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ABSTRACT

By anaizng the stares of novledge Li ‘he processors attain 19 an urre as.e SYS

Tern of a sImp.e tYpe. we capture some o: :rs;c uxder!ying struc t ire of such svsams.
particu ar. we study s hat facts become ‘on mu kit0 uiedgc at var:ous ponts in the execu
ion of protoco!s n an un reliable system. This characterizes the sirnu Itaneous ac ions hat

can he carHed 0:’: in s:ch systems. For et ne. we obtain a ccco!e:e charac erizat 0:1

of the nurnSer of ro-iLds rccuired o reach .“ ‘‘uUu,eou.s By:anne ,Lq€rr:ent. giver. the
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is optimal in a(l ru7. rarher than just alavs matching the worst—case lower bound. Er
some cases this pro? oco a, ains S rnulta ii togs Rvza nt me Agreenient In as few as 2 rounds.

e also present a non-trivial simu [tarieou agreement problem called b ualerfl agreement
for which there is a protocol that aiways halts in two rounds. Our analysis applies to
simultaneous actions in general, and not just to Byzantine agreement. The lower bound
proofs presented here generalize and siniplifv ihe previously known proofs.
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1. Introduction

The problem of designing effectve protoco’s for distrbuted svsterts whose coniponenrs

are uur&iahe is both inportant ard difficult, in genera], a proocoi for a disrhuted svsem

in which all components are liable to fail cannot unconditionally guarantee to achieve non

trivial goais. [mi particaar. If al processors in the svsteui fail at ax early stage of an

execut[on of r he ,rorocol, therm farly litte will be achieved regarci!ess of what actions the

protocol intended for the processors to perform. However, such universal failures are not

‘cry cornmno in practice, and we are often laced with the problem of seeking r,rotoco!s

that will FunctLon correclv so long as the number, type, and pattern of failures during the

execution oft he protocol are reasonably limited. A requirement that is often made of such

protocols is i-.-ed?iIncy — that they be guaranteed to achieve a particular goal so org as

no ritore Harm ‘ p ocessors fai

good sample of a desirable goal for a protocol in an unreliable system is called

S,rnultaneon By:arztine ,1qreement ISBA). a variant of the Byzantine agreement proberx

introduced in PL:

a processors, a most t of vhich might be faulty. Each processor p. has

a; E {Q. 1 }. Required is a protoco with the foIio Hg pror’erties.

1. F v c. no n—fa it! tv processor Pi irreve rsib] v “dec ides’ on a value y E {O, I

2. The noifauItv processors all decide on ‘he same value.

3. The non-faulty processors all decide simultaneous[y, i.e., in the same round

of cornp utation.

4. If all initial values ,r are identical, then all non-Faulty processors decide x.

Throaghu it the paper we will use t to denote an upper bound on the number of

faulty processors We call a distributed system whose processors are unreflabe a

environment.

The Byzantine agreement problem embodies some of the fundamental ssues involved

in the design of effective protocoI for unreliable systems, and has been studied extensveiy

in the literature (see [F! for a survey). Int.eresting]y, although many researchers have

obtained a good intuition for the Byzantine agreement problem. many aspects of this

prob’em still seem to be mysterious in many ways, and the general rules underlying omn€

of the phenomena related to it are still unclear.

A number of recent Daners have looked at the role of knowledge in distributed com

puting (cf. CM:, [HM, PR). They suggest that knowledge is an important conceptual

ahsraction for distributed systems, and that the design and analysis of distributed proto

cols rav ber.eiit from explicitly reasoning about the states of knowledge that the system

goes through during an execution of the protocol. In HMh special attention is gi’en to

aies of k no” edge of qro’ips of processors, with the states of commo’ kno wledg and

ph ne kn’’’1j si:tged otit as stares of knowledge That are of particular interest, A among

oth r di iigs, they show tb at con imon know-ledge is i riti mately re ated to ,sirn ultartec YS ac -

acticns that are guaranteed to take place simu]taneouslv at all sites of the system.

As we shaH see. :)rocessors running a protocol for SBA can decide on a partcuIar value
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only Circe certain facts about the inital values n become common knowledge. The proheui

of attaining comnion knowledge of a given fact in a Byzantine environment turns out to

be a d:rpcr ge:era:zation of he SBA probkm.

This pap€r studies the structure and properzes of t-resiiient protocois that perform

simultaneous actions by investigating what facts can become common knowledge at differ

ent pninrs in the execution of a f-resilient protocol. We restrict our attention to systems

in whi h corrLn’unicaciorl is synchronous and reabie, and the only type of processor faults

poishle Ce c ru.h fin/li res: a faulty processor might crash at some point, after vhrh it

sends rio messages at all. Despite the fact that crash failures are relatively benign, arid

dealing with arbitrary possibly malicious Failures is often more complicated, work on the

BvzaLxc agreement problem has shown that many of the d!fficuNes of orkii.g tfl a

Bvzarir:e environcer.t are already exhibited n this model. In the sequel we wii use SBA

as our standard example of a desirable simultaneous action.

Our analysis provides new insight into the basic issues involved in performing simul

taneous actions in a Byzantine environment. For example, it. shows ma: he pattern in

rch falres osrur rorupietely determines the number of rounds required to attain corn-

mon know Ltdge of facts about the initiaL state of the system. Consequently, we obtain a

complete characterization of the patterns of failures that require a t-resilient protocol for

SBA 10 take /c rounds. for 2 < k < t — 1. This generaizes the vei-<novn fact Lia: SBA

reouires t 1 :‘our.ds in the worst case cf. DLM:DsCD. FL:H.Lr ). Our oroc? is

a simpflhcation of the well-known lower bound proof for SBA. Trlterestingiv, our anaLysis

irnniediatelv suggests a protocol for SBA that is optimal in all runs, That is, it halts as

ear y a oss:Se, given the pattern in which faihires occur. !n many cases, this Lzrns out

to be much earlier than in any protocol previously known. This is the iirst pro’ocol For

SBA that is optimal in all runs, in fact, it is the first protocol for SBA that ecer haits

before the end of round + 1. The t + 1 round lower bound on the worst case behavior of

protocols for SBA has often been misinterpreted to mean that SBA cannot ever he reached

in less than t + 1 rounds.

The analysis presented in this paper applies to a large class of simultaneous actions,

not only to SBA. For example, we present the bivalent agreement problem, in which clause

(4) of SBA is replaced by a requirement that the protocol have at least one run in which

the processors decide 0, and at east one run in which they decide 1. We derive a protocol

that always reaches bivalent agreement in two rounds. This contradicts a folk conjecture”

in the field that states that performing any non-trivial task simultaneously in a byzantine

environment requires t 1 rounds in the worst case,

The main contribu:on of this pap is to ijiustrate how a r.owiedge-based ana’vsis of

protocols in a Byzantine environment can provide insight into the fundamental properties

ofsuch systems. This insight is very useful in the design of improved t-resilient protocols for

Byzar:ine agreement and many related probems. The analvs/s also provides some

into how assumptions about the reliability of the system affect the states of kr.owede

attainable in the system. We briefly consider some other reliability assumptions and appiy

our analysis to them.
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Section 2 contains the basic definitions and some of the fundamenta’ properties of our

model of a distributed system and of knowledge in a distributed system. Section 3 inves

lig2Ies Inc stares of knowledge attainable in a particular fairly gencra jrotoco. Sectori 4

contains an analysis of the lower bounds corresponding to the anay-sis of SeC:iOT: a. sim

plifying and generalizing the well-known t + 1 round worst-case tower bound for reaching

SRI. ccor, .5 discusses some appllcations of our analysis to problems related to SI3A.

i S ‘iu’, fiLqr ‘des some conc!’iding remarks.

2. DvHnitons and preIhnhiary resu]ts

fri this secron we present a number of basic deHnitions that vill be used n the rest

the paper. and discuss some of their implications. Our treatment will generally foflow

a: r’le ir:es of EM. simplified and modified for our purposes.

V€ consider a synchronous distributed system consisting of a Enite coiiectoa of ii > 2

proceors i automata) {p p,.... p4, each pair of which is connected by a two-way corn

LHrCJOfl Hnk. The processors share a discrete globa clock that starts out at time 0

aces by increments of one. Comrnuaicat on n the system proceeds in a secuence

4 ro’uds. with round k taking place between time k — 1 and time k. In each round.

t’vrrv rocessor first sends the messages it needs to send to other processorc, and then it

:-ee’i’es the messages that were sent to it by other processors in the sa,:’e rourid The

ideritLR of the sender and destination of each message, as weU as the round in which it

is sent, are assumed to be part of the message. At any given time, a processors message

history consists of the set of messages it has sent and received. Every Jrocess’r p starts

h WIre 2fl that stat C. A processor’s ‘je U: at any given t me consists o its r. ‘is

state, message history, and the time ox’ the global clock. We think of the processors as

foHoning a protocol, which specifies exactly what messages each processor is required to

send and what other actions the processor should take) at each round, as a deernNms±ic

furrction of the processor’s view. However, a processor might be faulty, in which case it

might commit a stopping failure at an arbitrary round k > 0. If a processor commits a

stopping failure at round k (or sirnpN’ fails at round kj, :hen it obeys its prctoco a

rounds preceding round k, it does not send any messages in the rounds foEos ing k. and in

round k it sends an arbitrary (not necessarily strict) subset of the messages it is required

its protocoi to send. (Since a failed processor sends no further messages. we riced not

make any assurptons regarding what messages it receives in its faiing tour d and in aer

rounds.) For technical reasons, we assume that once a processor fails, its view hecornes a

distinguished railed view. The set A of active processors at time k consists of all of the

processors that did not fail in the ftrst k rounds.

A run p of such a system is a compltte history of its behavior. From time 0 until

the end of time. This includes each processor’s initial state, message hstorv. and, if the

processor fails the round in which it fails. An erec ution somerimes aiso caked a

is a pair (p. k), where p is a run and k is a natura’ number. We wiji use (p. A;) to refer <

he state of p after its first k rounds. Two executions (p, k) and (p’, k) vill be considered

equal if all processors start in the sante aitia states and display the same beav.- in the

Fr: k rounds of p and p’. The ist of he processors’ ntial states is ca!ed the ssterns

‘3



it? it/ut configuration. We de note processor p’s view at (p k) by v (p p k) u r her rro re

sorn et i rres para met Prize the set.. 4 of act v proc sorc by the J)artic [liar cx cciii PC)

!,:iotd 4 p.I1.

