication algorithm is > (f + 1)d°. Therefore,
LDR also has asymptotically optimal write communication complexity.

6.2 Time Complexity

To evaluate the time complexity, we now consider a synchronous communication
model. Similar to the communication complexity, we assume that it takes time

8 This assumption is reasonable, since in practice f is quite small, typically < 4.

9 In fact, it is not necessary to write a complete copy of the data to each server. For
example, by encoding the data, one can write smaller chunks of the encoding to
each server, decreasing the total amount of communication. However, as any such
optimizations can also be applied to LDR, they do not change the optimality of
LDR’s communication complexity.

Efficient Replication of Large Data Objects 85

d to transfer a value of x, and it takes unit time to transfer a piece of metadata.
We also assume that when we send messages to multiple destinations, we can
send them in parallel, so that the time required to send all the messages equals
the time to send the largest message. Then, the time complexity of an LDR read
sums to d + 2f + 18, and that of a write sums to d + f + 19. Any replication
algorithm must take at least d time for a read or write, since it has to read or
write at least one copy of the data. Thus, for d large, the time complexity of
LDR is optimal.

6.3 Comparison to Other Algorithms

We now compare LDR’s performance with the performance of the algorithm
given in [14]. We choose this comparison because [14] has many attributes in
common with LDR, such as not using locks or group communication. Most other
replication algorithms rely on these techniques, which makes comparison to them
difficult. LDR and [14] are also similar in methodology. In fact, LDR uses a
modified form of [14] in its directory protocol. However, the two algorithms differ
substantially in their performance. Using the measure for communication cost
and latency given above, we compute [14]’s read communication cost as 2(f+1)d
plus “lower order” (compared to d) terms. For large d, this is a factor of 2(f +1)
larger than LDR’s read communication cost. The write communication cost for
[14] is (f+1)d plus lower order terms, which is asymptotically the same as LDR’s
cost. The latency of a read in [14] is approximately 2d, which is asymptotically
twice that of LDR. The latency of a write is asymptotically the same in [14]
and LDR. We note that most replication algorithms have costs similar to that
of [14], so that for large d, LDR also performs better than those algorithms.

Lastly, we mention that because LDR does not store data in quorums of
replicas, but rather, in arbitrary sets, LDR can take advantage of algorithms
which optimize replica placement to further improve performance.

7 Lower Bounds

7.1 Model

We prove our lower bounds in the atomic servers model. This computational
model is based on the standard client/server model, except that the servers
are required to be atomic objects (of arbitrary and possibly different types),
which permit concurrent accesses by clients. Each server j’s interface consists
of read(—ok); ; and modify(—ok), ; actions, Vi € C. read can return any value
based on the server’s state, but must not change the server’s state. modify
can change the state of the server arbitrarily, and return any value. The clients
have input and output actions corresponding to the outputs and inputs, resp., of
the servers. Clients and servers communicate by invoking actions and receiving
responses from each other, instead of sending messages.

86 R. Fan and N. Lynch

Let f be a natural number. We say an f-srca'C is an algorithm in the atomic
servers model which allows clients to read and write a data object, such that
the client operations appear to happen atomically, and such that every client
invocation has a response, as long as at most f servers fail.

The atomic servers model is similar to the network-based model we imple-
mented LDR in, and LDR is a network analogue of an f-srca. The lower bounds
we prove in the atomic servers model have direct analogues in the network model,
which we describe following the proof of each lower bound. The reason we use
the atomic servers model is that it simplifies our proofs by removing details,
such as message buffering, which are present in the network model; however,
it is straightforward to translate the proofs we present to the network model.
Therefore, using the atomic servers model does not weaken our lower bounds.

7.2 Write on Read Necessity

Recall that when a client reads in LDR, it writes to the directories during phase
rdw. Similarly, in ABD and other replication algorithms, clients also write during
reads. Our first lower bound shows that this is inherent: in any f-srca with
f >0, clients must write to some servers during a read. More precisely, let ¢ be
a complete (read or write) operation by some client ¢ in a trace of an f-srca. We
will think of ¢ both as an ordered pair consisting of an invocation and response,
and as a subsequence of the trace, beginning at the invocation and ending at the
response. We define A(¢) to be the number of servers j such that modify(x); ;
occurs during (subtrace) ¢. That is, we count the modi fy(*); . actions occurring
during ¢ as writes performed by ¢. We do this because modify(x); ; potentially
changes the state of server j, and to do so, it must write to j.

The following theorem says that in any f-srca, a read must sometimes write
to at least f servers.

Theorem 2. In any f-srca A, there exists a complete client read operation ¢
in an execution of A such that |A(o)] > f.

