
P a t t e r n s of C o m m u n i c a t i o n in C o n s e n s u s P r o t o c o l s

Cynthia Dwork

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts OelS9

Dale Skeen

Department of Computer Science
Cornell University

Ithaca, New York 14858

A b s t r a e t

This paper presents a taxonomy of consensus prob-
lems, based on their safeness and liveness properties,
and then explores the relationships among the
different problems in the taxonomy. Each problem is
characterized by the communication patterns of pro-
tocols solving it. This then becomes the basis for a
new notion of reducibility between problems. For-
mally, problem P1 reduces to problem P2 whenever
each set of communication patterns of a protocol for
P2 is the set of communication patterns of a protocol
for PI. This means intuitively that any protocol for
P2 can solve P1 by relabeling local states and pad-
ding messages. Consequently, the message complexity
(measured in number of messages) of P1 is not greater
than the message complexity of P2. Our method of
characterizing and comparing problems is the princi-
pal contribution of this paper.

1. I n t r o d u c t i o n

The ability of separated processors to reach con-
sensus is a fundamental problem in distributed com-
putation and has been studied extensively in the
literature. (See Fischer [F I for a survey. Also see
[DFFLS], [DRS], [GPD], [L83], [LPS], [PSL] for exam-

.pies.) Generally, each processor begins with a binary
value in its input register. At some point in the com-
putation correct processors must irreversibly decide
on a binary value. No two correct processors may
decide differently. The details of the relationship of
the initial values to the decision vary according to the

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-143-1/84/008/0143 $00.75

particular version of the problem. Additional varia-
tions have been obtained by (1) varying the failure
environment; (2) varying the assumptions on syn-
chrony ([FLP, DDS, DLS]); (3) varying the notion of
an atomic step ([DDS]); and (4) varying the range of
acceptable decision values (IDLPSW)).

In practice consensus problems arise in numerous
guises. The simplest of these is the reliable broadcast
problem ([SGS]), better known as the Byzantine Gen-
erals problem ([PSL]). Other settings include transac-
tion commitment systems ([DS], [Grl, [S821), repli-
cated file systems (IGi]), resource allocation, and
interpretation of sensor or other instrumentation
readings ([Wl).

In any fixed model (level of synchrony, type of
failure, choice of atomic step, etc.) consensus prob-
lems seem to differ from one another in three princi-
pal aspects, and one contribution of this paper is a
tazonomy for consensus problems corresponding to
these parameters. The first parameter is the set of
decision rules, i.e., conditions under which a processor
can or must decide on a given value. For example, in
the strong unanimity problem (see IF]} if all initial
values are the same value, say v, then the decision
must be v. The second parameter is the consistency
constraint. In the reliable broadcast problem, only
non.faulty processors must agree on a value, while in
the distributed commitment problem all processors
that ever decide (including those that subsequently
fail) must decide on the same value. The third
parameter is the termination, or liveness, constraint.
A frequently used termination requirement is simply
that every nonfaulty processor eventually decide.

The goal of this paper is to unify work on the
different forms of consensus problems by exploring the
relationships among the different problems. To do
this we define a new notion of reducibility. We first
define for any protocol P a partial ordering on the
message-sending steps of an execution of P (el. Lam-
port [L78]). Intuitively, the sending of message m 1
precedes the sending of ms if and only if the contents

143

of m 1 may be known to the sender of m 2 when m 2 is
sent. We call this partial ordering the communication
pattern of the execution.

For any protocol Q, let the scheme of Q denote
the Set of all communication patterns of failure-free
executions of Q. A problem may be characterized by
the set of schemes of protocols for the problem. We
say P1 reduces to P2, written PI _< P2, if and only if
the set of schemes for P1 contains the set of schemes
for P2-

Intuitively, if PI reduces to P2, then any protocol
for P2 can solve P1 by relabeling local states and
padding messages. Consequently, the message com-
plexity (measured in number of messages) of P1 is not
greater than the message complexity of P2. Our
method of characterizing and comparing problems is
the principal contribution of this paper. Given our
taxonomy we use this notion of reducibility to exam-
ine the relationships among six practical problems
with varying safeness and liveness properties.

2. A Taxonomy of Consensus Problems

In this section,we briefly describe some possible
choices for the three parameters mentioned in the
introduction: decision rules, consistency constraints,
and termination conditions. We assume a completely
asynchronous model with fail-stop processors, mean-
ing that processors fail by halting and that failures
are detectable. Our model of computation is specified
more fully in Section 3.

The most frequently used decision rule is the
Broadcast Rule: decide v only if the initial value of a
distinguished processor is v .1 This is the decision rule
of the Byzantine Generals problem. This rule, how-
ever, is inappropriate for problems such as transaction
commitment, where input values of all the processors
influence the decision. A common decision rule for
these problems is unanimity: decide 1 (commit) only
if every proeessor's initial value is 1, and decide 0
(abort) only if some processor begins with value 0 or a
failure occurs. Note that unanimity is meaningless in
the presence of Byzantine failures, where processors
can lie about their initial values.

