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A b s t r a e t  

This paper presents a taxonomy of consensus prob- 
lems, based on their safeness and liveness properties, 
and then explores the relationships among the 
different problems in the taxonomy. Each problem is 
characterized by the communication patterns of pro- 
tocols solving it. This then becomes the basis for a 
new notion of reducibility between problems. For- 
mally, problem P1 reduces to problem P2 whenever 
each set of communication patterns of a protocol for 
P2 is the set of communication patterns of a protocol 
for PI. This means intuitively that any protocol for 
P2 can solve P1 by relabeling local states and pad- 
ding messages. Consequently, the message complexity 
(measured in number of messages) of P1 is not greater 
than the message complexity of P2. Our method of 
characterizing and comparing problems is the princi- 
pal contribution of this paper. 

1. I n t r o d u c t i o n  

The ability of separated processors to reach con- 
sensus is a fundamental problem in distributed com- 
putation and has been studied extensively in the 
literature. (See Fischer [F I for a survey. Also see 
[DFFLS], [DRS], [GPD], [L83], [LPS], [PSL] for exam- 

.pies.) Generally, each processor begins with a binary 
value in its input register. At some point in the com- 
putation correct processors must irreversibly decide 
on a binary value. No two correct processors may 
decide differently. The details of the relationship of 
the initial values to the decision vary according to the 
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particular version of the problem. Additional varia- 
tions have been obtained by (1) varying the failure 
environment; (2) varying the assumptions on syn- 
chrony ([FLP, DDS, DLS]); (3) varying the notion of 
an atomic step ([DDS]); and (4) varying the range of 
acceptable decision values (IDLPSW)). 

In practice consensus problems arise in numerous 
guises. The simplest of these is the reliable broadcast 
problem ([SGS]), better known as the Byzantine Gen- 
erals problem ([PSL]). Other settings include transac- 
tion commitment systems ([DS], [Grl, [S821), repli- 
cated file systems (IGi]), resource allocation, and 
interpretation of sensor or other instrumentation 
readings ([Wl). 

In any fixed model (level of synchrony, type of 
failure, choice of atomic step, etc.) consensus prob- 
lems seem to differ from one another in three princi- 
pal aspects, and one contribution of this paper is a 
tazonomy for consensus problems corresponding to 
these parameters. The first parameter is the set of 
decision rules, i.e., conditions under which a processor 
can or must decide on a given value. For example, in 
the strong unanimity problem (see IF]} if all initial 
values are the same value, say v, then the decision 
must be v. The second parameter is the consistency 
constraint. In the reliable broadcast problem, only 
non.faulty processors must agree on a value, while in 
the distributed commitment problem all processors 
that ever decide (including those that subsequently 
fail) must decide on the same value. The third 
parameter is the termination, or liveness, constraint. 
A frequently used termination requirement is simply 
that every nonfaulty processor eventually decide. 

The goal of this paper is to unify work on the 
different forms of consensus problems by exploring the 
relationships among the different problems. To do 
this we define a new notion of reducibility. We first 
define for any protocol P a partial ordering on the 
message-sending steps of an execution of P (el. Lam- 
port [L78]). Intuitively, the sending of message m 1 
precedes the sending of ms if and only if the contents 
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of m 1 may be known to the sender of m 2 when m 2 is 
sent. We call this partial ordering the communication 
pattern of the execution. 

For any protocol Q, let the scheme of Q denote 
the Set of all communication patterns of failure-free 
executions of Q. A problem may be characterized by 
the set of schemes of protocols for the problem. We 
say P1 reduces to P2, written PI _< P2, if and only if 
the set of schemes for P1 contains the set of schemes 
for P2- 

Intuitively, if PI  reduces to P2, then any protocol 
for P2 can solve P1 by relabeling local states and 
padding messages. Consequently, the message com- 
plexity (measured in number of messages) of P1 is not 
greater than the message complexity of P2. Our 
method of characterizing and comparing problems is 
the principal contribution of this paper. Given our 
taxonomy we use this notion of reducibility to exam- 
ine the relationships among six practical problems 
with varying safeness and liveness properties. 

2. A Taxonomy of  Consensus Problems 

In this section,we briefly describe some possible 
choices for the three parameters mentioned in the 
introduction: decision rules, consistency constraints, 
and termination conditions. We assume a completely 
asynchronous model with fail-stop processors, mean- 
ing that processors fail by halting and that failures 
are detectable. Our model of computation is specified 
more fully in Section 3. 