We will find it useful to talk about the pattern in which failures occur in a given run.

Hr:naHv. a failure pattern ir is a set of tripes of the form p.k(p). Q(pYi. where P is a

processor. k(p is a round number, and Q(p is a set of processors. A run p disalay (or.

FTH)re precisely, is consistent with) the failure pattern lr if (1) every processor that fails in

p is the first element of some triple in w, and (ii) for every triple pk(p), Q(p)) in ir it is

I he case that processor p fails in round kjpj of p. in round kr.p) it sends no messages to

ocesors in Q(p) anti it does send messages to a processors no a Q(p) to v:nch the

protocol prescribes it to send A protocol 2, initia! configuration a, and failure pattern

Hriquev determine a run. [However, a run of the protocol may be he resulz of rnc’re

ian or,e failure pattern in orotoc&s that don’t require all processors to send message to

aU other processors in every round.) We denote this run by P (a, Zr).

FoHo’ ag 1-TM1. we identify a distributed system with the set .9 oF the posshIe runs

nf a partciar 9xed protocol P (P(i) °(nt where Ph) is the par of the proroco

owed by processor Pt This set essentially encodes all oF the relevant information abou

cs{cutLon of the protocol in the system. Given a system 9, for 1 <E a let £, be the

sit ol initial states that processor p1 assumes ii’ F he runs oF 5. The systermi S is said to e a

- niform system for P ii there is a set of iflitia con gurations r c 1 c S • such

S is the set of all runs of the protocol P starting in initial configurations 1mm F in which

at most I processors Fail. t- uniform systems have the prooert that a processor fa

an eveut that is ndependent of the iaita eonFguraton and 0F the time in :ch nher

processors fail. A system is said to be independent if its set of initial configtiratiors is of the

arm . x s.,. In an independent f-uniform system there s no necessary dependence

between the mit jal states of the different processors. The properties of t-resikent protocols

can he studied by analyzing particular t-uniform systems for them. For example, a given

protocol is a t-resilient protocol for SBA if all runs of the independent t-uniform system in

which the set of possible initiat configurations is {O, t}” satisfy the requirements of SBA.

We assume the existence of an underlying logical language for representing ground

facts about the system. By ground we mean facts about the state of the system that do

not explicitly mention processors knowledge. Formaiy-, a ground fact p wiI be den:ifled

with a set of executions r(9.) CS x N, where N is the set of natural numbers. Given a rin

p S of the system and a time k, we will say that , holds at (p, k), denoted (S. p, k) =

if (p, k) C r(). We will define various ground facts a we go along. The set of eNeruHor>

corresponding to these facts will be clear from the context. We close this anguage an:Ier

the standard boolean connectives A, — and D interpreted as the standard conjunction.

negation and implication.

Given a systen 5. e now define what facts a processor is sad to know at arv.

point (p, k) for p C S. Roughly speaking, p is said to know a fact ii if L is guaranteed to

hold, given pt’s view of the run. More formally, given a system 5, we say that two points

(p. k) and (p’. k’) are p-equi’alent relative to S. denoted (p. k) - (p’. k’). 1ff p. p’ € S and

p k) = v(p2,p’, k’). (The only case in which u(pt, p, k) = u(pj, p’, k’) is possible for
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k is when v(p1,p, k) [ailed.) We say that a processor m kviows a [act win Sat (i. k),

denoted (S. p, k) H K1;, if (S. p’, k’) & for all executions (p’, k’) & S x \r satisfying

io. k) L [p’. k’). This definition of knowledge s essentaflv the totaJ icu intrpret.ation of

HM We are about to review some of the properties oF knovedge Lnder this deIi!Ihion.

O:her properties wW be covered in the seque !see aso HM r,d H\12).

k formula is said to he valid if it is true of all executions in all systems. Given a

ystern S a formula is said to he valid in S if it true of all executions of S. It folLows

a vaHd fact is va1d p. 5 for all systems S. We now sho that under our deflnition

of knotvlecge. K. satisfies the axioms of the moda system 35. This fact wUl Ioov: in a

r1LgrbLor%ard way from the fact that knowledge s de:errnned by the eiatons, which

ill our case are equivalence relations.

Proposition 1:

a) IC is aid in S then Kjp is valid :r. S.

b The conequen dos re axiom s va

CONSEQ VENCE CLOSURE: (K1p A K1(p D ?/‘)) D Kt.

The 410 u/edge ano is valid

KNOWLEUGE AXIOM Kp D .

d TEie p.suive ntrospcon axiom s vail:

POSTLVE NTROS?ECTfON: Kp D K Kp.

e) The negative introspection axiom is valid

NEGATIVE NTROSPECTION: —Kp D

Proof: For part (a), let (p, k) be an (arbitrarily chosen) execution satisfying p 5, and

let be a formula that is valid in S. Thus is true of all executions (p’. k’) €5 N.

and, in Darticuia. p is true ot a exCutIonS in S / N that are pt-eqdiva:e1: to p.

It th’:s fo:ovs tEa’ Kr true of p. k. and since (p. k) wa an arbhrarv eKecu’:orr in

A. we have that K is vajid in S. For S), let Sp. A,) K1; Kp

Then by the definition of (8, p, k) 1= Kjp we have that both p and (o D ) hold at

all points (p’ k) that are pt—equivalent to (p, k). ft thus follows that w holds at all such

o*- (p. l. and again by the definton of !S.o.k) we are done. Part Ic) t]lows

he ac t hat p. it) (p k) . i.e.
-

-equ valence is reflexive. Now h- defl n or. vt

irave that ii K; is true of (p. k) then is true of au executions ha are v-equivalen:

to (p, k), arid in particular p is true of (p. k). For part (d), let (S,p. k) K’p. Thus, p

is true of aH executions (p”, k”) .4 (p, k). We wish to show that (Sp’, k’) K2p for all

)



(p’ k’) € (p,k). Since is an equivalence relation, all executions (p”, k”) € SxN satisfy

‘I

. U 1.”! -— I -— I

mat prc — p ,k iff,p .h — p .. ..- thu fodo.cs that rLt o- a.I ece .L(fl

p”. Ic”) L (p’. kfl. and we are done. The argument for part (e) is smi!ar. IfS. m
then (S p k) p. and therefore thtre must be an execution (p”, ha”) that is pr-equivalent

to (p, k) of which ‘p is not true. Let (p’, k’) be an execution that is p—equivalent to (p. Ic).

Because pceqaivalence s an equivalence re!aror. we have that p’. Ic’) (p”. k”). artd

hence (S. ‘. k’) = —JC. ft nw foI:ows that S. p. Ic) = K1 —K.; and we are done. x

Roughly speaking, clauses (a) through (eJ characterize the modal system 55. An

operator satisfying clauses (a) through (d) is said to satisfy the modal system 54 (ef.

f-J\12 ). An interesting consequence of our cho*e of flaying a failed processors view be

a dist riguishec [ailed view is the fact that a processor always knows whet her it is active.

Furthermore, the only things that a failed processor knows are the consequen2es of the Fact

that the processor has failed and of the formulas that are valid n S. Given that a failed

rgocessor is out of the game’ in our modeL we will focus our aU€ntior: or. the kitow!edge

of the active processors.

Having defined knowledge for individual processors. we now extend this definition to

states of group knowledge. Given a group C C {p ...,p 4. we first define C’s view at

p. kj, denoted tG, p. Ic;:

v(G,p,k) {.pv(pp,k)) p

T*is. roughly speaking. Cs view is smp* the Joint view of its :riernbers. Fxteridxg our

deffni:ion for individuals knowiedge. we say ¶ht the groan C has imp?int know/nL€ o

at (p.k), denoted (S,p, k) I, if for ati runs p’ C S satisfying v(C,p,k) v(G. p,k) it

is the case that (S. p’, k) p. Intuitively, C has implicit knowledge of p if the joint view

of C’s members guarantees that , ho’ds. Notice that 1 processor p knows p and processor

q knows D th, then together they have rnplicit knowledge of c. even if n&the of them

knows q individua[[y. An identical proof to that of Proposition I now shows:

Proposition 2: The operator I,, satisfies the modal system S5 (clauses (a) through (e)

of Proposition I, subsCtuting I, for i().

We refer the reader to ElM aid HM2 for a dscusscu and a formal treatment of

L;. In this paper we are mainly interested in states of knowledge of the group A of active

processors. We say that the set of active processors implicitly knows p, denoted [p. exactly

if Lg holds for he set C = A. Stated nore formnaiiv.

(S,p,k) Pp 1ff (Sp,k) Lp [or C

Although 1; is defir.ed in terms of [p. it is not the case that I and 1, have the sanh.

properties. The reason for this is that whereas C is a fixed set. membership in .1 nma:: var:

over time and differs front one run to another. Thus, fr exanipe, it is often the case that

For C A(p k) we have (S, p, k) L1 (A = C), because there is some run p’ E S such that

= vG.p’.k) and where C is a strict subset of A(p’k). Consequently. whereas
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the negative introspection axiom for 1, i.e., ‘;2 D L •-Ip. is valid, the corrcspuitding

formula for I: -•I D f-Ip. is not valid! (Notice, however, that [(C c 4) holds Vilcnever

C c A). For exanplc, it may be the case Ihat processor p sends processor Pt a rnesage

ri round I stating p ‘s iciiai state, and rails before sertding arty other resage. arid that

:,roccs5or p, fails in round I after sending all of its round 1 messages. Processor P; ‘ initial

5tate is thus riot irnplicity known to the set of active processors, but it s consis1e wrh

‘he active processors’ joint View that m is active, in which case ‘s initial state would be

implicitly known. The above discussion can be summarized by:

Proposition 3: The impIict knowledge operator I satisfies the modal system 4 (i.e..

auses (a — (d) of Proposition 1). The negatve in:rosuecLon axior: is not vaid for 1.