There are obvious generalizations of the above
rules, such as threshold-k: decide 1 only if at least k
processors have initial value 1; or set(S,v): decide v
only if all processors in set S have initial value v.

IThis is the strong variant; the weak variant allows a
default decision if the distinguished processor is faulty.

We identify two important consistency co
straints. In interactive consistency (IC) no two oper
tional processors may simultaneously occupy differe
decision states. In total consistency (TC) no two pr
cessors ever decide on different values. Notice th
these constraints differ in their treatment of fault
decided processors: in total consistency, any decisi~
must be consistent with a decision made by anoth
processor, even if that processor has subsequenl
failed. Total consistency is meaningless in a moc
allowing failed processors to make incorrect decisiol
Total consistency is usually required when a decid
processor could initiate an irreversible action, such
dispensing money.

We identify three increasingly strong types of tq
mination. The weakest termination constraint ec
sidered here is weak termination (WT), which requi]
only that every nonfaulty processor decide within
bounded number of steps. Weak termination s~
nothing about when a processor can halt or ev
when it can forget about the particular execution
the protocol or about its decision. In fact, it adm
solutions that never halt, even in failure-free exec
tions. (Such protocols terminate, in essence,
deadlocking, with each processor listening for m,
sages from its cohorts.}

Our two stronger termination conditions ~"
intended for environments in which processors
repeatedly executing consensus protocols. Processq
may even be executing several protocols at a time.
this situation we may imagine that all messages
tagged with a unique protocol identifier. If the set
possible decision values is large, it may be desiral
to allow a processor to forget its decision for a giv
instance of a protocol, while remembering that a de
sion was made. We call this strong terminati~
Figuratively, the processor places a check next tc
record of the protocol identifier, indicating that
decision has been made but keeping no record of t
processing involved. The resulting state is
amnesic state. In order to avoid talking about
tory, we will refer to a processor as being either in
amnesic commit or an amnesic abort state, althov
there is really only one amnesic state. An atone
processor may continue to send and receive messa 8
It may even be reminded of its decision by the ot]
processors.

Another possibility is that we wish to allow a p
cessor to complete its role in an execution of a pro
col, in the sense that it need no longer send or reee
messages relative to the given execution. We call t
halting termination. Of course, a halted proces
may fail, and its failure is detectable.

144

All possible combinations of the above rules and
constraints have applications. For the Byzantine
Generals problem, the combination broadcast rule,
interactive consistency, and halting is normally
assumed. However, weak termination, instead of
halting, in used in the reliable broadcast protocols of
[SGS] in order to reduce costs. For the transaction
commitment problem, unanimity and total con-
sistency are assumed, together with either weak ter-
mination ([$82]) or strong termination ({MLI).

3. D e f i n t t l o n l a n d t h e M o d e l o f C o m p u t a t i o n

Our formal model of computation is based on the
models of [FLP, DDS]. The processors are modeled as
infinite-state machines with state set Z. At each of
its steps, a processor may receive or send a message,
but not both. In a receiving step it may change
states according to its previous state and the contents
of the message received. In a sending, step it may
send at most one message and change states. A third
kind of step, a failure step, is discussed below.

A consensus protocol is a set of N processors,
P ~-- {Po, Pl, . . • ,PN-1}. As part of its state, each
processor p, has a set UP,, initially containing all N
processors. As p, learns of failures it deletes these
failed processors from UP,. Each processor p, also
has an initial bit, input,. There are two special initial
states Zo and zl. For v E {0,1}, a processor is
started in state z~ if its initial bit is v. Each non-
faulty processor then follows a protocol involving the
receipt and sending of messages. The messages are
drawn from an infinite set M. Each processor has a
buffer for holding the messages that have been sent to
it but not yet received. The buffer is modeled as an
unordered set of messages. The collection of buffers
supports two operations:

Send(p ,m): places message m in p ' s buffer;

Receive (p): delays p until a message is delivered,
and deletes this message from p 's buffer.

The message system is asynchronous, but it is also
faultless and fair. A processor may suffer an arbitrary
delay when executing a Receive operation, but if its
buffer is nonempty, the delay is finite. In addition, in
selecting a message to deliver to a processor, it will
not discriminate against a given message infinitely
often.

Each processor p is specified by a state transition
function 8p and a sending function/~p where

~ p : g X M u {~$}-4 g
/~ , :Z ~ { ~ } u V - { p } × M u

{(q,failedip))] q E P - { p }}.

The pair (q ,m) in the range of/~p means that p sends
message m to processor q. For technical reasons, p
is not allowed to send a message to itself. In a nor-
mal (non-failure) step, a processor can send at most
one message. In a failure step, a processor sends
failure notices to all other processors. (This allows
the other processors to detect the failure.)