The most frequently used decision rule is the 
Broadcast Rule: decide v only if the initial value of a 
distinguished processor is v .1 This is the decision rule 
of the Byzantine Generals problem. This rule, how- 
ever, is inappropriate for problems such as transaction 
commitment, where input values of all the processors 
influence the decision. A common decision rule for 
these problems is unanimity: decide 1 (commit) only 
if every proeessor's initial value is 1, and decide 0 
(abort) only if some processor begins with value 0 or a 
failure occurs. Note that unanimity is meaningless in 
the presence of Byzantine failures, where processors 
can lie about their initial values. 

There are obvious generalizations of the above 
rules, such as threshold-k: decide 1 only if at least k 
processors have initial value 1; or set(S,v): decide v 
only if all processors in set S have initial value v. 

IThis is the strong variant; the weak variant allows a 
default decision if the distinguished processor is faulty. 

We identify two important consistency co 
straints. In interactive consistency (IC) no two oper 
tional processors may simultaneously occupy differe 
decision states. In total consistency (TC) no two pr 
cessors ever decide on different values. Notice th 
these constraints differ in their treatment of fault 
decided processors: in total consistency, any decisi~ 
must be consistent with a decision made by anoth 
processor, even if that processor has subsequenl 
failed. Total consistency is meaningless in a moc 
allowing failed processors to make incorrect decisiol 
Total consistency is usually required when a decid 
processor could initiate an irreversible action, such 
dispensing money. 

We identify three increasingly strong types of tq 
mination. The weakest termination constraint ec 
sidered here is weak termination (WT), which requi] 
only that every nonfaulty processor decide within 
bounded number of steps. Weak termination s~ 
nothing about when a processor can halt or ev 
when it can forget about the particular execution 
the protocol or about its decision. In fact, it adm 
solutions that never halt, even in failure-free exec 
tions. (Such protocols terminate, in essence, 
deadlocking, with each processor listening for m, 
sages from its cohorts.} 

Our two stronger termination conditions ~" 
intended for environments in which processors 
repeatedly executing consensus protocols. Processq 
may even be executing several protocols at a time. 
this situation we may imagine that all messages 
tagged with a unique protocol identifier. If the set 
possible decision values is large, it may be desiral 
to allow a processor to forget its decision for a giv 
instance of a protocol, while remembering that a de 
sion was made. We call this strong terminati~ 
Figuratively, the processor places a check next tc 
record of the protocol identifier, indicating that 
decision has been made but keeping no record of t 
processing involved. The resulting state is 
amnesic state. In order to avoid talking about 
tory, we will refer to a processor as being either in 
amnesic commit or an amnesic abort state, althov 
there is really only one amnesic state. An atone 
processor may continue to send and receive messa 8 
It may even be reminded of its decision by the ot] 
processors. 

Another possibility is that we wish to allow a p 
cessor to complete its role in an execution of a pro 
col, in the sense that it need no longer send or reee 
messages relative to the given execution. We call t 
halting termination. Of course, a halted proces 
may fail, and its failure is detectable. 

144 



All possible combinations of the above rules and 
constraints have applications. For the Byzantine 
Generals problem, the combination broadcast rule, 
interactive consistency, and halting is normally 
assumed. However, weak termination, instead of 
halting, in used in the reliable broadcast protocols of 
[SGS] in order to reduce costs. For the transaction 
commitment  problem, unanimity and total con- 
sistency are assumed, together with either weak ter- 
mination ([$82]) or strong termination ({MLI). 

3. D e f i n t t l o n l  a n d  t h e  M o d e l  o f  C o m p u t a t i o n  

Our formal model of computation is based on the 
models of [FLP, DDS]. The processors are modeled as 
infinite-state machines with state set Z. At each of 
its steps, a processor may receive or send a message, 
but  not both. In a receiving step it may change 
states according to its previous state and the contents 
of the message received. In a sending, step it may 
send at most one message and change states. A third 
kind of step, a failure step, is discussed below. 

A consensus protocol is a set of N processors, 
P ~-- {Po, Pl, . .  • ,PN-1}. As part of its state, each 
processor p, has a set UP,, initially containing all N 
processors. As p, learns of failures it deletes these 
failed processors from UP,. Each processor p, also 
has an initial bit, input,. There are two special initial 
states Zo and zl. For v E {0,1}, a processor is 
started in state z~ if its initial bit is v. Each non- 
faulty processor then follows a protocol involving the 
receipt and sending of messages. The messages are 
drawn from an infinite set M. Each processor has a 
buffer for holding the messages that  have been sent to 
it but not yet  received. The buffer is modeled as an 
unordered set of messages. The collection of buffers 
supports two operations: 

Send(p ,m): places message m in p ' s  buffer; 

Receive (p): delays p until a message is delivered, 
and deletes this message from p 's  buffer. 