The foonng :emra describes the relationship between K and I:

Lemma 4: Let be a formula and let p1 E A(pk).

a) If (S. p. k) K1p then (S,p. k) ru

N TI (S.Lk* K then !S.p.k) ru fcj1.

Proof: For part (aL assume that (S.p.k) K. and let (p. k’) be an cxecu’on sat

.s[ xg r(la.k. p. A-’’: = t’(Ap. k) .. 4- , In oaricuar. since p C Alp. k we ha’e that

p’. k?) = v(p. p. . arid thus since [C holds at (p, k) we have that hcdds at

p’.k’). Since this is true for all such executions (p’. k’). we are done by the defnition

of (S.p. k) J•p For (bj, let (S.p, k) ru Kc. Proposi:ion 1 (d we have that

(S. p. k) K,K,p. The fact that pi E .4(pk) implies that v(pp. k) tailed, Thus, p is

;fl active urocesor in all ex€cut:or:s that are p-ecuiva.ert to (p. k). Let (p’. k: —, p. k’

We this have that pE 1p’.k’. and that K, holds a: p. A-’). Part (a tierefore :mpIe5

tha I holds at (p’ Ic’). and thus Kip holds at (p, k).

We now show that, roughly speaking, in t-uniforni systems once a fact about the past

is not implicitly known it is lost forever; it will not become implicit knowledge at a later

time. We say that a fact d is about the first k rounds if for all runs p C S it is the case

that S. p. k: = i i (5. p. p for aH I k. [it particular. facts about the Erst 0 rounds

are facts about the initial configuration. We now have:

Theorem 5: Let S be a f-uniform vstem, let ,‘ be a far about the Erst k roLn’ls. and

let > k. If (S,p, k) I) then (S.p,l

Proof: Let > k. and let p and be such that ‘ is about the first k rounds and

(S. p. k) It* Let C A(p, k). It foltows that there exists a run p S sich that

tiC. p. k) G, p’ k. and Sn’,) p . Let p” be a run with the focwng nropertes:

(i (p” k = Itj I r II) a’1 processors In 4ip’ Ic) —G fail ri rouno — o p” i-c or-c seu

dcv rresages: and ciii) front -ound Ic 1 on all processors in C behave in d’ exacflv as

hey do in p. By construction. the number of processors that faiL by lrne Ic in p’ is no

larger than the number in p. and exactLy the same processors fail in p and in p” by any

later time. Given that S is a t-uniform system and p C 5, no more than t processors fail

in p. It follows that p” C 5, since all of the processors follow the same protocol in p”

ar.d in p, and no more than t processors fail in Pu fly construction oi p” we also have



that .4 (p” e) = 4(p, £) and that the active processors have identical views in (p”, ) and

in 9e;. It for!o%s that (8,4.1) ly iff (S.p, f) b;. Sirce is a fact ahoy he fr,t

k rounds and (p”k) (p’.k). we have iha. (Sp”. €) because (S.p’,k, u. Th’s

particular, (S p”, t) I?k and it follows that (S,p, £) lip and we are done.

Fagin and \ardi perform an interesting analysis of implicit knowledge in reliable sys

tems (cf. Fyi). Among other things, they prove that the set of facts zht are impiir

knowledge about the initial configuration does not change wit?i time. I.e.. in reiahe sys

tems the implication in the statement of th€ Theorems becomes an equivalence. However.

in f-uniform Byzantine systems t is clearly the case that implicit, knowledge can he “Iot.

For example, if processor p, may start in initial states a and a’. and in a parti( uar rin

of the system p. starts in stare a and aiis in the first round before sending any messages,

then whereas 1( “p started in state cT’) holds at timeD, it does not hold at any later time.

We now ir.trodace the two other states of group knowledge that are central to our

ana!ysis. We define ‘everyone knows’ and “common knowledge” along the ines of HM.

[n our case, however, these notions will be deftned for the set of active processors. Erry

(active) processor knows p, denoted Eo, is defined by

def A . D

An nt:rediate corollary of Lemma 1 whkh we vi)l find usefu’ in the seoue] is:

Corollary 6: E E(I) is vaid.

We define E’ E. and £m1 E(Em) for ITt .Afact p is said to he

common knowledge among the active processors. denoted Cc. if E? hods For all m > 1.

More formally,
= A E A A •. A E” A

Common knowLedge among the active processors, which we wi] caI sniplv corr1ion

knowedge, will play a crucia role in the sequel. We now study sore of its propenies. .k

useful tool for thinking about E”’çc and C is the labelled undirected graph whose nodes

are the executions of a system S. and whose edges are the relations, restricted so that

an edge e 2 e’ exists only if pi is active in e (and hence also in e’). (This graph is preciseiv

the Kripke structure modelling the active proces5ors knowledge in the vstera: cf. EiNU

The distance between two executions € = (p, k) and e’ (p’. k) in this graph. denoted

o(, e’). is slmpy the ergrh of the shortest path n the graph connecting e and e’. If there

is no path connecting to e’. then 6(e. e’) s defined to be nfli:lv. T”o exec’;:ior. and e

are said to be similar, denoted e ‘- C’ if (e, e’ is finite (i.e.. if e” and are in the arnc

connected component of the graph). Equivaleniiv, (p. It) — (p’. k). if for some finite in there

are runs P ,2.... p. ‘ c .9. arid nrocessocs p. pp.. satisfy ng p, 6 ‘ (P: for

rn — 1. pi,, e A(p’kJ, and

(p,k) (p1,k) ‘ (pm_iik) (p’,k).
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(The system S is usually dear from context, and thus we do not add a subscript S to

sirn.) It is now easy to check that (S.p.k) F, if (S,p’k) •p for aM executions (p’.k)

of distance < 1 from (p. k) Notce that simih’,rity is an equivalence relation. We can now

Proposition 7:

a (S.p.k = C; if S.o’,k) ,,for a p’ E S such that (p.k (p’.k).

b) If is vafld in S then C is valid in 5.

c) C satisfies the axioms of the modal system S5 (see Proposition i).

d) The induction axiom is valid:

INDUCTION AXIOM: C(p D Ep) D (‘p D C,).

e) If D £4 is valid in 5 ther D C; is vaid in S.

F) The jizpoint axi’xn is vaid:

F:xpo’cT AXO\I: 03 D .‘ EC.

Proof: (a) foHo by ‘a straightForward induction on in showing that (S,p. k)

if (S.p’, k) for all (p’. k) of distance < itt from (p ). Part (b) foHows directLy front

(a). The proof of part (c) is identical to the proof of Proposition 1, substituting C for [,

and for For (d), assume that both p and CU D Ep) hold at (p, k). We prove

by induction on rn that •p holds at all points of distance < in From c. The cae r’i 0

roHows from our ir ita assunipton. Assurte that the cairn holds form. aad kt e’ be a

:oinr a:isfving t . = in — 1. It follows hat - here is a point e” suct t ha : giffi —

and ô(e’,e’) = 1. By the inductive hvpcthess ; holds at e”. Since C F: hoi at

and e — e”. part (a) moies that ; z £5 ho!ds at e”. It foIlow that F; ho:ds at

and since d(e”, ‘) = 1. we have that p holds at e’. By nduction we have that , hoLds

at all points reachable from (i.e., similar to) e, and by part (a) we have that Cp holds

at e, and we are done. Part (e) now follows since if p D Ep is valid in S then by (b)

C(p D Ep) is also valid in S. and by (d) we have that p 0 Cp is also valid in S. For

part (f), the validity of Op 0 is immediate. By part (c) we have that C satisNes the

postive ntrospecton axiom, and hence CD 0 CCD is valid. B definition of Cu we have

hat Ct 0 Et. is valid, and taking C;. we thus have tha: C D CC; 0 £6;

valid, and we are done.

It is nteresting to note that in contrast to the case of muhcit knowledge. the basic

of Land C tvhich we have defined here relative to the stN of active proc&Ssors

are the same as those of and C, stated in HMI. In particular, C satisfies all of the

axiorn5 of the logical system S5 (cf. HM2), not only the axioms mentioned above.

Proposition 7 is very useful in relating common knotledge and actons that are guar

anttd to be performed simultaneously. For exariiple, we can use Propnii :or’ 7(h) and 7(e)

in orUPr to relate tie ability or inability to attain common knowledgt of certain iar with

rheuossiiiiitv or irnpossibiitv of reaching sirtultaneous Byzantine agr.ererv. ‘\‘e node

a processors CC. l*g u by the processor ending the message “the decision va”e is v’

and have:

9



Corollary 8: Let S be a system in which the processors foHow a protocol For SB. If

the active processors decide on a value v at (p. Ar), then

a) (Sp,k) CAIi processers are deciding t”), ar.d

b) (Sp.k . C(At least one processor had v as its initiai vaiue).

Proof: Let he the fact all processors are deciding Given that the Drooco g.:ar

antees that SRA is attained in 5, it is the case that whenever some processor decides

all active processors do, and thus the formula p D E is valid in S. Thus, by Proposi

tion 7(e) we have that p D Cci’ is valid in 5, and thus if (S,p, k) p then (S,p, k)

and we are done with part (a). For (b) let be “at least one processor had v as its initial

vaue”. and notice SBA guarantees that p m th is valid in S. Thus, by Proposition 7(b),

so is C(, D ). The consequence closure axiom states that (Cp “. C(r D t)j

: valid. and w conclude that C Cc s valid. By part a) we have that (S. p.

irnpies that S,p,k)
1=

C(p), from which we can now corc,ude that (S.pk3 = CL anc

we are done.

TSe reasoning used in proof of Coroflary S is typical of the way Propos:iorL 7:a

and (b) together with the consequence closure and induction axioms are used to prove that.

certain facts are common knowledge. We wilt use such reasoning again in later prooEs.

3. Analysis of a simple protocol

In this section we take a close ook at t-unform systems S in . hich all processors

foow a simple and fairv general protocol 7:

Fork > 0. in round k — 1 each processor sends its view at time &-

(i.e.. after k rounds) to all other processors.