Proof. The intuition for the proof is that during the course of a write operation,
the algorithm is sometimes in an ambiguous state, in which another logical read
can return either an old value or the new value being written. A reader needs
to write to record which value it decided to return, so that later reads can make
a consistent decision. Since any server the reader writes to may fail, the reader
must write to at least f servers.!!

Suppose for contradiction there exists an f-srca A, such that for any complete
read operation ¢ in any execution of A, |[A(¢)] < f. Consider an execution
Q= §9T181 - . - TpSy Of A starting from initial state sg, in which a client w; writes
a value v; # vg, where vy is the default value of z. Let a(i) = som1s1...m;s; be
the length 2¢ 4 1 prefix of o ((0) = s¢). Let i* be the smallest ¢ such that there
exists a client read starting from s;, so that if this read runs in isolation (i.e., we

10 f_srca stands for f-strongly consistent replica control algorithm.
11 We’ll see later why the reader writes to f and not f + 1 servers.

Efficient Replication of Large Data Objects 87

pause w; and only run the read), it may return v;. Thus, we choose i* to be the
first “ambiguous” point in w;’s write, when a client read can return either v,
or v1. Note that all reads starting after a(7), for ¢ < ¢*, must return vg. Clearly,
1 <i* < n. Let p; be the server, if any, that changed its state from state s;+_1
to s;+. Note that there can be at most one such server, since only one server can
change its state after each action.

Now let «; be an execution consisting of «(i*) appended by a complete
logical read operation ¢ returning v,. Let ay be an execution consisting of «;,
appended by another complete logical read operation ¢s, such that ¢o does not
(physically) read from any server in A(¢1) Up;i. That is, ¢o does not read from
any server that ¢; wrote to, nor from p;. We first argue why ¢o exists. By
assumption, |A(¢)| < f, so that |A(¢1) Upi| < f. In ¢2, we delay processing
¢2’s read invocations at all the servers in A(¢q)Up; indefinitely, so that it looks
to ¢9 like the servers in A(¢1) U p; failed. Since A guarantees liveness when at
most f servers fail, ¢o must still terminate, without reading from A(¢q) U p;.
This shows that ¢ exists, and a(i*)d1¢2 is a valid execution of A. Note that ¢o
returns vy, since ¢o occurs after ¢, which returns vy.

We now claim that a(:* —1)¢9 is also a valid execution of A. Indeed, only the
servers in A(¢p) U py can change their state from the final state of a(i* — 1) to
the final state of a¢;.'? Since ¢ does not read from any server in A(¢1)Upy, the
final state of a(i* —1) and a¢ look the same to ¢o. So, since a(i*)d; o is a valid
execution of A, a(i* — 1)¢9 is also a valid execution. However, all logical reads
starting after a(i* — 1) return vy, which is a contradiction because ¢o returns v;.
This shows A does not exist, and all f-srca’s must sometimes write to f servers
during a read.

To translate this lower bound to the standard network model, we say that for
any atomic replication algorithm in the network model tolerating f server faults,
there exists a read operation in an execution of the algorithm in which at least
f servers change their state.

7.3 Proportional Storage Necessity

Recall that a replica in LDR sometimes stores several values of x when there
are multiple concurrent client writes. Our second lower bound shows that this
behavior is not an artifact of LDR, but is inherent in a class of efficient replication
algorithms we call selfish f-srcas. Intuitively, a selfish f-srca is one in which
the clients do not “help” each other (much). Helping is a crucial ingredient in
implementing lock-free concurrent objects, as in [11]. But helping has adverse
effects on performance, since clients must do work for other operations as well
as their own. In a selfish f-srca, we only allow clients to help each other with
“cheap” operations. In particular, clients can help each other write metadata,
such as tags, but cannot help write data (values of x), since we assume the data is

12 Only p1 can change its state from s;«_1 to s+, and only servers receiving modify
invocations can change state during ¢;.

88 R. Fan and N. Lynch

large and expensive to write. For example, LDR is a selfish f-srca, since a reader
never writes data, only metadata, and a writer only writes its own value, and
does not help write the values of other writes. On the other hand, ABD is not a
selfish f-srca, because a reader writes values of x during its second phase. The
comparison in Section 6.3 shows that a selfish f-srca such as LDR can be more
efficient than an unselfish one such as ABD. We show that a disadvantage of
selfish f-srcas is that they require the servers to use storage that is proportional
to the number of concurrently writing clients. In the following, we formalize the
notions of selfish f-srcas and the amount of storage that the servers use.