The message system is asynchronous, but  it is also 
faultless and fair. A processor may suffer an arbitrary 
delay when executing a Receive operation, but if its 
buffer is nonempty, the delay is finite. In addition, in 
selecting a message to deliver to a processor, it will 
not discriminate against a given message infinitely 
often. 

Each processor p is specified by a state transition 
function 8p and a sending function/~p where 

~ p : g  X M u {~$}-4 g 
/~ , :Z  ~ { ~ }  u V - { p } × M  u 

{(q,failedip))] q E P - { p  }}. 

The pair (q ,m)  in the range of/~p means that  p sends 
message m to processor q. For technical reasons, p 
is not allowed to send a message to itself. In a nor- 
mal (non-failure) step, a processor can send at most 
one message. In a failure step, a processor sends 
failure notices to all other processors. (This allows 
the other processors to detect the failure.) 

We assume that  Z is partitioned into three dis- 
joint sets ZR (the operational receiving states), Zs 
(the operational sending states), and Z r (the failed 
states). No normal messages are sent when in a 
receiving state (formally, if z E ZR then Sp(z) ----- ~). 
No messages are received when in a sending state. 
We also assume that  Z contains two disjoint sets of 
decision states Y0 and Y1, such that  if a processor 
enters a state in Y~, v E {0, 1}, then it must remain 
in states in Yr- (in the ease of strong termination, 
processors are allowed to move from a decision state 
into an amnesic state.) 

A configuration C consists of 

(a) N states state(p,, C) E Z for l ~ i ~ N ,  speci- 
fying the current state of each processor, and 

(b) N sets buf f (p , ,C  I E 2 u for I < i < N ,  specify- 
ing the current contents of each buffer. 

Initially, each state is either z0 or z 1 as described 
above, each buffer is empty and each UP set contains 
all N processors. 

An event is a pair (p,#) where p E P  and # E  
M u { f , ¢ } .  If # ¢ {f,{~} the event (P,U) may be 
thought  of as the receipt of message # by processor p. 
Think of ( p , f )  as the event of p ' s  failure. We now 
define conditions under which an event can be applied 
to a configuration to yield a new configuration. 

(1) if  state(p ,C) E Zs, then (p,#) is applicable to 
C only if # ----- I} or # ---- f . 

(2) If state(p,C) E ZR, then (p ,#) is applicable to 
C i f # E  b u f f ( p , C ) o r # = f .  

If the event e ----(p,#) is applicable to C and e is 
not a failure transition, then the next configuration 
e(C) is obtained as follows: 

(a) p changes its state from z - ~  state(p,C) to 
//p(z,#) and the states of the other processors 
do not change, 

(b)for all (q ,m)EBp(z ) ,  m is added to 
bu f f (q ,C) ,  
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(c) if z E ZR and # ~ f  then /~ is deleted from 
b u f f  (p ,C). 

A failure transition is modeled as two steps. We let 
Zr ~- {za ,Zb }. When a processor fails it first enters 
za, from which it broadcasts a failure notice. It then 
moves to state Zb. Formally,  

(a) for all z ~ Z~., 8p(z , f  ) ffi za, 

(b)/~p(za) ffi { (q , f  ailed(p )) l q E P - { p  }}, 

(C) ~p(Za, ¢)= Zb, 

(d) for all/~, ~p(zb, lz) ~ zb, 

( e )  = ¢. 

Rules (d) and (e) ensure that  once a processor has 
failed it cannot  send messages or restart  at a later 
time. 

A schedule is a finite or infinite sequence of events. 
A schedule ~----" ala2 • " " is applicable to a 
configuration C if the events of a can be applied in 
turn starting from C, i.e., a~ is applicable to C, a2 is 
applicable to a l (C) ,  etc. If a is finite, ~ C )  denotes 
the resulting configuration, which is said to be reach- 
able from C. A configuration reachable from some 
initial configuration is said to be accessible. Simi- 
larly, a local state sp is accessible only if there exists 
a reachable configuration C and processor p such 
that  s ta te (p ,C)  --- ep. Henceforth, all configurations 
and states mentioned are assumed to be accessible. 

A schedule together with the associated sequence 
of configurations is called a ran. A processor is non- 
faulty in a run if it never occupies a failed state dur- 
ing the run. A run is a deciding run if every non- 
faulty processor enters a decision state. An execution 
is a (possibly infinite) run from an initial 
configuration. 

A processor's "knowledge" about  the states of its 
cohorts is captured by the concurrency set of its 
state. The concurrency set of state s,  denoted C(s) ,  
is the set of states t such that  s and t occur in the 
same configuration. 