This protocol was named the maximal information protocol by Hadzilacos (cf. [{ ). We

are interested in determining what facts about the run become common knowledge at the

different stages of the execution of this protocol. Intuitively, the protoco’ I should provide

the processors with “as much knowledge as possible” about the initial configuration and the

pattern of failures, and should facilitate the ability of the system to perform actions that

depend on (he fl:flaI configuraCon. One of the re1evant properties of this protocol is that

every processor is required to send messages o all other processors in €ver round. This

ensures among other things that tha failure of a processor will be known to all processors

at most one rounds after the round in whch the processor fails.

A tact p is called 5tabje if once it beco rr1e true it remains true Forevcr cf. F-tM ) For

example, facts about the first k rounds, and in particular facts about the systems initial

conftguration. are stable. Since a processor’s knowledge is based on the processor’s view,

and an active processor’s view grows monotonically with time, it is the case that f is

stable then (as long as at least one processor remains active) so are E and Up. A ve

have een. I,c is not necessarii stable.

A round in which no processor fails is caHed a c/earl rohind A rounc that S n01 cear

is caned dirty. If no processor that fails in round k fai!s to send to a processor that is

acive at time A. then round k is said to be seerninciy clean.. Notice that a ciean rouzd is

I0



in particu’ar seemingly clean. Individual processors cannot. ri general. determine whH her

a round is cean. seeming[y clean. etc. Roughy speaking. if. for some k, roam, k of a xi:’

in which the processors afl follow 5 is clean, then every active processors vev at the end

of round k ncudes the view of all of the active processors at time k — 1. par:cWar this

implies that any stable Fact that is implicit knowledge at time k — 1 is known to everyone

at time k. Consequently at time k all processors know exactly the same facts about the

initial configuration. Furthermore. Theorem S together with the fact that E; is stable

when is. imply that at any point after a dean round. a of the processors have idcnica

knowledge about the initial configuration. Therefore, once it is common nowiedge that

there was a cean round. it is common knowedge that the processors have art der.’ ca

view of the initial configuration. The above discussion is made precise by the following

theorem:

Theorem 9: Assume that t < n — 1.

a Let; be a stable fact such that (S,.p,k — 1) I;.

If round K’ of o is seemingiv dean then (Sr. p. k) =

b) Lei be a Fact about the initial conhguration.

If (S p, £) C(”a seemingly clean round has occurred’) then

(Sr.p,e) —1; if (S,p,) C.

Proof: By deñr.ition. — I) I if (Sr.p.k — 1) L:; for C = A’p.k — U. If

roand K’ s seen.irgv clean then aJ procesors active at ¶ime k receive round rne5ages

from all of the processors in C and hence the vev of each ac: ye processor at yE ne k

has a copy of v(C, p. k I), and it follow that every active processor at time k kriovs ;.

For part (b). let ; be a fact about the initial configuration and let be the fact “a

.eerninq(y clean round has occured”. Let (p’. ) be an execution satisfying (S. p’. )
By TheoremS, if (S,p’. €) I then (S,.p’.k) I; for all K’ 1. Given that ü hods at

(p’, A-). let round k oFp’ be a seemingly clean round, where 4 < f. Since (S,.p’. k—n = IL.

by part (a) we have that (5,. p’,k) E. E is stable because is. and therefor

(S,. p. q = Ep. By Corollary 6 we have that (5,, p’,L) E(Iy.). We have just shown

that D (I; D E(I’p)) is valid in 5,. Thus, by Proposition 7(b) we have that C( D

(Pp D E(Ppfl) is also valid in 5,. Now assume that p is a run satisfying (p. ) H Cc. By

the consequence closure axiom for C (Propositior 1k)). we have that (S,.p. e)

E(Li). And by the induction axiom we have that (S;.p.t) 12 D CI,o). Since

D C; is valid, we also have thattS.p,I) ,= I C. Finaiv, since C’,

is valid, we have that (S,,p,) [‘p E Cp. and we are done. x

As a corollary of Theorem 9 we can now show:

Corollary 10: Let p be a fact about the initial conaguration.

a) (S.p.t —1) I if IS,.p.t + 1) C;.

Of (Spit - 1) I if S,.p,n —1) Op.

Proof: Notice that the “if” direction in both cases is immediate, since Cib D I’k is valid

For all facts i. We now show the other direction. Alt runs of 5, have the property that

no more than t. processors fail during the run. Given that a processor falure occurs in a
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unique round, we have that one of the ftrst t -t- 1 rounds of every run of S niust be clean.

Since a dean round is in particular seemingly clean. Proposition 7(h) implies that at time

i it is common knowledge in all runs of S that a seemingly ctean round has

Part (a) now follows from Theorem 9(b). For the proof of part (b), we need a sligfit[3

stronger variant of Theorem 9(b), which states that if it is common knowledge that there

has either been a clean round or that there is at most one processor then 1 holds iff Cr

does. The proof of this fact is completely anatogous to that of Theorem 9(b), given t.[ra

E Cø is trivially true ‘when there is at most one active processor.

As a consequence of Theoreci 9 and Corolary lOwe have that any action iha deoe::d

on the system’s initial configuration can be carried out simultaneously in a consistent way

by the set of active processors at any time k > rnin{t — 1. ri — I }. This is consislent with

the Facr that there are wel-known t-resflient protocols for SBA that attari 534 ix —

rounds. Interestingly, none of the known protocols for SBA attain SBA in less than t — 1

rounds in any curl. It is therefore naturai to ask vhether a protocol for SBA can ever

attain 534 in less than t
--

1 rounds. C)eariy, once it s common krowedge tha: a clean

round has occurred, SBA can be attained. And as we shall see, there are cases in which

the existence of a dean round becomes ommon know!edge before time t — I - II he

CN[SterIC of a dean round becomes common knovIedge depends crucially or t h pa: ti

of failures, and on the time in which failures become implicitly known to the group ot

active processors. For exarnp je, if a processor p detects t Failures in the first rou ad o a

run of 7. then the second round of the run vHl he ciean, and at the end of the sernrd

round all active processors will know that p detected t failures in round 1. It follows from

Proposition 7e) that at the end of round 2 it wLi be conrnonkotvkdqe that all procesom

have an identicai view of the initial configuration check). Cear!v, the processors cai then

perform any action that depends on the initial configuration (e.g., SBA) in a consistent

way. In the remainder of this section we show a dass of runs of 5, in ‘vhch the processors

attain common knowedge of an identical view of the nitia con5g’iration at time k, for

every k between 2 and t + 1. In the next section, we will prove that this is in fact a precise

classification of the runs according to the tinie in which cocmon kao Ledge of an identical

view of the initial configuration is attained.

Intuitively, if there are more than k failures by the end of round k. then from the

point of view of the ability to delay the first clean round, faliures have been “wasted - Ir

particular, if for some k it is the case that there are k + j failures y the end of round

k. then there must be a clean round before time t -4- 1
— j (in fact, between round k - I

and round t + 1
—

j). This motivates the foiiowing definitions: We denote the number of

processors that fail by time k in p by N(p. k) We define the thfference at y. k) denoted

dL.k) by
d(p.k)

d Nok - k.

We also define the maximal difference in (p, ), denoted D(p, ), by

Dp€)
def

max d(p.k).

Observe that dp,O) = 0 for all runs p. since N(p. 0) = 0. Furthermore, in a i-uniform

system t is a’ays the case that dp. k) t — k. since Vfp, k) t. Let D e a varab,
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whose value at a point (p, k) is D(p, k), and let d(k) be a variable whose value at any poi[It

in p i d(p. k). By Theorem 9(b) we have that if at time t - 1 — j it is common knowler1e

than D > j. then it is common knowedge that a c!eaa round has occurred. ad har aN

roc€sor have an den:r a! view of the ii, a! coa5igiratiori. We are abo-n to flow

the protocol T guarantees that if it ever becomes implicit knowledge that D > j hen at

time t * I -— j it is common know’edge that D j (and, therfore. that a clean round has

occurred) - This leads us to the fot1ow rg deinitica: Given a system S the ‘cntefnr -

:,‘ 1) wfth respect to 9, denoted W (5, p. ). s defined by:

W(S.p,e) max{j: (Sp,t) H liD

n words, the wasteluhiess of (p. q is the maxima! vaue that the diff.rence ‘ifp. -) si ri

plicitly known to have assumed by time e. Finally, we define the wastefulness of a rurt p.

denoted W(So). by:
u- rnaxW(Spt.

We now Formally prove the claims informally stated above. We start with a soriBj I]

ca.’ ema discusng the properties of vatf&necs n the case of 5.

b:n)uIa 11: Let — 1.

a) If (Sr,pJ) H 1(1) >j) then (S5.p,) J(d(k) j) for some /c 1.

If I(dik) J holds at time k then either E:d(k) j) or
- U ho*!s a

rime k — 1

c) (S,,p,k 1)? W(S,.p.k) for all k >0.

Proof: P;r part (a) fet p E S. satisfy (57p,e) 1(0 > j). and assume that for no k

is it the case that (S,pJ) Iid(k) > jfl. Let p’ be a rut of 7 such that fp’.Qi = (pG.

and in which the only messages not delivered are those that are impticii.ly known at (p. j

not to have been delivered. It is easy to check that p’ E S, since no more thant processors

faji in p’. because ft is not ;mpcit knowedge at [p.1) that dIk) > j for any k, t fo!iows

that DIp’. £) < j. If we show that the group C Alp. P has exactly the same view

in (p. ) and in (p’, ) we will be done. since this will contradict the assumption that

(Sr,p.e) I(D > j), We now prove that 4(p, ) has the same view in (p. ej and n (p’e).

This s done by showing by indcfior. on k that the et of processo:s that are

known at p. fl to have been actv a time k P have the same views at trite Am in hotS p

and p’. Define G(e) = A(p, €). For Am < ,.asunie inductively that Glk — 1) is defined. and

for all processors p, C G(k t 1) let g(pj, Am) be the set oF processors front which p, receives

a n:esrage a roand k — I of p. Defne

G(k) • U g(p,.k).

m COCk I)

Le q’{e) G(e). a9d or Am < £ defire g’p.k) and G’(ki from Q’(k I) in an analogous

fashion (substituting G, g, and p by 0’, g’, and p’). We now show by inducticuon — Am that



if k <t then for all p Oft 1) we have that g(.k) g’(p. k) and that 0(k) G’(k).