We assume that Z is partitioned into three dis-
joint sets ZR (the operational receiving states), Zs
(the operational sending states), and Z r (the failed
states). No normal messages are sent when in a
receiving state (formally, if z E ZR then Sp(z) ----- ~).
No messages are received when in a sending state.
We also assume that Z contains two disjoint sets of
decision states Y0 and Y1, such that if a processor
enters a state in Y~, v E {0, 1}, then it must remain
in states in Yr- (in the ease of strong termination,
processors are allowed to move from a decision state
into an amnesic state.)

A configuration C consists of

(a) N states state(p,, C) E Z for l ~ i ~ N , speci-
fying the current state of each processor, and

(b) N sets buf f (p , ,C I E 2 u for I < i < N , specify-
ing the current contents of each buffer.

Initially, each state is either z0 or z 1 as described
above, each buffer is empty and each UP set contains
all N processors.

An event is a pair (p,#) where p E P and # E
M u { f , ¢ } . If # ¢ {f,{~} the event (P,U) may be
thought of as the receipt of message # by processor p.
Think of (p , f) as the event of p ' s failure. We now
define conditions under which an event can be applied
to a configuration to yield a new configuration.

(1) if state(p ,C) E Zs, then (p,#) is applicable to
C only if # ----- I} or # ---- f .

(2) If state(p,C) E ZR, then (p ,#) is applicable to
C i f # E b u f f (p , C) o r # = f .

If the event e ----(p,#) is applicable to C and e is
not a failure transition, then the next configuration
e(C) is obtained as follows:

(a) p changes its state from z - ~ state(p,C) to
//p(z,#) and the states of the other processors
do not change,

(b)for all (q ,m)EBp(z) , m is added to
bu f f (q ,C) ,

145

(c) if z E ZR and # ~ f then /~ is deleted from
b u f f (p ,C).

A failure transition is modeled as two steps. We let
Zr ~- {za ,Zb }. When a processor fails it first enters
za, from which it broadcasts a failure notice. It then
moves to state Zb. Formally,

(a) for all z ~ Z~., 8p(z , f) ffi za,

(b)/~p(za) ffi { (q , f ailed(p)) l q E P - { p }},

(C) ~p(Za, ¢)= Zb,

(d) for all/~, ~p(zb, lz) ~ zb,

(e) = ¢.

Rules (d) and (e) ensure that once a processor has
failed it cannot send messages or restart at a later
time.

A schedule is a finite or infinite sequence of events.
A schedule ~----" ala2 • " " is applicable to a
configuration C if the events of a can be applied in
turn starting from C, i.e., a~ is applicable to C, a2 is
applicable to a l (C) , etc. If a is finite, ~ C) denotes
the resulting configuration, which is said to be reach-
able from C. A configuration reachable from some
initial configuration is said to be accessible. Simi-
larly, a local state sp is accessible only if there exists
a reachable configuration C and processor p such
that s ta te (p ,C) --- ep. Henceforth, all configurations
and states mentioned are assumed to be accessible.

A schedule together with the associated sequence
of configurations is called a ran. A processor is non-
faulty in a run if it never occupies a failed state dur-
ing the run. A run is a deciding run if every non-
faulty processor enters a decision state. An execution
is a (possibly infinite) run from an initial
configuration.

A processor's "knowledge" about the states of its
cohorts is captured by the concurrency set of its
state. The concurrency set of state s, denoted C(s) ,
is the set of states t such that s and t occur in the
same configuration.

For an execution I of a given protocol, we wish to
define a partial ordering (< x) on the messages sent
during the execution. The ordering is based on
Lamport ' s "happens before" relation. Intuitively,
m < ! r r / if the contents of message m could have
influenced the contents of message m ~ . Since we will
be interested in the ordering among messages, but not
in their contents, we assume in the following
definitions that a message is represented by a triple
(p, q, k), meaning that the message was the k t~ mes-
sage sent from p to q.

Formally, the ordering <z is the smallest
irrefiexive, transit ive relation satisfying:

(1) m 1 < l m 2 if 'ml and m 2 have the same sender
and m 1 is sent in real t ime before m 2 is sent;

(2) ml < 1 m 2 if the recipient of ml is the sender
of m 2 and ml is received before m 2 is sent.

The relation <1 with messages represented as triples
is called the communication pattern of I . The set of
communicat ion pat terns of all failure-free executions
of a protocol P is called the scheme of P .

As mentioned in the introduction, we characterize
a problem by the set of sets of eor:~munication pat-
terns (i.e., the set of schemes) of protocols solving the
problem. Let Q be a protocol for P2- If P1 reduces
to P2 (PI_<P2), then the scheme of Q is the scheme
of some protocol for PI- This says intuitively that Q
is a protocol for P I up to a renaming of states and
padding of messages. The < relation is transitive. If
P1 --< P2 but the converse is false we write P I < P2.
Finally, if neither problem reduces to the other we
say they are incomparable.