For an execution I of a given protocol, we wish to 
define a partial  ordering ( < x )  on the messages sent 
during the execution. The ordering is based on 
Lamport ' s  "happens  before" relation. Intuitively, 
m < ! r r /  if the contents of message m could have 
influenced the contents of message m ~ . Since we will 
be interested in the ordering among messages, but  not 
in their contents,  we assume in the following 
definitions that  a message is represented by a triple 
(p,  q, k), meaning that  the message was the k t~ mes- 
sage sent from p to q. 

Formally,  the ordering <z  is the smallest 
irrefiexive, transit ive relation satisfying: 

(1) m 1 < l m 2  if 'ml and m 2 have the same sender 
and m 1 is sent in real t ime before m 2 is sent; 

(2) ml  < 1 m 2  if the recipient of ml is the sender 
of m 2 and ml is received before m 2 is sent. 

The  relation <1 with messages represented as triples 
is called the communication pattern of I .  The  set of 
communicat ion pat terns of all failure-free executions 
of a protocol P is called the scheme of P .  

As mentioned in the introduction, we characterize 
a problem by the set of sets of eor:~munication pat-  
terns (i.e., the set of schemes) of protocols solving the 
problem. Let  Q be a protocol for P2- If P1 reduces 
to P2 (PI_<P2), then the scheme of Q is the scheme 
of some protocol for PI- This says intuitively that  Q 
is a protocol for P I  up to a renaming of states and 
padding of messages. The < relation is transitive. If 
P1 --< P2 but  the converse is false we write P I  < P2. 
Finally, if neither problem reduces to the other we 
say they are incomparable. 

We conclude this section by identifying a set of 
states tha t  complicate reasoning about protocols. A 
processor only enters a state in this set if it knows its 
message buffer is not empty.  This can happen if mes- 
sages are delivered out of order. (If processors could 
send messages to themselves it could happen all the 
time.) We denote this set by /~ and its complement  
by E (for empty buffer). A processor in an E state  
cannot  be forced to make a decision: it can safely pro- 
crast inate until an impending message is delivered. 

A protocol P with ~" states but with no amnesic 
states c an eas i l y  be transformed into a protocol P 
with no E states and whose communication pat terns 
are a subset of the communication pat terns of P .  If 
in the absence of failures the decision reached in P is 
a function of the inputs alone (and not, for example, 
of the order in which messages happen to be delivered 
in a part icular  execution of the protocol), then, in the 
absence of failures, P and P ~  compute the same 
function of the inputs. The unanimity decision rule 
enjoys this property.  Interested readers will find the 
t ransformation described in [DSk]. 

In Theorem 2 in the next section we will establish 
certain necessary properties of WT-TC protocols in 
which no processor becomes amnesic. In doing so, we 
will consider only protocols with no /~ states. This 
restriction is justified by the existence of the 
aforementioned transformation. 
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4. Six C o n s e n s u s  P r o b l e m s  

In this section we study the relationships among 
the six problems obtained by combining each of the 
consistency conditions (interactive and total} with the 
three termination conditions (weak, strong, and halt- 
ing). We assume fail-stop processors and a decision 
rule of unanimity.  We specify a problem by specify- 
ing its consistency and termination conditions. For 
example, W T - T C  denotes the weakly terminating 
total consistency problem. The first theorem follows 
immedi , te ly  from the definitions. 

forced to commit.  Since p can commit  only if the 
initial bits of all processors are 1, p 's  state must 
imply this condition. Note that  these are the require- 
ments of a safe state. 

The proof of Theorem 2 requires the following 
technical definition and lemma. 

Def in i t i on :  Let  X be any set of processors and 
C be any configuration. We let state(X, C) 
denote the projection of C onto the states of 
all processors p EX.  

T h e o r e m  1: For any termination condition T 
E {WT, ST, HT}, T-IC _ < T-TC.  For any 
consistency constraint  C E {IC, TC}, WT-C < 
ST-C _< HT-C. 

Proof: Total  consistency implies interactive con- 
sistency, since if no two processors disagree then cer- 
tainly no two operational processors disagree. Thus, 
any protocol establishing T -TC also establishes T-IC, 
so by definition T-IC < T-TC.  Similarly, halting ter- 
mination implies strong termination,  which in turn 
implies weak termination,  so WT-C < ST-C < HT- 
C. [] 

We now give certain necessary properties of proto- 
cols for W T-TC .  We will use these properties and 
Theorem 1 to show formally that  none of the con- 
sensus problems are equivalent.  

A state s implies predicate X if X holds in every 
accessible configuration containing s. 

De f in i t i on :  A state e is safe if and only if it 
satisfies both: 

(1) C ( s )  contains at most one decision 
state; and 

(2) if C ( s )  contains a commit  state, then s 
implies tha t  the input value of each pro- 
cessor is "1" .  