Let 1c < e and assume inductively that 01k + 1) 01k 1. (Noce that we ha’

0(P) = G’(t).) Let m C G(k - I). The sets 0(k) are the sets of processors implicitLy kio

at (p. C) to have been active at time k. The sets g(p. k — 1) arc the sets of procenr

send a message to p in round k. y requiring messages to contain the senders

view, the protocol F guarantees that a processor is implicitly known at (p, t) to havc houn

active at time k 1ff the processors view at (p. k) is rnpflcHv known. Thus. tb- nrer-’

identity of gCp1 k) for p. & GQc -- 1) is impHci:ly known at (p. ). It rha: prr ---ni

p, sends a message to p in round k -r 1 of p 1ff p sends p7 a round k — 1 rriesscu ri

p’. [t thus follows that g(p,k) g(p k). Srice this is true for a1 Pc C .

have that 0(k) G’(k), and the dairn is proven. Notice that 0(k) 0k
—

1;. Vu:;

show- by induction on k that for all p. C G(k it is the case that u(p.p. k) (ppt. 4j.

The case k = 0 follows from the fact that (p0) = (p’,O) and 0(0) = 0’({]j. \::t

inductively the claim holds for k we prove it for k * 1. Let p, C G(k -r- I). Oh

that p, ‘s view at (p, k + 1) is determined by its view at (p. k) and by the viev of the

group g(p,k) at (p.k). Since by the inductive hypothesis we have that y;. k:.

arid that v(g(p1,k),p,k) = v(g’(p,p’.k), and that v(p1,p,k) r(p.ptk). it 101kv— fflM

z(ppk-1-I) v(p.p’.k--fl. It now foflows that v(C(e),p,e) r(0(C),p’i). iciii

done with part (a).

For part (h). assume that (5,.m k) !!d(k) j). If d(k) > j is riot knori o

everyone at (p. k—i) then there must be (at eat one) processor. sa’ q. that Fails hi re:n.i

k — 1 by not sending a message to at least one processor. say p that is active at time

k — I. Thus. in par:cuiar, p knows at time k - 1 that q has faiLed. Now, by reouirifl

all processors to send rressages to all of the other o:ocessor n every round .Fersures

that all processors that fail by (p, k) are known by everyone at (p, k + i) to have faiLed. It

folLows that if d(k) j is not known to ev€rvone at time k I then d(4 1) > i is implicit

knowledge at that time.

For part (c), assume that ]4 (p k) j. Then by part (a) there is some k such

that (5,, p, k) I(d(k’) j). Without loss of generality let Ac’ be the argest suer, nrmber.

If k’ < k then by (b) we have that at time k’ -{- 1 < Ic everyone knows that d(k’) j. But

E(d(k’) j) is a stable fact because d(k’) j is. and In Ln,S case W(p, k — 1) j. and

the claim of (c) holds. If k’ = k then part (b) rnpiies chat at time ± 1 either everyoLe

will know that d(k) j or it will be implicit knowledge that d(k 1) i. In both cases

we wili ha’-e W (p, k -r i) j. and we are done.

We now have:

Theorem 12; Let t < n, — 1.

a) W(S,.p) > i 1ff (S.p.t 1 — ,) C(W(S7. the current run”) ?

b) Let ø b€ a fact about the initial configuration. If W(S.p) = j then

(Sp.t--1—-j) 1, tT (S.p.tLi_j) C:;.



Proof: The 1f direction of part (a) is immediate from the fact that (. Z L ‘a)id.

We now show the other direction. Assume that vv(S,p; Then for some B it

must he the case that W (8,, p,L) j, and hence (S,p, e) RD j). Fly LenirTla (a)

there is some k < £ for which (S,,p,t) 1(d(k) >

j).

Let k’ he he iarges SLcI k. Since

d(k’j j is a fact about the first k’ rounds, we have by Theorem 5 that (S;.pk}

f(d(’) j). Since d(k’) j implies that at least k’ -- j processors must Iii\e Fdled h

rime k’. we have that k’ < t j. Furthermore. (S,p.k’ ± ii ‘, I(dk LIflOLICS

that no new processor Failure becomes visib’e to the active processors in round A,’ — t. and

thus n particular round A-’ + I rmzst he seemingly clean. Since d(k’) F’s a stahe

fact, it oUows from Theorem 9(a) that (S ,p, 1) E(d(k’) j). it:3 er:

(S p. ) E(d(k’) j) for all t k’ + 1. In particular, since t -r 1 — j> k’ - L we

that (S,pt-’- 1—f) Ed(k’J j). Let 74 be the fact “Y’(S, ‘he curren rfl’ By

Coroiiary 6 we have that E(d(k’) j) D E(I(d(k’) j)). and since dk ‘S

valid, we a@o have that (S7p,t+1 —j) E. It follows that (S,,p’,t-- 1j) Z

for all runs p’CS. Given that t < u, the only executions that are sirniar to a,’ xerVofl

(p’ 1 1 — j) are of the form (p” t — j) Thus, by Proposr[on Tia Rave that

(S. p’. t 1 — j) CIL D E’) for all p’ E S,. and the induction (lx:orn HIIpiIPs t ha

all exerutions 1p. t —1
—

j) satisfy ± 0 C’i-. which is the c1aim of par’ [aL U: pair 1);.

recall from t ht proof of part (a) that if D j then there must he a clean to I t I i Inc

— 1
—

j. Hv part (a). 1 W(S,p) = j then at time! I —j it is conjior, L-’inJcdge

ha 1(L) .> j) and therefore in parEcuar that D > j. ft fo!o’cs that at time -- I

it is common knowledge that a clean round (and hence also a seemingly clean rotrrid) has

occurred. Tie claim now follows from Theorem 9(b).

Thus, certain patterns of failures help the processors to reach common knowledge of

an identical ‘Jew of the iaitia configuration eary. Zr. oarticu!ar, if the va”e1u!ness of the

run is j, then the active processors obtain common krowedge of a common ‘Jew o th

initial configuration at time t + 1 — j. We now make precise our heretofore informal claim

that it is the pattern of failures that determines the wastefulnes of the runs of 5,. Given a

system S, a fact is said to be about the failure pattern (S p A-) if (S. p’. Ic’) p pier

all runs pp’ C S that have the same failure pattern. Observe that d(k) and D are facts

about the failure pattern by this deflnition. We can now show:

Lemma 13: Let be a fact about the failure pattern. Let a and a’ be initial configura

tions, let ,r be afailure pattern, and et p 71ar) and p’ 5(c’, n). Then :sr. fl

if (S,.p’, ) fp, for all £ 0.

Sketch of proof: Assume that S, p’. k) f, and let C = A(p’. k). It foiow that

there is a run p” such that v(G,p’.k) v(G,p”. /c), and (S,p”, kJ ?r. Let Q b€ the

set of processors on whose initial st.ates a and a’ disagree. Clearly v(C, p’, k) contains

th( vipw at time 0 (i.e.. initia state) of none of the orn(essors in Q. Tnxs, wiihou

Ic , of generality p’’ = 7 (a’, it’) for sonic it’’ An induct ye argurne at am rig the i ‘es of

the proof of Lemra 11 a) wifl no” show that u(G. p. k) v(G. T(u, w”) ;). (Note that

.4p. A-) = .4(p’k) = G). But because is a fact about the failure pattern. it Foiows that

(5,, 7(c, it”), j . and hence (S,,p. k) I, and we are done with one direction. The

other direction of the argument is syrn,netrc.
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We can now deflne the u’ostefnlness of a failure pauern r, denote] u-(n), In be W(s. )

for a run p of the form p = 7(u. for some a. Lemma 13 inluLies that wLr) is independent

of the initial configuration a chosen, and therefore w(w) is well-defined. T[,uoreri 12 can

now be read to state that if the failure pattern of a run is r. then at imi’e I
— 1 u’(T) the

active processors have common know!edge of a common vie” of the nihal nntigur.ihon.

A closer inspection of the proofs of Theorem 5(c) and of Theorem t actually shows that

I w (i-j j the at time t 1
— j there is a part k-u ar A-’ such that the ac Ii VP 3 roressors a

know that d(k’) — j, and for no e > k’ is t ihe case that an active pr-cc r, r k cws hat

d(F) j. By Theorem 12(a), w(ir) j if “w = j” is common knowLedge a tune t — I — j.

It follows that the identity- of :.his rnrnber k is also corn mon ko -Ja/7a lIP t — 1 -.- -

Consequently, the active processors obtain common knowedge ui a View of hip

first k’ rounds of the run, and not only of the initial configuration. Purttierriiorc-. since A?

is determined by the implicitly known values of cI(k), Lemrr 13 mp(ic tha :he value of

k’ is uniquely determined by ,r.

One of the consequences of Theorem 12 and Lemma 13 is: -

Corollary 14: There is a t-resiiient protocol for SBA that reaches SHL\ in i - I —

mu uds in all runs of the protocol in which the failure pattern is For L L Id 1,1 re p art ems

r in which and at most t processors fail.

Proof: The protocol (uniform for all processors Pt) is:

for 0 perform the foi!oLbing at time

if K(D t ± 1 —

then halt (and sena no messages in he folIo” ;ng ro- r:ds?:

decide U 1IK(jsornc- initiai va’ue was 0):

decide I otherwise.

else send the current view to all processors in ro:ntI € —

The K in the text of the protocol means “the processor knows”. i.e., it is K in p ‘s

copy of the prowcoL By Theorem 12(a) all correct p:ocessors halt after t — 1 - S,. p

rounds. By Theorem 12(b) the active processors have common knowledge of the fact tNa:

they have an identical view of the initial configuration. Thus, their decisions are identicaL

The decision function clearty satisfies the requirements of SHA.