We conclude this section by identifying a set of
states tha t complicate reasoning about protocols. A
processor only enters a state in this set if it knows its
message buffer is not empty. This can happen if mes-
sages are delivered out of order. (If processors could
send messages to themselves it could happen all the
time.) We denote this set by /~ and its complement
by E (for empty buffer). A processor in an E state
cannot be forced to make a decision: it can safely pro-
crast inate until an impending message is delivered.

A protocol P with ~" states but with no amnesic
states c an eas i l y be transformed into a protocol P
with no E states and whose communication pat terns
are a subset of the communication pat terns of P . If
in the absence of failures the decision reached in P is
a function of the inputs alone (and not, for example,
of the order in which messages happen to be delivered
in a part icular execution of the protocol), then, in the
absence of failures, P and P ~ compute the same
function of the inputs. The unanimity decision rule
enjoys this property. Interested readers will find the
t ransformation described in [DSk].

In Theorem 2 in the next section we will establish
certain necessary properties of WT-TC protocols in
which no processor becomes amnesic. In doing so, we
will consider only protocols with no /~ states. This
restriction is justified by the existence of the
aforementioned transformation.

146

4. Six C o n s e n s u s P r o b l e m s

In this section we study the relationships among
the six problems obtained by combining each of the
consistency conditions (interactive and total} with the
three termination conditions (weak, strong, and halt-
ing). We assume fail-stop processors and a decision
rule of unanimity. We specify a problem by specify-
ing its consistency and termination conditions. For
example, W T - T C denotes the weakly terminating
total consistency problem. The first theorem follows
immedi , te ly from the definitions.

forced to commit. Since p can commit only if the
initial bits of all processors are 1, p 's state must
imply this condition. Note that these are the require-
ments of a safe state.

The proof of Theorem 2 requires the following
technical definition and lemma.

Def in i t i on : Let X be any set of processors and
C be any configuration. We let state(X, C)
denote the projection of C onto the states of
all processors p EX.

T h e o r e m 1: For any termination condition T
E {WT, ST, HT}, T-IC _ < T-TC. For any
consistency constraint C E {IC, TC}, WT-C <
ST-C _< HT-C.

Proof: Total consistency implies interactive con-
sistency, since if no two processors disagree then cer-
tainly no two operational processors disagree. Thus,
any protocol establishing T -TC also establishes T-IC,
so by definition T-IC < T-TC. Similarly, halting ter-
mination implies strong termination, which in turn
implies weak termination, so WT-C < ST-C < HT-
C. []

We now give certain necessary properties of proto-
cols for W T-TC . We will use these properties and
Theorem 1 to show formally that none of the con-
sensus problems are equivalent.

A state s implies predicate X if X holds in every
accessible configuration containing s.

De f in i t i on : A state e is safe if and only if it
satisfies both:

(1) C (s) contains at most one decision
state; and

(2) if C (s) contains a commit state, then s
implies tha t the input value of each pro-
cessor is "1" .

T h e o r e m 2: Let P be a W T - T C protocol with
no E states. Then all states of P are safe.

Before proving this theorem, let us first consider
intuitively why it is true. A nonfaulty processor in a
TC protocol must be able to decide in accordance
with all other decided processors, even when they
have failed. Consider the case in which all processors
but one, p, fail. p may have to base its decision
solely on its state. Thus, in some cases p ' s state
must imply tha t at least one type of decision was not
made by another processor. Furthermore, if p ' s con-
currency set contains a commit state then p may be

L e m m a 3: Let C and D be configurations and
X a set of processors such that
state(X, C) = state(X, D). If a is any finite
sequence of steps applicable to both C and D,
then state(X, a (C)) = state(X, ~O)).

Proof: Let p be an arbitrary processor in X . We
show by induction on the length of a tha t p ' s state in
a (C) is the same as its state in a(D).

The basis, length(a)----O, is trivial. Suppose the
lemma holds for any schedule a where length(a)<n
(n > 0) . Consider now a a with length n (n > 0) .
Note that a is of the form a ~ a , where a ~ is a
schedule of length n -1 and an is an event, By
definition, o~E)-~an(a'(E)) for any configuration E .

By the induction hypothesis, we have
state(p, al(C))=state(p, al(D)). We need to show
that p ' s state in a n (a t (C)) is equal to its state in
a n (a l (D)) . There are two cases. In the first case, a n
has the form (q,#) where q ~ p . In this case, apply-
ing an does not change the state of p . Hence,
state (p, an (a' (C)))= state (p, an (a' (D))).

In the second case, a n has the form (p, #). Since
p acts deterministieally, it makes the same transition
when an is applied to a i (C) as it makes when an is
applied to a i (D). Again we have
state(p, an (a ' (C)))=state (p , a n (a ' (D))) . []

In Lemmas 4 and 5 we prove that any state of a
W T - T C protocol without E states must satisfy,
respectively, conditions (1) and (2) in the definition of
a safe state.