T h e o r e m  2: Let  P be a W T - T C  protocol with 
no E states. Then all states of P are safe. 

Before proving this theorem, let us first consider 
intuitively why it is true. A nonfaulty processor in a 
TC protocol must  be able to decide in accordance 
with all other decided processors, even when they 
have failed. Consider the case in which all processors 
but  one, p,  fail. p may have to base its decision 
solely on its state. Thus,  in some cases p ' s  state 
must imply tha t  at least one type of decision was not 
made by another  processor. Furthermore,  if p ' s  con- 
currency set contains a commit  state then p may be 

L e m m a  3: Let  C and D be configurations and 
X a set of processors such that  
state(X, C ) =  state(X, D). If a is any finite 
sequence of steps applicable to both C and D, 
then state(X, a ( C ) ) =  state(X, ~O )). 

Proof: Let p be an arbitrary processor in X .  We 
show by induction on the length of a tha t  p ' s  state in 
a (C)  is the same as its state in a(D).  

The  basis, length(a)----O, is trivial. Suppose the 
lemma holds for any schedule a where length(a)<n 
( n > 0 ) .  Consider now a a with length n ( n > 0 ) .  
Note that  a is of the form a ~ a ,  where a ~ is a 
schedule of length n -1  and an is an event,  By 
definition, o~E)-~an(a'(E)) for any configuration E .  

By the induction hypothesis, we have 
state(p, al(C))=state(p,  al(D)). We need to show 
that  p ' s  state in a n ( a t ( C ) )  is equal to its state in 
a n ( a l ( D ) ) .  There are two cases. In the first case, a n 
has the form (q,#) where q ~ p .  In this case, apply- 
ing an does not change the state of p .  Hence, 
state (p, an (a' (C)))= state (p, an (a' (D))). 

In the second case, a n has the form (p, #). Since 
p acts deterministieally, it makes the same transition 
when an is applied to a i ( C )  as it makes when an is 
applied to a i (D). Again we have  
state(p, an (a ' ( C )))=state (p , a n ( a ' ( D ) ) ) .  [] 

In Lemmas 4 and 5 we prove that  any state of a 
W T - T C  protocol without  E states must satisfy, 
respectively, conditions (1) and (2) in the definition of 
a safe state. 

L e m m a  4: Let  P be as in the s ta tement  of 
Theorem 2 and let sp be any operational state 
in P .  Then C(sv) contains at most one deci- 
sion state. 

Proof: Suppose the lemma is false. Then there exist 
configurations C c and CA containing sp and contain- 
ing commit  and abort states, respectively. Clearly, sp 
is not a decision state, since otherwise one of Cc and 

147 



C 4 would contain conflicting decisions. Let 14 be a 
finite execution resulting in CA and let F 4 denote the 
failed processors when the system is in CA. Let CA I 
be the configuration reached from CA by applying 
failure events for all processors in F c - F 4 ,  and let 14 I 
be the corresponding extension to 1.4. Similarly, let 
Ic be a finite execution resulting in Cc and let Fc 
denote the failed processors when the system is in 
Cc. Let Cc I be the configuration reached from Cc 
by applying failure events for all processors in 
FA-Fc ,  and let Ic I be the corresponding extension to 
Ic.  (Note that the same failures occur in 141 as 
occur in Ic I.) Clearly s ta te (p ,C41) f f i  s tate(p,Cc I) 
----sp. Now, sp contains a record of all failures 
detected by p during both IA ~ and Ic t . Thus, during 
14 ~ , p is notified of the failure of some processor q if 
and only if p is so notified during Ic ~ . 

Let a be any finite deciding run applicable to CA ~ 
in which the only messages received by p are failure 
notices. Such a run exists because all the remaining 
operational processes but p may fail immediately and 
p must still be able to decide. Then ~r is applicable 
to Cc and by Lemma 3 the same decision must be 
reached in both cases. Thus either ~r(C41 ) or ~ C c  I ) 
contains conflicting decisions. [] 

L e m m a  5: Let P be as in the statement of 
Theorem 2 and let sp be any state in P .  If 
commit E C(sp), then sp implies satisfaction 
of the commit rule. 

Proof: Let C be a configuration containing s~ and a 
commit state. Let a be any finite deciding run appli- 
cable to C beginning with the failure of all processors 
except p and in which the only messages received by 
p are failure messages. Then p must commit in 
or(C), whence, by the correctness condition, the com- 
mit rule must be satisfied. [] 

Together, Lemmas 4 and 5 imply Theorem 2. 

We say a state s is committable if and only if s 
implies that all initial bits are 1 and C(s),  the con- 
currency set of s, contains no abort state. Otherwise 
we say s is noncommittable. This partition of the 
state set determines the bias of a state. 