To make our result more general, we want an abstract measure of the storage
used by the servers, not tied down to a particular storage format. Let a be an
execution of an f-srca, and let v € V. We say v is g-erasable after « if, by failing
some set of g servers after a;, we ensure that no later client read can return value
v. That is, the failure of some g servers after « is enough to “erase” all knowledge
of v. We define the multiplicity of v after o, m(v, a), to be the smallest g such
that v is g-erasable after a. If m(v,a) = h, then intuitively, exactly h servers
know about v, and the amount of storage used for v is proportional to h.

We now to formally define selfish f-srcas, trying to capturing the idea that
client reads do not write values of x, and client writes only write their own value.
Let A be an f-srca. We say an execution of A is server-exclusive if at any point
in the execution, there is at most one client accessing any server. In a server-
exclusive execution, we can easily “attribute” every action to a particular client.
If the action is performed by a client, we attribute the action to that client. If
the action is performed by a server, then the server must be responding to some
client’s invocation; we attribute the action to that client. We now define selfish
f-srcas as follows:

Definition 4. Let A be an f-srca. We say that A is selfish if for any server-
exclusive execution o of A, the following holds: let ™ be an action in « attributed
to client i € C, let s, be the state in a before 7, and let s, be the state in « after
.

1. If the last invocation at C; is read;, then Vv € V : m(v, s.,)
2. If the last invocation at C; is write(v);, then Yo' € V\{v
m(v', sz).

< m(v, sﬂ)
pm(v,) <
This definition says that in a server-exclusive execution of a selfish f-srca, client
reads do not increase the multiplicity of any value, and clients writes can only
increase the multiplicity of their own value.

Definition 5. Let A be an f-srca. Define the storage used by A, M(A), to be
the supremum, over all executions a of A, of > -y, m(v,).

Assuming the storage needed for a value of x is large compared to the storage
for metadata that the servers use, M(A) is an abstract measure of the amount
of storage used by the servers of A.

Lastly, we define an (f,c)-srca as an f-srca which only guarantees liveness
and atomicity when there are < ¢ concurrent writers in an execution. We now
state the second lower bound.

Efficient Replication of Large Data Objects 89

Theorem 3. Let A be an (f,c)-srca, where f and c are positive integers.'> Then
M(A) > fe.

Proof. Suppose for contradiction that M(A) < fe. The intuition for the proof
is that if we run ¢ client writes concurrently, then because M(A4) < fe¢, we can
ensure none of the values written have multiplicity greater than f. Then, in
later client reads, we can delay responses from f servers at a time to ensure
that consecutive reads do not return the same value. But eventually some two
non-consecutive reads must return the same value. This violates atomicity, and
shows that A does not exist.

Let W be a set of ¢ writer clients, all writing distinct values different from
vg. Construct an execution « starting from an initial state of A using to the
following procedure:

1. Repeat steps 2 or 3, as long as no w € W has finished its write.

2. If any w € W has an action 7 enabled, and 7 is not an invocation at a server,
extend « by letting w run 7.

3. Otherwise, choose a w € W with invocation 7 at server j enabled, such that
the following holds: if we extend « to o/, by running 7 and then letting server
j run until it outputs a response to 7, then Vv € V\{vg} : m(v,a’) < f. Set
a+a.

It is easy to see that « is a server-exclusive execution. Also, every value except
possibly vg has multiplicity at most f after o. This is because when step 2 of
the procedure occurs, only client w changes state, and no servers. Therefore,
the multiplicity of any value cannot increase. When step 3 occurs, the server j
that runs was chosen so that it does not increase the multiplicity of any value
beyond f. Lastly, we claim that some w € W finishes its write after a. To see
this, first observe that in any prefix of «, there must exist a value v, being
written by w € W that has multiplicity < f, since there are ¢ values being
written, and the sum of all their multiplicities is at most M(A) < cf. Then,
the above procedure can run w and any server which w invokes, because doing
this increases the multiplicity of v,, by at most 1, and leaves the multiplicity of
every other value unchanged (because A is selfish). So, as long as no writer is
finished, the procedure can extend « to a longer execution. Thus, since algorithm
A guarantees liveness, some writer must eventually take enough steps in « to
finish. Let o/ be the prefix of o up to when the first writer w finishes.

Now we start a sequence of non-overlapping client reads {¢;}; after o/. Let
read ¢; return value v;. Since w finished writing v,,, by atomicity, no ¢; can
return vg (2’s initial value). For each v;, let F; be a set of f servers such that, if
we fail F;, no later client read can return v;. F; exists, because no value except
possibly vy has multiplicity greater than f, and no ¢; increases the multiplicity of
any value. During ¢;, we delay the responses from all servers in F;_1 indefinitely,
so that it seems to ¢; like the servers in F;_; failed. Then, since ¢; must tolerate
f server failures, ¢; must finish without (physically) reading from any server in

'3 The theorem does not hold for f = 0, as we explain in the full paper [6].