L e m m a 4: Let P be as in the s ta tement of
Theorem 2 and let sp be any operational state
in P . Then C(sv) contains at most one deci-
sion state.

Proof: Suppose the lemma is false. Then there exist
configurations C c and CA containing sp and contain-
ing commit and abort states, respectively. Clearly, sp
is not a decision state, since otherwise one of Cc and

147

C 4 would contain conflicting decisions. Let 14 be a
finite execution resulting in CA and let F 4 denote the
failed processors when the system is in CA. Let CA I
be the configuration reached from CA by applying
failure events for all processors in F c - F 4 , and let 14 I
be the corresponding extension to 1.4. Similarly, let
Ic be a finite execution resulting in Cc and let Fc
denote the failed processors when the system is in
Cc. Let Cc I be the configuration reached from Cc
by applying failure events for all processors in
FA-Fc , and let Ic I be the corresponding extension to
Ic. (Note that the same failures occur in 141 as
occur in Ic I.) Clearly s ta te (p ,C41) f f i s tate(p,Cc I)
----sp. Now, sp contains a record of all failures
detected by p during both IA ~ and Ic t . Thus, during
14 ~ , p is notified of the failure of some processor q if
and only if p is so notified during Ic ~ .

Let a be any finite deciding run applicable to CA ~
in which the only messages received by p are failure
notices. Such a run exists because all the remaining
operational processes but p may fail immediately and
p must still be able to decide. Then ~r is applicable
to Cc and by Lemma 3 the same decision must be
reached in both cases. Thus either ~r(C41) or ~ C c I)
contains conflicting decisions. []

L e m m a 5: Let P be as in the statement of
Theorem 2 and let sp be any state in P . If
commit E C(sp), then sp implies satisfaction
of the commit rule.

Proof: Let C be a configuration containing s~ and a
commit state. Let a be any finite deciding run appli-
cable to C beginning with the failure of all processors
except p and in which the only messages received by
p are failure messages. Then p must commit in
or(C), whence, by the correctness condition, the com-
mit rule must be satisfied. []

Together, Lemmas 4 and 5 imply Theorem 2.

We say a state s is committable if and only if s
implies that all initial bits are 1 and C(s), the con-
currency set of s, contains no abort state. Otherwise
we say s is noncommittable. This partition of the
state set determines the bias of a state.

The following corollary is immediate from
Theorem 2.

C o r o l l a r y 6" In any total consistency protocol
establishing even weak termination, if a pro-
cessor has decided then every nonfaulty proces-
sor shares its bias.

Let us call a protocol safe if all its operational states
are safe. Note that a safe protocol need not be a
WT-TC protocol, in fact, it can be the trivial proto-
col in which processors have input and decision regis-
ters but do nothing. Let us call a configuration safe if
it is the result of a finite execution of a safe protocol.
The next theorem shows that WT-TC can always be
reached from a safe configuration.

T h e o r e m T: From any safe configuration in
which at least one processor occupies a sending
state it is always po6sible to establish WT-TC
within O(N 2) steps per processor, where N is
the number of processors in the system.

The proof of this theorem requires the construction of
a "termination protocol" that can take as its initial
configuration an arbitrary safe configuration and then
establish WT-TC within the indicated bounds. Since
WT-TC termination protocols have appeared at least
twice in the literature ([$81], [$82]), we omit the for-
mal proof of this theorem. One such protocol appears
in the appendix.

We are interested in Theorem 7 primarily because
it allows us to work with partial specifications of
WT-TC protocols. In the proofs that follow, we will
only specify the failure-free behavior of WT-TC pro-
tocols. Whenever a failure occurs, the termination
protocol will complete the execution.

The next theorem shows that HT-IC and WT-TC
are incomparable. There exists a protocol ensuring
the strongest termination condition and weaker con-
sistency condition w h i c h cannot guarantee the
stronger consistency constraint, even under the weak-
est termination condition. Conversely, there is a pro-
tocol for WT-TC which cannot guarantee the weaker
consistency constraint under halting termination.

T h e o r e m 8s HT-IC and WT-TC are incom-
parable.

Proof: We first prove that HT-IC does not reduce to
WT-TC. Consider the WT-TC protocol for 7 proces-
sors presented in Figure 1. Only the failure-free
behavior is described; whenever a failure is detected
processors invoke the termination protocol given in
the appendix.

Although the protocol solves WT-TC, it cannot
solve HT-IC. To see this, suppose that P4 sends "0"
as its input value. Then P4 knows all processors are
noncommittable and they will retain that bias, so P4
can abort and no further messages will be sent to it.
The communication pattern in which one processor
halts after sending a single message and receiving

148

P4 Pb P6 P7

\ / \ /
P2 PS

Pl

P4 P6 P0 P7

a)The communication scheme for a phase. (*No
message sent to a leaf with an input of 0.)