The following corollary is immediate from 
Theorem 2. 

C o r o l l a r y  6" In any total consistency protocol 
establishing even weak termination, if a pro- 
cessor has decided then every nonfaulty proces- 
sor shares its bias. 

Let us call a protocol safe if all its operational states 
are safe. Note that a safe protocol need not be a 
WT-TC protocol, in fact, it can be the trivial proto- 
col in which processors have input and decision regis- 
ters but do nothing. Let us call a configuration safe if 
it is the result of a finite execution of a safe protocol. 
The next theorem shows that WT-TC can always be 
reached from a safe configuration. 

T h e o r e m  T: From any safe configuration in 
which at least one processor occupies a sending 
state it is always po6sible to establish WT-TC 
within O(N 2) steps per processor, where N is 
the number of processors in the system. 

The proof of this theorem requires the construction of 
a "termination protocol" that can take as its initial 
configuration an arbitrary safe configuration and then 
establish WT-TC within the indicated bounds. Since 
WT-TC termination protocols have appeared at least 
twice in the literature ([$81], [$82]), we omit the for- 
mal proof of this theorem. One such protocol appears 
in the appendix. 

We are interested in Theorem 7 primarily because 
it allows us to work with partial specifications of 
WT-TC protocols. In the proofs that follow, we will 
only specify the failure-free behavior of WT-TC pro- 
tocols. Whenever a failure occurs, the termination 
protocol will complete the execution. 

The next theorem shows that HT-IC and WT-TC 
are incomparable. There exists a protocol ensuring 
the strongest termination condition and weaker con- 
sistency condition w h i c h  cannot guarantee the 
stronger consistency constraint, even under the weak- 
est termination condition. Conversely, there is a pro- 
tocol for WT-TC which cannot guarantee the weaker 
consistency constraint under halting termination. 

T h e o r e m  8s HT-IC and WT-TC are incom- 
parable. 

Proof: We first prove that HT-IC does not reduce to 
WT-TC. Consider the WT-TC protocol for 7 proces- 
sors presented in Figure 1. Only the failure-free 
behavior is described; whenever a failure is detected 
processors invoke the termination protocol given in 
the appendix. 

Although the protocol solves WT-TC, it cannot 
solve HT-IC. To see this, suppose that P4 sends "0" 
as its input value. Then P4 knows all processors are 
noncommittable and they will retain that bias, so P4 
can abort and no further messages will be sent to it. 
The communication pattern in which one processor 
halts after sending a single message and receiving 
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P4 Pb P6 P7 

\ /  \ /  
P2 PS 

Pl 

P4 P6 P0 P7 

a )The  communication scheme for a phase. (*No 
message sent to a leaf with an input of 0.) 

~'HASE 1. 

send inputs toward root (P 1); 
root sets bias according to values of all inputs; 
root sends bias toward leaves (no message sent to 

leaf with input 0); 
if bias ~ noncommittable processor aborts and 

Phase 2 is omitted; 

PHASE e (executed only if bias = committable). 

after receiving bias, each leaf sends an 
acknowledgement toward root; 

after receiving all acknowledgements, root sends 
c o m m i t  toward leaves; 

[b) An informal description of a WT-TC tree pgoto- 
.'ol. 

Figure 1. A WT-TC protocol that can not solve 
kIT-IC. The. protocol uses a tree communication 
~cheme. 

none cannot be the communication pattern of any 
protocol for HT-IC. Suppose it were. If a processor 
receives no messages, then it cannot know input 
values of the other processors. Thus, if a processor 
halts without receiving any messages, then it halts in 
an abort state. We describe two scenarios, indistin- 
guishable to Pc- In one scenario P4 halts in an abort 
state, in the other it halts in a commit state. 

Scenario 1:P0 sends a "1" as its input value; P4 send 
"0" as its input value and halts in an abort state 
without receiving further messages. All processors 
but P4 and P6 fail before Ps sends to Pe in Phase 1. 
Not only is Pe undecided, but it doesn't know if Pl is 
undecided or halted in an abort state. Thus, P6 can- 
not wait for a message from p 4- 

Scenario 2: All processors send "1" for their input 
values. P i becomes committable and begins phase 2. 
All processors but P4 and Po fail. P4 does not know if 
Po is noncommittable or has actually committed and 
halted, so P4 must commit without waiting for a mes- 
sage from p e- 

Thus, there exist configurations C¢ (scenario 1) 
and C A (scenario 2) such that state{ps, Cc) 

state(pc, CA) and Cc and CA contain commit and 
abort states, respectively. Consider any finite decid- 
ing run ¢, applicable to CA. Clearly, Pe must abort in 
tr(Cs). Since ~ contains only failure messages (P4 
does not send any messages because it has halted), a 
is also applicable to Co. By Lemma 3, Ps must abort 
in ~(C¢) as well, violating IC. 