The above protocol is not a protocol in the traditional sense of the word, but rather a

knowledge-based protocol, to use the terminology of Halpern and Fagin in HF’: a processor

actions at any gven point are determined by the processors knowledge. ks mhe\ po:xt o:t.

not every knowledge-based protocol can be impiemented, However, if the onky lcrio’ ledge

required :n he proocoi is knowledge about the past, it is mpenwntahle. Thus. thir ahnvp

protocol can he drecUy transated into a standard protocoL

otice that in runs in which many failures become visible early it is the case that SIJA

is attained by this protocol significantly earher than time t 1. We are aware jf r1o oJ*r

protocol for SBA that stops before time t 1 in some cases. imi the next section we

show that the protocol of Corol]ary 14 is optima’ in the sense that for any given pattrn

of failures, it attains SBA no later than any other protocol for SBA does.



Corollary ard Theorem 12 mph that the stooD:g cor.d: on K D t I C)

irnpHs C(D > t
—

I — C). In facr, we ‘.ii he able to show :ha t:s piotoco is equaierrL

to the following protocol:

for C perform the following at time 1:
if C(some nitial value was 0”)

then decide 0 and halt
else if C (“some initial value was I”)

then decide I and halt

else send the current view to all processor- ii rouid C 1,

The number of Sits of information required to describe a procssoHs ew at round k

exponeutia p. k. Thus. resag in the above protoros nght he tco o:tg to he practcal.

By niouik’ing the protocci slightly so that messages speci- on ic - [ders ew o he

initial configuration and of the failure pattern, we get a protocol for BA with the same

properties in which the length of each message is O(n + t log n).

4. Lower bouiids

We are about to show that the only non—I riviat [acts hat c act hen me o flitn• i k now i

edge in a run p of a t-unifornt system S before time -*1 — W (5, p) are Cacs a,out he waste

fulness of the run. We do this by showing that all executions (p. ) with ‘A’(S.v, e) t —

re rn ila r. We first prove a emma that is recess : ry for our proof of h s fact Ro g h l

speaking, this lemma says that if D;p, 1) < t — £ and p s the last procssor to fai

p. rhe p. is r,iar to an executor ri ,hch p doesn’t fal. and al % her process DrS

behave as they do in p. To make this precise we make the Following defirution: Given a

failure pattern Tr, the failure pattern ,r’ is defined to be it — (p, k(p), Qp) if there is a

triple of the form (p, k(p), Q(p)) in it. and to be qr if p is not designated to fail according

to -r. Given a rue p = (c. r), we define p to be ‘(c. P). If 2 does ut recuire all

processors to send messages to all other processors p every round. p can be said to dispav

a number of failure patterns r. However, it is easy to check that f 7 u. it) = r’) then

P(u, P(u,r’), so that pHS well defined. We can now show:

Lemma 15: Let t < n—2, and let Shea i-uniform system for P,with p = P (a, it) C S. If

D(p. C) —1? and no processor fails ri p in a iater round than. p then (v. ) (p. ).

Proof: If p does “ot fail ri p then p p. and the claim triviaiy holds. Thus. ct k be

th round in which p fails in p, anc notice that by assurnr,tiorr no processor faiá in p at a

later round. If k > C then p, C) (pP, C) and thus clearly (p,t) (pP, C). We still need

to thow the claim for k < L We do this by induction on j — k.

I U 4 = Ci: Let a, E A’p± be two processors acRe a (0.e. Such

3r:n •isOt5 Et by e assun ptio:i that t ‘,—2. Cleary, q, ‘S ‘UCW at p.1) is rEcc,krIc-ea

of tv teth r or not p sent a message o q3 n round . Tins, (p, €) . w:ere p, fl

differs From (,,, C) only iii that p does send a message to qy in round C of (p’, C). (if p sends

qj a message in round of p. then p rr
p) Now, since p does send q, a message in round

of p’, I). processor qj ‘s vcw at (p’, e) is independent of whether p Fails in (p’. C). (it is
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consistent with qj ‘s view at (p’. £) that p sends messages to all processors in round t. and

thus (p’. ) - !p.f). By transitivity of — we also havo that Iv. P) - (7r’. F).

Case j > 0 (i.e., k < t): Assume inductively that rhe Jari. ;ods for j I. Let 2 —

q ,.. q3} be the set of processors active at (p, t) to whom p fails to send a message in

round 4- of (p. ). We prove our claim by induction on s. Ifs 0 t.Fien no processor auive

in (p.s) can distinguE.shwhether p failed in round k or ir, rocrd k — I. Thus. p. F) -

where (ps, ) differs from (p, E) only in that rather than railing ut round k, processor p

fails in round k -r- 1 of (p’.) before sending any messages S4i:ice (k — 1) = j — 1, we

have by the inductive hypothesis that (p, t) (pP, F). ffi ransirivi:y of - we have that

(p1fj (p,t). Now assume that s > 0 and that the ctaim is utie for . — 1. Let m be

a run such that (ps, k) = (p, k), processor q fails in round k -r 1 oF p. before sending any

messages, and no other processor fails in p after rou[.d . Ckarlv D(p.. ) < t — e. sb.ce

d(p,. k’) d(pk’) < t—tfor all k’ < k,and d(p.k- fl - A(:.k—-(k-—1) =

N(p, k) + 1 — (k + 1) d(p, Ic) < t — L Notice also that no processor fails in (p5, £) after

round k + 1. Thus, p p;q• and by the inductive assumption on j 1. we have that

C) p fl Let p C 4(m e) CIearR u s je at ‘p 1 rrn1ojenjpn or %ne e 0

seat a message to q in round k of (pe C). Titus, (p. -
. wuere p differN front p,

in that p does send a message to q. in round k of p’. Again Lv the inductive hypothesis

for j —- I we have that F) (p’. C, “here / -—
p- :0 p 1a15 tQ stud rourd

k messages onv to a — 1 processors in p’, and has S; re ii u tive h po:bess for .s — I

we have that (p’,C) (p,t). By the symmetry and transitivity of -, we have that

(p. £) -
(pPd). and we are done.

The proof 0f Lemma 15 s a generaizatioa and sirnp3ca:ion o the hasic nuuI:ve

argument in the lower bound proofs of [DS, LP1, arid CD,. Notice that the run p in

he staertent of Lemrxa 15 has the foflowing properties: H) if p is not free of failures, then

the number of processors that fail in p is one fewer than in p (ii) D(p.F) i—i. and

(iii) (pP,Q) (p0). We can now use Lemma 15 to show;

Theorem 16: Let t < ii — 2 and !et S be an independent t-uniforrn system.

a) Ut < t then all failure-free executions (p, £ C S x {ti are simUar.

h) if lAflS.p,t) t — and W(S,p’,t) < t — e, then (p. F) - (p’,e).

Proof: (a) Assume that £ t and :et (p. €) and (. £) be aiiure-!ree executons. We

wish to show that (p F) (, F). Let Q = {q, . be the set of protessors whose

initial ctates in p and differ. We prove by induction on s that (pt) — (, F). If s = 0

then (p.F) (ñf) and we are done. Let s > 0 and assume inductively that afaiiute

free executions that differ from (ñ1 F) in the initial state of no more than s — 1 proceors

are similar to it. let (p. F) h.e an execution such that p.0) = (p5,O). in which q5 fails

in the ftrst round wthout sending any messages, and no other presor fails. Cleativ

Dp3, F) = 0 — C. and by Lemma IS ye have that (mo (pI). Let p E

Given that S is an independent t-uniform system, processor p1’s view at (p,t) does not

determine whether the initial stale of y. in p. is as in p or as in . Thus, (ps. F (p’ F).

where p’. differs from p3 only in that the initial state of q. in K is as in ñ. Again by

Lemma 15 we have that (K t) (p’,L), where (p,0) (p’,O), arid (p,t) is failure-free
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Since (p’, £) differs from (, t) onfy in the initial states of s — [ processors, by the inductive

assumption we have that (p’, e) (, ), and by the symmetry and transitivity of we

have (A?. fl (n. ), and we are done with part (a).

b If } S. p. ) < t — £ then in partcuiar it is not impikit kno edge at p. fl that

d(k) > t — for some k < C. It follows that (p.) (g. q, for some S satisfying

D(. e) < t — e. Using Lemma 15, a straightforward induction on the number of processors

hat fafl in!. ) shows that ) (. 1). where (3. 1) is [ai[ure-free. By transitivity of

— we have Ehat (p. ) — (, f). The same argurnenr applies to 1). and the caim now

foIlo’s from part (a).

Remarks; (a) The assumption of independence of the set of initial configurations is

esseritia to the ower bound in Theorem 16. Lemma 15 is independent of this assumption.

in fact, Lemma 15 can also he used to characterize non-independent systems. E.g.. in

systems in which it is guaranteed that processors p, and p have an identicat ait[ai state.

their initial state will become common knowledge at time t t the latest. Details are left

to the reader.
(b) Lemma 15 and Theorem 16(a) generaize and comewhat simpiifv the t — 1 round

ower hound on the worst-case behavior of SBA In our nE€ ;see DLNI, DS, FL fl

CD). Whereas the crash failure model is weaker (i.e.. is subsumed by) most other models

of failures, a further weakening of this model is to assume that the processors send their

messages to otner processors in a particular order. a,:d an initial segmeat of the :essagPs

5ent by a failing processor in its rourd of failure are delivered (ct. CD . W t out oss of

generality we [nay assume that the protoco a processor foitows determines this order as it

determines all other actions the processor performs. The proof of Lemma 15 goes through

for this meeI also. The only detai that :uust he added to the proofs that the pr9res

6 Q should be the ast processor arnong those in Q) to whom p sends a m.esage ri

round k. Details are left to the reader.

As we will see in the sequel, Theorem 16(h) allows us to completely characterize the

runs in which t — I rounds are necessary for attaining SBA. as w€ll as those tha’ require

k rounds. for all k. More generaUv. Proposition 7a) ar1d Theorem 16(b provide us with

a lower bound on the time by which facts Carl become common kno edge in i-uniform

systems. Formally, we have:

Theorem 17: Le t < ii — 2, and let S be an independent -uniforrn system, if

(.9. p’.t) v holds for some p’ 6 S satsfying ‘fS,p’) t — £. then (5,p.Ci Cr

for alt p 6 S satisfying 14) (5. p) t — t.