90 R. Fan and N. Lynch

F;_1. Therefore, ¢; cannot return v;_1, i.e., two consecutive reads cannot return
the same value. Since there are only ¢ values which any client read can return,
eventually some v; = v;j, where j — 4 > 1. Choose k such that i < k < j. We
now have a contradiction because vy linearizes after v;, and v; linearizes after
v, but v; = v;. This shows that A does not exist, and M(A) > fc for all selfish
(f,c)-srcas.

To translate this lower bound to the network model, we say that the servers
in any atomic replication algorithm in the network model tolerating f server
faults must have storage proportional to the maximum number of concurrently
writing clients.

8 Conclusions

In this paper we presented LDR, an efficient replication algorithm based on
separately replicating data and metadata. Our algorithm is optimal when the
size of the data is large compared to the metadata. We also presented two lower
bounds. One states that the number of writes necessary within some client read
operation equals at least the fault-tolerance of the algorithm. The other states
that servers in a selfish replication algorithm need storage proportional to the
number of concurrent writers. The separation of data from metadata was the
key to LDR’s efficiency. We are interested in extending this idea to enhance the
performance of other distributed algorithms.

References

1. A. Adya, W. Bolosky, M. Castro, and G. Cermak et al. Farsite: Federated, available,
and reliable storage for an incompletely trusted environment. In Proceedings of the
fifth symposium on operating systems design and implementation, 2002.

2. Y. Amir, D. Dolev, P. Melliar-Smith, and L. Moser. Robust and efficient replication
using group communication, 1994.

3. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing
systems. Journal of the ACM, 42(1):124-142, January 1995.

4. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems. Addison-Wesley Longman Publishing Co., Inc., 1987.

5. Y. Breitbart and H. F. Korth. Replication and consistency: being lazy helps some-
times. In Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems, pages 173-184. ACM Press, 1997.

6. R. Fan. Efficient replication of large data-objects. Technical Report MIT-LCS-
TR-886, Department of Electrical Engineering and Computer Science, MIT, Cam-
bridge, MA 02139, February 2003.

7. David K. Gifford. Weighted voting for replicated data. In Proceedings of the
seventh symposium on Operating systems principles, pages 150-162, 1979.

8. J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a
solution. In Proceedings of the 1996 ACM SIGMOD international conference on
Management of data, pages 173—182. ACM Press, 1996.

9. J. Welch H. Attiya. Distributed Computing. McGraw Hill International, Ltd., 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Efficient Replication of Large Data Objects 91

M. P. Herlihy and J. M. Wing. Axioms for concurrent objects. pages 13—26. ACM
Press, 1987.

Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming
Languages and Systems, 13(1):124-149, January 1991.

R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using
lazy replication. ACM Transactions on Computer Systems, 10(4):360-391, 1992.
N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Mateo,
CA, March 1996.

N. Lynch and A. Shvartsman. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In Twenty-Seventh Annual International Sym-
posium on Fault-Tolerant Computing (FTCS’97), pages 272-281, Seattle, Wash-
ington, USA, June 1997. IEEE.

E. Pacitti, P. Minet, and E. Simon. Fast algorithms for maintaining replica con-
sistency in lazy master replicated databases. In VLDB’99, Proceedings of 25th
International Conference on Very Large Data Bases, September 7-10, 1999, Edin-
burgh, Scotland, UK, pages 126-137. Morgan Kaufmann, 1999.

J.-F. Paris. Voting with witnesses:: A consistency scheme for replicated files. In
Proceedings of the 6th International Conference on Distributed Computing Systems
(ICDCS), pages 606-612, Washington, DC, 1986. IEEE Computer Society.

K. Petersen and K. Li. An evaluation of multiprocessor cache coherence based
on virtual memory support. In Proc. of the 8th Int’l Parallel Processing Symp.
(IPPS’94), pages 158-164, 1994.

R. van Renesse and A. S. Tanenbaum. Voting with ghosts. In Proceedings of the
8th International Conference on Distributed Computing Systems (ICDCS), pages
456-462, Washington, DC, 1988. IEEE Computer Society.

	Introduction
	Related Work
	Specification
	Model
	Interface, Assumptions, and Guarantees

	The LDR Algorithm
	State
	Client Protocol
	Replica Protocol
	Directory Protocol

	Correctness
	Liveness
	Atomicity

	Performance Analysis
	Communication Complexity
	Time Complexity
	Comparison to Other Algorithms

	Lower Bounds
	Model
	Write on Read Necessity
	Proportional Storage Necessity

	Conclusions
	References