It remains to show that WT-TC does not reduce 
to HT-IC. The protocol presented in Figure 2 solves 
HT-IC but does not solve WT-TC. This is because P0 
decides before all nonfaulty processors share its bias 
and halts without receiving any further messages. I t  
therefore violates Corollary 6 whenever the decision is 
to commit. El 

From Theorem 8 and its proof, it follows that for 
a given termination condition, the IC problem and 
the TC problem are not equivalent: the set of proto- 
cols solving IC is richer than the set solving TC. 

Coro l l a ry  9- For all termination conditions T 
E {WT, ST, HT}, T-IC < T-TC. 
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Proof: We need only show strictness, since reducibil- 
ity is a result of Theorem I. Assume for the sake of 
contradiction that T-TC < T-IC. By Theorem 1, we 
have WT-TC _< T-TC for any T E {WT, ST, HT}. 
Similarly, we have T-IC <__ HT-IC. Hence, WT- 
TC _< T-TC _< T-IC <__ HT-IC, which implies WT- 
TC _< HT-IC and thereby contradicting Theorem 8. 

D 



Notes  

(1) The communication primitive "broadcast 
(message, set-of-processors)" sends message to 
each processor in set-of-processors (order 
unspecified). 

(2) The communication primitive "receive_all (set-of- 
processors }" delays the processor until a message 
from each processor in the set is received. It 
returns a set of messages, one from each process. 

P0: 
Msgs :=  receive_all(P-{p0}); 

If no failures detected --* 

compute decision based on Msgs and inputo 
failures detected ~ decision :---- abort 

fl; 

broadcast(decision, P-{P0}); 

decide; 

ha l t  

p, ( 1< i  < N - l ) :  

send(input v,, P0); 

decision :-- receive(); 

If no failures detected --* 

broadcast(P-{p0, p, },decision ); 

decide 
D failures detected --* 

call modified termination protocol 

fl; 

ha l t  

The termination protocol is modified as follows: 
Whenever a processor receives a decision message, it 
removes the sender from its UP set (the sender has 
halted). Except for this, decision messages are 
classified as committable/noncommittable and pro- 
cessed as usual. 

F igure  2. An HT-IC protocol not solving WT-TC. 

In addition, Theorem 8 implies 

Corol lary 10" For all consistency conditions 
C E {IC, TC}, WT-C < HT-C. 

The proof is similar to the proof of Corollary 9 and i 
omitted. 

Coro l l a ry  11" HT-IC and ST-TC are incom- 
parable. 

Proof: That HT-IC does not reduce to ST-TC fo] 
lows from the observation that if the protocol of Fi$ 
ure 1 is modified so that processors become amnesi 
as soon as they decide then we obtain a protocol f¢ 
ST-TC. (The termination protocol is modified bl 
having processors broadcast the fact that they ar 
amnesic as soon as they detect a failure. Amnesi 
processors are then deleted from the UP sets of th 
other processors.) 

To show that ST-TC does not reduce to HT-IC 
suppose the opposite. Now, ST-TC < HT-IC (b: 
assumption) and WT-TC < ST-TC (by Theorem 11 
hence, WT-TC < HT-IC (by transitivity of <1 
This, however, contradicts Theorem 8. I-1 

The above implies the next corollary, whose proo 
is similar to that or Corollary 9. 

Coro l l a ry  15: For all consistency conditions 
C E {IC, TC}, ST-C < HT-C. 

We can also prove that under either consistency con 
straint weak termination differs from strong termina 
tion. 

T h e o r e m  13: For every consistency constraint 
C E {IC, TC}, WT-C < ST-C. 

Proof: We need only show strictness. To see tha 
WT-IC < ST-IC, consider the following WT-IC pro 
tocol. Each p,, 1 < i < N  begins by sending it 
input to Po. P0 tallies the inputs, including its own 
decides, and sends a decision to p 1- P 1 decides accord 
ingly and forwards the decision to P2, and so on, unti 
the decision reaches PN-1, which simply decides. Th, 
communication pattern for this protocol is illustrate< 
in Figure 3. The pattern illustrated is the on13 
failure-free pattern of the protocol. This communica 
tion pattern cannot handle both decisions to commi~ 
and to abort in an ST-IC protocol. Suppose other 
wise. Then each processor p, sending "1" as its inpw 
must become amnesic after deciding, withow 
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po  po P2 
Pl 

P2 

Figure 3. A WT-IC protocol tha t  can not solve ST- 
IC. 

receiving further messages. Consider the following 
two scenarios. 