]‘heorern 17 and Theorem 12(b) completely characterize when non-trivial facts about

the initial configuration become co-nmor. knowedge in the runs of 3,. In a orecse sense.

they mv that the oniv fact that is common kno;’ledge at (p. k).for k <
—

is

that the wa5tefulness is less than t ± I — k. Formally, we have:

‘orollary 18: Let K n — 2, let S, he an independent f-uniform s stem for 7, and let

Vi’- pjt- , TheniS-,o £) C, ,toraI o’E sucht a 4S- p’,t’ t—

is the case that (S,p’,€) p.

Furthermore. Corollary S and Theorem 17 immediately imply:

19



Corollary 19 Let < n - 2. ct P be a t — r”-i CIII rotor ol For B A arid let.S he

a t-uniCorm system for 2. with p C S. Thea A is not attained in p ii fewer tha,.

t — 1 — tS,p) rounds

Corollary 19 proves that SHA cannot be attained in the runs of I any earlier than

it is attained by the protocol of CoroHary 14. However. it still seems possible that using

another protocol SBA will be attainable jr fewer ro.r.ds than in the protocol of Cor-

lary 14. We now show that this protocol is oritira n a rather strong sense: for any gi c•

initial configuration and failure pattern, no p [otocc)l at tairks SB A in fewer rounds than the

protocol of Corollary 14. This fact follows from the Following theorem, which states that

the wastefulness of a run resulting from a given initial configuration and failure pattern

is no greater than its wastefulness in ° Given C oro,arv 19. this wi.i imsly that the

protocol of Coroi an 11 awavs atta ns BA a: r e ear es t poss ble r me. given he E xi:

configuration and failure pattern.

Theorem 20: Let S be a t-uniform system for a protocol 2, jet p P(uir). and let

ft = 7[cr). Thea U’(Sp) <

Proof; We will show a more general fr fro: ‘ iic :i the theorem wE fol o’v. Given

an initial configuration a’, and a failure pattern ‘, let p’ = r’) and =

Notice that A(p, k’) A(ft, k’) for all k’. V claim that tbr all k and all pi A(p, ) it is

the case that ifv(p,ft,k) = v(p1ft’k) then v(p1,p. 4) (p,p’, 4-). We argue by induction

on k. The case 4- = 0 is inirnedia’e. Let k -> 0 and a:ime nducivey that the cian

hods for a processors n A: p. k — 1) at time Lr — Thus. f vip,. . ti = u(p. ft. ) ancE P

sends a round 4- message to p, in fl, then p has the same view at (fti — 1) and (a’. 4--— IL

and m also sends Pt a round k message in ‘. In this case both ir and K’ determine that

round A- messages From P’ to p are delivered. By the inductive assumption P also las the

same ‘. iew in (p.k — 1) and in (p’, k — 1). ft follows that F requires p to act deaticaiR

n round k of both p and p’ .Ar:d if is required to send p a round k x-essage In p then

it is requited to send p the same message in round k of p’. Processor does not send a

round k message to p in ft only if w determines that Pi cannot send p such a message.

But then for similar reasons ,r’ must also determine that p; does not send p a round A-

message. ft follows that in this case pj does not send p, a round Ar message in p or in p’.

Thus, for a!! processon pj it is the case that m receives a round k message from p in p if

p receives an identical message from p, in round k of p’. The inductive assumption also

implies that v(p1. p k — 1) = v(pj, p’, k—i), and it now follows that v(p, p. k) = u(p, p’ Ar)

and we are done with the lam. We now show how the theorem follows from this claim.

Asurne that V(S. p) j and that W(S, ft) < j. Then there is a time k such that

(S.pk) 1(D j), and (S,,ftk) J(D >j). Let C .4,5.4-) (notice that G = A(p, k

as well). It follows that there is a run ft’ e S. such that (0. , k) (G,ft’. kj and

D(,3’. 4-) cC j. Let a’ and r’ be the initial configuration and Failure pattern in ‘ Let p’

be.(c’. r’). Since G. 3k) = Ar). our claim irnpfles that 1G’. Ic) = V:0. o’.k).

But since Dip’. 4-) D(ñ’k) < j and Alp. k) C. we have that (Spit” ltD > j:.

contrathctng our origna assurnpzion.

Theorem 20 and Corollary 19 now imply that the protocol of Corollary 14 is indeed

optimal in the strong sense we intended: given any initial configuration and failure pattern.

20



it attains SSA as early as any t-res-ilient protocol for SBA can. Tn tight of Theorerri 20.

we can talk about the inherent wastefulness wfr) of a failure pattern lr, defined to be

W(5. T(cnr)). That w(ir) is well deflncd FolIos From the fact that runs p of S7 have the

property tnat 4, (S., p. k) deper:ds only on the pattern of failures and is irdepender1 of

the initial conguration. This can he proved S a somewhat tedious hut siraigh:for-.vard

induction on k, and is left to the reader. Theorem 16 through Coroltary 19 can now be

viewed as statements about the effect of the Failure pattern on the similarity of executions

and on what facts can become common knowledge at various times in the execution of an

arhtrary t—resijent protocol. Coroflarit> 4 and 19 tell us that exactly (—1 w(H rounds

are necessari and suffic:ent to attalL SR\ in runs of any t-resilient protoco for SBA that

have pattern failure it (in the rest of the paper ce UI use it to refer to the failure patt€ rn

of the run in question). This provides a complete characterization of the number of rounds

required to reach S BA in a run, given the pat tern in which Failures occur.

We have seen that the onv Facts ha ran hecorre common kr:oviedg before t:me

— I -- w (-z) are facts about the wastE-i ar: f tne run. in the previous secCon we sa”

that in runs of 8, the processors attain COIIIIIIOH k no edge of an ident cat view of the

initial configuration at time t -4- 1 — w(ir). Thus, we have a complete description Of when

Facts about the initial cot, rrgu ra on be-n rue C rn non know- edge. It is hat res tin g to ask

more generai queston of i-en arh’ rrs acts become common kroviedgt As we

have remarked in the pre’ ous sectior:. the proofs of Lerrtrna 11 and Theorem 12 ran DC

used to slto’v nac at tirrLe I in a rri of 3, the active processors do nor atrairt

common knowledge only of the fact that they have a identical view oF initia’ configuration,

Rather. there is a natura] number k > 0 such that at time t 1— w(iti they attain crnnmon

krrovedgef an dentcal v ew of the state of the system at time k. We denote t-h s flu ruher

k by k, (it). There i-s some number, say - of processors that are cornmoniv knevn at trie

t— 1— wir) :0 have faHed by time k, (w). Let t. = t
— f Roughv speaig. time k *1_i

can now be regarded as the start of a new run, and for appropriate definitions of d[ (k)

and W L (it) we get that at time (k, (it) I) + t + 1 — w1 (it) the system will attain common

knowledge of a common view 0f the state of the system at time k, (it) + 1. Interestingly.

it cart be shown that (k(r) U — 1— ?L(ir) t -r 2— ur). That is, one round

after the processors attain common knowedge of a common view of) the state of the run.

at time k, (it), they attain common knowledge of a common view of the state of the run

at AL (it) -L I, In fact, again we have some number k” > 0 such that the processors have

common knowledge at time t + 2 — w(’r) of a common view of the state of the system

at rne k’. Denoting this number by k. the above anavis can be repeatci \V’, cave

‘iirther derails o ‘he interested reader

The result of the analysis discussed in the preceding paragraph is that at any point.

after time —w(ir) in a run of 7 the active processors have common kriowedge of a common

view of the first A- rounds, for a number k that can he computed given the failure pattern

—. E “-a rig every round after rime t — I — w (nJ the actIve processcr: attain roirirno::

Irovecge of a common ‘ew of at least one additiona round. Consecuen:v. there 5 a

window of common pianihility of a number of the most recent rounds aboui S% h ich no

non-trivial facts are common knowledge, and a common view of all preceding rounds is

co i urn on k ow led g. The size of this window at a giver’ point is t ink rius the nu H, ‘Cr of
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processors that (at that poin ) are lot cOtli [1 orB v known to nave fai :ed - TI s ca—- Ecar in -

of what facts are (ornn[on knowiedge a ULV run of S prcivGe good u pper bourds 0!:

when a simultaneous action that depends on the first k rounds can then be carried out by

a! active processors in a conshitent way. The lower bound results of this section can imply

that these bounds are tight in all ruu. and this we have a complete charac’erzaior1

of when simultaneous actions that depend on the ftrst k rounds can be carried our. a a

function of the failure pattern.

5. Applications

Throughout the paper we have shown how our results regarding when common knowl

edge of various facts is attained in a Byzanhine system affect the SBA problem. We now

summarize our investigation of SBA. Ever faliure pattern can 5e ascri bed ar ruherent

Laste w(;) such that 0 w(r) < r
— . ti1 the property that no protoco Erar SBA can

reach SBA in less than t t - w(ir) in a run that displays the failure pattern lr, Fur

thermore, we have provided a protocol tha[ guarantees to always reach SBA in exactly

t I — w(w). The analysis presented in the previous sectons applies to probiems other tnaa

S BA. In this section we usc IL SOniC r c[CSQ app Lrca ions, in order to lius trae the ty

of applications that the analysis can ‘c used for. We start by considering some problems

that are closely re!ated to SBA

The problem of Wk 53A. ‘hci. difers from SBA in that caue 1-1; is changtd so

that the active processors are required to decide on a value i only if all initial vahies were

and no processor Jails, was introduced by Lamport as a weakening of SHA. However. The

orem 16(b) immediately implies that the active processors do not have cornon knowledge

oi any nou-trvai act about the run before time t 1 — w(r, n any run of a t-res;:ier

protocol with failure pattern qr. The WSBA requirement is a non-trivial requirement.

since when the active processors decide 1 they must. have common knowledge that it is not

the case that all processors started with 0 and no falure occured. Thus. WSBA cannot

be reached before time t ÷ I — w(,r). And since SBA can aLready be performed at time

t-f- 1 —w(ir). we have that t-resilient protocols cannot attain WSBA any earlier than they

can SBA. Theorem 16 also describes why the variant of SBA used in this paper (which

was introduced by FL’) is essentially equivalent to the original version of the Byzantine

Generals problem of 1PSL], in which only one processor initially has a value, and the pro

cessors need to decide on this value if the processor does not fail, and on a consistent value

or C r S C.

it has been a folk conjecture. that a i-resiHect protoceH that guarantees that a nr-

trivial action is performed simultaneously must require t + 1 rounds in the worst case. We

now show that this is not the case. Let br,;alent agreement be defined by clauses (1)_.(%:

of SBA. and replacing clause (4) by:

4’. At least one run of the protocol decides 0, and at least one run decides 1.