~'HASE 1.

send inputs toward root (P 1);
root sets bias according to values of all inputs;
root sends bias toward leaves (no message sent to

leaf with input 0);
if bias ~ noncommittable processor aborts and

Phase 2 is omitted;

PHASE e (executed only if bias = committable).

after receiving bias, each leaf sends an
acknowledgement toward root;

after receiving all acknowledgements, root sends
c o m m i t toward leaves;

[b) An informal description of a WT-TC tree pgoto-
.'ol.

Figure 1. A WT-TC protocol that can not solve
kIT-IC. The. protocol uses a tree communication
~cheme.

none cannot be the communication pattern of any
protocol for HT-IC. Suppose it were. If a processor
receives no messages, then it cannot know input
values of the other processors. Thus, if a processor
halts without receiving any messages, then it halts in
an abort state. We describe two scenarios, indistin-
guishable to Pc- In one scenario P4 halts in an abort
state, in the other it halts in a commit state.

Scenario 1:P0 sends a "1" as its input value; P4 send
"0" as its input value and halts in an abort state
without receiving further messages. All processors
but P4 and P6 fail before Ps sends to Pe in Phase 1.
Not only is Pe undecided, but it doesn't know if Pl is
undecided or halted in an abort state. Thus, P6 can-
not wait for a message from p 4-

Scenario 2: All processors send "1" for their input
values. P i becomes committable and begins phase 2.
All processors but P4 and Po fail. P4 does not know if
Po is noncommittable or has actually committed and
halted, so P4 must commit without waiting for a mes-
sage from p e-

Thus, there exist configurations C¢ (scenario 1)
and C A (scenario 2) such that state{ps, Cc)

state(pc, CA) and Cc and CA contain commit and
abort states, respectively. Consider any finite decid-
ing run ¢, applicable to CA. Clearly, Pe must abort in
tr(Cs). Since ~ contains only failure messages (P4
does not send any messages because it has halted), a
is also applicable to Co. By Lemma 3, Ps must abort
in ~(C¢) as well, violating IC.

It remains to show that WT-TC does not reduce
to HT-IC. The protocol presented in Figure 2 solves
HT-IC but does not solve WT-TC. This is because P0
decides before all nonfaulty processors share its bias
and halts without receiving any further messages. I t
therefore violates Corollary 6 whenever the decision is
to commit. El

From Theorem 8 and its proof, it follows that for
a given termination condition, the IC problem and
the TC problem are not equivalent: the set of proto-
cols solving IC is richer than the set solving TC.

Coro l l a ry 9- For all termination conditions T
E {WT, ST, HT}, T-IC < T-TC.

149

Proof: We need only show strictness, since reducibil-
ity is a result of Theorem I. Assume for the sake of
contradiction that T-TC < T-IC. By Theorem 1, we
have WT-TC _< T-TC for any T E {WT, ST, HT}.
Similarly, we have T-IC <__ HT-IC. Hence, WT-
TC _< T-TC _< T-IC <__ HT-IC, which implies WT-
TC _< HT-IC and thereby contradicting Theorem 8.

D

Notes

(1) The communication primitive "broadcast
(message, set-of-processors)" sends message to
each processor in set-of-processors (order
unspecified).

(2) The communication primitive "receive_all (set-of-
processors }" delays the processor until a message
from each processor in the set is received. It
returns a set of messages, one from each process.

P0:
Msgs := receive_all(P-{p0});

If no failures detected --*

compute decision based on Msgs and inputo
failures detected ~ decision :---- abort

fl;

broadcast(decision, P-{P0});

decide;

ha l t

p, (1< i < N - l) :

send(input v,, P0);

decision :-- receive();

If no failures detected --*

broadcast(P-{p0, p, },decision);

decide
D failures detected --*

call modified termination protocol

fl;

ha l t

The termination protocol is modified as follows:
Whenever a processor receives a decision message, it
removes the sender from its UP set (the sender has
halted). Except for this, decision messages are
classified as committable/noncommittable and pro-
cessed as usual.

F igure 2. An HT-IC protocol not solving WT-TC.

In addition, Theorem 8 implies

Corol lary 10" For all consistency conditions
C E {IC, TC}, WT-C < HT-C.

The proof is similar to the proof of Corollary 9 and i
omitted.

Coro l l a ry 11" HT-IC and ST-TC are incom-
parable.

Proof: That HT-IC does not reduce to ST-TC fo]
lows from the observation that if the protocol of Fi$
ure 1 is modified so that processors become amnesi
as soon as they decide then we obtain a protocol f¢
ST-TC. (The termination protocol is modified bl
having processors broadcast the fact that they ar
amnesic as soon as they detect a failure. Amnesi
processors are then deleted from the UP sets of th
other processors.)

To show that ST-TC does not reduce to HT-IC
suppose the opposite. Now, ST-TC < HT-IC (b:
assumption) and WT-TC < ST-TC (by Theorem 11
hence, WT-TC < HT-IC (by transitivity of <1
This, however, contradicts Theorem 8. I-1

The above implies the next corollary, whose proo
is similar to that or Corollary 9.