Scenario 1 : P 0  and P2 send "1" ,  P0 commits and 
becomes amnesic, and Pl and Ps fail before the deci- 
sion message is sent to P2. 

Scenario 2 :P0  and Pz send "1" ,  but  Pl sends "0" .  Po 
aborts and becomes amnesic, and Pl and Ps fail 
before the decision message is sent to Pc. 

By an argument similar to the proof of Lemma 3, 
p2 must reach the same decision in each case, so in 
some execution P0 and P2 reach mutually inconsistent 
decisions. 

We now show that  WT-TC < ST-TC. This 
result is considerably less intuitive and the proof is 
very contrived. 

Consider the WT-TC protocol P with four 
failure-free communicat ion patterns,  as represented in 
Figure 4. 

The  figure shows 2 kinds of edges. Solid edges are 
messages tha t  are sent in every failure-free execution 
of the protocol. Dashed edges represent messages 
that  are sent or not sent according to the order in 
which certain other  messages are delivered. In partic- 
ular, message m I is sent only if m a is delivered before 
mb is delivered. Message m 2 is sent only if m c is 

Po Pl P2 P~ 

P2 j - . . .  
. P m ~ ~ ~ ~ / ~ ~  P 

po~.... .---''~ m, ~ p ie"  m, 

Y'tl 1 ~' ~ I 

Po & "  " ~" ~ P l  Ps 
%" 

%'% 

m S  %" 

".alp I 

F i g u r e  4. A W T - T C  protocol that  can not solve 
ST-TC.  

delivered before m~. Finally, m s  is sent only if both 
m 1 and m 2 are sent. Thus Figure 4 represents four 
possible communication patterns,  according to which 
of the messages corresponding to dashed edges are 
sent: (1) none of ra l ,  m 2, m s are sent; (2) only rn 1 is 
sent; (3) only m 2 is sent; and (4) ml,  m2, and m s are 
sent. 

The  perversity of this example is tha t  the mes- 
sages corresponding to the dashed edges serve no pur- 
pose; indeed, eliminating these edges leaves us with 
the a perfectly good communication pat tern  for both 
a W T - T C  and an ST-TC protocol. 

Let  us assume for the sake of contradiction that  
the scheme of P is the scheme of an ST-TC protocol. 
Then  there exist an execution in which m: is sent and 
an execution in which m x is not sent in both of which 
Po becomes amnesic before receiving m 2. This is 

151 



obvious, since m e might never be sent and Po must 
become amnesic eventually. Consider two executions, 
I v and I , ,  such that P0 sends m 1 in I v and p0does 
not send m 1 in la and such that in both executions P0 
becomes amnesic and then receives m e and po's state 
on receipt of m 2 is the same in both executions. 
Since P0 behaves deterministically it must send m s in 
both executions or neither. If neither, then the com- 
munication pattern of I v is not one of the patterns 
(1}-(4) listed above. If both, then the communication 
pattern of I, is not one of the patterns (1)-(4) listed 
above. This contradicts our assumption that the 
scheme of P is the scheme of an ST-TC protocol. 0 

The .following diagram summarizes the results of 
Theorems 1, 8, and 13, and Corollaries 9 through 12. 
Notice that all of the inequalities are strict. 

WT-IC < WT-TC 
< < 

ST-IC < ST-TC 
< < 

HT-IC < HT-TC 
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Append ix :  A T e r m i n a t i o n  Protoco l  

The protocol below ensures total consistency and 
establishes weak termination when invoked from any 
configuration in the execution of a safe protocol. The 
code given is for an arbitrary processor p. 

p r o t o c o l  Termination (biasp, UPp ); 
local var lab lex  Msgs : se t  o f  messages; 

round: 1..N; 

for  round :--~- 1 to N do 
broadcast ( UPp-{p }, (round, biasp )); 
Msgs : =  receive_all(UPp-{p }) modified 

so that messages from this round only 
are received; 

UPp : =  UPp - {q I "failed(q)" received}; 
if  "committable" received 

t h e n  biasp :----- committable; 
fl; 

od; 
If biasp =commit table  --* c o m m i t  
0 biasp =noneommittable --* a b o r t  

fl; 
ha l t  

Notes. 

(1) The communication primitives "broadcast" and 
"receive_all" are defined in Figure 2. 

(2) The global variabl~ N contains the number of 
participating processors. 

(3) The parameters are two components of the state 
of p in the consensus protocol invoking this termi- 
nation protocol: b/asp--indicating committable or 
noncommittable, and UPp--the set of processors 
whose failures have not be detected by p. 
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