Thus, a t-resilient protocol for bvaient agreement is a protocol 2 with the property that ai

runs of the independent t-uniform system S [or P in which the set of initial ronguration

is {0. l}’ satisfy clauses (i)—(3) and at least one run of S decides 0. and at least one
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run decides 1. Proposition 7 implies that any action that is guaranteed to be performed

simultaneously requires some fact to become comrton kno’vedge before rho action can be

erformed. Theorem 12(h) mo:e thai at the end of tound 2 of 5, it is common knowedge

whether or not the wastefuLness of the run is t — L (i.e.. whether t processors were seen Co

have failed in the first round). Thus, we can easily derive a t-resilient protocol for bivalent

agreement: Each processor follows I for the first two rounds, and then decides 0 if it

knows that t processors ta i]ed ii the first round and I otherwise. This protocol attains

hivaer.t agreement in two rourtes. and theoreni 17 implies thaz there is no raster protocol

for hivaent agreement so ong as t < n —2. Furthermore, it impii€s that in a precise sense

this is the onv two-rourd protoco, :or Sivaknt agreement. We cave it to the reader to

check that if t n — 1 then tlier-e is a protocol for bivatent agreement that requires only

one round. Thus, bivalent agreement is a truly easier problem than SBA. We note that

TLP and DDS prove that in an asynchronous system there is no 1-resilient protocol for

an ever weaker variant of hva!e: agreement. Ray Strong has pointed nit that tNe above

protocol can be used to achieve2t-va!ert. agreement in two rounds.

We have stresaed the connection between common knowledge arid sirnuftarieoiis ac

tions. Interestingly, the tower hounds on the time required for attaining conmon kno” ledge

imp [y worst—case bounds o 1 he behavior of t—resi I ient protocols that perform coo rd in atc I

actions that are not required it he performed simultaneously. For exam pie, E’nt uci

Byza’itine .4rw’ne’t EBA is defined v clauses (1). (2), and (4) of SBA the p-ocesors’

decisior.s need rot be simnultaneo’;s (cr. URS ). There are vefl-icaovn p”otocos that attain

[BA after two rounds n failure-free ru, for wHch u(r) = 0). However, usir.g Prnpos

tion 7 and Theorems 17 and 20 it 15 Rot hard to show that a t-resilient protocol for EBA

must require t — 1 rounds in some runs with w(r) = 0. More generally, these theorems

show that such a protocol must require t 1
— j rounds in some runs with w(lr) = j.

This is a sgL rehnen:ertt of the we!-known fact that EBA requires t — 1 rounds a ihe

worst case (cf DRS). Many very relevant and interesting aoects of EBA are not covered

by our anaysis. We believe that an analysis of FDA shouid nvolve a study of when the

states of c-common knowledge arid eventual common knowledge (cf. IHM are attained in

a Byzantine environment. This is an interesting open problem.

As our investigation centered around f-resilient protocols, we now briefly discuss some

other possible reiiabiiit3 assum3ions. Recai tha’ Corollary 10 states that a! active rro

cessors are guaranteed to have an identica. view of the system’s initial configura on at

time t 1 In every run of a -uniforusyst€m tor 7. This foflows simpt from the fact that

at time t - 1 it is common knowLedge that one of the previous rounds was clean. Instead

of t-resiliency, we could require that a protocol for SBA he guaranteed to attain SBA so

long as no more than k consecutive rounds are dirty. In the system corresponding to all

the runs of F a wiiich at most k consecutive rounds are dirty, it is common kno” edge

at time It -- 1 that a clean round has occurred, and I can be converted in to a protoco

‘H 4 tna! g;;ara’i:rd to attain SF3A in no more t:nan i — 1 ro:’I. Tiis

for examp’e, that if processors in a Byzantine system are known to fail at least two at

a time. SBA can be achieved in t/2 + I rounds. Having a bound of k consecutive dirty

rounds seems in many cases to be a more appropriate assumption about a system than

aving a bound off on he total number of faUures possihe. since the latter is not a local
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a— iTlnptLofl. 01 course. thesc two asSTiriipI.iOrIS are not rTltIt,ually exclusive, and \C Hwy

often have a small bound OP Lie pos!be number of consecuLve dirty rojnl. a,.l o::’ a

rncich arger bound hods or he t’?tal number of failures. The hound on the nurij)r or

consecutive dirty rounds implies a good upper bound on SBA in the case of rash failures.

-‘ not her way we can Co IS e varying the rei jab lity as u :npt :0:15 a ho he sys

i by restricting t nc namber o: possmle ;rocessor failures thaE can occur in a rourru. For

example, let us consider he assurn ptiorm that at most one processor can fail in any gi\ en

ro cd of the corn pu at on. Ji at Taos t t processors might fail overall. We ar interest co in

the question of whether >uch •unioiions allow us to attain SBA quick!v. Unfortunarei.

the tower hound proofs oF Lemma L5 and Theorem 16 work very well for this reiiahi[rt

mjdel. In fact, since all of thi’ runs of such a system are guaranteed to have wastefjhiess

0, even hivalent agreement cannot he attained in any run of the system in tess aai

— rounds SBA and \VS ciearly require t -r 1 rounds in oh runs of the ssten:.

We now present a sonme-har. artificial variant of this assumption that provides us with a

non—u forr. re as i . whose beha or k Interest ng and so mew hat coil n er

:it.irivp: We say that a ootocoi or S BA ;s one uzsibi failure reisca9t (I -VF R f

guaranteed to attain SBA so kng as no more than one processor failure htcornes vibe

to the active processors TI a rj\ gi’ cli round. The set of possible runs of a protocoL P that

display such behavior wH I he cal led a ri.sibiy restrained system ror ‘ it is uomsbIe to ‘ho

chat in the visibly restram[IecI s;steiu for the SL;npJe prococot 7 of Section it 5 rorru’nc)r

knowledge at time 2 whether round 1 is dean, and therefore WSBA can he attained in

ro rounds. Hoever. SHA can be shown to recuire n — 1 ro1nds in rxr ,f7:i’. hch

one processor ias P. every round except possih* the (n — 1)st round. Lf one adds a

hound of t < ii — 2 on the total number of failures possible. it — I is replaced by t — L)

H:reresting]y. here is a 1-VFP protocol for SBA that is guaranteed to attain SBA in three

rounds (in all runs)! Thus, for the 1-VFR reliability model. our simpie protocol is no

longer a most generat protocol. The reason foi the odd behavior of IA’FR protocols s

that the patterns of failures of the runs that satisfy 1-VFR are intimately related to the

structure of the protoco. Thus, the protocoi can restrict the patterns of facres oossibe

and make effective use of the 1-VFR assumption.

6. Conclusions

This paper anaiyzes the states of know€dge attainabe n the course of the eecuhor:

of vanous protocols in the system, for the case of a particular simple model of unreliable

dstrbuted ysteris that s fairly popular in ±e iterature. Motivated b’ the work of

HM, the anaysis focused mainly on her various facts about the system become cor:irnon

knowledge given an upper bound of t on the riuniber of possible fauit processors. Thi

probl.Tn is shown to directly correspond to the question of when simultaneous actions of

variou5 types can be performed by the processors in such a system. In particular. ±s

a generalization of Smnultaneous Byzantine Agreenient and reiaced probiens. By dcci vrv.,

exact bounds on the question of when facts become common knowledge. we immediately

got exact bounds for SBA arid man other probIer.s. An il7erestirg fac !at came o.t

0: tmte dnaLysis was that the pattern in which processots sail in a gvec run aeerm!!:c a

lower bound on the time in which facts about the system’s initial configuration become



Co 2 tot !e ige. vi h d 5:rn: nat ter as determ in iag di ife rent hounds - ho nc a lv. facts

De(crre corr’n:on kuo’ edgo faster in cases when many processors faN early in the ran.

The omevha: l)aracoxrai argurrent for this is that, given an uaper bound on the totaL

uSer o: Ires :os Se. if many processors fall early then on!v few can Fail aer. The

proiccol can mak use of r.he fact that the rest of the run is nllatively free of failures - As

a by-product of the analysis, we were able to derive a simple improved protocol for SBA

that is optimal in au r’.uts.

Our anavsi shcnv that the essential driving force behind many of the phenomena

2 U r reabie vstews seeUs to DC the inherent uneertant that ; partc Jar site in s Kb. a

ivstern has abo: re goa state of th system. We come to grips with this uncertainty Sy

Deroritng a x cvecP-)aec anavsis of such a system. We stress tha’ our analysis was

by and arg rest nt ed Fro :0c0s for sirnuiianeous actions in a rather cPan and srnpIe

mode] of unreliable vster1s: synchronous systems with global docks and crash failures.

We believe that performing similar analyses for nastier models of failures will prove very

exciting. and iII provide a much better understanding of the true structure underlying

the richer failure models, and of the differences between the failure rnode!s. The ideas and

techn*1ues de&’i:ierJ r H .ae should prc ide a sound basis on which to build such an

,H-r tnar a ,:-:rEh1r ci additional ideas wou4 be ecu:red.

In sun:rr rv. he rrt.1 men: in this paper differs ‘rom the sia apo-oach to Syzantine

ag re rrie itt U’. ic p robe rrrs in that we make exp Ic t and esseat a use c-J ‘easo n rig a tout

kno’.s edge in order to reach conclusions about the possibility or imposih’ lily of carrying

out rertain desired actions in a distributed environment. The generality and applicability

of our results suggest that this is a promising approach.
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