Coro l l a ry 15: For all consistency conditions
C E {IC, TC}, ST-C < HT-C.

We can also prove that under either consistency con
straint weak termination differs from strong termina
tion.

T h e o r e m 13: For every consistency constraint
C E {IC, TC}, WT-C < ST-C.

Proof: We need only show strictness. To see tha
WT-IC < ST-IC, consider the following WT-IC pro
tocol. Each p,, 1 < i < N begins by sending it
input to Po. P0 tallies the inputs, including its own
decides, and sends a decision to p 1- P 1 decides accord
ingly and forwards the decision to P2, and so on, unti
the decision reaches PN-1, which simply decides. Th,
communication pattern for this protocol is illustrate<
in Figure 3. The pattern illustrated is the on13
failure-free pattern of the protocol. This communica
tion pattern cannot handle both decisions to commi~
and to abort in an ST-IC protocol. Suppose other
wise. Then each processor p, sending "1" as its inpw
must become amnesic after deciding, withow

150

po po P2
Pl

P2

Figure 3. A WT-IC protocol tha t can not solve ST-
IC.

receiving further messages. Consider the following
two scenarios.

Scenario 1 : P 0 and P2 send "1" , P0 commits and
becomes amnesic, and Pl and Ps fail before the deci-
sion message is sent to P2.

Scenario 2 :P0 and Pz send "1" , but Pl sends "0" . Po
aborts and becomes amnesic, and Pl and Ps fail
before the decision message is sent to Pc.

By an argument similar to the proof of Lemma 3,
p2 must reach the same decision in each case, so in
some execution P0 and P2 reach mutually inconsistent
decisions.

We now show that WT-TC < ST-TC. This
result is considerably less intuitive and the proof is
very contrived.

Consider the WT-TC protocol P with four
failure-free communicat ion patterns, as represented in
Figure 4.

The figure shows 2 kinds of edges. Solid edges are
messages tha t are sent in every failure-free execution
of the protocol. Dashed edges represent messages
that are sent or not sent according to the order in
which certain other messages are delivered. In partic-
ular, message m I is sent only if m a is delivered before
mb is delivered. Message m 2 is sent only if m c is

Po Pl P2 P~

P2 j - . . .
. P m ~ ~ ~ ~ / ~ ~ P

po~.... .---''~ m, ~ p ie" m,

Y'tl 1 ~' ~ I

Po & " " ~" ~ P l Ps
%"

%'%

m S %"

".alp I

F i g u r e 4. A W T - T C protocol that can not solve
ST-TC.

delivered before m~. Finally, m s is sent only if both
m 1 and m 2 are sent. Thus Figure 4 represents four
possible communication patterns, according to which
of the messages corresponding to dashed edges are
sent: (1) none of ra l , m 2, m s are sent; (2) only rn 1 is
sent; (3) only m 2 is sent; and (4) ml, m2, and m s are
sent.

The perversity of this example is tha t the mes-
sages corresponding to the dashed edges serve no pur-
pose; indeed, eliminating these edges leaves us with
the a perfectly good communication pat tern for both
a W T - T C and an ST-TC protocol.

Let us assume for the sake of contradiction that
the scheme of P is the scheme of an ST-TC protocol.
Then there exist an execution in which m: is sent and
an execution in which m x is not sent in both of which
Po becomes amnesic before receiving m 2. This is

151

obvious, since m e might never be sent and Po must
become amnesic eventually. Consider two executions,
I v and I , , such that P0 sends m 1 in I v and p0does
not send m 1 in la and such that in both executions P0
becomes amnesic and then receives m e and po's state
on receipt of m 2 is the same in both executions.
Since P0 behaves deterministically it must send m s in
both executions or neither. If neither, then the com-
munication pattern of I v is not one of the patterns
(1}-(4) listed above. If both, then the communication
pattern of I, is not one of the patterns (1)-(4) listed
above. This contradicts our assumption that the
scheme of P is the scheme of an ST-TC protocol. 0

The .following diagram summarizes the results of
Theorems 1, 8, and 13, and Corollaries 9 through 12.
Notice that all of the inequalities are strict.

WT-IC < WT-TC
< <

ST-IC < ST-TC
< <

HT-IC < HT-TC

References

[BTI Bracha, G. and Toueg, S. "Resilient Con-
sensus Protocols." Proc. end ACM Sympo-
sium on Principles of Distributed Computing
(1983), 12-26.

[DDS] Dolev,D., Dwork, C., and Stockmeyer, L.
"On the Minimal Synchronism needed for
distributed Consensus." Pros. £4th IEEE
Symposium on Foundations of Computer Sci-
ence (1983), 393-402.

IDFFLS] Dolev, D., Fischer, M., Fowler, R., Lynch,
N., Strong, H. R., "An Efficient Byzantine
Agreement Without Authentication." Infor-
mation and Control

[DLPSW]
Dolev, D., Lynch, N., Pinter, S., Stark, E.
and Weihl, W. "Reaching Approximate
Agreement in the Presence of Faults." Proc.
8rd Annual IEEE Symposium on Reliability
in Distributed Software and Database Sys-
tems (1983).

[DLS] Dwork, C., Lynch, N., and Stockmeyer, L.
"Consensus in the Presence of Partial Syn-
chrony." These proceedings.

[DRSI

[DSl

[DSk]

IFI

IFLP]

[GPD]

IGil

[Grl

1L78]

1L831

[LPSI

IMLi

Dolev, D., Reischuk, R., and Strong, H.R. "
'Eventual' is Earlier Than 'Immediate'."
Proc. 28rd IEEE Symposium on Foundations
of Computer Science (1982}, 196-203.

Dolev, D. and Strong, H. R. "Distributed
Commit with Bounded Waiting." Proc. end
Internation Symposium on Distributed Data
Bases (1983, 53-60.

Dwork, C. and Skeen, D. "Patterns of Com-
munication in Consensus Protocols." Com-
puter Science Tech. Report 84-611, Cornell
University, June, 1984.

Fischer, M. "The Consensus Problem in
Unreliable Distributed Systems (A Brief Sur-
vey)." YALEU/DCS-/RR-273, June, 1983.

Fischer, M., Lynch, N. A. and Paterson, M.
"Impossibility of Distributed Consensus with
One Faulty Process." Proc. end Symposium
on Principles of Database Systems (1983), 1-
7.

Garcia-Molina, H., Pittelli, F., and David-
son, S. "Is Byzantine Agreement Useful In
A Distributed Database?" Proc. 8nd Sympo-
sium on Principles of Database Systems
(1984), 61-69.

Gifford, D.K. "Weighted Voting for Repli-
cated Data." Technical Report CSL-79-14,
(1979}, XEROX Paid Alto Research Center.

Gray, J. "A Discussion of Distributed Sys-
tems." Research Report RJ2699 (1979), IBM.

Lamport, L. "Time, Clocks, and the Order-
ing of Events in a Distributed System."
CACM 21, 7 (1978), 558-565.

Lamport, L. "The Weak Byzantine Gen-
erals Problem." J. A C M 80, 3 (1983), 668-
676.

Lamport, L., Shostak, R., and Pease, M.
"The Byzantine Generals Problem." A C M
Trans. on Programming Lang. and Systems
4, 3 (1082), 382-4Ol.

Mohan, C., and Lindsay, B., "Efficient Com-
mit Protocols for the Tree of Processes
Model of Distributed Transactions," Proc.
end A C M Symposium on Principles of Distri-
buted Computing (1983), 76-88.

152

[PSL]

Isl

[seal

1s811

[s8zl

lWl

Pease, M., R. Shostak, and L. Lamport,
"Reaching Agreement in the Presence of
Faults." J. ACM ST, 2 (1980), 228-234.

Schneider, F. B. "Byzantine Generals in
Action: Implementing Fail-Stop Proces-
sors." ACM Trans. on Computer Systems 2,
2 (1984), 145-154.

Schneider, F.B., Gries, D., and Schlichting,
R . D . "Fast Reliable Broadcasts." Com-
puter Science Technical Report 82-519
(1982), Cornell University.

Skeen, D. "A Decentralized Termination
Protocol." Pros. 1st IEEE Symposium on
Reliability in Distributed Software and Data-
base Systems (1981), 27-32.

Skeen, D. "Crash Recovery in a Distributed
Database System." Technical Report
UCB/BP, L M82/45 (1982), Department of
Electrical Engineering and Computer Sci-
ence, University of California, Berkeley.

Wensley, J.H., et al. "SIFT: Design and
Analysis of a Fault-Tolerant Computer for
Aircraft Control." Pros. IEEE 66, 10 (1978),
1240-1255.

Append ix : A T e r m i n a t i o n Protoco l

The protocol below ensures total consistency and
establishes weak termination when invoked from any
configuration in the execution of a safe protocol. The
code given is for an arbitrary processor p.

p r o t o c o l Termination (biasp, UPp);
local var lab lex Msgs : se t o f messages;

round: 1..N;

for round :--~- 1 to N do
broadcast (UPp-{p }, (round, biasp));
Msgs : = receive_all(UPp-{p }) modified

so that messages from this round only
are received;

UPp : = UPp - {q I "failed(q)" received};
if "committable" received

t h e n biasp :----- committable;
fl;

od;
If biasp =commit table --* c o m m i t
0 biasp =noneommittable --* a b o r t

fl;
ha l t

Notes.

(1) The communication primitives "broadcast" and
"receive_all" are defined in Figure 2.

(2) The global variabl~ N contains the number of
participating processors.

(3) The parameters are two components of the state
of p in the consensus protocol invoking this termi-
nation protocol: b/asp--indicating committable or
noncommittable, and UPp--the set of processors
whose failures have not be detected by p.

153

